Created
November 28, 2017 04:10
-
-
Save kazimuth/f0dfe8d530f236b5aba987b2caa38a88 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Bitwise operations on Maps\n", | |
"Note: you don't need the bindings built to use this notebook." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"try:\n", | |
" import peachpy as p\n", | |
" import peachpy.x86_64 as x86\n", | |
"except:\n", | |
" print('run `pip install --upgrade git+https://github.com/Maratyszcza/PeachPy`')\n", | |
"try:\n", | |
" from ipywidgets import interact\n", | |
"except:\n", | |
" print('run `pip install ipywidgets && jupyter nbextension enable --py --sys-prefix widgetsnbextension`')\n", | |
" \n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFn5JREFUeJzt3X+QZWV95/HPFybZEAQULKSouCoW\nOGywgmBARBFRwehuSlzZP7IhakWzrmzhzyqzigpJpYK1mw2g2WiCCQnJH0nWtVIJKERDiURdq8ag\n60+MOlFXUPnpQJBVePaPe6d2aLsZQp87d77c16uq60zf032ep6rpfvOcc/p0jTECAPSwz7InAAA8\neMINAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0MiWZU9gd6rqa0kOTLJ9yVMBgIfq8Um+N8Z4wmYPtNeHO8mB+2Tfg/fPAQcveyI8eEc+\n+e5lT2Ehvvy/91v2FICG7sqO3Jd7JzlWh3Bv3z8HHHxiPXfZ8+Cf4aqrr1/2FBbijMOPXfYUgIb+\n1/hQduT27VMcyzVuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARiYLd1X9VFX9QVV9q6ruqartVXVRVT1q\nqjEAYNVtmeIgVfXEJB9LcmiSv0zyxSQnJHlNkudX1cljjFumGAsAVtlUK+7/nlm0zx1jvGiM8atj\njNOS/HaSJyX5jYnGAYCVtulwV9URSU5Psj3J76zZ/fYkdyU5u6r23+xYALDqplhxnzbfXj3GuG/X\nHWOMHUn+LslPJnnaBGMBwEqb4hr3k+bbGzbY/+XMVuRHJfnwRgepqm0b7Nr60KcGAA8vU6y4D5pv\n79hg/87XHznBWACw0ia5q3w3ar4dD/RBY4zj1/3k2Ur8uKknBQAdTbHi3rmiPmiD/Qeu+TgA4CGa\nItxfmm+P2mD/kfPtRtfAAYAHaYpwXzPfnl5V9zteVR2Q5OQkdyf5xARjAcBK23S4xxhfSXJ1kscn\nOWfN7guS7J/kj8cYd212LABYdVPdnPbqzB55eklVPSfJF5KcmOTZmZ0if8tE4wDASpvkkafzVfdT\nk1yWWbDfkOSJSS5JcpLnlAPANCb7dbAxxjeSvHyq4wEAP8rf4waARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtmy\n7Anw8HTG4ccuewoAD0tW3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0Mkm4q+olVfXOqvpoVX2v\nqkZV/ckUxwYA/r8tEx3nvCQ/k+TOJN9MsnWi4wIAu5jqVPnrkhyV5MAk/3GiYwIAa0yy4h5jXLPz\n31U1xSEBgHW4OQ0AGpnqGvemVdW2DXa5Xg4Ac1bcANDIXrPiHmMcv97r85X4cXt4OgCwV7LiBoBG\nhBsAGhFuAGhEuAGgkUluTquqFyV50fzdw+bbk6rqsvm/bx5jvHGKsQBglU11V/mxSV665rUj5m9J\n8o9JhBsANmmSU+VjjPPHGPUAb4+fYhwAWHWucQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0sulwV9UhVfWKqnp/Vf1DVd1dVXdU1XVV9ctV5X8OAGAiWyY4\nxllJfjfJjUmuSfL1JI9J8uIklyb5uao6a4wxJhgLAFbaFOG+IcnPJ7lijHHfzher6s1JPpnk32YW\n8fdNMBYArLRNn8YeY/ztGOOvdo32/PWbkrx7/u6pmx0HAFj8zWk/mG9/uOBxAGAlLCzcVbUlyS/N\n3/3gosYBgFUyxTXujVyY5JgkV44xrtrdB1fVtg12bZ10VgDQ2EJW3FV1bpI3JPlikrMXMQYArKLJ\nV9xVdU6Si5N8Pslzxhi3PpjPG2Mcv8HxtiU5broZAkBfk664q+q1Sd6V5LNJnj2/sxwAmMhk4a6q\nNyX57STXZxbt70x1bABgZpJwV9VbM7sZbVtmp8dvnuK4AMD9bfoad1W9NMmvJbk3yUeTnFtVaz9s\n+xjjss2OBQCrboqb054w3+6b5LUbfMxHklw2wVgAsNKmeOTp+WOM2s3bqRPMFQBWnj+5CQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5OEu6reUVUf\nrqpvVNXdVXVrVf19Vb29qg6ZYgwAYLoV9+uS7J/kb5JcnORPk/wwyflJPlNVj51oHABYaVsmOs6B\nY4zvr32xqn4jyZuT/Ockr55oLABYWZOsuNeL9tyfz7dHTjEOAKy6Rd+c9m/m288seBwAWAlTnSpP\nklTVG5M8IslBSZ6a5BmZRfvCB/G52zbYtXWyCQJAc5OGO8kbkzxml/c/mORlY4zvTjwOAKykScM9\nxjgsSarqMUmentlK+++r6l+PMT61m889fr3X5yvx46acJwB0tZBr3GOMb48x3p/k9CSHJPnjRYwD\nAKtmoTenjTH+Mcnnk/x0VT16kWMBwCrYE488PXy+vXcPjAUAD2ubDndVba2qw9Z5fZ/5A1gOTfKx\nMcZtmx0LAFbdFDenPT/Jf6mqa5N8Jcktmd1Z/qwkRyS5KckrJxgHAFbeFOH+UJLfS3Jykp9J8sgk\ndyW5IcnlSS4ZY9w6wTgAsPI2He4xxmeTnDPBXACA3fD3uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARrYsewIA\ni3TVt65f9hQW4ozDj132FFgSK24AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGllYuKvq7Koa87dX\nLGocAFglCwl3VT02yTuT3LmI4wPAqpo83FVVSf4wyS1J3j318QFglS1ixX1uktOSvDzJXQs4PgCs\nrEnDXVVHJ7kwycVjjGunPDYAkGyZ6kBVtSXJ5Um+nuTND+Hzt22wa+tm5gUADyeThTvJ25I8Jckz\nxhh3T3hcAGBuknBX1QmZrbJ/a4zx8YdyjDHG8Rsce1uS4zYxPQB42Nj0Ne5dTpHfkOStm54RALCh\nKW5Oe0SSo5IcneT7uzx0ZSR5+/xjfn/+2kUTjAcAK2uKU+X3JHnvBvuOy+y693VJvpTkIZ1GBwBm\nNh3u+Y1o6z7StKrOzyzcfzTGuHSzYwHAqvNHRgCgEeEGgEYWGu4xxvljjHKaHACmYcUNAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQyJZlTwBgkc44/NhlTwEmZcUNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyCTh\nrqrtVTU2eLtpijEAgGTLhMe6I8lF67x+54RjAMBKmzLct48xzp/weADAGq5xA0AjU664/0VV/WKS\nf5nkriSfSXLtGOPeCccAgJU2ZbgPS3L5mte+VlUvH2N8ZMJxAGBlTRXuP0zy0SSfS7IjyRFJ/lOS\nX0nygao6aYzx6Qc6QFVt22DX1onmCADtTRLuMcYFa176bJJXVdWdSd6Q5PwkZ04xFgCssilPla/n\n3ZmF+5TdfeAY4/j1Xp+vxI+beF4A0NKi7yr/zny7/4LHAYCVsOhwnzTffnXB4wDASth0uKvqp6vq\n4HVef1ySd83f/ZPNjgMATHON+6wkv1pV1yT5WmZ3lT8xyQuT/ESSK5P81wnGAYCVN0W4r0nypCRP\nyezU+P5Jbk9yXWa/1335GGNMMA4ArLxNh3v+cBUPWAGAPcCzygGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTScFfVM6vqfVV1Y1XdM99eXVUvmHIc\nAFhVW6Y6UFWdl+TXk9yc5K+T3Jjk0UmekuTUJFdONRYArKpJwl1VZ2UW7Q8lefEYY8ea/T82xTgA\nsOo2faq8qvZJ8o4k/5TkF9ZGO0nGGD/Y7DgAwDQr7qcneUKS/5Hktqp6YZJjknw/ySfHGB+fYAwA\nINOE+2fn228n+VSSJ++6s6quTfKSMcZ3H+ggVbVtg11bNz1DAHiYmOKu8kPn21cl2S/Jc5MckNmq\n+6okpyT5iwnGAYCVN8WKe9/5tjJbWX96/v7nqurMJDckeVZVnfRAp83HGMev9/p8JX7cBPMEgPam\nWHHfNt9+dZdoJ0nGGHdntupOkhMmGAsAVtoU4f7SfHv7Bvt3hn2/CcYCgJU2RbivTfLDJEdW1Y+v\ns/+Y+Xb7BGMBwErbdLjHGDcn+bMkByV52677qup5Sc5IckeSD252LABYdVM98vT1SU5M8paqOiXJ\nJ5M8LsmZSe5N8soxxkan0gGAB2mScI8xvlNVJyY5L7NYPy3JjiRXJPnNMcYnphgHAFbdZH9kZIxx\na2Yr79dPdUwA4P78PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARjYd7qp6WVWN3bzdO8VkAWDVbZngGNcnuWCDfc9MclqSD0wwDgCsvE2He4xxfWbx/hFV\n9fH5P39vs+MAAAu8xl1VxyR5WpL/k+SKRY0DAKtkkTen/Yf59r1jDNe4AWACU1zj/hFVtV+SX0xy\nX5JLH+TnbNtg19ap5gUA3S1qxf3vkjwyyQfGGN9Y0BgAsHIWsuJO8ivz7Xse7CeMMY5f7/X5Svy4\nKSYFAN1NvuKuqn+V5OlJvpnkyqmPDwCrbBGnyt2UBgALMmm4q+onkpyd2U1p753y2ADA9Cvus5I8\nKsmVbkoDgOlNHe6dN6V5UhoALMBk4a6qo5M8I25KA4CFmezXwcYYX0hSUx0PAPhR/h43ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANBIjTGWPYcHVFW37JN9D94/Byx7KgDwkNyVHbkv9946xjhks8faMsWEFux79+Xe\n7Mjt2/fAWFvn2y/ugbGYhq9ZP75m/fiabd7jk3xvigPt9SvuPamqtiXJGOP4Zc+FB8fXrB9fs358\nzfYurnEDQCPCDQCNCDcANCLcANCIcANAI+4qB4BGrLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEe4kVfVTVfUHVfWtqrqnqrZX1UVV9ahlz437q6pDquoVVfX+qvqHqrq7qu6oquuq6peryn/T\nTVTV2VU15m+vWPZ8WF9VPbOq3ldVN85/Pt5YVVdX1QuWPbdV1eHvcS9UVT0xyceSHJrkLzP7e7Mn\nJHlNkudX1cljjFuWOEXu76wkv5vkxiTXJPl6ksckeXGSS5P8XFWdNTxZaK9WVY9N8s4kdyZ5xJKn\nwwaq6rwkv57k5iR/ndn33aOTPCXJqUmuXNrkVtjKPzmtqq5KcnqSc8cY79zl9f+W5HVJ3jPGeNWy\n5sf9VdVpSfZPcsUY475dXj8sySeTPDbJS8YY71vSFNmNqqokf5PkCUn+Z5I3JnnlGOPSpU6M+6mq\ns5L8eZIPJXnxGGPHmv0/Nsb4wVImt+JW+rRiVR2RWbS3J/mdNbvfnuSuJGdX1f57eGpsYIzxt2OM\nv9o12vPXb0ry7vm7p+7xifHPcW6S05K8PLPvMfYy80tO70jyT0l+YW20k0S0l2elw53ZD48kuXqd\nEOxI8ndJfjLJ0/b0xHhIdv4g+eFSZ8GGquroJBcmuXiMce2y58OGnp7ZGZErk9xWVS+sqjdV1Wuq\n6qQlz23lrfo17ifNtzdssP/Lma3Ij0ry4T0yIx6SqtqS5Jfm735wmXNhffOv0eWZ3Zfw5iVPhwf2\ns/Ptt5N8KsmTd91ZVddmdknqu3t6YlhxHzTf3rHB/p2vP3IPzIXNuTDJMUmuHGNctezJsK63ZXZT\n08vGGHcvezI8oEPn21cl2S/Jc5MckNn32FVJTknyF8uZGqse7t2p+Xa17+Dby1XVuUnekNlvBJy9\n5Omwjqo6IbNV9m+NMT6+7PmwW/vOt5XZyvrDY4w7xxifS3Jmkm8meZbT5sux6uHeuaI+aIP9B675\nOPYyVXVOkouTfD7Js8cYty55SqyxyynyG5K8dcnT4cG5bb796hjj07vumJ8t2XlW64Q9OiuSCPeX\n5tujNth/5Hy70TVwlqiqXpvkXUk+m1m0b1rylFjfIzL7Hjs6yfd3eejKyOy3N5Lk9+evXbS0WbKr\nnT8bb99g/86w77cH5sIaq35z2jXz7elVtc+a3ws+IMnJSe5O8ollTI6NVdWbMruufX2S540xbl7y\nlNjYPUneu8G+4zK77n1dZrFwGn3vcG1mv51xZFX9+Bjj/67Zf8x8u32PzookKx7uMcZXqurqzO4c\nPyezJzntdEFmD/p4zxjD75ruRarqrUl+Lcm2JKc7Pb53m59aXfeRplV1fmbh/iMPYNl7jDFurqo/\nS/LvM7up8Lyd+6rqeUnOyOwSot/gWIKVDvfcqzN75OklVfWcJF9IcmKSZ2d2ivwtS5wba1TVSzOL\n9r1JPprk3NmDuO5n+xjjsj08NXi4eX1mPwvfUlWnZPZkwsdldnPavZk97W6jU+ks0MqHe77qfmpm\nMXh+khdk9jzeS5JcYDW313nCfLtvktdu8DEfSXLZHpkNPEyNMb5TVSdmtto+M7MHUe1IckWS3xxj\nuIS4JCv/rHIA6GTV7yoHgFaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARv4fs7YTCHAWVBAAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7ffb5ad69f98>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def empty():\n", | |
" return np.zeros((8,8), dtype=bool)\n", | |
"\n", | |
"def show(q):\n", | |
" plt.imshow(q, vmin=0, vmax=1)\n", | |
"\n", | |
"q = empty()\n", | |
"q[4,5] = 1\n", | |
"q[0,2] = 1\n", | |
"\n", | |
"show(q)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFn5JREFUeJzt3X+QZWV95/HPFybZEAQULKSouCoW\nOGywgmBARBFRwehuSlzZP7IhakWzrmzhzyqzigpJpYK1mw2g2WiCCQnJH0nWtVIJKERDiURdq8ag\n60+MOlFXUPnpQJBVePaPe6d2aLsZQp87d77c16uq60zf032ep6rpfvOcc/p0jTECAPSwz7InAAA8\neMINAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0MiWZU9gd6rqa0kOTLJ9yVMBgIfq8Um+N8Z4wmYPtNeHO8mB+2Tfg/fPAQcveyI8eEc+\n+e5lT2Ehvvy/91v2FICG7sqO3Jd7JzlWh3Bv3z8HHHxiPXfZ8+Cf4aqrr1/2FBbijMOPXfYUgIb+\n1/hQduT27VMcyzVuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARiYLd1X9VFX9QVV9q6ruqartVXVRVT1q\nqjEAYNVtmeIgVfXEJB9LcmiSv0zyxSQnJHlNkudX1cljjFumGAsAVtlUK+7/nlm0zx1jvGiM8atj\njNOS/HaSJyX5jYnGAYCVtulwV9URSU5Psj3J76zZ/fYkdyU5u6r23+xYALDqplhxnzbfXj3GuG/X\nHWOMHUn+LslPJnnaBGMBwEqb4hr3k+bbGzbY/+XMVuRHJfnwRgepqm0b7Nr60KcGAA8vU6y4D5pv\n79hg/87XHznBWACw0ia5q3w3ar4dD/RBY4zj1/3k2Ur8uKknBQAdTbHi3rmiPmiD/Qeu+TgA4CGa\nItxfmm+P2mD/kfPtRtfAAYAHaYpwXzPfnl5V9zteVR2Q5OQkdyf5xARjAcBK23S4xxhfSXJ1kscn\nOWfN7guS7J/kj8cYd212LABYdVPdnPbqzB55eklVPSfJF5KcmOTZmZ0if8tE4wDASpvkkafzVfdT\nk1yWWbDfkOSJSS5JcpLnlAPANCb7dbAxxjeSvHyq4wEAP8rf4waARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtmy\n7Anw8HTG4ccuewoAD0tW3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0Mkm4q+olVfXOqvpoVX2v\nqkZV/ckUxwYA/r8tEx3nvCQ/k+TOJN9MsnWi4wIAu5jqVPnrkhyV5MAk/3GiYwIAa0yy4h5jXLPz\n31U1xSEBgHW4OQ0AGpnqGvemVdW2DXa5Xg4Ac1bcANDIXrPiHmMcv97r85X4cXt4OgCwV7LiBoBG\nhBsAGhFuAGhEuAGgkUluTquqFyV50fzdw+bbk6rqsvm/bx5jvHGKsQBglU11V/mxSV665rUj5m9J\n8o9JhBsANmmSU+VjjPPHGPUAb4+fYhwAWHWucQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0sulwV9UhVfWKqnp/Vf1DVd1dVXdU1XVV9ctV5X8OAGAiWyY4\nxllJfjfJjUmuSfL1JI9J8uIklyb5uao6a4wxJhgLAFbaFOG+IcnPJ7lijHHfzher6s1JPpnk32YW\n8fdNMBYArLRNn8YeY/ztGOOvdo32/PWbkrx7/u6pmx0HAFj8zWk/mG9/uOBxAGAlLCzcVbUlyS/N\n3/3gosYBgFUyxTXujVyY5JgkV44xrtrdB1fVtg12bZ10VgDQ2EJW3FV1bpI3JPlikrMXMQYArKLJ\nV9xVdU6Si5N8Pslzxhi3PpjPG2Mcv8HxtiU5broZAkBfk664q+q1Sd6V5LNJnj2/sxwAmMhk4a6q\nNyX57STXZxbt70x1bABgZpJwV9VbM7sZbVtmp8dvnuK4AMD9bfoad1W9NMmvJbk3yUeTnFtVaz9s\n+xjjss2OBQCrboqb054w3+6b5LUbfMxHklw2wVgAsNKmeOTp+WOM2s3bqRPMFQBWnj+5CQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5OEu6reUVUf\nrqpvVNXdVXVrVf19Vb29qg6ZYgwAYLoV9+uS7J/kb5JcnORPk/wwyflJPlNVj51oHABYaVsmOs6B\nY4zvr32xqn4jyZuT/Ockr55oLABYWZOsuNeL9tyfz7dHTjEOAKy6Rd+c9m/m288seBwAWAlTnSpP\nklTVG5M8IslBSZ6a5BmZRfvCB/G52zbYtXWyCQJAc5OGO8kbkzxml/c/mORlY4zvTjwOAKykScM9\nxjgsSarqMUmentlK+++r6l+PMT61m889fr3X5yvx46acJwB0tZBr3GOMb48x3p/k9CSHJPnjRYwD\nAKtmoTenjTH+Mcnnk/x0VT16kWMBwCrYE488PXy+vXcPjAUAD2ubDndVba2qw9Z5fZ/5A1gOTfKx\nMcZtmx0LAFbdFDenPT/Jf6mqa5N8Jcktmd1Z/qwkRyS5KckrJxgHAFbeFOH+UJLfS3Jykp9J8sgk\ndyW5IcnlSS4ZY9w6wTgAsPI2He4xxmeTnDPBXACA3fD3uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARrYsewIA\ni3TVt65f9hQW4ozDj132FFgSK24AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGllYuKvq7Koa87dX\nLGocAFglCwl3VT02yTuT3LmI4wPAqpo83FVVSf4wyS1J3j318QFglS1ixX1uktOSvDzJXQs4PgCs\nrEnDXVVHJ7kwycVjjGunPDYAkGyZ6kBVtSXJ5Um+nuTND+Hzt22wa+tm5gUADyeThTvJ25I8Jckz\nxhh3T3hcAGBuknBX1QmZrbJ/a4zx8YdyjDHG8Rsce1uS4zYxPQB42Nj0Ne5dTpHfkOStm54RALCh\nKW5Oe0SSo5IcneT7uzx0ZSR5+/xjfn/+2kUTjAcAK2uKU+X3JHnvBvuOy+y693VJvpTkIZ1GBwBm\nNh3u+Y1o6z7StKrOzyzcfzTGuHSzYwHAqvNHRgCgEeEGgEYWGu4xxvljjHKaHACmYcUNAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQyJZlTwBgkc44/NhlTwEmZcUNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyCTh\nrqrtVTU2eLtpijEAgGTLhMe6I8lF67x+54RjAMBKmzLct48xzp/weADAGq5xA0AjU664/0VV/WKS\nf5nkriSfSXLtGOPeCccAgJU2ZbgPS3L5mte+VlUvH2N8ZMJxAGBlTRXuP0zy0SSfS7IjyRFJ/lOS\nX0nygao6aYzx6Qc6QFVt22DX1onmCADtTRLuMcYFa176bJJXVdWdSd6Q5PwkZ04xFgCssilPla/n\n3ZmF+5TdfeAY4/j1Xp+vxI+beF4A0NKi7yr/zny7/4LHAYCVsOhwnzTffnXB4wDASth0uKvqp6vq\n4HVef1ySd83f/ZPNjgMATHON+6wkv1pV1yT5WmZ3lT8xyQuT/ESSK5P81wnGAYCVN0W4r0nypCRP\nyezU+P5Jbk9yXWa/1335GGNMMA4ArLxNh3v+cBUPWAGAPcCzygGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTScFfVM6vqfVV1Y1XdM99eXVUvmHIc\nAFhVW6Y6UFWdl+TXk9yc5K+T3Jjk0UmekuTUJFdONRYArKpJwl1VZ2UW7Q8lefEYY8ea/T82xTgA\nsOo2faq8qvZJ8o4k/5TkF9ZGO0nGGD/Y7DgAwDQr7qcneUKS/5Hktqp6YZJjknw/ySfHGB+fYAwA\nINOE+2fn228n+VSSJ++6s6quTfKSMcZ3H+ggVbVtg11bNz1DAHiYmOKu8kPn21cl2S/Jc5MckNmq\n+6okpyT5iwnGAYCVN8WKe9/5tjJbWX96/v7nqurMJDckeVZVnfRAp83HGMev9/p8JX7cBPMEgPam\nWHHfNt9+dZdoJ0nGGHdntupOkhMmGAsAVtoU4f7SfHv7Bvt3hn2/CcYCgJU2RbivTfLDJEdW1Y+v\ns/+Y+Xb7BGMBwErbdLjHGDcn+bMkByV52677qup5Sc5IckeSD252LABYdVM98vT1SU5M8paqOiXJ\nJ5M8LsmZSe5N8soxxkan0gGAB2mScI8xvlNVJyY5L7NYPy3JjiRXJPnNMcYnphgHAFbdZH9kZIxx\na2Yr79dPdUwA4P78PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARjYd7qp6WVWN3bzdO8VkAWDVbZngGNcnuWCDfc9MclqSD0wwDgCsvE2He4xxfWbx/hFV\n9fH5P39vs+MAAAu8xl1VxyR5WpL/k+SKRY0DAKtkkTen/Yf59r1jDNe4AWACU1zj/hFVtV+SX0xy\nX5JLH+TnbNtg19ap5gUA3S1qxf3vkjwyyQfGGN9Y0BgAsHIWsuJO8ivz7Xse7CeMMY5f7/X5Svy4\nKSYFAN1NvuKuqn+V5OlJvpnkyqmPDwCrbBGnyt2UBgALMmm4q+onkpyd2U1p753y2ADA9Cvus5I8\nKsmVbkoDgOlNHe6dN6V5UhoALMBk4a6qo5M8I25KA4CFmezXwcYYX0hSUx0PAPhR/h43ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANBIjTGWPYcHVFW37JN9D94/Byx7KgDwkNyVHbkv9946xjhks8faMsWEFux79+Xe\n7Mjt2/fAWFvn2y/ugbGYhq9ZP75m/fiabd7jk3xvigPt9SvuPamqtiXJGOP4Zc+FB8fXrB9fs358\nzfYurnEDQCPCDQCNCDcANCLcANCIcANAI+4qB4BGrLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEe4kVfVTVfUHVfWtqrqnqrZX1UVV9ahlz437q6pDquoVVfX+qvqHqrq7qu6oquuq6peryn/T\nTVTV2VU15m+vWPZ8WF9VPbOq3ldVN85/Pt5YVVdX1QuWPbdV1eHvcS9UVT0xyceSHJrkLzP7e7Mn\nJHlNkudX1cljjFuWOEXu76wkv5vkxiTXJPl6ksckeXGSS5P8XFWdNTxZaK9WVY9N8s4kdyZ5xJKn\nwwaq6rwkv57k5iR/ndn33aOTPCXJqUmuXNrkVtjKPzmtqq5KcnqSc8cY79zl9f+W5HVJ3jPGeNWy\n5sf9VdVpSfZPcsUY475dXj8sySeTPDbJS8YY71vSFNmNqqokf5PkCUn+Z5I3JnnlGOPSpU6M+6mq\ns5L8eZIPJXnxGGPHmv0/Nsb4wVImt+JW+rRiVR2RWbS3J/mdNbvfnuSuJGdX1f57eGpsYIzxt2OM\nv9o12vPXb0ry7vm7p+7xifHPcW6S05K8PLPvMfYy80tO70jyT0l+YW20k0S0l2elw53ZD48kuXqd\nEOxI8ndJfjLJ0/b0xHhIdv4g+eFSZ8GGquroJBcmuXiMce2y58OGnp7ZGZErk9xWVS+sqjdV1Wuq\n6qQlz23lrfo17ifNtzdssP/Lma3Ij0ry4T0yIx6SqtqS5Jfm735wmXNhffOv0eWZ3Zfw5iVPhwf2\ns/Ptt5N8KsmTd91ZVddmdknqu3t6YlhxHzTf3rHB/p2vP3IPzIXNuTDJMUmuHGNctezJsK63ZXZT\n08vGGHcvezI8oEPn21cl2S/Jc5MckNn32FVJTknyF8uZGqse7t2p+Xa17+Dby1XVuUnekNlvBJy9\n5Omwjqo6IbNV9m+NMT6+7PmwW/vOt5XZyvrDY4w7xxifS3Jmkm8meZbT5sux6uHeuaI+aIP9B675\nOPYyVXVOkouTfD7Js8cYty55SqyxyynyG5K8dcnT4cG5bb796hjj07vumJ8t2XlW64Q9OiuSCPeX\n5tujNth/5Hy70TVwlqiqXpvkXUk+m1m0b1rylFjfIzL7Hjs6yfd3eejKyOy3N5Lk9+evXbS0WbKr\nnT8bb99g/86w77cH5sIaq35z2jXz7elVtc+a3ws+IMnJSe5O8ollTI6NVdWbMruufX2S540xbl7y\nlNjYPUneu8G+4zK77n1dZrFwGn3vcG1mv51xZFX9+Bjj/67Zf8x8u32PzookKx7uMcZXqurqzO4c\nPyezJzntdEFmD/p4zxjD75ruRarqrUl+Lcm2JKc7Pb53m59aXfeRplV1fmbh/iMPYNl7jDFurqo/\nS/LvM7up8Lyd+6rqeUnOyOwSot/gWIKVDvfcqzN75OklVfWcJF9IcmKSZ2d2ivwtS5wba1TVSzOL\n9r1JPprk3NmDuO5n+xjjsj08NXi4eX1mPwvfUlWnZPZkwsdldnPavZk97W6jU+ks0MqHe77qfmpm\nMXh+khdk9jzeS5JcYDW313nCfLtvktdu8DEfSXLZHpkNPEyNMb5TVSdmtto+M7MHUe1IckWS3xxj\nuIS4JCv/rHIA6GTV7yoHgFaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARv4fs7YTCHAWVBAAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7ffb580952e8>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def enc(arr):\n", | |
" result = 0\n", | |
" arr = arr.reshape(64)\n", | |
" for i in range(64):\n", | |
" result |= arr[i] << i\n", | |
" return result\n", | |
"\n", | |
"def dec(q):\n", | |
" assert q < 1 << 64\n", | |
" result = np.zeros(64)\n", | |
" for i in range(64):\n", | |
" result[i] = (q >> i) & 1\n", | |
" return result.reshape(8, 8)\n", | |
"\n", | |
"show(dec(enc(q)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "2c22ff5296094db2bdb569a2b2f53263", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=0, description='z', max=63), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"@interact(z=(0,63))\n", | |
"def move(z=0):\n", | |
" return dec(1 << z)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def make_function_reg(name, op):\n", | |
" target = x86.uarch.default + x86.isa.lzcnt + x86.isa.avx2 + x86.isa.popcnt\n", | |
" q = p.Argument(p.const_uint64_t, name=\"q\")\n", | |
"\n", | |
" with x86.Function(name, (q, ), p.uint64_t, target=target) as asm_function:\n", | |
" reg_q = x86.GeneralPurposeRegister64()\n", | |
" reg_out = x86.GeneralPurposeRegister64()\n", | |
" x86.LOAD.ARGUMENT(reg_q, q)\n", | |
" op(reg_out, reg_q)\n", | |
" x86.RETURN(reg_out)\n", | |
" \n", | |
" return asm_function.finalize(x86.abi.detect()).encode().load()\n", | |
"\n", | |
"bsr = make_function_reg('bsr', x86.BSR)\n", | |
"bsf = make_function_reg('bsf', x86.BSF)\n", | |
"lzcnt = make_function_reg('lzcnt', x86.LZCNT)\n", | |
"popcnt = make_function_reg('popcnt', x86.POPCNT)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "e7d2c2ced27e4c0f900b18c423ed19e2", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=0, description='s', max=63), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"@interact(s=(0,63))\n", | |
"def ops(s=0):\n", | |
" return bsr(1 << s), bsf(1 << s), lzcnt(1 << s), popcnt(1 << s)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def ones(q):\n", | |
" result = []\n", | |
" i = 0\n", | |
" while q != 0:\n", | |
" next = bsf(q)\n", | |
" result.append(next)\n", | |
" q ^= 1 << next\n", | |
" \n", | |
" return result" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "7a0bbc207eca432586671f6420dd73ba", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=0, description='s', max=63), IntSlider(value=63, description='t', max=63), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"@interact(s=(0,63), t=(0,63))\n", | |
"def ops(s=0,t=63):\n", | |
" q = (1 << s) | (1 << t)\n", | |
" return bsr(q), bsf(q), lzcnt(q), popcnt(q), ones(q)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 0., 0., 0., 0., 0., 0., 0.]])" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"col = 0\n", | |
"for i in range(8):\n", | |
" col |= 1 << i*8\n", | |
"\n", | |
"dec(col)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 1., 0.]])" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dec(col << 6)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.]])" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"row = 255\n", | |
"dec(row)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0.]])" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dec(row << 8 * 6)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.],\n", | |
" [ 1., 1., 1., 1., 1., 1., 1., 1.]])" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"all1 = 0xffffffffffffffff\n", | |
"dec(all1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "24319bf4dfc14f96b884efb430126885", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=0, description='r', max=7), IntSlider(value=0, description='c', max=7), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"@interact(r=(0,7), c=(0,7))\n", | |
"def scopei(r=0,c=0):\n", | |
" return dec((row << (r*8)) | (col << c))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "59d72619e99944f09a090362cb2e9600", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=0, description='r', max=7), IntSlider(value=0, description='c', max=7), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def rowof(sq):\n", | |
" return sq >> 3\n", | |
"def colof(sq):\n", | |
" return sq & 7\n", | |
"def sqof(r, c):\n", | |
" return (r << 3) | c\n", | |
"\n", | |
"# note: an unfortunate consequence of this row-major layout\n", | |
"# w/ 0 at LSB is that << shifts the whole matrix *right*, and\n", | |
"# >> shifts the whole matrix *left*\n", | |
"\n", | |
"def point(sq):\n", | |
" row = rowof(sq)\n", | |
" col = colof(sq)\n", | |
" plt.scatter(col, row)\n", | |
"\n", | |
"@interact(r=(0,7), c=(0,7))\n", | |
"def scopeq(r=0,c=0):\n", | |
" q = (row << (r*8)) | (col << c)\n", | |
" show(dec(q))\n", | |
" point(bsr(q))\n", | |
" point(bsf(q))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "9ea37c160f8a4a18bb949ac08a4bb086", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=3, description='c', max=7), IntSlider(value=2, description='ri', max=8), IntSlider(value=5, description='rj', max=8), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def between_vertical(c, ri, rj):\n", | |
" return (col << c) & (all1 << (8 * ri)) & (all1 >> (8 * (7-rj)))\n", | |
"\n", | |
"@interact(c=(0,7),ri=(0,8),rj=(0,8))\n", | |
"def betweenvi(c=3,ri=2,rj=5):\n", | |
" if rj < ri:\n", | |
" ri, rj = rj, ri\n", | |
" #show(dec(between_vertical(col,ri,rj)))\n", | |
" show(dec(between_vertical(c,ri,rj)))\n", | |
" point(sqof(ri, c))\n", | |
" point(sqof(rj, c))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "047ff33b53e04edfa9fa3854e8822d5a", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=3, description='r', max=7), IntSlider(value=5, description='ci', max=7), IntSlider(value=6, description='cj', max=7), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"@interact(r=(0,7), ci=(0,7), cj=(0,7))\n", | |
"def betweenhi(r=3, ci=5, cj=6):\n", | |
" if cj < ci:\n", | |
" ci, cj = cj, ci\n", | |
" q = row << (8*r)\n", | |
" q = (q << ci) & (q >> (7^cj))\n", | |
" show(dec(q))\n", | |
" point(sqof(r,ci))\n", | |
" point(sqof(r,cj))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "8a0ae48bc71546589a41e198cebedbe1", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=3, description='r', max=7), IntSlider(value=4, description='c', max=7), Dropdown(description='d', options=('nn', 'ee', 'ss', 'ww'), value='nn'), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"NN = 0\n", | |
"EE = 1\n", | |
"SS = 2\n", | |
"WW = 3\n", | |
"\n", | |
"def project(r,c,d):\n", | |
" if d == NN:\n", | |
" r-=1\n", | |
" return (col << c) & (all1 >> (8 * (7^r)))\n", | |
" elif d == SS:\n", | |
" r+=1\n", | |
" return (col << c) & (all1 << (8 * r))\n", | |
" elif d == EE:\n", | |
" c+=1\n", | |
" row_ = (row << 8*r)\n", | |
" return row_ & (row_ << c)\n", | |
" elif d == WW:\n", | |
" c-=1\n", | |
" row_ = (row << 8*r)\n", | |
" return row_ & (row_ >> (7^c))\n", | |
"\n", | |
"@interact(r=(0,7),c=(0,7),d=['nn', 'ee', 'ss', 'ww'])\n", | |
"def projecti(r=3,c=4,d='up'):\n", | |
" d = {'nn':NN,'ee':EE,'ss':SS,'ww':WW}[d]\n", | |
" show(dec(project(r,c,d)))\n", | |
" point(sqof(r,c))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "dcca96c60bd74d93ad8a9f389ba5ca6c", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=1, description='r', max=7), IntSlider(value=2, description='c', max=7), IntSlider(value=2, description='d', max=3), Dropdown(description='q', index=1, options=(8192, 288234843186200593), value=288234843186200593), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"@interact(r=(0,7), c=(0,7), d=(0,3), q=[0x00000002000, 0x400041010010011])\n", | |
"def lazertrace(r=1, c=2, d=2, q=0x400041010010011):\n", | |
" point(sqof(r,c))\n", | |
"\n", | |
" trace = np.zeros((8,8,3))\n", | |
" trace[:,:,0] = dec(q)\n", | |
" proj = project(r, c, d)\n", | |
"\n", | |
" isxt = proj & q\n", | |
" if isxt:\n", | |
" if d == NN or d == WW:\n", | |
" sq = bsr(isxt)\n", | |
" trunc = proj & (all1 << (sq))\n", | |
" \n", | |
" if d == SS or d == EE:\n", | |
" sq = bsf(isxt)\n", | |
" trunc = proj & (all1 >> (63-sq))\n", | |
"\n", | |
" trace[:,:,1] = dec(trunc)\n", | |
" trace[:,:,2] = dec(trunc)\n", | |
" \n", | |
" point(sq)\n", | |
" else:\n", | |
" trace[:,:,2] = dec(proj)\n", | |
"\n", | |
" \n", | |
" plt.imshow(trace,vmin=0,vmax=1)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"try scrubbing r.\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "44382b545b864820bd85277bcf3582c2", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/html": [ | |
"<p>Failed to display Jupyter Widget of type <code>interactive</code>.</p>\n", | |
"<p>\n", | |
" If you're reading this message in Jupyter Notebook or JupyterLab, it may mean\n", | |
" that the widgets JavaScript is still loading. If this message persists, it\n", | |
" likely means that the widgets JavaScript library is either not installed or\n", | |
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n", | |
" Widgets Documentation</a> for setup instructions.\n", | |
"</p>\n", | |
"<p>\n", | |
" If you're reading this message in another notebook frontend (for example, a static\n", | |
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n", | |
" it may mean that your frontend doesn't currently support widgets.\n", | |
"</p>\n" | |
], | |
"text/plain": [ | |
"interactive(children=(IntSlider(value=6, description='r', max=7), IntSlider(value=3, description='c', max=7), IntSlider(value=1, description='d', max=3), Output()), _dom_classes=('widget-interact',))" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"NW = 0\n", | |
"NE = 1\n", | |
"SE = 2\n", | |
"SW = 3\n", | |
"\n", | |
"reflect = [\n", | |
" # NW NE SE SW\n", | |
" [ -1, -1, EE, WW], # NN\n", | |
" [ NN, -1, -1, SS], # EE\n", | |
" [ WW, EE, -1, -1 ], # SS\n", | |
" [ -1, NN, SS, -1 ] # WW\n", | |
"];\n", | |
"dx = [-1, 1, 1, -1]\n", | |
"dy = [-1, -1, 1, 1]\n", | |
"\n", | |
"def make_laser_map(q, directions, r, c, d):\n", | |
" # q: long representing locations\n", | |
" # directions: np.array((8,8), dtype=np.uint8) holding orientations\n", | |
" # in actual code can be implemented with bit lookups\n", | |
" result = 0\n", | |
" while True:\n", | |
" proj = project(r, c, d)\n", | |
" # sometimes is an np.uint64, which causes problems; just cast it\n", | |
" # not needed in C\n", | |
" q = int(q)\n", | |
" isxt = proj & q\n", | |
" if isxt:\n", | |
" if d == NN or d == WW:\n", | |
" sq = bsr(isxt)\n", | |
" trunc = proj & (all1 << (sq))\n", | |
" \n", | |
" if d == SS or d == EE:\n", | |
" sq = bsf(isxt)\n", | |
" trunc = proj & (all1 >> (63-sq))\n", | |
" point(sq)\n", | |
" else:\n", | |
" result |= proj\n", | |
" break\n", | |
" \n", | |
" result |= trunc\n", | |
" r, c = rowof(sq), colof(sq)\n", | |
" d = reflect[d][directions[r,c]]\n", | |
" if d == -1:\n", | |
" break\n", | |
"\n", | |
" return result\n", | |
"\n", | |
"directions = np.array([\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
" [ 0,SE, 0, 0, 0, 0,SW, 0],\n", | |
" [ 0, 0, 0,SE, 0,SW, 0, 0],\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
" [ 0, 0, 0,NE, 0, 0,NW, 0],\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
" [ 0,SW, 0, 0, 0,NW, 0, 0],\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
"])\n", | |
"present = enc(np.array([\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
" [ 0, 1, 0, 0, 0, 0, 1, 0],\n", | |
" [ 0, 0, 0, 1, 0, 1, 0, 0],\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
" [ 0, 0, 0, 1, 0, 0, 1, 0],\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
" [ 0, 1, 0, 0, 0, 1, 0, 0],\n", | |
" [ 0, 0, 0, 0, 0, 0, 0, 0],\n", | |
"]))\n", | |
"pdec = dec(present)\n", | |
"\n", | |
"print('try scrubbing r.')\n", | |
"\n", | |
"@interact(r=(0,7), c=(0,7), d=(0,3))\n", | |
"def make_laser_map_i(r=6, c=3, d=1):\n", | |
" trace = np.zeros((8,8,3))\n", | |
" trace[:,:,0] = pdec\n", | |
" trace[:,:,1] = dec(make_laser_map(present, directions, r, c, d))\n", | |
" \n", | |
" point(sqof(r,c))\n", | |
" \n", | |
" plt.imshow(trace, vmin=0, vmax=1)\n", | |
" for i in range(8):\n", | |
" for j in range(8):\n", | |
" if pdec[i,j]:\n", | |
" plt.arrow(j, i, dx[directions[i,j]] / 2, dy[directions[i,j]] / 2, color='white')\n", | |
" " | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"state": { | |
"0005b4fd586e42e1a939cdff154a07af": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"003f26f4f1b6425aa577d356423d1545": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_d4561287c76f4f1b9f18596d2b4a95bc", | |
"IPY_MODEL_8516fe4cb3664221b45f95a3637c969b", | |
"IPY_MODEL_a1b8d73b71754907b2824a24d2b7b964", | |
"IPY_MODEL_79c727b412f141adac1ea46c05286149" | |
], | |
"layout": "IPY_MODEL_68d057fedfae4f11af51b9700c440c8e" | |
} | |
}, | |
"006382fc5b3f4e38a7a07f3cb183198a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0091150972564c63b62d76b79a30078a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_f26c876dd6644ee3b9c57d81ca48ee54", | |
"IPY_MODEL_f96474cabaf944698d529297fc427917", | |
"IPY_MODEL_b2f6aefe145e4aa9b9ac4d2c14309e06", | |
"IPY_MODEL_0cfe757cfcb044fdbd4bd0b294c489e7", | |
"IPY_MODEL_af5070049af54809b46c38e736daaabe" | |
], | |
"layout": "IPY_MODEL_e378e2a5373a45a6b3a8adf31bf484f9" | |
} | |
}, | |
"00a3fcd75397428d9fd40b704079fdf8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"00aad3f00b324fb598e605443b3305cd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_cda4ab3618f34a3896a79618c5fe2dfd", | |
"max": 3, | |
"style": "IPY_MODEL_c8535ff1478c4162a85edd7b4d406caa", | |
"value": 2 | |
} | |
}, | |
"00ae5ebb39534b1d8cf744b372eda36a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_7acd4bd6ca48477ea7dc6550200fc0da", | |
"IPY_MODEL_fc898e0f58df48ccbe05f0ccf131072e", | |
"IPY_MODEL_5390bb9fcaef4c80ba10725190469f57", | |
"IPY_MODEL_36914e48198d4cd2b70af213f6addf0b", | |
"IPY_MODEL_4a77f0a9ec354fb28a475f175292debc" | |
], | |
"layout": "IPY_MODEL_338d338b33fe4c558e9d314517f00c79" | |
} | |
}, | |
"00bb2953dd8d465fabd5ce33a23b64bf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"01195b98996f436084737ef38e8981c8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "ri", | |
"layout": "IPY_MODEL_10f887837b444d82b44aeb3cc1269f23", | |
"max": 8, | |
"style": "IPY_MODEL_ebb66595fe7d4587911211e5d332ffbb", | |
"value": 2 | |
} | |
}, | |
"012741798a0a4765bbc9341463f1af49": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_6ca69aa4b2624a458921006bf9d14183", | |
"max": 7, | |
"style": "IPY_MODEL_15d2801bde674c9b80f2f2b390347034", | |
"value": 1 | |
} | |
}, | |
"0140fe344e48415b90b807325063565f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"018b47e17c874e678c1bd0b7a3a640bc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_d55e96cd7c3a496295d9f33459568af4", | |
"IPY_MODEL_bca6a557d5684649b23196297e67bf9c", | |
"IPY_MODEL_c61101e1352c4b3e8b4a787a9bc6dbca", | |
"IPY_MODEL_195d4178a7d24c23815344267db9ae53" | |
], | |
"layout": "IPY_MODEL_55696b4f71e24df8988fa025d701b363" | |
} | |
}, | |
"01b3702a4d7142b197801f1538e67a23": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"01c4c8914d7b4be2a030f56dd4ed2bd9": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_e4c1dc2d80f947f2b5768af705c3111f", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGMNJREFUeJzt3WuwZWV95/HfH1oM4aKCpSiIVxAm\nWFEwIOL9AkZnpsSRsSoJUWc04y14rTLxikk50ZrJRMVMNNFIYuaFZhwrlYhCNJR4xao26ngFLx0E\nQQVEG4Ig8MyLvdtpmj5022ed3uff+/Op6lp99tpnPU9Vc86XZ6111qkxRgCAHvZa9AQAgJ0n3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNbFj0BHakqr6T5MAkmxY8FQDYVfdJ8pMxxn1Xe6B1H+4kB+6VvQ/aLwcctOiJAMCuuC6bc0tu\nnuRYHcK9ab8ccNAJ9YRFzwMAdsmF46PZnGs2TXEs17gBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSzc\nVXVYVf1lVX2vqm6oqk1V9ZaqustUYwDAstswxUGq6v5JPp3kbkn+LsnXkxyf5MVJnlRVJ40xrppi\nLABYZlOtuP9nZtE+Y4zx1DHG740xHpfkT5I8MMkbJxoHAJbaqsNdVfdLcnKSTUn+dJvdr09yXZLT\nq2q/1Y4FAMtuihX34+bb88YYt2y9Y4yxOcmnkvxykodNMBYALLUprnE/cL69aIX9F2e2Ij8yycdW\nOkhVbVxh11G7PjUA2LNMseK+03z74xX2b3n9zhOMBQBLbZK7yneg5ttxe28aYxy33U+ercSPnXpS\nANDRFCvuLSvqO62w/8Bt3gcA7KIpwv2N+fbIFfYfMd+udA0cANhJU4T7/Pn25Kq61fGq6oAkJyW5\nPslnJxgLAJbaqsM9xvhWkvOS3CfJC7fZ/YYk+yX56zHGdasdCwCW3VQ3p70gs0eevq2qHp/ka0lO\nSPLYzE6Rv3qicQBgqU3yyNP5qvuhSc7OLNgvT3L/JG9LcqLnlAPANCb7cbAxxneTPHuq4wEAt+X3\ncQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0Mkm4q+rp\nVXVWVX2iqn5SVaOq/maKYwMA/9+GiY7zmiS/muTaJJcmOWqi4wIAW5nqVPlLkxyZ5MAkz5/omADA\nNiZZcY8xzt/y96qa4pAAwHa4OQ0AGpnqGveqVdXGFXa5Xg4Ac1bcANDIullxjzGO297r85X4sbt5\nOgCwLllxA0Ajwg0AjQg3ADQi3ADQyCQ3p1XVU5M8df7hIfPtiVV19vzvV44xXjHFWACwzKa6q/zB\nSZ65zWv3m/9Jkn9JItwAsEqTnCofY5w5xqjb+XOfKcYBgGXnGjcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0AjGxY9Aejk3O99YdFTWBOn3PPBi54CsJOsuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZsNoDVNXB\nSU5N8pQkD0pyaJIbk/zfJO9J8p4xxi2rHQeWyUVXHZJPX3Jkrr3xjtl/nxvy8MMvypEHX7HoaQHr\nwKrDneS0JH+W5PIk5ye5JMndkzwtybuS/HpVnTbGGBOMBXu0T11yRM668JR87rIH3Gbf8Yd+M797\nwrk56fCLFzAzYL2Y4lT5RUn+fZLDxhi/Ocb4/THGf0pyVJLvJvkPmUUcuB3v+/IJeeYHnz+P9rb/\nnzvyucsekGd+8Pl5/1dOWMT0gHVi1eEeY/zTGOPvtz0dPsa4Isk75h8+ZrXjwJ7sU5cckVd/7Bm5\nZWz5kqxt3jH7+JaxV1710WfkU5ccsVvnB6wfa31z2s/m25vWeBxo7awLT9kq2rfvlrFX3n7hKWs8\nI2C9WrNwV9WGJL89//AjazUOdHfRVYescHp8JSMXXvaAXHTVIWs5LWCdmuLmtJW8KckxSc4ZY5y7\nozdX1cYVdh016axgnfn0JUfO/7bt6fGV1M8/z53msHzWZMVdVWckeXmSryc5fS3GgD3FtTfecbd+\nHtDb5Cvuqnphkrcm+WqSx48xrt6ZzxtjHLfC8TYmOXa6GcL6sv8+N+zWzwN6m3TFXVUvSfL2JF9O\n8tj5neXA7Xj44RfN/7bz17hv/XnAMpks3FX1yiR/kuQLmUX7B1MdG/ZkRx58RY4/9Jv5Ra5xn3Do\nN13fhiU1Sbir6rWZ3Yy2MbPT41dOcVxYFr97wrnZq3buycB71S150Qk7vN8T2ENN8azyZyb5gyQ3\nJ/lEkjOqbrNy2DTGOHu1Y8Ge6qTDL84bH/++rR7CMnLrFfjs473qlvzXJ7zPY09hiU1xc9p959u9\nk7xkhfd8PMnZE4wFe6xnHHNhDjvw6rz9wlNy4W2eVT47Pf4izyqHpbfqcI8xzkxy5qpnAuSkwy/O\nSYdf7LeDAStaywewALvoyIOvEGpgu9b6WeUAwISEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaGSScFfVm6vqY1X13aq6vqqurqp/rqrXV9XBU4wBAEy34n5pkv2S\n/GOStyb5X0luSnJmki9V1b0mGgcAltqGiY5z4Bjjp9u+WFVvTPKqJL+f5AUTjQUAS2uSFff2oj33\n/vn2iCnGAYBlt9Y3p/27+fZLazwOACyFqU6VJ0mq6hVJ9k9ypyQPTfKIzKL9pp343I0r7DpqsgkC\nQHOThjvJK5LcfauPP5LkWWOMH048DgAspUnDPcY4JEmq6u5JHp7ZSvufq+rfjjE+v4PPPW57r89X\n4sdOOU8A6GpNrnGPMb4/xvhgkpOTHJzkr9diHABYNmt6c9oY41+SfDXJr1TVXddyLABYBrvjkaf3\nnG9v3g1jAcAebdXhrqqjquqQ7by+1/wBLHdL8ukxxo9WOxYALLspbk57UpL/VlUXJPlWkqsyu7P8\n0Unul+SKJM+dYBwAWHpThPujSf48yUlJfjXJnZNcl+SiJO9N8rYxxtUTjAMAS2/V4R5jfDnJCyeY\nCwCwA34fNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\naxbuqjq9qsb8z3PWahwAWCZrEu6quleSs5JcuxbHB4BlNXm4q6qSvCfJVUneMfXxAWCZrcWK+4wk\nj0vy7CTXrcHxAWBpTRruqjo6yZuSvHWMccGUxwYAkg1THaiqNiR5b5JLkrxqFz5/4wq7jlrNvABg\nTzJZuJO8LslDkjxijHH9hMcFAOYmCXdVHZ/ZKvuPxxif2ZVjjDGOW+HYG5Mcu4rpAcAeY9XXuLc6\nRX5RkteuekYAwIqmuDlt/yRHJjk6yU+3eujKSPL6+Xv+Yv7aWyYYDwCW1hSnym9I8u4V9h2b2XXv\nTyb5RpJdOo0OAMysOtzzG9G2+0jTqjozs3D/1RjjXasdCwCWnV8yAgCNCDcANLKm4R5jnDnGKKfJ\nAWAaVtwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWyY\n4iBVtSnJvVfY/f0xxiFTjANL4+qbkstuTG4cyT6VHLpPctAkX65Ac1N+J/hxkrds5/VrJxwD9myX\n3pjaeF3q8p/dZte4xx0yjtsvOWyfBUwMWC+mDPc1Y4wzJzweLJevXZ+6YHNqJCNJbbVrJLOYf+ia\njEcfkBy174ImCSyaa9ywHlx648+jndw62lt/XCOpj29OLr1xd84OWEemXHHfsap+K8nhSa5L8qUk\nF4wxbp5wDNgj1cbrfh7tHb53JNl4XYZT5rCUpgz3IUneu81r36mqZ48xPj7hOLBnufqm1OU/u83p\n8ZVsOW0+rr7JDWuwhKb6qn9Pkk8k+UqSzUnul+RFSX4nyYer6sQxxhdv7wBVtXGFXUdNNEdYny6b\nnfbemWjf6n2X3SjcsIQm+aofY7xhm5e+nOR5VXVtkpcnOTPJqVOMBXucG3fyHPlUnwe0ttb/u/6O\nzML9qB29cYxx3PZen6/Ej514XrB+7LOza+2JPg9oba3vKv/BfLvfGo8DfR06u8lsZ9fPP3/foW5O\ng2W01uE+cb799hqPA30dtCHjHnf4ha5xj3vcwfVtWFKrDndV/UpVHbSd1++d5O3zD/9mtePAnmwc\nt1/GTpZ71Oz9wHKa4n/ZT0vye1V1fpLvZHZX+f2TPCXJLyU5J8l/n2Ac2HMdtk/Gow5Ibu/JaZlH\n+9EHeOwpLLEpwn1+kgcmeUhmp8b3S3JNkk9m9nPd7x1juP0VduTofTMO2DvZzrPKt5we96xyYNXh\nnj9cxQNWYAqH7ZNx2D6zh6v47WDAdvhOAOvRQRuEGtguv2QEABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkw6In\nAJ2ccs8HL3oKwJKz4gaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkUnDXVWPrKoPVNXlVXXDfHte\nVT15ynEAYFltmOpAVfWaJH+Y5Mok/5Dk8iR3TfKQJI9Jcs5UYwHAspok3FV1WmbR/miSp40xNm+z\n/w5TjAMAy27Vp8qraq8kb07yr0l+Y9toJ8kY42erHQcAmGbF/fAk903yv5P8qKqekuSYJD9N8rkx\nxmcmGAMAyDTh/rX59vtJPp/kQVvvrKoLkjx9jPHD2ztIVW1cYddRq54hAOwhprir/G7z7fOS7Jvk\nCUkOyGzVfW6SRyX52wnGAYClN8WKe+/5tjJbWX9x/vFXqurUJBcleXRVnXh7p83HGMdt7/X5SvzY\nCeYJAO1NseL+0Xz77a2inSQZY1yf2ao7SY6fYCwAWGpThPsb8+01K+zfEvZ9JxgLAJbaFOG+IMlN\nSY6oqn22s/+Y+XbTBGMBwFJbdbjHGFcmeV+SOyV53db7quqJSU5J8uMkH1ntWACw7KZ65OnLkpyQ\n5NVV9agkn0ty7ySnJrk5yXPHGCudSgcAdtIk4R5j/KCqTkjymsxi/bAkm5N8KMkfjTE+O8U4ALDs\nJvslI2OMqzNbeb9sqmMCALfm93EDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANLLqcFfVs6pq7ODPzVNMFgCW3YYJjvGFJG9YYd8jkzwuyYcnGAcAlt6qwz3G\n+EJm8b6NqvrM/K9/vtpxAIA1vMZdVcckeViSy5J8aK3GAYBlspY3p/2X+fbdYwzXuAFgAlNc476N\nqto3yW8luSXJu3byczausOuoqeYFAN2t1Yr7Pya5c5IPjzG+u0ZjAMDSWZMVd5LfmW/fubOfMMY4\nbnuvz1fix04xKQDobvIVd1X9myQPT3JpknOmPj4ALLO1OFXupjQAWCOThruqfinJ6ZndlPbuKY8N\nAEy/4j4tyV2SnOOmNACY3tTh3nJTmielAcAamCzcVXV0kkfETWkAsGYm+3GwMcbXktRUxwMAbsvv\n4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGqkxxqLncLuq6qq9svdB++WARU8FAHbJddmcW3Lz1WOMg1d7rA1T\nTGiN/eSW3JzNuWbTbhjrqPn267thLKbh36wf/2b9+Ddbvfsk+ckUB1r3K+7dqao2JskY47hFz4Wd\n49+sH/9m/fg3W19c4waARoQbABoRbgBoRLgBoBHhBoBG3FUOAI1YcQNAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3Emq6rCq+suq+l5V3VBVm6rqLVV1l0XPjVurqoOr6jlV9cGq+mZVXV9VP66q\nT1bVf64q/003UVWnV9WY/3nOoufD9lXVI6vqA1V1+fz74+VVdV5VPXnRc1tWHX4f95qqqvsn+XSS\nuyX5u8x+3+zxSV6c5ElVddIY46oFTpFbOy3JnyW5PMn5SS5JcvckT0vyriS/XlWnDU8WWteq6l5J\nzkpybZL9FzwdVlBVr0nyh0muTPIPmX3d3TXJQ5I8Jsk5C5vcElv6J6dV1blJTk5yxhjjrK1e/x9J\nXprknWOM5y1qftxaVT0uyX5JPjTGuGWr1w9J8rkk90ry9DHGBxY0RXagqirJPya5b5L/k+QVSZ47\nxnjXQifGrVTVaUnen+SjSZ42xti8zf47jDF+tpDJLbmlPq1YVffLLNqbkvzpNrtfn+S6JKdX1X67\neWqsYIzxT2OMv9862vPXr0jyjvmHj9ntE+MXcUaSxyV5dmZfY6wz80tOb07yr0l+Y9toJ4loL85S\nhzuzbx5Jct52QrA5yaeS/HKSh+3uibFLtnwjuWmhs2BFVXV0kjcleesY44JFz4cVPTyzMyLnJPlR\nVT2lql5ZVS+uqhMXPLelt+zXuB843160wv6LM1uRH5nkY7tlRuySqtqQ5LfnH35kkXNh++b/Ru/N\n7L6EVy14Oty+X5tvv5/k80ketPXOqrogs0tSP9zdE8OK+07z7Y9X2L/l9TvvhrmwOm9KckySc8YY\n5y56MmzX6zK7qelZY4zrFz0Zbtfd5tvnJdk3yROSHJDZ19i5SR6V5G8XMzWWPdw7UvPtct/Bt85V\n1RlJXp7ZTwScvuDpsB1VdXxmq+w/HmN8ZtHzYYf2nm8rs5X1x8YY144xvpLk1CSXJnm00+aLsezh\n3rKivtMK+w/c5n2sM1X1wiRvTfLVJI8dY1y94Cmxja1OkV+U5LULng4750fz7bfHGF/cesf8bMmW\ns1rH79ZZkUS4vzHfHrnC/iPm25WugbNAVfWSJG9P8uXMon3FgqfE9u2f2dfY0Ul+utVDV0ZmP72R\nJH8xf+0tC5slW9vyvfGaFfZvCfu+u2EubGPZb047f749uar22ubngg9IclKS65N8dhGTY2VV9crM\nrmt/IckTxxhXLnhKrOyGJO9eYd+xmV33/mRmsXAafX24ILOfzjiiqvYZY9y4zf5j5ttNu3VWJFny\ncI8xvlVV52V25/gLM3uS0xZvyOxBH+8cY/hZ03Wkql6b5A+SbExystPj69v81Op2H2laVWdmFu6/\n8gCW9WOMcWVVvS/Jb2Z2U+FrtuyrqicmOSWzS4h+gmMBljrccy/I7JGnb6uqxyf5WpITkjw2s1Pk\nr17g3NhGVT0zs2jfnOQTSc6YPYjrVjaNMc7ezVODPc3LMvte+OqqelRmTya8d2Y3p92c2dPuVjqV\nzhpa+nDPV90PzSwGT0ry5Myex/u2JG+wmlt37jvf7p3kJSu85+NJzt4ts4E91BjjB1V1Qmar7VMz\nexDV5iQfSvJHYwyXEBdk6Z9VDgCdLPtd5QDQinADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI/wMRgcjuQzZm+QAAAABJRU5E\nrkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7ffb4eba27b8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"01dd38e0b3884b50869bb8f2bd5d1277": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_79ec0297d9d04797801957125a78e8f5", | |
"max": 3, | |
"style": "IPY_MODEL_67867e99c25e4d3b8a0969506488c49e", | |
"value": 2 | |
} | |
}, | |
"01ef3caa155f442bb322f5a033f39b97": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0207c715195b45cda9737823f1445af0": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_1b734a97c2bd4146bc774b3c6eeae2ee", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGXtJREFUeJzt3Xv07XVd5/HXG04pImjiAtesvECK\nYLoczym8oIKQZjbNCkdmXE1UTto4OaGVpXm/rJZ0F6zppmXRH11Ga5ZJSiKCkEXrnNEsSVQ8aBNK\neAVFU/jMH3ufOBzO5hz4ffdvn/fZj8dav/U9v/397e/nc/j9zu/J97K/u8YYAQB6OGTVEwAA9p9w\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADSyZdUT2Jeq+niSI5PsXPFUAOCuelCSL44xjt3ohg74cCc58rDDcp8TT8x9Vj2Rqe1Y9QRg\nbuuqJ7BEOw7qvx1tXHllctNNk2yqQ7h3nnhi7rN9+6qnMb1a9QRg7iD85/Vv6qD+29HGtm3Jjh07\np9iUc9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCNbVj0BYH1c9ekH5PKPPjI3fuUeuefdv5yTH/yBHH/MJ1Y9\nLdbQw667MqdffUmO/OoN+eLdjshFx52SDx194qqntV8mC3dVfXOS1yR5apKjklyb5M+SvHqM8bmp\nxgH6ufyjj8y5Fz0zV3z8Ebdbd9KxH8zzT//DnPzgD6xgZqyb065+T15xyc/nlGsuv926Sx54cl5z\nyk/n3ceduunzujMmOVReVd+SZHuSZyW5IsmvJLk6yfOTvK+qjppiHKCfP/rbJ+esN712Hu2xx9qR\nKz7+iJz1ptfmj//2yauYHmvkv+34/Vx4/hk55ZrL9/KTmJxyzeW58Pwz8qwd569ievttqnPc/yvJ\n0UnOHmN87xjjxWOM0zIL+EOT/OxE4wCNXP7RR+Zn3vpjuWXs+lVTe3zF7PNbxiF58Vt/LJd/9JGb\nOj/Wx2lXvye/9bbn59BxS5JFP4nJoeOW/Pbbzs5pV79nM6d3p2w43FV1XJKnJNmZ5Nf2WP3KJF9K\nclZVHb7RsYBezr3ombtF+47dMg7JeRc9c8kzYl294pKf/7do78uh45a8/JJfWPKM7rop9rhPmy8v\nHOO2/1XGGDckuTzJPZI8ZoKxgCau+vQDFhweX2Tkbz7+iFz16Qcsc1qsoYddd+VeD48vMpKces1l\nedh1Vy5zWnfZFOF+6Hx51YL1H5kvj7+jjVTV9r19JDlhgjkCm+zWw957HpRcpPZ4Hkzj9KsvSXJn\nfxJvfd6BZopw32u+/MKC9bsev/cEYwFN3PiVe2zq82CRI796w6Y+b9k243Xcu/7n5Q6PUowxtu31\nybO97q1TTwpYrnve/cub+jxY5It3O2JTn7dsU+xx79qjvteC9Ufu8XXAGrj1ddl35sxivJ6byV10\n3ClJ7uxP4q3PO9BMEe4Pz5eLzmE/ZL5cdA4cOAgdf8wnctKxH8ydObP46GM/6E5qTO5DR5+YSx54\n8p06x/2eBz7+gL2T2hThvni+fEpV3WZ7VXVEkpOT3JTkrycYC2jk+af/YQ6p/XsJziF1S84+/Q+X\nPCPW1WtO+encXPuXvJvrkLz2lJ9a8ozuug2He4zxsSQXJnlQkuftsfrVSQ5P8vtjjC9tdCygl5Mf\n/IG87ulv2C3ee7tf1Sza5zz9DQ6TszTvPu7U/Mj3nPtv8d77T+Is2s/5nvMO6NueTnVx2o8m+ask\n51XV6UmuTPLoJE/K7BD5SycaB2jmv3z7X+abv+m6nHfRM/M3t7tX+ezw+NnuVc4m+J2tP5Cd935A\nXn7JL+TUay67zbpdh8dfe8pPHdDRTpIaY39P1+9jQ1X3z+I3GfnsBra7fevWbN2+fZJpHlD293wL\nLNs0vwX2bRXvDlab9rejk01/d7Bt25IdO3YsegXVnTHZy8HGGJ/M7E1GAPbq+GM+4eIzDggfOvrE\nA/bis32Z6k1GAIBNINwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyJZVT2B/7NiRVK16FnDwOrj/eR3cfzvWjz1uAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABqZJNxV9YyqekNVvbeqvlhVo6r+YIptAwC32jLRdl6W5JFJ\nbkzyT0lOmGi7AMBupjpU/uNJjk9yZJL/MdE2AYA9TLLHPca4eNefq2qKTQIAe+HiNABoZKpz3BtW\nVdsXrHK+HADm7HEDQCMHzB73GGPb3h6f74lv3eTpAMAByR43ADQi3ADQiHADQCPCDQCNTHJxWlV9\nb5LvnX96v/nysVX15vmfrx9jvHCKsQBgnU11Vfm/T/KDezx23PwjSa5JItwAsEGTHCofY7xqjFF3\n8PGgKcYBgHXnHDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0AjW1Y9gf2xNcn2VU9iCWrVEwCgHXvcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjWw43FV1VFU9u6r+tKo+WlU3VdUXquqyqvrhqvI/BwAwkS0TbOPM\nJL+e5NokFyf5RJJjkjw9yRuTfFdVnTnGGBOMBQBrbYpwX5XkPyZ5+xjjll0PVtVLklyR5D9lFvG3\nTDAWAKy1DR/GHmO8e4zxtt2jPX/8U0l+Y/7pqRsdBwBY/sVpX5svv77kcQBgLSwt3FW1JckPzD99\nx7LGAYB1MsU57kXOSfLwJBeMMd65ry+uqu0LVp0w6awAoLGl7HFX1dlJfjLJPyY5axljAMA6mnyP\nu6qel+TcJB9KcvoY47P787wxxrYF29ueZOt0MwSAvibd466qFyT51SR/n+RJ8yvLAYCJTBbuqnpR\nkl9J8v7Mon3dVNsGAGYmCXdVvTyzi9G2Z3Z4/PoptgsA3NaGz3FX1Q8meU2Sm5O8N8nZVbXnl+0c\nY7x5o2MBwLqb4uK0Y+fLQ5O8YMHXXJLkzROMBQBrbYpbnr5qjFH7+Dh1grkCwNrzlpsA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNbFn1BPbHjiS16knAQWysegJL5HcHBxt73ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0Mkm4q+rnquqiqvpkVd1UVZ+tqv9bVa+sqqOmGAMASGqMsfGNVP1rkh1JPpTkuiSH\nJ3lMkm9L8s9JHjPG+ORd3Pb2JFs3PElgoY3/Fjhw1aonALfaMcbYttGNbJliJkmOHGN8Zc8Hq+pn\nk7wkyc8k+dGJxgKAtTXJofK9RXvuj+fLh0wxDgCsu2VfnPY98+XfLXkcAFgLUx0qT5JU1QuT3DPJ\nvTI7v/34zKJ9zn48d/uCVSdMNkEAaG7ScCd5YZJjdvv8HUl+aIzxLxOPAwBraZKrym+30apjkjwu\nsz3tI5L8hzHGjru4LVeVw5K5qhw2xSRXlS/lHPcY49NjjD9N8pQkRyX5/WWMAwDrZqkXp40xrsns\ntd3fWlX3XeZYALAONuOWp/9uvrx5E8YCgIPahsNdVSdU1f328vgh8xuwHJ3kr8YYn9voWACw7qa4\nqvypSX6hqi5N8rEkn8nsyvJTkhyX5FNJnjPBOACw9qYI97uS/FaSk5M8Msm9k3wpyVVJzk9y3hjj\nsxOMAwBrb8PhHmP8fZLnTTAXAGAfvB83ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCNLC3dVnVVVY/7x7GWNAwDrZCnhrqr7J3lDkhuXsX0AWFeTh7uqKsnv\nJvlMkt+YevsAsM6Wscd9dpLTkjwryZeWsH0AWFuThruqTkxyTpJzxxiXTrltACDZMtWGqmpLkvOT\nfCLJS+7C87cvWHXCRuYFAAeTycKd5BVJHpXk8WOMmybcLgAwN0m4q+qkzPayf2mM8b67so0xxrYF\n296eZOsGpgcAB40Nn+Pe7RD5VUlevuEZAQALTXFx2j2THJ/kxCRf2e2mKyPJK+df89vzx14/wXgA\nsLamOFT+1SRvWrBua2bnvS9L8uEkd+kwOgAws+Fwzy9E2+stTavqVZmF+/fGGG/c6FgAsO68yQgA\nNCLcANBIjTFWPYc75OVgsHwH9m+BjalVTwButWPRS5/vDHvcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njWxZ9QQ4OI1VT2BJatUTWJKD9e8FByN73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1MEu6q2llVY8HH\np6YYAwBItky4rS8kef1eHr9xwjEAYK1NGe7PjzFeNeH2AIA9OMcNAI1Mucd9t6r6/iQPSPKlJH+X\n5NIxxs0TjgEAa23KcN8vyfl7PPbxqnrWGOOSCccBgLU1Vbh/N8l7k/xDkhuSHJfkfyb5kSR/UVWP\nHWN84I42UFXbF6w6YaI5AkB7NcZY3sarfjHJTyb5szHGGfv42jsK9z2mnhvLtbyfqtWqVU8A6GzH\nGGPbRjey7HA/OMlHknx2jHHUXdzG9iRbJ50YSyfcALczSbiXfVX5dfPl4UseBwDWwrLD/dj58uol\njwMAa2HD4a6qb62q++zl8Qcm+dX5p3+w0XEAgGmuKj8zyYur6uIkH8/sqvJvSfLdSe6e5IIkvzjB\nOACw9qYI98VJHprkUZkdGj88yeeTXJbZ67rPH8u8Ag4A1siGwz2/uYobrADAJnCvcgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEa2rHoCHJxq1RMAOEjZ4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkUnD\nXVVPqKq3VNW1VfXV+fLCqnralOMAwLraMtWGquplSV6b5Pokf57k2iT3TfKoJKcmuWCqsQBgXU0S\n7qo6M7NovyvJ08cYN+yx/humGAcA1t2GD5VX1SFJfi7Jl5N8357RTpIxxtc2Og4AMM0e9+OSHJvk\nfyf5XFV9d5KHJ/lKkivGGO+bYAwAINOE+9vny08n2ZHkEbuvrKpLkzxjjPEvd7SRqtq+YNUJG54h\nABwkpriq/Oj58rlJDkvyHUmOyGyv+51JnpjkTyYYBwDW3hR73IfOl5XZnvUH5p//Q1WdkeSqJKdU\n1WPv6LD5GGPb3h6f74lvnWCeANDeFHvcn5svr94t2kmSMcZNme11J8lJE4wFAGttinB/eL78/IL1\nu8J+2ARjAcBamyLclyb5epKHVNU37mX9w+fLnROMBQBrbcPhHmNcn+SPktwrySt2X1dVT07ynUm+\nkOQdGx0LANbdVLc8/Ykkj07y0qp6YpIrkjwwyRlJbk7ynDHGokPpAMB+miTcY4zrqurRSV6WWawf\nk+SGJG9P8roxxl9PMQ4ArLsaY6x6DnfIy8EAOEjsWPTS5zvD+3EDQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0smXVE+DgNFY9gSWpVU8AWHv2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZcLir6oeqauzj4+Yp\nJgsA627LBNt4f5JXL1j3hCSnJfmLCcYBgLW34XCPMd6fWbxvp6reN//jb210HABgiee4q+rhSR6T\n5P8lefuyxgGAdbLMi9P++3z5pjGGc9wAMIEpznHfTlUdluT7k9yS5I37+ZztC1adMNW8AKC7Ze1x\n/+ck907yF2OMTy5pDABYO0vZ407yI/Plb+7vE8YY2/b2+HxPfOsUkwKA7ibf466qhyV5XJJ/SnLB\n1NsHgHW2jEPlLkoDgCWZNNxVdfckZ2V2Udqbptw2ADD9HveZSb4pyQUuSgOA6U0d7l0XpblTGgAs\nwWThrqoTkzw+LkoDgKWZ7OVgY4wrk9RU2wMAbs/7cQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxZ9QT2w4NW\nPQHuvG2rngDAgedBU2ykQ7i/OF/u3ISxTpgv/3ETxjqo7di8oXzP+vE968f3bOMelFt7tiE1xphi\nOweFqtqeJGMMO4xN+J7143vWj+/ZgcU5bgBoRLgBoBHhBoBGhBsAGhFuAGjEVeUA0Ig9bgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEO0lVfXNV/U5V/XNVfbWqdlbV66vqm1Y9N26rqo6qqmdX\n1Z9W1Uer6qaq+kJVXVZVP1xVfqabqKqzqmrMP5696vmwd1X1hKp6S1VdO//9eG1VXVhVT1v13NZV\nh/fjXqqq+pYkf5Xk6CT/J7P3mz0pyfOTPLWqTh5jfGaFU+S2zkzy60muTXJxkk8kOSbJ05O8Mcl3\nVdWZw52FDmhVdf8kb0hyY5J7rng6LFBVL0vy2iTXJ/nzzP7d3TfJo5KcmuSClU1uja39ndOq6p1J\nnpLk7DHGG3Z7/JeT/HiS3xxjPHdV8+O2quq0JIcnefsY45bdHr9fkiuS3D/JM8YYb1nRFNmHqqok\nf5nk2CRvTfLCJM8ZY7xxpRPjNqrqzCR/nORdSZ4+xrhhj/XfMMb42komt+bW+rBiVR2XWbR3Jvm1\nPVa/MsmXkpxVVYdv8tRYYIzx7jHG23aP9vzxTyX5jfmnp276xLgzzk5yWpJnZfZvjAPM/JTTzyX5\ncpLv2zPaSSLaq7PW4c7sl0eSXLiXENyQ5PIk90jymM2eGHfJrl8kX1/pLFioqk5Mck6Sc8cYl656\nPiz0uMyOiFyQ5HNV9d1V9aKqen5VPXbFc1t7636O+6Hz5VUL1n8ksz3y45NctCkz4i6pqi1JfmD+\n6TtWORf2bv49Oj+z6xJesuLpcMe+fb78dJIdSR6x+8qqujSzU1L/stkTwx73vebLLyxYv+vxe2/C\nXNiYc5I8PMkFY4x3rnoy7NUrMruo6YfGGDetejLcoaPny+cmOSzJdyQ5IrN/Y+9M8sQkf7KaqbHu\n4d6Xmi/X+wq+A1xVnZ3kJzN7RcBZK54Oe1FVJ2W2l/1LY4z3rXo+7NOh82Vltmd90RjjxjHGPyQ5\nI8k/JTnFYfPVWPdw79qjvteC9Ufu8XUcYKrqeUnOTfKhJE8aY3x2xVNiD7sdIr8qyctXPB32z+fm\ny6vHGB/YfcX8aMmuo1onbeqsSCLcH54vj1+w/iHz5aJz4KxQVb0gya8m+fvMov2pFU+JvbtnZv/G\nTkzyld1uujIye/VGkvz2/LHXr2yW7G7X78bPL1i/K+yHbcJc2MO6X5x28Xz5lKo6ZI/XBR+R5OQk\nNyX561VMjsWq6kWZndd+f5InjzGuX/GUWOyrSd60YN3WzM57X5ZZLBxGPzBcmtmrMx5SVd84xvjX\nPdY/fL7cuamzIsmah3uM8bGqujCzK8efl9mdnHZ5dWY3+vjNMYbXmh5AqurlSV6TZHuSpzg8fmCb\nH1rd6y1Nq+pVmYX799yA5cAxxri+qv4oyX/N7KLCl+1aV1VPTvKdmZ1C9AqOFVjrcM/9aGa3PD2v\nqk5PcmWSRyd5UmaHyF+6wrmxh6r6wcyifXOS9yY5e3YjrtvYOcZ48yZPDQ42P5HZ78KXVtUTM7sz\n4QMzuzjt5szudrfoUDpLtPbhnu91f1tmMXhqkqdldj/e85K82t7cAefY+fLQJC9Y8DWXJHnzpswG\nDlJjjOuq6tGZ7W2fkdmNqG5I8vYkrxtjOIW4Imt/r3IA6GTdryoHgFaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARv4/sMMP\nSj8UKhwAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4982533b38>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"020ccfa5cfa945d0ae5dc394ea06a942": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"02111999c9644b0c912bb050d80a23fb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_510e65d6133b485bab8ebfdf505c1a9d", | |
"max": 3, | |
"style": "IPY_MODEL_8dfb2c70c5d44532839856e3160fd57d", | |
"value": 2 | |
} | |
}, | |
"02ef33642d224c4bb5669b928bf3d043": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0329b642b8fe4a4996ffd9625329cdba": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_01ef3caa155f442bb322f5a033f39b97", | |
"outputs": [ | |
{ | |
"ename": "TypeError", | |
"evalue": "ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-73-93374ba37cee>\u001b[0m in \u001b[0;36mlazertrace\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-73-93374ba37cee>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0misxt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mNN\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mWW\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''" | |
] | |
} | |
] | |
} | |
}, | |
"03364b5b3e5a45fb86c2c147e6539efe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_1ebd7cbbda344d63b522facddc389e75", | |
"max": 7, | |
"style": "IPY_MODEL_c1a242c0473a4f13a35c79c6740685d3", | |
"value": 6 | |
} | |
}, | |
"0338e0be8a714068b5c6969e6ee8db1f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_4658c4d7f582457684bbdfb3b777e19f", | |
"IPY_MODEL_fe90009675d84f84a72ed7f9423e9e74", | |
"IPY_MODEL_d37a965d3c044adda6d13ca28ae067f6", | |
"IPY_MODEL_eaf3430f943d4f7d9a3ff502101aabef", | |
"IPY_MODEL_36836afede0147e2a8b1c6f5af2b2933" | |
], | |
"layout": "IPY_MODEL_de9c6b130776413eac24ebafe9bdc47e" | |
} | |
}, | |
"034f91ab73fc4edd8871743c4f07ca72": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_4f88323b009a45029c79bd871db026ea", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHpRJREFUeJzt3Xu0rXVd7/HPFzYIXkC0wHG8BF4Q\njzpQSPBShqBm7nMcaXFGpYaOzKN5MixH5l2PI6VxKi9kaWlZNoaVR4uRkFKIkmXHMzZHMq9okmKA\nW9AdKChsfuePOTd778Va+7aeuZ75m/P1GmONZ88513qe72autd48lzl3tdYCAPThoLEHAAD2nXAD\nQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAd2TT2AHtTVV9OckSSK0YeBQAO1LFJ/qO1dtx6VzT34c4k2nebfgDAUuvhUPkVYw8AAAO4\nYoiV9BBuAGBKuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdGSzcVXWvqvrDqvr3qvpuVV1RVW+qqqOG2gYA\nLLtNQ6ykqu6X5B+THJ3kvCSfS3JKkl9K8qSqekxr7dohtgUAy2yoPe7fzSTaL2yt/Xhr7ddaa6cn\neWOSByb59YG2AwBLrVpr61tB1X2TfCnJFUnu11q7dZfH7pLkqiSV5OjW2rcPYP1bkpy0riEBYHyX\nttZOXu9KhtjjPn26vHDXaCdJa+36JP+Q5I5JHjnAtgBgqQ1xjvuB0+UX1nj88iRPTHJ8kovWWsl0\nz3o1Jxz4aACwWIbY4z5yuty2xuM77r/rANsCgKU2yFXle1HT5R5Ppq913N85bgDYaYg97h171Eeu\n8fgRKz4PADhAQ4T789Pl8Ws8/oDpcq1z4ADAPhoi3BdPl0+sqt3WN3052GOS3JjknwbYFgAstXWH\nu7X2pSQXJjk2yQtWPPzaJHdK8icH8hpuAGB3Q12c9guZvOXpW6rqjCSfTXJqksdlcoj85QNtBwCW\n2iBveTrd6/7BJO/KJNi/kuR+Sd6S5FHepxwAhjHYy8Faa19N8uyh1gcA3J5/jxsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANA\nR4QbADoi3ADQkU1jD7DM2tgDzFCNPQAsOL8/lpc9bgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4\nAaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLc\nANCRQcJdVT9ZVedW1d9X1X9UVauqPx1i3QDATpsGWs8rkpyY5IYkVyY5YaD1AgC7GOpQ+YuSHJ/k\niCTPH2idAMAKg+xxt9Yu3vHnqhpilQDAKlyctizucIexJwB65ffHXJmbcFfVltU+4nz5+h1xRPLR\njyZvf/vYkwC9Of305PLLk82bx56EqbkJNzP0+Mcnp56aPPe5ybe+NfY0QC82b04uuii5972Tl7xk\n7GmYGuqq8nVrrZ282v3Tve6TNnicxfL+9ycf/vDk/5yPPHIS77vedeypgHm2eXPygQ/svP0TPzHe\nLOzGHveyOOOMSbyTnfEGWM3KaB99dLJ163jzsBvhXibiDeyNaM894V424g2sRbS7INzLSLyBlUS7\nG4NcnFZVP57kx6c37zFdPqqq3jX98zdaay8eYlsM5IwzJleLumANEO2uDHVV+cOSnLXivvtOP5Lk\n35II97wRb0C0uzPIofLW2mtaa7WHj2OH2A4z4LA5LC/R7pJz3Ig3LCPR7pZwMyHesDxEu2vCzU7i\nDYtPtLsn3OxOvGFxifZCEG5uT7xh8Yj2whBuVifesDhEe6EIN2sTb+ifaC8c4WbPxBv6JdoLSbjZ\nO/GG/oj2whJu9o14Qz9Ee6EJN/tOvGH+ifbCE272j3jD/BLtpSDc7D/xhvkj2ktDuDkw4g3zQ7SX\ninBz4MQbxifaS0e4WR/xhvGI9lISbtZvlXgfddRR484Ei+4ZzxDtJSXcDGNFvK+77rpx54EF9qpX\nvSp597t33iHaS0W4Gc4ZZ+x284QTThhpEFhsz3/+83feuNe9RHvJbBp7gGVWYw8wA4ccemje+973\n5rzzzsvnPve5sccZXBt7gBlZxO/FHRbyOTvxxHz6wx/OT//0T+dTX/va2NOwwaq1+f62rqotSU4a\new5IFjQCEe4eLfJztsAuba2dvN6VOFQOAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAj\nwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6Mi6w11Vd6+q51TVX1bV\nF6vqxqraVlUfq6qfqyr/cwAAA9k0wDrOTPJ7Sa5KcnGSryQ5JsnTkrwjyY9V1ZmttTbAtgBgqQ0R\n7i8keUqS81trt+64s6peluQTSX4ik4i/b4BtAcBSW/dh7Nbah1trf71rtKf3X53kbdObp613OwDA\n7C9Ou3m6vGXG2wGApTCzcFfVpiQ/O735wVltBxbSYYclb3xjctRRY0/Cvnrwg5NXvnLsKVgCQ5zj\nXss5SR6S5ILW2of29slVtWWNh04YdCrowdvelpx1VnL22cm97pV87WtjT8SePPnJyfnnT/587bXJ\n7/7uuPOw0GoWF3tX1QuTvDnJ55I8prV23T58zZ7CfccBx4MDtmEvjTjhhOSzn915e8bxrpmteXwz\nf852jXaSHHFEcv31s97qQj9nC+zS1trJ613J4OGuqhck+Z0kn0lyxvQitfWsb0uSk4aYDdZrQ1/T\neNppycUX77w9w3gvcgRm+pytjPbRRydbt85yi7dZ5OdsgQ0S7kHPcVfV2ZlE+1+SPG690Yal9pGP\nJI973M7bV16Z3POeo43DCiNGm+U2WLir6iVJ3pjkk5lE++tDrRuWlnjPJ9FmRIOEu6pemcnFaFsy\nOTz+jSHWC0S8541oM7J1n+OuqrOSvCvJ9iTnJtm2yqdd0Vp71wGu3zlu5sao79s7w3Pei3y+dNDn\nbI6ivcjP2QIb5Bz3EC8HO266PDjJ2Wt8zkcziTtwoHbsee+I95VXeqnYRpqjaLPcZvJysCHZ42ae\nzMVPywz2vBd5722Q52wOo73Iz9kCm7+ryoEN4Jz3xprDaLPchBt6JN4bQ7SZQ8INvRLv2RJt5pRw\nQ8/EezZEmzkm3NA78R6WaDPnhBsWgXgPQ7TpgHDDohDv9RFtOiHcsEjE+8CINh0Rblg04r1/RJvO\nCDcsIvHeN6JNh4QbFpV475lo0ynhhkUm3qsTbTom3LDoxHt3ok3nhBuWgXhPiDYLQLhhWSx7vEWb\nBSHcsEyWNd6izQIRblg2q8T7noscb9FmwQg3LKMV8b7yyivzrGc9a7RxZuXCCy8UbRZOtdbGnmGP\nqmpLkpPGngOSZL5/Wg7AaaclF198281NmzZl+/bt480zoGOOOSZXX331zjsWLNo19gAciEtbayev\ndyX2uGE/1KJ9fOQjec973pMkOeussxYm2kmydevWvPWtb02SPP3pT09t3Tr+f+8BP1he9riBHH74\n4bnxxhvHHmNwBx10UA455JB897vfHXsUSOxxA0NZxGgnya233iraLBzhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHRkkHBX1W9U1UVV9dWqurGqrquq/1dVr66quw+xDQAgqdba+ldS9b0klyb5TJKvJ7lTkkcm\n+cEk/57kka21rx7gurckOWndQwLAuC5trZ283pVsGmKSJEe01m5aeWdV/XqSlyV5aZJfGGhbALC0\nBjlUvlq0p/5iunzAENsBgGU364vT/ut0+c8z3g4ALIWhDpUnSarqxUnunOTITM5v/1Am0T5nH752\nyxoPnTDYgADQuUHDneTFSY7Z5fYHkzyrtbZ14O0AwFIa5Kry26206pgkj85kT/suSf5La+3SA1yX\nq8oBWASDXFU+k3PcrbVrWmt/meSJSe6e5E9msR0AWDYzvTittfZvmby2+8FV9X2z3BYALIONeMvT\n/zRdbt+AbQHAQlt3uKvqhKq6xyr3HzR9A5ajk/xja+2b690WACy7Ia4qf1KS/1VVlyT5UpJrM7my\n/EeS3DfJ1Ul+foDtAMDSGyLcf5fk95M8JsmJSe6a5NtJvpDk3Une0lq7boDtAMDSW3e4W2v/kuQF\nA8wCAOyFf48bADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3\nAHREuAGgI8INAB0RbgDoiHADQEeEG8gRRxwx9gjsJ8/Z8hJuWHIXXnhhtm3bluc973ljj8I+2rx5\nc7Zt25Zrrrkmhx566NjjsMGqtTb2DHtUVVuSnDT2HJAk8/3TcgCe/OTk/PNvu7lp06Zs3759xIHY\nF7v93n7Zy5I3vGG8YWagxh5gdi5trZ283pXY44ZltSLaZ555pmh34vjjj9954/WvT1760vGGYcNt\nGnsAYAQron300Udn69atIw7E/rj88suTQw9Nvve9yR2vf/1kuWB73qzOHjcsmxXRjmj36eabJ/He\nwZ730hBuWCarRDui3S/xXkrCDctCtBeTeC8d4YZlINqLTbyXinDDohPt5SDeS0O4YZGJ9nIR76Ug\n3LCoRHs5iffCE25YRKK93MR7oQk3LBrRJhHvBSbcsEhEm12J90ISblgUos1qxHvhCDcsAtFmT8R7\noQg39E602RfivTCEG3om2uwP8V4Iwg29Em0OhHh3T7ihR6LNeoh314QbeiPaDEG8uyXc0BPRZkji\n3aWZhbuqnllVbfrxnFltB5aGaDML4t2dmYS7qu6d5NwkN8xi/bB0RJtZEu+uDB7uqqokf5Tk2iRv\nG3r9sHREm40g3t2YxR73C5OcnuTZSb49g/XD8hBtNpJ4d2HQcFfVg5Kck+TNrbVLhlw3LB3RZgzi\nPfc2DbWiqtqU5N1JvpLkZQfw9VvWeOiE9cwFXXroQ0Wb8eyI9/e+N7n9+tcnn/lMct55485FkmH3\nuF+V5OFJntVau3HA9cLyOfvsnX8Wbcawcs/7xS8ebxZ2M8ged1Wdksle9m+11j5+IOtorZ28xrq3\nJDlpHeNBf57//OTqq5Nzzkmuv37saVhWN9+cHHJI8upXJ7/922NPw9S6w73LIfIvJHnluicCJoco\nX/7ysaeA5JZbklf61T5PhjhUfuckxyd5UJKbdnnTlZbk1dPP+YPpfW8aYHsAsLSGOFT+3STvXOOx\nkzI57/2xJJ9PckCH0QGAiXWHe3oh2qpvaVpVr8kk3H/cWnvHercFAMvOPzICAB0RbgDoSLXWxp5h\nj7wcjHky3z8tB67GHoD9tqjfi8lCfz9eutZLn/eHPW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADqy\naewBoCc19gAw5XtxednjBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0\nRLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI4OEu6quqKq2xsfVQ2wDAEg2\nDbiubUnetMr9Nwy4DQBYakOG+1uttdcMuD4AYAXnuAGgI0Pucd+hqp6R5D5Jvp3kn5Nc0lrbPuA2\nAGCpDRnueyR594r7vlxVz26tfXTA7QDA0hoq3H+U5O+TfDrJ9Unum+R/JHlukr+pqke11i7b0wqq\nassaD50w0IwA0L1qrc1u5VW/meRXkvxVa+2pe/ncPYX7jkPPBgAb7NLW2snrXcmsw33/JJcnua61\ndvcDXMeWJCcNOhgAbLxBwj3rq8q/Pl3eacbbAYClMOtwP2q6/NcZbwcAlsK6w11VD66qu61y/w8k\n+Z3pzT9d73YAgGGuKj8zya9V1cVJvpzJVeX3S7I5yWFJLkjymwNsBwCW3hDhvjjJA5M8PJND43dK\n8q0kH8vkdd3vbrO8Ag4Alsi6wz19cxVvsAIAG8B7lQNAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPC\nDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEG6AzBx98cJ7y\nlKeMPQYjEW6Ajnz/939/brnllpx33nl57WtfO/Y4jGDT2AMsszb2ADNUYw/A/lngb8bF+qsdnOTr\nt9068sgjxxuF0djjBujCwUluue3WZZddlhe96EXjjcNohBtg7u0e7eScPOxhD0tri3U8gX0j3ABz\n7fbRTl460izMA+EGmFuize0JN8BcEm1WJ9wAc0e0WZtwA8wV0WbPhBtgbog2eyfcAHNBtNk3wg0w\nOtFm3wk3wKhEm/0j3ACjEW32n3ADjEK0OTDCDbDhRJsDJ9wAG0q0WR/hBtgwos36CTfAhhBthiHc\nADMn2gxHuAFmSrQZ1qaxBwCWxyHX3CeHffHEHHTTHXPrYd/JTfe/LDcf85Wxx5oh0WZ4g4a7qn44\nydlJHp3kbkmuS/KpJG9qrV0w5LaAfhz2xRNz5EU/lcO+/NDbPXbTcZ/KtjP+LDfd/7IRJpsl0WY2\nBgt3Vb0iyeuSfCPJB5JcleT7kjw8yWlJhBuW0J3/7xNyt/f/YqodlJaWSt32WEvLYV9+aO7wzgfn\n2qedm28/4m9HnHRIos3sDBLuqjozk2j/XZKntdauX/H4IUNsB+jLYV888bZoJ9kt2rvernZQ7v7+\nX8z2o76+AHveos1srfvitKo6KMlvJPlOkp9ZGe0kaa3dvN7tAP058qKfui3ae1PtoBx50U/NeKJZ\nE21mb4g97kcnOS7J/07yzaranOQhSW5K8onW2scH2AbrdeyxyVe/mmzfPvYkLIlDrrlPDvvyQ293\neHwtOw6bH3LNfTq9YE202RhDhPsR0+U1SS5NstvVJ1V1SZKfbK1t3dNKqmrLGg+dsO4Jl93mzclf\n/VXyvvclT3+6eLMhDvviiUluf3h8LTs+77AvnthhuA/K7pfxiDazM8TruI+eLp+X5PAkj09yl0z2\nuj+U5LFJ3jvAdjgQmzcnH/hAsmlTcsopyeGHjz0RS+Kgm+64oV83roMzOciYiDazNsQe98HTZWWy\nZ73jypJPV9VTk3whyY9U1aP2dNi8tXbyavdP98RPGmDO5bMj2jucempyww3jzcNSufWw72zo143r\n5iRnZvIimv8z8iwsuiH2uL85Xf7rLtFOkrTWbsxkrztJThlgW+yrldE++uhk6x7PVsCgdlwd3tL2\n6fN3fF6/V5V/L6LNRhgi3J+fLr+1xuM7wu4Y7UYRbebAzcd8JTcd96n9Osd903Gf6vD8NmysIcJ9\nSSaXUj6gqg5d5fGHTJdXDLAt9ka0mSPbzviztLp1nz631a3ZdsafzXgi6N+6w91a+0aSP09yZJJX\n7fpYVT0hyY8m2Zbkg+vdFnsh2syZm+5/Wa572rm3xXvlYfMdt1vdmmufdm7Hh8lh4wz1lqe/nOTU\nJC+vqscm+USSH0jy1CTbk/x8a22tQ+kMQbSZUzc84m9zy1FfX/W9ynccHl/M9yqH2ajW9u3Ckb2u\nqOpuSV6RSazvmeT6JB9L8obW2j+tY70Le1X5MP/lM5fR3rezmsyNwb4Z92yMfx1sg/5qG678kPXo\n0rVeQbU/Bgv3rAj3XsxhtBPh7s58/xpYl0X9qwl3lwYJ9xAXpzGWOY02ALMj3L0SbYClJNw9Em2A\npSXcvRFtgKUm3D0RbYClJ9y9EG0AItx9EG0ApoR73ok2ALsQ7nkm2gCsINzzSrQBWIVwzyPRBmAN\nwj1vRBuAPRDueSLaAOyFcM8L0QZgHwj3PBBtAPaRcI9NtAHYD8I9ple8QrQB2C/CPZIzzzwzed3r\ndt4h2gDsA+EeySMe8YidNx7+cNEGYJ9sGnuAZfWrv/qrufrqq/Oe97wnV1111djjsOxq7AFmZ4H/\naiypaq2NPcMeVdWWJCeNPQcArNOlrbWT17sSh8oBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHVl3uKvqWVXV\n9vKxfYhhAWDZbRpgHZ9M8to1HvvhJKcn+ZsBtgMAS2/d4W6tfTKTeN9OVX18+sffX+92AIAZnuOu\nqockeWSSryU5f1bbAYBlMsuL0/77dPnO1ppz3AAwgCHOcd9OVR2e5BlJbk3yjn38mi1rPHTCUHMB\nQO9mtcf935LcNcnftNa+OqNtAMDSmcked5LnTpdv39cvaK2dvNr90z3xk4YYCgB6N/ged1X95ySP\nTnJlkguGXj8ALLNZHCp3URoAzMig4a6qw5I8M5OL0t455LoBgOH3uM9MclSSC1yUBgDDGzrcOy5K\n805pADADg4W7qh6U5IfiojQAmJnBXg7WWvtskhpqfQDA7fn3uAGgI8INAB0RbgDoiHADQEeEGwA6\nItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAd\n6SHcx449AAAM4NghVrJpiJXM2H9Ml1dswLZOmC4/twHbYhies/54zvrjOVu/Y7OzZ+tSrbUh1rMQ\nqmpLkrTWTh57FvaN56w/nrP+eM7mSw+HygGAKeEGgI4INwB0RLgBoCPCDQAdcVU5AHTEHjcAdES4\nAaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeFOUlX3qqo/rKp/r6rvVtUVVfWmqjpq7NnYXVXdvaqe\nU1V/WVVfrKobq2pbVX2sqn6uqnxPd6KqnllVbfrxnLHnYXVV9cNV9b6qumr6+/Gqqrqwqp489mzL\nqod/j3umqup+Sf4xydFJzsvk35s9JckvJXlSVT2mtXbtiCOyuzOT/F6Sq5JcnOQrSY5J8rQk70jy\nY1V1ZvPOQnOtqu6d5NwkNyS588jjsIaqekWS1yX5RpIPZPJz931JHp7ktCQXjDbcElv6d06rqg8l\neWKSF7bWzt3l/t9O8qIkb2+tPW+s+dhdVZ2e5E5Jzm+t3brL/fdI8okk907yk6219400IntRVZXk\nb5Mcl+T9SV6c5Odba+8YdTB2U1VnJvmLJH+X5GmttetXPH5Ia+3mUYZbckt9WLGq7ptJtK9I8tYV\nD786ybeTPLOq7rTBo7GG1tqHW2t/vWu0p/dfneRt05unbfhg7I8XJjk9ybMz+RljzkxPOf1Gku8k\n+ZmV0U4S0R7PUoc7k18eSXLhKiG4Psk/JLljkkdu9GAckB2/SG4ZdQrWVFUPSnJOkje31i4Zex7W\n9OhMjohckOSbVbW5ql5SVb9UVY8aebalt+znuB84XX5hjccvz2SP/PgkF23IRByQqtqU5GenNz84\n5iysbvocvTuT6xJeNvI47Nkjpstrklya5KG7PlhVl2RySmrrRg+GPe4jp8ttazy+4/67bsAsrM85\nSR6S5ILW2ofGHoZVvSqTi5qe1Vq7cexh2KOjp8vnJTk8yeOT3CWTn7EPJXlskveOMxrLHu69qely\nua/gm3NV9cIkv5LJKwKeOfI4rKKqTslkL/u3WmsfH3se9urg6bIy2bO+qLV2Q2vt00memuTKJD/i\nsPk4lj3cO/aoj1zj8SNWfB5zpqpekOTNST6T5HGttetGHokVdjlE/oUkrxx5HPbNN6fLf22tXbbr\nA9OjJTuOap2yoVORRLg/P10ev8bjD5gu1zoHzoiq6uwkv5PkXzKJ9tUjj8Tq7pzJz9iDkty0y5uu\ntExevZEkfzC9702jTcmudvxu/NYaj+8I++EbMAsrLPvFaRdPl0+sqoNWvC74Lkkek+TGJP80xnCs\nrapeksl57U8meUJr7Rsjj8TavpvknWs8dlIm570/lkksHEafD5dk8uqMB1TVoa217614/CHT5RUb\nOhVJljzcrbUvVdWFmVw5/oJM3slph9dm8kYfb2+tea3pHKmqVyb5n0m2JHmiw+PzbXpoddW3NK2q\n12QS7j/2Bizzo7X2jar68yRPz+SiwlfseKyqnpDkRzM5hegVHCNY6nBP/UImb3n6lqo6I8lnk5ya\n5HGZHCJ/+YizsUJVnZVJtLcn+fskL5y8EddurmitvWuDR4NF88uZ/C58eVU9NpN3JvyBTC5O257J\nu92tdSidGVr6cE/3un8wkxg8KcmTM3k/3rckea29ublz3HR5cJKz1/icjyZ514ZMAwuqtfb1qjo1\nk73tp2byRlTXJzk/yRtaa04hjmTp36scAHqy7FeVA0BXhBsAOiLcANAR4QaAjgg3AHREuAGgI8IN\nAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR/4/X6uwwSnvxhoA\nAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c0283c8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"038522dec42b4c558d30573c7dd4ab0c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_2c216a11d7bf4f28891db314a05b0e58", | |
"max": 7, | |
"style": "IPY_MODEL_baa0927fad0a41a69e9ee9c0fe79bec8", | |
"value": 2 | |
} | |
}, | |
"039f9d3453d449a1be0179f65371321a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"03c8c4a22b424a3abf4ddc06576d6bd1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_7399c3ff04d643de99a1ab273b66950d", | |
"max": 3, | |
"style": "IPY_MODEL_583dbfa8323a48a2b51a67a0c580657c", | |
"value": 2 | |
} | |
}, | |
"03e98c88dbfe43998f05b428ad473136": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_27863ad2901d4943908866cdbfd6fcc3", | |
"max": 3, | |
"style": "IPY_MODEL_647df796ad1c4e8591193b6309544a8a", | |
"value": 2 | |
} | |
}, | |
"04203ffa9c0c41309edd605f8eb84208": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_5c4b350cdf734db29f88a4a2ceb737da", | |
"max": 7, | |
"style": "IPY_MODEL_5777b21840c1480698ad762aa9849d82", | |
"value": 2 | |
} | |
}, | |
"047ff33b53e04edfa9fa3854e8822d5a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_912ad108155f48189f46058aa8007ced", | |
"IPY_MODEL_c674e860ffcf45dfadce964b1f86706a", | |
"IPY_MODEL_a369d0c6464e4e769f247e7dcac07960", | |
"IPY_MODEL_fc2d1e08d8a640cfbb46036d41f49500" | |
], | |
"layout": "IPY_MODEL_25b84c80abe642ddaaff0c9fa66cb819" | |
} | |
}, | |
"04bfb7c1a1484e989bd896713b121088": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"04f30796f2294f4fbd3536565e0bad9c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"04fa8169998f4a8d89c51b551806c01a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"050a41a7a96b49c0b6b105ce2db1ca9b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"05426b9395124dec89391d563c7edb4e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_5747ff98acfc4ad2ba8bfb8bbc520462", | |
"max": 7, | |
"style": "IPY_MODEL_dfc2a03a2dcc452f8e2c8d86dd214401", | |
"value": 2 | |
} | |
}, | |
"054a5a68d582420da4adff64ff3ebd69": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0573e3638e3a4c9ab0f87e1837be3158": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"059f0ff78d784599907ced84084f104f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"05b4fb33a18143e086368b47cd5eb0f0": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_83e985a5278f41e484a3b57cf64b9efd", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHKdJREFUeJzt3XuQpXdd5/HPlwwJ4ZIEcSfULlkD\nLCFoLCXREECRhIuYqMXFbNWqCJSoKFsxCrsod2TFsOuFmwICisYtS11UyiRCliQSUVyqJoKFXIJI\nNNFcCQkBcyHht3+cM0On0z23fk4/53ee16uq65k+T8/zfDNnut95LudMtdYCAPThXmMPAADsP+EG\ngI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHAD\nQEeEGwA6smPsAfalqj6X5IgkV4w8CgAcrGOTfLG19tCtbmjpw51ZtL9u/gEAk9bDqfIrxh4AAAZw\nxRAb6SHcAMCccANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR\n4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6Mli4q+ohVfVbVfWvVXV7VV1RVW+oqgcOtQ8A\nmLodQ2ykqh6e5K+T7Ezy3iSfSnJykp9O8rSqenxr7fND7AsApmyoI+7fyCzaZ7XWnt5a+7nW2mlJ\nfi3JI5P84kD7AYBJq9ba1jZQ9bAkn01yRZKHt9a+umbdA5JcnaSS7Gytffkgtr8ryYlbGhIAxndZ\na+2krW5kiCPu0+bLC9dGO0laa7ck+ask901yygD7AoBJG+Ia9yPny8s3Wf+ZJE9NclySizbbyPzI\neiPHH/xoALBahjjiPnK+vHmT9bsfP2qAfQHApA1yV/k+1Hy514vpm533d40bAL5miCPu3UfUR26y\n/oh1XwcAHKQhwv3p+fK4TdY/Yr7c7Bo4ALCfhgj3JfPlU6vqbtubvxzs8UluTfI3A+wLACZty+Fu\nrX02yYVJjk3ywnWrX5Pkfkl+92Beww0A3N1QN6f9VGZvefqmqnpSkk8meUySUzM7Rf6ygfYDAJM2\nyFuezo+6vy3JuzML9ouSPDzJm5I81vuUA8AwBns5WGvtyiTPG2p7AMA9+fe4AaAjwg0AHRFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB3ZMfYAU9bGHmCBauwBYMX5+TFdjrgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANA\nRwYJd1X9QFW9uar+sqq+WFWtqn5viG0DAF+zY6DtvDzJtyT5UpKrkhw/0HYBgDWGOlX+M0mOS3JE\nkp8caJsAwDqDHHG31i7Z/euqGmKTAMAG3Jw2EbflsLSxhwC6dFsOG3sE1liacFfVro0+4nr5lt2c\nI/Jd+WB+Im8Xb+CAXJTT8oh8JufljLFHYW5pws3ifCBPzkfymLwjP56jcpN4A/vlvJyRJ+eiXJVj\n8vq8xM+OJTHUXeVb1lo7aaPH50fdJ27zOCvlWfnjnJqLc0lOyxdzZI7KTbkpR8XdCMBmzssZ+b6c\nt+fz9+RZfmYsCUfcE3FxnpRTc3GS7Im3/3sGNrI+2tdmZ3bm+hEnYi3hnhDxBvZFtJefcE+MeAOb\nEe0+CPcEiTewnmj3Y5Cb06rq6UmePv/0wfPlY6vq3fNf39Bae/EQ+2IYF+dJOS0XuWENEO3ODHVX\n+bcmec66xx42/0iSf0oi3EtGvAHR7s8gp8pba69urdVePo4dYj8Mz2lzmC7R7pNr3Ig3TJBo90u4\nSSLeMCWi3TfhZg/xhtUn2v0Tbu5GvGF1ifZqEG7uQbxh9Yj26hBuNiTesDpEe7UIN5sSb+ifaK8e\n4WavxBv6JdqrSbjZJ/GG/oj26hJu9ot4Qz9Ee7UJN/tNvGH5ifbqE24OiHjD8hLtaRBuDph4w/IR\n7ekQbg6KeMPyEO1pEW4OmnjD+ER7eoSbLRFvGI9oT5Nws2UbxTt54LhDwYo7Nz8s2hMl3AxifbyT\nG8cdCFbaK/MjOXfPZ6I9LcLNYC7Ok9Y9cvwoc8Dq+8k9v7oyDxHtidkx9gBTVmMPsBCHJvmjJO9N\n8qmRZxneql6/X82/izOr+Jxdm2/Jg3Nxkv+SY/IvY4/DNhNuBvaVJE8fewhYaUfnuiQnjD0GI3Gq\nHAA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPC\nDQAdEW4A6IhwA0BHhBsAOiLcANCRLYe7qh5UVc+vqj+pqn+oqlur6uaq+lBV/WhV+Z8DABjIjgG2\ncWaStya5OsklSf45ydFJnpnknUm+p6rObK21AfYFAJM2RLgvT/L9Sc5vrX1194NV9dIkH0nyrMwi\n/p4B9gUAk7bl09ittYtba3+2Ntrzx69J8rb5p0/c6n4AgMXfnPaV+fLOBe8HACZhYeGuqh1JfmT+\n6fsWtR9YRbfmPjk7v5Yb88CxR2E/fTzflF/IK+JmHhZtiGvcmzknyQlJLmitvX9fX1xVuzZZdfyg\nU0EHXpC35XfznLwxZ+fKPCQPyb+MPRJ7cX5Oz/fm/CTJg/L5vDC/MfJErLJaxM3eVXVWkjcm+VSS\nx7fWbtyP37O3cN93wPHgoG3X0dQnc3y+MZ/c8/mi410L2/L4Fv2crY12ktycI3JEblnwXlf7OVth\nl7XWTtrqRgYPd1W9MMlbknwiyZPmN6ltZXu7kpw4xGywVdt5GvSSPDGn5ZI9ny8y3qscgUU+Z+uj\nfW12ZmeuX+Aev2aVn7MVNki4B73GXVVnZxbtjyc5davRhik7NX+Ri3Pqns+PyVW5Kv9hxIlYa8xo\nM22DhbuqXpLk15J8NLNoXzfUtmGqxHs5iTZjGiTcVfWKzG5G25XZ6fEbhtguIN7LRrQZ25avcVfV\nc5K8O8ldSd6c5OYNvuyK1tq7D3L7rnGzNMZ8qc8ir3mv8vXSIZ+zZYr2Kj9nK2yQa9xDvBzsofPl\nIUnO3uRrPphZ3IGDtPvIe3e8j8lVXiq2jZYp2kzbQl4ONiRH3CyTZfhuWcSR9yofvQ3xnC1jtFf5\nOVthy3dXObB4rnlvr2WMNtMm3NAh8d4eos0yEm7olHgvlmizrIQbOibeiyHaLDPhhs6J97BEm2Un\n3LACxHsYok0PhBtWhHhvjWjTC+GGFSLeB0e06Ylww4oR7wMj2vRGuGEFiff+EW16JNywosR770Sb\nXgk3rDDx3pho0zPhhhUn3ncn2vROuGECxHtGtFkFwg0TMfV4izarQrhhQqYab9FmlQg3TMxG8c4K\nx1u0WTXCDRO0Pt7JVUmeO9I0i3ShaLNyhBsm6p7x/u0kh4w1zgIcneQpez4TbVaFcMMBqBX7OC1/\nkeT35/91z0ly1zB/UEvh+iS/Pv/1D+XoXD/6n/eQH0xXtdbGnmGvqmpXkhPHngNW2+FJbh17iAW4\nV5J7J7l97EEgSS5rrZ201Y044gaymtFOkq9GtFk1wg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4I\nNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoyCDhrqrX\nV9VFVXVlVd1aVTdW1d9W1auq6kFD7AMASKq1tvWNVN2R5LIkn0hyXZL7JTklybcl+dckp7TWrjzI\nbe9KcuKWhwSAcV3WWjtpqxvZMcQkSY5ord22/sGq+sUkL03y80l+aqB9AcBkDXKqfKNoz/3hfPmI\nIfYDAFO36JvTvm++/LsF7wcAJmGoU+VJkqp6cZL7Jzkys+vb35FZtM/Zj9+7a5NVxw82IAB0btBw\nJ3lxkqPXfP6+JM9trV0/8H4AYJIGuav8HhutOjrJ4zI70n5Aku9trV12kNtyVzkAq2CQu8oXco27\ntXZta+1Pkjw1yYOS/O4i9gMAU7PQm9Naa/+U2Wu7v6mqvn6R+wKAKdiOtzz99/PlXduwLwBYaVsO\nd1UdX1UP3uDxe83fgGVnkr9urX1hq/sCgKkb4q7ypyX5X1V1aZLPJvl8ZneWf1eShyW5JsmPDbAf\nAJi8IcL9gSS/meTxSb4lyVFJvpzk8iTnJnlTa+3GAfYDAJO35XC31j6e5IUDzAIA7IN/jxsAOiLc\nANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFu\nAOiIcANAR4QbSHLE2ANwwDxnUyXcMHkXJrk5yQvGHoT9dkZmz9m1SQ4deRa2m3DDAWgr9nFeTk/y\nlPl/3VuTHDLQnxSLdd58uTO/mBeN/vdo6A/2Trhhos7P6fnenL/mkTOT3DXWOByQ4/b86mV5XV6X\nnx9xFrbbjrEHALbfPaO9M8n1Y43DAftMbs+hOSx3JJnFO0leml8acyi2iSNumJj10b5WtLt0aL6S\n29dc33bkPR3CDROyUbR3ina3xHuahBsmQrRXk3hPj3DDBIj2ahPvaRFuWHGiPQ3iPR3CDStMtKdF\nvKdBuGFFifY0iffqE25YQaI9beK92oQbVoxok4j3KhNuWCGizVrivZqEG1aEaLMR8V49wg0rQLTZ\nG/FeLcINnRNt9od4rw7hho6JNgdCvFeDcEOnRJuDId79E27okGizFeLdN+GGzog2QxDvfgk3dES0\nGZJ492lh4a6qZ1dVm388f1H7gakQbRZBvPuzkHBX1TFJ3pzkS4vYPkyNaLNI4t2XwcNdVZXkt5N8\nPsnbht4+TI1osx3Eux+LOOI+K8lpSZ6X5MsL2D5MhmizncS7D4OGu6oeleScJG9srV065LZhakSb\nMYj38tsx1IaqakeSc5P8c5KXHsTv37XJquO3Mhf06O/yzaLNaHbH+7DckWQW72/MJ/L0vHfkyUiG\nPeJ+ZZJHJ3lua+3WAbcLk/OGnL3n16LNGNYfef9yXpw24jx8zSBH3FV1cmZH2b/SWvvwwWyjtXbS\nJtveleTELYwH3XlrfjIPzjX5uZyTI3LL2OMwUYfmK7kj985r8qr8bH41NfZAJBkg3GtOkV+e5BVb\nngjIYbkjr8vLxh4Dcu/cmf/hR/tSGeJU+f2THJfkUUluW/OmKy3Jq+Zf8475Y28YYH8AMFlDnCq/\nPcm7Nll3YmbXvT+U5NNJDuo0OgAws+Vwz29E2/AtTavq1ZmF+3daa+/c6r4AYOr8IyMA0BHhBoCO\nVGvL/co8LwdjmSz3d8vB8zKf/qzq38Vkpf8+XrbZS58PhCNuAOiIcANAR4QbADoi3ADQEeEGgI4I\nNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeE\nGwA6smPsAaAnNfYAMOfv4nQ54gaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCO\nCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCODhLuqrqiqtsnHNUPs\nAwBIdgy4rZuTvGGDx7804D4AYNKGDPdNrbVXD7g9AGAd17gBoCNDHnEfVlU/nOQ/Jvlykr9Lcmlr\n7a4B9wEAkzZkuB+c5Nx1j32uqp7XWvvggPsBgMkaKty/neQvk/x9kluSPCzJf03y40n+vKoe21r7\n2N42UFW7Nll1/EAzAkD3qrW2uI1X/XKSFyX509baM/bxtXsL932Hng0AttllrbWTtrqRRYf7PyX5\nTJIbW2sPOsht7Epy4qCDAcD2GyTci76r/Lr58n4L3g8ATMKiw/3Y+fIfF7wfAJiELYe7qr6pqr5u\ng8e/Iclb5p/+3lb3AwAMc1f5mUl+rqouSfK5zO4qf3iSM5LcJ8kFSX55gP0AwOQNEe5LkjwyyaMz\nOzV+vyQ3JflQZq/rPrct8g44AJiQLYd7/uYq3mAFALaB9yoHgI4INwB0RLgBoCPCDQAdEW4A6Ihw\nA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDdAdw5J\n8v1jD8FIhBugK/8uyZ1J3pvkNSPPwhh2jD3AlLWxB1igGnsAmFul77M7c0junevWPHLkaLMwHkfc\nAB2YRfvONY98LMnPjDUOIxJugCW3PtovyTlJvjWrdT6B/SXcAEtso2ifk58fcSLGJtwAS0q02Yhw\nAywh0WYzwg2wZESbvRFugCUi2uyLcAMsCdFmfwg3wBIQbfaXcAOMTLQ5EMINMCLR5kAJN8BIRJuD\nIdwAIxBtDpZwA2wz0WYrhBtgG4k2WyXcANtEtBmCcANsA9FmKMINsGCizZCEG2CBRJuhCTfAgog2\nizBouKvqO6vqPVV1dVXdPl9eWFWnD7kfgGUn2izKjqE2VFUvT/LaJDckOS/J1Um+PsmjkzwxyQVD\n7QtgmYk2izRIuKvqzMyi/YEkz2yt3bJu/b2H2A/AshNtFm3Lp8qr6l5JXp/k35L84PpoJ0lr7Stb\n3Q/AshNttsMQR9yPS/LQJP8nyReq6owkJyS5LclHWmsfHmAfbNHncmyOyZXZkbvGHgVWkmizXYYI\n97fPl9cmuSzJN69dWVWXJvmB1tr1e9tIVe3aZNXxW55w4s7LGXl6/jTPynvyv/ND4g0Duyv3yulr\nbuMRbRZpiLvKd86XL0hyeJInJ3lAZkfd70/yhCR/NMB+OAjn5Yx8X87LXdmRj+Tk3JrDxx4JVs5d\nOST3yW1JRJvFq9ba1jZQ9T+T/LckX01yYmvtY2vWHZ7k8iQPSfK4gzltPj8SP3FLQy6prf3J79vu\naO92bXZmZ/Z64mMwtS17gX1b9PfZbrfn0PxtHp1T8v+2ZX++x7p0WWvtpK1uZIgj7i/Ml/+4NtpJ\n0lq7NbOj7iQ5eYB9sZ/GjDZM0WG5Y9uizbQNEe5Pz5c3bbJ+d9ido90mog2wuoYI96VJ7kzyiKo6\ndIP1J8yXVwywL/ZBtAFW25bD3Vq7IckfJDkyySvXrquqpyT57iQ3J3nfVvfF3ok2wOob6i1PfzbJ\nY5K8rKqekOQjSb4hyTOS3JXkx1prm51KZwCiDTANg4S7tXZdVT0mycszi/UpSW5Jcn6SX2qt/c0Q\n+2Fjog0wHVt+OdiieTnY3i1rtL1UhWWx3D/hDp7vsS4tzcvBGMmyRhuAxRHuTok2wDQJd4dEG2C6\nhLszog0wbcLdEdEGQLg7IdoAJMLdBdEGYDfhXnKiDcBawr3ERBuA9YR7SYk2ABsR7iUk2gBsRriX\njGgDsDfCvUREG4B9Ee4lIdoA7A/hXgKiDcD+Eu6RiTYAB0K4R/TavFy0ATggwj2aM/PKvHbPZ6IN\nwP4Q7tF8+55fXZZHizYA+2XH2ANM139Pck2S38+JuXrsYWBl1dgDwMCEe1S/OvYAAHTGqXIA6Ihw\nA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4\nAaAjwg0AHRFuAOiIcANAR7Yc7qp6blW1fXzcNcSwADB1OwbYxkeTvGaTdd+Z5LQkfz7AfgBg8rYc\n7tbaRzOL9z1U1Yfnv/zNre4HAFjgNe6qOiHJKUn+Jcn5i9oPAEzJIm9O+4n58l2tNde4AWAAQ1zj\nvoeqOjzJDyf5apJ37ufv2bXJquOHmgsAereoI+7/nOSoJH/eWrtyQfsAgMlZyBF3kh+fL9++v7+h\ntXbSRo/Pj8RPHGIoAOjd4EfcVfWNSR6X5KokFwy9fQCYskWcKndTGgAsyKDhrqr7JHl2ZjelvWvI\nbQMAwx9xn5nkgUkucFMaAAxv6HDvvinNO6UBwAIMFu6qelSS74ib0gBgYQZ7OVhr7ZNJaqjtAQD3\n5N/jBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A\n6IhwA0BHhBsAOiLcANAR4QaAjgg3AHSkh3AfO/YAADCAY4fYyI4hNrJgX5wvr9iGfR0/X35qG/bF\nMDxn/fGc9cdztnXH5ms925JqrQ2xnZVQVbuSpLV20tizsH88Z/3xnPXHc7ZcejhVDgDMCTcAdES4\nAaAjwg0AHRFuAOiIu8oBoCOOuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCHeSqnpIVf1W\nVf1rVd1eVVdU1Ruq6oFjz8bdVdWDqur5VfUnVfUPVXVrVd1cVR+qqh+tKn+nO1FVz66qNv94/tjz\nsLGq+s6qek9VXT3/+Xh1VV1YVaePPdtU9fDvcS9UVT08yV8n2ZnkvZn9e7MnJ/npJE+rqse31j4/\n4ojc3ZlJ3prk6iSXJPnnJEcneWaSdyb5nqo6s3lnoaVWVcckeXOSLyW5/8jjsImqenmS1ya5Icl5\nmX3ffX2SRyd5YpILRhtuwib/zmlV9f4kT01yVmvtzWse/9UkP5Pk7a21F4w1H3dXVacluV+S81tr\nX13z+IOTfCTJMUl+oLX2npFGZB+qqpL83yQPTfLHSV6c5Mdaa+8cdTDupqrOTPKHST6Q5JmttVvW\nrb93a+0roww3cZM+rVhVD8ss2lck+fV1q1+V5MtJnl1V99vm0dhEa+3i1tqfrY32/PFrkrxt/ukT\nt30wDsRZSU5L8rzMvsdYMvNLTq9P8m9JfnB9tJNEtMcz6XBn9sMjSS7cIAS3JPmrJPdNcsp2D8ZB\n2f2D5M5Rp2BTVfWoJOckeWNr7dKx52FTj8vsjMgFSb5QVWdU1Uuq6qer6rEjzzZ5U7/G/cj58vJN\n1n8msyPy45JctC0TcVCqakeSH5l/+r4xZ2Fj8+fo3MzuS3jpyOOwd98+X16b5LIk37x2ZVVdmtkl\nqeu3ezAccR85X968yfrdjx+1DbOwNeckOSHJBa219489DBt6ZWY3NT23tXbr2MOwVzvnyxckOTzJ\nk5M8ILPvsfcneUKSPxpnNKYe7n2p+XLad/Atuao6K8mLMntFwLNHHocNVNXJmR1l/0pr7cNjz8M+\nHTJfVmZH1he11r7UWvv7JM9IclWS73LafBxTD/fuI+ojN1l/xLqvY8lU1QuTvDHJJ5Kc2lq7ceSR\nWGfNKfLLk7xi5HHYP1+YL/+xtfaxtSvmZ0t2n9U6eVunIolwf3q+PG6T9Y+YLze7Bs6IqursJG9J\n8vHMon3NyCOxsftn9j32qCS3rXnTlZbZqzeS5B3zx94w2pSstftn402brN8d9sO3YRbWmfrNaZfM\nl0+tqnute13wA5I8PsmtSf5mjOHYXFW9JLPr2h9N8pTW2g0jj8Tmbk/yrk3WnZjZde8PZRYLp9GX\nw6WZvTrjEVV1aGvtjnXrT5gvr9jWqUgy8XC31j5bVRdmduf4CzN7J6fdXpPZG328vbXmtaZLpKpe\nkeQXkuxK8lSnx5fb/NTqhm9pWlWvzizcv+MNWJZHa+2GqvqDJD+U2U2FL9+9rqqekuS7M7uE6BUc\nI5h0uOd+KrO3PH1TVT0pySeTPCbJqZmdIn/ZiLOxTlU9J7No35XkL5OcNXsjrru5orX27m0eDVbN\nz2b2s/BlVfWEzN6Z8Bsyuzntrsze7W6zU+ks0OTDPT/q/rbMYvC0JKdn9n68b0ryGkdzS+eh8+Uh\nSc7e5Gs+mOTd2zINrKjW2nVV9ZjMjrafkdkbUd2S5Pwkv9RacwlxJJN/r3IA6MnU7yoHgK4INwB0\nRLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6\nItwA0BHhBoCO/H8QvXn3YeSX3gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498211f630>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"05b687f486764b029e0335898bc35a37": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"05bb5910f56a4b2d8d7fb4938720829b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"05d563bdb4464b649eb7cbe850f91933": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"05d99ccf14db42ae9503134a0a10bcbb": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_76707a12dea84de2b6e8c2edad09d2bb", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHpNJREFUeJzt3X2wZHdd5/HPdzKJCQ8JEQzUCiTA\nEoYFNmQiAYKyIQFEsksJmi0VMFAiC7JiUFaWZ7OUEHZXeRIEBUWxChVRU5IAUQhEBKVqskSQR9EQ\nAgmZEBgD5Hl++0f3ZCY3985M5p6+p3/dr1fV1Jnuc+ecb6Xn3nfOQ/dUay0AQB82jT0AALD/hBsA\nOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOjI5rEH2Jeq+tckhye5ZORRAOBAHZPk31pr91nvhuY+3JlE+/unvwBgqfVwqvySsQcAgAFc\nMsRGegg3ADAl3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCODBbuqrpnVf1eVX29qq6vqkuq6vVVdeRQ+wCA\nZbd5iI1U1f2SfDzJUUnOSfL5JCcm+aUkT6iqR7XWvjnEvgBgmQ11xP2WTKL9/Nbaj7fW/mdr7ZQk\nr0vygCS/PtB+AGCpVWttfRuoum+SLye5JMn9Wms791h35ySXJ6kkR7XWvnsA29+WZOu6hgSA8V3U\nWjthvRsZ4oj7lOny/D2jnSSttWuS/F2SOyR5xAD7AoClNsQ17gdMl19cY/2Xkjw+ybFJPrTWRqZH\n1qvZcuCjAcBiGeKI+4jpcsca63c9f5cB9gUAS22Qu8r3oabLvV5MX+u8v2vcALDbEEfcu46oj1hj\n/eErvg4AOEBDhPsL0+Wxa6y//3S51jVwAGA/DRHuC6bLx1fVrbY3fTvYo5Jcm+TvB9gXACy1dYe7\ntfblJOcnOSbJ81asPivJHZP84YG8hxsAuLWhbk77hUw+8vSNVXVqks8leXiSx2RyivylA+0HAJba\nIB95Oj3q/qEk78wk2L+S5H5J3pjkkT6nHACGMdjbwVprX03yzKG2BwDcln+PGwA6ItwA0BHhBoCO\nCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BH\nhBsAOiLcANCRzWMPsMza2APMUI09ACw4Pz+WlyNuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0JFBwl1VP1lVb6qqv62qf6uqVlV/NMS2AYDdNg+0nZclOS7Jd5JclmTLQNsFAPYw1KnyFyQ5Nsnh\nSZ470DYBgBUGOeJurV2w6/dVNcQmAYBVuDltWXzf9409AdArPz/mytyEu6q2rfYrrpev3+GHJx/9\naPK2t409CdCbU05JvvSl5LTTxp6EqbkJNzP02McmD3948uxnJ9/+9tjTAL047bTkQx9K7nWv5EUv\nGnsapoa6q3zdWmsnrPb89Kh76waPs1j+/M+TD3948n/ORxwxifdd7jL2VMA8O+205H3v2/34J35i\nvFm4FUfcy+LUUyfxTnbHG2A1K6N91FHJ9u3jzcOtCPcyEW9gX0R77gn3shFvYC2i3QXhXkbiDawk\n2t0Y5Oa0qvrxJD8+fXiP6fKRVfXO6e+vaq29cIh9MZBTT53cLeqGNUC0uzLUXeUPTXLGiufuO/2V\nJF9JItzzRrwB0e7OIKfKW2u/1lqrvfw6Zoj9MANOm8PyEu0uucaNeMMyEu1uCTcT4g3LQ7S7Jtzs\nJt6w+ES7e8LNrYk3LC7RXgjCzW2JNywe0V4Yws3qxBsWh2gvFOFmbeIN/RPthSPc7J14Q79EeyEJ\nN/sm3tAf0V5Yws3+EW/oh2gvNOFm/4k3zD/RXnjCze0j3jC/RHspCDe3n3jD/BHtpSHcHBjxhvkh\n2ktFuDlw4g3jE+2lI9ysj3jDeER7KQk367dKvI888shxZ4JF97SnifaSEm6GsSLeV1999bjzwAJ7\nxStekbzrXbufEO2lItwM59RTb/Vwy5YtIw0Ci+25z33u7gf3vKdoL5nNYw+wzGrsAWbg4EMOyXve\n856cc845+fznPz/2OINrYw8wI4v4d3GXhXzNjjsu//ThD+enf/qn8+mvfW3sadhg1dp8/7Wuqm1J\nto49ByQLGoEId48W+TVbYBe11k5Y70acKgeAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0ZN3hrqq7VtWzquov\nquqfq+raqtpRVR+rqp+rKv9zAAAD2TzANk5P8ttJLk9yQZJLk9w9yVOSvD3Jj1XV6a21NsC+AGCp\nDRHuLyZ5UpJzW2s7dz1ZVS9J8skkP5FJxN87wL4AYKmt+zR2a+3DrbW/2jPa0+evSPLW6cOT17sf\nAGD2N6fdOF3eNOP9AMBSmFm4q2pzkp+dPvzArPYDC+nQQ5PXvS458sixJ2F/PehByctfPvYULIEh\nrnGv5ewkD05yXmvtg/v64qratsaqLYNOBT1461uTM85Izjwzuec9k699beyJ2JsnPjE599zJ77/5\nzeQtbxl3HhZazeJm76p6fpI3JPl8kke11q7ejz+zt3DfYcDx4IBt2FsjtmxJPve53Y9nHO+a2ZbH\nN/PXbM9oJ8nhhyfXXDPrvS70a7bALmqtnbDejQwe7qp6XpLfSvLZJKdOb1Jbz/a2Jdk6xGywXhv6\nnsaTT04uuGD34xnGe5EjMNPXbGW0jzoq2b59lnu8xSK/ZgtskHAPeo27qs7MJNqfSfKY9UYbltpH\nPpI85jG7H192WfKDPzjaOKwwYrRZboOFu6pelOR1ST6VSbSvHGrbsLTEez6JNiMaJNxV9fJMbkbb\nlsnp8auG2C4Q8Z43os3I1n2Nu6rOSPLOJDcneVOSHat82SWttXce4PZd42ZujPq5vTO85r3I10sH\nfc3mKNqL/JotsEGucQ/xdrD7TJcHJTlzja/5aCZxBw7UriPvXfG+7DJvFdtIcxRtlttM3g42JEfc\nzJO5+G6ZwZH3Ih+9DfKazWG0F/k1W2Dzd1c5sAFc895YcxhtlptwQ4/Ee2OINnNIuKFX4j1bos2c\nEm7omXjPhmgzx4QbeifewxJt5pxwwyIQ72GINh0QblgU4r0+ok0nhBsWiXgfGNGmI8INi0a8bx/R\npjPCDYtIvPePaNMh4YZFJd57J9p0SrhhkYn36kSbjgk3LDrxvjXRpnPCDctAvCdEmwUg3LAslj3e\nos2CEG5YJssab9FmgQg3LJtV4v2Dixxv0WbBCDcsoxXxvuyyy/KMZzxjtHFm5fzzzxdtFk611sae\nYa+qaluSrWPPAUky398tB+Dkk5MLLrjl4ebNm3PzzTePN8+A7n73u+eKK67Y/cSCRbvGHoADcVFr\n7YT1bsQRN9wOtWi/PvKRvPvd706SnHHGGQsT7STZvn173vzmNydJnvrUp6a2bx//v/eAv1hejriB\nHHbYYbn22mvHHmNwmzZtysEHH5zrr79+7FEgccQNDGURo50kO3fuFG0WjnADQEeEGwA6ItwA0BHh\nBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6Ihw\nA0BHhBsAOjJIuKvqtVX1oar6alVdW1VXV9X/q6pXVtVdh9gHAJBUa239G6m6IclFST6b5Mokd0zy\niCQ/lOTrSR7RWvvqAW57W5Kt6x4SAMZ1UWvthPVuZPMQkyQ5vLV23conq+rXk7wkyYuT/MJA+wKA\npTXIqfLVoj31p9Pl/YfYDwAsu1nfnPZfpst/nPF+AGApDHWqPElSVS9McqckR2RyffuHM4n22fvx\nZ7etsWrLYAMCQOcGDXeSFya5+x6PP5DkGa217QPvBwCW0iB3ld9mo1V3T3JSJkfad07yn1trFx3g\nttxVDsAiGOSu8plc426tfaO19hdJHp/krkn+cBb7AYBlM9Ob01prX8nkvd0Pqqq7zXJfALAMNuIj\nT//ddHnzBuwLABbausNdVVuq6h6rPL9p+gEsRyX5eGvtW+vdFwAsuyHuKn9Ckv9TVRcm+XKSb2Zy\nZ/l/SnLfJFck+fkB9gMAS2+IcP9Nkt9J8qgkxyW5S5LvJvlikncleWNr7eoB9gMAS2/d4W6tfSbJ\n8waYBQDYB/8eNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0R\nbgDoiHADQEeEGwA6ItwA0BHhBoCOCDeQww8/fOwRuJ28ZstLuGHJnX/++dmxY0ee85znjD0K++m0\n007Ljh078o1vfCOHHHLI2OOwwaq1NvYMe1VV25JsHXsOSJL5/m45AE98YnLuubc83Lx5c26++eYR\nB2J/3Orn9ktekrzmNeMNMwM19gCzc1Fr7YT1bsQRNyyrFdE+/fTTRbsTxx577O4Hr3518uIXjzcM\nG27z2AMAI1gR7aOOOirbt28fcSBujy996UvJIYckN9wweeLVr54sF+zIm9U54oZlsyLaEe0+3Xjj\nJN67OPJeGsINy2SVaEe0+yXeS0m4YVmI9mIS76Uj3LAMRHuxifdSEW5YdKK9HMR7aQg3LDLRXi7i\nvRSEGxaVaC8n8V54wg2LSLSXm3gvNOGGRSPaJOK9wIQbFolosyfxXkjCDYtCtFmNeC8c4YZFINrs\njXgvFOGG3ok2+0O8F4ZwQ89Em9tDvBeCcEOvRJsDId7dE27okWizHuLdNeGG3og2QxDvbgk39ES0\nGZJ4d2lm4a6qp1dVm/561qz2A0tDtJkF8e7OTMJdVfdK8qYk35nF9mHpiDazJN5dGTzcVVVJfj/J\nN5O8dejtw9IRbTaCeHdjFkfcz09ySpJnJvnuDLYPy0O02Uji3YVBw11VD0xydpI3tNYuHHLbsHRE\nmzGI99zbPNSGqmpzkncluTTJSw7gz29bY9WW9cwFXXrIQ0Sb8eyK9w03TB6/+tXJZz+bnHPOuHOR\nZNgj7lckOT7JM1pr1w64XVg+Z565+/eizRhWHnm/8IXjzcKtDHLEXVUnZnKU/RuttU8cyDZaayes\nse1tSbauYzzoz3Ofm1xxRXL22ck114w9DcvqxhuTgw9OXvnK5Dd/c+xpmFp3uPc4Rf7FJC9f90TA\n5BTlS1869hSQ3HRT8nI/2ufJEKfK75Tk2CQPTHLdHh+60pK8cvo1vzt97vUD7A8AltYQp8qvT/KO\nNdZtzeS698eSfCHJAZ1GBwAm1h3u6Y1oq36kaVX9Wibh/oPW2tvXuy8AWHb+kREA6IhwA0BHqrU2\n9gx75e1gzJP5/m45cDX2ANxui/p3MVnov48XrfXW59vDETcAdES4AaAjwg0AHRFuAOiIcANAR4Qb\nADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8IN\nAB3ZPPYA0JMaewCY8ndxeTniBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4I\nNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI5uH2EhVXZLk6DVWf6O1\ndo8h9gN7Ovhu986hRx+XTYfcITtv+F6u+8rFufGqS8ceC2CmBgn31I4kr1/l+e8MuA/IoUcflyNO\n+qkceu+H3GbddZd+Ojs+/se57isXjzAZwOxVa239G5kccae1dsy6N3bbbW9LsnXo7dKnO/3Hx+X7\nf/QXU5s2pbWWqrpl3a7HbefOfPMDb8p3P/3XI04KcBsXtdZOWO9GXOOmG4cefdwt0U5yq2jv+bg2\nbcpdn/CLOfTo4zZ8RoBZG/JU+fdV1dOS3DvJd5P8Y5ILW2s3D7gPltgRJ/3ULdHel9q0KUec9FNO\nmQMLZ8hw3yPJu1Y8969V9czW2kcH3A9L6OC73TuH3vshtzk9vpbWWg6990Ny8N3u7YY1YKEMFe7f\nT/K3Sf4pyTVJ7pvkvyd5dpL3V9UjW2t7PfSZXstezZaBZqRju05770+09/y6Q48+TriBhTJIuFtr\nZ6146jNJnlNV30nyK0l+LcmTh9gXy2nTIXfY0D8HMK+GPFW+mrdmEu5H7+sL17rTzl3lJMnOG763\noX8OYF7N+q7yK6fLO854Pyy4XTeZ7e/bF3d9nZvTgEUz63A/crr8lxnvhwV341WX5rpLP327rnFf\nd+mnXd8GFs66w11VD6qq71/l+aOT/Nb04R+tdz+w4+N/nLZz5359bdu5Mzs+/scznghg4w1xxH16\nkq9X1fur6i1V9dqq+rMkn0/y75Ocl+T/DrAfltx1X7k4V3/wTbfEe+Vp812Pd31ymtPkwCIa4ua0\nC5I8IMnxmZwav2OSbyf5WCbv635XG+JzVSHJd/7xr3PTjitX/azyXafHfVY5sMgG+azyWXJXOWvx\nr4MBnRnks8pn/XYwmJkbr7pUqIGl4x8ZAYCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQ\nEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QbozEEHHZQnPelJY4/BSIQboCM/\n8AM/kJtuuinnnHNOzjrrrLHHYQSbxx5gmbWxB5ihGnsAmFqo77ODDkquvPKWh0ccccSIwzAWR9wA\nPTjooOSmm255ePHFF+cFL3jBiAMxFuEGmHcrop2zz85DH/rQtLZQ5xPYT8INMM9WiXZe/OLx5mF0\nwg0wr0SbVQg3wDwSbdYg3ADzRrTZC+EGmCeizT4IN8C8EG32g3ADzAPRZj8JN8DYRJvbQbgBxiTa\n3E7CDTAW0eYACDfAGESbAyTcABtNtFkH4QbYSKLNOgk3wEYRbQYg3AAbQbQZiHADzJpoMyDhBpgl\n0WZgwg0wK6LNDAwa7qr6kap6b1VdXlXXT5fnV9UTh9wPwNwTbWZk81AbqqqXJXlVkquSvC/J5Unu\nluT4JCcnOW+ofQHMNdFmhgYJd1Wdnkm0/ybJU1pr16xYf/AQ+wGYe6LNjK37VHlVbUry2iTfS/Iz\nK6OdJK21G9e7H4C5J9psgCGOuE9Kcp8kf5bkW1V1WpIHJ7kuySdba58YYB+s1zHHJF/9anLzzWNP\nAotJtNkgQ4T7YdPlN5JclOQhe66sqguT/GRrbfveNlJV29ZYtWXdEy67005L/vIvk/e+N3nqU8Ub\nhrZpU3LeHrfxiDYzNMRd5UdNl89JcliSxya5cyZH3R9M8ugk7xlgPxyI005L3ve+ZPPm5MQTk8MO\nG3siWDwHHZRcd93k96LNjFVrbX0bqPrfSf5Hkp1JtrbWLt5j3WFJvpjknklOOpDT5tMj8a3rGnJO\nre+//H7YFe1djjoq2b7XEx+DqQ3ZC+zbzL/PdjnkkOT445N/+IcN2Z3vsS5d1Fo7Yb0bGeKI+1vT\n5b/sGe0kaa1dm8lRd5KcOMC+2F8jRhuW0g03bFi0WW5DhPsL0+W311i/K+zO0W4U0QZYWEOE+8Ik\nNyW5f1Udssr6B0+XlwywL/ZFtAEW2rrD3Vq7KsmfJDkiySv2XFdVj0vyo0l2JPnAevfFPog2wMIb\n6iNPfznJw5O8tKoeneSTSY5O8uQkNyf5+dbaWqfSGYJoAyyFQcLdWruyqh6e5GWZxPoRSa5Jcm6S\n17TW/n6I/bAG0QZYGut+O9iseTvYPsxptL1VhXkx3z/hDpzvsS7NzdvBGMucRhuA2RHuXok2wFIS\n7h6JNsDSEu7eiDbAUhPunog2wNIT7l6INgAR7j6INgBTwj3vRBuAPQj3PBNtAFYQ7nkl2gCsQrjn\nkWgDsAbhnjeiDcBeCPc8EW0A9kG454VoA7AfhHseiDYA+0m4xybaANwOwj2ml71MtAG4XYR7JKef\nfnryqlftfkK0AdgPwj2Shz3sYbsfHH+8aAOwXzaPPcCy+tVf/dVcccUVefe7353LL7987HFgYdXY\nA8DAqrU29gx7VVXbkmwdew4AWKeLWmsnrHcjTpUDQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOrLucFfVM6qq\n7ePXzUMMCwDLbvMA2/hUkrPWWPcjSU5J8v4B9gMAS2/d4W6tfSqTeN9GVX1i+tvfWe9+AIAZXuOu\nqgcneUSSryU5d1b7AYBlMsub0/7bdPmO1ppr3AAwgCGucd9GVR2W5GlJdiZ5+37+mW1rrNoy1FwA\n0LtZHXH/1yR3SfL+1tpXZ7QPAFg6MzniTvLs6fJt+/sHWmsnrPb89Eh86xBDAUDvBj/irqr/kOSk\nJJclOW/o7QPAMpvFqXI3pQHAjAwa7qo6NMnTM7kp7R1DbhsAGP6I+/QkRyY5z01pADC8ocO966Y0\nn5QGADMwWLir6oFJfjhuSgOAmRns7WCttc8lqaG2BwDcln+PGwA6ItwA0BHhBoCOCDcAdES4AaAj\nwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANCR\nHsJ9zNgDAMAAjhliI5uH2MiM/dt0eckG7GvLdPn5DdgXw/Ca9cdr1h+v2fodk909W5dqrQ2xnYVQ\nVduSpLV2wtizsH+8Zv3xmvXHazZfejhVDgBMCTcAdES4AaAjwg0AHRFuAOiIu8oBoCOOuAGgI8IN\nAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCHeSqrpnVf1eVX29qq6vqkuq6vVVdeTYs3FrVXXXqnpW\nVf1FVf1zVV1bVTuq6mNV9XNV5e90J6rq6VXVpr+eNfY8rK6qfqSq3ltVl09/Pl5eVedX1RPHnm1Z\n9fDvcc9UVd0vyceTHJXknEz+vdkTk/xSkidU1aNaa98ccURu7fQkv53k8iQXJLk0yd2TPCXJ25P8\nWFWd3nyy0FyrqnsleVOS7yS508jjsIaqelmSVyW5Ksn7Mvm+u1uS45OcnOS80YZbYkv/yWlV9cEk\nj0/y/Nbam/Z4/jeTvCDJ21przxlrPm6tqk5Jcsck57bWdu7x/D2SfDLJvZL8ZGvtvSONyD5UVSX5\n6yT3SfLnSV6Y5Odba28fdTBupapOT/KnSf4myVNaa9esWH9wa+3GUYZbckt9WrGq7ptJtC9J8uYV\nq1+Z5LtJnl5Vd9zg0VhDa+3DrbW/2jPa0+evSPLW6cOTN3wwbo/nJzklyTMz+R5jzkwvOb02yfeS\n/MzKaCeJaI9nqcOdyQ+PJDl/lRBck+TvktwhySM2ejAOyK4fJDeNOgVrqqoHJjk7yRtaaxeOPQ9r\nOimTMyLnJflWVZ1WVS+qql+qqkeOPNvSW/Zr3A+YLr+4xvovZXJEfmySD23IRByQqtqc5GenDz8w\n5iysbvoavSuT+xJeMvI47N3DpstvJLkoyUP2XFlVF2ZySWr7Rg+GI+4jpssda6zf9fxdNmAW1ufs\nJA9Ocl5r7YNjD8OqXpHJTU3PaK1dO/Yw7NVR0+VzkhyW5LFJ7pzJ99gHkzw6yXvGGY1lD/e+1HS5\n3Hfwzbmqen6SX8nkHQFPH3kcVlFVJ2ZylP0brbVPjD0P+3TQdFmZHFl/qLX2ndbaPyV5cpLLkvwn\np83Hsezh3nVEfcQa6w9f8XXMmap6XpI3JPlskse01q4eeSRW2OMU+ReTvHzkcdg/35ou/6W1dvGe\nK6ZnS3ad1TpxQ6ciiXB/Ybo8do31958u17oGzoiq6swkv5XkM5lE+4qRR2J1d8rke+yBSa7b40NX\nWibv3kiS350+9/rRpmRPu342fnuN9bvCftgGzMIKy35z2gXT5eOratOK9wXfOcmjklyb5O/HGI61\nVdWLMrmu/akkj2utXTXySKzt+iTvWGPd1kyue38sk1g4jT4fLszk3Rn3r6pDWms3rFj/4Onykg2d\niiRLHu7W2per6vxM7hx/Xiaf5LTLWZl80MfbWmveazpHqurlSf5Xkm1JHu/0+Hybnlpd9SNNq+rX\nMgn3H/gAlvnRWruqqv4kyVMzuanwZbvWVdXjkvxoJpcQvYNjBEsd7qlfyOQjT99YVacm+VyShyd5\nTCanyF864mysUFVnZBLtm5P8bZLnTz6I61Yuaa29c4NHg0Xzy5n8LHxpVT06k08mPDqTm9NuzuTT\n7tY6lc4MLX24p0fdP5RJDJ6Q5ImZfB7vG5Oc5Whu7txnujwoyZlrfM1Hk7xzQ6aBBdVau7KqHp7J\n0faTM/kgqmuSnJvkNa01lxBHsvSfVQ4APVn2u8oBoCvCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAj/x9A+e9bsNlYeAAA\nAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981ba1048>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"05e3a2135d9e4c93a6fa8ee4af26a945": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"06053f0e526e44cb8f896c8c936ba1d4": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_f3121e91a26a4239832c1162c5a58499", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF65JREFUeJzt3WuwZWV95/Hfv2lCALkIFmIqiJcB\ncYJFBAUBr6hodGZKHfFFJkStaMbRKbxWmfGKSaWiNZPEWyaaaEJi5kWScZxUIgrRUKKiY1U7Yrxi\n1BYvIAKCgG2P0s+82LvL7sM5dMtZp3f/2Z9P1anVZ6991vNUHbq/PGuts06NMQIA9LBp0RMAAPae\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0snnRE9iTqvp6ksOTbF3wVADgrrpfkh+MMe6/3gPt9+FOcvimHHDUoTnsqEVPBADuitty\nS3bk9kmO1SHcWw/NYUedUU9Y9DwA4C75P+NDuSU3bZ3iWK5xA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNDJZuKvqF6vqz6rqO1W1vaq2VtWbq+qeU40BAMtu8xQHqaoHJrkiyTFJ/i7Jl5KcnuTFSZ5cVWeP\nMW6YYiwAWGZTrbj/e2bRvmCM8bQxxm+NMc5J8odJHpTkdycaBwCW2rrDXVUPSHJukq1J/mjF7tcn\nuS3J+VV16HrHAoBlN8WK+5z59tIxxo5dd4wxbkny8SSHJHnEBGMBwFKb4hr3g+bbq9bY/5XMVuQn\nJvnwWgepqi1r7Drprk8NAO5eplhxHzHf3rzG/p2vHznBWACw1Ca5q3wPar4dd/amMcZpq37xbCV+\n6tSTAoCOplhx71xRH7HG/sNXvA8AuIumCPeX59sT19h/wny71jVwAGAvTRHuy+bbc6tqt+NV1WFJ\nzk6yLcknJxgLAJbausM9xvhqkkuT3C/Ji1bsfkOSQ5P85RjjtvWOBQDLbqqb016Y2SNP31pVj0/y\nxSRnJHlcZqfIXz3ROACw1CZ55Ol81f2wJBdlFuyXJ3lgkrcmOdNzygFgGpP9ONgY45tJnjvV8QCA\nO/L7uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTc\nVfXMqnpbVX20qn5QVaOq/mqKYwMAP7V5ouO8JskpSW5N8q0kJ010XABgF1OdKn9pkhOTHJ7kP010\nTABghUlW3GOMy3b+uaqmOCQAsAo3pwFAI1Nd4163qtqyxi7XywFgzoobABrZb1bcY4zTVnt9vhI/\ndR9PBwD2S1bcANCIcANAI8INAI0INwA0MsnNaVX1tCRPm3967Hx7ZlVdNP/z9WOMV0wxFgAss6nu\nKv/lJM9e8doD5h9J8o0kwg0A6zTJqfIxxoVjjLqTj/tNMQ4ALDvXuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaWXe4q+roqnpeVb2vqv6lqrZV1c1V9bGq\n+o2q8j8HADCRzRMc47wkf5zkmiSXJbk6yb2TPCPJu5L8SlWdN8YYE4wFAEttinBfleTfJXn/GGPH\nzher6lVJPpXk32cW8fdOMBYALLV1n8YeY/zTGOPvd432/PVrk7xj/ulj1zsOALDxN6f9eL79yQaP\nAwBLYcPCXVWbk/z6/NMPbtQ4ALBMprjGvZY3Jjk5ycVjjEv29Oaq2rLGrpMmnRUANLYhK+6quiDJ\ny5N8Kcn5GzEGACyjyVfcVfWiJG9J8oUkjx9j3Lg3XzfGOG2N421Jcup0MwSAviZdcVfVS5K8Pcnn\nkjxufmc5ADCRycJdVa9M8odJPpNZtK+b6tgAwMwk4a6q12Z2M9qWzE6PXz/FcQGA3a37GndVPTvJ\nbye5PclHk1xQVSvftnWMcdF6xwKAZTfFzWn3n28PSPKSNd7zkSQXTTAWACy1KR55euEYo/bw8dgJ\n5goAS8+v3ASARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhk86InALCRLvnOZxY9BcjDz92WT//zNMey4gaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhk86InACyP7UcfmW3H3yc7Djowm7b/OAd/45ocdMNNi54WtDJJ\nuKvqTUkeluTEJPdKsi3JN5L87yRvH2PcMMU4QE8/vO99cuPZp2TbccfeYd/B37w2R338yhxy9TUL\nmBn0M9Wp8pcmOTTJPyZ5S5L/keQnSS5M8tmqOm6icYBmbn7ICfn2s544i/YYu+8cI9uOOzbfftYT\nc/ND/tViJgjNTHWq/PAxxo9WvlhVv5vkVUn+S5IXTjQW0MQP73ufXPekM5NN8zVC1e5v2Pn5pk25\n7kln5cCbb7Pyhj2YZMW9WrTn/ma+PWGKcYBebjz7lJ9Ge082bcqNZ52ysROCu4GNvqv83863n93g\ncYD9zPajj1z99Phaxsi2+x6b7UcfubETg+Ymvau8ql6R5B5JjsjsZrVHZhbtN+7F125ZY9dJk00Q\n2Ge2HX+f2R9Wnh5fy/x9246/jzvN4U5M/eNgr0hy710+/2CS54wxvjfxOMB+bsdBB+7Tr4NlMWm4\nxxjHJklV3TvJWZmttP9vVf2bMcan9/C1p632+nwlfuqU8wQ23qbtP96nXwfLYkOucY8xvjvGeF+S\nc5McneQvN2IcYP918Dfmd4f/DNe4d/s6YFUbenPaGOMbSb6Q5Jeq6l4bORawfznohpty8Dev/Zmu\ncR989bWub8Me7Itnlf/CfHv7PhgL2I8c9fErkx079u7NO3bkqCuu3NgJwd3AusNdVSdV1R2eY1hV\nm+YPYDkmyRVjjO+vdyygl0OuvibHXPKJn8Z7lSenJUl27Mgxl1zh4SuwF6a4Oe3JSf5rVV2e5KtJ\nbsjszvLHJHlAkmuTPH+CcYCGjvjnr+TAm2/NjWedkm33XfH/+PPT40dd4VnlsLemCPeHkvxJkrOT\nnJLkyCS3JbkqyXuSvHWMceME4wBNHXL1NTnk6mv8djCYwLrDPcb4XJIXTTAX4G7uoBtuEmpYp31x\ncxoAMBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEY2L3oCABvpSb/wy4ueAuQr4/ok2yc5lhU3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI1sWLir6vyqGvOP523UOACwTDYk3FV1XJK3Jbl1I44PAMtq8nBXVSX58yQ3\nJHnH1McHgGW2ESvuC5Kck+S5SW7bgOMDwNKaNNxV9eAkb0zyljHG5VMeGwBINk91oKranOQ9Sa5O\n8qq78PVb1th10nrmBQB3J5OFO8nrkjw0ySPHGNsmPC4AMDdJuKvq9MxW2b8/xvjEXTnGGOO0NY69\nJcmp65geANxtrPsa9y6nyK9K8tp1zwgAWNMUN6fdI8mJSR6c5Ee7PHRlJHn9/D1/On/tzROMBwBL\na4pT5duTvHuNfadmdt37Y0m+nOQunUYHAGbWHe75jWirPtK0qi7MLNx/McZ413rHAoBl55eMAEAj\nwg0AjWxouMcYF44xymlyAJiGFTcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI5OEu6q2VtVY4+PaKcYAAJLNEx7r5iRvXuX1WyccAwCW2pThvmmMceGExwMA\nVnCNGwAamXLFfVBV/VqS+ya5Lclnk1w+xrh9wjEAYKlNGe5jk7xnxWtfr6rnjjE+MuE4ALC0pgr3\nnyf5aJLPJ7klyQOS/Ockv5nkA1V15hjjyjs7QFVtWWPXSRPNEQDamyTcY4w3rHjpc0leUFW3Jnl5\nkguTPH2KsQBgmU15qnw178gs3I/e0xvHGKet9vp8JX7qxPMCgJY2+q7y6+bbQzd4HABYChsd7jPn\n269t8DgAsBTWHe6q+qWqOmqV149P8vb5p3+13nEAgGmucZ+X5Leq6rIkX8/srvIHJnlqkp9PcnGS\n/zbBOACw9KYI92VJHpTkoZmdGj80yU1JPpbZz3W/Z4wxJhgHAJbeusM9f7iKB6wAwD7gWeUA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQyabir6lFV\n9d6quqaqts+3l1bVU6YcBwCW1eapDlRVr0nyO0muT/IPSa5Jcq8kD03y2CQXTzUWACyrScJdVedl\nFu0PJXnGGOOWFfsPnGIcAFh26z5VXlWbkrwpyQ+T/OrKaCfJGOPH6x0HAJhmxX1Wkvsn+Z9Jvl9V\nT01ycpIfJfnUGOMTE4wBAGSacD98vv1ukk8neciuO6vq8iTPHGN8784OUlVb1th10rpnCAB3E1Pc\nVX7MfPuCJAcneUKSwzJbdV+S5NFJ/naCcQBg6U2x4j5gvq3MVtZXzj//fFU9PclVSR5TVWfe2Wnz\nMcZpq70+X4mfOsE8AaC9KVbc359vv7ZLtJMkY4xtma26k+T0CcYCgKU2Rbi/PN/etMb+nWE/eIKx\nAGCpTRHuy5P8JMkJVfVzq+w/eb7dOsFYALDU1h3uMcb1Sf46yRFJXrfrvqp6YpInJbk5yQfXOxYA\nLLupHnn6siRnJHl1VT06yaeSHJ/k6UluT/L8McZap9IBgL00SbjHGNdV1RlJXpNZrB+R5JYk70/y\ne2OMT04xDgAsu8l+ycgY48bMVt4vm+qYAMDu/D5uAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEbWHe6qek5VjT183D7FZAFg2W2e4BifSfKGNfY9Ksk5ST4w\nwTgAsPTWHe4xxmcyi/cdVNUn5n/8k/WOAwBs4DXuqjo5ySOSfDvJ+zdqHABYJht5c9p/nG/fPcZw\njRsAJjDFNe47qKqDk/xakh1J3rWXX7NljV0nTTUvAOhuo1bcz0pyZJIPjDG+uUFjAMDS2ZAVd5Lf\nnG/fubdfMMY4bbXX5yvxU6eYFAB0N/mKu6r+dZKzknwrycVTHx8AltlGnCp3UxoAbJBJw11VP5/k\n/MxuSnv3lMcGAKZfcZ+X5J5JLnZTGgBMb+pw77wpzZPSAGADTBbuqnpwkkfGTWkAsGEm+3GwMcYX\nk9RUxwMA7sjv4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGqkxxqLncKeq6oZNOeCoQ3PYoqcCAHfJbbklO3L7\njWOMo9d7rM1TTGiD/WBHbs8tuWnrPhjrpPn2S/tgLKbhe9aP71k/vmfrd78kP5jiQPv9intfqqot\nSTLGOG3Rc2Hv+J7143vWj+/Z/sU1bgBoRLgBoBHhBoBGhBsAGhFuAGjEXeUA0IgVNwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCnaSqfrGq/qyqvlNV26tqa1W9uaruuei5sbuqOrqqnldV76uq\nf6mqbVV1c1V9rKp+o6r8N91EVZ1fVWP+8bxFz4fVVdWjquq9VXXN/N/Ha6rq0qp6yqLntqw6/D7u\nDVVVD0xyRZJjkvxdZr9v9vQkL07y5Ko6e4xxwwKnyO7OS/LHSa5JclmSq5PcO8kzkrwrya9U1XnD\nk4X2a1V1XJK3Jbk1yT0WPB3WUFWvSfI7Sa5P8g+Z/b27V5KHJnlskosXNrkltvRPTquqS5Kcm+SC\nMcbbdnn9D5K8NMk7xxgvWNT82F1VnZPk0CTvH2Ps2OX1Y5N8KslxSZ45xnjvgqbIHlRVJfnHJPdP\n8r+SvCLJ88cY71roxNhNVZ2X5G+SfCjJM8YYt6zYf+AY48cLmdySW+rTilX1gMyivTXJH63Y/fok\ntyU5v6oO3cdTYw1jjH8aY/z9rtGev35tknfMP33sPp8YP4sLkpyT5LmZ/R1jPzO/5PSmJD9M8qsr\no50kor04Sx3uzP7xSJJLVwnBLUk+nuSQJI/Y1xPjLtn5D8lPFjoL1lRVD07yxiRvGWNcvuj5sKaz\nMjsjcnGS71fVU6vqlVX14qo6c8FzW3rLfo37QfPtVWvs/0pmK/ITk3x4n8yIu6SqNif59fmnH1zk\nXFjd/Hv0nszuS3jVgqfDnXv4fPvdJJ9O8pBdd1bV5Zldkvrevp4YVtxHzLc3r7F/5+tH7oO5sD5v\nTHJykovHGJcsejKs6nWZ3dT0nDHGtkVPhjt1zHz7giQHJ3lCksMy+zt2SZJHJ/nbxUyNZQ/3ntR8\nu9x38O3nquqCJC/P7CcCzl/wdFhFVZ2e2Sr798cYn1j0fNijA+bbymxl/eExxq1jjM8neXqSbyV5\njNPmi7Hs4d65oj5ijf2Hr3gf+5mqelGStyT5QpLHjTFuXPCUWGGXU+RXJXntgqfD3vn+fPu1McaV\nu+6Yny3ZeVbr9H06K5II95fn2xPX2H/CfLvWNXAWqKpekuTtST6XWbSvXfCUWN09Mvs79uAkP9rl\noSsjs5/eSJI/nb/25oXNkl3t/LfxpjX27wz7wftgLqyw7DenXTbfnltVm1b8XPBhSc5Osi3JJxcx\nOdZWVa/M7Lr2Z5I8cYxx/YKnxNq2J3n3GvtOzey698cyi4XT6PuHyzP76YwTqurnxhj/b8X+k+fb\nrft0ViRZ8nCPMb5aVZdmduf4izJ7ktNOb8jsQR/vHGP4WdP9SFW9NslvJ9mS5Fynx/dv81Orqz7S\ntKouzCzcf+EBLPuPMcb1VfXXSf5DZjcVvmbnvqp6YpInZXYJ0U9wLMBSh3vuhZk98vStVfX4JF9M\nckaSx2V2ivzVC5wbK1TVszOL9u1JPprkgtmDuHazdYxx0T6eGtzdvCyzfwtfXVWPzuzJhMdndnPa\n7Zk97W6tU+lsoKUP93zV/bDMYvDkJE/J7Hm8b03yBqu5/c7959sDkrxkjfd8JMlF+2Q2cDc1xriu\nqs7IbLX99MweRHVLkvcn+b0xhkuIC7L0zyoHgE6W/a5yAGhFuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaOT/AyHlkZfNVayJ\nAAAAAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49819ebeb8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"0606060ab3ed4c40847b1c483300e392": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_141b9593bf61468b9fffb600e0961fa4", | |
"IPY_MODEL_11926094e68a46d3bad79ab11cc62dd2", | |
"IPY_MODEL_ac189e6f00864cebb4bd5b4e6661eb29", | |
"IPY_MODEL_d816c11e250347d4a1aaee329ea2d42c" | |
], | |
"layout": "IPY_MODEL_a2a9e28f2eab40e2a28b2e7710ae5921" | |
} | |
}, | |
"06077c7d9db247eb950b6d24ddd4e0e4": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_3452603c2dd84d37b5a19e18a8f64784", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 1., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"0612de51ea804d87ae8a5933cebd9b18": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0669f079eac74ecbadfb86099b9e314d": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_2b9dad91cfd54777bd78d28984d790a2", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "3 0\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHp5JREFUeJzt3XuQpHdd7/HPN2xCwiUhYG2ow8WE\nSwgHqByyknBRDAk32XNOCZpTKmBCiRyQI0SlRLlzKAHrqFwiCgoaxCpUCpSSRIiGQIzipXYBkWtA\nIgSTsCSwJpBAsvmdP7o3uzuZ2Wx2np6nf92vV9XUs9098zzfSs/MO8+le6q1FgCgD4eMPQAAcOCE\nGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPC\nDQAdEW4A6MimsQe4LVX15SRHJrls5FEA4GAdm+Q/W2vHrXdFcx/uTKJ99+kHACy1Hg6VXzb2AAAw\ngMuGWEkP4QYApoQbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0JHBwl1V966qP6iq/6iq71bVZVX1xqo6eqht\nAMCy2zTESqrq/kn+PsnmJO9P8rkkJyd5YZInV9VjWmtXD7EtAFhmQ+1x/04m0X5Ba+1HW2u/0lo7\nLckbkjwoya8NtB0AWGrVWlvfCqrul+RLSS5Lcv/W2s17PXbXJFckqSSbW2vfPoj1b0ty0rqGBIDx\nbW+tbVnvSobY4z5turxg72gnSWvt2iR/l+ROSR45wLYAYKkNcY77QdPlF9Z4/NIkT0xyfJIL11rJ\ndM96NScc/GgAsFiG2OM+arrcucbju++/2wDbAoClNshV5behpsv9nkxf67i/c9wAsMcQe9y796iP\nWuPxI1d8HgBwkIYI9+eny+PXePyB0+Va58ABgAM0RLgvmi6fWFX7rG/6crDHJLk+yT8MsC0AWGrr\nDndr7UtJLkhybJLnr3j41UnunOSPDuY13ADAvoa6OO3nMnnL0zdX1elJPpvklCSPy+QQ+UsH2g4A\nLLVB3vJ0utf9A0nOzSTYv5Tk/knenORR3qccAIYx2MvBWmtfTfKsodYHANyav8cNAB0RbgDoiHAD\nQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6MimsQdYZm3sAWaoxh4AFpzfH8vLHjcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi\n3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0R\nbgDoyCDhrqofr6pzqupvq+o/q6pV1R8PsW4AYI9NA63nZUlOTHJdksuTnDDQegGAvQx1qPwXkhyf\n5MgkzxtonQDACoPscbfWLtr976oaYpUAwCpcnLYs7njHsScAeuX3x1yZm3BX1bbVPuJ8+fodeWTy\n0Y8mb3vb2JMAvTnttOTSS5OtW8eehKm5CTcz9PjHJ6eckjznOcm3vjX2NEAvtm5NLrwwuc99khe/\neOxpmBrqqvJ1a61tWe3+6V73SRs8zmJ53/uSD3948n/ORx01iffd7jb2VMA827o1+cAH9tz+sR8b\nbxb2YY97WZx++iTeyZ54A6xmZbQ3b0527BhvHvYh3MtEvIHbItpzT7iXjXgDaxHtLgj3MhJvYCXR\n7sYgF6dV1Y8m+dHpzXtOl4+qqnOn//5Ga+1FQ2yLgZx++uRqUResAaLdlaGuKv9vSc5ccd/9ph9J\n8u9JhHveiDcg2t0Z5FB5a+1VrbXaz8exQ2yHGXDYHJaXaHfJOW7EG5aRaHdLuJkQb1geot014WYP\n8YbFJ9rdE272Jd6wuER7IQg3tybesHhEe2EIN6sTb1gcor1QhJu1iTf0T7QXjnCzf+IN/RLthSTc\n3Dbxhv6I9sISbg6MeEM/RHuhCTcHTrxh/on2whNubh/xhvkl2ktBuLn9xBvmj2gvDeHm4Ig3zA/R\nXirCzcETbxifaC8d4WZ9xBvGI9pLSbhZv1XiffTRR487Eyy6ZzxDtJeUcDOMFfG+5pprxp0HFtgr\nXvGK5F3v2nOHaC8V4WY4p5++z80TTjhhpEFgsT3vec/bc+Pe9xbtJbNp7AGWWY09wAwcethhec97\n3pP3v//9+dznPjf2OINrYw8wI4v4vbjbQj5nJ56YT3/4w/nJn/zJfOprXxt7GjZYtTbf39ZVtS3J\nSWPPAcmCRiDC3aNFfs4W2PbW2pb1rsShcgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BH1h3uqrpHVT27qv68\nqr5YVddX1c6quqSqfqaq/M8BAAxk0wDrOCPJ7ya5IslFSb6S5JgkT0vy9iQ/UlVntNbaANsCgKU2\nRLi/kOR/JjmvtXbz7jur6iVJ/inJj2US8fcOsC0AWGrrPozdWvtwa+0v94729P4rk7x1evPU9W4H\nAJj9xWk3Tpc3zXg7ALAUZhbuqtqU5KenNz84q+3AQjr88OQNb0iOPnrsSThQD3lI8vKXjz0FS2CI\nc9xreX2ShyY5v7X2odv65KratsZDJww6FfTgrW9NzjwzOfvs5N73Tr72tbEnYn+e8pTkvPMm/776\n6uR3fmfceVhoNYuLvavqBUnelORzSR7TWrvmAL5mf+G+04DjwUHbsJdGnHBC8tnP7rk943jXzNY8\nvpk/Z3tHO0mOPDK59tpZb3Whn7MFtr21tmW9Kxk83FX1/CS/neQzSU6fXqS2nvVtS3LSELPBem3o\naxpPPTW56KI9t2cY70WOwEyfs5XR3rw52bFjllu8xSI/ZwtskHAPeo67qs7OJNr/muRx6402LLWP\nfCR53OP23L788uRe9xptHFYYMdost8HCXVUvTvKGJJ/IJNpfH2rdsLTEez6JNiMaJNxV9fJMLkbb\nlsnh8W8MsV4g4j1vRJuRrfscd1WdmeTcJLuSnJNk5yqfdllr7dyDXL9z3MyNUd+3d4bnvBf5fOmg\nz9kcRXuRn7MFNsg57iFeDnbcdHmHJGev8TkfzSTuwMHavee9O96XX+6lYhtpjqLNcpvJy8GGZI+b\neTIXPy0z2PNe5L23QZ6zOYz2Ij9nC2z+rioHNoBz3htrDqPNchNu6JF4bwzRZg4JN/RKvGdLtJlT\nwg09E+/ZEG3mmHBD78R7WKLNnBNuWATiPQzRpgPCDYtCvNdHtOmEcMMiEe+DI9p0RLhh0Yj37SPa\ndEa4YRGJ94ERbTok3LCoxHv/RJtOCTcsMvFenWjTMeGGRSfe+xJtOifcsAzEe0K0WQDCDcti2eMt\n2iwI4YZlsqzxFm0WiHDDslkl3vda5HiLNgtGuGEZrYj35ZdfnrPOOmu0cWblggsuEG0WTrXWxp5h\nv6pqW5KTxp4DkmS+f1oOwqmnJhdddMvNTZs2ZdeuXePNM6BjjjkmV1555Z47FizaNfYAHIztrbUt\n612JPW64HWrRPj7ykbz73e9Okpx55pkLE+0k2bFjR97ylrckSZ7+9KenduwY/7/3gB8sL3vcQI44\n4ohcf/31Y48xuEMOOSSHHnpovvvd7449CiT2uIGhLGK0k+Tmm28WbRaOcANAR4QbADoi3ADQEeEG\ngI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHAD\nQEeEGwA6Mki4q+rXq+rCqvpqVV1fVddU1cer6pVVdY8htgEAJNVaW/9Kqr6XZHuSzyT5epI7J3lk\nkh9I8h9JHtla++pBrntbkpPWPSQAjGt7a23LeleyaYhJkhzZWrth5Z1V9WtJXpLkV5P83EDbAoCl\nNcih8tWiPfVn0+UDh9gOACy7WV+c9j+my3+Z8XYAYCkMdag8SVJVL0pylyRHZXJ++wczifbrD+Br\nt63x0AmDDQgAnRs03ElelOSYvW5/MMlZrbUdA28HAJbSIFeV32qlVcckeXQme9p3TfLfW2vbD3Jd\nrioHYBEMclX5TM5xt9auaq39eZInJrlHkj+axXYAYNnM9OK01tq/Z/La7odU1ffNclsAsAw24i1P\n/8t0uWsDtgUAC23d4a6qE6rqnqvcf8j0DVg2J/n71to317stAFh2Q1xV/uQk/6+qLk7ypSRXZ3Jl\n+Q8nuV+SK5P87ADbAYClN0S4/ybJ7yV5TJITk9wtybeTfCHJu5K8ubV2zQDbAYClt+5wt9b+Ncnz\nB5gFALgN/h43AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFu\nAOiIcANAR4QbADoi3ADQEeEGgI4IN5Ajjzxy7BG4nTxny0u4YcldcMEF2blzZ5773OeOPQoHaOvW\nrdm5c2euuuqqHHbYYWOPwwar1trYM+xXVW1LctLYc0CSzPdPy0F4ylOS88675eamTZuya9euEQfi\nQOzze/slL0le97rxhpmBGnuA2dneWtuy3pXY44ZltSLaZ5xxhmh34vjjj99z47WvTX71V8cbhg23\naewBgBGsiPbmzZuzY8eOEQfi9rj00kuTww5Lvve9yR2vfe1kuWB73qzOHjcsmxXRjmj36cYbJ/He\nzZ730hBuWCarRDui3S/xXkrCDctCtBeTeC8d4YZlINqLTbyXinDDohPt5SDeS0O4YZGJ9nIR76Ug\n3LCoRHs5iffCE25YRKK93MR7oQk3LBrRJhHvBSbcsEhEm72J90ISblgUos1qxHvhCDcsAtFmf8R7\noQg39E60ORDivTCEG3om2twe4r0QhBt6JdocDPHunnBDj0Sb9RDvrgk39Ea0GYJ4d0u4oSeizZDE\nu0szC3dVPbOq2vTj2bPaDiwN0WYWxLs7Mwl3Vd0nyTlJrpvF+mHpiDazJN5dGTzcVVVJ/jDJ1Une\nOvT6YemINhtBvLsxiz3uFyQ5Lcmzknx7BuuH5SHabCTx7sKg4a6qByd5fZI3tdYuHnLdsHREmzGI\n99zbNNSKqmpTkncl+UqSlxzE129b46ET1jMXdOlhDxNtxrM73t/73uT2a1+bfOYzyfvfP+5cJBl2\nj/sVSR6e5KzW2vUDrheWz9ln7/m3aDOGlXveL3rReLOwj0H2uKvq5Ez2sn+ztfaxg1lHa23LGuve\nluSkdYwH/Xne85Irr0xe//rk2mvHnoZldeONyaGHJq98ZfJbvzX2NEytO9x7HSL/QpKXr3siYHKI\n8qUvHXsKSG66KXm5X+3zZIhD5XdJcnySBye5Ya83XWlJXjn9nN+f3vfGAbYHAEtriEPl303yjjUe\nOymT896XJPl8koM6jA4ATKw73NML0VZ9S9OqelUm4X5na+3t690WACw7f2QEADoi3ADQkWqtjT3D\nfnk5GPNkvn9aDl6NPQC326J+LyYL/f24fa2XPt8e9rgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR\n4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOjI\nprEHgJ7U2APAlO/F5WWPGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQ\nEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgwS7qq6rKraGh9XDrENACDZ\nNOC6diZ54yr3XzfgNgBgqQ0Z7m+11l414PoAgBWc4waAjgy5x33HqnpGkvsm+XaSf0lycWtt14Db\nAIClNmS475nkXSvu+3JVPau19tEBtwMAS2uocP9hkr9N8ukk1ya5X5L/k+Q5Sf6qqh7VWvvk/lZQ\nVdvWeOiEgWYEgO5Va212K6/6jSS/lOQvWmtPvY3P3V+47zT0bACwwba31rasdyWzDvcDklya5JrW\n2j0Och3bkpw06GAAsPEGCfesryr/+nR55xlvBwCWwqzD/ajp8t9mvB0AWArrDndVPaSq7r7K/d+f\n5LenN/94vdsBAIa5qvyMJL9SVRcl+XImV5XfP8nWJIcnOT/JbwywHQBYekOE+6IkD0ry8EwOjd85\nybeSXJLJ67rf1WZ5BRwALJF1h3v65ireYAUANoD3KgeAjgg3AHREuAGgI8INAB0RbgDoiHADQEeE\nGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4IN7Cw7nWve+Xk\nk08eewwYlHADC2nz5s255JJL8o//+I/5+Mc/PvY4MJhqrY09w35V1bYkJ409xyzM93/59amxB2Dp\nbdq0KTfeeONe95yV5J0jTTM8P2Od2ZJke7a31rasd1X2uIGFdNNNN+VJT3rSXvecm+TMkaaB4Qg3\nsLAuuOCCJHfd655zI970TriBBXddxJtFItzAEhBvFodwA0tCvFkMwg0sEfGmf8INLBnxpm/CDSwh\n8aZfwg0sKfGmT8INLDHxpj/CDSw58aYvwg0g3nREuAGSiDe9EG6AW4g380+4AfYh3sw34Qa4FfFm\nfgk3wKrEm/kk3ABrEm/mj3AD7Jd4M182jT0AwPzbHe9rp7fPnS7fOco0rN+hV903h3/xxBxyw51y\n8+HfyQ0P+GRuPOYrY491QAYNd1X9UJKzkzw6yd2TXJPkU0ne2Fo7f8htAWws8V4Eh3/xxBx14U/k\n8C8/7FaP3XDcp7Lz9D/JDQ/45AiTHbjBwl1VL0vymiTfSPKBJFck+b4kD09yahLhBjon3j27yz8/\nIXd/38+n2iFpaanULY+1tBz+5Yflju94SK5+2jn59iP+esRJ92+QcFfVGZlE+2+SPK21du2Kxw8d\nYjsA4xPvHh3+xRNviXaSfaK99+1qh+Qe7/v57Dr663O7573ui9Oq6pAkv57kO0l+amW0k6S1duN6\ntwMwP1yw1pujLvyJW6J9W6odkqMu/IkZT3Twhriq/NFJjsvkUPg3q2prVb24ql5YVY8aYP0M4dhj\nkzvcYewpYIGIdy8Oveq+OfzLD0tLO6DP333Y/NCr7jvjyQ7OEIfKHzFdXpVke5J9zvhX1cVJfry1\ntmN/K6mqbWs8dMK6J1x2W7cmf/EXyXvfmzz96cmuXWNPBAtitcPmn0nyz2MNxCoO/+KJSW59eHwt\nuz/v8C+eOJdXmg+xx715unxukiOSPD6T7+SHJvlQkscmec8A2+FgbN2afOADyaZNycknJ0ccMfZE\nsGB2x3tXkuuTHDnuONzKITfcaUO/btaG2OPeffy1Mtmz3n02/9NV9dQkX0jyw1X1qNbax9ZaSWtt\ny2r3T/fETxpgzuWzO9q7nXJKct11480DC+u6JHfJ5ICjve15c/Ph39nQr5u1Ifa4vzld/tte0U6S\ntNauz2SvO0lOHmBbHKiV0d68Odmx37MVwLrcENGeT7uvDr8957j3/rp5M0S4Pz9dfmuNx3eH3THa\njSLaALe48Ziv5IbjPnW7znHfcNyn5vL8djJMuC9OclOSB1bVYas8/tDp8rIBtsVtEW2AW9l5+p+k\n1c0H9Lmtbs7O0/9kxhMdvHWHu7X2jSR/muSoJK/Y+7GqekKSJyXZmeSD690Wt0G0AVZ1wwM+mWue\nds4t8V552Hz37VY35+qnnTO3h8mT4d7y9BeTnJLkpVX12CT/lOT7kzw1k0stf7a1ttahdIYg2gD7\ndd0j/jo3Hf31Vd+rfPfh8aV5r/LW2ter6pQkL8sk1o/M5IWN5yV5XWvtH4bYDmsQbYADcsMDPpkb\nHvDJrv86WLV2YFfZjWWRXw42yH/5OY32gV0CArM357/iDpqfsc5sSbI929d66fPtMcTFaYxlTqMN\nwOwId69EG2ApCXePRBtgaQl3b0QbYKkJd09EG2DpCXcvRBuACHcfRBuAKeGed6INwF6Ee56JNgAr\nCPe8Em0AViHc80i0AViDcM8b0QZgP4R7nog2ALdBuOeFaANwAIR7Hog2AAdIuMcm2gDcDsI9ppe9\nTLQBuF2EeyRnnHFG8prX7LlDtAE4AMI9kkc84hF7bjz84aINwAHZNPYAy+qXf/mXc+WVV+bd7353\nrrjiirHHgYVVNfYEMKxqrY09w35V1bYkJ409BwCs0/bW2pb1rsShcgDoiHADQEeEGwA6ItwA0BHh\nBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6Ihw\nA0BH1h3uqjqrqtptfOwaYlgAWHabBljHJ5K8eo3HfijJaUn+aoDtAMDSW3e4W2ufyCTet1JVH5v+\n8/fWux0AYIbnuKvqoUkemeRrSc6b1XYAYJnM8uK0/z1dvqO15hw3AAxgiHPct1JVRyR5RpKbk7z9\nAL9m2xoPnTDUXADQu1ntcf+vJHdL8letta/OaBsAsHRmssed5DnT5dsO9Ataa1tWu3+6J37SEEMB\nQO8G3+Ouqv+a5NFJLk9y/tDrB4BlNotD5S5KA4AZGTTcVXV4kmdmclHaO4ZcNwAw/B73GUmOTnK+\ni9IAYHhDh3v3RWneKQ0AZmCwcFfVg5P8YFyUBgAzM9jLwVprn01SQ60PALg1f48bADoi3ADQEeEG\ngI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHAD\nQEeEGwA6ItwA0JEewn3s2AMAwACOHWIlm4ZYyYz953R52QZs64Tp8nMbsC2G4Tnrj+esP56z9Ts2\ne3q2LtVaG2I9C6GqtiVJa23L2LNwYDxn/fGc9cdzNl96OFQOAEwJNwB0RLgBoCPCDQAdEW4A6Iir\nygGgI/a4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4Id5KqundV/UFV/UdVfbeqLquqN1bV\n0WPPxr6q6h5V9eyq+vOq+mJVXV9VO6vqkqr6maryPd2JqnpmVbXpx7PHnofVVdUPVdV7q+qK6e/H\nK6rqgqp6ytizLase/h73TFXV/ZP8fZLNSd6fyd+bPTnJC5M8uaoe01q7esQR2dcZSX43yRVJLkry\nlSTHJHlakrcn+ZGqOqN5Z6G5VlX3SXJOkuuS3GXkcVhDVb0syWuSfCPJBzL5ufu+JA9PcmqS80cb\nbokt/TunVdWHkjwxyQtaa+fsdf9vJfmFJG9rrT13rPnYV1WdluTOSc5rrd281/33TPJPSe6T5Mdb\na+8daURuQ1VVkr9OclyS9yV5UZKfba29fdTB2EdVnZHkz5L8TZKntdauXfH4oa21G0cZbskt9WHF\nqrpfJtG+LMlbVjz8yiTfTvLMqrrzBo/GGlprH26t/eXe0Z7ef2WSt05vnrrhg3F7vCDJaUmelcnP\nGHNmesrp15N8J8lPrYx2koj2eJY63Jn88kiSC1YJwbVJ/i7JnZI8cqMH46Ds/kVy06hTsKaqenCS\n1yd5U2vt4rHnYU2PzuSIyPlJvllVW6vqxVX1wqp61MizLb1lP8f9oOnyC2s8fmkme+THJ7lwQybi\noFTVpiQ/Pb35wTFnYXXT5+hdmVyX8JKRx2H/HjFdXpVke5KH7f1gVV2cySmpHRs9GPa4j5oud67x\n+O7777YBs7A+r0/y0CTnt9Y+NPYwrOoVmVzUdFZr7fqxh2G/Nk+Xz01yRJLHJ7lrJj9jH0ry2CTv\nGWc0lj3ct6Wmy+W+gm/OVdULkvxSJq8IeObI47CKqjo5k73s32ytfWzsebhNd5guK5M96wtba9e1\n1j6d5KlJLk/yww6bj2PZw717j/qoNR4/csXnMWeq6vlJ3pTkM0ke11q7ZuSRWGGvQ+RfSPLykcfh\nwHxzuvy31ton935gerRk91Gtkzd0KpII9+eny+PXePyB0+Va58AZUVWdneS3k/xrJtG+cuSRWN1d\nMvkZe3CSG/Z605WWyas3kuT3p/e9cbQp2dvu343fWuPx3WE/YgNmYYVlvzjtounyiVV1yIrXBd81\nyWOSXJ/kH8YYjrVV1YszOa/9iSRPaK19Y+SRWNt3k7xjjcdOyuS89yWZxMJh9PlwcSavznhgVR3W\nWvveiscfOl1etqFTkWTJw91a+1JVXZDJlePPz+SdnHZ7dSZv9PG21prXms6Rqnp5kv+bZFuSJzo8\nPt+mh1ZXfUvTqnpVJuF+pzdgmR+ttW9U1Z8meXomFxW+bPdjVfWEJE/K5BSiV3CMYKnDPfVzmbzl\n6Zur6vQkn01ySpLHZXKI/KUjzsYKVXVmJtHeleRvk7xg8kZc+7istXbuBo8Gi+YXM/ld+NKqemwm\n70z4/ZlcnLYrk3e7W+tQOjO09OGe7nX/QCYxeHKSp2TyfrxvTvJqe3Nz57jp8g5Jzl7jcz6a5NwN\nmQYWVGvt61V1SiZ720/N5I2ork1yXpLXtdacQhzJ0r9XOQD0ZNmvKgeArgg3AHREuAGgI8INAB0R\nbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI78\nf761tSZ+rs5DAAAAAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49823de978>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"0682f8f2036c4e8584b9e2d1c552a8e4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_7023bb7aae314c7b807e8ddbd26c78a2", | |
"max": 7, | |
"style": "IPY_MODEL_34372157d51242ffafb23c5a8ee69534", | |
"value": 1 | |
} | |
}, | |
"069470cfc823418b93874f9f48919fc9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"073df6bfdb85429290f34a863d6342b9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"077409ba2e1d4febbe9826283c1793ca": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_de7232f36e3a497487d397e6cfde8d57", | |
"max": 3, | |
"style": "IPY_MODEL_df16d03e0d9f43b68da4288c35ea35d7", | |
"value": 2 | |
} | |
}, | |
"07c12f5c71d14d04a61f6826e854bb1a": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_4bc93c48a3b04e9dac31facb1c42e278", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGLxJREFUeJzt3WuwZWV95/HfH9tWgqABSzEiKgrC\nSCoRFFS8ooLRmSl1JFZlQtSKZhw1eK0y4xVNmWjNZKJiJproaGLmhck4zlQCCtFQ4hWm2qjxCl4I\nyoAKeAGCIPDMi71bm8M5dMtZ5+zzd38+VV2rz157r+cp2+4vz1rrrFNjjAAAPey16AkAAHtOuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAa2bboCexOVX0jyX5JLlzwVADg1rpXkh+OMe693gNt+XAn2W/v29f+Rxy6ff9FTwQAbo0vXXBd\nrvnRmORYHcJ94RGHbt///551j0XPAwBulQed8M18+p+uvXCKY7nGDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nsm3RE9gyrrg+ufi65LqRbK/k7tuT/f3PA8DWMlmZquqgJK9L8vgkByS5JMn/TvLaMcb3phpnct+6\nLrXj6tQlP77ZrnG322YcvU9y0PYFTAwAbm6SU+VVdZ8kO5I8M8l5Sf44ydeTvCDJJ6vqgCnGmdyX\nrkmd/v3UJT/OWLFrJKlLfpw6/fvJl69ZxOwA4Gamusb935LcJckpY4wnjTF+b4xxfGYBv1+S1080\nznS+dV3qnCtT82LXit07v66R1EeuTL513WbODgBWte5wV9UhSU5IcmGSP1mx+zVJrk5yclXts96x\nplQ7rv5JtHf73jF7PwAs2hQr7uPn27PGGDfuumOMcWWSjyf5hSQPnmCsaVxx/aqnx9ey87R5rrh+\nI2cFALs1xc1p95tvz19j/wWZrcgPS/LhtQ5SVTvW2HX4rZ/aGi6enfZeeXp8LT9538XXudMcgIWa\nYsV9x/n2B2vs3/n6nSYYaxrX7elae6LPAcBENmP5uHPBeovVG2McveqHZyvxoyad0fY9XWtP9DkA\nmMgUK+6dK+o7rrF/vxXvW7y7z74v+2e5xr3r5wBgUaYI91fm28PW2H/ofLvWNfDNt/+2jLvd9me6\nxj3udlvXtwFYuCnCffZ8e0JV3eR4VbVvkuOSXJPkUxOMNZlx9D4Ze1juUbP3A8CirTvcY4yvJTkr\nyb2SPG/F7tcm2SfJX44xttY3Qh+0PeMR+/4k3qs9OS2ZR/uR+3rsKQBbwlTnfp+b5BNJ3lJVj0ny\npSTHJnl0ZqfIXzHRONM6Yu+MfW+TrPKs8p2nxz2rHICtZJJwjzG+VlUPzE9/yMgTMvshI2/J7IeM\nXDHFOBvioO0ZB23P8NPBAGhgsjKNMb6Z2Q8Z6Wn/bUINwJY31Q8ZAQA2gXADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI9sWPYFlduIv/eqipwDAJrhgXJbk2kmOZcUNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCOThLuq\nnlpVp1XVR6vqh1U1quqvpjg2APBT2yY6ziuT/EqSq5J8K8nhEx0XANjFVKfKX5TksCT7JfmPEx0T\nAFhhkhX3GOPsnb+vqikOCQCsws1pANDIVNe4162qdqyxy/VyAJiz4gaARrbMinuMcfRqr89X4kdt\n8nQAYEuy4gaARoQbABoRbgBoRLgBoJFJbk6rqicledL8ywPn24dU1bvnv79sjPHSKcYCgGU21V3l\nv5rk6SteO2T+K0n+OYlwA8A6TXKqfIxx6hijbuHXvaYYBwCWnWvcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI2sO9xVdUBVPauq3l9VX62qa6rqB1X1sar6\n7aryHwcAMJFtExzjpCR/muSSJGcnuSjJXZM8Jck7kvxaVZ00xhgTjAUAS22KcJ+f5N8mOX2McePO\nF6vq5UnOS/LvMov4+yYYCwCW2rpPY48x/mGM8be7Rnv++qVJ3jb/8lHrHQcA2Pib0348316/weMA\nwFLYsHBX1bYkvzX/8oMbNQ4ALJMprnGv5Q1JjkxyxhjjzN29uap2rLHr8ElnBQCNbciKu6pOSfKS\nJF9OcvJGjAEAy2jyFXdVPS/Jm5N8McljxhhX7MnnxhhHr3G8HUmOmm6GANDXpCvuqnphkrcm+XyS\nR8/vLAcAJjJZuKvqZUn+OMlnMov2d6Y6NgAwM0m4q+pVmd2MtiOz0+OXTXFcAOCm1n2Nu6qenuR1\nSW5I8tEkp1TVyrddOMZ493rHAoBlN8XNafeeb2+T5IVrvOcjSd49wVgAsNSmeOTpqWOM2s2vR00w\nVwBYen7kJgA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjUwS7qp6Y1V9uKq+WVXXVNUVVfWPVfWaqjpgijEAgOlW3C9Ksk+Sv0/y5iT/I8n1SU5N8rmq\nusdE4wDAUts20XH2G2P8aOWLVfX6JC9P8p+SPHeisQBgaU2y4l4t2nN/Pd8eOsU4ALDsNvrmtH8z\n335ug8cBgKUw1anyJElVvTTJHZLcMckDkzwss2i/YQ8+u2ONXYdPNkEAaG7ScCd5aZK77vL1B5M8\nY4zx3YnHAYClNGm4xxgHJklV3TXJQzNbaf9jVf3rMcand/PZo1d7fb4SP2rKeQJAVxtyjXuM8e0x\nxvuTnJDkgCR/uRHjAMCy2dCb08YY/5zki0nuX1V33sixAGAZbMYjT39pvr1hE8YCgJ9r6w53VR1e\nVQeu8vpe8wew3CXJJ8YY31vvWACw7Ka4Oe3xSf5zVZ2T5GtJLs/szvJHJjkkyaVJnj3BOACw9KYI\n94eS/FmS45L8SpI7Jbk6yflJ3pPkLWOMKyYYBwCW3rrDPcb4fJLnTTAXAGA3/DxuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2LNxVdXJVjfmvZ23UOACw\nTDYk3FV1jySnJblqI44PAMtq8nBXVSV5V5LLk7xt6uMDwDLbiBX3KUmOT/LMJFdvwPEBYGlNGu6q\nOiLJG5K8eYxxzpTHBgCSbVMdqKq2JXlPkouSvPxWfH7HGrsOX8+8AODnyWThTvLqJA9I8rAxxjUT\nHhcAmJsk3FV1TGar7D8aY3zy1hxjjHH0GsfekeSodUwPAH5urPsa9y6nyM9P8qp1zwgAWNMUN6fd\nIclhSY5I8qNdHroykrxm/p4/n7/2pgnGA4ClNcWp8muTvHONfUdldt37Y0m+kuRWnUYHAGbWHe75\njWirPtK0qk7NLNx/McZ4x3rHAoBl54eMAEAjwg0AjWxouMcYp44xymlyAJiGFTcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5OEu6ourKqxxq9LpxgDAEi2\nTXisHyR50yqvXzXhGACw1KYM9/fHGKdOeDwAYAXXuAGgkSlX3Lerqt9McnCSq5N8Lsk5Y4wbJhwD\nAJbalOE+MMl7Vrz2jap65hjjIxOOAwBLa6pwvyvJR5N8IcmVSQ5J8vwkv5PkA1X1kDHGZ2/pAFW1\nY41dh080RwBob5JwjzFeu+Klzyd5TlVdleQlSU5N8uQpxgKAZTblqfLVvC2zcD9id28cYxy92uvz\nlfhRE88LAFra6LvKvzPf7rPB4wDAUtjocD9kvv36Bo8DAEth3eGuqvtX1f6rvH7PJG+df/lX6x0H\nAJjmGvdJSX6vqs5O8o3M7iq/T5InJrl9kjOS/JcJxgGApTdFuM9Ocr8kD8js1Pg+Sb6f5GOZfV/3\ne8YYY4JxAGDprTvc84ereMAKAGwCzyoHgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaCRScNdVQ+vqvdV1SVVde18e1ZVPWHKcQBgWW2b6kBV9cokv5/k\nsiR/l+SSJHdO8oAkj0pyxlRjAcCymiTcVXVSZtH+UJKnjDGuXLH/tlOMAwDLbt2nyqtqryRvTPIv\nSX5jZbSTZIzx4/WOAwBMs+J+aJJ7J/mfSb5XVU9McmSSHyU5b4zxyQnGAAAyTbgfNN9+O8mnk/zy\nrjur6pwkTx1jfPeWDlJVO9bYdfi6ZwgAPyemuKv8LvPtc5LsneSxSfbNbNV9ZpJHJPmbCcYBgKU3\nxYr7NvNtZbay/uz86y9U1ZOTnJ/kkVX1kFs6bT7GOHq11+cr8aMmmCcAtDfFivt78+3Xd4l2kmSM\ncU1mq+4kOWaCsQBgqU0R7q/Mt99fY//OsO89wVgAsNSmCPc5Sa5PcmhVbV9l/5Hz7YUTjAUAS23d\n4R5jXJbkvUnumOTVu+6rqsclOTHJD5J8cL1jAcCym+qRpy9OcmySV1TVI5Kcl+SeSZ6c5IYkzx5j\nrHUqHQDYQ5OEe4zxnao6NskrM4v1g5NcmeT0JH84xvjUFOMAwLKb7IeMjDGuyGzl/eKpjgkA3JSf\nxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADSybdET2CrOv/zA\nfOKiw3LVdbfLHbZfm4cefH4OO+DSRU8LAG5i3eGuqmckeddu3nbjGOM26x1rI3z8okNz2rkn5ryL\n73uzfcfc/av53WPPzHEHX7CAmQHAzU2x4v5Mkteuse/hSY5P8oEJxpncez9/bF7x4aflxrFXkpGk\ndtk7ct7F983T339I/uCx782v3//cBc0SAH5q3eEeY3wms3jfTFV9cv7bP1vvOFP7+EWH7hLt5KbR\n/unXN4698vIPPS133/cKK28AFm7Dbk6rqiOTPDjJxUlO36hxbq3Tzj1xl2jfshvHXnnruSdu8IwA\nYPc28q7y/zDfvnOMccMGjvMzO//yA+fXtMcefmLk3Ivvm/MvP3AjpwUAu7Uhd5VX1d5JfjPJjUne\nsYef2bHGrsOnmtdOn7josJ2j7uEn6iefc6c5AIu0USvuX09ypyQfGGN8c4PGuNWuuu52m/o5AJjK\nRn0f9+/Mt2/f0w+MMY5e7fX5SvyoKSa10x22X7upnwOAqUy+4q6qf5XkoUm+leSMqY8/hYcefP78\nd3t+jfumnwOAxdiIU+Vb9qa0nQ474NIcc/ev5me5xn3s3b/q+jYACzdpuKvq9klOzuymtHdOeeyp\n/e6xZ2avunGP3rtX3ZjnH3vmBs8IAHZv6hX3SUl+MckZW/GmtF0dd/AFef1j3rtLvFeeNp99vVfd\nmD947Hs9fAWALWHqm9N23pS25Z6UtpqnHXluDtrvirz13BNz7s2eVT47Pf58zyoHYAuZLNxVdUSS\nh2UL35S2muMOviDHHXyBnw4GQAuThXuM8aXs+d1eW85hB1wq1ABseRv5yFMAYGLCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI3UGGPRc7hFVXX53rev/Y84dPuipzK5C/5p70VPAYBNcHWuzI254YoxxgHrPVaHcH8jyX5J\nLtyE4Q6fb7+8CWMxDX9m/fgz68ef2frdK8kPxxj3Xu+Btny4N1NV7UiSMcbRi54Le8afWT/+zPrx\nZ7a1uMYNAI0INwA0ItwA0IhwA0Ajwg0AjbirHAAaseIGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLiTVNVBVfXfq+r/VdW1VXVhVb2pqn5x0XPjpqrqgKp6VlW9v6q+WlXXVNUPqupjVfXbVeX/\n001U1clVNea/nrXo+bC6qnp4Vb2vqi6Z//t4SVWdVVVPWPTcltW2RU9g0arqPkk+keQuSf5PZj9v\n9pgkL0jy+Ko6boxx+QKnyE2dlORPk1yS5OwkFyW5a5KnJHlHkl+rqpOGJwttaVV1jySnJbkqyR0W\nPB3WUFWvTPL7SS5L8neZ/b27c5IHJHlUkjMWNrkltvRPTquqM5OckOSUMcZpu7z+X5O8KMnbxxjP\nWdT8uKmqOj7JPklOH2PcuMvrByY5L8k9kjx1jPG+BU2R3aiqSvL3Se6d5H8leWmSZ48x3rHQiXET\nVXVSkr9O8qEkTxljXLli/23HGD9eyOSW3FKfVqyqQzKL9oVJ/mTF7tckuTrJyVW1zyZPjTWMMf5h\njPG3u0Z7/vqlSd42//JRmz4xfhanJDk+yTMz+zvGFjO/5PTGJP+S5DdWRjtJRHtxljrcmf3jkSRn\nrRKCK5N8PMkvJHnwZk+MW2XnPyTXL3QWrKmqjkjyhiRvHmOcs+j5sKaHZnZG5Iwk36uqJ1bVy6rq\nBVX1kAXPbekt+zXu+82356+x/4LMVuSHJfnwpsyIW6WqtiX5rfmXH1zkXFjd/M/oPZndl/DyBU+H\nW/ag+fbbST6d5Jd33VlV52R2Seq7mz0xrLjvON/+YI39O1+/0ybMhfV5Q5Ijk5wxxjhz0ZNhVa/O\n7KamZ4wxrln0ZLhFd5lvn5Nk7ySPTbJvZn/HzkzyiCR/s5ipsezh3p2ab5f7Dr4trqpOSfKSzL4j\n4OQFT4dVVNUxma2y/2iM8clFz4fdus18W5mtrD88xrhqjPGFJE9O8q0kj3TafDGWPdw7V9R3XGP/\nfivexxZTVc9L8uYkX0zy6DHGFQueEivscor8/CSvWvB02DPfm2+/Psb47K475mdLdp7VOmZTZ0US\n4f7KfHvYGvsPnW/XugbOAlXVC5O8NcnnM4v2pQueEqu7Q2Z/x45I8qNdHroyMvvujST58/lrb1rY\nLNnVzn8bv7/G/p1h33sT5sIKy35z2tnz7QlVtdeK7wveN8lxSa5J8qlFTI61VdXLMruu/Zkkjxtj\nXLbgKbG2a5O8c419R2V23ftjmcXCafSt4ZzMvjvj0KraPsa4bsX+I+fbCzd1ViRZ8nCPMb5WVWdl\nduf48zJ7ktNOr83sQR9vH2P4XtMtpKpeleR1SXYkOcHp8a1tfmp11UeaVtWpmYX7LzyAZesYY1xW\nVe9N8u8zu6nwlTv3VdXjkpyY2SVE38GxAEsd7rnnZvbI07dU1WOSfCnJsUkendkp8lcscG6sUFVP\nzyzaNyT5aJJTZg/iuokLxxjv3uSpwc+bF2f2b+ErquoRmT2Z8J6Z3Zx2Q2ZPu1vrVDobaOnDPV91\nPzCzGDw+yRMyex7vW5K81mpuy7n3fHubJC9c4z0fSfLuTZkN/JwaY3ynqo7NbLX95MweRHVlktOT\n/OEYwyXEBVn6Z5UDQCfLflc5ALQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANPL/Aauh33txYYIKAAAAAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7ffb4edf1ef0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"07c5e49e33d94f5d85f870bb6f0054ab": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"07e8cfe37811455cbb6d07d4f58572fc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_5597bb6120ca443cad19de68149d827b", | |
"max": 7, | |
"style": "IPY_MODEL_621894e2006f4c79b3f79a2f3d43a959", | |
"value": 7 | |
} | |
}, | |
"07f554df6b174e499d3ec0bd10e67873": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_a7fe77c232c544c6a776579ac62b5aef", | |
"IPY_MODEL_76f44678e5004ef4ac4861065d91f375", | |
"IPY_MODEL_e5bebec96fb84b69920940e980e646bd" | |
], | |
"layout": "IPY_MODEL_e417ce53a3de498a82ceb31e60a6872d" | |
} | |
}, | |
"082b6fdd6c8a4a70af8b2fe83abbb804": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"082f9dd89faf4c03882a7ebdf28d2d2d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_13243849f71f44efbae5cccb15d46b66", | |
"max": 7, | |
"style": "IPY_MODEL_e65c137ee14f4f7898d1ebde6885497c", | |
"value": 1 | |
} | |
}, | |
"0849f93e699d43cd8f01228b24a461d3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"nn", | |
"ee", | |
"ss", | |
"ww" | |
], | |
"description": "d", | |
"index": 0, | |
"layout": "IPY_MODEL_9cae4a4b1bed4cb2a6163f11aa28550e", | |
"style": "IPY_MODEL_bb97a1e82bbb461ebcc95ae32abc2c4c" | |
} | |
}, | |
"087e05a5bc96400e935e2e4d7ec4378a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"08897e32d4c240959fd0793b2eb2ada4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_85a3f4ca30ea43da86a48080dcd0dcb3", | |
"style": "IPY_MODEL_62f0bbd4aa4f463fbd1a4dcc4c69a803" | |
} | |
}, | |
"0899ea7c044344f9876fe234600732b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_2ffecaf4c2204ca4a701b1e50a0b715d", | |
"IPY_MODEL_b6664c42527f4f518d9278f482ca4efd", | |
"IPY_MODEL_c2db6f1d24bb477d99e76ba1aaabe1c4", | |
"IPY_MODEL_aa788746f1ed417dbb83417479fc9958", | |
"IPY_MODEL_eb32dcae130c4e1ab050c3102ea2af58" | |
], | |
"layout": "IPY_MODEL_599ace51ebff4d4ebd739ea82d35d1d3" | |
} | |
}, | |
"091279268f8949edb3a95fc77daa74fd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"096e26298e6b470f9631a7bcb31aeb6c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0996f44dfede4b2db3e8dc21f79c8554": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"09d3da1d42c3496a84e576b81cb505b3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_541fc921f9fc498a9c551582f0fb7cba", | |
"max": 7, | |
"style": "IPY_MODEL_44f8ccaa065b4b16ab111db96cedc9b8", | |
"value": 1 | |
} | |
}, | |
"0a1022253f6f417caeab24f543c569fb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0a17a87151ce4d4e904ea8ce1b06b4b9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0a202292f9cd4698b5c8277c64f2b291": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_2834656ce9ef461db0f98f3e143b9df4", | |
"max": 7, | |
"style": "IPY_MODEL_a8a309ae09804c4cb8f9e4736bf5c2b0", | |
"value": 4 | |
} | |
}, | |
"0a2a321d5bca430ebb99febe51ef9cb2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0a47241936b8451eadadb51bf53acfcf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0a6a4cf13ed041c2a1012ff418c6c84b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0b0372b996dc42c599dfdc62a933764e": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_c76e79eae8f047a28d951966f2ff578f", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "<class 'int'> <class 'numpy.int64'> 0b11110000000000000000000000000000000000000000000000000000 0b100010000000000100100000000000001010000100001000000000\n" | |
}, | |
{ | |
"ename": "TypeError", | |
"evalue": "ufunc 'left_shift' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-109-6b1961bc89a3>\u001b[0m in \u001b[0;36mmake_laser_map_i\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 75\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 76\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-109-6b1961bc89a3>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-87-acc3aa59f506>\u001b[0m in \u001b[0;36mproject\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mNN\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m-=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m \u001b[0;34m<<\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mall1\u001b[0m \u001b[0;34m>>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m7\u001b[0m\u001b[0;34m^\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mSS\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m+=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: ufunc 'left_shift' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''" | |
] | |
} | |
] | |
} | |
}, | |
"0b3b724d1f8a4a86acd605094b8cc6ff": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0b720bf1e4394a3982463b9d4c8a72ff": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0b96114338b242a58933dd710346cbf4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0bb3196334874751a966062e1a25ea94": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0c02866f25564ac9b8ffc3316341dcb5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0c15dc91c1354ce682d77bd6536d0bf7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0c29b33c4a134c31a5a25667d6944cee": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0c52aba3dac04b14a4949af91656bec3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0c7172a927134e82bf71c67210b253d5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0c964edfaa594482892859372605aad0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_97124d0a9f314eb486a054bd281944e0", | |
"IPY_MODEL_d7f34ac06525424dab134165cfb01b23", | |
"IPY_MODEL_89007683a42b4db1b257d84ada84eb4e", | |
"IPY_MODEL_cc439d25743f4da6b2f7258dda512409" | |
], | |
"layout": "IPY_MODEL_19e41c3c690f47aabcdec32907b630e2" | |
} | |
}, | |
"0cb160eb49654211973c20e17bb61d1a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0cbd0427f83147878e326d5b1d15edd4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0cce4ed6fb9240d9a12e946998b02d2f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0cfe757cfcb044fdbd4bd0b294c489e7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_cf36052cfd1241478a2eeea83568bfc0", | |
"style": "IPY_MODEL_677345b58461465b85af1be81c5daa44" | |
} | |
}, | |
"0d1be57fe9b34011a233526e044e3b28": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0d50fb41d39a489da1177b7db47f97b0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_a6f546ec921f40379d4e1a768fe99bc4", | |
"max": 7, | |
"style": "IPY_MODEL_eff14c2ca5ff4bffa74bd6327a128d54", | |
"value": 2 | |
} | |
}, | |
"0d5611ddeeea4023a989febf5be21541": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0d5c677a7cd04a919f1d15622ca312f4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_073df6bfdb85429290f34a863d6342b9", | |
"max": 7, | |
"style": "IPY_MODEL_cb82969842644851b0e24909afc53787", | |
"value": 2 | |
} | |
}, | |
"0d691e1fc934488bad97f10852326e11": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_8853690690a64f4d863dd8222bb630eb", | |
"max": 7, | |
"style": "IPY_MODEL_20eded8eaa0a42ddb4284f88cb54ff28", | |
"value": 1 | |
} | |
}, | |
"0da10704e320481997da4946df7760cf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_91cc393a05bb4f8486df50e18280aa5c", | |
"max": 3, | |
"style": "IPY_MODEL_c08a8093a2ff4201b9e85f17a983543b", | |
"value": 1 | |
} | |
}, | |
"0df982da822e48adbe898d260217bdb8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0e20c9feb01a4d519c0423ea5822eb6d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0e2df20d277d4889980f9651b1707a21": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0e9af4f4a72e4cf184e72b66c5da88e9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0eb749d5406a4fd8b571c4e2e54d525f": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_d39ed18d8c104cdebe57a93a6c8d34cb", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGXtJREFUeJzt3Xv07XVd5/HXG04pImjiAtesvECK\nYLoczym8oIKQZjbNCkdmXE1UTto4OaGVpXm/rJZ0F6zppmXRH11Ga5ZJSiKCkEXrnNEsSVQ8aBNK\neAVFU/jMH3ufOBzO5hz4ffdvn/fZj8dav/U9v/397e/nc/j9zu/J97K/u8YYAQB6OGTVEwAA9p9w\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADSyZdUT2Jeq+niSI5PsXPFUAOCuelCSL44xjt3ohg74cCc58rDDcp8TT8x9Vj2Rqe1Y9QRg\nbuuqJ7BEOw7qvx1tXHllctNNk2yqQ7h3nnhi7rN9+6qnMb1a9QRg7iD85/Vv6qD+29HGtm3Jjh07\np9iUc9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCNbVj0BYH1c9ekH5PKPPjI3fuUeuefdv5yTH/yBHH/MJ1Y9\nLdbQw667MqdffUmO/OoN+eLdjshFx52SDx194qqntV8mC3dVfXOS1yR5apKjklyb5M+SvHqM8bmp\nxgH6ufyjj8y5Fz0zV3z8Ebdbd9KxH8zzT//DnPzgD6xgZqyb065+T15xyc/nlGsuv926Sx54cl5z\nyk/n3ceduunzujMmOVReVd+SZHuSZyW5IsmvJLk6yfOTvK+qjppiHKCfP/rbJ+esN712Hu2xx9qR\nKz7+iJz1ptfmj//2yauYHmvkv+34/Vx4/hk55ZrL9/KTmJxyzeW58Pwz8qwd569ievttqnPc/yvJ\n0UnOHmN87xjjxWOM0zIL+EOT/OxE4wCNXP7RR+Zn3vpjuWXs+lVTe3zF7PNbxiF58Vt/LJd/9JGb\nOj/Wx2lXvye/9bbn59BxS5JFP4nJoeOW/Pbbzs5pV79nM6d3p2w43FV1XJKnJNmZ5Nf2WP3KJF9K\nclZVHb7RsYBezr3ombtF+47dMg7JeRc9c8kzYl294pKf/7do78uh45a8/JJfWPKM7rop9rhPmy8v\nHOO2/1XGGDckuTzJPZI8ZoKxgCau+vQDFhweX2Tkbz7+iFz16Qcsc1qsoYddd+VeD48vMpKces1l\nedh1Vy5zWnfZFOF+6Hx51YL1H5kvj7+jjVTV9r19JDlhgjkCm+zWw957HpRcpPZ4Hkzj9KsvSXJn\nfxJvfd6BZopw32u+/MKC9bsev/cEYwFN3PiVe2zq82CRI796w6Y+b9k243Xcu/7n5Q6PUowxtu31\nybO97q1TTwpYrnve/cub+jxY5It3O2JTn7dsU+xx79qjvteC9Ufu8XXAGrj1ddl35sxivJ6byV10\n3ClJ7uxP4q3PO9BMEe4Pz5eLzmE/ZL5cdA4cOAgdf8wnctKxH8ydObP46GM/6E5qTO5DR5+YSx54\n8p06x/2eBz7+gL2T2hThvni+fEpV3WZ7VXVEkpOT3JTkrycYC2jk+af/YQ6p/XsJziF1S84+/Q+X\nPCPW1WtO+encXPuXvJvrkLz2lJ9a8ozuug2He4zxsSQXJnlQkuftsfrVSQ5P8vtjjC9tdCygl5Mf\n/IG87ulv2C3ee7tf1Sza5zz9DQ6TszTvPu7U/Mj3nPtv8d77T+Is2s/5nvMO6NueTnVx2o8m+ask\n51XV6UmuTPLoJE/K7BD5SycaB2jmv3z7X+abv+m6nHfRM/M3t7tX+ezw+NnuVc4m+J2tP5Cd935A\nXn7JL+TUay67zbpdh8dfe8pPHdDRTpIaY39P1+9jQ1X3z+I3GfnsBra7fevWbN2+fZJpHlD293wL\nLNs0vwX2bRXvDlab9rejk01/d7Bt25IdO3YsegXVnTHZy8HGGJ/M7E1GAPbq+GM+4eIzDggfOvrE\nA/bis32Z6k1GAIBNINwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyJZVT2B/7NiRVK16FnDwOrj/eR3cfzvWjz1uAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABqZJNxV9YyqekNVvbeqvlhVo6r+YIptAwC32jLRdl6W5JFJ\nbkzyT0lOmGi7AMBupjpU/uNJjk9yZJL/MdE2AYA9TLLHPca4eNefq2qKTQIAe+HiNABoZKpz3BtW\nVdsXrHK+HADm7HEDQCMHzB73GGPb3h6f74lv3eTpAMAByR43ADQi3ADQiHADQCPCDQCNTHJxWlV9\nb5LvnX96v/nysVX15vmfrx9jvHCKsQBgnU11Vfm/T/KDezx23PwjSa5JItwAsEGTHCofY7xqjFF3\n8PGgKcYBgHXnHDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0AjW1Y9gf2xNcn2VU9iCWrVEwCgHXvcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjWw43FV1VFU9u6r+tKo+WlU3VdUXquqyqvrhqvI/BwAwkS0TbOPM\nJL+e5NokFyf5RJJjkjw9yRuTfFdVnTnGGBOMBQBrbYpwX5XkPyZ5+xjjll0PVtVLklyR5D9lFvG3\nTDAWAKy1DR/GHmO8e4zxtt2jPX/8U0l+Y/7pqRsdBwBY/sVpX5svv77kcQBgLSwt3FW1JckPzD99\nx7LGAYB1MsU57kXOSfLwJBeMMd65ry+uqu0LVp0w6awAoLGl7HFX1dlJfjLJPyY5axljAMA6mnyP\nu6qel+TcJB9KcvoY47P787wxxrYF29ueZOt0MwSAvibd466qFyT51SR/n+RJ8yvLAYCJTBbuqnpR\nkl9J8v7Mon3dVNsGAGYmCXdVvTyzi9G2Z3Z4/PoptgsA3NaGz3FX1Q8meU2Sm5O8N8nZVbXnl+0c\nY7x5o2MBwLqb4uK0Y+fLQ5O8YMHXXJLkzROMBQBrbYpbnr5qjFH7+Dh1grkCwNrzlpsA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNbFn1BPbHjiS16knAQWysegJL5HcHBxt73ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0Mkm4q+rnquqiqvpkVd1UVZ+tqv9bVa+sqqOmGAMASGqMsfGNVP1rkh1JPpTkuiSH\nJ3lMkm9L8s9JHjPG+ORd3Pb2JFs3PElgoY3/Fjhw1aonALfaMcbYttGNbJliJkmOHGN8Zc8Hq+pn\nk7wkyc8k+dGJxgKAtTXJofK9RXvuj+fLh0wxDgCsu2VfnPY98+XfLXkcAFgLUx0qT5JU1QuT3DPJ\nvTI7v/34zKJ9zn48d/uCVSdMNkEAaG7ScCd5YZJjdvv8HUl+aIzxLxOPAwBraZKrym+30apjkjwu\nsz3tI5L8hzHGjru4LVeVw5K5qhw2xSRXlS/lHPcY49NjjD9N8pQkRyX5/WWMAwDrZqkXp40xrsns\ntd3fWlX3XeZYALAONuOWp/9uvrx5E8YCgIPahsNdVSdU1f328vgh8xuwHJ3kr8YYn9voWACw7qa4\nqvypSX6hqi5N8rEkn8nsyvJTkhyX5FNJnjPBOACw9qYI97uS/FaSk5M8Msm9k3wpyVVJzk9y3hjj\nsxOMAwBrb8PhHmP8fZLnTTAXAGAfvB83ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCNLC3dVnVVVY/7x7GWNAwDrZCnhrqr7J3lDkhuXsX0AWFeTh7uqKsnv\nJvlMkt+YevsAsM6Wscd9dpLTkjwryZeWsH0AWFuThruqTkxyTpJzxxiXTrltACDZMtWGqmpLkvOT\nfCLJS+7C87cvWHXCRuYFAAeTycKd5BVJHpXk8WOMmybcLgAwN0m4q+qkzPayf2mM8b67so0xxrYF\n296eZOsGpgcAB40Nn+Pe7RD5VUlevuEZAQALTXFx2j2THJ/kxCRf2e2mKyPJK+df89vzx14/wXgA\nsLamOFT+1SRvWrBua2bnvS9L8uEkd+kwOgAws+Fwzy9E2+stTavqVZmF+/fGGG/c6FgAsO68yQgA\nNCLcANBIjTFWPYc75OVgsHwH9m+BjalVTwButWPRS5/vDHvcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njWxZ9QQ4OI1VT2BJatUTWJKD9e8FByN73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1MEu6q2llVY8HH\np6YYAwBItky4rS8kef1eHr9xwjEAYK1NGe7PjzFeNeH2AIA9OMcNAI1Mucd9t6r6/iQPSPKlJH+X\n5NIxxs0TjgEAa23KcN8vyfl7PPbxqnrWGOOSCccBgLU1Vbh/N8l7k/xDkhuSHJfkfyb5kSR/UVWP\nHWN84I42UFXbF6w6YaI5AkB7NcZY3sarfjHJTyb5szHGGfv42jsK9z2mnhvLtbyfqtWqVU8A6GzH\nGGPbRjey7HA/OMlHknx2jHHUXdzG9iRbJ50YSyfcALczSbiXfVX5dfPl4UseBwDWwrLD/dj58uol\njwMAa2HD4a6qb62q++zl8Qcm+dX5p3+w0XEAgGmuKj8zyYur6uIkH8/sqvJvSfLdSe6e5IIkvzjB\nOACw9qYI98VJHprkUZkdGj88yeeTXJbZ67rPH8u8Ag4A1siGwz2/uYobrADAJnCvcgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEa2rHoCHJxq1RMAOEjZ4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkUnD\nXVVPqKq3VNW1VfXV+fLCqnralOMAwLraMtWGquplSV6b5Pokf57k2iT3TfKoJKcmuWCqsQBgXU0S\n7qo6M7NovyvJ08cYN+yx/humGAcA1t2GD5VX1SFJfi7Jl5N8357RTpIxxtc2Og4AMM0e9+OSHJvk\nfyf5XFV9d5KHJ/lKkivGGO+bYAwAINOE+9vny08n2ZHkEbuvrKpLkzxjjPEvd7SRqtq+YNUJG54h\nABwkpriq/Oj58rlJDkvyHUmOyGyv+51JnpjkTyYYBwDW3hR73IfOl5XZnvUH5p//Q1WdkeSqJKdU\n1WPv6LD5GGPb3h6f74lvnWCeANDeFHvcn5svr94t2kmSMcZNme11J8lJE4wFAGttinB/eL78/IL1\nu8J+2ARjAcBamyLclyb5epKHVNU37mX9w+fLnROMBQBrbcPhHmNcn+SPktwrySt2X1dVT07ynUm+\nkOQdGx0LANbdVLc8/Ykkj07y0qp6YpIrkjwwyRlJbk7ynDHGokPpAMB+miTcY4zrqurRSV6WWawf\nk+SGJG9P8roxxl9PMQ4ArLsaY6x6DnfIy8EAOEjsWPTS5zvD+3EDQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0smXVE+DgNFY9gSWpVU8AWHv2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZcLir6oeqauzj4+Yp\nJgsA627LBNt4f5JXL1j3hCSnJfmLCcYBgLW34XCPMd6fWbxvp6reN//jb210HABgiee4q+rhSR6T\n5P8lefuyxgGAdbLMi9P++3z5pjGGc9wAMIEpznHfTlUdluT7k9yS5I37+ZztC1adMNW8AKC7Ze1x\n/+ck907yF2OMTy5pDABYO0vZ407yI/Plb+7vE8YY2/b2+HxPfOsUkwKA7ibf466qhyV5XJJ/SnLB\n1NsHgHW2jEPlLkoDgCWZNNxVdfckZ2V2Udqbptw2ADD9HveZSb4pyQUuSgOA6U0d7l0XpblTGgAs\nwWThrqoTkzw+LkoDgKWZ7OVgY4wrk9RU2wMAbs/7cQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxZ9QT2w4NW\nPQHuvG2rngDAgedBU2ykQ7i/OF/u3ISxTpgv/3ETxjqo7di8oXzP+vE968f3bOMelFt7tiE1xphi\nOweFqtqeJGMMO4xN+J7143vWj+/ZgcU5bgBoRLgBoBHhBoBGhBsAGhFuAGjEVeUA0Ig9bgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEO0lVfXNV/U5V/XNVfbWqdlbV66vqm1Y9N26rqo6qqmdX\n1Z9W1Uer6qaq+kJVXVZVP1xVfqabqKqzqmrMP5696vmwd1X1hKp6S1VdO//9eG1VXVhVT1v13NZV\nh/fjXqqq+pYkf5Xk6CT/J7P3mz0pyfOTPLWqTh5jfGaFU+S2zkzy60muTXJxkk8kOSbJ05O8Mcl3\nVdWZw52FDmhVdf8kb0hyY5J7rng6LFBVL0vy2iTXJ/nzzP7d3TfJo5KcmuSClU1uja39ndOq6p1J\nnpLk7DHGG3Z7/JeT/HiS3xxjPHdV8+O2quq0JIcnefsY45bdHr9fkiuS3D/JM8YYb1nRFNmHqqok\nf5nk2CRvTfLCJM8ZY7xxpRPjNqrqzCR/nORdSZ4+xrhhj/XfMMb42komt+bW+rBiVR2XWbR3Jvm1\nPVa/MsmXkpxVVYdv8tRYYIzx7jHG23aP9vzxTyX5jfmnp276xLgzzk5yWpJnZfZvjAPM/JTTzyX5\ncpLv2zPaSSLaq7PW4c7sl0eSXLiXENyQ5PIk90jymM2eGHfJrl8kX1/pLFioqk5Mck6Sc8cYl656\nPiz0uMyOiFyQ5HNV9d1V9aKqen5VPXbFc1t7636O+6Hz5VUL1n8ksz3y45NctCkz4i6pqi1JfmD+\n6TtWORf2bv49Oj+z6xJesuLpcMe+fb78dJIdSR6x+8qqujSzU1L/stkTwx73vebLLyxYv+vxe2/C\nXNiYc5I8PMkFY4x3rnoy7NUrMruo6YfGGDetejLcoaPny+cmOSzJdyQ5IrN/Y+9M8sQkf7KaqbHu\n4d6Xmi/X+wq+A1xVnZ3kJzN7RcBZK54Oe1FVJ2W2l/1LY4z3rXo+7NOh82Vltmd90RjjxjHGPyQ5\nI8k/JTnFYfPVWPdw79qjvteC9Ufu8XUcYKrqeUnOTfKhJE8aY3x2xVNiD7sdIr8qyctXPB32z+fm\ny6vHGB/YfcX8aMmuo1onbeqsSCLcH54vj1+w/iHz5aJz4KxQVb0gya8m+fvMov2pFU+JvbtnZv/G\nTkzyld1uujIye/VGkvz2/LHXr2yW7G7X78bPL1i/K+yHbcJc2MO6X5x28Xz5lKo6ZI/XBR+R5OQk\nNyX561VMjsWq6kWZndd+f5InjzGuX/GUWOyrSd60YN3WzM57X5ZZLBxGPzBcmtmrMx5SVd84xvjX\nPdY/fL7cuamzIsmah3uM8bGqujCzK8efl9mdnHZ5dWY3+vjNMYbXmh5AqurlSV6TZHuSpzg8fmCb\nH1rd6y1Nq+pVmYX799yA5cAxxri+qv4oyX/N7KLCl+1aV1VPTvKdmZ1C9AqOFVjrcM/9aGa3PD2v\nqk5PcmWSRyd5UmaHyF+6wrmxh6r6wcyifXOS9yY5e3YjrtvYOcZ48yZPDQ42P5HZ78KXVtUTM7sz\n4QMzuzjt5szudrfoUDpLtPbhnu91f1tmMXhqkqdldj/e85K82t7cAefY+fLQJC9Y8DWXJHnzpswG\nDlJjjOuq6tGZ7W2fkdmNqG5I8vYkrxtjOIW4Imt/r3IA6GTdryoHgFaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARv4/sMMP\nSj8UKhwAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4982086e80>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"0ee639cc1c594e87bba225fc05846088": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0efed3a6d9074858869952ebff33fb18": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_eb491e3d5b7f4132b04f28fde596b8e7", | |
"style": "IPY_MODEL_10c390759d8e446c90bb6a285d6cf814" | |
} | |
}, | |
"0f4205f933484b5fa1ee4d6e5780f289": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0f8268fb7e2c4888af74620e053fe906": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0fa0e4b55a0c47e7981b648bc72639ab": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0fa23ae3851d40d0a45761aed21b529a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_d9b674441e46455b837553fda0baeafb", | |
"max": 7, | |
"style": "IPY_MODEL_187b584d87c74b659b3a92d4f9be89b7" | |
} | |
}, | |
"0fc1097ecd8b40a8ad3bd35a5b2253a1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_9f40f9c2317e4cc2bad10959c14d9ef9", | |
"max": 7, | |
"style": "IPY_MODEL_32f2bffc67f949dcaa26ca584f52804e", | |
"value": 2 | |
} | |
}, | |
"0fcf23c58f164f83a1db0d13046f2490": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"0ff187e1281a43a1b0d73c7376ad9726": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_f5616924622749438fc423880b062b7e", | |
"IPY_MODEL_3fdcfc5789724f2096e68782950ec2ed", | |
"IPY_MODEL_1a45cb7addc2416fba44d80a8570a61a", | |
"IPY_MODEL_750cb1c32295446abeabba667571da1d", | |
"IPY_MODEL_5b737e8ed0f94bd1be187f846f319072" | |
], | |
"layout": "IPY_MODEL_f888ad3935934971a1dc485414307512" | |
} | |
}, | |
"10219a1832324e829d1befb89d27408c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1064e8a241594cc2b6d36d3bd849be39": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_700e3cbca69c412dadc77a8c0f0f3096", | |
"max": 7, | |
"style": "IPY_MODEL_64a6eaae2849403f93390b1f53867f38", | |
"value": 7 | |
} | |
}, | |
"108c08d9c6114681b3989a6270ea26ac": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"10bcc5c085304a7a8a9f8b087b42f39c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"10c390759d8e446c90bb6a285d6cf814": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"10cb55b6bed64da2b7ff4e6f5d255488": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"10e5831edaca427392fcf4d3e5817346": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_a97439527ae14d55a7d5c0100e4dadf2", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGdRJREFUeJzt3W2QbVdd5/HfHy5qCEnAUIGagiGQ\nSQhjLOUGQwBBCBIRcAqQzAvHCJTgMDAVUJjC4RktyzDjA08zgoBE8Y0yDGNJAmSAFAGBoupGoHgM\nAldgCIHwEBIMEcKaF+dc0+l033u7z95nn9Xn86nq2t1nd++1Kn27v1n77LO7WmsBAPpwm6knAAAc\nPeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDo\niHADQEeEGwA6sm/qCRxJVX0hyfFJDk48FQDYrZOTfKe1ds9FD7Ty4c4s2j8+fwOAtdbDqfKDU08A\nAAZwcIiD9BBuAGBOuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFu\nAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdGSzcVXW3qvqzqvpKVd1YVQer6uVVdaeh\nxgCAdbdviINU1SlJPpDkpCR/k+TTSc5K8swkj6yqB7XWvjHEWACwzoZacf/PzKJ9QWvtsa21326t\nnZPkj5PcO8nvDTQOAKy1aq0tdoCqeyX5XJKDSU5prf1ww77jklyVpJKc1Fr77i6OfyDJ/oUmCQDT\nu6K1duaiBxlixX3OfHvpxmgnSWvtuiR/l+T2Sc4eYCwAWGtDPMd97/n2ym32fzbJuUlOS/Lu7Q4y\nX1lv5fTdTw0A9pYhVtwnzLfXbrP/0ON3HGAsAFhrg1xVfgQ13x72yfTtzvt7jhsAbjbEivvQivqE\nbfYfv+nzAIBdGiLcn5lvT9tm/6nz7XbPgQMAR2mIcF82355bVbc43vzlYA9KckOSDw0wFgCstYXD\n3Vr7XJJLk5yc5Bmbdr80ybFJ/mI3r+EGAG5pqIvTnp7ZLU9fWVUPT/KpJPdP8rDMTpE/f6BxAGCt\nDXLL0/mq+35JLsos2M9OckqSVyZ5gPuUA8AwBns5WGvtS0mePNTxAIBb8/e4AaAjwg0AHRFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB3ZN/UE1lmbegIjqqknAHvcXvv98bYkvzT1JDphxQ3ApER7Z4QbgMlsjvbVU02kI8IN\nwCS2ivZJE82lJ8INwNKJ9u4JNwBLJdqLEW4Alka0FyfcACyFaA9DuAEYnWgPR7gBGJVoD0u4ARiN\naA9PuAEYhWiPQ7gBGJxoj0e4ARiUaI9LuAEYjGiPT7gBGIRoL4dwA7Aw0V4e4QZgIaK9XMINwK6J\n9vIJNwC7ItrTEG4Adky0pzNIuKvqCVX1qqp6X1V9p6paVf3lEMcGYLWI9rT2DXScFyT5qSTXJ/ly\nktMHOi4AK0S0pzfUqfLfTHJakuOT/KeBjgnAChHt1TDIiru1dtmh96tqiEMCsEJEe3W4OG1NfC9J\nm3oSQJdEe7UM9Rz3wqrqwDa7PF++oGuTnJvZRQivTeKcCHC0Ph7RXjVW3GvgXUk+nOR1Se4YK2/g\n6L15w/uivRpWZsXdWjtzq8fnK/H9S57OnvLLSR6W5LIk38ks3t+OlTdwZC9JcmKSJ2V29THTs+Je\nE+/JLN7JzfG28gaOpJJcENFeJcK9RsQboH/CvWbEG6Bvwr2GxBugX4NcnFZVj03y2PmHd51vH1BV\nF83fv6a19pwhxmIY70lyTlywBtCboa4q/+kkT9z02L3mb0nyj0mEe8WIN0B/BjlV3lp7SWutDvN2\n8hDjMDynzQH64jluxBugI8JNEvEG6IVw8y/EG2D1CTe3IN4Aq024uRXxBlhdws2WxBtgNQk32xJv\ngNUj3ByWeAOsFuHmiMQbYHUIN0dFvAFWg3Bz1MQbYHrCzY6IN8C0hJsdE2+A6Qg3uyLeANMQbnZN\nvAGWT7hZiHgDLJdws7Ct4g3AOISbQWyONwDjEG4GszHeAIxj39QTWGc19QTYsb36/P1e/rfoe8Ze\nY8UNAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQ\nEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHFg53VZ1YVU+pqrdW1T9U1Q1VdW1Vvb+qfr2q/M8B\nAAxk3wDHOC/JnyS5KsllSb6Y5C5JHp/k9Ul+sarOa621AcYCgLU2RLivTPLvklzcWvvhoQer6nlJ\nPpzklzOL+FsGGAsA1trCp7Fba+9prf3txmjPH/9qktfMP3zoouMAAONfnPb9+fYHI48DAGthtHBX\n1b4kvzb/8B1jjQMA62SI57i3c2GSM5Jc0lp755E+uaoObLPr9EFnBQAdG2XFXVUXJHl2kk8nOX+M\nMQBgHQ2+4q6qZyR5RZJPJnl4a+2bR/N1rbUztznegST7h5shAPRr0BV3VT0ryauTfDzJw+ZXlgMA\nAxks3FX13CR/nOQjmUX7a0MdGwCYGSTcVfXCzC5GO5DZ6fFrhjguAHBLCz/HXVVPTPI7SW5K8r4k\nF1TV5k872Fq7aNGxAGDdDXFx2j3n29smedY2n/PeJBcNMBYArLVa9b/94apyVslq/7Ts3q3Oke0h\nvmeskCu2ewXVTviTmwDQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3\nAHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdGTf1BOAntTUE2DHfM/Ya6y4AaAj\nwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR\n4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEcGCXdVvayq3l1VX6qqG6rqm1X191X14qo6cYgxAICk\nWmuLH6Tqn5NckeSTSb6W5NgkZye5X5KvJDm7tfalXR77QJL9C08SAKZ1RWvtzEUPsm+ImSQ5vrX2\nvc0PVtXvJXlekv+a5OkDjQUAa2uQU+VbRXvur+fbU4cYBwDW3dgXp/3SfPuxkccBgLUw1KnyJElV\nPSfJHZKckNnz2z+bWbQvPIqvPbDNrtMHmyAAdG7QcCd5TpK7bPj4HUme1Fr7+sDjAMBaGuSq8lsd\ntOouSR6Y2Ur7uCSPaa1dsctjuaocgL1gkKvKR3mOu7V2dWvtrUnOTXJikr8YYxwAWDejXpzWWvvH\nzF7b/RNVdecxxwKAdbCMW57+q/n2piWMBQB72sLhrqrTq+quWzx+m/kNWE5K8oHW2rcWHQsA1t0Q\nV5U/Msl/r6rLk3wuyTcyu7L855LcK8lXkzx1gHEAYO0NEe53JfnTJA9K8lNJ7pjku0muTPKmJK9s\nrX1zgHEAYO0tHO7W2seTPGOAuQAAR+DvcQNAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A\n6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItywC29M0vbA29uG\n/g/D0kz9b2fMNw5PuGEXnpzkoqknsaCLkzxm6kkAOybcsAPf2fB+z/EWbeiXcMMOHJf+47052ldP\nNRFgV4QbdqjneG8V7ZMmmguwO8INu9BjvEUb9gbhhl3qKd6iDXuHcMMCeoi3aMPeItywoFWOt2jD\n3iPcMIBVjLdow94k3DCQVYq3aMPeJdwwoFWIt2jD3ibcMLAp4y3asPcJN4xginiLNqwH4YaRLDPe\nog3rQ7hhRMuIt2jDehFuGNmY8RZtWD/CDUswRrxFG9aTcMOSDBlv0Yb1JdywREPEW7RhvQk3LNki\n8RZtYLRwV9X5VdXmb08Zaxzo0W7iLdpAMlK4q+ruSV6V5Poxjg97wU7iLdrAIYOHu6oqyRuTfCPJ\na4Y+PuwlRxNv0QY2GmPFfUGSczL7HfTdEY4Pe8rh4i3awGaDhruq7pPkwiSvaK1dPuSxYS/bKt6P\njmgDt7ZvqANV1b4kb0ryxSTP28XXH9hm1+mLzAt6cSjex88/vmTDPtEGDhlyxf2iJPdN8qTW2g0D\nHhfWxnGZXSCy0ZURbeBmg6y4q+qszFbZf9ha++BujtFaO3ObYx9Isn+B6UE3Ls7sNPkhb0hy6kRz\nAVbTwuHecIr8yiQvXHhGsKY2X4h2VZK7TjQXYHUNcar8DklOS3KfJN/bcNOVluTF88953fyxlw8w\nHuw5W109LtrAVoY4VX5jZmf0trI/s+e935/kM0l2dRod9jIv+QJ2YuFwzy9E2/KWplX1kszC/eet\ntdcvOhbsNaIN7JQ/MgITEW1gN4QbJiDawG5Va23qORyWl4OxSob4aVnFaNfE47Nzq/2bezF7+N/j\nFdu99HknrLhhiVYx2kBfhBuWRLSBIQg3LIFoA0MRbhiZaANDEm4YkWgDQxNuGIloA2MQbhiBaANj\nEW4YmGgDYxJuGJBoA2MTbhiIaAPLINwwANEGlkW4YUGiDSyTcMMCRBtYNuGGXRJtYArCDbsg2sBU\nhBt2SLSBKQk37IBoA1MTbtgB0QamJtywC6INTGXf1BOAHt1l6gmw9mrqCTAZK24A6IhwA0BHhBsA\nOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoySLir6mBVtW3evjrEGABAsm/AY12b5OVbPH79gGMAwFobMtzfbq29ZMDj\nAQCbeI4bADoy5Ir7R6vqV5P86yTfTfKxJJe31m4acAwAWGtDhvuuSd606bEvVNWTW2vvHXAcAFhb\nQ4X7jUnel+QTSa5Lcq8k/znJbyR5e1U9oLX20cMdoKoObLPr9IHmCADdq9baeAev+oMkz07yf1pr\njzvC5x4u3Lcfem4AsGRXtNbOXPQgY4f73yT5bJJvttZO3OUxDiTZP+jEAGD5Bgn32FeVf22+PXbk\ncQBgLYwd7gfMt58feRwAWAsLh7uqfqKqfnyLx++R5NXzD/9y0XEAgGGuKj8vyW9X1WVJvpDZVeWn\nJHl0kh9LckmSPxhgHABYe0OE+7Ik905y38xOjR+b5NtJ3p/Z67rf1Ma8Ag4A1sjC4Z7fXMUNVgBg\nCdyrHAA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjuybegLrrE09gYFdnOQxU08CNtlLP2c/SHK7qSfB\n5Ky4GYRow7hEm0OEm4VtjvbVU00E9qjN0X7uVBNhJQg3C9kq2idNNBfYi7aK9oUTzYXVINzsmmjD\nuESbrQg3uyLaMC7RZjvCzY6JNoxLtDkc4WZHRBvGJdociXBz1EQbxiXaHA3h5qiINoxLtDlaws0R\niTaMS7TZCeHmsEQbxiXa7JRwsy3RhnGJNrsh3GxJtGFcos1uCTe3ItowLtFmEcLNLYg2jEu0WZRw\n8y9EG8Yl2gxBuEki2jA20WYowo1ow8hEmyEJ95oTbRiXaDM04V5jog3jEm3GMGi4q+rBVfWWqrqq\nqm6cby+tqkcNOQ6LE20Yl2gzln1DHaiqXpDkd5Nck+RtSa5Kcuck903y0CSXDDUWixFtGJdoM6ZB\nwl1V52UW7XcleXxr7bpN+2+35ReydKIN4xJtxrbwqfKquk2SlyX5pyS/sjnaSdJa+/6i47A40YZx\niTbLMMSK+4FJ7pnkfyX5VlU9OskZSb6X5MOttQ8OMAYLEm0Y10eT/PSGj0WbsQwR7p+Zb69OckWS\nn9y4s6ouT/KE1trXD3eQqjqwza7TF57hmvtERBvG1CLaLM8QV5UfasDTkhyT5OeTHJfZqvudSR6S\n5M0DjMMuXZ/k+Pn7og3D+0GSx234WLQZU7XWFjtA1X9L8l+S/DDJ/tbaRzfsOybJlUnuluSBuzlt\nPl+J719okitqsf/yO/P3SU7JzQEfWy1pHDiSZf2c3ZjkY7n5FOTY/Ix16YrW2pmLHmSIFfe35tvP\nb4x2krTWbshs1Z0kZw0wFrt03ywv2rCOfjTLizbrbYhwf2a+/fY2+w+F/ZgBxgKAtTZEuC/P7Cme\nU6vqR7bYf8Z8e3CAsQBgrS0c7tbaNUn+KskJSV60cV9VPSLJLyS5Nsk7Fh0LANbdULc8/a0k90/y\n/Kp6SJIPJ7lHZhda3pTkqa217U6lAwBHaZBwt9a+VlX3T/KCzGJ9dpLrMrvvx++31j40xDgAsO4W\nfjnY2LwcrE9eqsKq2Ks/Z37GurQyLwcDAJZEuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCO\nCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAd2Tf1BNZZTT0B\nWAN+zthrrLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHAD\nQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOjIwuGuqidVVTvC201DTBYA1t2+AY7xkSQv\n3Wbfg5Ock+TtA4wDAGtv4XC31j6SWbxvpao+OH/3TxcdBwAY8TnuqjojydlJ/l+Si8caBwDWyZgX\np/3H+fYNrTXPcQPAAIZ4jvtWquqYJL+a5IdJXn+UX3Ngm12nDzUvAOjdWCvuf5/kjkne3lr70khj\nAMDaGWXFneQ35tvXHu0XtNbO3Orx+Up8/xCTAoDeDb7irqp/m+SBSb6c5JKhjw8A62yMU+UuSgOA\nkQwa7qr6sSTnZ3ZR2huGPDYAMPyK+7wkd0pyiYvSAGB4Q4f70EVp7pQGACMYLNxVdZ8kPxsXpQHA\naAZ7OVhr7VNJaqjjAQC35u9xA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeE\nGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADrSQ7hPnnoCADCAk4c4yL4hDjKy\n78y3B5cw1unz7aeXMBbD8D3rj+9Zf3zPFndybu7ZQqq1NsRx9oSqOpAkrbUzp54LR8f3rD++Z/3x\nPVstPZwqBwDmhBsAOiLcANAR4QaAjgg3AHTEVeUA0BErbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcA\ndES4AaAjwp2kqu5WVX9WVV+pqhur6mBVvbyq7jT13Lilqjqxqp5SVW+tqn+oqhuq6tqqen9V/XpV\n+Tfdiao6v6ra/O0pU8+HrVXVg6vqLVV11fz341VVdWlVPWrqua2rHv4e96iq6pQkH0hyUpK/yezv\nzZ6V5JlJHllVD2qtfWPCKXJL5yX5kyRXJbksyReT3CXJ45O8PskvVtV5zZ2FVlpV3T3Jq5Jcn+QO\nE0+HbVTVC5L8bpJrkrwts5+7Oye5b5KHJrlkssmtsbW/c1pVvTPJuUkuaK29asPjf5TkN5O8trX2\ntKnmxy1V1TlJjk1ycWvthxsev2uSDye5e5IntNbeMtEUOYKqqiT/N8k9k/zvJM9J8tTW2usnnRi3\nUFXnJfnrJO9K8vjW2nWb9t+utfb9SSa35tb6tGJV3SuzaB9M8j827X5xku8mOb+qjl3y1NhGa+09\nrbW/3Rjt+eNfTfKa+YcPXfrE2IkLkpyT5MmZ/YyxYuZPOb0syT8l+ZXN0U4S0Z7OWoc7s18eSXLp\nFiG4LsnfJbl9krOXPTF25dAvkh9MOgu2VVX3SXJhkle01i6fej5s64GZnRG5JMm3qurRVfXcqnpm\nVT1g4rmtvXV/jvve8+2V2+z/bGYr8tOSvHspM2JXqmpfkl+bf/iOKefC1ubfozdldl3C8yaeDof3\nM/Pt1UmuSPKTG3dW1eWZPSX19WVPDCvuE+bba7fZf+jxOy5hLizmwiRnJLmktfbOqSfDll6U2UVN\nT2qt3TD1ZDisk+bbpyU5JsnPJzkus5+xdyZ5SJI3TzM11j3cR1Lz7XpfwbfiquqCJM/O7BUB5088\nHbZQVWdltsr+w9baB6eeD0d02/m2MltZv7u1dn1r7RNJHpfky0l+zmnzaax7uA+tqE/YZv/xmz6P\nFVNVz0jyiiSfTPKw1to3J54Sm2w4RX5lkhdOPB2Ozrfm28+31j66ccf8bMmhs1pnLXVWJBHuz8y3\np22z/9T5drvnwJlQVT0ryauTfDyzaH914imxtTtk9jN2nyTf23DTlZbZqzeS5HXzx14+2SzZ6NDv\nxm9vs/9Q2I9ZwlzYZN0vTrtsvj23qm6z6XXBxyV5UJIbknxoismxvap6bmbPa38kySNaa9dMPCW2\nd2OSN2yzb39mz3u/P7NYOI2+Gi7P7NUZp1bVj7TW/nnT/jPm24NLnRVJ1jzcrbXPVdWlmV05/ozM\n7uR0yEszu9HHa1trXmu6QqrqhUl+J8mBJOc6Pb7a5qdWt7ylaVW9JLNw/7kbsKyO1to1VfVXSf5D\nZhcVvuDQvqp6RJJfyOwpRK/gmMBah3vu6Znd8vSVVfXwJJ9Kcv8kD8vsFPnzJ5wbm1TVEzOL9k1J\n3pfkgtmNuG7hYGvtoiVPDfaa38rsd+Hzq+ohmd2Z8B6ZXZx2U2Z3u9vuVDojWvtwz1fd98ssBo9M\n8qjM7sf7yiQvtZpbOfecb2+b5FnbfM57k1y0lNnAHtVa+1pV3T+z1fbjMrsR1XVJLk7y+601TyFO\nZO3vVQ4APVn3q8oBoCvCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDo\niHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAj/x/lwxOeS6s4vgAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c028b70>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"10f887837b444d82b44aeb3cc1269f23": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1105d6f463db450d974d875cdeb1fb0d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"110dc0eadd3644a7842eb6d727046bbd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_460ecefc6e2c4c218dacba380d16b6a2", | |
"IPY_MODEL_c06a9bc544ab45c599b6f2cf3d575dce", | |
"IPY_MODEL_723183ba171c415fb30599aeb6df3600", | |
"IPY_MODEL_f713deb1e1034a5398deb8d46da39810" | |
], | |
"layout": "IPY_MODEL_93460bb5e7fd4b6d8db0f0d03f02ea61" | |
} | |
}, | |
"11926094e68a46d3bad79ab11cc62dd2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_a70e97f274c2448a8f3dd73b5816e170", | |
"max": 7, | |
"style": "IPY_MODEL_d7225eec90f84bac8ede4301d9c11528", | |
"value": 4 | |
} | |
}, | |
"11b72319deb840d4b2f65ab4851c3093": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_22434c0dbf89488cbe95af535f796281", | |
"max": 7, | |
"style": "IPY_MODEL_421812c96f0349b883c2474bb573d393", | |
"value": 2 | |
} | |
}, | |
"121c0a35b94e4159b6e1d5ac452cbac3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1239a35c277545d8abb2d9eb159fe8a9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_43ac666e54534353bdc4785dd202812d", | |
"max": 7, | |
"style": "IPY_MODEL_1b959bc303c74e2193af41500c25cc63", | |
"value": 1 | |
} | |
}, | |
"126cdcf88e6f4a70ad838d3178d74916": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"12cfe357ba6240129c9964baed93dee0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"12dca9f335cd44bbab87e494238effc4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1304ed03e01c4384af205c294351f7b3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"13243849f71f44efbae5cccb15d46b66": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1329561c3f8646b0b72a3df415e1e736": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"132e4e03d7344a259c01d1f0cf6078fb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"134d1478363f4cc5839fb0a954fd14ab": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_3f3c8767ae32415a8fcae6f5f8acebd7", | |
"IPY_MODEL_641cc0952f804b96855075c2291f15f8", | |
"IPY_MODEL_9553d6c064ee481f934400d71d2d200e", | |
"IPY_MODEL_6b82e958dd9a421088dc036b8e6cb658", | |
"IPY_MODEL_0eb749d5406a4fd8b571c4e2e54d525f" | |
], | |
"layout": "IPY_MODEL_803d404e865e49f096c8df265b81392e" | |
} | |
}, | |
"135cd59de1e446b285987efe0b36425a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"135e2f314bed4725869f92476537cfd9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_707400213700438aa2e3efa831a9d8a7", | |
"max": 7, | |
"style": "IPY_MODEL_3b7f8d5098f1407d955e76b2b0e1073e", | |
"value": 3 | |
} | |
}, | |
"13770f6086e84f9582779dcc31a9574f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"13ea8a2d08204cfeb4d62fe2d6a23051": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "s", | |
"layout": "IPY_MODEL_640a20ccfe7f4450bf0544adea1b3f4f", | |
"max": 63, | |
"style": "IPY_MODEL_1f0398a6751347d7b2e55956d5a5a719" | |
} | |
}, | |
"141b9593bf61468b9fffb600e0961fa4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_660c98ff2b46440faf9c2c6a0136a7dd", | |
"max": 7, | |
"style": "IPY_MODEL_6f8a9b87a9374d74a0a8ae2509276b7d", | |
"value": 6 | |
} | |
}, | |
"14239cd61401409fb80c4d0458b3eb72": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_ae36de3fce20450d9a76cb1dba08145e", | |
"IPY_MODEL_82ca84bebe9c43be98e8a03579c2e76d", | |
"IPY_MODEL_b952326b587b43239295266fcdbc537e", | |
"IPY_MODEL_f3e02fbe151c4df88520237df51b2a8b" | |
], | |
"layout": "IPY_MODEL_6986d649e6b54d1bb02cc3bacfc0e1fd" | |
} | |
}, | |
"14749d636900451da227a5fa9d71fb84": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_bea4a354336349bc9cb5e5a70ff02473", | |
"max": 7, | |
"style": "IPY_MODEL_87fd9e4b40fe4509a28991ce3975ea36", | |
"value": 4 | |
} | |
}, | |
"14b36ffa92d54a8f80e090c2a9280ca9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"14cd40fbe73045a69d175b5d5dc4d340": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"14e7e8050ac846d9b3c85106d2285a7c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"151a2d8c67524e53ada4c07a1c7c7d66": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"151fa5833f6b4833af2a84387717b75b": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_e65497c51392460baac99146206b0aed", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGCJJREFUeJzt3WuwZWV95/HfHzpGRMGIhdRUHEFH\npRVHbRDx0l4wotGZ8RKZF5kQtaIZR6fQRC0zXsFUKjomE2+ZaKKJiXmTZIyxElEYDSUYtRi7BxUl\nYtSOOgEVQUQCovDMi707Ns050HDWPrv/vT+fqlOLs9fe63mowzlf1mWvXWOMAAA9HLTsCQAA+064\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABrZsuwJ3Jqq+mqSw5LsWvJUAOD2OjrJ98YYx2x0Q/t9uJMcdsghh9xt69atd1v2RKa2MzuX\nPQVIkmzLtmVPYWF27vR7xoGlQ7h3bd269W47duxY9jwmV6llTwGSJDty4P1+7Vbl94z9xq4pNuIc\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQyJZlTwBYHbsu/nQuu/DsjOu+l7rjYTnqIU/K0VtPWPa0oJXJwl1V\nP53k9UmenOSIJJcm+askZ44xrpxqHKCfi87/QA46/015wPWfy9F7rvjif88X7vCg3Lj95Tlu+9OW\nNDvoZZJD5VV1nyQ7kjw3yQVJfifJV5K8OMknq+qIKcYB+rngfW/O1o88Ow+4/nMZ46brxkgecP3n\nsvUjz87/+cu3LGeC0MxU57j/Z5Ijk5w+xnj6GOPXxhgnZxbw+yf5jYnGARq56PwP5PjPnpGDa1bs\nqpuu3/39wTWy7TOvy0Xnf2CTZwj9bDjcVXXvJKck2ZXkd/da/bok1yQ5raoO3ehYQC8Hnf+mf4n2\nrTm4Rur8Ny14RtDfFHvcJ8+X54wxbtxzxRjj6iR/l+ROSU6aYCygiV0Xf3rNw+PrGSN54PWfy66L\nP73YiUFzU4T7/vPlJeus/9J8eb9b2khV7VjrK8mxE8wR2GSXXXh2kpsfHl/P7uftfh2wtinCffh8\nedU663c/ftcJxgKaGNd9b1NfB6tiM97Hvfv/t2/xgNkY4/g1Xzzb69429aSAxao7Hrapr4NVMcUe\n9+496sPXWX/YXs8DVsBRD3lSktymc9x7vg5Y2xTh/uJ8ud457PvOl+udAwcOQEdvPSFfuMODbtM5\n7s/f4UHupAa3YopwnztfnlJVN9leVd0lyaOSXJvkUxOMBTRy4/aX54axb+W+YVTG9pcveEbQ34bD\nPcb4cpJzkhyd5EV7rT4zyaFJ/mSMcc1GxwJ6OW7707Lj357xL/Fe685pySzaOx98ptuewj6Y6uK0\nFyb5RJK3VtUTklyc5OFJHp/ZIfJXTTQO0MyJP/eSXHTkManz35QHXv+5m6zbfXh8bH95HibasE8m\nCfcY48tVdUJ+/CEjT8nsQ0bemtmHjFwxxThAT8dtf1qy/WlrfjrYA53ThttksreDjTG+ntmHjACs\n6eitJ7j4DDZoqg8ZAQA2gXADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI1uWPYF9sXPnzlTVsqcBB6yK3y/owh43ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI1MEu6qelZVva2qzq+q71XVqKo/nWLbAMCPbZloO69O8uAk\n30/yjSTHTrRdAGAPUx0q/5Uk90tyWJL/MtE2AYC9TLLHPcY4d/c/V9UUmwQA1uDiNABoZKpz3BtW\nVTvWWeV8OQDM2eMGgEb2mz3uMcbxaz0+3xPftsnTAYD9kj1uAGhEuAGgEeEGgEaEGwAameTitKp6\nepKnz789ar58RFW9Z/7Pl48xXjbFWACwyqa6qvwhSZ6912P3nn8lyT8mEW4A2KBJDpWPMc4YY9Qt\nfB09xTgAsOqc4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhky7InsC+2Jdmx7EksQC17AgC0Y48bABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgkQ2Hu6qOqKrnVdX7q+ofquraqrqqqj5eVb9UVf7nAAAmsmWCbZya\n5PeSXJrk3CRfS3KPJM9M8q4kP1tVp44xxgRjAcBKmyLclyT5D0k+OMa4cfeDVfXKJBck+bnMIv6+\nCcYCgJW24cPYY4y/HWP89Z7Rnj9+WZJ3zL993EbHAQAWf3HaD+fLHy14HABYCQsLd1VtSfKL828/\nvKhxAGCVTHGOez1vSHJckrPGGGff2pOrasc6q46ddFYA0NhC9rir6vQkL03y90lOW8QYALCKJt/j\nrqoXJXlLki8kecIY44p9ed0Y4/h1trcjybbpZggAfU26x11VL0ny9iQXJXn8/MpyAGAik4W7ql6R\n5HeSXJhZtL811bYBgJlJwl1Vr8nsYrQdmR0ev3yK7QIAN7Xhc9xV9ewkr09yQ5Lzk5xeVXs/bdcY\n4z0bHQsAVt0UF6cdM18enOQl6zznY0neM8FYALDSprjl6RljjLqVr8dNMFcAWHk+chMAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaCRLcuewL7YmaSWPQk4gI1lT2CB/O3gQGOPGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGJgl3Vb2xqj5aVV+vqmur6oqq+r9V9bqqOmKKMQCApMYYG99I1fVJdib5QpJvJTk0\nyUlJTkjyT0lOGmN8/XZue0eSbRueJLCujf8V2H/VsicAP7ZzjHH8RjeyZYqZJDlsjHHd3g9W1W8k\neWWS/5bkhRONBQAra5JD5WtFe+7P58v7TjEOAKy6RV+c9u/ny88ueBwAWAlTHSpPklTVy5LcOcnh\nmZ3ffnRm0X7DPrx2xzqrjp1sggDQ3KThTvKyJPfY4/sPJ3nOGOPbE48DACtpkqvKb7bRqnskeWRm\ne9p3SfLvxhg7b+e2XFUOC+aqctgUk1xVvpBz3GOMb44x3p/klCRHJPmTRYwDAKtmoRenjTH+MbP3\ndj+wqu6+yLEAYBVsxi1P/9V8ecMmjAUAB7QNh7uqjq2qo9Z4/KD5DViOTPKJMcaVGx0LAFbdFFeV\nPznJm6rqvCRfTvKdzK4sf2ySeye5LMnzJxgHAFbeFOH+SJLfT/KoJA9Octck1yS5JMl7k7x1jHHF\nBOMAwMrbcLjHGBcledEEcwEAboXP4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoZGHhrqrTqmrMv563qHEAYJUsJNxVdc8kb0vy/UVsHwBW1eThrqpK8kdJ\nvpPkHVNvHwBW2SL2uE9PcnKS5ya5ZgHbB4CVNWm4q2prkjckecsY47wptw0AJFum2lBVbUny3iRf\nS/LK2/H6HeusOnYj8wKAA8lk4U7y2iQPTfLoMca1E24XAJibJNxVdWJme9m/Pcb45O3Zxhjj+HW2\nvSPJtg1MDwAOGBs+x73HIfJLkrxmwzMCANY1xcVpd05yvyRbk1y3x01XRpLXzZ/zB/PH3jzBeACw\nsqY4VP6DJO9eZ922zM57fzzJF5PcrsPoAMDMhsM9vxBtzVuaVtUZmYX7j8cY79roWACw6nzICAA0\nItwA0EiNMZY9h1vk7WCwePv3X4GNqWVPAH5s53pvfb4t7HEDQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nsmXZE+DANJY9gQWpZU9gQQ7Ufy84ENnjBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGSScFfVrqoa63xd\nNsUYAECyZcJtXZXkzWs8/v0JxwCAlTZluL87xjhjwu0BAHtxjhsAGplyj/snq+oXkvzrJNck+WyS\n88YYN0w4BgCstCnDfVSS9+712Fer6rljjI9NOA4ArKypwv1HSc5P8vkkVye5d5L/muSXk3yoqh4x\nxvjMLW2gqnass+rYieYIAO3VGGNxG6/6rSQvTfJXY4xn3Mpzbyncd5p6bizW4v6rWq5a9gSAznaO\nMY7f6EYWHe5/k+RLSa4YYxxxO7exI8m2SSfGwgk3wM1MEu5FX1X+rfny0AWPAwArYdHhfsR8+ZUF\njwMAK2HD4a6qB1bV3dZ4/F5J3j7/9k83Og4AMM1V5acm+bWqOjfJVzO7qvw+SZ6a5I5JzkryWxOM\nAwArb4pwn5vk/kkemtmh8UOTfDfJxzN7X/d7xyKvgAOAFbLhcM9vruIGKwCwCdyrHAAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoJEty54AB6Za9gQADlD2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoZNJw\nV9X2qnpfVV1aVT+YL8+pqqdMOQ4ArKotU22oql6d5NeTXJ7kb5JcmuTuSR6a5HFJzppqLABYVZOE\nu6pOzSzaH0nyzDHG1Xut/4kpxgGAVbfhQ+VVdVCSNyb55yQ/v3e0k2SM8cONjgMATLPH/cgkxyT5\nX0murKqnJjkuyXVJLhhjfHKCMQCATBPuh82X30yyM8mD9lxZVecledYY49u3tJGq2rHOqmM3PEMA\nOEBMcVX5kfPlC5IckuRnktwls73us5M8JslfTDAOAKy8Kfa4D54vK7M968/Mv/98VT0jySVJHltV\nj7ilw+ZjjOPXeny+J75tgnkCQHtT7HFfOV9+ZY9oJ0nGGNdmttedJCdOMBYArLQpwv3F+fK766zf\nHfZDJhgLAFbaFOE+L8mPkty3qu6wxvrj5stdE4wFACttw+EeY1ye5M+SHJ7ktXuuq6onJnlSkquS\nfHijYwHAqpvqlqe/muThSV5VVY9JckGSeyV5RpIbkjx/jLHeoXQAYB9NEu4xxreq6uFJXp1ZrE9K\ncnWSDyb5zTHGp6YYBwBWXY0xlj2HW+TtYAAcIHau99bn28LncQNAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADSyZdkT4MA0lj2BBallTwBYefa4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtlwuKvqOVU1buXrhikm\nCwCrbssE27gwyZnrrNue5OQkH5pgHABYeRsO9xjjwszifTNV9cn5P/7+RscBABZ4jruqjktyUpL/\nl+SDixoHAFbJIi9O+8/z5bvHGM5xA8AEpjjHfTNVdUiSX0hyY5J37eNrdqyz6tip5gUA3S1qj/s/\nJrlrkg+NMb6+oDEAYOUsZI87yS/Pl+/c1xeMMY5f6/H5nvi2KSYFAN1NvsddVQ9I8sgk30hy1tTb\nB4BVtohD5S5KA4AFmTTcVXXHJKdldlHau6fcNgAw/R73qUl+KslZLkoDgOlNHe7dF6W5UxoALMBk\n4a6qrUkeHRelAcDCTPZ2sDHGxUlqqu0BADfn87gBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEa2LHsC++DoZU+A\n2+74ZU8AYP9z9BQb6RDu782XuzZhrGPny7/fhLEOaDs3byg/s378zPrxM9u4o/Pjnm1IjTGm2M4B\noap2JMkYww5jE35m/fiZ9eNntn9xjhsAGhFuAGhEuAGgEeEGgEaEGwAacVU5ADRijxsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4U5SVT9dVX9YVf9UVT+oql1V9eaq+qllz42bqqojqup5VfX+\nqvqHqrq2qq6qqo9X1S9Vlf+mm6iq06pqzL+et+z5sLaq2l5V76uqS+d/Hy+tqnOq6inLntuq6vB5\n3AtVVfdJ8okkRyb5QGafN3tikhcneXJVPWqM8Z0lTpGbOjXJ7yW5NMm5Sb6W5B5JnpnkXUl+tqpO\nHe4stF+rqnsmeVuS7ye585Knwzqq6tVJfj3J5Un+JrPfu7sneWiSxyU5a2mTW2Erf+e0qjo7ySlJ\nTh9jvG2Px/9Hkl9J8s4xxguWNT9uqqpOTnJokg+OMW7c4/GjklyQ5J5JnjXGeN+SpsitqKpK8r+T\nHJPkL5O8LMnzxxjvWurEuImqOjXJnyf5SJJnjjGu3mv9T4wxfriUya24lT6sWFX3zizau5L87l6r\nX5fkmiSnVdWhmzw11jHG+Nsxxl/vGe3545clecf828dt+sS4LU5PcnKS52b2O8Z+Zn7K6Y1J/jnJ\nz+8d7SQR7eVZ6XBn9scjSc5ZIwRXJ/m7JHdKctJmT4zbZfcfkh8tdRasq6q2JnlDkreMMc5b9nxY\n1yMzOyJyVpIrq+qpVfWKqnpxVT1iyXNbeat+jvv+8+Ul66z/UmZ75PdL8tFNmRG3S1VtSfKL828/\nvMy5sLb5z+i9mV2X8MolT4db9rD58ptJdiZ50J4rq+q8zE5JfXuzJ4Y97sPny6vWWb/78btuwlzY\nmDckOS7JWWOMs5c9Gdb02swuanrOGOPaZU+GW3TkfPmCJIck+Zkkd8nsd+zsJI9J8hfLmRqrHu5b\nU/Plal/Bt5+rqtOTvDSzdwSctuTpsIaqOjGzvezfHmN8ctnz4VYdPF9WZnvWHx1jfH+M8fkkz0jy\njSSPddh8OVY93Lv3qA9fZ/1hez2P/UxVvSjJW5J8IcnjxxhXLHlK7GWPQ+SXJHnNkqfDvrlyvvzK\nGOMze66YHy3ZfVTrxE2dFUmE+4vz5f3WWX/f+XK9c+AsUVW9JMnbk1yUWbQvW/KUWNudM/sd25rk\nuj1uujIye/dGkvzB/LE3L22W7Gn338bvrrN+d9gP2YS5sJdVvzjt3PnylKo6aK/3Bd8lyaOSXJvk\nU8uYHOurqldkdl77wiRPHGNcvuQpsb4fJHn3Ouu2ZXbe++OZxcJh9P3DeZm9O+O+VXWHMcb1e60/\nbr7ctamzIsmKh3uM8eWqOiezK8dflNmdnHY7M7MbfbxzjOG9pvuRqnpNktcn2ZHkFIfH92/zQ6tr\n3tK0qs7ILNx/7AYs+48xxuVV9WdJ/lNmFxW+eve6qnpikidldgrROziWYKXDPffCzG55+taqekKS\ni5M8PMnjMztE/qolzo29VNWzM4v2DUnOT3L67EZcN7FrjPGeTZ4aHGh+NbO/ha+qqsdkdmfCe2V2\ncdoNmd3tbr1D6SzQyod7vtd9QmYxeHKSp2R2P963JjnT3tx+55j58uAkL1nnOR9L8p5NmQ0coMYY\n36qqh2e2t/2MzG5EdXWSDyb5zTGGU4hLsvL3KgeATlb9qnIAaEW4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo5P8Dm5Gd9F2B\ng38AAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c2782b0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"1548a22e0cd84e86842a2ea516917ab8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"15765f4500ea4146953cbde7bcee8d75": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"up", | |
"right", | |
"down", | |
"left" | |
], | |
"description": "d", | |
"index": 0, | |
"layout": "IPY_MODEL_1689a3a7fc6b4054b083b7b8d654087e", | |
"style": "IPY_MODEL_d1760a24309e47fb8e3f2ec60cd4b1d7" | |
} | |
}, | |
"15ca6e4b425442439925f6d75d090b12": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"15d2801bde674c9b80f2f2b390347034": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"15d50602ba4745dfb283c297b4144307": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_439ca84ed5a24ebbb1df618bddd7f17a", | |
"max": 7, | |
"style": "IPY_MODEL_71e50a0d240f4c44aa512c96b1c78878", | |
"value": 7 | |
} | |
}, | |
"15eca47490254f6391dd9bb3638e3417": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1614aa56e3614d7987fa2ef147e73a79": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_421c339796ef4122bdff141545998343", | |
"max": 7, | |
"style": "IPY_MODEL_d9eb43f74d1b40dba51725fb645f06ee", | |
"value": 4 | |
} | |
}, | |
"1654e908f1c74d7c83a64d2275a444cb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_a1b242f5695441b4b7c2ec0f5644acc3", | |
"max": 7, | |
"style": "IPY_MODEL_0c29b33c4a134c31a5a25667d6944cee", | |
"value": 7 | |
} | |
}, | |
"1674dd3d34cf40a8bc0340afd8cddf96": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"167703cf84ff4bf89cb94f404f32cfc0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1689a3a7fc6b4054b083b7b8d654087e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"169e0e617f2f4240932810d086a96fd9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"16a8ef68141248499802f5027c5b94a0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"16cda72a13244b258a562ef7ded1cf33": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"16f276f698d04211b64df9928eed8ceb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "ci", | |
"layout": "IPY_MODEL_85bd99f279f1457d9b1641a345e90a9c", | |
"max": 7, | |
"style": "IPY_MODEL_3a11d1b21323495eb3f5553722413776", | |
"value": 2 | |
} | |
}, | |
"16f4c58d09c1499fad1016169bb6f186": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_b9d58b8a790f40eeb2722530e533ed4f", | |
"max": 3, | |
"style": "IPY_MODEL_c2b9466b09a84d4797068ad9b084af85", | |
"value": 3 | |
} | |
}, | |
"1759d5b8422241b7b47633db6a844f52": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_4993dc87014042e7863748b6d032d211", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "1 0\n0 0\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHqJJREFUeJzt3XuQpXdd5/HPN0xCwiUhYE2o5SIB\nCWGBypJIwkUxJNxkdrcEzZYKmFAiC7JCVEqUO2sJWKtyiSgoaBCrUClQShIhGgIxipeaACLXgEQI\nJmFIYEwggWTy2z/OmWRm0j23fk4//TvP61XV9cw5p/t5vpnT3e88l3OmWmsBAPpwyNgDAAD7T7gB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0BHhBoCObBp7gH2pqi8lOTLJ5SOPAgAH635J/rO1duxaV7Thw51ZtO8+/wCASevhUPnlYw8AAAO4\nfIiV9BBuAGBOuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdGSzcVXXvqvqDqvqPqvpOVV1eVW+oqqOH2gYA\nTN2mIVZSVQ9I8vdJNid5X5LPJjk5yQuTPLmqHtNau2aIbQHAlA21x/07mUX7Ba21H2mt/XJr7bQk\nr0/yoCS/NtB2AGDSqrW2thVU3T/JF5NcnuQBrbVbdnnsrkmuTFJJNrfWvnUQ69+a5MQ1DQkA47u0\ntXbSWlcyxB73afPlBbtGO0laa9cl+bskd0ryyAG2BQCTNsQ57gfNl59f5fHLkjwxyXFJLlxtJfM9\n65Ucf/CjAcByGWKP+6j5cvsqj++8/24DbAsAJm2Qq8r3oebLvZ5MX+24v3PcAHCbIfa4d+5RH7XK\n40fu8XkAwEEaItyfmy+PW+XxB86Xq50DBwD20xDhvmi+fGJV7ba++cvBHpPkhiT/MMC2AGDS1hzu\n1toXk1yQ5H5Jnr/Hw69Ocuckf3Qwr+EGAHY31MVpP5vZW56+qapOT/KZJKckeVxmh8hfOtB2AGDS\nBnnL0/le9/cnOTezYP9ikgckeVOSR3mfcgAYxmAvB2utfSXJs4ZaHwBwe/49bgDoiHADQEeEGwA6\nItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAd\nEW4A6IhwA0BHNo09wJS1sQdYoBp7AFhyfn9Mlz1uAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0JFBwl1VP1ZV51TV31bVf1ZVq6o/HmLdAMBtNg20npclOSHJ9UmuSHL8QOsFAHYx1KHyn09yXJIj\nkzxvoHUCAHsYZI+7tXbRzj9X1RCrBABW4OK0qbjjHceeAOiV3x8byoYJd1VtXekjzpev3ZFHJh/5\nSPLWt449CdCb005LLrss2bJl7EmY2zDhZoEe//jklFOS5zwn+eY3x54G6MWWLcmFFyb3uU/y4heP\nPQ1zQ11VvmattZNWun++133iOo+zXN773uRDH5r9n/NRR83ifbe7jT0VsJFt2ZK8//233f7RHx1v\nFnZjj3sqTj99Fu/ktngDrGTPaG/enGzbNt487Ea4p0S8gX0R7Q1PuKdGvIHViHYXhHuKxBvYk2h3\nY5CL06rqR5L8yPzmPefLR1XVufM/f7219qIhtsVATj99drWoC9YA0e7KUFeV/7ckZ+5x3/3nH0ny\n70mEe6MRb0C0uzPIofLW2qtaa7WXj/sNsR0WwGFzmC7R7pJz3Ig3TJFod0u4mRFvmA7R7ppwcxvx\nhuUn2t0TbnYn3rC8RHspCDe3J96wfER7aQg3KxNvWB6ivVSEm9WJN/RPtJeOcLN34g39Eu2lJNzs\nm3hDf0R7aQk3+0e8oR+ivdSEm/0n3rDxifbSE24OjHjDxiXakyDcHDjxho1HtCdDuDk44g0bh2hP\ninBz8MQbxifakyPcrI14w3hEe5KEm7VbId5HH330uDPBsnvGM0R7ooSbYewR72uvvXbceWCJveIV\nr0je+c7b7hDtSRFuhnP66bvdPP7440caBJbb8573vNtu3Pveoj0xm8YeYMpq7AEW4NDDDsu73/3u\nvO9978tnP/vZsccZXBt7gAVZxu/FnZbyOTvhhHzqQx/KT/zET+STX/3q2NOwzqq1jf1tXVVbk5w4\n9hyQLGkEItw9WubnbIld2lo7aa0rcagcADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BH\nhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0JE1h7uq7lFVz66qP6+q\nL1TVDVW1vaouqaqfrir/cwAAA9k0wDrOSPK7Sa5MclGSLyc5JsnTkrwtyQ9X1RmttTbAtgBg0oYI\n9+eT/M8k57XWbtl5Z1W9JMk/JfnRzCL+ngG2BQCTtubD2K21D7XW/nLXaM/vvyrJW+Y3T13rdgCA\nxV+cdtN8efOCtwMAk7CwcFfVpiQ/Nb/5gUVtB5bS4Ycnr399cvTRY0/C/nrIQ5KXv3zsKZiAIc5x\nr+Z1SR6a5PzW2gf39clVtXWVh44fdCrowVvekpx5ZnL22cm975189atjT8TePOUpyXnnzf58zTXJ\n7/zOuPOw1GoRF3tX1QuSvDHJZ5M8prV27X58zd7CfacBx4ODtm4vjTj++OQzn7nt9oLjXQtb8/gW\n/pztGu0kOfLI5LrrFr3VpX7OltilrbWT1rqSwcNdVc9P8ttJPp3k9PlFamtZ39YkJw4xG6zVur6m\n8dRTk4suuu32AuO9zBFY6HO2Z7Q3b062bVvkFm+1zM/ZEhsk3IOe466qszOL9r8medxaow2T9uEP\nJ4973G23r7giude9RhuHPYwYbaZtsHBX1YuTvD7JxzOL9teGWjdMlnhvTKLNiAYJd1W9PLOL0bZm\ndnj860OsF4h4bzSizcjWfI67qs5Mcm6SHUnOSbJ9hU+7vLV27kGu3zluNoxR37d3gee8l/l86aDP\n2QaK9jI/Z0tskHPcQ7wc7Nj58g5Jzl7lcz6SWdyBg7Vzz3tnvK+4wkvF1tMGijbTtpCXgw3JHjcb\nyYb4aVnAnvcy770N8pxtwGgv83O2xDbeVeXAOnDOe31twGgzbcINPRLv9SHabEDCDb0S78USbTYo\n4YaeifdiiDYbmHBD78R7WKLNBifcsAzEexiiTQeEG5aFeK+NaNMJ4YZlIt4HR7TpiHDDshHvAyPa\ndEa4YRmJ9/4RbTok3LCsxHvvRJtOCTcsM/FemWjTMeGGZSfeuxNtOifcMAXiPSPaLAHhhqmYerxF\nmyUh3DAlU423aLNEhBumZoV432uZ4y3aLBnhhinaI95XXHFFzjrrrNHGWZQLLrhAtFk61Vobe4a9\nqqqtSU4cew5Iko3903IQTj01ueiiW29u2rQpO3bsGG+eAR1zzDG56qqrbrtjyaJdYw/Awbi0tXbS\nWldijxsOQC3bx4c/nHe9611JkjPPPHNpop0k27Zty5vf/OYkydOf/vTUtm3j/30P+MF02eMGcsQR\nR+SGG24Ye4zBHXLIITn00EPzne98Z+xRILHHDQxlGaOdJLfccotos3SEGwA6ItwA0BHhBoCOCDcA\ndES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsA\nOiLcANCRQcJdVb9eVRdW1Veq6oaquraqPlZVr6yqewyxDQAgqdba2ldS9d0klyb5dJKvJblzkkcm\n+f4k/5Hkka21rxzkurcmOXHNQwLAuC5trZ201pVsGmKSJEe21m7c886q+rUkL0nyK0l+dqBtAcBk\nDXKofKVoz/3ZfPnAIbYDAFO36IvT/sd8+S8L3g4ATMJQh8qTJFX1oiR3SXJUZue3fyCzaL9uP752\n6yoPHT/YgADQuUHDneRFSY7Z5fYHkpzVWts28HYAYJIGuar8diutOibJozPb075rkv/eWrv0INfl\nqnIAlsEgV5Uv5Bx3a+3q1tqfJ3liknsk+aNFbAcApmahF6e11v49s9d2P6SqvmeR2wKAKViPtzz9\nL/PljnXYFgAstTWHu6qOr6p7rnD/IfM3YNmc5O9ba99Y67YAYOqGuKr8yUn+X1VdnOSLSa7J7Mry\nH0py/yRXJfmZAbYDAJM3RLj/JsnvJXlMkhOS3C3Jt5J8Psk7k7yptXbtANsBgMlbc7hba/+a5PkD\nzAIA7IN/jxsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcA\ndES4AaAjwg0AHRFuAOiIcANAR4QbyJFHHjn2CBwgz9l0CTdM3AUXXJDt27fnuc997tijsJ+2bNmS\n7du35+qrr85hhx029jiss2qtjT3DXlXV1iQnjj0HJMnG/mk5CE95SnLeebfe3LRpU3bs2DHiQOyP\n3X5vv+QlyWtfO94wC1BjD7A4l7bWTlrrSuxxw1TtEe0zzjhDtDtx3HHH3XbjNa9JfuVXxhuGdbdp\n7AGAEewR7c2bN2fbtm0jDsSBuOyyy5LDDku++93ZHa95zWy5ZHverMweN0zNHtGOaPfppptm8d7J\nnvdkCDdMyQrRjmj3S7wnSbhhKkR7OYn35Ag3TIFoLzfxnhThhmUn2tMg3pMh3LDMRHtaxHsShBuW\nlWhPk3gvPeGGZSTa0ybeS024YdmINol4LzHhhmUi2uxKvJeScMOyEG1WIt5LR7hhGYg2eyPeS0W4\noXeizf4Q76Uh3NAz0eZAiPdSEG7olWhzMMS7e8INPRJt1kK8uybc0BvRZgji3S3hhp6INkMS7y4t\nLNxV9cyqavOPZy9qOzAZos0iiHd3FhLuqrpPknOSXL+I9cPkiDaLJN5dGTzcVVVJ/jDJNUneMvT6\nYXJEm/Ug3t1YxB73C5KcluRZSb61gPXDdIg260m8uzBouKvqwUlel+SNrbWLh1w3TI5oMwbx3vA2\nDbWiqtqU5J1JvpzkJQfx9VtXeej4tcwFXXrYw0Sb8eyM93e/O7v9mtckn/508r73jTsXSYbd435F\nkocnOau1dsOA64XpOfvs2/4s2oxhzz3vF71ovFnYzSB73FV1cmZ72b/ZWvvowayjtXbSKuvemuTE\nNYwH/Xne85Krrkpe97rkuuvGnoapuumm5NBDk1e+Mvmt3xp7GubWHO5dDpF/PsnL1zwRMDtE+dKX\njj0FJDffnLzcr/aNZIhD5XdJclySBye5cZc3XWlJXjn/nN+f3/eGAbYHAJM1xKHy7yR5+yqPnZjZ\nee9LknwuyUEdRgcAZtYc7vmFaCu+pWlVvSqzcL+jtfa2tW4LAKbOPzICAB0RbgDoSLXWxp5hr7wc\njI1kY/+0HLwaewAO2LJ+LyZL/f146WovfT4Q9rgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOjIprEH\ngJ7U2APAnO/F6bLHDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHAD\nQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANARwYJd1VdXlVtlY+rhtgGAJBsGnBd\n25O8YYX7rx9wGwAwaUOG+5uttVcNuD4AYA/OcQNAR4bc475jVT0jyX2TfCvJvyS5uLW2Y8BtAMCk\nDRnueyZ55x73famqntVa+8iA2wGAyRoq3H+Y5G+TfCrJdUnun+T/JHlOkr+qqke11j6xtxVU1dZV\nHjp+oBkBoHvVWlvcyqt+I8kvJvmL1tpT9/G5ewv3nYaeDQDW2aWttZPWupJFh/v7klyW5NrW2j0O\nch1bk5w46GAAsP4GCfeiryr/2nx55wVvBwAmYdHhftR8+W8L3g4ATMKaw11VD6mqu69w//cm+e35\nzT9e63YAgGGuKj8jyS9X1UVJvpTZVeUPSLIlyeFJzk/yGwNsBwAmb4hwX5TkQUkentmh8Tsn+WaS\nSzJ7Xfc72yKvgAOACVlzuOdvruINVgBgHXivcgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAj\nwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0vrXve6V04++eSx\nx4BBCTewlDZv3pxLLrkk//iP/5iPfexjY48Dg6nW2tgz7FVVbU1y4thzLMLG/ptfm1rm/zi6sCmb\nclNu2uWes5K8Y6Rphlc19gQchEtbayetdSX2uIGldHNuzpPypF3uOTfJmSNNA8MRbmBpXZALktx1\nl3vOjXjTO+EGltz1EW+WiXADEyDeLA/hBiZCvFkOwg1MiHjTP+EGJka86ZtwAxMk3vRLuIGJEm/6\nJNzAhIk3/RFuYOLEm74IN4B40xHhBkgi3vRCuAFuJd5sfMINsBvxZmMTboDbEW82LuEGWJF4szEJ\nN8CqxJuNR7gB9kq82Vg2jT0AHKxDr75vDv/CCTnkxjvllsO/nRu/7xO56Zgvjz0WS2lnvK+b3z53\nvnzHKNMwbYOGu6p+MMnZSR6d5O5Jrk3yySRvaK2dP+S2mK7Dv3BCjrrwx3P4lx52u8duPPaT2X76\nn+TG7/vECJOx3MSbjWGwcFfVy5L8apKvJ3l/kiuTfE+Shyc5NYlws2Z3+ecn5O7v/blUOyQtLZW6\n9bGWlsO/9LDc8e0PyTVPOyffesRfjzgpy0m8Gd8g4a6qMzKL9t8keVpr7bo9Hj90iO0wbYd/4YRb\no51kt2jvervaIbnHe38uO47+mj1vFkC8GdeaL06rqkOS/HqSbyf5yT2jnSSttZvWuh046sIfvzXa\n+1LtkBx14Y8veCKmywVrjGeIq8ofneTYzA6Ff6OqtlTVi6vqhVX1qAHWzxDud7/kDncYe4qDdujV\n983hX3pYWtp+ff7Ow+aHXn3fBU/GdIk34xjiUPkj5surk1yaZLcrhqrq4iQ/1lrbtreVVNXWVR46\nfs0TTt2WLclf/EXynvckT396smPH2BMdsMO/cEKS2x8eX83Ozzv8Cye40pwFWumw+aeT/PNYAzEB\nQ+xxb54vn5vkiCSPz+w7+aFJPpjksUnePcB2OBhbtiTvf3+yaVNy8snJEUeMPdFBOeTGO63r18H+\n2xnvHUluSHLkuOOw9IbY4955/LUy27PeeTXQp6rqqUk+n+SHqupRrbWPrraS1tpJK90/3xM/cYA5\np2dntHc65ZTk+uvHm2cNbjn82+v6dXBgrk9yl8wOONrbZrGG2OP+xnz5b7tEO0nSWrshs73uJDl5\ngG2xv/aM9ubNyba9nq3Y0HZeHX4g57h3/TpYvBsj2qyHIcL9ufnym6s8vjPsfR6j7dGSRTtJbjrm\ny7nx2E8e0DnuG4/9pPPbwNIZItwXJ7k5yQOr6rAVHn/ofHn5ANtiX5Yw2jttP/1P0uqW/frcVrdk\n++l/suCJANbfmsPdWvt6kj9NclSSV+z6WFU9IcmTkmxP8oG1bot9WOJoJ7PD3tc+7Zxb473nYfOd\nt1vdkmuedo7D5MBSGuotT38hySlJXlpVj03yT0m+N8lTM7vU8mdaa6sdSmcISx7tna5/xF/n5qO/\ntuJ7le88PO69yoFlVq3t38U++1xR1d2TvCyzWN8rsxc2XpLkta21f1jDepf2qvJh/uazIaNdg/3H\nrc6/Dsb+WIdvxVHU/l3uwcZy6WqvoDoQg4V7UYR7HzZgtJP1CTfsj2X9VhTuLg0S7iEuTmMsGzTa\nACyOcPdKtAEmSbh7JNoAkyXcvRFtgEkT7p6INsDkCXcvRBuACHcfRBuAOeHe6EQbgF0I90Ym2gDs\nQbg3KtEGYAXCvRGJNgCrEO6NRrQB2Avh3khEG4B9EO6NQrQB2A/CvRGINgD7SbjHJtoAHADhHtPL\nXibaABwQ4R7JGWeckfzqr952h2gDsB+EeySPeMQjbrvx8IeLNgD7ZdPYA0zVL/3SL+Wqq67Ku971\nrlx55ZVjjzO8GnsAmPGtyLKp1trYM+xVVW1NcuLYcwDAGl3aWjtprStxqBwAOiLcANAR4QaAjgg3\nAHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4Qb\nADoi3ADQkTWHu6rOqqq2j48dQwwLAFO3aYB1fDzJq1d57AeTnJbkrwbYDgBM3prD3Vr7eGbxvp2q\n+uj8j7+31u0AAAs8x11VD03yyCRfTXLeorYDAFOyyIvT/vd8+fbWmnPcADCAIc5x305VHZHkGUlu\nSfK2/fyaras8dPxQcwFA7xa1x/2/ktwtyV+11r6yoG0AwOQsZI87yXPmy7fu7xe01k5a6f75nviJ\nQwwFAL0bfI+7qv5rkkcnuSLJ+UOvHwCmbBGHyl2UBgALMmi4q+rwJM/M7KK0tw+5bgBg+D3uM5Ic\nneR8F6UBwPCGDvfOi9K8UxoALMBg4a6qByf5gbgoDQAWZrCXg7XWPpOkhlofAHB7/j1uAOiIcANA\nR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGg\nI8INAB0RbgDoiHADQEd6CPf9xh4AAAZwvyFWsmmIlSzYf86Xl6/Dto6fLz+7DttiGJ6z/njO+uM5\nW7v75baerUm11oZYz1Koqq1J0lo7aexZ2D+es/54zvrjOdtYejhUDgDMCTcAdES4AaAjwg0AHRFu\nAOiIq8oBoCP2uAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCHeSqrp3Vf1BVf1HVX2nqi6v\nqjdU1dFjz8buquoeVfXsqvrzqvpCVd1QVdur6pKq+umq8j3diap6ZlW1+cezx56HlVXVD1bVe6rq\nyvnvxyur6oKqesrYs01VD/8e90JV1QOS/H2SzUnel9m/N3tykhcmeXJVPaa1ds2II7K7M5L8bpIr\nk1yU5MtJjknytCRvS/LDVXVG885CG1pV3SfJOUmuT3KXkcdhFVX1siS/muTrSd6f2c/d9yR5eJJT\nk5w/2nATNvl3TquqDyZ5YpIXtNbO2eX+30ry80ne2lp77ljzsbuqOi3JnZOc11q7ZZf775nkn5Lc\nJ8mPtdbeM9KI7ENVVZK/TnJskvcmeVGSn2mtvW3UwdhNVZ2R5M+S/E2Sp7XWrtvj8UNbazeNMtzE\nTfqwYlXdP7NoX57kzXs8/Mok30ryzKq68zqPxipaax9qrf3lrtGe339VkrfMb5667oNxIF6Q5LQk\nz8rsZ4wNZn7K6deTfDvJT+4Z7SQR7fFMOtyZ/fJIkgtWCMF1Sf4uyZ2SPHK9B+Og7PxFcvOoU7Cq\nqnpwktcleWNr7eKx52FVj87siMj5Sb5RVVuq6sVV9cKqetTIs03e1M9xP2i+/Pwqj1+W2R75cUku\nXJeJOChVtSnJT81vfmDMWVjZ/Dl6Z2bXJbxk5HHYu0fMl1cnuTTJw3Z9sKouzuyU1Lb1Hgx73EfN\nl9tXeXzn/Xdbh1lYm9cleWiS81trHxx7GFb0iswuajqrtXbD2MOwV5vny+cmOSLJ45PcNbOfsQ8m\neWySd48zGlMP977UfDntK/g2uKp6QZJfzOwVAc8ceRxWUFUnZ7aX/ZuttY+OPQ/7dIf5sjLbs76w\ntXZ9a+1TSZ6a5IokP+Sw+TimHu6de9RHrfL4kXt8HhtMVT0/yRuTfDrJ41pr1448EnvY5RD555O8\nfORx2D/fmC//rbX2iV0fmB8t2XlU6+R1nYokwv25+fK4VR5/4Hy52jlwRlRVZyf57ST/mlm0rxp5\nJFZ2l8x+xh6c5MZd3nSlZfbqjST5/fl9bxhtSna183fjN1d5fGfYj1iHWdjD1C9Ou2i+fGJVHbLH\n64LvmuQxSW5I8g9jDMfqqurFmZ3X/niSJ7TWvj7ySKzuO0nevspjJ2Z23vuSzGLhMPrGcHFmr854\nYFUd1lr77h6PP3S+vHxdpyLJxMPdWvtiVV2Q2ZXjz8/snZx2enVmb/Tx1taa15puIFX18iT/N8nW\nJE90eHxjmx9aXfEtTavqVZmF+x3egGXjaK19var+NMnTM7uo8GU7H6uqJyR5UmanEL2CYwSTDvfc\nz2b2lqdvqqrTk3wmySlJHpfZIfKXjjgbe6iqMzOL9o4kf5vkBbM34trN5a21c9d5NFg2v5DZ78KX\nVtVjM3tnwu/N7OK0HZm9291qh9JZoMmHe77X/f2ZxeDJSZ6S2fvxvinJq+3NbTjHzpd3SHL2Kp/z\nkSTnrss0sKRaa1+rqlMy29t+amZvRHVdkvOSvLa15hTiSCb/XuUA0JOpX1UOAF0RbgDoiHADQEeE\nGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPC\nDQAd+f9VxrQvIMuvVgAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981eef6a0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"17da1c963d574904b21ad2c81f694557": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1823a0beb59e4237b3be1fc85bba3111": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1851b8ff31f6474f9775b93d8be0cfd6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_c79b840374e64811ad10817f44952ce5", | |
"max": 3, | |
"style": "IPY_MODEL_996bbc11f21c488489cb21b947a026f9", | |
"value": 2 | |
} | |
}, | |
"187b584d87c74b659b3a92d4f9be89b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"189466670f5f45e09603a7690024c4e3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_108c08d9c6114681b3989a6270ea26ac", | |
"max": 3, | |
"style": "IPY_MODEL_e7f58f3b4e834e1c9ea2a3ae54f5808e", | |
"value": 2 | |
} | |
}, | |
"18a6388930084a1f80c51c34e7e552f2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"18c577d1c0564113aaee8e8c578edb11": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"18d4526a9c1647e7b8ddc1c1549a9de7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"18d75d3007eb4c96ba5cd5537974f6aa": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"18f930f6ba8742828b1e6701e761eec9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_9e55be31d4ad4b0ca4affc30a2478a25", | |
"max": 7, | |
"style": "IPY_MODEL_9640315857244f72987bb17d7c07a442", | |
"value": 3 | |
} | |
}, | |
"1940e1cbd2474d3a95b78b7c7664fe46": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"195d4178a7d24c23815344267db9ae53": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_c0d569deb5674632836c3a8b4d77dfdc", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "53 (6, 5) 1 0 0\n21 (2, 5) 0 3 3\n19 (2, 3) 3 2 2\n35 (4, 3) 2 1 1\n38 (4, 6) 1 0 0\n14 (1, 6) 0 3 3\n9 (1, 1) 3 2 2\n49 (6, 1) 2 3 -1\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmYXGWd6PHvLzRJSEJISAwMyyRE\nwKAwQMIqA2EZF2R4BtDcRx0YcO4w4jiPy9XrNq7X6/bM4jbuOoI4Fx1HR58IKjNIQBBUEmBcQIMh\nCBISsgHZt/f+UdVJb9XpdJ2qU++p7+d5+qmu5ZzzpqurvjlLnY6UEpIkKQ9jyh6AJEkaOcMtSVJG\nDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KU\nEcMtSVJGDLckSRkx3JIkZaSn7AHsTUQ8DEwGlpc8FEmSRmsW8HRK6ahmZ9Tx4aYW7YPrX5IkdbUc\nNpUvL3sAkiQVYHkRM8kh3JIkqc5wS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx\n3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJG\nCgt3RBwREf8SEY9HxNaIWB4RH4uIqUUtQ5KkbtdTxEwi4tnAj4EZwHeAB4HTgNcDL46Is1JKa4pY\nliRJ3ayoNe5PU4v261JKl6SU3pZSOh/4KPAc4AMFLUeSpK4WKaXmZhAxG/gtsBx4dkppV5/7DgRW\nAAHMSCltHMX8FwNzmxqkJEnlW5JSmtfsTIpY4z6/fnlz32gDpJSeAe4EJgBnFLAsSZK6WhH7uJ9T\nv/xNg/uXAi8EjgVuaTST+pr1UOaMfmiSJFVLEWvcB9Uvn2pwf+/tUwpYliRJXa2Qo8r3IuqXw+5M\nb7Td333ckiTtUcQad+8a9UEN7p884HGSJGmUigj3r+uXxza4/5j6ZaN94JIkaYSKCPet9csXRkS/\n+dU/DnYWsBm4u4BlSZLU1ZoOd0rpt8DNwCzgtQPufh8wEfjKaD7DLUmS+ivq4LS/oXbK009ExAXA\nA8DpwHnUNpH/XUHLkSSpqxVyytP6WvcpwLXUgv0m4NnAJ4AzPU+5JEnFKOzjYCmlR4FXFTU/SZI0\nmH+PW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrgl\nScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIy0lP2ALpZSmWPoHWi7AFIFVfh\ntw/CN5BhucYtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLck\nSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZaSn7AGo9Vat\nehbLlh3F1q3jGDduK7NnP8yMGU+WPSxJGdi+chZbHppH2jKRGL+R8UcvZv9Dlpc9rK5WSLgj4mXA\nfOAk4ETgQOBfU0qXFzF/jc6yZUdx223n8MgjswbdN3PmcubPv53Zsx9u+7gkdb4tD83l6VuuYtvD\nJ/W7/Slg7FH3MfmCaxl/9JJyBtflIqXU/Ewi7qMW7A3AY8AcCgp3RCwG5jY7n05UwI++oSVLTmbh\nwj8lpTFAAqLvkoEgYhcXX7yQuXPvK3z5sfeHSGpCC98+2Pizi1j3rTdD2o9G7x/ETqZe9vdMPPWm\nwpcf1X0DWZJSmtfsTIrax/1G4FhgMvCaguapUVq27Kg+0YbBGa1dT2kMCxdezLJlR7V1fJI615aH\n5vaJNjR6/yDtx7pv/W+2PFTJ9aqOVki4U0q3ppSWpiJW39W02247p0+0h5fSGG677ZwWj0hSLp6+\n5ao+0d6LtB9P33JlS8ejwTyqvGJWrXpWfZ92//9D9fQ0Opwh8cgjs1i16lmtHZikjrd95az6Pu0B\n62A9jbZdJ7Y9fDLbV85q8cjUV8ccVV7flz2UOW0dSOb2bPbe80IbN24cV1xxBStXrmThwoUDpojd\n03mkudTdtjzUu/u1z/vHs6cwdcGxrP/2Q2x5cO2AKWL3dB5p3j6ucVfM1q3jBt02e/ZsjjjiCObN\nm8fb3va2EU8nqbukLRP7XR8/52CedfUJ9EwZx4HzjxjxdGqtjgl3SmneUF/Ag2WPLSfjxm0ddNsD\nDzzAww/XPvY1fvz4IeM91HSSukuM37j7+/FzDmb6Vc/bfX3NVx8Y0XRqvY4Jt4qx53PZ/fdRXXfd\ndQ3inQZMJ6lbjT+6tsdy/Jyp/aL9+PvvZtfG7UNMkfpNp/Yw3BUzY8aTzJy5nKE+ST10vIOZM5e7\nf1sS+x+ynEnz1zP9quN339Y42gDB2KPudf92mxnuCpo//3Yidg1531Dxnj//9nYOT1LHuogpF168\n+9rw0QZiJ5MvuK4N41JfhruCZs9+mIsv/m6feA/cbH5tv3jPnn1vm0coqfNcBHx397XH/++d9WgP\nPD1H/Xr9zGme9rT9ijpX+SXAJfWrh9Yvz4yIa+vfr04pvbmIZWlk5s69lylT1jc4V3mwaNH7OPTQ\nv+aAA54PHASsB6a0e5iSOkL/aMMMDn75kTx9y5Vse/jkAY+tbR6ffMF1RrskRZ2r/L3Ae4Z5yCMp\npVmjnLfnKm/S8H8d7Bbg/Pr3T1FUvKt7qmGpMxT39jE42rDnmJcy/jqY5yofXiHhbiXD3Q7Fx7u6\nrzupMxTz9jF8tMtiuIfnPm4BFwA/rH/fu9lcUrV1ZrS1d4ZbdcZb6h5GO2eGW30Yb6n6jHbuDLcG\nMN5SdRntKjDcGoLxlqrHaFeF4VYDxluqDqNdJYZbwzDeUv6MdtUYbu2F8ZbyZbSryHBrBIy3lB+j\nXVWGWyNkvKV8GO0qM9zaB8Zb6nxGu+oMt/aR8ZY6l9HuBoZbo2C8pc5jtLuF4dYoGW+pcxjtbmK4\n1QTjLZXPaHcbw60mGW+pPEa7GxluFWBwvKcytcTxSN3gcox2dzLcKkj/eK9lbZmDkSrt3bwbuL7P\nLUa7mxhuFeiCftfmMKekcUjV9hpe0+faERjt7tJT9gC6WZQ9gBbYn7F8g2/wnb/8Dg9++cGyh1O4\nlMoeQWtU8XexVzWfshP5JT/kFbyCn/P7sgejNovU4e9EEbEYmFv2OFqis3/0zaloCTr85TJqFX26\ngOq+zKr8nFX4H7ckpTSv2Zm4qVySpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGW\nJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMtLT\n7AwiYhpwKXARcAJwOLAN+DnwZeDLKaVdzS5H6iZbl45l410T2bVxDGMm7mLimRsZd8y2soelBh5a\nN46fPDGRDdv2Y9LYnZx+6EaOnrq17GGpopoON7AA+AywArgV+B1wCHAZ8EXgwohYkFJKBSxLqrSN\nd01g9aems+meCYPum3DKJqa/djUTz9xUwsg0lLtXTOSz989g8cqJg+6bd8hGrjlxFWf8wcYSRqYq\ni2Z7GhHnAxOBG/uuWUfEocBPgSOBl6WUvjnK+S8G5jY1yE5V5f/KRNkDaI1W/vdz/b8fxIp3Hwq7\ngtovR98fYv36mMQfvP8Jprz0qUKXXdGnC2jdy+xbS6fyvrsOY1dq/HyNicR7z/w9lx6zvvDlV/k5\nq/A/bklKaV6zM2l6H3dK6YcppYUDN4enlJ4APlu/em6zy5GqbONdE/pEGwa/c9Wv7wpWvOtQNt41\neI1c7XP3iol9og2Nnq9dKXjvXYdz94rBa+TSaLX64LTt9csdLV6OlLXVn5reJ9p7sStY/enprR2Q\nhvXZ+2f0ifbwdqXgc/fPaPGI1E1aFu6I6AH+on71+61ajpS7rUvH1vdp79moG+PGccjb386Ygw4a\nYorEpp9NYOvSsW0bo/Z4aN24+j7t/hvhj55yNNf80TVDTJG4Z+VEHlo3ri3jU/UVcXBaIx8Gjgdu\nSin9YG8Pru/LHsqcQkcldZiNd/VuRt2zBnfo+97LlEsu4eAr/4Kl889lx8qVfaaI3dN5pHn7/eSJ\nwc/X2Yefzaf/5NMArN+6nq/9+mt9pojd03mkuYrQkjXuiHgd8CbgQeCKVixDqopdGwe/DNd8/gu7\nvz/mtkX0HHLIiKZT623Ytl+/632jDbBw2cIRTSeNVuGv/Ih4LfBx4FfAeSmltSOZLqU0b6gvavGX\nKmvMxMGnOdi2bBmPXHnl7utDxXuo6dR6k8bu3P39wGjP//p8Nm4f+uNffaeTmlFouCPiDcA/A7+g\nFu0nipy/VEUTz+x9o++/z3TTT37aIN5pwHRqp9MPrf3ch4r22i1DraekftNJzSos3BHxVuCjwH3U\nor2qqHlLVTbumG1MOGUTQ314deh4H8qEUze5f7skR0/dyl8ef9oIow0QnHKIZ1JTcQoJd0S8i9rB\naIuBC1JKq4uYr9Qtpr92NYwZ+lQhQ8X7WW/wiPLyvIQ3zvvS7mvDRxvGROLVJ7oeo+IUcea0K4Fr\ngZ3AJ4GhTum0PKV07Sjn75nTclTRMx+Veea0Caefzszrrutz2xHA7wtZdkWfLqDol9lLgBt3Xzvv\n385h9eZ1eOa0glX3H1fImdOK+DjYUfXL/YA3NHjMbdTiLqmBKS97iv0P387qT09n088GnhktYNci\nNv/yQg543vfqtz1GkfHW3vSPNszgQ2dv4nP3z+CeQecqr20ef7XnKlcLNL3G3WqucWeqov9jbtfL\nZfi/DnYutb/n06v5eFf06QKKepkNjjY8uftaGX8drMrPWYX/cYWscRvuMnX2j745FX3hdc7L5VyK\njHdFny6giJfZ8NEuS5Wfswr/4zrjj4xIKsMi4Lw+1x8DDi9nKJXWmdFWdzPcUrYWYbxbyWirMxlu\nKWuLMN6tYLTVuQy3lL1FGO8iGW11NsMtVcIijHcRjLY6n+GWKmMRxrsZRlt5MNxSpSzCeI+G0VY+\nDLdUOYsw3vvCaCsvhluqpEUY75Ew2sqP4ZYqaxHGezhGW3ky3FKlLcJ4D8VoK1+GW6q8RRjvvoy2\n8ma4pa6wCOMNRltVYLilrrGI7o630VY1GG6pqyyiO+NttFUdhlvqOosYGO/DKx1vo61qMdxSV1pE\n33g/xmNcxVVlDaZlbuZmjLaqJlJKZY9hWBGxGJhb9jhaorN/9M2JsgfQGh3+chmFc4Fbd1/roYed\n7CxtNEU6hEN4gif63FKtaFf0JVZT3X/ckpTSvGZn4hq3tA+icl+LuIEbALjyyivZGTvLHlBhX0/u\n9ySf+tSnAPhz/pzgybKHVOiXupdr3GXq7B99c6r6zlLR5+yACQewefPmsodRuDFjxrD/zv3Zytay\nh6J9UdX3D9e4JRWlitEG2LVrl9FW5RhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYk\nKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrgl\nScpIIeGOiI9ExC0R8WhEbI6ItRFxb0S8JyKmFbEMSZIEkVJqfiYR24AlwK+AVcBE4AzgFOBx4IyU\n0qOjnPdiYG7Tg+xEzf/oO1eUPYAWqepzVtXnC6r7nFVZdX8fl6SU5jU7k54iRgJMTiltGXhjRHwA\neAfwduBvClqWJEldq5BN5UNFu+7f6pfHFLEcSZK6XasPTru4fvnfLV6OJEldoahN5QBExJuBScBB\n1PZv/zG1aH94BNMubnDXnMIGKElS5goNN/Bm4JA+178PXJVSerLg5UiS1JUKOap80EwjDgGeT21N\n+0DgT1NKS0Y5L48qz1FVjwqt6nNW1ecLqvucVVl1fx8LOaq8Jfu4U0orU0r/AbwQmAZ8pRXLkSSp\n27T04LSU0iPUPtv9vIiY3splSZLUDdpxytPD6pc727AsSZIqrelwR8SciDh0iNvH1E/AMgP4cUpp\nXbPLkiSp2xVxVPmLgb+PiNuB3wJrqB1ZPh+YDTwBXF3AciRJ6npFhPu/gM8DZwEnAlOAjcBvgOuB\nT6SU1hawHEmSul7T4U4p/QJ4bQFjkSRJe+Hf45YkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5Kk\njBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZbE\n5MmTyx6C9tFkfM66leGWutzN3MxTTz3FNddcU/ZQNEIXcRFP8RQrWclYxpY9HLVZpJTKHsOwImIx\nMLfscbREZ//omxNlD6A1OvzlMgovAW7cfa2HHnays7zhaERSvzePdwAfKmsoLREVff8AlqSU5jU7\nE9e4pa7VP9oLWGC0M3Esx/a59kHg7WUNRSXoKXsAksrQP9ozmMGTPFnecLRPlrIUGAtsq9/ywfpl\ntda8NTTXuKWu0z/aGO1MbYd++7dd8+4WhlvqKoOjjdHOmPHuRoZb6hpGu5qMd7cx3FJXMNrVZry7\nieGWKs9odwfj3S0Mt1RpRru7GO9uYLilyjLa3cl4V53hlirJaHc3411lhluqHKMtMN7VZbilSjHa\n6st4V5HhlirDaGsoxrtqDLdUCUZbwzHeVWK4pewZbY2E8a4Kwy1lzWhrXxjvKjDcUraMtkbDeOfO\ncEtZMtpqhvHOmeGWsmO0VQTjnauesgcgabA1j8/ksQfnsn3LBPYfv4kj5ixh2mGPYLRVrN54b6tf\n/2D98kO7H7H60Un87hfT2baph7ETdvCHx69m+pEb2jxO9dWycEfEFcBX6levTil9sVXLkqri0QdP\n5p4br+DxpScOuu/kFz7N8y+7pM8tRltFGDrej/z889z9zWN47IFpg6Y44rg1nPHSpcw8YU3bRqk9\nWrKpPCKOBD4J+N8yaYR+deeFLPz4R+rRTv3um3n8wUZbLTR4s/mjv/zHerTTgMcmHntgGt/8wOn8\n/NYj2jdE7VZ4uCMigC8Da4DPFj1/qYoeffBkFn31jaS0X/2W2H3fzOOn8ad/e9Lu619+yyIefdA3\nTBWtf7z/+OVXctolC+j7u1hTu55S8J+f+yMe+fngNXK1VivWuF8HnA+8CtjYgvlLlXPPjVf0ifYe\ntWjv2Wz+L//7R2x6ehf33Hh5O4enrrGdb7z/7N3Xzn5Fb7yHllJw97eOacfA1Eeh4Y6I44APAx9P\nKd1e5Lylqlrz+MwGm8cHR3vzM9uBxONLT2LN4zPbO1BVXu1AtIP46Cv/bPdtw8c78divprH60Unt\nGaCAAsMdET3A9cDvgHeMYvrFQ30Bc4oao9SJHntwbv27PZskpx0+sUG09zxuz3RSMX73i+kA7Nq5\nk4++cs8xFWe/4kqOPuWMIaaIftOpPYpc4343cDJwVUppc4HzlSpt+5YJg2478fwjd3/fP9rDTyc1\nY9umPR802rVzR794n3LxpSOaTq1XyE87Ik6jtpb9jymlu0Yzj5TSvAbzXgy4aqHK2n/8pkG3Lbrh\n12x6ehuLf/AI27fsHPF0UjPGTtjR73ot3n/GmS97BYu/++0RT6fWajrcfTaR/wZ4V9MjkrrMEXOW\n1L9L9G563LUjcfd3ljWYova4PdNJxfjD41fXv+vzu7hzJ3d+/asNpqg9bs90aociNpVPAo4FjgO2\nRETq/QLeU3/MF+q3fayA5UmVMu2wRzjsmPsZ/LGbRoLDjrmvfiY1qTjTj9zAEcetYV9+F4947hrP\npNZmRWwq3wp8qcF9c6nt974D+DUwqs3oUtWdctH1LPz48UN+JGygiJ2cclGjNSCpOWe8dCnf/MDB\npLT3eEckzrhsaRtGpb4ipYFnxSlw5hHvpbbWPepTnlZ6H3frfvTlG+l/2DPTwpcLv7rzwj4nYdmz\nqbK+ZCCI2Mm5l/8Tzz3r+4Uuu6JPV6W18u3j5z88kv/8/An1eDf6XUy84NX/zQnnPVb48qO6v5BL\nGh3PtS88FFDqEM8963scOO0J7rnxch5fetKAe2ubx0+56KscOefeUsan7nHC+Y8y+VmbuPtbx/DY\nrwaeGa22efyMyzxXeVkMt9RBjpxzL0fOuXeYvw4mtcfME9Yw84Q1/nWwDtTSTeVFcFN5piq6qavD\nXy6jVtGnq9Iq+qsIuKl8b1ry18EkSVJrGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojh\nliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJi\nuCVJykhP2QOQchJR9gi0z1LZA2gNfxe7l2vckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQR\nwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRl\nxHBLkpQRwy1JUkYKCXdELI+I1ODriSKWIUmSoKfAeT0FfGyI2zcUuAxJkrpakeFen1J6b4HzkyRJ\nA7iPW5KkjBS5xj0uIi4H/hDYCPw3cHtKaWeBy5AkqasVGe5DgesH3PZwRLwqpXRbgcuRJKlrFRXu\nLwM/An4JPAPMBv4W+GvgexFxZkrp/uFmEBGLG9w1p6AxSpKUvUgptW7mEf8AvAn4dkrp0r08drhw\nTyh6bB2hdT/68kXZA5Dqqvo68zWWoyUppXnNzqTV4T4aWAqsTSlNG+U8FgNzCx1Yp6jqGwr4pqLO\nUdXXma+xHBUS7lYfVb6qfjmxxcuRJKkrtDrcZ9Yvl7V4OZIkdYWmwx0Rz4uIg4e4fSbwz/WrX212\nOZIkqZijyhcAb4uIW4GHqR1V/mzgImA8cBPwDwUsR5KkrldEuG8FngOcTG3T+ERgPXAHtc91X59a\neQScJEldpOlw10+u4glWJElqA89VLklSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXE\ncEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3pMo6\n/PDDOY3Tyh6GVCjDLamSZsyYwR133MFP+An3cm/Zw5EK01P2ALpZKnsALRRlD0D7poK/jGtZyyxm\nAXASJ5G4Eriu1DEVyddY93KNW1Il7WAHL+JFfW65FriypNFIxTHckirrZm4GDuxzy7UYb+XOcEuq\nuA0Yb1WJ4ZbUBYy3qsNwS+oSxlvVYLgldRHjrfwZbkldxngrb4ZbUhcy3sqX4ZbUpYy38mS4JXUx\n4638GG5JXc54Ky+GW5KMtzJiuCUJMN7KheGWpN2Mtzqf4Zakfoy3OpvhlqRBjLc6l+GWpCEZb3Um\nwy1JDRlvdR7DLUnDMt7qLD1lD0Ctt2HD/qxbdwA7doyhp2cXU6duZtKk7WUPS8MYf9JZHHDOhcTE\nA0kbn2Hz7d9jy313lj2sLtYb72fq16+tX15Xu1g1Bpb1wFZgHDB7B8zY1eYxqlsUGu6IOBt4A/B8\n4GBgLfBz4GMppZuKXJb2bu3a8Ty8fCrr1x8w6L4pUzZz1Kx1HHzwlhJGpkYmvvjlTLriaviDg/vd\nPvaSizhoxVo2XP8FNn7/ayWNrtsNEe9VY+DGr8MjQ7yVztwB87fC7J3tG6K6QqSUiplRxDuB9wOr\nge8CK4DpwMnArSmlt4xyvouBuYUMssMU9KMf0uOPH8gDD04HAkj1y91L3n37cXNWc9hhzww1i6ZE\n7P0x6m/K1e9g3MtfVvvhpdT/h9h7PSW23PANnvrih4pdeAt/F8tW/D9tEnviDXz7NXDfvzLkaywS\nXLwF5ha/hcvXWJaWpJTmNTuTQta4I2IBtWj/F3BZSumZAffvX8RyNDJr147vE23o/4ZCv9sfeHA6\n48dvd827ZBNf/PI90YbB78p9bh//igXseOxh17xLswEengJHra9dveQztcv7/l+fx9SfrxSwcDxM\n2eWatwrT9MFpETEG+AiwCXjlwGgDpJTcodpGDy+fyuBYNxL1x6tMk664euSrUBFMuvzq1g5Iw1u0\nHT54+J7rl3wGTnrl0I9NAbeNa8+41BWKOKr8+cBRwE3Auoi4KCLeGhGvj4gzC5i/9sGGDfvX92n3\n30A4fvwRROw3xBSJ9esPYMMGN4qUZfxJZ9X2aY9030lKcNjBtenUfqvG1PZpb3tmhPFOtcev8kM8\nKkYRv0mn1i9XAkuo7d/+MPAx4McRcVtEPGtvM4mIxUN9AXMKGGPXWLeu90C0PWtv06adx5ln3MLz\nnvvRIeIdA6ZTux1wzoW1b/ZhjbvfdGqvZb17GAO2bRgc78MHHpITA6aTmlNEuGfUL68BDgD+hNqh\nl8cDPwDOAb5RwHI0Ajt29H9Kp007j5NO/CJjxvQwefIfMWbM+BFNp/aJiQfu/UEFTqcmbR1wvTfe\nu3bC9s0wbvLIppNGqYj/AvauwgXwspTS/fXrv4yIS4HfAPMj4syU0l2NZtLoSLsqH1XeCj09ez47\n2hvtXj+756Xs3Llxr9OpvdLG0R3VP9rp1KShdldv2wAfPAwOeS78fsnIp5NGoYjVrHX1y2V9og1A\nSmkztbVugNMKWJb2YurUzcDgaN/+o9PYvn3NEFOkftOp/Tbf/r3aN/uyj7vvdGqv2Tvq3wx4vnZs\naRDtNGA6qTlFhPvX9cv1De7vDbs7Udtg0qTtzPzDs0YYbYBgyhTPpFamLffdCSvW7ts+7sfXeia1\nsszYVTu5yj58coOZnklNxSki3LcDO4BjImLsEPcfX79cXsCytFcXcfTRX9l9bfhoAySOmrVumPvV\nDhuu/8I+rXFv+OoXWjsgDW/+1trJVUYiUu3xUkGaDndKaTXwdeAg4N1974uIFwAvAp4Cvt/ssrQ3\nF1E7qL/m9h+dWo/2wDeYtPvyuDmrPflKB9j4/a+x9Wv/vifeAyPe5/YtN3zDk6+UbfbO2hnRYs9r\nqb/69d4zp3nyFRWokFOeRsQM4E7gaOBHwE+BmcCl1H6DX5lSGtWR5VU+OK3YU572jzbMYO3aZ0o7\nV7mnYxydiS9+ee3kKocdPPhnOb/eAAAIVklEQVTOx9ey4astOle5pzwdnWX71U6uUsK5yn2NZamQ\nU54Wea7yg4F3Uov14dRO5nsH8KGU0t1NzNdw79XgaMOTu6+V8dfBfFNpTtv/Opjhbk4Jfx3M11iW\nOivcrWK492b4aJfFN5XMdPbbQFOq+k/zNZalQsLtWTey1pnRliS1juHOltGWpG5kuLNktCWpWxnu\n7BhtSepmhjsrRluSup3hzobRliQZ7kwYbUlSjeHueEZbkrSH4e5oRluS1J/h7lhGW5I0mOHuSEZb\nkjQ0w91xjLYkqTHD3VGMtiRpeIa7YxhtSdLeGe6OYLQlSSNjuEtntCVJI2e4S/VOjLYkaV8Y7pIs\nWLAAeH+fW4y2JGnvDHdJTj311D7XTsZoS5JGoqfsAXSrt7zlLTzxxBPccMMNrFixouzhqNtF2QNo\nnQr/09SlIqVU9hiGFRGLgbllj0OSpCYtSSnNa3YmbiqXJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkj\nhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnK\niOGWJCkjhluSpIw0He6IuCoi0l6+dhYxWEmSul1PAfO4D3hfg/vOBs4HvlfAciRJ6npNhzuldB+1\neA8SEXfVv/18s8uRJEkt3McdEccDZwC/B25s1XIkSeomrTw47dX1yy+llNzHLUlSAYrYxz1IRBwA\nXA7sAr44wmkWN7hrTlHjkiQpd61a4/4fwBTgeymlR1u0DEmSuk5L1riBv65ffm6kE6SU5g11e31N\nfG4Rg5IkKXeFr3FHxHOB5wOPATcVPX9JkrpZKzaVe1CaJEktUmi4I2I8cAW1g9K+VOS8JUlS8Wvc\nC4CpwE0elCZJUvGKDnfvQWmeKU2SpBYoLNwRcRzwx3hQmiRJLVPYx8FSSg8AUdT8JEnSYP49bkmS\nMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluS\npIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKSA7hnlX2ACRJKsCsImbSU8RMWuzp+uXy\nNixrTv3ywTYsS8XwOcuPz1l+fM6aN4s9PWtKpJSKmE8lRMRigJTSvLLHopHxOcuPz1l+fM46Sw6b\nyiVJUp3hliQpI4ZbkqSMGG5JkjJiuCVJyohHlUuSlBHXuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJ\nyojhliQpI4ZbkqSMGG4gIo6IiH+JiMcjYmtELI+Ij0XE1LLHpv4iYlpE/FVE/EdEPBQRmyPiqYi4\nIyL+Z0T4O52JiLgiIlL966/KHo+GFhFnR8Q3I2JF/f1xRUTcHBEvKXts3SqHv8fdUhHxbODHwAzg\nO9T+3uxpwOuBF0fEWSmlNSUOUf0tAD4DrABuBX4HHAJcBnwRuDAiFiTPLNTRIuJI4JPABmBSycNR\nAxHxTuD9wGrgu9Red9OBk4FzgZtKG1wX6/ozp0XED4AXAq9LKX2yz+3/BLwR+FxK6Zqyxqf+IuJ8\nYCJwY0ppV5/bDwV+ChwJvCyl9M2Shqi9iIgA/hM4CvgW8Gbg6pTSF0sdmPqJiAXAvwH/BVyWUnpm\nwP37p5S2lzK4LtfVmxUjYja1aC8HPjXg7vcAG4ErImJim4emBlJKP0wpLewb7frtTwCfrV89t+0D\n0754HXA+8CpqrzF1mPoup48Am4BXDow2gNEuT1eHm9qbB8DNQ4TgGeBOYAJwRrsHplHpfSPZUeoo\n1FBEHAd8GPh4Sun2ssejhp5PbYvITcC6iLgoIt4aEa+PiDNLHlvX6/Z93M+pX/6mwf1Lqa2RHwvc\n0pYRaVQiogf4i/rV75c5Fg2t/hxdT+24hHeUPBwN79T65UpgCXBC3zsj4nZqu6SebPfA5Br3QfXL\npxrc33v7lDaMRc35MHA8cFNK6QdlD0ZDeje1g5quSiltLnswGtaM+uU1wAHAnwAHUnuN/QA4B/hG\nOUNTt4d7b6J+2d1H8HW4iHgd8CZqnwi4ouThaAgRcRq1tex/TCndVfZ4tFf71S+D2pr1LSmlDSml\nXwKXAo8B891sXo5uD3fvGvVBDe6fPOBx6jAR8Vrg48CvgPNSSmtLHpIG6LOJ/DfAu0oejkZmXf1y\nWUrp/r531LeW9G7VOq2toxJguH9dvzy2wf3H1C8b7QNXiSLiDcA/A7+gFu0nSh6ShjaJ2mvsOGBL\nn5OuJGqf3gD4Qv22j5U2SvXV+964vsH9vWE/oA1j0QDdfnDarfXLF0bEmAGfCz4QOAvYDNxdxuDU\nWES8ldp+7fuAF6SUVpc8JDW2FfhSg/vmUtvvfQe1WLgZvTPcTu3TGcdExNiU0rYB9x9fv1ze1lEJ\n6PJwp5R+GxE3Uzty/LXUzuTU633UTvTxuZSSnzXtIBHxLuD/AIuBF7p5vLPVN60OeUrTiHgvtXBf\n5wlYOkdKaXVEfB34c2oHFb6z976IeAHwImq7EP0ERwm6Otx1f0PtlKefiIgLgAeA04HzqG0i/7sS\nx6YBIuJKatHeCfwIeF3tRFz9LE8pXdvmoUlV87+ovRf+XUScQ+3MhDOpHZy2k9rZ7hptSlcLdX24\n62vdp1CLwYuBl1A7H+8ngPe5Ntdxjqpf7ge8ocFjbgOubctopIpKKa2KiNOprW1fSu1EVM8ANwIf\nSim5C7EkXX+uckmSctLtR5VLkpQVwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRl\nxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpSR/w84PSEwl2mc\nmwAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498211fcc0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"195f5df8ccb249908143d82dfa3e0879": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"19aa96b393854cb5b95b06540a83581e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"19ba1d73499a4d73a07ef17232529451": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_7a70381238f041b89703967b460480b1", | |
"max": 3, | |
"style": "IPY_MODEL_f43c55f4a6b34bd89d698e6f16774cab", | |
"value": 3 | |
} | |
}, | |
"19e41c3c690f47aabcdec32907b630e2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"19e568f179b745c0aa90cde002d091ad": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"19fa331d9645448a8bbb4ac45582a775": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_09d3da1d42c3496a84e576b81cb505b3", | |
"IPY_MODEL_940139b30e1643af9caef61f73d07f5b", | |
"IPY_MODEL_00aad3f00b324fb598e605443b3305cd", | |
"IPY_MODEL_85afea475c7a40009cd18f1fa9fcc042", | |
"IPY_MODEL_ff344ad073d94a7596f14b3f35f3a38d" | |
], | |
"layout": "IPY_MODEL_0a1022253f6f417caeab24f543c569fb" | |
} | |
}, | |
"1a06e0e6ef224e3c9e8ecaa1a006ecf7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1a2942b3d23449dabccdcb518afe4ccd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1a2b0354a6784fa3a4cfd0c418e42f83": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1a45cb7addc2416fba44d80a8570a61a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_18d75d3007eb4c96ba5cd5537974f6aa", | |
"max": 3, | |
"style": "IPY_MODEL_d0cd10c993c4467aab9c527320914973", | |
"value": 3 | |
} | |
}, | |
"1a71430dab8647ad8733db3fc74ec243": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1a7272e02f3e45db889f44e551988745": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_badfae5beecc44c1b9a66d402d2992d7", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "53 (6, 5) 1 0 0\n21 (2, 5) 0 3 3\n19 (2, 3) 3 2 2\n35 (4, 3) 2 1 1\n38 (4, 6) 1 0 0\n14 (1, 6) 0 3 3\n9 (1, 1) 3 2 2\n49 (6, 1) 2 3 -1\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XuYXHV9+PH3J3eScInEgNxCAonR\nQmMSwrUVBfFGrUJNnxahYK2Wyq+o1Z/2ZxXx51MvD1ZR6wVFReH3WKvSWgoiggQKgpcEIopIMCSA\nkEC4BMid3e/vj5lN9jK72eyc2TPfM+/X8+wze2bmnPNNZmfee86cORspJSRJUh7GlD0ASZI0fIZb\nkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojh\nliQpI4ZbkqSMGG5JkjJiuCVJysi4sgewKxFxP7AXsLrkoUiSNFKHAk+nlGY1u6C2Dze1aD+v/iVJ\nUkfLYVf56rIHIElSAVYXsZAcwi1JkuoMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBL\nkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHc\nkiRlpLBwR8RBEfG1iHg4IrZGxOqIuDgiphW1DkmSOt24IhYSEYcBPwFmAN8H7gGOBt4BvDoiTkgp\nPV7EuiRJ6mRFbXF/gVq0z08pvSGl9I8ppZOATwMvBP65oPVIktTRIqXU3AIiZgO/A1YDh6WUunvd\ntifwCBDAjJTSxhEsfxmwsKlBSpJUvuUppUXNLqSILe6T6pfX9Y42QErpGeBWYDJwbAHrkiSpoxXx\nHvcL65f3DnL7SuCVwFzghsEWUt+ybmTeyIcmSVK1FLHFvXf9csMgt/dcv08B65IkqaMVclT5LkT9\ncsg30wfb7+973JIk7VTEFnfPFvXeg9y+V7/7SZKkESoi3L+tX84d5PY59cvB3gOXJEnDVES4b6xf\nvjIi+iyv/nGwE4DNwO0FrEuSpI7WdLhTSr8DrgMOBc7rd/OHgSnAN0fyGW5JktRXUQenvZ3aKU8/\nGxEnA78BjgFeTm0X+T8VtB5JkjpaIac8rW91HwVcRi3Y7wYOAz4LHOd5yiVJKkZhHwdLKT0IvLmo\n5UmSpIH8e9ySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuS\nlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlJFxZQ+gk6VU9ghaJ8oe\ngFRxFX75IHwBGZJb3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIk\nZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGxpU9\nALXe9nWHsuW+RaQtU4hJG5l0+DLG77e67GFJysD6B6fywK+ms23TOCZMfo5DjljP9IOfLXtYHa2Q\ncEfEG4ETgZcA84E9gf+XUjqziOVrZLbct5CnbziHbfe/pM/1G4AJs+5kr5MvY9Lhy8sZnKS2tuau\nfbn9e3N46Df7DrjtoBc9zrF/tpKZRz5ewsgUKaXmFxJxJ7VgPws8BMyjoHBHxDJgYbPLaUcF/NcP\nauPPT+XJK98DaSyQgOi95tp0dDHt9IuYsviawtcfu76LpCa08OWDu358MD/68pGkFAz2+hGROOVv\nf8mRL3+o8PVHdV9AlqeUFjW7kKLe434XMBfYC/i7gpapEdpy38Je0YaBGa1Pp7E8eeX/Zst9lfy9\nSNIIrLlr317RhsFeP1IKfnTJH7LmroFb5GqtQsKdUroxpbQyFbH5rqY9fcM5vaK9C2ksT99wdkvH\nIykft39vTq9oDy2l4PYr57R4ROrPo8orZvu6Q+vvaff7HWrcYE/ExLb7F7B93aEtHpmkdrf+wan1\n97T7vn6MHT9+kDkSD929L+sfnNrysWmntgl3RCxr9EXt/XIN05b7et4+2RnqmDiWGW/7Q/Y57fAG\nc0S/+SR1qgd+Nb3+3c7Xj0OOmM9bLv4ysxcubjBH9JtPo6Ftwq1ipC1TBlw3ac4+TDhkL6Ye8wIO\nuPC4Yc8nqbNs29T3g0azFy5myQf/mT2nP5/Ff/rGYc+n1mqbcKeUFjX6Au4pe2w5iUkbB1y3+VeP\ns+V3TwEwZtK4hvFuNJ+kzjJh8nM7vp+9cDGnve9DO6b/61MfHdZ8ar22CbeKMenwZfXv+r5Htf4r\ndw0S79RvPkmd6pAj1gMwe+FRfaL9hbe+ic1Pb2gwR+ozn0aH4a6Y8futZsKsO2n0SerG8Q4mzLrD\nM6lJYvrBz7L49fM47X0X7rhu8GgDBAe9+HHPpDbKDHcF7XXyZRBdDW9rFO+9Tv7GKI5OUvs6lZee\n8ckdU0NHGyISx56+cjQGpl4MdwVNOnw5007/ZK94999t/ss+8Z50+I9HeYSS2s+pwH/vmPri286o\nR7v/6Tlq0z1nTvO0p6OvqHOVvwF4Q31y//rlcRFxWf379Sml9xSxLg3PlMVXM3baIzx9w9lsu39B\nv1uDp6//JuNfcBxjJy8G9gaeAvYZ/YFKagN9ow0zeO3fd3P7lXN46O7+Z0ar7R4/9nTPVV6Wos5V\nfiHwoSHusialdOgIl+25yps09F8HuwE4qf79BoqKd3VPNSy1h+JePgZGGx7bMVXGXwfzXOVDKyTc\nrWS4R0Px8a7u805qD8W8fAwd7bIY7qH5HreAk4Ge97l7dptLqrb2jLZ2zXCrznhLncNo58xwqxfj\nLVWf0c6d4VY/xluqLqNdBYZbDRhvqXqMdlUYbg3CeEvVYbSrxHBrCMZbyp/RrhrDrV0w3lK+jHYV\nGW4Ng/GW8mO0q8pwa5iMt5QPo11lhlu7wXhL7c9oV53h1m4y3lL7MtqdwHBrBIy31H6Mdqcw3Boh\n4y21D6PdSQy3mmC8pfIZ7U5juNUk4y2Vx2h3IsOtAgyM9zSmlTgeqROcidHuTIZbBekb7yd4oszB\nSJV2ARcAl/e6xmh3EsOtAp3cZ2oe80oah1Rtf8ff9Zo6CKPdWcaVPYBOFmUPoAXGM4Hv8B2+/9ff\n556v31P2cAqXUtkjaI0q/iz2qOZDNp9f82P+kr/kLn5f9mA0yiK1+StRRCwDFpY9jpZo7//65lS0\nBG3+dBmxij5cQHWfZlV+zCr8j1ueUlrU7ELcVS5JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJ\nGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1J\nUkYMtyRJGRnX7AIiYl/gNOBU4EjgQGAbcBfwdeDrKaXuZtcjdZL7npzIT9dO4dltY5k6oYtj9t/I\n4dO2lj0sDebRMbBqHGwFJgKzn4MZvuypNZoON7AE+CLwCHAj8ACwH3A6cCnwmohYklJKBaxLqrTb\nH5nCl1bMYNm6KQNuW7TfRs6d/yjHvmBjCSNTQ6vGwk0TYU2Dl9KZz8GJW2F21+iPS5UWzfY0Ik4C\npgBX996yjoj9gZ8BBwNvTCl9b4TLXwYsbGqQ7arKv8pE2QNojVb++nnlyml8+LYD6E5B7Yej939i\nbXpMJC487vecNuepQtdd0YcLaOHTbPl4uGoSDPF4EQletwUWbi989VV+zCr8j1ueUlrU7EKafo87\npfTjlNJV/XeHp5TWAl+qT76s2fVIVXb7I1N6RRsGvnLVprtTcOFtB3L7IwO3yDWKVo3tFW0Y7PEi\nRe1+q8aO5uhUca0+OK3n18znWrweKWtfWjGjV7SH1p2CS1bMaPGINKSbJvaK9i6kqN1fKkjLwh0R\n44C/qk9e26r1SLm778mJ9fe0d+7UnTh2Iu9d/F72mrBXgzkSv1g3hfueNAaleHRM/T3tfjvhZ7wI\nTnxvgxlS7f6P+iEeFaOIg9MG83HgCOCalNIPd3Xn+nvZjcwrdFRSm/np2p7d3ju34D547Ad5/eGv\n56wXn8UrvvMK1m1a12uO2DGfR5qXYFXPy2avLe45r4Q3faf2/aYn4OeX9pohds43Y9tojFAV15Jf\nASPifODdwD3AWa1Yh1QVz24b+P7nV3/11R3fX7/kevabvN+w5tMo6P+7Uu9oA/zy28ObTxqhwsMd\nEecBnwHuBl6eUnpiOPOllBY1+qIWf6mypk4Y+HGh+zfcz1//8K93TDeKd6P5NAp6v0PRP9oXHQZb\nn9n1fFITCg13RLwT+FfgV9SivbbI5UtVdMz+PZ/L7vue6c/X/nyQeKd+82lUza4fa9so2hvXN5gh\n9Z1PalJh4Y6I9wGfBu6kFu1Hi1q2VGWHT9vKov020ujDq43jvT9H7eeZ1EozoxtOOHmY0QaI2slY\nPJOaClJIuCPig9QORlsGnJxSGuwnWFID585/lDHR+FQhjeL99wtaeVyphvZaOOXKnZNDRpvaSVhO\n9JcsFaeIM6edDVwGdAGfAzY0uNvqlNJlI1y+Z07LUUXPfFTmmdMW7380X3vV13pddxDw+0LWXdGH\nCyj6afZa4OqdkxfNho2P45nTClbdf1whZ04r4tf2WfXLscA7B7nPTdTiLmkQp895kgOmbuOSFTP4\nxYBzlQcpLeXux1/Li/e9pn7dQxQZb+1Kv2gzA/7siUHOVR6eq1wt0/QWd6u5xZ2piv7GPFpPl6H/\nOtjLqP09nx7Nx7uiDxdQ1NOsQbR5bOdkCX8drMqPWYX/cYVscRvuMrX3f31zKvrEa5+ny8soMt4V\nfbiAIp5mu4h2Sar8mFX4H9cef2REUhmWAi/vNf0QcGA5Q6m09oy2OpvhlrK1FOPdSkZb7clwS1lb\nivFuBaOt9mW4pewtxXgXyWirvRluqRKWYryLYLTV/gy3VBlLMd7NMNrKg+GWKmUpxnskjLbyYbil\nylmK8d4dRlt5MdxSJS3FeA+H0VZ+DLdUWUsx3kMx2sqT4ZYqbSnGuxGjrXwZbqnylmK8ezPaypvh\nljrCUow3GG1VgeGWOsZSOjveRlvVYLiljrKUzoy30VZ1GG6p4yylf7wPrHS8jbaqxXBLHWkpveP9\nEA9xDueUNZiWuY7rMNqqmkgplT2GIUXEMmBh2eNoifb+r29OlD2A1mjzp8sIvAy4ccfUOMbRRVdp\noynSfuzHWtb2uqZa0a7oU6ymuv+45SmlRc0uxC1uaTdE5b6W8i2+BcDZZ59NV3SVPaDCvh4b+xif\n//znAXgTbyJ4rOwhFfqlzuUWd5na+7++OVV9ZanoY7bH5D3YvHlz2cMo3JgxYxjfNZ6tbC17KNod\nVX39cItbUlGqGG2A7u5uo63KMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3\nJEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlJFC\nwh0Rn4iIGyLiwYjYHBFPRMQdEfGhiNi3iHVIkiSIlFLzC4nYBiwH7gYeBaYAxwJHAQ8Dx6aUHhzh\nspcBC5seZDtq/r++fUXZA2iRqj5mVX28oLqPWZVV9+dxeUppUbMLGVfESIC9Ukpb+l8ZEf8MvB/4\nP8DbC1qXJEkdq5Bd5Y2iXffv9cs5RaxHkqRO1+qD015Xv/xli9cjSVJHKGpXOQAR8R5gKrA3tfe3\n/4hatD8+jHmXDXLTvMIGKElS5goNN/AeYL9e09cC56SUHit4PZIkdaRCjiofsNCI/YDjqW1p7wn8\nSUpp+QiX5VHlOarqUaFVfcyq+nhBdR+zKqvuz2MhR5W35D3ulNK6lNJ/AK8E9gW+2Yr1SJLUaVp6\ncFpKaQ21z3b/QURMb+W6JEnqBKNxytMD6pddo7AuSZIqrelwR8S8iNi/wfVj6idgmQH8JKX0ZLPr\nkiSp0xVxVPmrgYsi4mbgd8Dj1I4sPxGYDawF3lrAeiRJ6nhFhPt64MvACcB8YB9gI3AvcDnw2ZTS\nEwWsR5Kkjtd0uFNKvwLOK2AskiRpF/x73JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMt\nSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JLYa6+9\nyh6CdtNe+Jh1KsMtdbjruI4NGzZw7rnnlj0UDdOpnMoGNrCOdUxgQtnD0SiLlFLZYxhSRCwDFpY9\njpZo7//65kTZA2iNNn+6jMBrgat3TI1jHF10lTccDUvq8+LxfuBjZQ2lJaKirx/A8pTSomYX4ha3\n1LH6RnsJS4x2JuYyt9fUR4H/U9ZQVIJxZQ9AUhn6RnsGM3iMx8objnbLSlYCE4Bt9Ws+Wr+s1pa3\nGnOLW+o4faON0c7Udujz/rZb3p3CcEsdZWC0MdoZM96dyHBLHcNoV5Px7jSGW+oIRrvajHcnMdxS\n5RntzmC8O4XhlirNaHcW490JDLdUWUa7MxnvqjPcUiUZ7c5mvKvMcEuVY7QFxru6DLdUKUZbvRnv\nKjLcUmUYbTVivKvGcEuVYLQ1FONdJYZbyp7R1nAY76ow3FLWjLZ2h/GuAsMtZctoaySMd+4Mt5Ql\no61mGO+cGW4pO0ZbRTDeuRpX9gAkDbR15QQ23jaF7o1jGDOlmynHbWTinG0YbRWrJ97b6tMfrV9+\nbMc9Hn94Jg/ds5DtWyYzftImDpq3nH0PWDPK41RvLQt3RJwFfLM++daU0qWtWpdUFRtvm8z6z09n\n0y8mD7ht3785lhnv+Xqva4y2itA43g/ecy2/uPosHl45f8AcB8xZwVGnXs7B8+4YtVFqp5bsKo+I\ng4HPAc+2YvlSFT313b154C0H16Od+tw29cSXGm210MDd5r//7bfr0U797pt4eOV8rvrMJ7j71leP\n3hC1Q+HhjogAvg48Dnyp6OVLVbTxtsk8csH+0B31a2LHbVNPPJGDL7lkx/S9f3Q8G2/bOMojVPX1\njfexr5/DolfPpPfPYk1tOqWxLL3iH3jwngWjNkLVtGKL+3zgJODNgK8u0jCs//z0XtHeqRbtnb//\n3nv8CXStf5L1X5g+msNTx9jOf376Mzumjn3DYfV4N5bSWH5x9ZmjMTD1Umi4I+JFwMeBz6SUbi5y\n2VJVbV05YZDd4w2i/cQTQGLTzyezdeUEpCI9/vBMfv/bI/nieT/ecd3Q8U48vPIlPP7w4HFX8QoL\nd0SMAy4HHgDeP4L5lzX6AuYVNUapHW28bUr9u51b3BPnzh0k2jvvt3M+qRgP3bMQgO4u+OJ5N+64\n/tg3HMas+Y328kSf+TQ6itzivgBYAJyTUtpc4HKlSuveOPBp+Lyz/2rH932jPfR8UjO2b9n5aYbu\nrtQn3i855ZBhzafWK+TjYBFxNLWt7H9JKd02kmWklBYNsuxlgL/OqbLGTOkecN3aCz/Mc+vX8/iX\nv0L3xsaHijSaT2rG+Emb+kx3dyW++PYbWfwns7jz+geGPZ9aq+lw99pFfi/wwaZHJHWYKcf1hDmx\n44jd7dt57NMXDzJH7X4755OKcdC85fXvdv4sdncnfvpfqwaZo3a/nfNpNBSxr20qMBd4EbAlIlLP\nF/Ch+n2+Ur9usFciqWNNnLONyUdtYuDHbgYTTF68qX4mNak4+x6whgPmrGB3fhYPmHOnZ1IbZUXs\nKt8KfHWQ2xZSe9/7FuC3wIh2o0tVN/289TzwloMbfiRsgDGJ6W9f3/pBqSMdderlXPWZI0hp7C7v\nG9HFUadeMQqjUm+RUv+z4hS48IgLqW11j/iUp5V+j7t1//XlG+4v7Jlp4dOFp767d6+TsOzcVVlf\nc216TOIFH1nLPn+2odB1V/ThqrRWvnzcfetrWHrFu+rxbvyzGNHFy878FC8+4drC1x/V/YFcPtjx\nXLvDPzIitYl93riB8QduZ/0XprPp5/2P0q3tHp/+9vVMOc4DgdRaLz7hB+y571p+cfWZPLzyJf1u\nre0eP+rUKzxXeUkMt9RGphy3iSnHPTDEXweTRsfB8+7g4Hl3+NfB2lBLd5UXwV3lmarorq42f7qM\nWEUfrkqr6I8i4K7yXfEMDpIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx\n3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJG\nxpU9ACknEWWPQLstlT2A1vBnsXO5xS1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRl\nxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJ\nGTHckiRlpJBwR8TqiEiDfK0tYh2SJAnGFbisDcDFDa5/tsB1SJLU0YoM91MppQsLXJ4kSerH97gl\nScpIkVvcEyPiTOAQYCPwS+DmlFJXgeuQJKmjFRnu/YHL+113f0S8OaV0U4HrkSSpYxUV7q8D/wP8\nGngGmA38L+BtwA8i4riU0oqhFhARywa5aV5BY5QkKXuRUmrdwiM+Cbwb+M+U0mm7uO9Q4Z5c9Nja\nQuv+68sXZQ9Aqqvq88znWI6Wp5QWNbuQVof7cGAl8ERKad8RLmMZsLDQgbWLqr6ggC8qah9VfZ75\nHMtRIeFu9VHlj9Yvp7R4PZIkdYRWh/u4+uWqFq9HkqSO0HS4I+IPIuJ5Da6fCfxrffKKZtcjSZKK\nOap8CfCPEXEjcD+1o8oPA04FJgHXAJ8sYD2SJHW8IsJ9I/BCYAG1XeNTgKeAW6h9rvvy1Moj4CRJ\n6iBNh7t+chVPsCJJ0ijwXOWSJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZ\nMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuqrAMPPJCj\nObrsYUiFMtySKmnGjBnccsst/JSfcgd3lD0cqTCRUip7DEOKiGXAwrLH0Qpt/l/flIiyR6BON27c\nOLZv397rmnOAb5Q0muL5HMvS8pTSomYX4ha3pEp67rnneNWrXtXrmsuAs0sajVQcwy2psq677jpg\nz17XXIbxVu4Mt6SKexbjrSox3JI6gPFWdRhuSR3CeKsaDLekDmK8lT/DLanDGG/lzXBL6kDGW/ky\n3JI6lPFWngy3pA5mvJUfwy2pwxlv5cVwS5LxVkYMtyQBxlu5MNyStIPxVvsz3JLUh/FWezPckjSA\n8Vb7MtyS1JDxVnsy3JI0KOOt9mO4JWlIxlvtZVzZA1DrPfro81m1ahZbt05k4sStzJ59PzNmPFb2\nsNSBZs4cz4KFezBl8hg2burmjuWbWbNme9nDGoaeeD9Tn76sfvkNAO5ddwi33jefZ7dMZuqkTZxw\n+Arm7vfA6A9THaHQcEfEHwPvBI4Hngc8AdwFXJxSuqbIdWnXVq2axU03vZQ1aw4dcNvMmas58cSb\nmT37/lEflzrPggWTOPOsacyfv8eA21as2MwVlz/JHXdsKWFku2NgvFeuO4R/+s/J/Oz+Iwfc++hZ\nd/GOk/+NEw5fMZqDVAeIlFIxC4r4APARYD3w38AjwHRgAXBjSum9I1zuMmBhIYNsMwX91ze0fPkC\nrrrqT0hpDJCA6L1mIIjo5nWvu4qFC+8sfP0Ru76POsOrX7Mn73rXdMaODVJKRK8fjp7prq7Epz+1\nnmuvfWaIJY1M8c+zqeyMN7znOyv47rIHafQcGxPdfPz0z/Hni39U9CB8juVpeUppUbMLKWSLOyKW\nUIv29cDpKaVn+t0+voj1aHhWrZrVK9rQ9wVl53RKY7jqqtexzz4b3PJWSyxYMGlHtIE+0e49PXZs\n8K5/mM66dduz2PK+/XfHc+xhPwHgk0vmA/DdZQ/1uk/t39WdxvCPV/49B0571C1vFabpg9MiYgzw\nCWATcEb/aAOklHJ4E6sybrrppb2iPbSUxnDTTS9t8YjUqc48a9qOaO/K2LHBmWdOa/GIivGp6/+U\nP7jg2h3Tn1wynzcuOqjhfbvTGD57w1+M1tDUAYo4qvx4YBZwDfBkRJwaEe+LiHdExHEFLF+74dFH\nn19/T7vv/sF99tmHMWMaPdyJNWsO5dFHn9/6wamjzJw5nvnz92C4b8ellJj/kj2YObO9d9Ddu+4Q\nfnb/kWzc9tww45346f1Hcu+6Q0ZvkKq0IsK9uH65DlhO7f3tjwMXAz+JiJsiYpdViIhljb6AeQWM\nsWOsWjWr/t3OrZy5c+dy/vnnc/rppzeId/SbTyrGgoW1A9H67x4fTM/9euZrV7feN7/+XbBxW9eA\neM8/aO9+c0S/+aTmFBHuGfXLc4E9gFdQO/TyCOCHwEuB7xSwHg3D1q0T+0zPnTuXM844gzFjxnDg\ngQcyblzjwxr6zyc1a8rkkb28jHS+0fLslsl9pnvi3dWd2LK9i6mTGj/H+s8njVQRB6eNrV8G8MaU\nUs8RGL+OiNOAe4ETI+K4lNJtgy1ksCPtqnxUeStMnLh1x/c90e5x6aWXsm3btl3OJxVh46buUZ1v\ntEydtGnAdRu3dfHiC65l3v57suKhDcOeTxqJIn61fbJ+uapXtAFIKW2mttUNcHQB69Iu9BwdPnfu\nnD7Rvuiii9i4cWODOVKf+aSi3LF8M8Buvcfde752tfPo8L7/rq3PdQ8S7dRvPqk5RYT7t/XLpwa5\nvSfs7f3GVUXMmPEYJ5ywN2ec8aYd1w0ebYBg5szVnklNhVuzZjsrVmzerfe4V9zZ/mdSm7vfAxw9\n6y4GfsxyMMExs+7yTGoqTBHhvhl4DpgTERMa3H5E/XJ1AevSLp3KKae8a8fU0NGGiG5OPPHm0RiY\nOtAVlz9JV9fwtri7uhJXXPHkru/YBt5x8r8xJoa3S39MdHP+yf/W4hGpkzQd7pTSeuDbwN7ABb1v\ni4hTgFcBG4BrB86tYp1K7aD+mosu+kQ92v1fOGvTPWdOcze5WuWOO7bw6U+v3xHv/rvNe6Z7zpzW\n/idfqTnh8BV87PTP9Yp34+foJJJyAAAIqElEQVRYz5nT3E2uIhVyytOImAHcChwO/A/wM2AmcBq1\nn+AzUkojOrK8ygenFXsqxr7RhhmsWjW1tHOVezpG9bZgwSTOPHMa81/S4Fzld27miitad67yVp5a\n+Nb75vPZG/6CnzY4V/kxs+7i/Baeq9znWJYKOeVpkecqfx7wAWqxPpDayXxvAT6WUrq9ieUa7l0a\nGG3Y+Z51GX8dzBcVNVLGXwdrZbh7lPHXwXyOZam9wt0qhntXho52WXxRUbto85e4EfM5lqVCwt3e\nZzrQLrRntCVJrWO4s2W0JakTGe4sGW1J6lSGOztGW5I6meHOitGWpE5nuLNhtCVJhjsTRluSVGO4\n257RliTtZLjbmtGWJPVluNuW0ZYkDWS425LRliQ1ZrjbjtGWJA3OcLcVoy1JGprhbhtGW5K0a4a7\nLRhtSdLwGO7SGW1J0vAZ7lJ9AKMtSdodhrskS5YsAT7S6xqjLUnaNcNdksWLF/eaWoDRliQNx7iy\nB9Cp3vve97J27Vq+9a1v8cgjj5Q9HKmyIsoegVSsSCmVPYYhRcQyYGHZ45AkqUnLU0qLml2Iu8ol\nScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhu\nSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSNNhzsizomItIuvriIGK0lSpxtXwDLu\nBD48yG1/DJwE/KCA9UiS1PGaDndK6U5q8R4gIm6rf/vlZtcjSZJa+B53RBwBHAv8Hri6VeuRJKmT\ntPLgtL+tX341peR73JIkFaCI97gHiIg9gDOBbuDSYc6zbJCb5hU1LkmScteqLe4/B/YBfpBSerBF\n65AkqeO0ZIsbeFv98pLhzpBSWtTo+vqW+MIiBiVJUu4K3+KOiBcDxwMPAdcUvXxJkjpZK3aVe1Ca\nJEktUmi4I2IScBa1g9K+WuSyJUlS8VvcS4BpwDUelCZJUvGKDnfPQWmeKU2SpBYoLNwR8SLgj/Cg\nNEmSWqawj4OllH4DRFHLkyRJA/n3uCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSM\nGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQp\nIzmE+9CyByBJUgEOLWIh44pYSIs9Xb9cPQrrmle/vGcU1qVi+Jjlx8csPz5mzTuUnT1rSqSUilhO\nJUTEMoCU0qKyx6Lh8THLj49ZfnzM2ksOu8olSVKd4ZYkKSOGW5KkjBhuSZIyYrglScqIR5VLkpQR\nt7glScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuICIOioivRcTDEbE1IlZHxMUR\nMa3ssamviNg3Iv4mIv4jIu6LiM0RsSEibomIt0SEP9OZiIizIiLVv/6m7PGosYj444j4XkQ8Un99\nfCQirouI15Y9tk6Vw9/jbqmIOAz4CTAD+D61vzd7NPAO4NURcUJK6fESh6i+lgBfBB4BbgQeAPYD\nTgcuBV4TEUuSZxZqaxFxMPA54FlgasnD0SAi4gPAR4D1wH9Te95NBxYALwOuKW1wHazjz5wWET8E\nXgmcn1L6XK/rPwW8C7gkpXRuWeNTXxFxEjAFuDql1N3r+v2BnwEHA29MKX2vpCFqFyIigB8Bs4Ar\ngfcAb00pXVrqwNRHRCwB/h24Hjg9pfRMv9vHp5S2lzK4DtfRuxUjYja1aK8GPt/v5g8BG4GzImLK\nKA9Ng0gp/TildFXvaNevXwt8qT75slEfmHbH+cBJwJupPcfUZupvOX0C2ASc0T/aAEa7PB0dbmov\nHgDXNQjBM8CtwGTg2NEemEak54XkuVJHoUFFxIuAjwOfSSndXPZ4NKjjqe0RuQZ4MiJOjYj3RcQ7\nIuK4ksfW8Tr9Pe4X1i/vHeT2ldS2yOcCN4zKiDQiETEO+Kv65LVljkWN1R+jy6kdl/D+koejoS2u\nX64DlgNH9r4xIm6m9pbUY6M9MLnFvXf9csMgt/dcv88ojEXN+ThwBHBNSumHZQ9GDV1A7aCmc1JK\nm8sejIY0o355LrAH8ApgT2rPsR8CLwW+U87Q1Onh3pWoX3b2EXxtLiLOB95N7RMBZ5U8HDUQEUdT\n28r+l5TSbWWPR7s0tn4Z1Lasb0gpPZtS+jVwGvAQcKK7zcvR6eHu2aLee5Db9+p3P7WZiDgP+Axw\nN/DylNITJQ9J/fTaRX4v8MGSh6PhebJ+uSqltKL3DfW9JT17tY4e1VEJMNy/rV/OHeT2OfXLwd4D\nV4ki4p3AvwK/ohbttSUPSY1NpfYcexGwpddJVxK1T28AfKV+3cWljVK99bw2PjXI7T1h32MUxqJ+\nOv3gtBvrl6+MiDH9Phe8J3ACsBm4vYzBaXAR8T5q72vfCZySUlpf8pA0uK3AVwe5bSG1971voRYL\nd6O3h5upfTpjTkRMSClt63f7EfXL1aM6KgEdHu6U0u8i4jpqR46fR+1MTj0+TO1EH5eklPysaRuJ\niA8C/xdYBrzS3ePtrb5rteEpTSPiQmrh/oYnYGkfKaX1EfFt4E3UDir8QM9tEXEK8CpqbyH6CY4S\ndHS4695O7ZSnn42Ik4HfAMcAL6e2i/yfShyb+omIs6lFuwv4H+D82om4+lidUrpslIcmVc0/UHst\n/KeIeCm1MxPOpHZwWhe1s90NtitdLdTx4a5vdR9FLQavBl5L7Xy8nwU+7NZc25lVvxwLvHOQ+9wE\nXDYqo5EqKqX0aEQcQ21r+zRqJ6J6Brga+FhKybcQS9Lx5yqXJCknnX5UuSRJWTHckiRlxHBLkpQR\nwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRl\nxHBLkpQRwy1JUkYMtyRJGfn/S4U6yvQmP6IAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981eefd30>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"1a7dcce8fc8648c7b5a9d82d7357102a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1a987d6afb1d47f391edb22f53ef3ebf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1ab696277d424ddc95f845e3298ca697": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_1fbb0c5ff4434bb4924fb8b708c8774a", | |
"IPY_MODEL_6b99f624fb0f4d23b73b62d65e709b92", | |
"IPY_MODEL_01dd38e0b3884b50869bb8f2bd5d1277", | |
"IPY_MODEL_d98e32c9ed234263ae31311f8e32a66f" | |
], | |
"layout": "IPY_MODEL_861b13986b7843c693cdfff59b722e84" | |
} | |
}, | |
"1afcb89bf0d048d89446d047c501fa4e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_f4c719dfebca40229499aeded63a58fe", | |
"style": "IPY_MODEL_89fdc60033c046ed9aa7ba7c306c19b7" | |
} | |
}, | |
"1b1fabe578f842d7bd0dce4be0ac2518": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1b734a97c2bd4146bc774b3c6eeae2ee": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1b959bc303c74e2193af41500c25cc63": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1bde278598f54f93808a83962c2244c4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_e43ff8a02c9849098f29aaeb71d7c45e", | |
"max": 3, | |
"style": "IPY_MODEL_ec35002fcf964fae846ffd49083c3cae", | |
"value": 3 | |
} | |
}, | |
"1beb3f91f7e049a7b7368e4e9e5cf293": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1bfa61d2e1ba4740a9732080f214dd20": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1c42d0a20b524fddb6f86ad382941218": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1c5327719c2c4de4b64403da5f0e1596": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "rj", | |
"layout": "IPY_MODEL_be5649308c5e491e8802ddc70288b002", | |
"max": 8, | |
"style": "IPY_MODEL_135cd59de1e446b285987efe0b36425a" | |
} | |
}, | |
"1c57054c0d2149c683b22ab7cadbcc2e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1c6bfad82dd84e7cbde852d89d8603a6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1c7223b3c611472691fee271a15f2cbf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_72e54f8ed4784fc0a8769391085c940a", | |
"IPY_MODEL_f63851dd248f47bc84f60654d9da0f46", | |
"IPY_MODEL_88c041b69c354240b55c825e7a1e0654", | |
"IPY_MODEL_3db33904ea0c436793cb7977ff60df72" | |
], | |
"layout": "IPY_MODEL_dd74b09cf25840b2ad23fadb4d3ad2a1" | |
} | |
}, | |
"1c725c9fd6c34dad8c050e44d05d6cda": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "ri", | |
"layout": "IPY_MODEL_7a22a376cbe4444f941a62d859936406", | |
"max": 8, | |
"style": "IPY_MODEL_151a2d8c67524e53ada4c07a1c7c7d66", | |
"value": 2 | |
} | |
}, | |
"1cbebf3ba97644478d51cbccd4de7f97": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1cd0283bd5074b948a4817e56642cac7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_c072e23bea70441686c1747406a0ce5d", | |
"style": "IPY_MODEL_f144e40cbbef47138d97af32e1946a71" | |
} | |
}, | |
"1d01d10f2d3b41a8888138d243981ca3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1d05ef9b917748db916c476158d8dc56": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_5b96c2469a434c22b2a38b517a40edb0", | |
"IPY_MODEL_1064e8a241594cc2b6d36d3bd849be39", | |
"IPY_MODEL_1bde278598f54f93808a83962c2244c4", | |
"IPY_MODEL_b7cdde3530e047dd999fb0c3854500fd", | |
"IPY_MODEL_913d5e8d3c224d9188485e0180f46168" | |
], | |
"layout": "IPY_MODEL_406bcf60d82a4d54b1fec5e504932cfd" | |
} | |
}, | |
"1d141cb62c8b4a11bdf94013e5a0d0fc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "s", | |
"layout": "IPY_MODEL_6b499903beaa4683aa6fce93788a104f", | |
"max": 63, | |
"style": "IPY_MODEL_d9ba1598b521472f94642458b1192c40" | |
} | |
}, | |
"1d19e54559b748f1ba0623ef0cccc9dc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_54ecd5f4757e4814b3bd996057b1a77c", | |
"max": 3, | |
"style": "IPY_MODEL_6520e7bc44c4407f843d102971d80fe4" | |
} | |
}, | |
"1d64affcb063497ba7ecf1a9642ada66": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1d7aa738d528426480221e265683507d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1d8defcc17c1468fa31f0ad31a4170c5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_90549046fbc648698c1b33dda9934a82", | |
"max": 7, | |
"style": "IPY_MODEL_7d24db5ea21144508c6a4d399ebefc38", | |
"value": 5 | |
} | |
}, | |
"1d9c5597659a4fb9840e0cdbe3c5367a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_ee70670158ca458daa5fc50e70fa25a4", | |
"max": 7, | |
"style": "IPY_MODEL_ea2187c387c44498bc024e2326ba858c", | |
"value": 3 | |
} | |
}, | |
"1da215568c4f443fba3d6c3243d03b2b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1dcdcb3caf7c47d190188d8991de68d7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1def423f0b234791ab90ba8f6e3eb23d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1df2aedf303a450bafb1d52ae4865c70": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1e0075e1a7224e4bb75191214bae1c7c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1e2f92d57a5746348af96645d247f34b": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_f9d034f275e24174b9428d7cd1cc3db0", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"1eb8722ffbbf466782a2b31fa3ac82cf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1ebd7cbbda344d63b522facddc389e75": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1edb3c5d8a7e429d9d46bd2d7ebc41e6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1eff752eed464a08a2effb1116ccf5cd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1f0398a6751347d7b2e55956d5a5a719": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"1f1c2b38e3ae4b2aa20030043b616de2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1f699641887b4684aedb1303fc2a25d9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_4644e146346c4220b0f9f28b85049934", | |
"max": 7, | |
"style": "IPY_MODEL_1304ed03e01c4384af205c294351f7b3", | |
"value": 7 | |
} | |
}, | |
"1f7c51f5f91e4a4eadb2833a694a68b6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1f83ab40f5384d42b4105dc32f2c99fd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"1fb2ceeaa53146528e3a1378f6866bec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_1bfa61d2e1ba4740a9732080f214dd20", | |
"max": 7, | |
"style": "IPY_MODEL_3e4db36773c34e75aab5b849a2f931cc", | |
"value": 2 | |
} | |
}, | |
"1fbb0c5ff4434bb4924fb8b708c8774a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_8843098a807249c39ac3dd4dcb8e7c22", | |
"max": 7, | |
"style": "IPY_MODEL_c14012d6701641f4b9354a2f287517ce", | |
"value": 1 | |
} | |
}, | |
"1fc3ce5b92f94c6a9175e20ce2bc9088": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"203a1660b8dd40a69c166cc5605f53f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"206f79dcd3204a4fa1ed91fd59bc230a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2077355d4e0348f680bb8573523d5c3a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_bc2a3bfa211544ecb5a6fe3da26239ee", | |
"max": 7, | |
"style": "IPY_MODEL_ef4747e7c13746588a415a69b895695c", | |
"value": 6 | |
} | |
}, | |
"20b2051edfaf487daf11fbe705ce1e6f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"20cfbd64c60148368b71c743aef9f9b2": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_e56198781d154fbfb2d064076f2eb524", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xm0XWV98PHvLwlJSMIQiQGZQgKJ\n0UJDEsLYgoI4UatQ09UiFKzVUnmLWn21r1XE11WHhVXUOqCoKLzLWpXWUhARJFAQHBKIKCLBEAYh\ngTAEyAj3Pu8f59zkDucOuWefu8+zz/ez1l3nnmHv/STnnvO9ezj7RkoJSZKUh3FlD0CSJI2c4ZYk\nKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrgl\nScqI4ZYkKSOGW5KkjBhuSZIyMqHsAQwnIu4DdgfWlDwUSZJG6yDg6ZTS7GZn1PbhphbtF9S/JEnq\naDlsKl9T9gAkSSrAmiJmkkO4JUlSneGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmS\nMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluS\npIwUFu6I2D8ivhYRD0fE1ohYExEXRcT0opYhSVKnm1DETCLiYOAnwEzg+8DdwJHAO4BXR8RxKaXH\ni1iWJEmdrKg17i9Qi/Z5KaU3pJT+MaV0IvBp4MXAPxe0HEmSOlqklJqbQcQc4HfAGuDglFJ3r/t2\nAx4BApiZUto4ivkvBxY1NUhJksq3IqW0uNmZFLHGfWL98tre0QZIKT0D3AJMAY4uYFmSJHW0IvZx\nv7h+ec8g968CXgnMA64fbCb1NetG5o9+aJIkVUsRa9x71C83DHJ/z+17FrAsSZI6WiFHlQ8j6pdD\n7kwfbLu/+7glSdqhiDXunjXqPQa5f/d+j5MkSaNURLh/W7+cN8j9c+uXg+0DlyRJI1REuG+oX74y\nIvrMr/5xsOOAzcBtBSxLkqSO1nS4U0q/A64FDgLO7Xf3h4GpwDdH8xluSZLUV1EHp72d2ilPPxsR\nJwG/AY4CXk5tE/k/FbQcSZI6WiGnPK2vdR8BXEot2O8GDgY+CxzjecolSSpGYR8HSyk9CLy5qPlJ\nkqSB/HvckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQR\nwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpSRCWUPoJOlVPYIWifKHoBU\ncRV++yB8AxmSa9ySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXE\ncEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRiaUPQC1\n3nPrDmLLvYtJW6YSkzcy+ZDl7LL3mrKHJSkD6x+cxgO/msG2TROYOOV5Djx0PTMOeLbsYXW0QsId\nEW8ETgAOBxYAuwH/L6V0RhHz1+hsuXcRT19/NtvuO7zP7RuAibPvYPeTLmXyISvKGZyktnb/nXtx\n2/fm8tBv9hpw3/4veZyj/2wVsw57vISRKVJKzc8k4g5qwX4WeAiYT0HhjojlwKJm59OOCvivH9TG\nn5/Ck1e8B9J4IAHRe8m169HF9NMuZOqSqwtffgz/EElNaOHbB3f++AB+9OXDSCkY7P0jInHy3/6S\nw17+UOHLj+q+gaxIKS1udiZF7eN+FzAP2B34u4LmqVHacu+iXtGGgRmtX0/jefKK/82Weyv5e5Gk\nUbj/zr16RRsGe/9IKfjRxX/I/XcOXCNXaxUS7pTSDSmlVamI1Xc17enrz+4V7WGk8Tx9/VktHY+k\nfNz2vbm9oj20lILbrpjb4hGpP48qr5jn1h1U36fd73eoCYO9EBPb7lvIc+sOavHIJLW79Q9Oq+/T\n7vv+MX6XXQaZIvHQXXux/sFpLR+bdmibcEfE8kZf1PaXa4S23Nuz+2RHqGPSeGa+7Q/Z89RDGkwR\n/aaT1Kke+NWM+nc73j8OPHQBb7noy8xZtKTBFNFvOo2Ftgm3ipG2TB1w2+S5ezLxwN2ZdtSL2PeC\nY0Y8naTOsm1T3w8azVm0hKUf/Gd2m/FClvzpG0c8nVqrbcKdUlrc6Au4u+yx5SQmbxxw2+ZfPc6W\n3z0FwLjJExrGu9F0kjrLxCnPb/9+zqIlnPq+D22//l+f+uiIplPrtU24VYzJhyyvf9d3H9X6r9w5\nSLxTv+kkdaoDD10PwJxFR/SJ9hfe+iY2P72hwRSpz3QaG4a7YnbZew0TZ99Bo09SN453MHH27Z5J\nTRIzDniWJa+fz6nvu2D7bYNHGyDY/6WPeya1MWa4K2j3ky6F6Gp4X6N4737SN8ZwdJLa1ykcf/on\nt18bOtoQkTj6tFVjMTD1YrgraPIhK5h+2id7xbv/ZvNf9on35EN+PMYjlNR+TgH+e/u1L77t9Hq0\n+5+eo3a958xpnvZ07BV1rvI3AG+oX92nfnlMRFxa/359Suk9RSxLIzN1yVWMn/4IT19/FtvuW9jv\n3uDp677JLi86hvFTlgB7AE8Be479QCW1gb7Rhpm89u+7ue2KuTx0V/8zo9U2jx99mucqL0tR5yq/\nAPjQEA+5P6V00Cjn7bnKmzT0Xwe7Hjix/v0Giop3dU81LLWH4t4+BkYbHtt+rYy/Dua5yodWSLhb\nyXCPheLjXd3XndQeinn7GDraZTHcQ3Mft4CTgJ793D2bzSVVW3tGW8Mz3Koz3lLnMNo5M9zqxXhL\n1We0c2e41Y/xlqrLaFeB4VYDxluqHqNdFYZbgzDeUnUY7Sox3BqC8ZbyZ7SrxnBrGMZbypfRriLD\nrREw3lJ+jHZVGW6NkPGW8mG0q8xwaycYb6n9Ge2qM9zaScZbal9GuxMYbo2C8Zbaj9HuFIZbo2S8\npfZhtDuJ4VYTjLdUPqPdaQy3mmS8pfIY7U5kuFWAgfGezvQSxyN1gjMw2p3JcKsgfeP9BE+UORip\n0s7nfOCyXrcY7U5iuFWgk/pcm8/8ksYhVdvf8Xe9ru2P0e4sE8oeQCeLsgfQArswke/wHb7/19/n\n7q/fXfZwCpdS2SNojSr+LPao5lO2gF/zY/6Sv+ROfl/2YDTGIrX5O1FELAcWlT2Olmjv//rmVLQE\nbf5yGbWKPl1AdV9mVX7OKvyPW5FSWtzsTNxULklSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZ\nMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlS\nRgy3JEkZmdDsDCJiL+BU4BTgMGA/YBtwJ/B14Osppe5mlyN1knufnMRP107l2W3jmTaxi6P22cgh\n07eWPSwN5tFxsHoCbAUmAXOeh5m+7ak1mg43sBT4IvAIcAPwALA3cBpwCfCaiFiaUkoFLEuqtNse\nmcqXVs5k+bqpA+5bvPdGzlnwKEe/aGMJI1NDq8fDjZPg/gZvpbOehxO2wpyusR+XKi2a7WlEnAhM\nBa7qvWYdEfsAPwMOAN6YUvreKOe/HFjU1CDbVZV/lYmyB9Aarfz184pV0/nwrfvSnYLaD0fv/8Ta\n9XGRuOCY33Pq3KcKXXZFny6ghS+zFbvAlZNhiOeLSPC6LbDoucIXX+XnrML/uBUppcXNzqTpfdwp\npR+nlK7svzk8pbQW+FL96suaXY5UZbc9MrVXtGHgO1ftencKLrh1P257ZOAaucbQ6vG9og2DPV+k\nqD1u9fixHJ0qrtUHp/X8mvl8i5cjZe1LK2f2ivbQulNw8cqZLR6RhnTjpF7RHkaK2uOlgrQs3BEx\nAfir+tVrWrUcKXf3Pjmpvk97x0bdSeMn8d4l72X3ibs3mCLxi3VTufdJY1CKR8fV92n32wg/8yVw\nwnsbTJBqj3/UD/GoGEUcnDaYjwOHAlenlH443IPr+7IbmV/oqKQ289O1PZu9d6zBffDoD/L6Q17P\nmS89k1d85xWs27Su1xSxfTqPNC/B6p63zV5r3HNfCW/6Tu37TU/Azy/pNUHsmG7mtrEYoSquJb8C\nRsR5wLuBu4EzW7EMqSqe3TZw/+dXf/XV7d9ft/Q69p6y94im0xjo/7tS72gD/PLbI5tOGqXCwx0R\n5wKfAe4CXp5SemIk06WUFjf6ohZ/qbKmTRz4caH7NtzHX//wr7dfbxTvRtNpDPTeQ9E/2hceDFuf\nGX46qQmFhjsi3gn8K/AratFeW+T8pSo6ap+ez2X33Wf687U/HyTeqd90GlNz6sfaNor2xvUNJkh9\np5OaVFi4I+J9wKeBO6hF+9Gi5i1V2SHTt7J47400+vBq43jvwxF7eya10szshuNOGmG0AaJ2MhbP\npKaCFBLuiPggtYPRlgMnpZQG+wmW1MA5Cx5lXDQ+VUijeP/9wlYeV6qhvRZOvmLH1SGjTe0kLCf4\nS5aKU8SZ084CLgW6gM8BGxo8bE1K6dJRzt8zp+Woomc+KvPMaUv2OZKvveprvW7bH/h9Icuu6NMF\nFP0yey1w1Y6rF86BjY/jmdMKVt1/XCFnTivi1/bZ9cvxwDsHecyN1OIuaRCnzX2Sfadt4+KVM/nF\ngHOVBykt467HX8tL97q6fttDFBlvDadftJkJf/bEIOcqD89VrpZpeo271VzjzlRFf2Meq5fL0H8d\n7GXU/p5Pj+bjXdGnCyjqZdYg2jy242oJfx2sys9Zhf9xhaxxG+4ytfd/fXMq+sJrn5fLyygy3hV9\nuoAiXmbDRLskVX7OKvyPa48/MiKpDMuAl/e6/hCwXzlDqbT2jLY6m+GWsrUM491KRlvtyXBLWVuG\n8W4Fo632Zbil7C3DeBfJaKu9GW6pEpZhvItgtNX+DLdUGcsw3s0w2sqD4ZYqZRnGezSMtvJhuKXK\nWYbx3hlGW3kx3FIlLcN4j4TRVn4Mt1RZyzDeQzHaypPhliptGca7EaOtfBluqfKWYbx7M9rKm+GW\nOsIyjDcYbVWB4ZY6xjI6O95GW9VguKWOsozOjLfRVnUYbqnjLKN/vPerdLyNtqrFcEsdaRm94/0Q\nD3E2Z5c1mJa5lmsx2qqaSCmVPYYhRcRyYFHZ42iJ9v6vb06UPYDWaPOXyyi8DLhh+7UJTKCLrtJG\nU6S92Zu1rO11S7WiXdGXWE11/3ErUkqLm52Ja9zSTojKfS3jW3wLgLPOOouu6Cp7QIV9PTb+MT7/\n+c8D8CbeRPBY2UMq9EudyzXuMrX3f31zqvrOUtHnbNcpu7J58+ayh1G4cePGsUvXLmxla9lD0c6o\n6vuHa9ySilLFaAN0d3cbbVWO4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrgl\nScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBQS\n7oj4RERcHxEPRsTmiHgiIm6PiA9FxF5FLEOSJEGklJqfScQ2YAVwF/AoMBU4GjgCeBg4OqX04Cjn\nvRxY1PQg21Hz//XtK8oeQItU9Tmr6vMF1X3Oqqy6P48rUkqLm53JhCJGAuyeUtrS/8aI+Gfg/cD/\nAd5e0LIkSepYhWwqbxTtun+vX84tYjmSJHW6Vh+c9rr65S9bvBxJkjpCUZvKAYiI9wDTgD2o7d/+\nI2rR/vgIpl0+yF3zCxugJEmZKzTcwHuAvXtdvwY4O6X0WMHLkSSpIxVyVPmAmUbsDRxLbU17N+BP\nUkorRjkvjyrPUVWPCq3qc1bV5wuq+5xVWXV/Hgs5qrwl+7hTSutSSv8BvBLYC/hmK5YjSVKnaenB\naSml+6l9tvsPImJGK5clSVInGItTnu5bv+wag2VJklRpTYc7IuZHxD4Nbh9XPwHLTOAnKaUnm12W\nJEmdroijyl8NXBgRNwG/Ax6ndmT5CcAcYC3w1gKWI0lSxysi3NcBXwaOAxYAewIbgXuAy4DPppSe\nKGA5kiR1vKbDnVL6FXBuAWORJEnD8O9xS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLck\nSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS2L33Xcv\newjaSbvjc9apDLfU4a7lWjZs2MA555xT9lA0QqdwChvYwDrWMZGJZQ9HYyxSSmWPYUgRsRxYVPY4\nWqK9/+ubE2UPoDXa/OUyCq8Frtp+bQIT6KKrvOFoRFKfN4/3Ax8raygtERV9/wBWpJQWNzsT17il\njtU32ktZarQzMY95va59FPg/ZQ1FJZhQ9gAklaFvtGcyk8d4rLzhaKesYhUwEdhWv+Wj9ctqrXmr\nMde4pY7TN9oY7Uw9B332b7vm3SkMt9RRBkYbo50x492JDLfUMYx2NRnvTmO4pY5gtKvNeHcSwy1V\nntHuDMa7UxhuqdKMdmcx3p3AcEuVZbQ7k/GuOsMtVZLR7mzGu8oMt1Q5RltgvKvLcEuVYrTVm/Gu\nIsMtVYbRViPGu2oMt1QJRltDMd5VYril7BltjYTxrgrDLWXNaGtnGO8qMNxStoy2RsN4585wS1ky\n2mqG8c6Z4ZayY7RVBOOdqwllD0DSQFtXTWTjrVPp3jiOcVO7mXrMRibN3YbRVrF64r2tfv2j9cuP\nbX/E4w/P4qG7F/HclinsMnkT+89fwV773j/G41RvLQt3RJwJfLN+9a0ppUtatSypKjbeOoX1n5/B\npl9MGXDfXn9zNDPf8/VetxhtFaFxvB+8+xp+cdWZPLxqwYAp9p27kiNOuYwD5t8+ZqPUDi3ZVB4R\nBwCfA55txfylKnrqu3vwwFsOqEc79blv2gnHG2210MDN5r//7bfr0U79Hpt4eNUCrvzMJ7jrlleP\n3RC1XeHhjogAvg48Dnyp6PlLVbTx1ik8cv4+0B31W2L7fdNOOIEDLr54+/V7/uhYNt66cYxHqOrr\nG++jXz+Xxa+eRe+fxZra9ZTGs+zyf+DBuxeO2QhV04o17vOAE4E3A767SCOw/vMzekV7h1q0d/z+\ne8+xx9G1/knWf2HGWA5PHeM5/vPTn9l+7eg3HFyPd2MpjecXV50xFgNTL4WGOyJeAnwc+ExK6aYi\n5y1V1dZVEwfZPN4g2k88ASQ2/XwKW1dNRCrS4w/P4ve/PYwvnvvj7bcNHe/Ew6sO5/GHB4+7ildY\nuCNiAnAZ8ADw/lFMv7zRFzC/qDFK7WjjrVPr3+1Y4540b94g0d7xuB3TScV46O5FAHR3wRfPvWH7\n7Ue/4WBmL2i0lSf6TKexUeQa9/nAQuDslNLmAucrVVr3xoEvwxec9Vfbv+8b7aGnk5rx3JYdn2bo\n7kp94n34yQeOaDq1XiEfB4uII6mtZf9LSunW0cwjpbR4kHkvB/x1TpU1bmr3gNvWXvBhnl+/nse/\n/BW6NzY+VKTRdFIzdpm8qc/17q7EF99+A0v+ZDZ3XPfAiKdTazUd7l6byO8BPtj0iKQOM/WYnjAn\nth+x+9xzPPbpiwaZova4HdNJxdh//or6dzt+Fru7Ez/9r9WDTFF73I7pNBaK2NY2DZgHvATYEhGp\n5wv4UP0xX6nfNtg7kdSxJs3dxpQjNjHwYzeDCaYs2VQ/k5pUnL32vZ99565kZ34W9517h2dSG2NF\nbCrfCnx1kPsWUdvvfTPwW2BUm9Glqptx7noeeMsBDT8SNsC4xIy3r2/9oNSRjjjlMq78zKGkNH7Y\nx0Z0ccQpl4/BqNRbpNT/rDgFzjziAmpr3aM+5Wml93G37r++fCP9hT0zLXy58NR39+h1EpYdmyrr\nS65dH5d40UfWsuefbSh02RV9uiqtlW8fd93yGpZd/q56vBv/LEZ08bIzPsVLj7um8OVHdX8gVwx2\nPNfO8I+MSG1izzduYJf9nmP9F2aw6ef9j9KtbR6f8fb1TD3GA4HUWi897gfsttdafnHVGTy86vB+\n99Y2jx9xyuWeq7wkhltqI1OP2cTUYx4Y4q+DSWPjgPm3c8D82/3rYG2opZvKi+Cm8kxVdFNXm79c\nRq2iT1elVfRHEXBT+XA8g4MkSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJG\nDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KU\nkQllD0DKSUTZI9BOS2UPoDX8WexcrnFLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJ\nGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1J\nUkYMtyRJGSkk3BGxJiLSIF9ri1iGJEmCCQXOawNwUYPbny1wGZIkdbQiw/1USumCAucnSZL6cR+3\nJEkZKXKNe1JEnAEcCGwEfgnclFLqKnAZkiR1tCLDvQ9wWb/b7ouIN6eUbixwOZIkdayiwv114H+A\nXwPPAHOA/wW8DfhBRByTUlo51AwiYvkgd80vaIySJGUvUkqtm3nEJ4F3A/+ZUjp1mMcOFe4pRY+t\nLbTuv758UfYApLqqvs58jeVoRUppcbMzaXW4DwFWAU+klPYa5TyWA4sKHVi7qOobCvimovZR1deZ\nr7EcFRLuVh9V/mj9cmqLlyNJUkdodbiPqV+ubvFyJEnqCE2HOyL+ICJe0OD2WcC/1q9e3uxyJElS\nMUeVLwX+MSJuAO6jdlT5wcApwGTgauCTBSxHkqSOV0S4bwBeDCyktml8KvAUcDO1z3Vfllp5BJwk\nSR2k6XDXT67iCVYkSRoDnqtckqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQp\nI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JlbXffvtx\nJEeWPQypUIZbUiXNnDmTm2++mZ/yU27n9rKHIxVmQtkD6GSp7AG0UJQ9AO2cCv4wPsETHMRBABzO\n4STOAr5R6piK5Gusc7nGLamSnud5XsWret1yKXBWSaORimO4JVXWtVwL7Nbrlksx3sqd4ZZUcc9i\nvFUlhltSBzDeqg7DLalDGG9Vg+GW1EGMt/JnuCV1GOOtvBluSR3IeCtfhltShzLeypPhltTBjLfy\nY7gldTjjrbwYbkky3sqI4ZYkwHgrF4ZbkrYz3mp/hluS+jDeam+GW5IGMN5qX4Zbkhoy3mpPhluS\nBmW81X4MtyQNyXirvUwoewBqvUcffSGrV89m69ZJTJq0lTlz7mPmzMfKHpaGMGvWLixctCtTp4xj\n46Zubl+xmfvvf67sYXWwnng/U79+af3yGwDcs+5Abrl3Ac9umcK0yZs47pCVzNv7gbEfpjpCoeGO\niD8G3gkcC7wAeAK4E7gopXR1kcvS8Favns2NNx7P/fcfNOC+WbPWcMIJNzFnzn1jPi4NbuHCyZxx\n5nQWLNh1wH0rV27m8sue5Pbbt5QwMjWK96p1B/JP/zmFn9132IBHHzn7Tt5x0r9x3CErx3KQ6gCR\nUipmRhEfAD4CrAf+G3gEmAEsBG5IKb13lPNdDiwqZJBtpqD/+oZWrFjIlVf+CSmNAxIQvZcMBBHd\nvO51V7Jo0R2FLz9i+Meor1e/Zjfe9a4ZjB8fpJSIXv+JPde7uhKf/tR6rrnmmSHmNAot/FksW/H/\ntGnsiDe85zsr+e7yB2n0GhsX3Xz8tM/x50t+VPgofI1laUVKaXGzMylkjTsillKL9nXAaSmlZ/rd\nv0sRy9HIrF49u1e0oe8byo7rKY3jyitfx557bnDNu2QLF07eHm2gT7R7Xx8/PnjXP8xg3brnXPMu\nzbPc9rtjOfrgnwDwyaULAPju8od6Pab2fHWncfzjFX/PftMfdc1bhWn64LSIGAd8AtgEnN4/2gAp\nJXfOjaEbbzy+V7SHltI4brzx+BaPSMM548zp26M9nPHjgzPOmN7iEWkon7ruT/mD86/Zfv2TSxfw\nxsX7N3xsdxrHZ6//i7EamjpAEUeVHwvMBq4GnoyIUyLifRHxjog4poD5ayc8+ugL6/u0+24g3HPP\nPRk3rtHTnbj//oN49NEXtn5wamjWrF1YsGBXRrrbKqXEgsN3ZdYsN2SV4Z51B/Kz+w5j47bnRxjv\nxE/vO4x71h04doNUpRUR7iX1y3XACmr7tz8OXAT8JCJujIhhqxARyxt9AfMLGGPHWL16dv27HWtv\n8+bN47zzzuO0005rEO/oN53G2sJFtQPR+m8eH0zP43qm09i65d4F9e+Cjdu6BsR7wf579Jsi+k0n\nNaeIcM+sX54D7Aq8gtqhl4cCPwSOB75TwHI0Alu3Tupzfd68eZx++umMGzeO/fbbjwkTGh/W0H86\njZ2pU0b3MhztdGrOs1um9LneE++u7sSW57qYNrnxa6z/dNJoFXFw2vj6ZQBvTCn1HIHx64g4FbgH\nOCEijkkp3TrYTAY70q7KR5W3wqRJW7d/3xPtHpdccgnbtm0bdjqNrY2busd0OjVn2uRNA27buK2L\nl55/DfP32Y2VD20Y8XTSaBTxK/uT9cvVvaINQEppM7W1boAjC1iWhtFzdPi8eXP7RPvCCy9k48aN\nDaZIfabT2Lt9xWaAndrH3Xs6ja0dR4f3fb62Pt89SLRTv+mk5hQR7t/WL58a5P6esLtDbgzMnPkY\nxx23B6ef/qbttw0ebYBg1qw1nkmtRPff/xwrV27eqX3cK+/wTGplmbf3Axw5+04GfsxyMMFRs+/0\nTGoqTBHhvgl4HpgbERMb3H9o/XJNAcvSsE7h5JPftf3a0NGGiG5OOOGmsRiYhnD5ZU/S1TWyNe6u\nrsTllz85/APVMu846d8YFyPbVTEuujnvpH9r8YjUSZoOd0ppPfBtYA/g/N73RcTJwKuADcA1A6dW\nsU6hdlB/zYUXfqIe7f5BqF3vOXOam8nLd/vtW/j0p9dvj3f/zeY913vOnObJV8p13CEr+dhpn+sV\n78avsZ4zp7mZXEUq5JSnETEt0zs6AAAInElEQVQTuAU4BPgf4GfALOBUaj/Bp6eURnVkeZUPTiv2\nlKd9ow0zWb16WmnnKvd0jKOzcOFkzjhjOgsOb3Cu8js2c/nlLTpXuac8HZVb7l3AZ6//C37a4Fzl\nR82+k/NaeK5yX2NZKuSUp0Weq/wFwAeoxXo/aifzvRn4WErptibma7iHNTDasGOfdRl/Hcw3leaM\n+V8HM9xNKeOvg/kay1J7hbtVDPdwho52WXxTyUx7vw00par/NF9jWSok3J7BIWvtGW1JUusY7mwZ\nbUnqRIY7S0ZbkjqV4c6O0ZakTma4s2K0JanTGe5sGG1JkuHOhNGWJNUY7rZntCVJOxjutma0JUl9\nGe62ZbQlSQMZ7rZktCVJjRnutmO0JUmDM9xtxWhLkoZmuNuG0ZYkDc9wtwWjLUkaGcNdOqMtSRo5\nw12qD2C0JUk7w3CXZOnSpcBHet1itCVJwzPcJVmyZEmvawsx2pKkkZhQ9gA61Xvf+17Wrl3Lt771\nLR555JGyh6NOF2UPoHUq/E9Th4qUUtljGFJELAcWlT0OSZKatCKltLjZmbipXJKkjBhuSZIyYrgl\nScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhu\nSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIy0nS4I+LsiEjDfHUVMVhJkjrdhALmcQfw4UHu+2PgROAH\nBSxHkqSO13S4U0p3UIv3ABFxa/3bLze7HEmS1MJ93BFxKHA08HvgqlYtR5KkTtLKg9P+tn751ZSS\n+7glSSpAEfu4B4iIXYEzgG7gkhFOs3yQu+YXNS5JknLXqjXuPwf2BH6QUnqwRcuQJKnjtGSNG3hb\n/fLikU6QUlrc6Pb6mviiIgYlSVLuCl/jjoiXAscCDwFXFz1/SZI6WSs2lXtQmiRJLVJouCNiMnAm\ntYPSvlrkvCVJUvFr3EuB6cDVHpQmSVLxig53z0FpnilNkqQWKCzcEfES4I/woDRJklqmsI+DpZR+\nA0RR85MkSQP597glScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI\n4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSM5hPugsgcgSVIB\nDipiJhOKmEmLPV2/XDMGy5pfv7x7DJalYvic5cfnLD8+Z807iB09a0qklIqYTyVExHKAlNLissei\nkfE5y4/PWX58ztpLDpvKJUlSneGWJCkjhluSpIwYbkmSMmK4JUnKiEeVS5KUEde4JUnKiOGWJCkj\nhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbiAi9o+Ir0XEwxGxNSLWRMRFETG97LGpr4jYKyL+\nJiL+IyLujYjNEbEhIm6OiLdEhD/TmYiIMyMi1b/+puzxqLGI+OOI+F5EPFJ/f3wkIq6NiNeWPbZO\nlcPf426piDgY+AkwE/g+tb83eyTwDuDVEXFcSunxEoeovpYCXwQeAW4AHgD2Bk4DLgFeExFLk2cW\namsRcQDwOeBZYFrJw9EgIuIDwEeA9cB/U3vdzQAWAi8Dri5tcB2s48+cFhE/BF4JnJdS+lyv2z8F\nvAu4OKV0TlnjU18RcSIwFbgqpdTd6/Z9gJ8BBwBvTCl9r6QhahgREcCPgNnAFcB7gLemlC4pdWDq\nIyKWAv8OXAecllJ6pt/9u6SUnitlcB2uozcrRsQcatFeA3y+390fAjYCZ0bE1DEemgaRUvpxSunK\n3tGu374W+FL96svGfGDaGecBJwJvpvYaU5up73L6BLAJOL1/tAGMdnk6OtzU3jwArm0QgmeAW4Ap\nwNFjPTCNSs8byfOljkKDioiXAB8HPpNSuqns8WhQx1LbInI18GREnBIR74uId0TEMSWPreN1+j7u\nF9cv7xnk/lXU1sjnAdePyYg0KhExAfir+tVryhyLGqs/R5dROy7h/SUPR0NbUr9cB6wADut9Z0Tc\nRG2X1GNjPTC5xr1H/XLDIPf33L7nGIxFzfk4cChwdUrph2UPRg2dT+2gprNTSpvLHoyGNLN+eQ6w\nK/AKYDdqr7EfAscD3ylnaOr0cA8n6pedfQRfm4uI84B3U/tEwJklD0cNRMSR1Nay/yWldGvZ49Gw\nxtcvg9qa9fUppWdTSr8GTgUeAk5ws3k5Oj3cPWvUewxy/+79Hqc2ExHnAp8B7gJenlJ6ouQhqZ9e\nm8jvAT5Y8nA0Mk/WL1enlFb2vqO+taRnq9aRYzoqAYb7t/XLeYPcP7d+Odg+cJUoIt4J/CvwK2rR\nXlvykNTYNGqvsZcAW3qddCVR+/QGwFfqt11U2ijVW89741OD3N8T9l3HYCzqp9MPTruhfvnKiBjX\n73PBuwHHAZuB28oYnAYXEe+jtl/7DuDklNL6koekwW0FvjrIfYuo7fe+mVos3IzeHm6i9umMuREx\nMaW0rd/9h9Yv14zpqAR0eLhTSr+LiGupHTl+LrUzOfX4MLUTfVycUvKzpm0kIj4I/F9gOfBKN4+3\nt/qm1YanNI2IC6iF+xuegKV9pJTWR8S3gTdRO6jwAz33RcTJwKuo7UL0Exwl6Ohw172d2ilPPxsR\nJwG/AY4CXk5tE/k/lTg29RMRZ1GLdhfwP8B5tRNx9bEmpXTpGA9Nqpp/oPZe+E8RcTy1MxPOonZw\nWhe1s90NtildLdTx4a6vdR9BLQavBl5L7Xy8nwU+7Npc25ldvxwPvHOQx9wIXDomo5EqKqX0aEQc\nRW1t+1RqJ6J6BrgK+FhKyV2IJen4c5VLkpSTTj+qXJKkrBhuSZIyYrglScqI4ZYkKSOGW5KkjBhu\nSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOG\nW5KkjPx/KlMxTtBgsV8AAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981794e10>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"20de5213b4fe4f16ab121791886f82e8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_82ed833961444ddfb104c7e96d04da1d", | |
"max": 7, | |
"style": "IPY_MODEL_298780bcf40142b1a8c69f2cfb38e307", | |
"value": 6 | |
} | |
}, | |
"20eded8eaa0a42ddb4284f88cb54ff28": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2108ff24552343e9a78d564c11500751": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"211565846cf644af9354d0894cdcaa05": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2120123ba9514b3897d7e959827d072c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2145e5d0954e47d493c60f6bd4b41540": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"217e60493acb4c05a1723bc6f0571dcc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"21b4aa4af143469ca9250bab436927a8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"21c19822b9da4d9281d71c750a0a144d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_77f29f2bee054117977b947024d52018", | |
"IPY_MODEL_78922e80949a4e3fbaed8cb17f5175b7", | |
"IPY_MODEL_e61518216c634ca3aaf68a46a76cdd5d", | |
"IPY_MODEL_fd049204236c4782a36d3e1671081eb2", | |
"IPY_MODEL_5acd283e7609477aa944d95fed32c29a" | |
], | |
"layout": "IPY_MODEL_d8e7e9a7bc5349dba5f322d98e10daef" | |
} | |
}, | |
"21ea3a30c35c4ba08e27c2184d44526a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"221bd7a8149b4ab78460d37e1c4e79f2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_617b83d51b8c465e9a8fd24a45f775f0", | |
"max": 3, | |
"style": "IPY_MODEL_a3682cf3f416440a82312c6f0fd8d5eb", | |
"value": 3 | |
} | |
}, | |
"22331d4d01e84a25ac86e86abd70971b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"22434c0dbf89488cbe95af535f796281": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"224d3ba32a6344b9b6fdeb58c1058bb1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2266de488dc946b4b41f386b08fcf6e6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"227d17676ee042d887462e155cc1bfd2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"22c80da912be438caefefdfe63ad8b8c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2310a75f92d84c5d9de940cb7ba4aeb5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_7b7424de64cc4213a9b8a325ae295ea2", | |
"max": 3, | |
"style": "IPY_MODEL_7b9e27b5dcf64ef082658b9d117b29ea", | |
"value": 3 | |
} | |
}, | |
"232c22d9e0274ce4844db0e8c8702d57": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"237b865d66f44643b555c92a8a1bc0d5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_9dbe94287cb14ebdbcf1d5eb3868f5af", | |
"max": 7, | |
"style": "IPY_MODEL_ea4455d2fe5140efaa89caf189cdea72", | |
"value": 2 | |
} | |
}, | |
"2397ef4489214657ad5cef9160b0262c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_86620c093da4466882902a0c5bdca163", | |
"max": 3, | |
"style": "IPY_MODEL_6c5649fad8f9420690b0012207781b54", | |
"value": 2 | |
} | |
}, | |
"23ddccb91ddc483cba020309d21477be": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"23eda160167b448a9773f9af2097de3b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"23fa88aedccc4e81943d32c7dbf855b2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"24005396e4054fca8d47934b20790d5c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"24319bf4dfc14f96b884efb430126885": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_cc284ae836f04b2f8fa7cd24bb61f4a4", | |
"IPY_MODEL_c1f36eb304264ecd8aa9be7f42786f7b", | |
"IPY_MODEL_7e2eaeab842e4b2d98a584ba4a9bcf79" | |
], | |
"layout": "IPY_MODEL_504ecbb6840f4892a7ccb13931476d8a" | |
} | |
}, | |
"243abac725114e75b80c9372d9bf5c65": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_cf6ec14f8b9a49d3839a2e09ef14bf39", | |
"IPY_MODEL_3ddb6c3ae4b846b7997aa206025e6435", | |
"IPY_MODEL_15765f4500ea4146953cbde7bcee8d75", | |
"IPY_MODEL_d5b20d931a714107baeca97ce92bd64f" | |
], | |
"layout": "IPY_MODEL_cf815ab4b59d44b1944ffcfc3a7990b5" | |
} | |
}, | |
"24e5d704ecbe4a839d41823e718cd29d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2533f847965e4ce8b450e8a4d92342f6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2549018900894675aad8e19c180a3fc1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2589f38157b145dcb22d0e0c4a27ea2f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"25b84c80abe642ddaaff0c9fa66cb819": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"25d0b8ad54a24322a444748861ec61f5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"263ddc73102f468687ffae656eef908a": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_62d7013bfb27414fb4a0508f57828e8e", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"265dc9f550cd4cc0bdeacb8819a16931": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"265fdb886db8439e943f6839343e5c02": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"26b0f8079e6b42cbb52a70ab23498456": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_5f6e99dd3a5743a48c48fac463ab2d99", | |
"max": 3, | |
"style": "IPY_MODEL_626efb60688a411ba6e744fe4d01c056", | |
"value": 2 | |
} | |
}, | |
"26de723b7d73424aa73da72061d7ae08": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2737686d0bdc4c13a77e35f83606791e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"27381d9e5e8642c8abee1f9530c08007": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_b77aa12b27074adfaf772d00223f4025", | |
"IPY_MODEL_5c31f0f69c4841a4b3286da0510e1bb0", | |
"IPY_MODEL_b323c8d0a41e479089bda27a0986d673", | |
"IPY_MODEL_0efed3a6d9074858869952ebff33fb18", | |
"IPY_MODEL_b04e447deb0b46e88c4d0e5224cf5da9" | |
], | |
"layout": "IPY_MODEL_e695ebf240f346749d585d216d358480" | |
} | |
}, | |
"27555217b4ea448383effa95947a20c3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_1def423f0b234791ab90ba8f6e3eb23d", | |
"max": 3, | |
"style": "IPY_MODEL_b5f74ccb18524b7a92eacf8942452504", | |
"value": 2 | |
} | |
}, | |
"2767d35a1be04aab9520d0c3b6c290fb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"27801dae2e2a496db8643bb18d996246": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_8cd3b0dea7c14ac5872011419d4db46d", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGUdJREFUeJzt3XuQpXV95/HPFyZRRNGoBdZWvEAi\ngtFynUnwggpCNMZstoQNu1Y2aNxo1o0bNGpuXlErFXPbCCYbo5IYyVblsupuGVFRRBBiQmommhiJ\nxMBgsosS4g0UXYXf/nHOxKHtZgb6OX3mO+f1qup6ps/T5/n9hu7pN8/lPKfGGAEAejhk2RMAAPaf\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0sm3ZE9iXqromyRFJdi95KgBwZz0oyRfHGEdvdkMHfLiTHHHYYbn38cfn3sueyNR2LXsC\nMLd92RNYoF0H9d+ONq68Mrn55kk21SHcu48/PvfeuXPZ05heLXsCMHcQ/vP6F3VQ/+1oY8eOZNeu\n3VNsyjluAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRbcueALA6rvrMA3L5Jx+Rm75yt9z9rl/Oid/50Rx71KeW\nPS1W0EOvvzKnXn1JjvjqjfniXe6Ri445KR8/8vhlT2u/TBbuqvr2JK9O8pQk90lyXZL/leRVY4zP\nTTUO0M/ln3xEzrno6bnimod/07oTjv7rPP/UP8iJ3/nRJcyMVXPK1R/MKy755Zx07eXftO6SB56Y\nV5/0M/nAMSdv+bzuiEkOlVfVdyTZmeRZSa5I8utJrk7y/CQfrqr7TDEO0M8f/sWTcuZ5r5lHe6xZ\nO3LFNQ/Pmee9Jn/0F09axvRYIf9p11tz4fmn5aRrL1/nJzE56drLc+H5p+VZu85fxvT221TnuP97\nkiOTnDXGeNoY4+fGGKdkFvCHJPmFicYBGrn8k4/Iz7/9J3Pr2POrptZ8xezzW8ch+bm3/2Qu/+Qj\ntnR+rI5Trv5g3vjO5+fQcWuSjX4Sk0PHrXnTO8/KKVd/cCund4dsOtxVdUySJyfZneQ316x+ZZIv\nJTmzqg7f7FhAL+dc9PS9on37bh2H5NyLnr7gGbGqXnHJL/9LtPfl0HFrXn7Jryx4RnfeFHvcp8yX\nF45x2/8qY4wbk1ye5G5JHj3BWEATV33mARscHt/IyJ9f8/Bc9ZkHLHJarKCHXn/luofHNzKSnHzt\nZXno9Vcuclp32hThfsh8edUG6/9uvjz29jZSVTvX+0hy3ARzBLbYNw57rz0ouZFa8zyYxqlXX5Lk\njv4kfuN5B5opwn3P+fILG6zf8/i9JhgLaOKmr9xtS58HGzniqzdu6fMWbStex73nf15u9yjFGGPH\nuk+e7XVvn3pSwGLd/a5f3tLnwUa+eJd7bOnzFm2KPe49e9T33GD9EWu+DlgB33hd9h05sxiv52Zy\nFx1zUpI7+pP4jecdaKYI9yfmy43OYT94vtzoHDhwEDr2qE/lhKP/OnfkzOKjjv5rd1Jjch8/8vhc\n8sAT79A57g8+8HEH7J3Upgj3xfPlk6vqNturqnskOTHJzUn+bIKxgEaef+of5JDav5fgHFK35qxT\n/2DBM2JVvfqkn8kttX/Ju6UOyWtO+ukFz+jO23S4xxh/n+TCJA9K8rw1q1+V5PAkbx1jfGmzYwG9\nnPidH80vnv76veK93v2qZtF+7emvd5ichfnAMSfnx3/wnH+J9/o/ibNoP+cHzz2gb3s61cVpP5Hk\nT5OcW1WnJrkyyaOSPDGzQ+QvnWgcoJn/8D3vy7d/2/U596Kn58+/6V7ls8PjZ7lXOVvgd7Y/I7vv\n9YC8/JJfycnXXnabdXsOj7/mpJ8+oKOdJDXG/p6u38eGqu6fjd9k5LOb2O7O7duzfefOSaZ5QNnf\n8y2waNP8Fti3Zbw7WG3Z345OtvzdwXbsSHbt2rXRK6juiMleDjbG+IfM3mQEYF3HHvUpF59xQPj4\nkccfsBef7ctUbzICAGwB4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGti17Avtj167tqdq57GnAQauWPQFgv9njBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRScJdVT9UVa+vqg9V1ReralTV70+xbQDgG7ZNtJ2XJXlE\nkpuS/GOS4ybaLgCwl6kOlf9UkmOTHJHkv0y0TQBgjUn2uMcYF+/5c1VNsUkAYB0uTgOARqY6x71p\nVbVzg1XOlwPAnD1uAGjkgNnjHmPsWO/x+Z749i2eDgAckOxxA0Ajwg0AjQg3ADQi3ADQyCQXp1XV\n05I8bf7p/ebLx1TVW+Z/vmGM8eIpxgKAVTbVVeX/Oskz1zx2zPwjSa5NItwAsEmTHCofY5w9xqjb\n+XjQFOMAwKpzjhsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRbcuewP7YnmTnsiexALXsCQDQjj1uAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARjYd7qq6T1U9u6reUVWfrKqbq+oLVXVZVf1YVfmfAwCYyLYJtnFG\nkt9Kcl2Si5N8KslRSU5P8uYk319VZ4wxxgRjAcBKmyLcVyX5t0neNca4dc+DVfWSJFck+XeZRfxt\nE4wFACtt04exxxgfGGO8c+9ozx//dJI3zD89ebPjAACLvzjta/Pl1xc8DgCshIWFu6q2JXnG/NP3\nLGocAFglU5zj3shrkzwsyQVjjPfu64uraucGq46bdFYA0NhC9rir6qwkL0ryt0nOXMQYALCKJt/j\nrqrnJTknyceTnDrG+Oz+PG+MsWOD7e1Msn26GQJAX5PucVfVC5L8RpKPJXni/MpyAGAik4W7qn42\nya8n+Uhm0b5+qm0DADOThLuqXp7ZxWg7Mzs8fsMU2wUAbmvT57ir6plJXp3kliQfSnJWVa39st1j\njLdsdiwAWHVTXJx29Hx5aJIXbPA1lyR5ywRjAcBKm+KWp2ePMWofHydPMFcAWHnechMAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaCRbcuewP7YlaSWPQk4iI1lT2CB/O7gYGOPGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGJgl3Vf1SVV1UVf9QVTdX1Wer6i+r6pVVdZ8pxgAAptvj/qkkhyd5X5JzkvyPJF9P\ncnaSv6qq+080DgCstG0TbeeIMcZX1j5YVb+Q5CVJfj7JT0w0FgCsrEn2uNeL9twfzZcPnmIcAFh1\ni7447Qfny79a8DgAsBKmOlSeJKmqFye5e5J7JvnuJI/LLNqv3Y/n7txg1XGTTRAAmps03ElenOSo\nvT5/T5IfHWP808TjAMBKmjTcY4z7JUlVHZXksZntaf9lVf2bMcaufTx3x3qPz/fEt085TwDoaiHn\nuMcYnxljvCPJk5PcJ8lbFzEOAKyahV6cNsa4NsnHk3xXVd13kWMBwCrYilue/qv58pYtGAsADmqb\nDndVHVdV91vn8UPmN2A5MsmfjjE+t9mxAGDVTXFx2lOS/EpVXZrk75P8c2ZXlp+U5Jgkn07ynAnG\nAYCVN0W435/kjUlOTPKIJPdK8qUkVyU5P8m5Y4zPTjAOAKy8TYd7jPGxJM+bYC4AwD54P24AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARhYW7qo6s6rG/OPZ\nixoHAFbJQsJdVfdP8vokNy1i+wCwqiYPd1VVkt9N8s9J3jD19gFglS1ij/usJKckeVaSLy1g+wCw\nsiYNd1Udn+S1Sc4ZY1w65bYBgGTbVBuqqm1Jzk/yqSQvuRPP37nBquM2My8AOJhMFu4kr0jyyCSP\nG2PcPOF2AYC5ScJdVSdktpf9a2OMD9+ZbYwxdmyw7Z1Jtm9iegBw0Nj0Oe69DpFfleTlm54RALCh\nKS5Ou3uSY5Mcn+Qre910ZSR55fxr3jR/7HUTjAcAK2uKQ+VfTXLeBuu2Z3be+7Ikn0hypw6jAwAz\nmw73/EK0dW9pWlVnZxbu3xtjvHmzYwHAqvMmIwDQiHADQCMLDfcY4+wxRjlMDgDTsMcNAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQyLZlT4CD01j2BBaklj2BBTlY/15wMLLHDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0Mgk4a6q3VU1Nvj49BRjAADJtgm39YUkr1vn8ZsmHAMAVtqU4f78GOPsCbcHAKzhHDcANDLl\nHvddqupHkjwgyZeS/FWSS8cYt0w4BgCstCnDfb8k56957JqqetYY45IJxwGAlTVVuH83yYeS/E2S\nG5Mck+S/JvnxJO+uqseMMT56exuoqp0brDpuojkCQHuThHuM8ao1D30syXOr6qYkL0pydpLTphgL\nAFbZlIfK1/OGzML9hH194Rhjx3qPz/fEt088LwBoadFXlV8/Xx6+4HEAYCUsOtyPmS+vXvA4ALAS\nNh3uqvquqrr3Oo8/MMlvzD/9/c2OAwBMc477jCQ/V1UXJ7kms6vKvyPJDyS5a5ILkvzqBOMAwMqb\nItwXJ3lIkkdmdmj88CSfT3JZZq/rPn+MMSYYBwBW3qbDPb+5ihusAMAWcK9yAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARrYtewIcnGrZEwA4SNnjBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRScNdVY+v\nqrdV1XVV9dX58sKqeuqU4wDAqto21Yaq6mVJXpPkhiR/kuS6JPdN8sgkJye5YKqxAGBVTRLuqjoj\ns2i/P8npY4wb16z/linGAYBVt+lD5VV1SJJfSvLlJD+8NtpJMsb42mbHAQCm2eN+bJKjk/zPJJ+r\nqh9I8rAkX0lyxRjjwxOMAQBkmnB/z3z5mSS7kjx875VVdWmSHxpj/NPtbaSqdm6w6rhNzxAADhJT\nXFV+5Hz53CSHJfneJPfIbK/7vUmekOSPJxgHAFbeFHvch86Xldme9Ufnn/9NVZ2W5KokJ1XVY27v\nsPkYY8d6j8/3xLdPME8AaG+KPe7PzZdX7xXtJMkY4+bM9rqT5IQJxgKAlTZFuD8xX35+g/V7wn7Y\nBGMBwEqbItyXJvl6kgdX1beus/5h8+XuCcYCgJW26XCPMW5I8odJ7pnkFXuvq6onJfm+JF9I8p7N\njgUAq26qW56+MMmjkry0qp6Q5IokD0xyWpJbkjxnjLHRoXQAYD9NEu4xxvVV9agkL8ss1o9OcmOS\ndyX5xTHGn00xDgCsusneZGSM8dnM9rxfONU2AYDb8n7cANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb\n9gQ4OI1lT2BBatkTAFaePW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGNh3uqvrRqhr7+LhliskCwKrb\nNsE2PpLkVRuse3ySU5K8e4JxAGDlbTrcY4yPZBbvb1JVH57/8Y2bHQcAWOA57qp6WJJHJ/k/Sd61\nqHEAYJUs8uK0/zxfnjfGcI4bACYwxTnub1JVhyX5kSS3Jnnzfj5n5warjptqXgDQ3aL2uP99knsl\nefcY4x8WNAYArJyF7HEn+fH58rf39wljjB3rPT7fE98+xaQAoLvJ97ir6qFJHpvkH5NcMPX2AWCV\nLeJQuYvSAGBBJg13Vd01yZmZXZR23pTbBgCm3+M+I8m3JbnARWkAML2pw73nojR3SgOABZgs3FV1\nfJLHxUVpALAwk70cbIxxZZKaansAwDfzftwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPblj2B/fCg5MokO5Y9\nD+4A3y2AvV2ZJA+aYks1xphiOwtTVdckOSLJ7i0Y7rj58m+3YCym4XvWj+9ZP75nm/egJF8cYxy9\n2Q0d8OHeSlW1M0nGGHYYm/A968f3rB/fswOLc9wA0IhwA0Ajwg0AjQg3ADQi3ADQiKvKAaARe9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCHeSqvr2qvqdqvq/VfXVqtpdVa+rqm9b9ty4raq6\nT1U9u6reUVWfrKqbq+oLVXVZVf1YVfmZbqKqzqyqMf949rLnw/qq6vFV9baqum7++/G6qrqwqp66\n7Lmtqm3LnsCyVdV3JPnTJEcm+d+Zvd/sCUmen+QpVXXiGOOflzhFbuuMJL+V5LokFyf5VJKjkpye\n5M1Jvr+qzhjuLHRAq6r7J3l9kpuS3H3J02EDVfWyJK9JckOSP8ns3919kzwyyclJLlja5FbYyt85\nrarem+TJSc4aY7x+r8f/W5KfSvLbY4znLmt+3FZVnZLk8CTvGmPcutfj90tyRZL7J/mhMcbbljRF\n9qGqKsn7khyd5O1JXpzkOWOMNy91YtxGVZ2R5I+SvD/J6WOMG9es/5YxxteWMrkVt9KHFavqmMyi\nvTvJb65Z/cokX0pyZlUdvsVTYwNjjA+MMd65d7Tnj386yRvmn5685RPjjjgrySlJnpXZvzEOMPNT\nTr+U5MtJfnhttJNEtJdnpcOd2S+PJLlwnRDcmOTyJHdL8uitnhh3yp5fJF9f6izYUFUdn+S1Sc4Z\nY1y67PmwocdmdkTkgiSfq6ofqKqfrarnV9Vjljy3lbfq57gfMl9etcH6v8tsj/zYJBdtyYy4U6pq\nW5JnzD99zzLnwvrm36PzM7su4SVLng6373vmy88k2ZXk4XuvrKpLMzsl9U9bPTHscd9zvvzCBuv3\nPH6vLZgLm/PaJA9LcsEY473LngzrekVmFzX96Bjj5mVPhtt15Hz53CSHJfneJPfI7N/Ye5M8Ickf\nL2dqrHq496Xmy9W+gu8AV1VnJXlRZq8IOHPJ02EdVXVCZnvZvzbG+PCy58M+HTpfVmZ71heNMW4a\nY/xNktOS/GOSkxw2X45VD/eePep7brD+iDVfxwGmqp6X5JwkH0/yxDHGZ5c8JdbY6xD5VUlevuTp\nsH8+N19ePcb46N4r5kdL9hzVOmFLZ0US4f7EfHnsBusfPF9udA6cJaqqFyT5jSQfyyzan17ylFjf\n3TP7N3Z8kq/sddOVkdmrN5LkTfPHXre0WbK3Pb8bP7/B+j1hP2wL5sIaq35x2sXz5ZOr6pA1rwu+\nR5ITk9yc5M+WMTk2VlU/m9l57Y8kedIY44YlT4mNfTXJeRus257Zee/LMouFw+gHhksze3XGg6vq\nW8cY/2/N+ofNl7u3dFYkWfFwjzH+vqouzOzK8edldienPV6V2Y0+fnuM4bWmB5CqenmSVyfZmeTJ\nDo8f2OaHVte9pWlVnZ1ZuH/PDVgOHGOMG6rqD5P8x8wuKnzZnnVV9aQk35fZKUSv4FiClQ733E9k\ndsvTc6vq1CRXJnlUkidmdoj8pUucG2tU1TMzi/YtST6U5KzZjbhuY/cY4y1bPDU42Lwws9+FL62q\nJ2R2Z8IHZnZx2i2Z3e1uo0PpLNDKh3u+1/3dmcXgKUmemtn9eM9N8ip7cweco+fLQ5O8YIOvuSTJ\nW7ZkNnCQGmNcX1WPymxv+7TMbkR1Y5J3JfnFMYZTiEuy8vcqB4BOVv2qcgBoRbgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGjk\n/wMJrve82WLTRQAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49823a7978>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"27863ad2901d4943908866cdbfd6fcc3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"27b53a4027b743069b2af602052987e5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"27d4254c83604a8a89631e8d0b74a385": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_61fbb3ba93f844c58cc7caf9ce5b7447", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGYNJREFUeJzt3XuQpXdd5/HPN2nkEpJAoBJqS8wF\nEhLEdZlAAkRISARR1y1hjVvlGoUVXBasgEIVyv1SFlC7rhBvqKBodv/wgpaFBMga2EQiyNbMAotc\nkhAGUCAxXBNMIkl++8c5Y00m05nJ9HP69LfP61U19aTPc87z+1Gnu988l/N0jTECAPRw2LInAAAc\nPOEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaGRt2RM4kKr6bJKjkuxe8lQA4FCdkOSbY4wTN7qhLR/uJEfdNznmtOSYZU9karuWPQGY\n27HsCSyQnzO2mw7h3n1acszOZc9iAWrZE4C57fjztYefM7aQ3VNsxDluAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARiYLd1V9Z1X9XlV9sapurardVfWmqnrgVGMAwKpbm2IjVfWwJH+T5Ngkf5HkU0nOSPKC\nJE+rqrPGGF+ZYiwAWGVT7XH/ZmbRvnCM8aNjjF8cY5yb5FeTPCLJL080DgCstA2Hu6pOSvLUJLuT\n/MY+q1+V5FtJLqiqIzY6FgCsuin2uM+dLy8dY9yx94oxxo1JrkxyvySPm2AsAFhpU5zjfsR8edU6\n66/ObI/8lCSXrbeRqtq5zqpTD31qALC9TLHHffR8+Y111u95/AETjAUAK22Sq8oPoObLcXdPGmOc\nvt8Xz/bEd0w9KQDoaIo97j171Eevs/6ofZ4HAByiKcL96fnylHXWnzxfrncOHAA4SFOE+/3z5VOr\n6k7bq6ojk5yV5OYkH5pgLABYaRsO9xjjM0kuTXJCkufvs/o1SY5I8odjjG9tdCwAWHVTXZz2vMxu\neXpRVZ2X5JNJzkzy5MwOkb9sonEAYKVNcsvT+V73Y5K8PbNgvyjJw5JclOTx7lMOANOY7ONgY4wv\nJHnWVNsDAO7K3+MGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABpZW/YEDsauJLXsSXDPjGVPYEG26TfiNv2fBduS\nPW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBG1pY9AThUj7z+sJx37VqOujX55r2Ty066LZ849o5lTwtg\noSYJd1X9WJKzk/ybJN+b5Mgk/3OM8ZNTbB/2du61h+eVl987Z3/urt++lx9/W1579q1530m3L2Fm\nAIs31aHylyf5uczC/Q8TbRPu4j/tulcuvfh+OftzaxkZd1o3MnL259Zy6cX3y7N23WtJMwRYrKnC\n/fNJTklyVJL/MtE24U7Ovfbw/M4775PDRyVJKnWn9Xu+PnxUfved98m51x6+6XMEWLRJwj3GeP8Y\n4+oxxjjws+HQvPLye/9LtA/k8FF5xeX3XvCMADafq8pp4ZHXH7bfw+PrGRk553NreeT1vsWB7WXL\nXFVeVTvXWXXqpk6ELem8a2ffqvseHl/Pnuedd+1aPnHsPy9sXgCbze4ILRx16+a+DmCr2jJ73GOM\n0/f3+HxPfMcmT4ct5puHeLr6UF8HsFXZ46aFy066LUnu0TnuvV8HsF0INy184tg7cvnxt92jc9z/\n+3h3UgO2H+GmjdeefWtur4Pb4769Rl53thPcwPYj3LTxvpNuz8/+yC3/Eu/93TktmUX7OT9yi9ue\nAtvSVPcq/9EkPzr/8iHz5eOr6u3z/75hjPHiKcZitf3ejm9n9wPuyCsuv3fO2ede5XsOj7/OvcqB\nbaymuNlZVb06yavu5imfG2OccIjbdlV5R5twD72l/HWwgzvFDrA/u9b7BNU9MUm4F0m4m9ra31aH\nTriBQzdJuJ3jBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGRt2RM4GDuS7Fz2JBaglj0BANqxxw0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANDIhsNdVQ+qqmdX1Z9X1TVVdXNVfaOqPlBVP1NV/s8BAExkbYJtnJ/k\nt5J8Kcn7k3w+yXFJnpHkrUl+sKrOH2OMCcYCgJU2RbivSvLvkrxrjHHHnger6qVJPpzk32cW8XdM\nMBYArLQNH8YeY7xvjPHOvaM9f/zLSd4y//KcjY4DACz+4rRvz5e3LXgcAFgJCwt3Va0l+an5l+9Z\n1DgAsEqmOMe9njckeVSSS8YY7z3Qk6tq5zqrTp10VgDQ2EL2uKvqwiQvSvKpJBcsYgwAWEWT73FX\n1fOTvDnJJ5KcN8b46sG8boxx+jrb25lkx3QzBIC+Jt3jrqoXJvn1JB9P8uT5leUAwEQmC3dVvSTJ\nryb5SGbRvn6qbQMAM5OEu6pekdnFaDszOzx+wxTbBQDubMPnuKvqp5O8NsntSf46yYVVte/Tdo8x\n3r7RsQBg1U1xcdqJ8+XhSV64znMuT/L2CcYCgJU2xS1PXz3GqAP8O2eCuQLAyvMnNwGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABpZW/YEDsauJLXsScA2NpY9gQXyu4Ptxh43ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI1MEu6qemNVXVZVX6iqm6vqq1X1f6vqVVX1oCnGAACSGmNsfCNV/5xkV5JPJLk+yRFJ\nHpfkMUm+mORxY4wvHOK2dybZseFJsrk2/m21NdWyJ7AY2/XtSrbtW0ZPu8YYp290I2tTzCTJUWOM\nW/Z9sKp+OclLk/xSkudNNBYArKxJDpXvL9pzfzxfnjzFOACw6hZ9cdqPzJcfW/A4ALASpjpUniSp\nqhcnuX+SozM7v/19mUX7DQfx2p3rrDp1sgkCQHOThjvJi5Mct9fX70nyzDHGP048DgCspEmuKr/L\nRquOS/KEzPa0j0zyb8cYuw5xW64q72i7Xqa8TS9R3q5vV7Jt3zJ6muSq8oWc4x5jXDfG+PMkT03y\noCR/uIhxAGDVLPTitDHG5zL7bPd3V9WDFzkWAKyCzbjl6b+aL2/fhLEAYFvbcLir6tSqesh+Hj9s\nfgOWY5P8zRjjaxsdCwBW3RRXlT8tyX+tqiuSfCbJVzK7svzsJCcl+XKS50wwDgCsvCnC/VdJfifJ\nWUm+N8kDknwryVVJLk5y0RjjqxOMAwArb8PhHmN8PMnzJ5gLAHAA/h43ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCMLC3dVXVBVY/7v2YsaBwBWyULCXVUP\nTfJrSW5axPYBYFVNHu6qqiS/n+QrSd4y9fYBYJUtYo/7wiTnJnlWkm8tYPsAsLImDXdVnZbkDUne\nPMa4YsptAwDJ2lQbqqq1JBcn+XySlx7C63eus+rUjcwLALaTycKd5JVJHp3k+8YYN0+4XQBgbpJw\nV9UZme1l/8oY44OHso0xxunrbHtnkh0bmB4AbBsbPse91yHyq5K8YsMzAgDWNcXFafdPckqS05Lc\nstdNV0aSV82f87vzx940wXgAsLKmOFR+a5K3rbNuR2bnvT+Q5NNJDukwOgAws+Fwzy9E2+8tTavq\n1ZmF+w/GGG/d6FgAsOr8kREAaES4AaCRGmMsew53y8fBmtra31aHrpY9gcXYrm9Xsm3fMnratd5H\nn+8Je9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNrC17AmxPI2PZU1iISi17CguxPf9XwfZkjxsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaCRtSk2UlW7kxy/zurrxhgPmWIc2NtV192YK6+5ITfdclvuf5+1nPXw\nB+eU445c9rQAFmqScM99I8mb9vP4TROOAbnymhvy5suuzoc/+9W7rDvjxGPygvNOzlkPf/ASZgaw\neDXG2PhGZnvcGWOcsOGN3XXbO5PsmHq7LNYU31f780f/5/P5pT/7f7njbjZ/WCVveMa/zo8/9qGT\nj19Vk28TWBm7xhinb3QjznHTxpXX3HDAaCfJHSP5xT/7WK685obNmRjAJpryUPm9q+onk3xXkm8l\n+ViSK8YYt084BivszZddfcBo73HHSC667GqHzIFtZ8pwPyTJxfs89tmqetYY4/IJx2EFXXXdjfs9\np313/vazX81V193ogjVgW5kq3L+f5K+T/F2SG5OclOTnkvxskndX1ePHGB+9uw3Mz2Xvz6kTzZHG\nDvWw95XX3CDcwLYySbjHGK/Z56GPJ3luVd2U5EVJXp3k6VOMxWq66ZbbNvV1AFvVlIfK9+ctmYX7\nSQd64npX2rmqnCS5/30O7Vv1UF8HsFUt+qry6+fLIxY8DtvcoV5k5uI0YLtZdLgfP19eu+Bx2OZO\nOe7InHHiMffoNWeeeIzz28C2s+FwV9V3V9VdfqNW1fFJfn3+5f/Y6DjwgvNOzmEHef+Twyq58LyT\nFzshgCWYYo/7/CRfrKp3V9VvVtUbq+pPk3wqycOTXJLkv00wDivurIc/OK9/xvccMN577pzmMDmw\nHU1x5c77kzwiyaMzOzR+RJKvJ/lAZp/rvngs6v6XrJz/8Njvync+8H656LKr87f7+Vz3mScekwvd\nqxzYxia5V/kiuaq8p834vlrGXwdzr3JgAya5V7nPytDWKccd6eIzYOX4IyMA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCNry54A21Ollj0FgG3JHjcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjUwa7qp6YlW9o6q+\nVFW3zpeXVtUPTTkOAKyqtak2VFUvT/K6JDck+cskX0ry4CSPTnJOkkumGgsAVtUk4a6q8zOL9l8l\necYY48Z91t9rinEAYNVt+FB5VR2W5I1J/inJT+wb7SQZY3x7o+MAANPscT8hyYlJ/jTJ16rqh5M8\nKsktST48xvjgBGMAAJkm3I+dL69LsivJ9+y9sqquSPJjY4x/vLuNVNXOdVaduuEZAsA2McVV5cfO\nl89Nct8k35/kyMz2ut+b5ElJ/mSCcQBg5U2xx334fFmZ7Vl/dP7131XV05NcleTsqnr83R02H2Oc\nvr/H53viOyaYJwC0N8Ue99fmy2v3inaSZIxxc2Z73UlyxgRjAcBKmyLcn54vv77O+j1hv+8EYwHA\nSpsi3FckuS3JyVX1HftZ/6j5cvcEYwHASttwuMcYNyT5oyRHJ3nl3uuq6ilJfiDJN5K8Z6NjAcCq\nm+qWp7+Q5MwkL6uqJyX5cJLjkzw9ye1JnjPGWO9QOgBwkCYJ9xjj+qo6M8nLM4v145LcmORdSV4/\nxvjQFOMAwKqrMcay53C3fBysqa39bXXoatkTABrbtd5Hn+8Jf48bABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgkbVlT4DtaWQsewoLUallTwFYcfa4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtlwuKvqmVU1DvDv\n9ikmCwCrbm2CbXwkyWvWWffEJOcmefcE4wDAyttwuMcYH8ks3ndRVR+c/+fvbHQcAGCB57ir6lFJ\nHpfkH5K8a1HjAMAqWeTFaf95vnzbGMM5bgCYwBTnuO+iqu6b5CeT3JHkrQf5mp3rrDp1qnkBQHeL\n2uP+8SQPSPLuMcYXFjQGAKychexxJ/nZ+fK3D/YFY4zT9/f4fE98xxSTAoDuJt/jrqpHJnlCkr9P\ncsnU2weAVbaIQ+UuSgOABZk03FV1nyQXZHZR2tum3DYAMP0e9/lJHpjkEhelAcD0pg73novS3CkN\nABZgsnBX1WlJvi8uSgOAhZns42BjjE8mqam2BwDclb/HDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0srbsCRyE\nE5Y9Ae65008/fdlTANhqTphiIzXGmGI7C1NVn01yVJLdmzDcqfPlpzZhLKbhPevHe9aP92zjTkjy\nzTHGiRvd0JYP92aqqp1JMsawu9iE96wf71k/3rOtxTluAGhEuAGgEeEGgEaEGwAaEW4AaMRV5QDQ\niD1uAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQ7SVV9Z1X9XlV9sapurardVfWmqnrgsufG\nnVXVg6rq2VX151V1TVXdXFXfqKoPVNXPVJXv6Saq6oKqGvN/z172fNi/qnpiVb2jqr40//34paq6\ntKp+aNlzW1Vry57AslXVw5L8TZJjk/xFZn9v9owkL0jytKo6a4zxlSVOkTs7P8lvJflSkvcn+XyS\n45I8I8lbk/xgVZ0/3FloS6uqhyb5tSQ3Jbn/kqfDOqrq5Ulel+SGJH+Z2c/dg5M8Osk5SS5Z2uRW\n2MrfOa2q3pvkqUkuHGP82l6P//ckP5/kt8cYz13W/Lizqjo3yRFJ3jXGuGOvxx+S5MNJHprkx8YY\n71jSFDmAqqok/yvJiUn+LMmLkzxnjPHWpU6MO6mq85P8cZK/SvKMMcaN+6y/1xjj20uZ3Ipb6cOK\nVXVSZtHeneQ39ln9qiTfSnJBVR2xyVNjHWOM940x3rl3tOePfznJW+ZfnrPpE+OeuDDJuUmeldnP\nGFvM/JTTG5P8U5Kf2DfaSSLay7PS4c7sl0eSXLqfENyY5Mok90vyuM2eGIdkzy+S25Y6C9ZVVacl\neUOSN48xrlj2fFjXEzI7InJJkq9V1Q9X1Uuq6gVV9fglz23lrfo57kfMl1ets/7qzPbIT0ly2abM\niENSVWtJfmr+5XuWORf2b/4eXZzZdQkvXfJ0uHuPnS+vS7IryffsvbKqrsjslNQ/bvbEsMd99Hz5\njXXW73n8AZswFzbmDUkeleSSMcZ7lz0Z9uuVmV3U9Mwxxs3Lngx369j58rlJ7pvk+5McmdnP2HuT\nPCnJnyxnaqx6uA+k5svVvoJvi6uqC5O8KLNPBFyw5OmwH1V1RmZ72b8yxvjgsufDAR0+X1Zme9aX\njTFuGmP8XZKnJ/n7JGc7bL4cqx7uPXvUR6+z/qh9nscWU1XPT/LmJJ9I8uQxxleXPCX2sdch8quS\nvGLJ0+HgfG2+vHaM8dG9V8yPluw5qnXGps6KJML96fnylHXWnzxfrncOnCWqqhcm+fUkH88s2l9e\n8pTYv/tn9jN2WpJb9rrpysjs0xtJ8rvzx960tFmytz2/G7++zvo9Yb/vJsyFfaz6xWnvny+fWlWH\n7fO54COTnJXk5iQfWsbkWF9VvSSz89ofSfKUMcYNS54S67s1ydvWWbcjs/PeH8gsFg6jbw1XZPbp\njJOr6jvGGP+8z/pHzZe7N3VWJFnxcI8xPlNVl2Z25fjzM7uT0x6vyexGH789xvBZ0y2kql6R5LVJ\ndiZ5qsPjW9v80Op+b2laVa/OLNx/4AYsW8cY44aq+qMk/zGziwpfvmddVT0lyQ9kdgrRJziWYKXD\nPfe8zG55elFVnZfkk0nOTPLkzA6Rv2yJc2MfVfXTmUX79iR/neTC2Y247mT3GOPtmzw12G5+IbPf\nhS+rqidldmfC4zO7OO32zO52t96hdBZo5cM93+t+TGYxeFqSH8rsfrwXJXmNvbkt58T58vAkL1zn\nOZcnefumzAa2qTHG9VV1ZmZ720/P7EZUNyZ5V5LXjzGcQlySlb9XOQB0supXlQNAK8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Aj/x8bBPfXTLGNXgAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c416978>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"2834656ce9ef461db0f98f3e143b9df4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"28a1c945e6a94dcbab264efe493432e5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"28e4d118d637454e9b048e9bb704c2dc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"292a4c669f8a4935982186b3b3952346": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_d1ff96239e88420f89cb44369bf51629", | |
"style": "IPY_MODEL_3d9d443179724175acc5979e799a6564" | |
} | |
}, | |
"294c87e7334e488e8714c39f6b000736": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"296fc47bad2548ea893089c6226e4e64": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"298780bcf40142b1a8c69f2cfb38e307": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"29f8a4e3565a40589e7f7717965eab9c": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_0b720bf1e4394a3982463b9d4c8a72ff", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWJJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInAKw8e9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbDjcVfW4qhrX8nHFFJMFgFW3bYJtfDrJi9dZd/8kJyZ57wTj\nAMDK23C4xxifzizeV1NVn5j/5+s3Og4AsMBz3FV11yT3TvL/krxnUeMAwCpZ5MVp/2W+fNMYwzlu\nAJjAFOe4r6aqDkryO0muTPLGvXzNjnVWHTXVvACgu0Xtcf9Wkpsmee8Y45sLGgMAVs5C9riTPGm+\nfN3evmCMccyenp/viW+fYlIA0N3ke9xVdZck903yrSSnTb19AFhlizhU7qI0AFiQScNdVTdIckpm\nF6W9acptAwDT73GfnORmSU5zURoATG/qcO+6KM2d0gBgASYLd1UdneR+cVEaACzMZG8HG2N8IUlN\ntT0A4Or8PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFty57AXrj9sifAdXfMsicAsPXcfoqNdAj3j+fL8zZh\nrKPmyy9uwlj7tZ2bN5SvWT++Zv34mm3c7fPLnm1IjTGm2M5+oap2JMkYww5jE75m/fia9eNrtrU4\nxw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqxxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqltX1V9V1b9W1WVVdV5VvaKqbrbsuXFVVXWLqnpCVb2rqr5SVZdU1Y+q6qNV9XtV5Xu6iao6\nparG/OMJy54Pe1ZV96+qd1TV+fPfj+dX1Qeq6qHLntuq6vD3uBeqqu6Q5ONJDk3yj5n9vdljkzwt\nyUOq6rgxxveWOEWu6uQkf5nk/CRnJPlGksOSPCrJG5P8ZlWdPNxZaEurqtskeXWSi5PcaMnTYR1V\n9bwkL01yYZJ/yuzn7pZJ7pHkhCSnLW1yK2zl75xWVe9P8uAkp44xXr3b8/8jyR8ked0Y48nLmh9X\nVVUnJjk4yXvGGFfu9vytknwqyW2SPHqM8Y4lTZFrUVWV5INJDk/yziTPTPLEMcYblzoxrqKqTk7y\nd0k+lORRY4yL1qy/3hjj50uZ3Ipb6cOKVXVEZtE+L8lfrFn9wiQ/SXJKVR28yVNjHWOMD48x3r17\ntOfPfzvJa+cPT9j0iXFdnJrkxCSPz+xnjC1mfsrp5Ul+muS310Y7SUR7eVY63Jn98kiSD+whBBcl\n+ViSGya592ZPjH2y6xfJ5UudBeuqqqOTvCzJK8cYZy17PqzrvpkdETktyQ+q6mFV9ayqelpV3WfJ\nc1t5q36O+87z5TnrrP9yZnvkRyY5fVNmxD6pqm1Jfnf+8H3LnAt7Nv8avTWz6xKes+TpcM3uOV9+\nJ8nOJHfbfWVVnZXZKanvbvbEsMd9k/nyR+us3/X8TTdhLmzMy5LcNclpY4z3L3sy7NELMruo6XFj\njEuWPRmu0aHz5ZOTHJTk15PcOLOfsfcneUCSv1/O1Fj1cF+bmi9X+wq+La6qTk3yjMzeEXDKkqfD\nHlTVsZntZf/ZGOMTy54P1+rA+bIy27M+fYxx8Rjj80kemeRbSY532Hw5Vj3cu/aob7LO+kPWfB5b\nTFU9Nckrk5yd5IFjjO8veUqssdsh8nOSPH/J02Hv/GC+PHeM8ZndV8yPluw6qnXsps6KJML9pfny\nyHXW32m+XO8cOEtUVU9P8pokn8ss2t9e8pTYsxtl9jN2dJJLd7vpysjs3RtJ8ob5c69Y2izZ3a7f\njT9cZ/2usB+0CXNhjVW/OO2M+fLBVXXAmvcF3zjJcUkuSfLJZUyO9VXVszI7r/3pJA8aY1y45Cmx\nvsuSvGmdddszO+/90cxi4TD61nBWZu/OuFNV/coY42dr1t91vjxvU2dFkhUP9xjjq1X1gcyuHH9q\nZndy2uXFmd3o43VjDO813UKq6vlJXpJkR5IHOzy+tc0Pre7xlqZV9aLMwv3XbsCydYwxLqyqtyf5\nT5ldVPi8Xeuq6kFJfiOzU4jewbEEKx3uuadkdsvTV1XVSUm+kOReSR6Y2SHy5y5xbqxRVY/NLNpX\nJPlIklNnN+K6ivPGGG/Z5KnB/uYPM/td+NyqekBmdya8XWYXp12R2d3u1juUzgKtfLjne92/llkM\nHpLkoZndj/dVSV5sb27LOXy+PDDJ09f5nDOTvGVTZgP7qTHGBVV1r8z2th+Z2Y2oLkryniR/MsZw\nCnFJVv5e5QDQyapfVQ4ArQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN/H/8CB2iR7v22gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4982263e80>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"2a381c289c354980a0f3ca40ff550c50": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_d522829ccac640baad2e3f4b33c33ba0", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(63, 0, 0, 2, [0, 63])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"2a7543b44f8e4baebff62b4931231240": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2a7ccaf17cb440ae9a9f998fb9d3ab77": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2a8ec7d566fd43628e406e8aed4a96f9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2ac84468cca5477ebced95dbe3587703": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2ae152c018084de2bd6e74225702250a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2b18cbaec66141b292e7a098036ad146": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2b2555c095ba40d1906900d1b3f6c323": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2b25c831ce194e89a51b50101bb87b29": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2b2ed3e3bdaf4bc0a4ff520b22378602": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_9d7cf49f0d914c67954423c068cc221c", | |
"IPY_MODEL_fe98a90682c344c0bf5213dc9049019e", | |
"IPY_MODEL_1d19e54559b748f1ba0623ef0cccc9dc", | |
"IPY_MODEL_71a91b57451043918d6404597af22906" | |
], | |
"layout": "IPY_MODEL_fe894b8ac2574617bd14e957cc4bb977" | |
} | |
}, | |
"2b9dad91cfd54777bd78d28984d790a2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2bab9ece6b3b42e5bfe988b3cce7971a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2bacd89597bc41349451abe4e1a7c738": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2c129f97f2064b3d8659aa0d9c89eaf1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2c216a11d7bf4f28891db314a05b0e58": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2c22ff5296094db2bdb569a2b2f53263": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_51edbfb857b2498e974c2de0a38d6cc8", | |
"IPY_MODEL_1e2f92d57a5746348af96645d247f34b" | |
], | |
"layout": "IPY_MODEL_e18fd8e6d92c482e9798d767901eaf28" | |
} | |
}, | |
"2c48d23610dc4d528ca8911f7828b8aa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_ffa8a582a5e247d7b70a408c90aa35a4", | |
"IPY_MODEL_6736582ecdc0488cb11bae74dafaf064", | |
"IPY_MODEL_986e248fc9324228bea2a1395adf92d7", | |
"IPY_MODEL_50f0a7073db54ee78a81781a1699e4a2" | |
], | |
"layout": "IPY_MODEL_00bb2953dd8d465fabd5ce33a23b64bf" | |
} | |
}, | |
"2c4b05bcb0f64397b8e31cdd63ffc052": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2c511a56d6564479bf2b0c06ce00b691": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2c705884055b4770b87c3c9b9ad55a69": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2cf8fc3c3dee4f7a96928d0a48c661d0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2d0e2696f8a047f59cbabf29a1ab8f89": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2d16fba751e847b580b09dcde9857808": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2d20fe38a9b94ad181386cfa508a84ea": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2d3725de9b904e1db22c88b402ea27d8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2d58d9227f3c4d9e8c9de08e46d4bca5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2dbf37c89e8841d8a21e50a187df73e0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_edbb8f3dfa81422ab387b846e36f4083", | |
"max": 7, | |
"style": "IPY_MODEL_93827a6079b548d284c64d054592d620" | |
} | |
}, | |
"2df9b12ac24148e3804c6e4509b0ea43": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2e7d79c1b4e141afa18a8e9d23a6f5d3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2eae1c2c77a94d8abede78b5b48a43b6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2f0185f382b74aea913d1d26618769e0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "z", | |
"layout": "IPY_MODEL_b940e96fa1964d8ba168c15d9d0a43fc", | |
"max": 63, | |
"style": "IPY_MODEL_cd60029082de4c17b7fe0a301ad65a0a", | |
"value": 41 | |
} | |
}, | |
"2f1b39f184894f9e953e1d5f1edad7d3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2f2330a3db744d2988446a390458b9b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "t", | |
"layout": "IPY_MODEL_4296dfd72b2d4899a53dc5106d406e4e", | |
"max": 63, | |
"style": "IPY_MODEL_922e5d3ecb7e44c89bf2c0ea6076c9d9", | |
"value": 63 | |
} | |
}, | |
"2f3ba6b027724f0e896b9bd26b4806cd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2f45f65315a3429894df38dc702c95c1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2f4a589b7ff048f8971a02397a3d5880": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"2f772d3af7994b64ae9098ce9df38daf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2fb709e889724076ad4991650eb4c938": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_46032a2011db44b591e39105f1617f26", | |
"style": "IPY_MODEL_740ce70b481743589731d3b45ff36185" | |
} | |
}, | |
"2ffecaf4c2204ca4a701b1e50a0b715d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_1c57054c0d2149c683b22ab7cadbcc2e", | |
"max": 7, | |
"style": "IPY_MODEL_e09335f83b054e78aba7982d02cff765", | |
"value": 1 | |
} | |
}, | |
"30064a6eba374f66aa5250d8f48da0e1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"301b3aa62d4347e38f599b5fbdad4d13": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"303323a94e4e4971b4e03c0cdb9c187b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_1a71430dab8647ad8733db3fc74ec243", | |
"max": 7, | |
"style": "IPY_MODEL_98d5bc47d5e040eeb60430f2424e20f2", | |
"value": 1 | |
} | |
}, | |
"307d407883cf47c28d9a5fb0d5f668cd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"309af7f20d8e4491839ab8be8d328c8e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"30c6de60f810493eaea3809eab3b080e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_c3e67e8f9bf74cf4b67b7e7250f44d74", | |
"max": 7, | |
"style": "IPY_MODEL_aa7a501659de4e59b84053be3df3d5b5", | |
"value": 7 | |
} | |
}, | |
"30d6d26577c3423d8423488225e69b3d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "rj", | |
"layout": "IPY_MODEL_2ae152c018084de2bd6e74225702250a", | |
"max": 8, | |
"style": "IPY_MODEL_d04a6d75c12542038d76f7ecc07f2dd6", | |
"value": 5 | |
} | |
}, | |
"30e1762144fb428d812c6df13d6daad5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"30e5fe721c2041cd857a7b2f26969619": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"311ca0f80b07454e96bdd59df5205a95": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"312954d0cbaf40939d5ee03e062a1704": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_f3b6c3edc7f646cc84f143a1a95381f2", | |
"max": 3, | |
"style": "IPY_MODEL_f04a0c6c601c4767901e2cd9809bb716", | |
"value": 2 | |
} | |
}, | |
"3133a47d06df4919965afe45164f5530": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"313896f3b85b4d5aa272aaefcec9a961": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"314c5d814651456387b203700e6c7084": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"318e9a89a60e43eaa33e4b7490cfe2e1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"31dc67c136c24fedbc43bb3cf810a0cf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"31e96e10ac5c49e59b0f9a9830063c95": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"31ec3e73abd74c76ad8282f48fb42ec5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"31f29787b222418fbb947a328b8e65fa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"32100d62ce24420981acb017314f6bfe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "s", | |
"layout": "IPY_MODEL_8983b4e8eb014621b44c84fb12de27f0", | |
"max": 63, | |
"style": "IPY_MODEL_9fd6e7dfa430417cb867ae18e5c73616", | |
"value": 29 | |
} | |
}, | |
"3213ed1e9f2e46e884f48fd498a768b5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"325ff122f8c04b978fec34f672c54a8c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"329dce5487124f8aabfda00ba894bde3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"32f2bffc67f949dcaa26ca584f52804e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3308b2ee12e04fa8b082a318e747b165": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_0d5611ddeeea4023a989febf5be21541", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(29, 29, 34, 1)" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"338d338b33fe4c558e9d314517f00c79": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"34372157d51242ffafb23c5a8ee69534": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3452603c2dd84d37b5a19e18a8f64784": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"347ab32a285d4485bf1f517d9d5e4e25": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_8fa2a6412a8d44728385fba0e0b03ffd", | |
"IPY_MODEL_8145c904097b4e889c0d03e136a8c336", | |
"IPY_MODEL_55d8ad239d134976ab1858b2815d9f54", | |
"IPY_MODEL_f70e8af31b4241e794f7cd9ead47727d" | |
], | |
"layout": "IPY_MODEL_88aec23bb2934dc6998a00af00e6cbeb" | |
} | |
}, | |
"34843687f6a44c23993b6030255e6325": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"348dadc35f224fe996838ec76d9a67d6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"34f1448a0e004dfea63bd9ea7f6b47a2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"352dcecfd07d4fc3a66f8ed1d917ae1f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"352e2128f54e449d8e322f7c046dac48": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_bbd06ca5a4bf48288df4b319e6500f6f", | |
"max": 7, | |
"style": "IPY_MODEL_4a0c72811295467f9fc2d9d3a65fe93a", | |
"value": 7 | |
} | |
}, | |
"355ce490b70142fa832adc37e7699ba8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"35ad5de7aece428ba2c0235c0b60e384": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3625d2efa10a4284911f31a2934330c8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"36836afede0147e2a8b1c6f5af2b2933": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_05bb5910f56a4b2d8d7fb4938720829b", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWVJREFUeJzt3X2QZXdd5/HPNxkfYkiAQCXUlhgS\nSUgQVplAAgSZkCiirluENW6VS0RWcFmxAgo+8fxQliDrSiIqKCiS9Q8f0LKQANEACYkoWzMiCwSS\nGCb4AIkBhARDVpLf/nHvuJPJdGYyfW7f/vZ9vaqmTvqe7vP7Ud0zb37nnHu6xhgBAHo4bNkTAAAO\nnnADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANLJt2RM4kKr6VJKjk+xe8lQA4FA9JMmXxhgnrPdAmz7cSY4+Ikccc2pOPWbZE5narmVP\nAOa2L3sCC+TvGZvD1Ulum+RIHcK9+9SceszO7Fz2PCZXy54AzG29v13/n79nbA6nJdm1e4ojucYN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQyGThrqpvrKrfqqp/rKrbq2p3Vb2+qu4/1RgAsOq2TXGQqvrm\nJH+R5Ngkf5LkE0lOT/K8JE+pqjPHGJ+bYiwAWGVTrbh/LbNoXzDGeOoY42fHGGcn+eUkD0vy8xON\nAwArbd3hrqoTkzw5ye4kv7rP7pcn+XKS86vqyPWOBQCrbooV99nz7aVjjDv33jHGuCXJVUm+Iclj\nJxgLAFbaFNe4HzbfXrPG/mszW5GfnOSytQ5SVTvX2HXKoU8NALaWKVbc951vv7jG/j2v32+CsQBg\npU1yV/kB1Hw77umTxhin7feLZyvx7VNPCgA6mmLFvWdFfd819h+9z+cBAIdoinB/cr49eY39J823\na10DBwAO0hThft98++SqusvxquqoJGcmuS3JX04wFgCstHWHe4zxt0kuTfKQJM/dZ/crkxyZ5G1j\njC+vdywAWHVT3Zz2Y5k98vSiqjonydVJzkjypMxOkb94onEAYKVN8sjT+ar70UnemlmwX5Dkm5Nc\nlORxnlMOANOY7O1gY4y/S/LMqY4HANyd38cNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADSybdkTOBi7ktSyJ8G9\nM5Y9gQXZoj+IW/R/FmxJVtwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNbFv2BOBQPfymq3PO9Zfn6Ntv\nyZe+7qhcduKOfPzYU5c9LYCFmiTcVfX9SXYk+bYk35rkqCS/O8Z4+hTHh72dff3787LLfzE7brjq\nbvsuP/7MvGrHT+e9J5614fMC2AhTnSp/SZIfzyzc/zDRMeFu/uuut+XSi8/Njhuuythn30iy44ar\ncunF5+aZuy5exvQAFm6qcP9EkpOTHJ3kv090TLiLs69/f37jHc/L4ePOJEnts3/Px4ePO/Ob77gg\nZ1///o2cHsCGmCTcY4z3jTGuHWPsuwiCybzs8l/8t2gfyOHjzrz08tcteEYAG89d5bTw8Juu3u/p\n8bWMJGfdcGUeftPVi5wWwIbbNHeVV9XONXadsqETYVM65/rLk9z99Pha9nzeOddf7k5zYEux4qaF\no2+/ZUO/DmCz2jQr7jHGaft7fb4S377B02GT+dLXHbWhXwewWVlx08JlJ+5Iknt1jXvvrwPYKoSb\nFj5+7Km5/Pgz79U17vcf/wTXt4EtR7hp41U7fjp31MH9yN5Rh+XVO35qwTMC2HjCTRvvPfGs/Oj3\nXfhv8d7fk9OSWbSf/X0XeewpsCVN9azypyZ56vzDB823j6uqt87/++YxxgunGIvV9lvbfyi77/dN\neenlr8tZN1x5l317To+/esdPiTawZU11V/m3JXnGPq+dOP+TJDckEW4m8d4Tz8p7TzzLbwcDVlJt\n9qeUzt4Otn17stbzWdiUNveP1aE72LvjAO7itCS7dq311ud7wzVuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARrYtewIHY3uSncuexALUsicAQDtW3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI2sO9xV9YCqelZV\n/XFVXVdVt1XVF6vqyqr6karyfw4AYCLbJjjGeUl+PclnkrwvyaeTHJfkaUnenOS7q+q8McaYYCwA\nWGlThPuaJP8xyTvHGHfuebGqXpTkQ0n+U2YRf/sEYwHASlv3aewxxnvHGO/YO9rz1z+b5I3zD89a\n7zgAwOJvTvvX+farCx4HAFbCwsJdVduS/ND8w3cvahwAWCVTXONey2uSPCLJJWOM9xzok6tq5xq7\nTpl0VgDQ2EJW3FV1QZIXJPlEkvMXMQYArKLJV9xV9dwkFyb5eJJzxhifP5ivG2OctsbxdibZPt0M\nAaCvSVfcVfX8JG9I8tEkT5rfWQ4ATGSycFfVzyT55SQfzizaN011bABgZpJwV9VLM7sZbWdmp8dv\nnuK4AMBdrfsad1U9I8mrktyR5ANJLqiqfT9t9xjjresdCwBW3RQ3p50w3x6e5PlrfM7lSd46wVgA\nsNKmeOTpK8YYdYA/Z00wVwBYeX7lJgA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPblj2Bg7ErSS17ErCF\njWVPYIH828FWY8UNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCOThLuqXltVl1XV31XVbVX1+ar6\n66p6eVU9YIoxAIDpVtw/keTIJH+W5MIkv5vkq0lekeQjVfXgicYBgJW2baLjHD3G+Mq+L1bVzyd5\nUZKfS/JjE40FACtrkhX3/qI99/vz7UlTjAMAq27RN6d933z7kQWPAwArYapT5UmSqnphkvskuW+S\nRyd5QmbRfs1BfO3ONXadMtkEAaC5ScOd5IVJjtvr43cn+eExxj9NPA4ArKRJwz3GeFCSVNVxSR6f\n2Ur7r6vqP4wxdh3ga0/b3+vzlfj2KecJAF0t5Br3GOPGMcYfJ3lykgckedsixgGAVbPQm9PGGDck\n+XiSb6mqBy5yLABYBRvxyNN/N9/esQFjAcCWtu5wV9UpVfWg/bx+2PwBLMcm+YsxxhfWOxYArLop\nbk57SpLXVdUVSf42yecyu7N8R5ITk3w2ybMnGAcAVt4U4f7zJL+R5Mwk35rkfkm+nOSaJBcnuWiM\n8fkJxgGAlbfucI8xPprkuRPMBQA4AL+PGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaCRhYW7qs6vqjH/86xFjQMAq2Qh4a6qByf5lSS3LuL4ALCqJg93VVWS\n307yuSRvnPr4ALDKFrHiviDJ2UmemeTLCzg+AKysScNdVacmeU2SC8cYV0x5bAAg2TbVgapqW5KL\nk3w6yYsO4et3rrHrlPXMCwC2ksnCneRlSR6V5AljjNsmPC4AMDdJuKvq9MxW2b80xvjgoRxjjHHa\nGsfemWT7OqYHAFvGuq9x73WK/JokL133jACANU1xc9p9kpyc5NQkX9nroSsjycvnn/Ob89deP8F4\nALCypjhVfnuSt6yxb3tm172vTPLJJId0Gh0AmFl3uOc3ou33kaZV9YrMwv07Y4w3r3csAFh1fskI\nADQi3ADQyELDPcZ4xRijnCYHgGlYcQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADSybdkTYGsay57AglRq\n2VNYiK35vwq2JituAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARrZNcZCq2p3k+DV23zjGeNAU48Derrnx\nllx13c259StfzX2+flvOfOgDc/JxRy17WgALNUm4576Y5PX7ef3WCceAXHXdzbnwsmvzoU99/m77\nTj/hmDzvnJNy5kMfuISZASxejTHWf5DZijtjjIes+2B3P/bOZPv2ZOfUh2aBJvix2q/f+9+fzs/9\n0f/Jnfdw/MMqec3T/n1+4DEPnnz8qpr8mMDK2DXGOG29B3GNmzauuu7mA0Y7Se4cyc/+0Udy1XU3\nb8zEADbQlKfKv66qnp7km5J8OclHklwxxrhjwjFYYRdedu0Bo73HnSO56LJrnTIHtpwpw/2gJBfv\n89qnquqZY4zLJxyHFXTNjbfs95r2PfmrT30+19x4ixvWgC1lqnD/dpIPJPlYkluSnJjkx5P8aJJ3\nVdXjxhh/c08HmF3L3q9TJpojjR3qae+rrrtZuIEtZZJwjzFeuc9LH03ynKq6NckLkrwiyblTjMVq\nuvUrX93QrwPYrKY8Vb4/b8ws3E880CeudafdfCW+feJ50cx9vv7QflQP9esANqtF31V+03x75ILH\nYYs71JvM3JwGbDWLDvfj5tvrFzwOW9zJxx2V00845l59zRknHOP6NrDlrDvcVfUtVXW3f1Gr6vgk\nb5h/+L/WOw4875yTcthBPv/ksEouOOekxU4IYAmmWHGfl+Qfq+pdVfVrVfXaqvrDJJ9I8tAklyT5\nHxOMw4o786EPzC887ZEHjPeeJ6c5TQ5sRVPcufO+JA9L8qjMTo0fmeSfk1yZ2fu6Lx5TPFcVkvzn\nx3xTvvH+35CLLrs2f7Wf93WfccIxucCzyoEtbJJnlS+SZ5X3tBE/Vsv47WCeVQ6swyTPKvdeGdo6\n+bij3HwGrBy/ZAQAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTbsidwcHYlqWVPgnvBdwtgMay4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhk0nBX1bdX1dur6jNVdft8e2lVfc+U4wDAqto21YGq6iVJXp3k5iR/\nmuQzSR6Y5FFJzkpyyVRjAcCqmiTcVXVeZtH+8yRPG2Pcss/+r5liHABYdes+VV5VhyV5bZJ/SfKD\n+0Y7ScYY/7recQCAaVbcj09yQpI/TPKFqvreJI9I8pUkHxpjfHCCMQCATBPux8y3NybZleSRe++s\nqiuSfP8Y45/u6SBVtXONXaese4YAsEVMcVf5sfPtc5IckeQ7khyV2ar7PUmemOQPJhgHAFbeFCvu\nw+fbymxl/Tfzjz9WVecmuSbJjqp63D2dNh9jnLa/1+cr8e0TzBMA2ptixf2F+fb6vaKdJBlj3JbZ\nqjtJTp9gLABYaVOE+5Pz7T+vsX9P2I+YYCwAWGlThPuKJF9NclJVfe1+9j9ivt09wVgAsNLWHe4x\nxs1Jfi/JfZO8bO99VfWdSb4ryReTvHu9YwHAqpvqkac/meSMJC+uqicm+VCS45Ocm+SOJM8eY6x1\nKh0AOEiThHuMcVNVnZHkJZnF+rFJbknyziS/MMb4yynGAYBVV2OMZc/hHnk7WFOb+8fq0NWyJwA0\ntmuttz7fG34fNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPblj0Btqax7AksSC17AsDKs+IGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoZN3hrqofrqpxgD93TDFZAFh12yY4xoeTvHKNfd+e5Owk75pgHABYeesO\n9xjjw5nF+26q6oPz//yN9Y4DACzwGndVPSLJY5P8Q5J3LmocAFgli7w57b/Nt28ZY7jGDQATmOIa\n991U1RFJnp7kziRvPsiv2bnGrlOmmhcAdLeoFfcPJLlfkneNMf5uQWMAwMpZyIo7yY/Ot2862C8Y\nY5y2v9fnK/HtU0wKALqbfMVdVQ9P8vgkf5/kkqmPDwCrbBGnyt2UBgALMmm4q+rrk5yf2U1pb5ny\n2ADA9Cvu85LcP8klbkoDgOlNHe49N6V5UhoALMBk4a6qU5M8IW5KA4CFmeztYGOMq5PUVMcDAO7O\n7+MGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABrZtuwJHISHLHsC3HunnbbsGQBsOg+Z4iA1xpjiOAtTVZ9KcnSS\n3Rsw3Cnz7Sc2YCym4XvWj+9ZP75n6/eQJF8aY5yw3gNt+nBvpKramSRjDOvFJnzP+vE968f3bHNx\njRsAGhFuAGhEuAGgEeEGgEaEGwAacVc5ADRixQ0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqm+sqt+qqn+sqturandVvb6q7r/suXFXVfWAqnpWVf1xVV1XVbdV1Rer6sqq+pGq8jPdRFWd\nX1Vj/udZy54P+1dV315Vb6+qz8z/ffxMVV1aVd+z7Lmtqm3LnsCyVdU3J/mLJMcm+ZPMft/s6Ume\nl+QpVXXmGONzS5wid3Vekl9P8pkk70vy6STHJXlakjcn+e6qOm94stCmVlUPTvIrSW5Ncp8lT4c1\nVNVLkrw6yc1J/jSzv3cPTPKoJGcluWRpk1thK//ktKp6T5InJ7lgjPEre73+P5P8RJI3jTGes6z5\ncVdVdXaSI5O8c4xx516vPyjJh5I8OMn3jzHevqQpcgBVVUn+LMkJSf4oyQuTPHuM8ealToy7qKrz\nkvx+kj9P8rQxxi377P+aMca/LmVyK26lTytW1YmZRXt3kl/dZ/fLk3w5yflVdeQGT401jDHeO8Z4\nx97Rnr/+2SRvnH941oZPjHvjgiRnJ3lmZn/H2GTml5xem+RfkvzgvtFOEtFenpUOd2b/eCTJpfsJ\nwS1JrkryDUkeu9ET45Ds+Yfkq0udBWuqqlOTvCbJhWOMK5Y9H9b0+MzOiFyS5AtV9b1V9TNV9byq\netyS57byVv0a98Pm22vW2H9tZivyk5NctiEz4pBU1bYkPzT/8N3LnAv7N/8eXZzZfQkvWvJ0uGeP\nmW9vTLIrySP33llVV2R2SeqfNnpiWHHfd7794hr797x+vw2YC+vzmiSPSHLJGOM9y54M+/WyzG5q\n+uExxm3Lngz36Nj59jlJjkjyHUmOyuzv2HuSPDHJHyxnaqx6uA+k5tvVvoNvk6uqC5K8ILN3BJy/\n5OmwH1V1emar7F8aY3xw2fPhgA6fbyuzlfVlY4xbxxgfS3Jukr9PssNp8+VY9XDvWVHfd439R+/z\neWwyVfXcJBcm+XiSJ40xPr/kKbGPvU6RX5PkpUueDgfnC/Pt9WOMv9l7x/xsyZ6zWqdv6KxIItyf\nnG9PXmP/SfPtWtfAWaKqen6SNyT5aGbR/uySp8T+3Sezv2OnJvnKXg9dGZm9eyNJfnP+2uuXNkv2\ntuffxn9eY/+esB+xAXNhH6t+c9r75tsnV9Vh+7wv+KgkZya5LclfLmNyrK2qfiaz69ofTvKdY4yb\nlzwl1nZ7kressW97Zte9r8wsFk6jbw5XZPbujJOq6mvHGP93n/2PmG93b+isSLLi4R5j/G1VXZrZ\nnePPzexJTnu8MrMHfbxpjOG9pptIVb00yauS7EzyZKfHN7f5qdX9PtK0ql6RWbh/xwNYNo8xxs1V\n9XtJ/ktmNxW+ZM++qvrOJN+V2SVE7+BYgpUO99yPZfbI04uq6pwkVyc5I8mTMjtF/uIlzo19VNUz\nMov2HUk+kOSC2YO47mL3GOOtGzw12Gp+MrN/C19cVU/M7MmEx2d2c9odmT3tbq1T6SzQyod7vup+\ndGYxeEqS78nsebwXJXml1dymc8J8e3iS56/xOZcneeuGzAa2qDHGTVV1Rmar7XMzexDVLUnemeQX\nxhguIS7Jyj+rHAA6WfW7ygGgFeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCR/wfYoN8ibl4jDwAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c43ec50>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"36914e48198d4cd2b70af213f6addf0b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_69ff519e87934ca99ee8b5f91fede255", | |
"style": "IPY_MODEL_c67a11e5c75e4959b28d710febc5bd63" | |
} | |
}, | |
"369738e80d924734be4ec53929131e9b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"36d16d8ffc1f458fbde28061a32db46b": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_ab21a66dfb524b67a0cdcad88d365ef6", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGadJREFUeJzt3XuwZWdd5+HvL2kVCAnXSqgpJRch\nJAjF0JFwCdIhEUQdpwxDHMoxKCM4jGhAwRv3S1mCl5EEL4CgSGaqQAXLQgIEAiQmokx1DyhyiRg6\noEBiACGBECX9zh97N3Y6fZJOn7XPPr+zn6eqa+Xstfd63659Tn+yLnudGmMEAOjhsGVPAAA4eMIN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0Mi2ZU/gtlTVJ5MclWT3kqcCAIfquCRfHmMcv94NbfpwJznqjsndT07uvuyJTG3XsicAc9uX\nPYEF8nPGVtMh3LtPTu6+c9mzWIBa9gRgbiv+fO3l54xNZPcUG3GOGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoJHJwl1V31pVv19Vn6mqG6tqd1W9oqruNtUYALDqtk2xkar69iR/meToJH+W5GNJTk3yjCSP\nq6rTxhifn2IsAFhlU+1x/05m0T53jPGDY4xfHGOckeQ3k9wvyS9PNA4ArLR1h7uqTkjy2CS7k/z2\nfqtfmOQrSc6pqiPWOxYArLop9rjPmC8vGmPs2XfFGOO6JJcnuVOSh00wFgCstCnOcd9vvrxijfV/\nn9ke+YlJLl5rI1W1c41VJx361ABga5lij/su8+WX1li/9/G7TjAWAKy0Sa4qvw01X45be9IY45QD\nvni2J7596kkBQEdT7HHv3aO+yxrrj9rveQDAIZoi3B+fL09cY/1958u1zoEDAAdpinC/d758bFXd\nbHtVdWSS05LckOSvJhgLAFbausM9xviHJBclOS7J0/db/eIkRyR5wxjjK+sdCwBW3VQXp/1kZrc8\nPb+qzkzy0SQPTfLozA6RP3eicQBgpU1yy9P5Xvd3Jnl9ZsF+VpJvT3J+koe7TzkATGOyj4ONMT6d\n5MlTbQ8AuCW/jxsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTbsidwMHYlqWVPgttnjGXPYDFqa34nbs2/FWxN\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa2bbsCcChuv81H82ZV16So268Ll/+liNz8Qk78pGjT172\ntAAWapJwV9UTkuxI8h+TPCjJkUn+zxjjR6bYPuzrjCvflxdc8qvZcdXlt1h3ybGn5SU7fj7vOeH0\nDZ8XwEaY6lD585L8VGbh/qeJtgm38N93vSEXXXBWdlx1ecZ+60aSHVddnosuOCtP3nXBMqYHsHBT\nhftnkpyY5Kgk/3OibcLNnHHl+/Katz4jh489SZLab/3erw8fe/J7bz03Z1z5vo2cHsCGmCTcY4z3\njjH+foyx/04QTOYFl/zqN6J9Ww4fe/L8S35twTMC2HiuKqeF+1/z0QMeHl/LSHL6VZfl/td8dJHT\nAthwm+aq8qraucaqkzZ0ImxKZ155SZJbHh5fy97nnXnlJa40B7YUe9y0cNSN123o6wA2q02zxz3G\nOOVAj8/3xLdv8HTYZL78LUdu6OsANit73LRw8Qk7kuR2nePe93UAW4Vw08JHjj45lxx72u06x/2+\nYx/p/Daw5Qg3bbxkx8/npjq4b9mb6rC8dMfPLXhGABtPuGnjPSecnp/4gfO+Ee8D3TktmUX7qT9w\nvtueAlvSVPcq/8EkPzj/8l7z5cOr6vXz/752jPHsKcZitf3+9idl913vnedf8ms5/arLbrZu7+Hx\nl+74OdEGtqya4mZnVfWiJC+8ladcNcY47hC37aryjjbgJnpL+e1gdbBn2QFuYddan6C6PSYJ9yIJ\nd1Ob/PvqkAk3cOgmCbdz3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YEDsb2JDuXPYkFqGVPAIB2\n7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0su5wV9U9quopVfWnVfWJqrqhqr5UVZdV1Y9Xlf85AICJ\nbJtgG2cn+d0kn03y3iSfSnJMkscneW2S762qs8cYY4KxAGClTRHuK5L85yRvG2Ps2ftgVT0nyQeS\n/JfMIv7mCcYCgJW27sPYY4z3jDHeum+0549/Lsmr5l+evt5xAIDFX5z2b/Pl1xc8DgCshIWFu6q2\nJXnS/Mt3LGocAFglU5zjXsvLkjwgyYVjjHfe1pOraucaq06adFYA0NhC9rir6twkz0rysSTnLGIM\nAFhFk+9xV9XTk5yX5CNJzhxjfOFgXjfGOGWN7e1Msn26GQJAX5PucVfVM5P8VpIPJ3n0/MpyAGAi\nk4W7qn4hyW8m+WBm0b5mqm0DADOThLuqnp/ZxWg7Mzs8fu0U2wUAbm7d57ir6keTvCTJTUn+Ism5\nVbX/03aPMV6/3rEAYNVNcXHa8fPl4UmeucZzLkny+gnGAoCVNsUtT180xqjb+HP6BHMFgJXnV24C\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0sm3ZEzgYu5LUsicBW9hY9gQWyL8dbDX2uAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoZJJwV9XLq+riqvp0Vd1QVV+oqv9XVS+sqntMMQYAkNQYY/0bqfrXJLuS\nfCTJNUmOSPKwJN+Z5DNJHjbG+PQhbntnku3rniQba4Lvq02patkzWIgt+m4lSbbmO0ZTu8YYp6x3\nI9ummEmSo8YYX9v/war65STPSfJLSX5yorEAYGVNcqj8QNGe+6P58r5TjAMAq27RF6f9wHz5Nwse\nBwBWwlSHypMkVfXsJHdOcpfMzm8/MrNov+wgXrtzjVUnTTZBAGhu0nAneXaSY/b5+h1JfmyM8c8T\njwMAK2mSq8pvsdGqY5I8IrM97SOT/Kcxxq5D3JaryjtyVXkrW/TdSuKqcjaVSa4qX8g57jHG1WOM\nP03y2CT3SPKGRYwDAKtmoRenjTGuyuyz3d9RVfdc5FgAsAo24pan/2G+vGkDxgKALW3d4a6qk6rq\nXgd4/LD5DViOTvKXY4wvrncsAFh1U1xV/rgkv1ZVlyb5hySfz+zK8h1JTkjyuSRPnWAcAFh5U4T7\n3Ulek+S0JA9KctckX0lyRZILkpw/xvjCBOMAwMpbd7jHGB9O8vQJ5gIA3Aa/jxsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkYWFu6rOqaox//OURY0DAKtk\nIeGuqm9L8sok1y9i+wCwqiYPd1VVkj9I8vkkr5p6+wCwyhaxx31ukjOSPDnJVxawfQBYWZOGu6pO\nTvKyJOeNMS6dctsAQLJtqg1V1bYkFyT5VJLnHMLrd66x6qT1zAsAtpLJwp3kBUkenOSRY4wbJtwu\nADA3Sbir6tTM9rJ/Y4zx/kPZxhjjlDW2vTPJ9nVMDwC2jHWf497nEPkVSZ6/7hkBAGua4uK0Oyc5\nMcnJSb62z01XRpIXzp/ze/PHXjHBeACwsqY4VH5jktetsW57Zue9L0vy8SSHdBgdAJhZd7jnF6Id\n8JamVfWizML9h2OM1653LABYdX7JCAA0ItwA0EiNMZY9h1vl42BNbfLvq0NWtewZLMQWfbeSJFvz\nHaOpXWt99Pn2sMcNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyLZlT4CtaaSWPYWF2Jp/q63794KtyB43\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI9um2EhV7U5y7Bqrrx5j3GuKcWBfV1x971z+iQfl+q/dKXe+\nw1dz2n0+lBOP+dSypwWwUJOEe+5LSV5xgMevn3AMyOWfeFDOu/iJ+cAnH3iLdace/7d5xplvzGn3\n+dASZgaweDXGWP9GZnvcGWMct+6N3XLbO5Nsn3q7LNYE31YH9Kb/+5j80lt+OnvGYUlGktp31CSV\nw2pPXvb4V+aHHvKuycevuu3nAKxh1xjjlPVuxDlu2rj8Ew/aJ9rJzaP971/vGYflF9/y07n8Ew/a\n0PkBbIQpD5V/S1X9SJJ7J/lKkr9JcukY46YJx2CFnXfxE/eJ9q3bMw7L+Rc/0SFzYMuZMtz3SnLB\nfo99sqqePMa4ZMJxWEFXXH3v+Tnt/Q+Pr2Xkrz/5wFxx9b1dsAZsKVOF+w+S/EWSv0tyXZITkvxU\nkp9I8vaqevgY41Z3febnsg/kpInmSGP/ftj7YE8y1zdeJ9zAVjJJuMcYL97voQ8neVpVXZ/kWUle\nlOSsKcZiNV3/tTtt6OsANqspD5UfyKsyC/ejbuuJa11p56pykuTOd/jqhr4OYLNa9FXl18yXRyx4\nHLa4f7/I7GA/Zzb2ex3A1rDocD98vrxyweOwxZ14zKdy6vF/m9tzjvuhx/+t89vAlrPucFfVd1TV\n3Q/w+LFJfmv+5f9e7zjwjDPfmMNqz0E997Dak3PPfOOCZwSw8abY4z47yWeq6u1V9TtV9fKq+pMk\nH0tynyQXJvn1CcZhxZ12nw/lVx7/yn3ivf9h89nXe++c5jA5sBVNcXHae5PcL8mDMzs0fkSSf0ly\nWWaf675gTHFfVUjyXx/yrnzr3a7J+Rc/MX99i3uVzw6Pn+te5cAWNsm9yhfJVeU9bcS31TJ+O5h7\nlQPrMMm9yhf9cTBYmBOP+ZSLz4CV45eMAEAjwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNbFv2BNiaatkTANii7HED\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q76qqN1fVZ6vqxvnyoqr6vinHAYBVtW2qDVXV\n85K8NMm1Sf48yWeT3DPJg5OcnuTCqcYCgFU1Sbir6uzMov3uJI8fY1y33/pvmmIcAFh16z5UXlWH\nJXl5kq8m+eH9o50kY4x/W+84AMA0e9yPSHJ8kj9J8sWq+v4kD0jytSQfGGO8f4IxAIBME+6HzJdX\nJ9mV5IH7rqyqS5M8YYzxz7e2karaucaqk9Y9QwDYIqa4qvzo+fJpSe6Y5LuTHJnZXvc7kzwqyR9P\nMA4ArLwp9rgPny8rsz3rD82//ruqOivJFUl2VNXDb+2w+RjjlAM9Pt8T3z7BPAGgvSn2uL84X165\nT7STJGOMGzLb606SUycYCwBW2hTh/vh8+S9rrN8b9jtOMBYArLQpwn1pkq8nuW9VffMB1j9gvtw9\nwVgAsNLWHe4xxrVJ3pTkLklesO+6qnpMku9J8qUk71jvWACw6qa65enPJnlokudW1aOSfCDJsUnO\nSnJTkqeOMdY6lA4AHKRJwj3GuKaqHprkeZnF+mFJrkvytiS/Msb4qynGAYBVV2OMZc/hVvk4WFOb\n+9vq0NWyJwA0tmutjz7fHn4fNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPblj0Btqax7AksSC17AsDK\ns8cNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyLrDXVU/VlXjNv7cNMVkAWDVbZtgGx9M8uI11n1XkjOS\nvH2CcQBg5a073GOMD2YW71uoqvfP//M16x0HAFjgOe6qekCShyX5pyRvW9Q4ALBKFnlx2v+YL183\nxnCOGwAmMMU57luoqjsm+ZEke5K89iBfs3ONVSdNNS8A6G5Re9w/lOSuSd4+xvj0gsYAgJWzkD3u\nJD8xX776YF8wxjjlQI/P98S3TzEpAOhu8j3uqrp/kkck+cckF069fQBYZYs4VO6iNABYkEnDXVV3\nSHJOZhelvW7KbQMA0+9xn53kbkkudFEaAExv6nDvvSjNndIAYAEmC3dVnZzkkXFRGgAszGQfBxtj\nfDRJTbU9AOCW/D5uAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRbcuewEE4btkT4PY75ZRlzwBg0zluio3UGGOK\n7SxMVX0yyVFJdm/AcCfNlx/bgLGYhvesH+9ZP96z9TsuyZfHGMevd0ObPtwbqap2JskYw/5iE96z\nfrxn/XjPNhfnuAGgEeEGgEaEGwAaEW4AaES4AaARV5UDQCP2uAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoR7iRV9a1V9ftV9ZmqurGqdlfVK6rqbsueGzdXVfeoqqdU1Z9W1Seq6oaq+lJVXVZV\nP15VvqebqKpzqmrM/zxl2fPhwKrqu6rqzVX12fm/j5+tqouq6vuWPbdVtW3ZE1i2qvr2JH+Z5Ogk\nf5bZ75s9Nckzkjyuqk4bY3x+iVPk5s5O8rtJPpvkvUk+leSYJI9P8tok31tVZw93FtrUqurbkrwy\nyfVJ7rzk6bCGqnpekpcmuTbJn2f2c3fPJA9OcnqSC5c2uRW28ndOq6p3JnlsknPHGK/c5/H/leRn\nkrx6jPG0Zc2Pm6uqM5IckeRtY4w9+zx+ryQfSPJtSZ4wxnjzkqbIbaiqSvKuJMcneUuSZyd56hjj\ntUudGDdTVWcn+aMk707y+DHGdfut/6Yxxr8tZXIrbqUPK1bVCZlFe3eS395v9QuTfCXJOVV1xAZP\njTWMMd4zxnjrvtGeP/65JK+af3n6hk+M2+PcJGckeXJmP2NsMvNTTi9P8tUkP7x/tJNEtJdnpcOd\n2T8eSXLRAUJwXZLLk9wpycM2emIckr3/kHx9qbNgTVV1cpKXJTlvjHHpsufDmh6R2RGRC5N8saq+\nv6p+oaqeUVUPX/LcVt6qn+O+33x5xRrr/z6zPfITk1y8ITPikFTVtiRPmn/5jmXOhQObv0cXZHZd\nwnOWPB1u3UPmy6uT7ErywH1XVtWlmZ2S+ueNnhj2uO8yX35pjfV7H7/rBsyF9XlZkgckuXCM8c5l\nT4YDekFmFzX92BjjhmVPhlt19Hz5tCR3TPLdSY7M7GfsnUkeleSPlzM1Vj3ct6Xmy9W+gm+Tq6pz\nkzwrs08EnLPk6XAAVXVqZnvZvzHGeP+y58NtOny+rMz2rC8eY1w/xvi7JGcl+cckOxw2X45VD/fe\nPeq7rLH+qP2exyZTVU9Pcl6SjyR59BjjC0ueEvvZ5xD5FUmev+TpcHC+OF9eOcb40L4r5kdL9h7V\nOnVDZ0US4f74fHniGuvvO1+udQ6cJaqqZyb5rSQfzizan1vylDiwO2f2M3Zykq/tc9OVkdmnN5Lk\n9+aPvWJps2Rfe/9t/Jc11u8N+x03YC7sZ9UvTnvvfPnYqjpsv88FH5nktCQ3JPmrZUyOtVXVL2R2\nXvuDSR4zxrh2yVNibTcmed0a67Zndt77ssxi4TD65nBpZp/OuG9VffMY41/3W/+A+XL3hs6KJCse\n7jHGP1TVRZldOf70zO7ktNeLM7vRx6vHGD5ruolU1fOTvCTJziSPdXh8c5sfWj3gLU2r6kWZhfsP\n3YBl8xhjXFtVb0ry3zK7qPB5e9dV1WOSfE9mpxB9gmMJVjrccz+Z2S1Pz6+qM5N8NMlDkzw6s0Pk\nz13i3NhPVf1oZtG+KclfJDl3diOum9k9xnj9Bk8NtpqfzezfwudW1aMyuzPhsZldnHZTZne7W+tQ\nOgu08uGe73V/Z2YxeFyS78vsfrznJ3mxvblN5/j58vAkz1zjOZckef2GzAa2qDHGNVX10Mz2ts/K\n7EZU1yV5W5JfGWM4hbgkK3+vcgDoZNWvKgeAVoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG/j8UbAlBT8N3OgAAAABJRU5E\nrkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c028a58>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"36f62c8bfa1c4e4f97df22c359e285e5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_18a6388930084a1f80c51c34e7e552f2", | |
"max": 7, | |
"style": "IPY_MODEL_45d719c8777140f481c8297c63254273", | |
"value": 3 | |
} | |
}, | |
"37085e29592040e881d5aedfef3f34b6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"37898c0d500c4f61873c432da1019947": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"378a8d48b5bf47339616700fcc30c9cd": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_9a0ac1bf194f451d84e2223afb6cf322", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(63, 0, 0, 2, [0, 63])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"37c6fea04db04fa481b47ef8889e2f66": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "z", | |
"layout": "IPY_MODEL_cdf0bbc6e9e7472a8e3ce9794e51b68a", | |
"max": 63, | |
"style": "IPY_MODEL_fc5b1be973fd478bb2e4c666f967b16e" | |
} | |
}, | |
"383a1b9492af45eb995eec9491b4ce06": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_405e8425cf3d49a291dca118bd0178f0", | |
"IPY_MODEL_feef695d2b2f4222bc955cff37e424da", | |
"IPY_MODEL_bc526c072c6c4f69b49043d538372017", | |
"IPY_MODEL_05d99ccf14db42ae9503134a0a10bcbb" | |
], | |
"layout": "IPY_MODEL_9225367327fd464db45ffb13bdcbee64" | |
} | |
}, | |
"38e0525c10d248e7b57b5256c2726c44": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_d443222e49c24f3f95c24c7804e77a47", | |
"max": 7, | |
"style": "IPY_MODEL_f1f8e2d18eee4ebdbd14c4817cdea579", | |
"value": 6 | |
} | |
}, | |
"38e796369c024b8582833c6d0124c9e2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_47fa5c9f21f3480cbc0d7fe7c2c0e273", | |
"max": 7, | |
"style": "IPY_MODEL_1edb3c5d8a7e429d9d46bd2d7ebc41e6" | |
} | |
}, | |
"392f6f4a97f343148a58c24e29e0eab8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"392fa70ed176438cbca5daf52b3b01d6": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_f66d491600214432b43d6ef4848106da", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.],\n [ 0., 0., 0., 0., 0., 0., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"394b032e9f0049eb8cf59c8fec733891": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"39b3c37f65eb4723b6d9b755c20a9baf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"39d768c53d334d209f58be6b0f2bc78c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"39d8c7ae3aa9448fb98dd30f57e24a57": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"up", | |
"right", | |
"down", | |
"left" | |
], | |
"description": "d", | |
"index": 0, | |
"layout": "IPY_MODEL_2f3ba6b027724f0e896b9bd26b4806cd", | |
"style": "IPY_MODEL_4401e10403094e65a8e3ed94db856fec" | |
} | |
}, | |
"39e39e97ddbe43d7ab707b3505718b20": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "s", | |
"layout": "IPY_MODEL_2108ff24552343e9a78d564c11500751", | |
"max": 63, | |
"style": "IPY_MODEL_2e7d79c1b4e141afa18a8e9d23a6f5d3" | |
} | |
}, | |
"3a11d1b21323495eb3f5553722413776": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3a63501648c145e28447fd7f26375bd5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3a850500a7c34243bb782cb2a6591149": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3a926c7b6bde4605acd05a0c9549e164": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3af378d9d5a8492198b6f33b94020c7c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3b1fba5d38d54de293a90016ba050575": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_2a7ccaf17cb440ae9a9f998fb9d3ab77", | |
"max": 7, | |
"style": "IPY_MODEL_d48657e9d73441c5a5efd6478d7d5d3a", | |
"value": 3 | |
} | |
}, | |
"3b35c6e176d34de68e3deabba8294d98": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3b40c86ed9884113a9444705e65d34d6": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_97d2c77310d44a2fa5ea0d0de913999f", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGTJJREFUeJzt3XmwZGd93+HvbxhAIITYSlApkEAE\nkAJEZoRZxCIBZjEOKSAoRTmIpQwOgVhgQ0zCYsAul8GOYzbbYIONIanCC6FcGLEbS4ilqJoJYkcY\neSQIixCLLAlJgObNH91DRqO5mtHc07fv7/bzVE0d3T7d531VPfd+5ix9bo0xAgD0sG3ZEwAADp1w\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADSyfdkTOJiq+qckt0yye8lTAYDDdeck/zzGuMt6N7Tpw53kljdLbnNicptlT2Rqu5Y9AZjb\nsewJLJDvM7aaDuHefWJym53LnsUC1LInAHNb8ftrL99nbCK7p9iIc9wA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNTBbuqrpjVf1ZVX2jqq6uqt1V9ZqquvVUYwDAqts+xUaq6q5JPp7kmCR/m+RLSe6X5HlJ\nHlNVDxpjfHeKsQBglU21x/1HmUX7zDHG48cY/3WM8fAkf5DkHkl+e6JxAGClrTvcVXV8kkcl2Z3k\nD/db/fIkVyQ5o6qOXO9YALDqptjjfvh8+YExxp59V4wxLkvysSQ3T/KACcYCgJU2xTnue8yX56+x\n/iuZ7ZHfPcmH19pIVe1cY9UJhz81ANhaptjjPnq+vHSN9Xsfv9UEYwHASpvkqvKDqPlyXN+Txhgn\nH/DFsz3xHVNPCgA6mmKPe+8e9dFrrL/lfs8DAA7TFOH+8nx59zXW322+XOscOABwiKYI90fmy0dV\n1bW2V1VHJXlQkiuTfHKCsQBgpa073GOMryb5QJI7J3nufqtfmeTIJG8bY1yx3rEAYNVNdXHaczK7\n5enrquoRSb6Y5P5JHpbZIfKXTDQOAKy0SW55Ot/rvm+St2YW7BckuWuS1yV5oPuUA8A0Jvs42Bjj\na0meMdX2AIDr8vu4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGti97AodiV5Ja9iRgC/P9BX3Y4waARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhk+7InAIfrxrc7Nkccd1K23eTm2fOjH+aqC8/Ljy+5aNnTAlioScJdVU9K\ncmqSn0lyUpKjkvyvMcZTptg+7OuI407K0ac8OUcce+/rrLvqos/m0o+/I1ddeN4SZgaweFPtcb80\ns2BfnuTrSU6YaLtwLbf414/MbR79K6lt2zLGSFX9dN0YI0cce+/c9I73zHff9/pc8dkPLnGmAIsx\n1TnuX01y9yS3TPKfJtomXMsRx53002gnuVa09/26tm3LbR/zKzniuJM2fI4AizZJuMcYHxljfGWM\nMabYHhzI0ac8+afRPpjati1Hn/LkBc8IYOO5qpwWbny7Y3PEsffOof7bcO9h8xvf7tgFzwxgY22a\nq8qraucaq5wv56eHvfc/PL6Wvc874riTXGkObCn2uGlh201uvqGvA9isNs0e9xjj5AM9Pt8T37HB\n02GT2fOjH27o6wA2K3vctLD3c9k35Bz3vq8D2CqEmxZ+fMlFueqiz96gc9xXXfRZ57eBLUe4aePS\nj78jY8+eQ3ru2LMnl378HQueEcDGE27auOrC8/K997/+p/He/7D53q/Hnj357vte7zA5sCVNda/y\nxyd5/PzLO8yXD6yqt87/+5IxxgunGIvVdvlnPpifXHrxAe9VvvfwuHuVA1vZVFeV/0ySp+332PHz\nP0lyYRLhZhJXXXherrrwPL8dDFhJtdnvUurjYABsEbvW+ujzDeEcNwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPblz2BQ7Ejyc5lT2IBatkTWKQxlj2Dxagt/a4BDdjjBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naGTd4a6q21bVM6vqXVX1j1V1ZVVdWlXnVtUvVZV/HADARLZPsI3Tk/xxkm8m+UiSi5LcPskTk7w5\nyc9X1eljjDHBWACw0qYI9/lJ/m2S94wx9ux9sKpenORTSf5dZhF/5wRjAcBKW/dh7DHG348x3r1v\ntOePfyvJG+dfnrbecQCAxV+c9uP58icLHgcAVsLCwl1V25M8df7l+xY1DgCskinOca/lVUnuleSs\nMcb7D/bkqtq5xqoTJp0VADS2kD3uqjozyQuSfCnJGYsYAwBW0eR73FX13CSvTfKFJI8YY3zvUF43\nxjh5je3tTLJjuhkCQF+T7nFX1fOTvCHJ55I8bH5lOQAwkcnCXVUvSvIHST6dWbQvnmrbAMDMJOGu\nqpdldjHazswOj18yxXYBgGtb9znuqnpakt9Mck2SjyY5s6r2f9ruMcZb1zsWAKy6KS5Ou8t8eaMk\nz1/jOWcneesEYwHASpvilqevGGPUQf6cNsFcAWDl+ZWbANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxf\n9gQOxa4ktexJwBY2lj2BBfKzg63GHjcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjUwS7qp6dVV9\nuKq+VlVXVtX3qur/VNXLq+q2U4wBACQ1xlj/Rqp+lGRXki8kuTjJkUkekOS+Sb6R5AFjjK8d5rZ3\nJtmx7kmysSb4e7UpVS17BguxRd+tJMnWfMdoatcY4+T1bmT7FDNJcssxxlX7P1hVv53kxUn+W5Ln\nTDQWAKysSQ6VHyjac381X95tinEAYNUt+uK0x82Xn1nwOACwEqY6VJ4kqaoXJrlFkqMzO7/94Myi\n/apDeO3ONVadMNkEAaC5ScOd5IVJbr/P1+9L8vQxxncmHgcAVtIkV5VfZ6NVt09ySmZ72kcl+Tdj\njF2HuS1XlXfkqvJWtui7lcRV5Wwqk1xVvpBz3GOMb48x3pXkUUlum+RtixgHAFbNQi9OG2NcmNln\nu+9ZVbdb5FgAsAo24pan/2K+vGYDxgKALW3d4a6qE6rqDgd4fNv8BizHJPn4GOP76x0LAFbdFFeV\nPybJ71XVOUm+muS7mV1ZfmqS45N8K8mzJhgHAFbeFOH+UJI/SfKgJCcluVWSK5Kcn+TtSV43xvje\nBOMAwMpbd7jHGJ9L8twJ5gIAHITfxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQyMLCXVVnVNWY/3nmosYBgFWykHBX1Z2SvD7J5YvYPgCsqsnDXVWV5M+T\nfDfJG6fePgCsskXscZ+Z5OFJnpHkigVsHwBW1qThrqoTk7wqyWvHGOdMuW0AINk+1YaqanuStye5\nKMmLD+P1O9dYdcJ65gUAW8lk4U7yG0nuk+TBY4wrJ9wuADA3Sbir6n6Z7WX//hjjE4ezjTHGyWts\ne2eSHeuYHgBsGes+x73PIfLzk7xs3TMCANY0xcVpt0hy9yQnJrlqn5uujCQvnz/nT+ePvWaC8QBg\nZU1xqPzqJG9ZY92OzM57n5vky0kO6zA6ADCz7nDPL0Q74C1Nq+oVmYX7L8YYb17vWACw6vySEQBo\nRLgBoJEaYyx7DtfLx8Ga2uR/rw5b1bJnsBBb9N1KkmzNd4ymdq310ecbwh43ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI9uXPQG2prHsCSxILXsCC7JV/79gK7LHDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mj2\nKTZSVbuTHLfG6m+PMe4wxThwLRd/Mbng7OTqy5KbHpUcf2pyzInLnhXAQk0S7rlLk7zmAI9fPuEY\nkFzwD8nZv5tc+LHrrjvuQcmpv54cf9oGTwpgY9QYY/0bme1xZ4xx53Vv7Lrb3plkx9TbZbGm+Ht1\nQLvelrz7ecnYs/ZzalvyuNclO86YfPiqmnybwMrYNcY4eb0bcY6bPi74h4NHO5mtf/eZs+cDbDFT\nHiq/aVU9JcmxSa5I8pkk54wxrplwDFbZ2b978GjvNfYkZ/+eQ+bAljNluO+Q5O37PfZPVfWMMcbZ\nE47DKrr4iwc+p319Ljx39joXrAFbyFTh/vMkH03y+SSXJTk+yX9O8stJ3ltVDxxjnHd9G5ifyz6Q\nEyaaI51dcJj/9rvgbOEGtpRJwj3GeOV+D30uybOr6vIkL0jyiiRPmGIsVtTVl23s6wA2qSkPlR/I\nGzML90MP9sS1rrRzVTlJZp/T3sjXAWxSi76q/OL58sgFj8NWd/ypG/s6gE1q0eF+4Hx5wYLHYas7\n5sTZzVVuiOMe7Pw2sOWsO9xVdc+qus0BHj8uyRvmX/7P9Y4DOfXXZzdXORS1LTn1vyx2PgBLMMUe\n9+lJvlFV762qP6qqV1fV3yT5UpJ/meSsJP99gnFYdcefljzutQeP9947px1/2uLnBLDBprg47SNJ\n7pHkPpkdGj8yyQ+SnJvZ57rfPhZ2/0tWzo6nJrc6dnZzlQvPve764x4829M+/rSNnhnAhpjkXuWL\n5Krynjbk79USfjuYe5UD6zDJvcoX/XEwWJxjTnTxGbBy/JIRAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCR7cue\nAFtTVS17CgBbkj1uAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABqZNNxV9ZCqemdVfbOqrp4vP1BV\nj51yHABYVdun2lBVvTTJbyW5JMnfJflmktsluU+S05KcNdVYALCqJgl3VZ2eWbQ/lOSJY4zL9lt/\n4ynGAYBVt+5D5VW1Lcmrk/wwyS/uH+0kGWP8eL3jAADT7HGfkuQuSf4myfer6heS3CvJVUk+Ncb4\nxARjAACZJtw/O19+O8muJPfed2VVnZPkSWOM71zfRqpq5xqrTlj3DAFgi5jiqvJj5stnJ7lZkp9L\nclRme93vT/LQJH89wTgAsPKm2OO+0XxZme1Znzf/+vNV9YQk5yc5taoeeH2HzccYJx/o8fme+I4J\n5gkA7U2xx/39+fKCfaKdJBljXJnZXneS3G+CsQBgpU0R7i/Plz9YY/3esN9sgrEAYKVNEe5zkvwk\nyd2q6iYHWH+v+XL3BGMBwEpbd7jHGJck+cskRyf5jX3XVdUjkzw6yaVJ3rfesQBg1U11y9NfS3L/\nJC+pqocm+VSS45I8Ick1SZ41xljrUDoAcIgmCfcY4+Kqun+Sl2YW6wckuSzJe5L8zhjjk1OMAwCr\nrsYYy57D9fJxMAC2iF1rffT5hvD7uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZvuwJsDWNZU9gQWrZ\nEwBWnj1uAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARtYd7qp6elWNg/y5ZorJAsCq2z7BNj6d5JVrrHtI\nkocnee8E4wDAylt3uMcYn84s3tdRVZ+Y/+efrHccAGCB57ir6l5JHpDk/yZ5z6LGAYBVssiL0/7j\nfPmWMYZz3AAwgSnOcV9HVd0syVOS7Eny5kN8zc41Vp0w1bwAoLtF7XH/+yS3SvLeMcbXFjQGAKyc\nhexxJ/nl+fJNh/qCMcbJB3p8vie+Y4pJAUB3k+9xV9W/SnJKkq8nOWvq7QPAKlvEoXIXpQHAgkwa\n7qo6IskZmV2U9pYptw0ATL/HfXqSWyc5y0VpADC9qcO996I0d0oDgAWYLNxVdWKSB8dFaQCwMJN9\nHGyM8cUkNdX2AIDr8vu4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGti97AofgzsueADfcycueAMDmc+cpNtIh\n3P88X+7egLFOmC+/tAFjbWm7Nm4o71k/3rN+vGfrd+f8/56tS40xptjOllBVO5NkjGGHsQnvWT/e\ns368Z5uLc9wA0IhwA0Ajwg0AjQg3ADQi3ADQiKvKAaARe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCHeSqrpjVf1ZVX2jqq6uqt1V9ZqquvWy58a1VdVtq+qZVfWuqvrHqrqyqi6tqnOr6peq\nyt/pJqrqjKoa8z/PXPZ8OLCqekhVvbOqvjn/+fjNqvpAVT122XNbVR1+H/dCVdVdk3w8yTFJ/jaz\n3zd7vyTPS/KYqnrQGOO7S5wi13Z6kj9O8s0kH0lyUZLbJ3likjcn+fmqOn24s9CmVlV3SvL6JJcn\nucWSp8MaquqlSX4rySVJ/i6z77vbJblPktOSnLW0ya2wlb9zWlW9P8mjkpw5xnj9Po//jyS/muRN\nY4xnL2t+XFtVPTzJkUneM8bYs8/jd0jyqSR3SvKkMcY7lzRFDqKqKskHk9wlyf9O8sIkzxpjvHmp\nE+Naqur0JH+V5ENJnjjGuGy/9TceY/x4KZNbcSt9WLGqjs8s2ruT/OF+q1+e5IokZ1TVkRs8NdYw\nxvj7Mca79432/PFvJXnj/MvTNnxi3BBnJnl4kmdk9j3GJjM/5fTqJD9M8ov7RztJRHt5Vjrcmf3w\nSJIPHCAElyX5WJKbJ3nARk+Mw7L3B8lPljoL1lRVJyZ5VZLXjjHOWfZ8WNMpmR0ROSvJ96vqF6rq\nRVX1vKp64JLntvJW/Rz3PebL89dY/5XM9sjvnuTDGzIjDktVbU/y1PmX71vmXDiw+Xv09syuS3jx\nkqfD9fvZ+fLbSXYlufe+K6vqnMxOSX1noyeGPe6j58tL11i/9/FbbcBcWJ9XJblXkrPGGO9f9mQ4\noN/I7KKmp48xrlz2ZLhex8yXz05ysyQ/l+SozL7H3p/koUn+ejlTY9XDfTA1X672FXybXFWdmeQF\nmX0i4IwlT4cDqKr7ZbaX/ftjjE8sez4c1I3my8psz/rDY4zLxxifT/KEJF9PcqrD5sux6uHeu0d9\n9Brrb7nf89hkquq5SV6b5AtJHjbG+N6Sp8R+9jlEfn6Sly15Ohya78+XF4wxztt3xfxoyd6jWvfb\n0FmRRLi/PF/efY31d5sv1zoHzhJV1fOTvCHJ5zKL9reWPCUO7BaZfY+dmOSqfW66MjL79EaS/On8\nsdcsbZbsa+/Pxh+ssX5v2G+2AXNhP6t+cdpH5stHVdW2/T4XfFSSByW5MsknlzE51lZVL8rsvPan\nkzxyjHHJkqfE2q5O8pY11u3I7Lz3uZnFwmH0zeGczD6dcbequskY40f7rb/XfLl7Q2dFkhUP9xjj\nq1X1gcyuHH9uZndy2uuVmd3o401jDJ813USq6mVJfjPJziSPcnh8c5sfWj3gLU2r6hWZhfsv3IBl\n8xhjXFJVf5nkP2R2UeFL966rqkcmeXRmpxB9gmMJVjrcc8/J7Janr6uqRyT5YpL7J3lYZofIX7LE\nubGfqnpaZtG+JslHk5w5uxHXteweY7x1g6cGW82vZfaz8CVV9dDM7kx4XGYXp12T2d3u1jqUzgKt\nfLjne933zSwGj0ny2Mzux/u6JK+0N7fp3GW+vFGS56/xnLOTvHVDZgNb1Bjj4qq6f2Z720/I7EZU\nlyV5T5LfGWM4hbgkK3+vcgDoZNWvKgeAVoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG/h8LRd9j9SpgtwAAAABJRU5ErkJg\ngg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7ffb4eb41518>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"3b4c84ea5a93407d9db43373c9091be6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_5eafb70a09de4935853ce108d295d061", | |
"IPY_MODEL_c65086f97283489bbd3d529a53ea149c", | |
"IPY_MODEL_c0f40ac07bcf4358923a0e2cfcdd47cd", | |
"IPY_MODEL_1cd0283bd5074b948a4817e56642cac7", | |
"IPY_MODEL_4278f5e791c140749467634ba477d4de" | |
], | |
"layout": "IPY_MODEL_126cdcf88e6f4a70ad838d3178d74916" | |
} | |
}, | |
"3b711d12ca734a639201597475e6d1a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_32100d62ce24420981acb017314f6bfe", | |
"IPY_MODEL_3308b2ee12e04fa8b082a318e747b165" | |
], | |
"layout": "IPY_MODEL_f550b72e116940849f550dfdc93243a1" | |
} | |
}, | |
"3b7f8d5098f1407d955e76b2b0e1073e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3b7fa4dd3ad74a61b57fd49e041f8369": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3ba014c1b29b4180bd9255432afebedb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3baba50438ea4f9e98fe96c128fa07ba": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3c0f8f21afff4dfdb895b047e95638d2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3c92526ac90f434fb4c23f6ac35cbbac": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3d9d443179724175acc5979e799a6564": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3db33904ea0c436793cb7977ff60df72": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_9b3350ab62d340e192d6c6d5a2c5bdfe", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF6tJREFUeJzt3XuQZnV95/HPFyYawk3FUsoLXhlx\ngxUFwwh4RQWju1vqylqVDVErmvUWvFaZ9YpJudHKZqNCNppoQmL2D826bioRhWgo8QpV46rrdfAy\nEg2ogOBAEJX57R/PM7tDM81M6NP9zJfn9arqOtPPefr8flXNzJvfOadP1xgjAEAPByx6AgDAvhNu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEY2LXoCe1NV30pyWJLtC54KANxW903yozHG/dZ6oP0+3EkOOyAH3uXgHHqXRU8Ebq+OfsgN\ni57Curn0/xy06ClArs+O7MxNkxyrQ7i3H5xD77KlnrDoecDt1vkXfG7RU1g3p93joYueAuTi8ZHs\nyDXbpziWa9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNTBbuqrpXVf1ZVf1TVd1YVdur6q1VdeepxgCA\nZbdpioNU1QOSfCrJ3ZL8TZKvJjkhyUuSPKmqTh5jXDXFWACwzKZacf+3zKJ95hjjqWOM3x5jnJLk\nD5M8KMmbJhoHAJbamsNdVfdPcmqS7Un+aMXuNyS5PskZVXXwWscCgGU3xYr7lPn2gjHGzt13jDF2\nJPlkkl9I8ogJxgKApTbFNe4HzbfbVtl/aWYr8s1JPrraQapq6yq7jrntUwOA25cpVtyHz7fXrrJ/\n1+t3mmAsAFhqk9xVvhc1345be9MY4/g9fvFsJX7c1JMCgI6mWHHvWlEfvsr+w1a8DwC4jaYI99fm\n282r7D96vl3tGjgAsI+mCPeF8+2pVXWz41XVoUlOTnJDks9MMBYALLU1h3uM8Y0kFyS5b5IXrdj9\nxiQHJ/nLMcb1ax0LAJbdVDenvTCzR56+vaoen+QrSbYkeVxmp8hfM9E4ALDUJnnk6XzV/fAk52YW\n7FckeUCStyc50XPKAWAak/042BjjH5M8Z6rjAQC35PdxA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQySbir6hlVdXZVfbyqflRVo6r+aopjAwD/36aJjvPa\nJL+U5Lok30lyzETHBQB2M9Wp8pcl2ZzksCQvmOiYAMAKk6y4xxgX7vpzVU1xSABgD9ycBgCNTHWN\ne82qausqu1wvB4A5K24AaGS/WXGPMY7f0+vzlfhxGzwdANgvWXEDQCPCDQCNCDcANCLcANDIJDen\nVdVTkzx1/umR8+2JVXXu/M9XjjFeOcVYALDMprqr/KFJnrXitfvPP5Lk20mEGwDWaJJT5WOMs8YY\ndSsf951iHABYdq5xA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADSy5nBX1RFV9dyq+kBVfb2qbqiqa6vqE1X1G1Xlfw4AYCKbJjjG6Un+OMnlSS5MclmSuyd5\nepJ3JfmVqjp9jDEmGAsAltoU4d6W5N8m+eAYY+euF6vq1UkuSfLvMov4+ycYCwCW2ppPY48x/mGM\n8be7R3v++hVJ3jH/9LFrHQcAWP+b03463/5snccBgKWwbuGuqk1Jfn3+6YfXaxwAWCZTXONezZuT\nHJvkvDHG+Xt7c1VtXWXXMZPOCgAaW5cVd1WdmeQVSb6a5Iz1GAMAltHkK+6qelGStyX5cpLHjzGu\n3pevG2Mcv8rxtiY5broZAkBfk664q+qlSc5J8sUkj5vfWQ4ATGSycFfVq5L8YZLPZRbt7091bABg\nZpJwV9XrMrsZbWtmp8evnOK4AMDNrfkad1U9K8nvJLkpyceTnFlVK9+2fYxx7lrHAoBlN8XNafeb\nbw9M8tJV3vOxJOdOMBYALLUpHnl61hij9vLx2AnmCgBLz6/cBIBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhk06InACyPbVcdmU9dtjnX/eSOOeQON+ako7Zl\n8xFXLHpa0Mok4a6qtyR5eJLNSe6a5IYk307yv5KcM8a4aopxgJ4+ednROfvi03LJdx94i30n3PPr\n+a0t5+fkoy5dwMygn6lOlb8sycFJ/j7J25L89yQ/S3JWki9U1b0nGgdo5r1f3JJnfeAF82iPFXtH\nLvnuA/OsD7wg7/vSlkVMD9qZ6lT5YWOMH698sarelOTVSf5TkhdONBbQxCcvOzqv+egzs3PsWiPU\ninfMPt85DsirP/LM3PPQq628YS8mWXHvKdpz75tvj55iHKCXsy8+bbdo37qd44Ccc/Fp6zwj6G+9\n7yr/N/PtF9Z5HGA/s+2qI1c5Pb6akYu/+8Bsu+rI9ZwWtDfpXeVV9cokhyQ5PLOb1R6ZWbTfvA9f\nu3WVXcdMNkFgw3zqss3zP608Pb6a+n9f505zWN3UPw72yiR33+3zDyd59hjjBxOPA+znrvvJHTf0\n62BZTBruMcaRSVJVd09yUmYr7f9dVf96jPHZvXzt8Xt6fb4SP27KeQLr75A73LihXwfLYl2ucY8x\nvjfG+ECSU5MckeQv12McYP910lHb5n/a92vcN/86YE/W9ea0Mca3k3w5yS9W1V3Xcyxg/7L5iCty\nwj2/nn/JNe4t9/y669uwFxvxrPJ7zLc3bcBYwH7kt7acnwNq5z6994DamRdvOX+dZwT9rTncVXVM\nVd3i5zeq6oD5A1juluRTY4wfrnUsoJeTj7o0b3r8e3eL9y2fnJbMov2fn/BeD1+BfTDFzWlPSvL7\nVXVRkm8kuSqzO8sfk+T+Sa5I8rwJxgEaeuaxF+deh12dcy4+LRff4lnls9PjL/ascthnU4T7I0n+\nJMnJSX4pyZ2SXJ9kW5L3JHn7GOPqCcYBmjr5qEtz8lGX+u1gMIE1h3uM8cUkL5pgLsDt3OYjrhBq\nWKONuDkNAJiIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0AjmxY9AWDxTrvHQxc9BWAfWXEDQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0Mi6hbuqzqiqMf947nqNAwDLZF3CXVX3TnJ2kuvW4/gAsKwmD3dVVZI/T3JVkndM\nfXwAWGbrseI+M8kpSZ6T5Pp1OD4ALK1Jw11VD07y5iRvG2NcNOWxAYBk01QHqqpNSd6T5LIkr74N\nX791lV3HrGVeAHB7Mlm4k7w+ycOSPHKMccOExwUA5iYJd1WdkNkq+w/GGJ++LccYYxy/yrG3Jjlu\nDdMDgNuNNV/j3u0U+bYkr1vzjACAVU1xc9ohSTYneXCSH+/20JWR5A3z9/zp/LW3TjAeACytKU6V\n35jk3avsOy6z696fSPK1JLfpNDoAMLPmcM9vRNvjI02r6qzMwv0XY4x3rXUsAFh2fskIADQi3ADQ\nyLqGe4xx1hijnCYHgGlYcQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0Mkm4q2p7VY1VPq6YYgwAINk04bGuTfLWPbx+3YRjAMBSmzLc14wxzprweADACq5x\nA0AjU66471hVv5bkqCTXJ/lCkovGGDdNOAYALLUpw31kkveseO1bVfWcMcbHJhwHAJbWVOH+8yQf\nT/KlJDuS3D/Ji5P8ZpIPVdWJY4zP39oBqmrrKruOmWiOANDeJOEeY7xxxUtfTPL8qrouySuSnJXk\naVOMBQDLbMpT5XvyjszC/ei9vXGMcfyeXp+vxI+beF4A0NJ631X+/fn24HUeBwCWwnqH+8T59pvr\nPA4ALIU1h7uqfrGq7rKH1++T5Jz5p3+11nEAgGmucZ+e5Ler6sIk38rsrvIHJHlKkp9Pcl6S/zLB\nOACw9KYI94VJHpTkYZmdGj84yTVJPpHZz3W/Z4wxJhgHAJbemsM9f7iKB6wAwAbwrHIAaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABqZNNxV9aiqen9V\nXV5VN863F1TVk6ccBwCW1aapDlRVr03yu0muTPJ3SS5PctckD0vy2CTnTTUWACyrScJdVadnFu2P\nJHn6GGPHiv0/N8U4ALDs1nyqvKoOSPKWJP+c5FdXRjtJxhg/Xes4AMA0K+6Tktwvyf9I8sOqekqS\nY5P8OMklY4xPTzAGAJBpwv3L8+33knw2yUN231lVFyV5xhjjB7d2kKrausquY9Y8QwC4nZjirvK7\nzbfPT3JQkickOTSzVff5SR6d5K8nGAcAlt4UK+4D59vKbGX9+fnnX6qqpyXZluQxVXXirZ02H2Mc\nv6fX5yvx4yaYJwC0N8WK+4fz7Td3i3aSZIxxQ2ar7iQ5YYKxAGCpTRHur82316yyf1fYD5pgLABY\nalOE+6IkP0tydFXdYQ/7j51vt08wFgAstTWHe4xxZZL3Jjk8yet331dVT0xyWpJrk3x4rWMBwLKb\n6pGnL0+yJclrqurRSS5Jcp8kT0tyU5LnjTFWO5UOAOyjScI9xvh+VW1J8trMYv2IJDuSfDDJ740x\nPjPFOACw7Cb7JSNjjKszW3m/fKpjAgA35/dxA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADSy5nBX1bOrauzl46YpJgsAy27TBMf4XJI3rrLvUUlOSfKhCcYB\ngKW35nCPMT6XWbxvoao+Pf/jn6x1HABgHa9xV9WxSR6R5LtJPrhe4wDAMlnPm9P+43z77jGGa9wA\nMIEprnHfQlUdlOTXkuxM8q59/Jqtq+w6Zqp5AUB367Xi/vdJ7pTkQ2OMf1ynMQBg6azLijvJb863\n79zXLxhjHL+n1+cr8eOmmBQAdDf5iruq/lWSk5J8J8l5Ux8fAJbZepwqd1MaAKyTScNdVT+f5IzM\nbkp795THBgCmX3GfnuTOSc5zUxoATG/qcO+6Kc2T0gBgHUwW7qp6cJJHxk1pALBuJvtxsDHGV5LU\nVMcDAG7J7+MGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABqpMcai53CrquqqA3LgXQ7OoYueCgDcJtdnR3bmpqvH\nGEes9VibppjQOvvRztyUHblm+waMdcx8+9UNGItp+J7143vWj+/Z2t03yY+mONB+v+LeSFW1NUnG\nGMcvei7sG9+zfnzP+vE927+4xg0AjQg3ADQi3ADQiHADQCPCDQCNuKscABqx4gaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuJNU1b2q6s+q6p+q6saq2l5Vb62qOy96btxcVR1RVc+tqg9U1der\n6oaquraqPlFVv1FV/ptuoqrOqKox/3juoufDnlXVo6rq/VV1+fzfx8ur6oKqevKi57asOvw+7nVV\nVQ9I8qkkd0vyN5n9vtkTkrwkyZOq6uQxxlULnCI3d3qSP05yeZILk1yW5O5Jnp7kXUl+papOH54s\ntF+rqnsnOTvJdUkOWfB0WEVVvTbJ7ya5MsnfZfb37q5JHpbksUnOW9jkltjSPzmtqs5PcmqSM8cY\nZ+/2+n9N8rIk7xxjPH9R8+PmquqUJAcn+eAYY+durx+Z5JIk907yjDHG+xc0RfaiqirJ3ye5X5L/\nmeSVSZ43xnjXQifGzVTV6Unel+QjSZ4+xtixYv/PjTF+upDJLbmlPq1YVffPLNrbk/zRit1vSHJ9\nkjOq6uANnhqrGGP8wxjjb3eP9vz1K5K8Y/7pYzd8YvxLnJnklCTPyezvGPuZ+SWntyT55yS/ujLa\nSSLai7PU4c7sH48kuWAPIdiR5JNJfiHJIzZ6Ytwmu/4h+dlCZ8GqqurBSd6c5G1jjIsWPR9WdVJm\nZ0TOS/LDqnpKVb2qql5SVScueG5Lb9mvcT9ovt22yv5LM1uRb07y0Q2ZEbdJVW1K8uvzTz+8yLmw\nZ/Pv0Xsyuy/h1QueDrful+fb7yX5bJKH7L6zqi7K7JLUDzZ6YlhxHz7fXrvK/l2v32kD5sLavDnJ\nsUnOG2Ocv+jJsEevz+ympmePMW5Y9GS4VXebb5+f5KAkT0hyaGZ/x85P8ugkf72YqbHs4d6bmm+X\n+w6+/VxVnZnkFZn9RMAZC54Oe1BVJ2S2yv6DMcanFz0f9urA+bYyW1l/dIxx3RjjS0meluQ7SR7j\ntPliLHu4d62oD19l/2Er3sd+pqpelORtSb6c5HFjjKsXPCVW2O0U+bYkr1vwdNg3P5xvvznG+Pzu\nO+ZnS3ad1TphQ2dFEuH+2ny7eZX9R8+3q10DZ4Gq6qVJzknyxcyifcWCp8SeHZLZ37EHJ/nxbg9d\nGZn99EaS/On8tbcubJbsbte/jdessn9X2A/agLmwwrLfnHbhfHtqVR2w4ueCD01ycpIbknxmEZNj\ndVX1qsyua38uyRPHGFcueEqs7sYk715l33GZXff+RGaxcBp9/3BRZj+dcXRV3WGM8ZMV+4+db7dv\n6KxIsuThHmN8o6ouyOzO8Rdl9iSnXd6Y2YM+3jnG8LOm+5Gqel2S30myNcmpTo/v3+anVvf4SNOq\nOiuzcP+FB7DsP8YYV1bVe5P8h8xuKnztrn1V9cQkp2V2CdFPcCzAUod77oWZPfL07VX1+CRfSbIl\nyeMyO0X+mgXOjRWq6lmZRfumJB9PcubsQVw3s32Mce4GTw1ub16e2b+Fr6mqR2f2ZML7ZHZz2k2Z\nPe1utVPprKOlD/d81f3wzGLwpCRPzux5vG9P8karuf3O/ebbA5O8dJX3fCzJuRsyG7idGmN8v6q2\nZLbaflpmD6LakeSDSX5vjOES4oIs/bPKAaCTZb+rHABaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABr5v6YwhM60C9mGAAAA\nAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7fb4774fcf28>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"3dc300c60e114e1b9c2989173c02435a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3dd1a670485c45b494e9139b90022d3e": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_0cb160eb49654211973c20e17bb61d1a", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "2 578721382704613376\n578721382704613376 34360262656\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHqBJREFUeJzt3X2wZHdd5/HPN5mEhIcERBNqBUx4\nCGGBCkkkPClCAojMLiVotlRAoEQWZI0grMgzSAlx1wceREFB0ewWKguakkSIhgwBRdmaLBFFIDxE\nHkxCSGAMkOf89o/uSSaTufN0T9/Tvz6vV9WtM93n3nO+lb73vnNOn+5brbUAAH04YOwBAIC9J9wA\n0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A\n6IhwA0BHNo09wJ5U1ReTHJbk4pFHAYD9dVSSf2+tHb3eDS19uDOL9nfNPwBg0no4VX7x2AMAwAAu\nHmIjPYQbAJgTbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi\n3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHBgt3Vd29qv6gqv6tqq6tqour6o1VdZeh9gEA\nU7dpiI1U1b2T/F2SI5KcmeTTSU5K8gtJnlBVj2ytXTHEvgBgyoY64v6dzKJ9WmvtR1trv9xaOznJ\nbyW5X5JfHWg/ADBp1Vpb3waq7pXk80kuTnLv1tpNO6y7U5JLklSSI1pr396P7W9NcsK6hgSA8V3Q\nWjtxvRsZ4oj75PnynB2jnSSttauS/G2S2yd52AD7AoBJG+I57vvNl59dY/1FSR6f5Jgk5661kfmR\n9a4cu/+jAcBqGeKI+/D5ctsa67fff+cB9gUAkzbIVeV7UPPlbp9MX+u8v+e4AeAWQxxxbz+iPnyN\n9Yft9HkAwH4aItyfmS+PWWP9fefLtZ4DBwD20hDhPm++fHxV3Wp785eDPTLJ1Un+foB9AcCkrTvc\nrbXPJzknyVFJnr/T6tcmuUOSP96f13ADALc21MVpP5fZW56+uapOSfIvSR6a5DGZnSJ/+UD7AYBJ\nG+QtT+dH3d+f5F2ZBftFSe6d5M1JHu59ygFgGIO9HKy19uUkzxpqewDAbfl73ADQEeEGgI4INwB0\nRLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6\nItwA0BHhBoCObBp7gClrYw+wQDX2AIuyqg/ayj5gq2tVvxUT34574ogbADoi3ADQEeEGgI4INwB0\nRLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6\nItwA0BHhBoCObBp7AOC2Drrsnjnkc8flgGtun5sO+U6uuc+Fuf7IL409FrAEBgl3Vf14kh9K8uAk\nxyW5U5L/3Vp72hDbh6k45HPH5fBzfyKHfPFBt1l3zdGfzLZT/iTX3OfCESYDlsVQR9yvyCzY30ry\nlSTHDrRdmIw7/t/H5bve9/OpdkBaWip187qWlkO++KDc7p0PyBVPeUu+/ZC/HnFSYExDPcf9wiTH\nJDksyfMG2iZMxiGfO+7maCe5VbR3vF3tgNz1fT+fQz533IbPCCyHQcLdWjuvtXZRa60NsT2YmsPP\n/Ymbo70n1Q7I4ef+xIInApaVq8qn4na3G3sC1nDQZffMIV98UFr27v97t582P+iyey54Mpjz+2Op\nLE24q2rrrj7i+fL1O+yw5MMfTt7+9rEnYRe2n/be+fT4WrZ/ntPlbIiTT04uuijZvHnsSZhbmnCz\nQI99bPLQhybPeU7yzW+OPQ07OeCa22/o18Fe27w5Offc5B73SF7ykrGnYW5pXsfdWjtxV/fPj7pP\n2OBxVsv73pd86EOz/3M+/PBZvO9857GnYu6mQ76zoV8He2Xz5uT977/l9o/92HizcCuOuKfilFNm\n8U5uiTdLYfvrsvflOe4dvw4Gt3O0jzgiufzy8ebhVoR7SsR7KV1/5JdyzdGf3KfnuK85+pPeSY3F\nEO2lJ9xTI95Ladspf5JWN+3V57a6KdtO+ZMFT8QkiXYXhHuKxHvpXHOfC3PlU95yc7x3Pm2+/Xar\nm3LFU97iNDnDE+1u1BDvmVJVP5rkR+c375bkh5N8IclH5vd9vbX24v3c9spenDb6u9Wce+7sgrUk\n2bZt0AvW9u6kb4cW/KCN9l7lK/uAra5BvxWXLNor/O14wVoXYu+LocL9miSv3s2n/Gtr7aj93LZw\nL9KC4r2yP3gb9KBt+F8HW9kHbHUN9q24ZNFOVvrbcXnCvUjCvQEWEO+V/cFbmgdtYCv7gK2uQb4V\nlzDayUp/Ow4Sbs9x4zlvmKIljTZ7JtzMiDdMh2h3Tbi5hXjD6hPt7gk3tybesLpEeyUIN7cl3rB6\nRHtlCDe7Jt6wOkR7pQg3axNv6J9orxzhZvfEG/ol2itJuNkz8Yb+iPbKEm72jnhDP0R7pQk3e0+8\nYfmJ9soTbvaNeMPyEu1JEG72nXjD8hHtyRBu9o94w/IQ7UkRbvafeMP4RHtyhJv1EW8Yj2hPknCz\nfruI913ucpdxZ4JV97SnifZECTfD2CneV1555bjzwAp71atelZxxxi13iPakCDfDOeWUW9089thj\nRxoEVtvznve8W27c/e6iPTGbxh5gymrsARbgoIMPznve856ceeaZ+fSnPz32OINrYw+wIKv4vbjd\nSj5mxx2Xf/7Qh/KTP/mT+eRXvzr2NGywam25v62ramuSE8aeA5JkyX9c9lutcLlX9CFb6f/ZWmEX\ntNZOXO9GnCoHgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8IN\nAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdGTd4a6qu1bVs6vqz6vqc1V1dVVtq6qPVtXPVJX/\nOQCAgWwaYBunJvndJJckOS/Jl5IcmeQpSd6R5Eeq6tTWWhtgXwAwaUOE+7NJnpTkrNbaTdvvrKqX\nJfl4kh/LLOLvHWBfADBp6z6N3Vr7UGvtL3eM9vz+S5O8bX7z0evdDwCw+IvTrp8vb1jwfgBgEhYW\n7qralOSn5zc/sKj9wGo6JMlvJbnL2IOwtx7wgOSVrxx7CiZgiOe413J6kgcmObu19sE9fXJVbV1j\n1bGDTgVdeFuSZyR5QZK7J/nquOOwe098YnLWWbN/X3FF8ju/M+48rLSFHHFX1WlJXpTk00mevoh9\nwGo7fYd/fyXJ9441CHuyY7ST5IwzxpuFSRj8iLuqnp/kTUk+leSU1tqVe/N1rbUT19je1iQnDDch\n9ODTSR6T2Sssk1m8HXkvnZ2jfcQRyVVXjTcPkzDoEXdVvSDJbyf5pySPmV9ZDuyXLZnFeztH3ktl\nV9G+/PLx5mEyBgt3Vb0ks6tpPpFZtL821LZhurZEvJeQaDOiQcJdVa/M7Em5rZmdHv/6ENsFEvFe\nMqLNyNb9HHdVPSPJryS5MclHkpxWVTt/2sWttXetd18wXVviOe8lINosgSEuTjt6vjwws9eu7MqH\nk7xrgH3BhG2JeI9ItFkStex/+8NV5SyT5fhxeXRuiXcyRLxve5JsdQzykC1htFf4IVtlF6z1Cqp9\n4U9uQne2xHPeG2gJo820CTd0aUvEewOINktIuKFbWyLeCyTaLCnhhq5tiXgvgGizxIQburcl4j0g\n0WbJCTeshC0R7wGINh0QblgZWyLe6yDadEK4YaVsiXjvB9GmI8INK2dLxHsfiDadEW5YSVsi3ntB\ntOmQcMPK2hLx3g3RplPCDSttS8R7F0Sbjgk3rLwtEe8diDadE26YhC0R74g2K0G4YTK2ZNLxFm1W\nhHDDpGzJJOMt2qwQ4YbJ2ZKd4/2937vC8RZtVoxwwyRtyY7x/spXvpJnPvOZYw2zMOecc45os3Kq\ntTb2DLtVVVuTnDD2HJAkS/7jsh8eneS8m29t2rQpN95442jTDOnII4/MpZdeessdKxbtGnsA9scF\nrbUT17sRR9ywD6pW7WNL3v3udydJnvGMZ6xMtJPk8ssvz1vf+tYkyVOf+tTU5ZenkpX5YLoccQM5\n9NBDc/XVV489xuAOOOCAHHTQQbn22mvHHgUSR9zAUFYx2kly0003iTYrR7gBoCPCDQAdEW4A6Ihw\nA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4\nAaAjwg0AHRkk3FX1a1V1blV9uaqurqorq+r/VdWrq+quQ+wDAEiqtbb+jVRdl+SCJJ9K8rUkd0jy\nsCTfn+Tfkjystfbl/dz21iQnrHtIABjXBa21E9e7kU1DTJLksNbaNTvfWVW/muRlSV6a5OcG2hcA\nTNYgp8p3Fe25P5sv7zvEfgBg6hZ9cdp/ni//ccH7AYBJGOpUeZKkql6c5I5JDs/s+e0fyCzap+/F\n125dY9Wxgw0IAJ0bNNxJXpzkyB1ufyDJM1trlw+8HwCYpEGuKr/NRquOTPKIzI6075TkP7XWLtjP\nbbmqHIBVMMhV5Qt5jru1dllr7c+TPD7JXZP88SL2AwBTs9CL01pr/5rZa7sfUFXfvch9AcAUbMRb\nnv6H+fLGDdgXAKy0dYe7qo6tqrvt4v4D5m/AckSSv2utfWO9+wKAqRviqvInJPmfVXV+ks8nuSKz\nK8t/KMm9klya5GcH2A8ATN4Q4f6bJL+X5JFJjkty5yTfTvLZJGckeXNr7coB9gMAk7fucLfW/inJ\n8weYBQDYA3+PGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4I\nNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBvIYYcdNvYI7COP2XQJN0zcOeeck23btuW5z33u2KOwlzZv\n3pxt27blsssuy8EHHzz2OGywaq2NPcNuVdXWJCeMPQckyXL/tOyHJz4xOeusm29u2rQpN95444gD\nsTdu9Xv7ZS9L3vCG8YZZgBp7gMW5oLV24no34ogbpmqnaJ966qmi3Yljjjnmlhuvf33y0peONwwb\nbtPYAwAj2CnaRxxxRC6//PIRB2JfXHTRRcnBByfXXTe74/Wvny1X7MibXXPEDVOzU7Qj2n26/vpZ\nvLdz5D0Zwg1TsotoR7T7Jd6TJNwwFaK9msR7coQbpkC0V5t4T4pww6oT7WkQ78kQblhloj0t4j0J\nwg2rSrSnSbxXnnDDKhLtaRPvlSbcsGpEm0S8V5hwwyoRbXYk3itJuGFViDa7It4rR7hhFYg2uyPe\nK0W4oXeizd4Q75Uh3NAz0WZfiPdKEG7olWizP8S7e8INPRJt1kO8uybc0BvRZgji3S3hhp6INkMS\n7y4tLNxV9fSqavOPZy9qPzAZos0iiHd3FhLuqrpHkrck+dYitg+TI9osknh3ZfBwV1Ul+cMkVyR5\n29Dbh8kRbTaCeHdjEUfcpyU5Ocmzknx7AduH6RBtNpJ4d2HQcFfV/ZOcnuRNrbXzh9w2TI5oMwbx\nXnqbhtpQVW1KckaSLyV52X58/dY1Vh27nrmgSw96kGgznu3xvu662e3Xvz751KeSM88cdy6SDHvE\n/aokxyd5Zmvt6gG3C9Pzghfc8m/RZgw7H3m/+MXjzcKtDHLEXVUnZXaU/RuttY/tzzZaayeuse2t\nSU5Yx3jQn+c9L7n00uT005Orrhp7Gqbq+uuTgw5KXv3q5Dd/c+xpmFt3uHc4Rf7ZJK9c90TA7BTl\ny18+9hSQ3HBD8kq/2pfJEKfK75jkmCT3T3LNDm+60pK8ev45vz+/740D7A8AJmuIU+XXJnnnGutO\nyOx5748m+UyS/TqNDgDMrDvc8wvRdvmWplX1mszC/UettXesd18AMHX+yAgAdES4AaAj1Vobe4bd\n8nIwlsly/7Tsvxp7APbZqn4vJiv9/XjBWi993heOuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHh\nBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6Mim\nsQeAntTYA8Cc78XpcsQNAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHBgl3VV1cVW2Nj0uH2AcAkGwa\ncFvbkrxxF/d/a8B9AMCkDRnub7bWXjPg9gCAnXiOGwA6MuQR9+2q6mlJ7pnk20n+Mcn5rbUbB9wH\nAEzakOG+W5Izdrrvi1X1rNbahwfcDwBM1lDh/sMkH0nyz0muSnKvJP8tyXOS/FVVPby1duHuNlBV\nW9dYdexAMwJA96q1triNV/16khcl+YvW2pP38Lm7C/fth54NADbYBa21E9e7kUWH+z5JLkpyZWvt\nrvu5ja1JThh0MADYeIOEe9FXlX9tvrzDgvcDAJOw6HA/fL78woL3AwCTsO5wV9UDquq7dnH/9yX5\n7fnN/7Xe/QAAw1xVfmqSX66q85J8MbOryu+dZHOSQ5KcneTXB9gPAEzeEOE+L8n9khyf2anxOyT5\nZpKPZva67jPaIq+AA4AJWXe452+u4g1WAGADeK9yAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADdObAAw/Mk570\npLHHYCTCDdCR7/me78kNN9yQM888M6997WvHHocRbBp7gClrYw+wQDX2ADC3Uj9nBx6YfO1rN988\n/PDDRxyGsTjiBujBgQcmN9xw880LL7wwL3zhC0cciLEIN8Cy2ynaOf30PPjBD05rK3U+gb0k3ADL\nbBfRzktfOt48jE64AZaVaLMLwg2wjESbNQg3wLIRbXZDuAGWiWizB8INsCxEm70g3ADLQLTZS8IN\nMDbRZh8IN8CYRJt9JNwAYxFt9oNwA4xBtNlPwg2w0USbdRBugI0k2qyTcANsFNFmAMINsBFEm4EI\nN8CiiTYDEm6ARRJtBibcAIsi2izAoOGuqh+sqvdW1SVVde18eU5VPXHI/QAsPdFmQTYNtaGqekWS\n1yX5epL3J7kkyXcnOT7Jo5OcPdS+AJaaaLNAg4S7qk7NLNp/k+QprbWrdlp/0BD7AVh6os2CrftU\neVUdkOTXknwnyU/tHO0kaa1dv979ACw90WYDDHHE/YgkRyf5P0m+UVWbkzwwyTVJPt5a+9gA+2C9\njjoq+fKXkxtvHHsSWE2izQYZItwPmS8vS3JBkgftuLKqzk/y4621y3e3karausaqY9c94dRt3pz8\nxV8k731v8tSnijcM7YADkrN3uIxHtFmgIa4qP2K+fG6SQ5M8NsmdMjvq/mCSRyV5zwD7YX9s3py8\n//3Jpk3JSSclhx469kSweg48MLnmmtm/RZsFq9ba+jZQ9T+S/PckNyU5obV24Q7rDk3y2SR3T/KI\n/TltPj8SP2FdQy6p9f2X3wvbo73dEUckl+/2xMdgakP2Anu28J+z7Q4+ODn++OQf/mFDdudnrEsX\ntNZOXO9Ghjji/sZ8+YUdo50krbWrMzvqTpKTBtgXe2vEaMMkXXfdhkWbaRsi3J+ZL7+5xvrtYXeO\ndqOINsDKGiLc5ye5Icl9q+rgXax/4Hx58QD7Yk9EG2ClrTvcrbWvJ/nTJIcnedWO66rqcUl+OMm2\nJB9Y777YA9EGWHlDveXpLyZ5aJKXV9Wjknw8yfcleXKSG5P8bGttrVPpDEG0ASZhkHC31r5WVQ9N\n8orMYv2wJFclOSvJG1prfz/EfliDaANMxrpfDrZoXg62B0sabS9VYVks92+4/ednrEtL83IwxrKk\n0QZgcYS7V6INMEnC3SPRBpgs4e6NaANMmnD3RLQBJk+4eyHaAES4+yDaAMwJ97ITbQB2INzLTLQB\n2IlwLyvRBmAXhHsZiTYAaxDuZSPaAOyGcC8T0QZgD4R7WYg2AHtBuJeBaAOwl4R7bKINwD4Q7jG9\n4hWiDcA+Ee6RnHrqqcnrXnfLHaINwF4Q7pE85CEPueXG8ceLNgB7ZdPYA0zVL/3SL+XSSy/Nu9/9\n7lxyySVjjwMrq8YeAAZWrbWxZ9itqtqa5ISx5wCAdbqgtXbiejfiVDkAdES4AaAjwg0AHRFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI+sOd1U9s6raHj5uHGJYAJi6TQNs4xNJXrvGuh9McnKSvxpgPwAweesOd2vtE5nF+zaq6mPz\nf/7eevcDACzwOe6qemCShyX5apKzFrUfAJiSRV6c9l/ny3e21jzHDQADGOI57tuoqkOTPC3JTUne\nsZdfs3WNVccONRcA9G5RR9z/Jcmdk/xVa+3LC9oHAEzOQo64kzxnvnz73n5Ba+3EXd0/PxI/YYih\nAKB3gx9xV9V/TPKIJF9JcvbQ2weAKVvEqXIXpQHAggwa7qo6JMnTM7so7Z1DbhsAGP6I+9Qkd0ly\ntovSAGB4Q4d7+0Vp3ikNABZgsHBX1f2T/EBclAYACzPYy8Faa/+SpIbaHgBwW/4eNwB0RLgBoCPC\nDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHh\nBoCOCDcAdES4AaAjPYT7qLEHAIABHDXERjYNsZEF+/f58uIN2Nex8+WnN2BfDMNj1h+PWX88Zut3\nVG7p2bpUa22I7ayEqtqaJK21E8eehb3jMeuPx6w/HrPl0sOpcgBgTrgBoCPCDQAdEW4A6IhwA0BH\nXFUOAB1xxA0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLiTVNXdq+oPqurfquraqrq4qt5Y\nVXcZezZuraruWlXPrqo/r6rPVdXVVbWtqj5aVT9TVb6nO1FVT6+qNv949tjzsGtV9YNV9d6qumT+\n+/GSqjqnqp449mxT1cPf416oqrp3kr9LckSSMzP7e7MnJfmFJE+oqke21q4YcURu7dQkv5vkkiTn\nJflSkiOTPCXJO5L8SFWd2ryz0FKrqnskeUuSbyW548jjsIaqekWS1yX5epL3Z/Zz991Jjk/y6CRn\njzbchE3+ndOq6oNJHp/ktNbaW3a4/zeTvDDJ21trzx1rPm6tqk5OcockZ7XWbtrh/rsl+XiSeyT5\n8dbae0cakT2oqkry10mOTvK+JC9O8rOttXeMOhi3UlWnJvmzJH+T5Cmttat2Wn9Qa+36UYabuEmf\nVqyqe2UW7YuTvHWn1a9O8u0kT6+qO2zwaKyhtfah1tpf7hjt+f2XJnnb/OajN3ww9sVpSU5O8qzM\nfsZYMvOnnH4tyXeS/NTO0U4S0R7PpMOd2S+PJDlnFyG4KsnfJrl9kodt9GDsl+2/SG4YdQrWVFX3\nT3J6kje11s4fex7W9IjMzoicneQbVbW5ql5SVb9QVQ8febbJm/pz3PebLz+7xvqLMjsiPybJuRsy\nEfulqjYl+en5zQ+MOQu7Nn+MzsjsuoSXjTwOu/eQ+fKyJBckedCOK6vq/Myekrp8owfDEffh8+W2\nNdZvv//OGzAL63N6kgcmObu19sGxh2GXXpXZRU3PbK1dPfYw7NYR8+Vzkxya5LFJ7pTZz9gHkzwq\nyXvGGY2ph3tPar6c9hV8S66qTkvyosxeEfD0kcdhF6rqpMyOsn+jtfaxsedhjw6cLyuzI+tzW2vf\naq39c5InJ/lKkh9y2nwcUw/39iPqw9dYf9hOn8eSqarnJ3lTkk8leUxr7cqRR2InO5wi/2ySV448\nDnvnG/PlF1prF+64Yn62ZPtZrZM2dCqSCPdn5stj1lh/3/lyrefAGVFVvSDJbyf5p8yifenII7Fr\nd8zsZ+z+Sa7Z4U1XWmav3kiS35/f98bRpmRH2383fnON9dvDfugGzMJOpn5x2nnz5eOr6oCdXhd8\npySPTHJ1kr8fYzjWVlUvyex57U8keVxr7esjj8Tark3yzjXWnZDZ894fzSwWTqMvh/Mze3XGfavq\n4NbadTutf+B8efGGTkWSiYe7tfb5qjonsyvHn5/ZOzlt99rM3ujj7a01rzVdIlX1yiS/kmRrksc7\nPb7c5qdWd/mWplX1mszC/UfegGV5tNa+XlV/muSpmV1U+Irt66rqcUl+OLOnEL2CYwSTDvfcz2X2\nlqdvrqpTkvxLkocmeUxmp8hfPuJs7KSqnpFZtG9M8pEkp83eiOtWLm6tvWuDR4NV84uZ/S58eVU9\nKrN3Jvy+zC5OuzGzd7tb61Q6CzT5cM+Pur8/sxg8IckTM3s/3jcnea2juaVz9Hx5YJIXrPE5H07y\nrg2ZBlZUa+1rVfXQzI62n5zZG1FdleSsJG9orXkKcSSTf69yAOjJ1K8qB4CuCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njvx/DsqYW+iZrkoAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c3d4cf8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"3ddb6c3ae4b846b7997aa206025e6435": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_7bee61b1da674484b38ec79eb01542d4", | |
"max": 7, | |
"style": "IPY_MODEL_94cda22269b745708b054cb991f8c65a", | |
"value": 4 | |
} | |
}, | |
"3de1319f334845ffbde15fc9c47eb1dc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3df362e659b241db85c6071e38014dfc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3e084134fe024a33bbbd8224aedc3cf3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_83bd11bdd1914f138eb6b3296101f775", | |
"IPY_MODEL_89f14b2e51d946a1953fcacfef1fef9d", | |
"IPY_MODEL_805476b8accc4d3190f0952de2290205", | |
"IPY_MODEL_ff9d09f2cadd487e807f3e0a01c79d7f", | |
"IPY_MODEL_bf6c67c489c3473894dfa413a8ba430e" | |
], | |
"layout": "IPY_MODEL_705aa2f75c5c4861b4f245520976546e" | |
} | |
}, | |
"3e1a224c5513438d8e3f8d91a3859d0d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3e3eb8cd46c64c489bdeb4eff99d11ca": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3e4db36773c34e75aab5b849a2f931cc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3e619e35b3b74d8695bcbc304141786f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3f2b965018914e2588cf4ee3fa3f87af": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_9aee1ec157c44eca96aa75fe27eb02e9", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF6tJREFUeJzt3XuQZnV95/HPFyYaw03FUioqXhlx\nQyoRlBHwigpGd7fUlbUqG6JWNOsteK0y6xWTykYrm40K2WiiCYnZPzTruqlEFKKhxCtUjauu18HL\nSFRQAcGBICrz2z+eZ3aHZpqZTJ/uZ748r1dV15l+ztPn96tqZt78zjl9usYYAQB6OGjREwAA9p1w\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADSyadET2Juq+kaSw5NsX/BUAGB/3TfJD8cY91vrgQ74cCc5/KAcfNdDcthdFz0RANgfN2RH\ndubmSY7VIdzbD8lhd91Sj1/0PABgv1wyPpQduXb7FMdyjRsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCR\nycJdVfeqqj+vqu9U1U1Vtb2q3lxVd5lqDABYdpumOEhVPSDJJ5LcPcnfJvlykhOTvDjJE6vqlDHG\n1VOMBQDLbKoV93/LLNpnjTGeMsb47THGqUn+KMmDkvzeROMAwFJbc7ir6v5JTkuyPckfr9j9+iQ3\nJDmzqg5Z61gAsOymWHGfOt9eOMbYufuOMcaOJB9P8nNJHj7BWACw1Ka4xv2g+XbbKvsvy2xFvjnJ\nh1c7SFVtXWXXsfs/NQC4fZlixX3EfHvdKvt3vX7nCcYCgKU2yV3le1Hz7bitN40xTtjjF89W4sdP\nPSkA6GiKFfeuFfURq+w/fMX7AID9NEW4vzLfbl5l/zHz7WrXwAGAfTRFuC+ab0+rqlscr6oOS3JK\nkhuTfGqCsQBgqa053GOMryW5MMl9k7xwxe43JDkkyV+NMW5Y61gAsOymujntBZk98vStVfW4JF9K\nsiXJYzM7Rf7qicYBgKU2ySNP56vuhyY5L7NgvzzJA5K8NclJnlMOANOY7MfBxhj/lOTZUx0PALg1\nv48bABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFJwl1V\nT6+qc6rqo1X1w6oaVfXXUxwbAPj/Nk10nNck+aUk1yf5VpJjJzouALCbqU6VvzTJ5iSHJ3n+RMcE\nAFaYZMU9xrho15+raopDAgB74OY0AGhkqmvca1ZVW1fZ5Xo5AMxZcQNAIwfMinuMccKeXp+vxI/f\n4OkAwAHJihsAGhFuAGhEuAGgEeEGgEYmuTmtqp6S5CnzT4+ab0+qqvPmf75qjPGKKcYCgGU21V3l\nv5zkmSteu//8I0m+mUS4AWCNJjlVPsY4e4xRt/Fx3ynGAYBl5xo3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCNrDndVHVlVz6mq91XVV6vqxqq6rqo+VlW/\nUVX+5wAAJrJpgmOckeRPklyR5KIklye5R5KnJXlHkl+pqjPGGGOCsQBgqU0R7m1J/m2S948xdu56\nsapeleTSJP8us4i/d4KxAGCprfk09hjjH8cYf7d7tOevX5nkbfNPH7PWcQCA9b857Sfz7U/XeRwA\nWArrFu6q2pTk1+effnC9xgGAZTLFNe7VvDHJcUnOH2NcsLc3V9XWVXYdO+msAKCxdVlxV9VZSV6e\n5MtJzlyPMQBgGU2+4q6qFyZ5S5IvJnncGOOaffm6McYJqxxva5Ljp5shAPQ16Yq7ql6S5Nwkn0/y\n2Pmd5QDARCYLd1W9MskfJflMZtH+3lTHBgBmJgl3Vb02s5vRtmZ2evyqKY4LANzSmq9xV9Uzk/xO\nkpuTfDTJWVW18m3bxxjnrXUsAFh2U9ycdr/59uAkL1nlPR9Jct4EYwHAUpvikadnjzFqLx+PmWCu\nALD0/MpNAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARjYtegLA4l3wnc8segpwu/aw027Mp//PNMey4gaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhk06InACyPbVcflU9cvjnX//iOOfQON+Xko7dl85FXLnpa0Mok\n4a6qNyV5aJLNSe6W5MYk30zyv5KcO8a4eopxgJ4+fvkxOeeS03Pptx94q30n3vOr+a0tF+SUoy9b\nwMygn6lOlb80ySFJ/iHJW5L89yQ/TXJ2ks9V1b0nGgdo5t2f35Jnvu/582iPFXtHLv32A/PM9z0/\n7/nClkVMD9qZ6lT54WOMH618sap+L8mrkvynJC+YaCygiY9ffkxe/eFnZOfYtUaoFe+Yfb5zHJRX\nfegZuedh11h5w15MsuLeU7Tn3jPfHjPFOEAv51xy+m7Rvm07x0E595LT13lG0N9631X+b+bbz63z\nOMABZtvVR61yenw1I5d8+4HZdvVR6zktaG/Su8qr6hVJDk1yRGY3qz0is2i/cR++dusqu46dbILA\nhvnE5Zvnf1p5enw19f++zp3msLqpfxzsFUnusdvnH0zyrDHG9yceBzjAXf/jO27o18GymDTcY4yj\nkqSq7pHk5MxW2v+7qv71GOPTe/naE/b0+nwlfvyU8wTW36F3uGlDvw6Wxbpc4x5jfHeM8b4kpyU5\nMslfrcc4wIHr5KO3zf+079e4b/l1wJ6s681pY4xvJvlikl+oqrut51jAgWXzkVfmxHt+Nf+Sa9xb\n7vlV17dhLzbiWeU/P9/evAFjAQeQ39pyQQ6qnfv03oNqZ1605YJ1nhH0t+ZwV9WxVXWrn9+oqoPm\nD2C5e5JPjDF+sNaxgF5OOfqy/N7j3r1bvG/95LRkFu3//Ph3e/gK7IMpbk57YpI/qKqLk3wtydWZ\n3Vn+6CT3T3JlkudOMA7Q0DOOuyT3OvyanHvJ6bnkVs8qn50ef5FnlcM+myLcH0ryp0lOSfJLSe6c\n5IYk25K8K8lbxxjXTDAO0NQpR1+WU46+zG8HgwmsOdxjjM8neeEEcwFu5zYfeaVQwxptxM1pAMBE\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAa2bToCQCLd/rP//KipwC3a5eNq5LcNMmxrLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaGTdwl1VZ1bVmH88Z73GAYBlsi7hrqp7JzknyfXrcXwAWFaTh7uqKslfJLk6ydum\nPj4ALLP1WHGfleTUJM9OcsM6HB8Altak4a6qByd5Y5K3jDEunvLYAECyaaoDVdWmJO9KcnmSV+3H\n129dZdexa5kXANyeTBbuJK9L8pAkjxhj3DjhcQGAuUnCXVUnZrbK/sMxxif35xhjjBNWOfbWJMev\nYXoAcLux5mvcu50i35bktWueEQCwqiluTjs0yeYkD07yo90eujKSvH7+nj+bv/bmCcYDgKU1xany\nm5K8c5V9x2d23ftjSb6SZL9OowMAM2sO9/xGtD0+0rSqzs4s3H85xnjHWscCgGXnl4wAQCPCDQCN\nrGu4xxhnjzHKaXIAmIYVNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajk4S7qrZX1Vjl48opxgAAkk0THuu6JG/ew+vXTzgGACy1KcN97Rjj7AmPBwCs4Bo3\nADQy5Yr7jlX1a0mOTnJDks8luXiMcfOEYwDAUpsy3EcledeK175RVc8eY3xkwnEAYGlNFe6/SPLR\nJF9IsiPJ/ZO8KMlvJvlAVZ00xvjsbR2gqrausuvYieYIAO1NEu4xxhtWvPT5JM+rquuTvDzJ2Ume\nOsVYALDMpjxVvidvyyzcj9rbG8cYJ+zp9flK/PiJ5wUALa33XeXfm28PWedxAGAprHe4T5pvv77O\n4wDAUlhzuKvqF6rqrnt4/T5Jzp1/+tdrHQcAmOYa9xlJfruqLkryjczuKn9Akicn+dkk5yf5LxOM\nAwBLb4pwX5TkQUkektmp8UOSXJvkY5n9XPe7xhhjgnEAYOmtOdzzh6t4wAoAbADPKgeARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFJw11Vj6yq91bV\nFVV103x7YVU9acpxAGBZbZrqQFX1miS/m+SqJH+f5Iokd0vykCSPSXL+VGMBwLKaJNxVdUZm0f5Q\nkqeNMXas2P8zU4wDAMtuzafKq+qgJG9K8s9JfnVltJNkjPGTtY4DAEyz4j45yf2S/I8kP6iqJyc5\nLsmPklw6xvjkBGMAAJkm3A+bb7+b5NNJfnH3nVV1cZKnjzG+f1sHqaqtq+w6ds0zBIDbiSnuKr/7\nfPu8JHdK8vgkh2W26r4gyaOS/M0E4wDA0ptixX3wfFuZraw/O//8C1X11CTbkjy6qk66rdPmY4wT\n9vT6fCV+/ATzBID2plhx/2C+/fpu0U6SjDFuzGzVnSQnTjAWACy1KcL9lfn22lX27wr7nSYYCwCW\n2hThvjjJT5McU1V32MP+4+bb7ROMBQBLbc3hHmNcleTdSY5I8rrd91XVE5KcnuS6JB9c61gAsOym\neuTpy5JsSfLqqnpUkkuT3CfJU5PcnOS5Y4zVTqUDAPtoknCPMb5XVVuSvCazWD88yY4k70/y+2OM\nT00xDgAsu8l+ycgY45rMVt4vm+qYAMAt+X3cANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI2sOdxV9ayqGnv5uHmKyQLAsts0wTE+k+QNq+x7ZJJTk3xggnEA\nYOmtOdxjjM9kFu9bqapPzv/4p2sdBwBYx2vcVXVckocn+XaS96/XOACwTNbz5rT/ON++c4zhGjcA\nTGCKa9y3UlV3SvJrSXYmecc+fs3WVXYdO9W8AKC79Vpx//skd07ygTHGP63TGACwdNZlxZ3kN+fb\nt+/rF4wxTtjT6/OV+PFTTAoAupt8xV1V/yrJyUm+leT8qY8PAMtsPU6VuykNANbJpOGuqp9NcmZm\nN6W9c8pjAwDTr7jPSHKXJOe7KQ0Apjd1uHfdlOZJaQCwDiYLd1U9OMkj4qY0AFg3k/042BjjS0lq\nquMBALfm93EDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI3UGGPRc7hNVXX1QTn4rofksEVPBQD2yw3ZkZ25+Zox\nxpFrPdamKSa0zn64MzdnR67dvgFjHTvffnkDxmIavmf9+J7143u2dvdN8sMpDnTAr7g3UlVtTZIx\nxgmLngv7xvesH9+zfnzPDiyucQNAI8INAI0INwA0ItwA0IhwA0Aj7ioHgEasuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoR7iRVda+q+vOq+k5V3VRV26vqzVV1l0XPjVuqqiOr6jlV9b6q+mpV\n3VhV11XVx6rqN6rKf9NNVNWZVTXmH89Z9HzYs6p6ZFW9t6qumP/7eEVVXVhVT1r03JZVh9/Hva6q\n6gFJPpHk7kn+NrPfN3tikhcneWJVnTLGuHqBU+SWzkjