Created
May 1, 2025 17:33
-
-
Save kavan-mevada/dfef7f327a7c660f8fecbe73f3f277bd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"cells":[{"cell_type":"markdown","metadata":{"id":"tOvDRvBT-NKB"},"source":["To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n","<div class=\"align-center\">\n","<a href=\"https://unsloth.ai/\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n","<a href=\"https://discord.gg/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord button.png\" width=\"145\"></a>\n","<a href=\"https://docs.unsloth.ai/\"><img src=\"https://github.com/unslothai/unsloth/blob/main/images/documentation%20green%20button.png?raw=true\" width=\"125\"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href=\"https://github.com/unslothai/unsloth\">Github</a> </i> ⭐\n","</div>\n","\n","To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://docs.unsloth.ai/get-started/installing-+-updating).\n","\n","You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save)\n"]},{"cell_type":"markdown","metadata":{"id":"Db9cA9Tq-NKD"},"source":["### News"]},{"cell_type":"markdown","metadata":{"id":"O_9BU-q4-NKE"},"source":["**Read our [Gemma 3 blog](https://unsloth.ai/blog/gemma3) for what's new in Unsloth and our [Reasoning blog](https://unsloth.ai/blog/r1-reasoning) on how to train reasoning models.**\n","\n","Visit our docs for all our [model uploads](https://docs.unsloth.ai/get-started/all-our-models) and [notebooks](https://docs.unsloth.ai/get-started/unsloth-notebooks).\n"]},{"cell_type":"markdown","metadata":{"id":"AOHXmccO-NKE"},"source":["### Installation"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lCpROVM--NKE"},"outputs":[],"source":["%%capture\n","import os\n","if \"COLAB_\" not in \"\".join(os.environ.keys()):\n"," !pip install unsloth vllm\n","else:\n"," # [NOTE] Do the below ONLY in Colab! Use [[pip install unsloth vllm]]\n"," !pip install --no-deps unsloth vllm"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"R9TDCKNY-NKF"},"outputs":[],"source":["#@title Colab Extra Install { display-mode: \"form\" }\n","%%capture\n","import os\n","if \"COLAB_\" not in \"\".join(os.environ.keys()):\n"," !pip install unsloth vllm\n","else:\n"," !pip install --no-deps unsloth vllm\n"," # [NOTE] Do the below ONLY in Colab! Use [[pip install unsloth vllm]]\n"," # Skip restarting message in Colab\n"," import sys, re, requests; modules = list(sys.modules.keys())\n"," for x in modules: sys.modules.pop(x) if \"PIL\" in x or \"google\" in x else None\n"," !pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft \"trl==0.15.2\" triton cut_cross_entropy unsloth_zoo\n"," !pip install sentencepiece protobuf datasets huggingface_hub hf_transfer\n","\n"," # vLLM requirements - vLLM breaks Colab due to reinstalling numpy\n"," f = requests.get(\"https://raw.githubusercontent.com/vllm-project/vllm/refs/heads/main/requirements/common.txt\").content\n"," with open(\"vllm_requirements.txt\", \"wb\") as file:\n"," file.write(re.sub(rb\"(transformers|numpy|xformers)[^\\n]{1,}\\n\", b\"\", f))\n"," !pip install -r vllm_requirements.txt"]},{"cell_type":"markdown","metadata":{"id":"TGMWlrRdzwgf"},"source":["### Unsloth\n","\n","`FastModel` supports loading nearly any model now! This includes Vision and Text models!"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":432,"referenced_widgets":["ef76d2770d9346eb8d1a0e1e145db3fb","7c6fa57d124944b4840f3d3ec540098b","96ee61528dde4b2a90972f9e04a70f85","e30a2d2cd7744976becf2f822c0c77ae","4c34f401b3ab423c99e48f7165e26043","f3a03a6997ad43868a300341737a2a84","623b6ef43ab14d5e8b4cfdb63cabc4bf","9c18299226b0465d8d2ac8f95b259cd7","253b09a4d67c403eaaa80dea35dab05d","0e810f8337b147d98def7d732c56f806","8f60790c054f42b1b483bee933e2230a","477ac908e4e74f63a4d0e8fd21ceeb9d","1d854462c41246d6a5d29f79a44008d3","3a4a30ee55984adbb09ca8da38df1c3a","4c7650a6b53d49f3b1e2f66dd8411315","9865c43c048a47c9a57ab3886930ab0c","9614e284f1d44f1cb216907d638d3e6b","ef8709ccce924c8aa0c6bd0ad7976322","054df2ca501f4136a98a01160dea760a","2fe2538502c940648e96e0119af503e6","95486119c1be46f3807011c0524aecd3","6bb31305f504453ca6a4e8be83f84ca7","67b6d3b184024958b3ec3c019e030899","c592679bd2d7404c912aa8e172214ab2","3a6ebc13942b4398aece086081c5026b","edde204ffb96409e8c2e91eb418d8737","170323e81ba74967a2b5adf0760411b5","d3caa18ea9e04702bc0c337b273363e6","3c5c1207164d4f59b4aa9e28fd3645dc","6b82480932374e72bc84ad5b7c22fbfa","e03c305395b9457b9865d448ad977380","4b5d871cb8234e869d97cad1ebf6019d","54603f38ddab46d69b189bcdd05ce024","ade90e78de6b4373a5e38d36ce3257b0","86ad825d2e234db1ab5a2f5b0d72c8fc","0303ee28e80d448fbe29a8e250d47318","1732186cd096409cb72f1c6cf83ef6d2","944bc15a28724d94b8e0367b48e5f675","0724f2c5a00241b19603bdfea378f7c5","d8b3c42a4f854eab9eaf085f656f7c8e","a7cf5e93c81f4d319cec26a5932efde8","0d6dffa372d34f7791debd37797b4894","2616833ccf9145e1a20dff9790df11b4","e95f88a9101f4084ab89288d02a83401","88e0c9d873494d0688ad34bb0ed487f5","1eb58a76ae634104b4144a176b76e26b","e55347eb7eb84209a6720a05e781af14","6c7d0a9d22804afaa9ad61ee6699aa5d","51a6d229962a47798de89deabe9c6e98","8fe298634de944e39dc5b70981168ea5","6316b727dc914c699fa502185866d312","6c528c621bc442c5881db8c0e8c87c4f","fe5eca8b017d4fc59a9edbe91d5bd07f","dd180121959e4c0d92a25c74d016e9c0","c2d1cdd528f3422bbefb77be4c3a3d70","ae7be54d9b2349938cb6d723c7d8009b","1b6e68ac0a3d47ffbec1bb1d3c7267c7","e535bf323720400fb171bbb671265243","df693d0db8ed44ed8ef4ca59258d935b","96457a0a77754d6897f81ffd4cc339a9","608649511f964042b682eb33c4447dba","48cef38fd0d34ef5bca580b137972cca","b74a1fb9cceb49e4b0cbf60ef3a967d0","4e593897ae154a6ba4d00bcdd23228ad","4e580eb550dd41bea8dffff0b70eb63b","1edb4306da42403da241cf76dcc5d8b9","8c228efb3c504020b627b96fe4e517ad","c7058eb7c2df4da7b638a79cbcb2f24b","46b49001241d400bae600d7ed63e76f0","3679f4ebf47d48a3a40716f1b207bf3c","71d1f0abc9034e33b7d23c25288bd8ed","b450dca9821646b08dcfc92be8f5b75e","0b6ac10f8262424397cc4487ee9bcc1c","241f85fd6e204b6ab2d22aef1ebeae9c","ac8d1ef88f6140ac917411f2875d310c","adffa0bdb23c4332ab4c1988929f86f3","e8abc0d0c6344df6a0e11c80fdf9cea5"]},"id":"-Xbb0cuLzwgf","outputId":"d04127d2-c180-48e3-d699-652697c07620","executionInfo":{"status":"ok","timestamp":1746051806879,"user_tz":-330,"elapsed":95649,"user":{"displayName":"Kavan Mevada","userId":"15076178667420285336"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n","🦥 Unsloth Zoo will now patch everything to make training faster!\n","INFO 04-30 22:22:34 [importing.py:53] Triton module has been replaced with a placeholder.\n","INFO 04-30 22:22:34 [__init__.py:239] Automatically detected platform cuda.\n","==((====))== Unsloth 2025.4.3: Fast Gemma3 patching. Transformers: 4.51.3. vLLM: 0.8.5.\n"," \\\\ /| Tesla T4. Num GPUs = 1. Max memory: 14.741 GB. Platform: Linux.\n","O^O/ \\_/ \\ Torch: 2.6.0+cu124. CUDA: 7.5. CUDA Toolkit: 12.4. Triton: 3.2.0\n","\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.29.post3. FA2 = False]\n"," \"-____-\" Free license: http://github.com/unslothai/unsloth\n","Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n","Unsloth: Using float16 precision for gemma3 won't work! Using float32.\n"]},{"output_type":"display_data","data":{"text/plain":["model.safetensors: 0%| | 0.00/1.00G [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"ef76d2770d9346eb8d1a0e1e145db3fb"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["generation_config.json: 0%| | 0.00/233 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"477ac908e4e74f63a4d0e8fd21ceeb9d"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["tokenizer_config.json: 0%| | 0.00/1.16M [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"67b6d3b184024958b3ec3c019e030899"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["tokenizer.model: 0%| | 0.00/4.69M [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"ade90e78de6b4373a5e38d36ce3257b0"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["tokenizer.json: 0%| | 0.00/33.4M [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"88e0c9d873494d0688ad34bb0ed487f5"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["added_tokens.json: 0%| | 0.00/35.0 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"ae7be54d9b2349938cb6d723c7d8009b"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["special_tokens_map.json: 0%| | 0.00/670 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"8c228efb3c504020b627b96fe4e517ad"}},"metadata":{}}],"source":["from unsloth import FastModel\n","import torch\n","\n","fourbit_models = [\n"," # 4bit dynamic quants for superior accuracy and low memory use\n"," \"unsloth/gemma-3-1b-it-unsloth-bnb-4bit\",\n"," \"unsloth/gemma-3-4b-it-unsloth-bnb-4bit\",\n"," \"unsloth/gemma-3-12b-it-unsloth-bnb-4bit\",\n"," \"unsloth/gemma-3-27b-it-unsloth-bnb-4bit\",\n","\n"," # Other popular models!\n"," \"unsloth/Llama-3.1-8B\",\n"," \"unsloth/Llama-3.2-3B\",\n"," \"unsloth/Llama-3.3-70B\",\n"," \"unsloth/mistral-7b-instruct-v0.3\",\n"," \"unsloth/Phi-4\",\n","] # More models at https://huggingface.co/unsloth\n","\n","model, tokenizer = FastModel.from_pretrained(\n"," model_name = \"unsloth/gemma-3-1b-it\",\n"," max_seq_length = 2048, # Choose any for long context!\n"," load_in_4bit = True, # 4 bit quantization to reduce memory\n"," load_in_8bit = False, # [NEW!] A bit more accurate, uses 2x memory\n"," full_finetuning = False, # [NEW!] We have full finetuning now!\n"," token = \"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\", # use one if using gated models\n",")"]},{"cell_type":"markdown","metadata":{"id":"SXd9bTZd1aaL"},"source":["We now add LoRA adapters so we only need to update a small amount of parameters!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6bZsfBuZDeCL","outputId":"043f5ed1-d67a-4457-fba5-31f66852f5bd","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1746051824119,"user_tz":-330,"elapsed":5210,"user":{"displayName":"Kavan Mevada","userId":"15076178667420285336"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["Unsloth: Making `model.base_model.model.model` require gradients\n"]}],"source":["model = FastModel.get_peft_model(\n"," model,\n"," finetune_vision_layers = False, # Turn off for just text!\n"," finetune_language_layers = True, # Should leave on!\n"," finetune_attention_modules = True, # Attention good for GRPO\n"," finetune_mlp_modules = True, # SHould leave on always!\n","\n"," r = 8, # Larger = higher accuracy, but might overfit\n"," lora_alpha = 8, # Recommended alpha == r at least\n"," lora_dropout = 0,\n"," bias = \"none\",\n"," random_state = 3407,\n",")"]},{"cell_type":"markdown","metadata":{"id":"vITh0KVJ10qX"},"source":["<a name=\"Data\"></a>\n","### Data Prep\n","We now use the `Gemma-3` format for conversation style finetunes. We use [Maxime Labonne's FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset in ShareGPT style. Gemma-3 renders multi turn conversations like below:\n","\n","```\n","<bos><start_of_turn>user\n","Hello!<end_of_turn>\n","<start_of_turn>model\n","Hey there!<end_of_turn>\n","```\n","\n","We use our `get_chat_template` function to get the correct chat template. We support `zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, phi3, llama3, phi4, qwen2.5, gemma3` and more."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"LjY75GoYUCB8"},"outputs":[],"source":["from unsloth.chat_templates import get_chat_template\n","tokenizer = get_chat_template(\n"," tokenizer,\n"," chat_template = \"gemma-3\",\n",")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Mkq4RvEq7FQr","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1746052517810,"user_tz":-330,"elapsed":2543,"user":{"displayName":"Kavan Mevada","userId":"15076178667420285336"}},"outputId":"e566aa55-fa5e-4c96-a540-45ac20daef6a"},"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}],"source":["#from datasets import load_dataset\n","#dataset = load_dataset(\"mlabonne/FineTome-100k\", split = \"train\")\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","#dataset = load_dataset('csv', data_files='drive/MyDrive/all-data.csv', encoding='latin-1')[\"train\"]"]},{"cell_type":"markdown","metadata":{"id":"K9CBpiISFa6C"},"source":["We now use `standardize_data_formats` to try converting datasets to the correct format for finetuning purposes!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"reoBXmAn7HlN"},"outputs":[],"source":["from unsloth.chat_templates import standardize_data_formats\n","dataset = standardize_data_formats(dataset)"]},{"cell_type":"markdown","metadata":{"id":"6i5Sx9In7vHi"},"source":["Let's see how row 100 looks like!"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"dzE1OEXi7s3P","outputId":"80df0763-108c-48ed-c770-526d112c61c5","executionInfo":{"status":"ok","timestamp":1746052612857,"user_tz":-330,"elapsed":27,"user":{"displayName":"Kavan Mevada","userId":"15076178667420285336"}}},"outputs":[{"output_type":"execute_result","data":{"text/plain":["{'neutral': 'positive',\n"," 'According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing .': 'Circulation revenue has increased by 5 % in Finland and 4 % in Sweden in 2008 .'}"]},"metadata":{},"execution_count":22}],"source":["dataset[100]"]},{"cell_type":"markdown","metadata":{"id":"8Xs0LXio7rfd"},"source":["We now have to apply the chat template for `Gemma-3` onto the conversations, and save it to `text`. We remove the `<bos>` token using removeprefix(`'<bos>'`) since we're finetuning. The Processor will add this token before training and the model expects only one."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1ahE8Ys37JDJ","colab":{"base_uri":"https://localhost:8080/","height":371,"referenced_widgets":["9a880f41637f4e2280ca5f2acbc9087f","5e730ca00ea348e3b41e7d6b5b0ad559","56e8f0ccaf60446fb3d33ca2e1c37626","9315107209cd454b9c198a32a8c1a0d0","ecf0ec4c59db4b13be5a78cb50f6565c","341f2d064bcf474f860aa385f3ef35ea","acccfb400e5d4d72a2b1f88dff300aeb","a932aefb8a0747e195319a134cd5649f","e6151e29f0d944cfa864c0846531308a","010943cd20c64081902a70fd633775c6","c44465720eee440ca25500146f28f227"]},"executionInfo":{"status":"error","timestamp":1746052740491,"user_tz":-330,"elapsed":132,"user":{"displayName":"Kavan Mevada","userId":"15076178667420285336"}},"outputId":"b0b1f572-5e3d-4278-ff4b-a504ae21a0f0"},"outputs":[{"output_type":"display_data","data":{"text/plain":["Map: 0%| | 0/4845 [00:00<?, ? examples/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"9a880f41637f4e2280ca5f2acbc9087f"}},"metadata":{}},{"output_type":"error","ename":"KeyError","evalue":"1","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-25-39dad95f53f4>\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m{\u001b[0m \u001b[0;34m\"text\"\u001b[0m \u001b[0;34m:\u001b[0m \u001b[0mexamples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mdataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mformatting_prompts_func\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.11/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 555\u001b[0m }\n\u001b[1;32m 556\u001b[0m \u001b[0;31m# apply actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 557\u001b[0;31m \u001b[0mout\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"DatasetDict\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 558\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 559\u001b[0m \u001b[0;31m# re-apply format to the output\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.11/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc, try_original_type)\u001b[0m\n\u001b[1;32m 3077\u001b[0m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m\"Map\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3078\u001b[0m ) as pbar:\n\u001b[0;32m-> 3079\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mrank\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontent\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_map_single\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mdataset_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3080\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3081\u001b[0m \u001b[0mshards_done\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.11/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m_map_single\u001b[0;34m(shard, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, try_original_type)\u001b[0m\n\u001b[1;32m 3523\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3524\u001b[0m \u001b[0m_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3525\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch\u001b[0m \u001b[0;32min\u001b[0m \u001b[0miter_outputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard_iterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3526\u001b[0m \u001b[0mnum_examples_in_batch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3527\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mupdate_data\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.11/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36miter_outputs\u001b[0;34m(shard_iterable)\u001b[0m\n\u001b[1;32m 3473\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3474\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexample\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mshard_iterable\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3475\u001b[0;31m \u001b[0;32myield\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mapply_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexample\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moffset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3476\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3477\u001b[0m \u001b[0mnum_examples_progress_update\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.11/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mapply_function\u001b[0;34m(pa_inputs, indices, offset)\u001b[0m\n\u001b[1;32m 3396\u001b[0m \u001b[0;34m\"\"\"Utility to apply the function on a selection of columns.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3397\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0madditional_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn_kwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprepare_inputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moffset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3398\u001b[0;31m \u001b[0mprocessed_inputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfn_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0madditional_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfn_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3399\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mprepare_outputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprocessed_inputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3400\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m<ipython-input-25-39dad95f53f4>\u001b[0m in \u001b[0;36mformatting_prompts_func\u001b[0;34m(examples)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#convos = examples[\"conversations\"]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False).removeprefix('<bos>') for convo in convos]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m{\u001b[0m \u001b[0;34m\"text\"\u001b[0m \u001b[0;34m:\u001b[0m \u001b[0mexamples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mformatting_prompts_func\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.11/dist-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 276\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 277\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 278\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 279\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys_to_format\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 280\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mKeyError\u001b[0m: 1"]}],"source":["def formatting_prompts_func(examples):\n"," #convos = examples[\"conversations\"]\n"," #texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False).removeprefix('<bos>') for convo in convos]\n"," return { \"text\" : examples[1], }\n","\n","dataset = dataset.map(formatting_prompts_func, batched = True)"]},{"cell_type":"markdown","metadata":{"id":"ndDUB23CGAC5"},"source":["Let's see how the chat template did! Notice there is no `<bos>` token as the processor tokenizer will be adding one."]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":34},"id":"gGFzmplrEy9I","outputId":"e214d7fc-97d6-44cd-db0e-9177f5006290","executionInfo":{"status":"ok","timestamp":1746052731646,"user_tz":-330,"elapsed":4,"user":{"displayName":"Kavan Mevada","userId":"15076178667420285336"}}},"outputs":[{"output_type":"execute_result","data":{"text/plain":["'positive'"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"}},"metadata":{},"execution_count":24}],"source":["dataset[100][\"text\"]"]},{"cell_type":"markdown","metadata":{"id":"idAEIeSQ3xdS"},"source":["<a name=\"Train\"></a>\n","### Train the model\n","Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`."]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":112,"referenced_widgets":["730aa679b5ac483b929a3646bb5947fa","1f333859babd4c1abac69cacda6df864","e7f8d2c781a64e83988b0bdd090bdb97","3e3feb4fcca74c87abb608c0543236b1","2970cbc657d244bab22715bcb788be6a","c5b1d1476ddc45249e037df07a96ae37","19c27988e01d47e79319f89b5cfd73e2","5e48531593d741eaa3669f9118ba8afc","62838ffab83d486f86e86417caf0b498","7e5378838c114195ba3919fdd683fd7d","3350d22f463643ef9a726227f262ac49","a8559112c61949318ef9e4ab4cadfeda"]},"id":"95_Nn-89DhsL","outputId":"2ffe3c70-8c46-41a1-ef51-07c220b5935d"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"a8559112c61949318ef9e4ab4cadfeda","version_major":2,"version_minor":0},"text/plain":["Unsloth: Tokenizing [\"text\"] (num_proc=2): 0%| | 0/100000 [00:00<?, ? examples/s]"]},"metadata":{},"output_type":"display_data"}],"source":["from trl import SFTTrainer, SFTConfig\n","trainer = SFTTrainer(\n"," model = model,\n"," tokenizer = tokenizer,\n"," train_dataset = dataset,\n"," eval_dataset = None, # Can set up evaluation!\n"," args = SFTConfig(\n"," dataset_text_field = \"text\",\n"," per_device_train_batch_size = 2,\n"," gradient_accumulation_steps = 4, # Use GA to mimic batch size!\n"," warmup_steps = 5,\n"," # num_train_epochs = 1, # Set this for 1 full training run.\n"," max_steps = 30,\n"," learning_rate = 2e-4, # Reduce to 2e-5 for long training runs\n"," logging_steps = 1,\n"," optim = \"adamw_8bit\",\n"," weight_decay = 0.01,\n"," lr_scheduler_type = \"linear\",\n"," seed = 3407,\n"," report_to = \"none\", # Use this for WandB etc\n"," dataset_num_proc=2,\n"," ),\n",")"]},{"cell_type":"markdown","metadata":{"id":"C_sGp5XlG6dq"},"source":["We also use Unsloth's `train_on_completions` method to only train on the assistant outputs and ignore the loss on the user's inputs. This helps increase accuracy of finetunes!"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":49,"referenced_widgets":["30918e50f2174d1c8e7af3eef332b6ee","f4b34bc9a62f405383c3b81dc87792b9","1be74564b60c48d6b21615adf29009fb","148125f955954041a8f5631f9338c43e","91693f16da7b421885fe8474cf533327","28de62814a6847e0a0b41ec6bf8fdc66","c43cef665c9542f982986a74dc50ca98","ded71beadafd438ebff07bb0594771e4","677e4d7a08ab408e9430d67a2870f707","54d2fb7e7c2b4107ba758a7c7ef4f382","34da5010faa749e0940c2821f2f46e59","d94e1d86e3274277a9d908a7498ef1fa"]},"id":"juQiExuBG5Bt","outputId":"6f017a0d-2ccc-429e-8a27-ab76c6c23b57"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"d94e1d86e3274277a9d908a7498ef1fa","version_major":2,"version_minor":0},"text/plain":["Map (num_proc=255): 0%| | 0/100000 [00:00<?, ? examples/s]"]},"metadata":{},"output_type":"display_data"}],"source":["from unsloth.chat_templates import train_on_responses_only\n","trainer = train_on_responses_only(\n"," trainer,\n"," instruction_part = \"<start_of_turn>user\\n\",\n"," response_part = \"<start_of_turn>model\\n\",\n",")"]},{"cell_type":"markdown","metadata":{"id":"Dv1NBUozV78l"},"source":["Let's verify masking the instruction part is done! Let's print the 100th row again. Notice how the sample only has a single `<bos>` as expected!"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":175},"id":"LtsMVtlkUhja","outputId":"aebb55c2-3883-4494-e9f8-78d60b9b08e8"},"outputs":[{"data":{"text/plain":["'<bos><start_of_turn>user\\nWhat is the modulus operator in programming and how can I use it to calculate the modulus of two given numbers?<end_of_turn>\\n<start_of_turn>model\\nIn programming, the modulus operator is represented by the \\'%\\' symbol. It calculates the remainder when one number is divided by another. To calculate the modulus of two given numbers, you can use the modulus operator in the following way:\\n\\n```python\\n# Calculate the modulus\\nModulus = a % b\\n\\nprint(\"Modulus of the given numbers is: \", Modulus)\\n```\\n\\nIn this code snippet, the variables \\'a\\' and \\'b\\' represent the two given numbers for which you want to calculate the modulus. By using the modulus operator \\'%\\', we calculate the remainder when \\'a\\' is divided by \\'b\\'. The result is then stored in the variable \\'Modulus\\'. Finally, the modulus value is printed using the \\'print\\' statement.\\n\\nFor example, if \\'a\\' is 10 and \\'b\\' is 4, the modulus calculation would be 10 % 4, which equals 2. Therefore, the output of the above code would be:\\n\\n```\\nModulus of the given numbers is: 2\\n```\\n\\nThis means that the modulus of 10 and 4 is 2.<end_of_turn>\\n'"]},"execution_count":11,"metadata":{},"output_type":"execute_result"}],"source":["tokenizer.decode(trainer.train_dataset[100][\"input_ids\"])"]},{"cell_type":"markdown","metadata":{"id":"4Kyjy__m9KY3"},"source":["Now let's print the masked out example - you should see only the answer is present:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":175},"id":"_rD6fl8EUxnG","outputId":"e9012c2a-60eb-437e-f145-3e11e9a0dd34"},"outputs":[{"data":{"text/plain":["' In programming, the modulus operator is represented by the \\'%\\' symbol. It calculates the remainder when one number is divided by another. To calculate the modulus of two given numbers, you can use the modulus operator in the following way:\\n\\n```python\\n# Calculate the modulus\\nModulus = a % b\\n\\nprint(\"Modulus of the given numbers is: \", Modulus)\\n```\\n\\nIn this code snippet, the variables \\'a\\' and \\'b\\' represent the two given numbers for which you want to calculate the modulus. By using the modulus operator \\'%\\', we calculate the remainder when \\'a\\' is divided by \\'b\\'. The result is then stored in the variable \\'Modulus\\'. Finally, the modulus value is printed using the \\'print\\' statement.\\n\\nFor example, if \\'a\\' is 10 and \\'b\\' is 4, the modulus calculation would be 10 % 4, which equals 2. Therefore, the output of the above code would be:\\n\\n```\\nModulus of the given numbers is: 2\\n```\\n\\nThis means that the modulus of 10 and 4 is 2.<end_of_turn>\\n'"]},"execution_count":12,"metadata":{},"output_type":"execute_result"}],"source":["tokenizer.decode([tokenizer.pad_token_id if x == -100 else x for x in trainer.train_dataset[100][\"labels\"]]).replace(tokenizer.pad_token, \" \")"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","colab":{"base_uri":"https://localhost:8080/"},"id":"2ejIt2xSNKKp","outputId":"ba6de9bc-35f1-48ed-8552-5cf1943d0478"},"outputs":[{"name":"stdout","output_type":"stream","text":["GPU = Tesla T4. Max memory = 14.741 GB.\n","4.283 GB of memory reserved.\n"]}],"source":["# @title Show current memory stats\n","gpu_stats = torch.cuda.get_device_properties(0)\n","start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n","max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n","print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n","print(f\"{start_gpu_memory} GB of memory reserved.\")"]},{"cell_type":"markdown","metadata":{"id":"CNP1Uidk9mrz"},"source":["Let's train the model! To resume a training run, set `trainer.train(resume_from_checkpoint = True)`"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"yqxqAZ7KJ4oL","outputId":"b44425bc-2ccf-4683-ce72-a837e5a07e9e"},"outputs":[{"name":"stderr","output_type":"stream","text":["==((====))== Unsloth - 2x faster free finetuning | Num GPUs used = 1\n"," \\\\ /| Num examples = 100,000 | Num Epochs = 1 | Total steps = 30\n","O^O/ \\_/ \\ Batch size per device = 2 | Gradient accumulation steps = 4\n","\\ / Data Parallel GPUs = 1 | Total batch size (2 x 4 x 1) = 8\n"," \"-____-\" Trainable parameters = 14,901,248/4,000,000,000 (0.37% trained)\n","It is strongly recommended to train Gemma3 models with the `eager` attention implementation instead of `sdpa`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`.\n"]},{"name":"stdout","output_type":"stream","text":["Unsloth: Will smartly offload gradients to save VRAM!\n"]},{"data":{"text/html":["\n"," <div>\n"," \n"," <progress value='30' max='30' style='width:300px; height:20px; vertical-align: middle;'></progress>\n"," [30/30 16:18, Epoch 0/1]\n"," </div>\n"," <table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: left;\">\n"," <th>Step</th>\n"," <th>Training Loss</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <td>1</td>\n"," <td>1.237700</td>\n"," </tr>\n"," <tr>\n"," <td>2</td>\n"," <td>1.636400</td>\n"," </tr>\n"," <tr>\n"," <td>3</td>\n"," <td>1.766300</td>\n"," </tr>\n"," <tr>\n"," <td>4</td>\n"," <td>1.420700</td>\n"," </tr>\n"," <tr>\n"," <td>5</td>\n"," <td>1.235700</td>\n"," </tr>\n"," <tr>\n"," <td>6</td>\n"," <td>1.806600</td>\n"," </tr>\n"," <tr>\n"," <td>7</td>\n"," <td>1.010100</td>\n"," </tr>\n"," <tr>\n"," <td>8</td>\n"," <td>1.896600</td>\n"," </tr>\n"," <tr>\n"," <td>9</td>\n"," <td>1.464700</td>\n"," </tr>\n"," <tr>\n"," <td>10</td>\n"," <td>1.309700</td>\n"," </tr>\n"," <tr>\n"," <td>11</td>\n"," <td>1.461600</td>\n"," </tr>\n"," <tr>\n"," <td>12</td>\n"," <td>1.867400</td>\n"," </tr>\n"," <tr>\n"," <td>13</td>\n"," <td>1.854700</td>\n"," </tr>\n"," <tr>\n"," <td>14</td>\n"," <td>1.394800</td>\n"," </tr>\n"," <tr>\n"," <td>15</td>\n"," <td>1.633000</td>\n"," </tr>\n"," <tr>\n"," <td>16</td>\n"," <td>1.238600</td>\n"," </tr>\n"," <tr>\n"," <td>17</td>\n"," <td>2.174100</td>\n"," </tr>\n"," <tr>\n"," <td>18</td>\n"," <td>1.488000</td>\n"," </tr>\n"," <tr>\n"," <td>19</td>\n"," <td>1.521400</td>\n"," </tr>\n"," <tr>\n"," <td>20</td>\n"," <td>1.816000</td>\n"," </tr>\n"," <tr>\n"," <td>21</td>\n"," <td>1.694700</td>\n"," </tr>\n"," <tr>\n"," <td>22</td>\n"," <td>1.614100</td>\n"," </tr>\n"," <tr>\n"," <td>23</td>\n"," <td>1.829700</td>\n"," </tr>\n"," <tr>\n"," <td>24</td>\n"," <td>1.616300</td>\n"," </tr>\n"," <tr>\n"," <td>25</td>\n"," <td>1.269200</td>\n"," </tr>\n"," <tr>\n"," <td>26</td>\n"," <td>1.291600</td>\n"," </tr>\n"," <tr>\n"," <td>27</td>\n"," <td>1.743000</td>\n"," </tr>\n"," <tr>\n"," <td>28</td>\n"," <td>1.525200</td>\n"," </tr>\n"," <tr>\n"," <td>29</td>\n"," <td>1.999000</td>\n"," </tr>\n"," <tr>\n"," <td>30</td>\n"," <td>1.858200</td>\n"," </tr>\n"," </tbody>\n","</table><p>"],"text/plain":["<IPython.core.display.HTML object>"]},"metadata":{},"output_type":"display_data"}],"source":["trainer_stats = trainer.train()"]},{"cell_type":"code","execution_count":null,"metadata":{"cellView":"form","colab":{"base_uri":"https://localhost:8080/"},"id":"pCqnaKmlO1U9","outputId":"5d5d33ee-7a84-4418-b038-bd15fb4614e4"},"outputs":[{"name":"stdout","output_type":"stream","text":["1068.4322 seconds used for training.\n","17.81 minutes used for training.\n","Peak reserved memory = 13.561 GB.\n","Peak reserved memory for training = 9.278 GB.\n","Peak reserved memory % of max memory = 91.995 %.\n","Peak reserved memory for training % of max memory = 62.94 %.\n"]}],"source":["# @title Show final memory and time stats\n","used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n","used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n","used_percentage = round(used_memory / max_memory * 100, 3)\n","lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)\n","print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n","print(\n"," f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\"\n",")\n","print(f\"Peak reserved memory = {used_memory} GB.\")\n","print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n","print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n","print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"]},{"cell_type":"markdown","metadata":{"id":"ekOmTR1hSNcr"},"source":["<a name=\"Inference\"></a>\n","### Inference\n","Let's run the model via Unsloth native inference! According to the `Gemma-3` team, the recommended settings for inference are `temperature = 1.0, top_p = 0.95, top_k = 64`"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"kR3gIAX-SM2q","outputId":"407daa07-ae31-4771-8c31-779665e53bd8"},"outputs":[{"data":{"text/plain":["['<bos><start_of_turn>user\\nContinue the sequence: 1, 1, 2, 3, 5, 8,<end_of_turn>\\n<start_of_turn>model\\n13, 21, 34, 55, 89...\\n\\nThis is the Fibonacci sequence, where each number is the sum of the two preceding ones.\\n<end_of_turn>']"]},"execution_count":17,"metadata":{},"output_type":"execute_result"}],"source":["from unsloth.chat_templates import get_chat_template\n","tokenizer = get_chat_template(\n"," tokenizer,\n"," chat_template = \"gemma-3\",\n",")\n","messages = [{\n"," \"role\": \"user\",\n"," \"content\": [{\n"," \"type\" : \"text\",\n"," \"text\" : \"Continue the sequence: 1, 1, 2, 3, 5, 8,\",\n"," }]\n","}]\n","text = tokenizer.apply_chat_template(\n"," messages,\n"," add_generation_prompt = True, # Must add for generation\n",")\n","outputs = model.generate(\n"," **tokenizer([text], return_tensors = \"pt\").to(\"cuda\"),\n"," max_new_tokens = 64, # Increase for longer outputs!\n"," # Recommended Gemma-3 settings!\n"," temperature = 1.0, top_p = 0.95, top_k = 64,\n",")\n","tokenizer.batch_decode(outputs)"]},{"cell_type":"markdown","metadata":{"id":"CrSvZObor0lY"},"source":[" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"e2pEuRb1r2Vg","outputId":"de757d2d-a66b-4be6-c9c9-78cf491dfeba"},"outputs":[{"name":"stdout","output_type":"stream","text":["Okay, let's break down why the sky is blue! It's a fascinating phenomenon that boils down to a combination of physics and light. Here's the explanation:\n","\n","**1. Sunlight and its Colors:**\n","\n","* Sunlight, which appears white to us, is actually made up of *all* the\n"]}],"source":["messages = [{\n"," \"role\": \"user\",\n"," \"content\": [{\"type\" : \"text\", \"text\" : \"Why is the sky blue?\",}]\n","}]\n","text = tokenizer.apply_chat_template(\n"," messages,\n"," add_generation_prompt = True, # Must add for generation\n",")\n","\n","from transformers import TextStreamer\n","_ = model.generate(\n"," **tokenizer([text], return_tensors = \"pt\").to(\"cuda\"),\n"," max_new_tokens = 64, # Increase for longer outputs!\n"," # Recommended Gemma-3 settings!\n"," temperature = 1.0, top_p = 0.95, top_k = 64,\n"," streamer = TextStreamer(tokenizer, skip_prompt = True),\n",")"]},{"cell_type":"markdown","metadata":{"id":"uMuVrWbjAzhc"},"source":["<a name=\"Save\"></a>\n","### Saving, loading finetuned models\n","To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n","\n","**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"upcOlWe7A1vc","outputId":"a99a1086-5a2d-4828-d599-7e3634a069cd"},"outputs":[{"data":{"text/plain":["['gemma-3/processor_config.json']"]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["model.save_pretrained(\"gemma-3\") # Local saving\n","tokenizer.save_pretrained(\"gemma-3\")\n","# model.push_to_hub(\"HF_ACCOUNT/gemma-3\", token = \"...\") # Online saving\n","# tokenizer.push_to_hub(\"HF_ACCOUNT/gemma-3\", token = \"...\") # Online saving"]},{"cell_type":"markdown","metadata":{"id":"AEEcJ4qfC7Lp"},"source":["Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"MKX_XKs_BNZR","outputId":"d016d936-4bd5-40f8-dffa-bcfad987f489"},"outputs":[{"name":"stdout","output_type":"stream","text":["Okay, let's break down what Gemma-3 is. It's a fascinating development in the world of AI, and here's a comprehensive overview:\n","\n","**1. What it is:**\n","\n","* **A Family of Open-Weight Language Models:** Gemma-3 isn't just *one* model\n"]}],"source":["if False:\n"," from unsloth import FastModel\n"," model, tokenizer = FastModel.from_pretrained(\n"," model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n"," max_seq_length = 2048,\n"," load_in_4bit = True,\n"," )\n","\n","messages = [{\n"," \"role\": \"user\",\n"," \"content\": [{\"type\" : \"text\", \"text\" : \"What is Gemma-3?\",}]\n","}]\n","text = tokenizer.apply_chat_template(\n"," messages,\n"," add_generation_prompt = True, # Must add for generation\n",")\n","\n","from transformers import TextStreamer\n","_ = model.generate(\n"," **tokenizer([text], return_tensors = \"pt\").to(\"cuda\"),\n"," max_new_tokens = 64, # Increase for longer outputs!\n"," # Recommended Gemma-3 settings!\n"," temperature = 1.0, top_p = 0.95, top_k = 64,\n"," streamer = TextStreamer(tokenizer, skip_prompt = True),\n",")"]},{"cell_type":"markdown","metadata":{"id":"f422JgM9sdVT"},"source":["### Saving to float16 for VLLM\n","\n","We also support saving to `float16` directly for deployment! We save it in the folder `gemma-3-finetune`. Set `if False` to `if True` to let it run!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"iHjt_SMYsd3P"},"outputs":[],"source":["if False: # Change to True to save finetune!\n"," model.save_pretrained_merged(\"gemma-3-finetune\", tokenizer)"]},{"cell_type":"markdown","metadata":{"id":"z6O48DbNIAr0"},"source":["If you want to upload / push to your Hugging Face account, set `if False` to `if True` and add your Hugging Face token and upload location!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZV-CiKPrIFG0"},"outputs":[],"source":["if False: # Change to True to upload finetune\n"," model.push_to_hub_merged(\n"," \"HF_ACCOUNT/gemma-3-finetune\", tokenizer,\n"," token = \"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\"\n"," )"]},{"cell_type":"markdown","metadata":{"id":"TCv4vXHd61i7"},"source":["### GGUF / llama.cpp Conversion\n","To save to `GGUF` / `llama.cpp`, we support it natively now for all models! For now, you can convert easily to `Q8_0, F16 or BF16` precision. `Q4_K_M` for 4bit will come later!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FqfebeAdT073"},"outputs":[],"source":["if False: # Change to True to save to GGUF\n"," model.save_pretrained_gguf(\n"," \"gemma-3-finetune\",\n"," quantization_type = \"Q8_0\", # For now only Q8_0, BF16, F16 supported\n"," )"]},{"cell_type":"markdown","metadata":{"id":"Q974YEVPI7JS"},"source":["Likewise, if you want to instead push to GGUF to your Hugging Face account, set `if False` to `if True` and add your Hugging Face token and upload location!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZgcJIhJ0I_es"},"outputs":[],"source":["if False: # Change to True to upload GGUF\n"," model.push_to_hub_gguf(\n"," \"gemma-3-finetune\",\n"," quantization_type = \"Q8_0\", # Only Q8_0, BF16, F16 supported\n"," repo_id = \"HF_ACCOUNT/gemma-finetune-gguf\",\n"," token = \"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\",\n"," )"]},{"cell_type":"markdown","metadata":{"id":"bB0kj4Q1-NKV"},"source":["Now, use the `gemma-3-finetune.gguf` file or `gemma-3-finetune-Q4_K_M.gguf` file in llama.cpp or a UI based system like Jan or Open WebUI. You can install Jan [here](https://github.com/janhq/jan) and Open WebUI [here](https://github.com/open-webui/open-webui)\n","\n","And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/unsloth) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n","\n","Some other links:\n","1. Train your own reasoning model - Llama GRPO notebook [Free Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb)\n","2. Saving finetunes to Ollama. [Free notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)\n","3. Llama 3.2 Vision finetuning - Radiography use case. [Free Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb)\n","6. See notebooks for DPO, ORPO, Continued pretraining, conversational finetuning and more on our [documentation](https://docs.unsloth.ai/get-started/unsloth-notebooks)!\n","\n","<div class=\"align-center\">\n"," <a href=\"https://unsloth.ai\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n"," <a href=\"https://discord.gg/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord.png\" width=\"145\"></a>\n"," <a href=\"https://docs.unsloth.ai/\"><img src=\"https://github.com/unslothai/unsloth/blob/main/images/documentation%20green%20button.png?raw=true\" width=\"125\"></a>\n","\n"," Join Discord if you need help + ⭐️ <i>Star us on <a href=\"https://github.com/unslothai/unsloth\">Github</a> </i> ⭐️\n","</div>\n"]}],"metadata":{"accelerator":"GPU","colab":{"gpuType":"T4","provenance":[{"file_id":"https://github.com/unslothai/notebooks/blob/main/nb/Gemma3_(4B).ipynb","timestamp":1745926411219}]},"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.11"},"widgets":{"application/vnd.jupyter.widget-state+json":{"148125f955954041a8f5631f9338c43e":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_54d2fb7e7c2b4107ba758a7c7ef4f382","placeholder":"","style":"IPY_MODEL_34da5010faa749e0940c2821f2f46e59","value":" 100000/100000 [00:43<00:00, 2627.58 examples/s]"}},"19c27988e01d47e79319f89b5cfd73e2":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"1be74564b60c48d6b21615adf29009fb":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_ded71beadafd438ebff07bb0594771e4","max":100000,"min":0,"orientation":"horizontal","style":"IPY_MODEL_677e4d7a08ab408e9430d67a2870f707","value":100000}},"1f333859babd4c1abac69cacda6df864":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_c5b1d1476ddc45249e037df07a96ae37","placeholder":"","style":"IPY_MODEL_19c27988e01d47e79319f89b5cfd73e2","value":"Unsloth: Tokenizing ["text"] (num_proc=2): 100%"}},"28de62814a6847e0a0b41ec6bf8fdc66":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2970cbc657d244bab22715bcb788be6a":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"30918e50f2174d1c8e7af3eef332b6ee":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_f4b34bc9a62f405383c3b81dc87792b9","IPY_MODEL_1be74564b60c48d6b21615adf29009fb","IPY_MODEL_148125f955954041a8f5631f9338c43e"],"layout":"IPY_MODEL_91693f16da7b421885fe8474cf533327"}},"3350d22f463643ef9a726227f262ac49":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"34da5010faa749e0940c2821f2f46e59":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3e3feb4fcca74c87abb608c0543236b1":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_7e5378838c114195ba3919fdd683fd7d","placeholder":"","style":"IPY_MODEL_3350d22f463643ef9a726227f262ac49","value":" 100000/100000 [03:03<00:00, 568.03 examples/s]"}},"54d2fb7e7c2b4107ba758a7c7ef4f382":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5e48531593d741eaa3669f9118ba8afc":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"62838ffab83d486f86e86417caf0b498":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"677e4d7a08ab408e9430d67a2870f707":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"730aa679b5ac483b929a3646bb5947fa":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_1f333859babd4c1abac69cacda6df864","IPY_MODEL_e7f8d2c781a64e83988b0bdd090bdb97","IPY_MODEL_3e3feb4fcca74c87abb608c0543236b1"],"layout":"IPY_MODEL_2970cbc657d244bab22715bcb788be6a"}},"7e5378838c114195ba3919fdd683fd7d":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"91693f16da7b421885fe8474cf533327":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c43cef665c9542f982986a74dc50ca98":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"c5b1d1476ddc45249e037df07a96ae37":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ded71beadafd438ebff07bb0594771e4":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e7f8d2c781a64e83988b0bdd090bdb97":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_5e48531593d741eaa3669f9118ba8afc","max":100000,"min":0,"orientation":"horizontal","style":"IPY_MODEL_62838ffab83d486f86e86417caf0b498","value":100000}},"f4b34bc9a62f405383c3b81dc87792b9":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_28de62814a6847e0a0b41ec6bf8fdc66","placeholder":"","style":"IPY_MODEL_c43cef665c9542f982986a74dc50ca98","value":"Map (num_proc=2): 100%"}},"ef76d2770d9346eb8d1a0e1e145db3fb":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_7c6fa57d124944b4840f3d3ec540098b","IPY_MODEL_96ee61528dde4b2a90972f9e04a70f85","IPY_MODEL_e30a2d2cd7744976becf2f822c0c77ae"],"layout":"IPY_MODEL_4c34f401b3ab423c99e48f7165e26043"}},"7c6fa57d124944b4840f3d3ec540098b":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f3a03a6997ad43868a300341737a2a84","placeholder":"","style":"IPY_MODEL_623b6ef43ab14d5e8b4cfdb63cabc4bf","value":"model.safetensors: 100%"}},"96ee61528dde4b2a90972f9e04a70f85":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_9c18299226b0465d8d2ac8f95b259cd7","max":1000024720,"min":0,"orientation":"horizontal","style":"IPY_MODEL_253b09a4d67c403eaaa80dea35dab05d","value":1000024720}},"e30a2d2cd7744976becf2f822c0c77ae":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_0e810f8337b147d98def7d732c56f806","placeholder":"","style":"IPY_MODEL_8f60790c054f42b1b483bee933e2230a","value":" 1.00G/1.00G [00:15<00:00, 144MB/s]"}},"4c34f401b3ab423c99e48f7165e26043":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f3a03a6997ad43868a300341737a2a84":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"623b6ef43ab14d5e8b4cfdb63cabc4bf":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"9c18299226b0465d8d2ac8f95b259cd7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"253b09a4d67c403eaaa80dea35dab05d":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"0e810f8337b147d98def7d732c56f806":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8f60790c054f42b1b483bee933e2230a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"477ac908e4e74f63a4d0e8fd21ceeb9d":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_1d854462c41246d6a5d29f79a44008d3","IPY_MODEL_3a4a30ee55984adbb09ca8da38df1c3a","IPY_MODEL_4c7650a6b53d49f3b1e2f66dd8411315"],"layout":"IPY_MODEL_9865c43c048a47c9a57ab3886930ab0c"}},"1d854462c41246d6a5d29f79a44008d3":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_9614e284f1d44f1cb216907d638d3e6b","placeholder":"","style":"IPY_MODEL_ef8709ccce924c8aa0c6bd0ad7976322","value":"generation_config.json: 100%"}},"3a4a30ee55984adbb09ca8da38df1c3a":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_054df2ca501f4136a98a01160dea760a","max":233,"min":0,"orientation":"horizontal","style":"IPY_MODEL_2fe2538502c940648e96e0119af503e6","value":233}},"4c7650a6b53d49f3b1e2f66dd8411315":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_95486119c1be46f3807011c0524aecd3","placeholder":"","style":"IPY_MODEL_6bb31305f504453ca6a4e8be83f84ca7","value":" 233/233 [00:00<00:00, 15.2kB/s]"}},"9865c43c048a47c9a57ab3886930ab0c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9614e284f1d44f1cb216907d638d3e6b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ef8709ccce924c8aa0c6bd0ad7976322":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"054df2ca501f4136a98a01160dea760a":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2fe2538502c940648e96e0119af503e6":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"95486119c1be46f3807011c0524aecd3":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6bb31305f504453ca6a4e8be83f84ca7":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"67b6d3b184024958b3ec3c019e030899":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_c592679bd2d7404c912aa8e172214ab2","IPY_MODEL_3a6ebc13942b4398aece086081c5026b","IPY_MODEL_edde204ffb96409e8c2e91eb418d8737"],"layout":"IPY_MODEL_170323e81ba74967a2b5adf0760411b5"}},"c592679bd2d7404c912aa8e172214ab2":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d3caa18ea9e04702bc0c337b273363e6","placeholder":"","style":"IPY_MODEL_3c5c1207164d4f59b4aa9e28fd3645dc","value":"tokenizer_config.json: 100%"}},"3a6ebc13942b4398aece086081c5026b":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_6b82480932374e72bc84ad5b7c22fbfa","max":1157007,"min":0,"orientation":"horizontal","style":"IPY_MODEL_e03c305395b9457b9865d448ad977380","value":1157007}},"edde204ffb96409e8c2e91eb418d8737":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_4b5d871cb8234e869d97cad1ebf6019d","placeholder":"","style":"IPY_MODEL_54603f38ddab46d69b189bcdd05ce024","value":" 1.16M/1.16M [00:00<00:00, 4.55MB/s]"}},"170323e81ba74967a2b5adf0760411b5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d3caa18ea9e04702bc0c337b273363e6":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"3c5c1207164d4f59b4aa9e28fd3645dc":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"6b82480932374e72bc84ad5b7c22fbfa":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e03c305395b9457b9865d448ad977380":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"4b5d871cb8234e869d97cad1ebf6019d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"54603f38ddab46d69b189bcdd05ce024":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ade90e78de6b4373a5e38d36ce3257b0":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_86ad825d2e234db1ab5a2f5b0d72c8fc","IPY_MODEL_0303ee28e80d448fbe29a8e250d47318","IPY_MODEL_1732186cd096409cb72f1c6cf83ef6d2"],"layout":"IPY_MODEL_944bc15a28724d94b8e0367b48e5f675"}},"86ad825d2e234db1ab5a2f5b0d72c8fc":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_0724f2c5a00241b19603bdfea378f7c5","placeholder":"","style":"IPY_MODEL_d8b3c42a4f854eab9eaf085f656f7c8e","value":"tokenizer.model: 100%"}},"0303ee28e80d448fbe29a8e250d47318":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_a7cf5e93c81f4d319cec26a5932efde8","max":4689074,"min":0,"orientation":"horizontal","style":"IPY_MODEL_0d6dffa372d34f7791debd37797b4894","value":4689074}},"1732186cd096409cb72f1c6cf83ef6d2":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_2616833ccf9145e1a20dff9790df11b4","placeholder":"","style":"IPY_MODEL_e95f88a9101f4084ab89288d02a83401","value":" 4.69M/4.69M [00:01<00:00, 3.93MB/s]"}},"944bc15a28724d94b8e0367b48e5f675":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0724f2c5a00241b19603bdfea378f7c5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d8b3c42a4f854eab9eaf085f656f7c8e":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"a7cf5e93c81f4d319cec26a5932efde8":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0d6dffa372d34f7791debd37797b4894":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"2616833ccf9145e1a20dff9790df11b4":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e95f88a9101f4084ab89288d02a83401":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"88e0c9d873494d0688ad34bb0ed487f5":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_1eb58a76ae634104b4144a176b76e26b","IPY_MODEL_e55347eb7eb84209a6720a05e781af14","IPY_MODEL_6c7d0a9d22804afaa9ad61ee6699aa5d"],"layout":"IPY_MODEL_51a6d229962a47798de89deabe9c6e98"}},"1eb58a76ae634104b4144a176b76e26b":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_8fe298634de944e39dc5b70981168ea5","placeholder":"","style":"IPY_MODEL_6316b727dc914c699fa502185866d312","value":"tokenizer.json: 100%"}},"e55347eb7eb84209a6720a05e781af14":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_6c528c621bc442c5881db8c0e8c87c4f","max":33384568,"min":0,"orientation":"horizontal","style":"IPY_MODEL_fe5eca8b017d4fc59a9edbe91d5bd07f","value":33384568}},"6c7d0a9d22804afaa9ad61ee6699aa5d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_dd180121959e4c0d92a25c74d016e9c0","placeholder":"","style":"IPY_MODEL_c2d1cdd528f3422bbefb77be4c3a3d70","value":" 33.4M/33.4M [00:01<00:00, 28.0MB/s]"}},"51a6d229962a47798de89deabe9c6e98":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8fe298634de944e39dc5b70981168ea5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6316b727dc914c699fa502185866d312":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"6c528c621bc442c5881db8c0e8c87c4f":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"fe5eca8b017d4fc59a9edbe91d5bd07f":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"dd180121959e4c0d92a25c74d016e9c0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c2d1cdd528f3422bbefb77be4c3a3d70":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ae7be54d9b2349938cb6d723c7d8009b":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_1b6e68ac0a3d47ffbec1bb1d3c7267c7","IPY_MODEL_e535bf323720400fb171bbb671265243","IPY_MODEL_df693d0db8ed44ed8ef4ca59258d935b"],"layout":"IPY_MODEL_96457a0a77754d6897f81ffd4cc339a9"}},"1b6e68ac0a3d47ffbec1bb1d3c7267c7":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_608649511f964042b682eb33c4447dba","placeholder":"","style":"IPY_MODEL_48cef38fd0d34ef5bca580b137972cca","value":"added_tokens.json: 100%"}},"e535bf323720400fb171bbb671265243":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_b74a1fb9cceb49e4b0cbf60ef3a967d0","max":35,"min":0,"orientation":"horizontal","style":"IPY_MODEL_4e593897ae154a6ba4d00bcdd23228ad","value":35}},"df693d0db8ed44ed8ef4ca59258d935b":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_4e580eb550dd41bea8dffff0b70eb63b","placeholder":"","style":"IPY_MODEL_1edb4306da42403da241cf76dcc5d8b9","value":" 35.0/35.0 [00:00<00:00, 2.60kB/s]"}},"96457a0a77754d6897f81ffd4cc339a9":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"608649511f964042b682eb33c4447dba":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"48cef38fd0d34ef5bca580b137972cca":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"b74a1fb9cceb49e4b0cbf60ef3a967d0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4e593897ae154a6ba4d00bcdd23228ad":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"4e580eb550dd41bea8dffff0b70eb63b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"1edb4306da42403da241cf76dcc5d8b9":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment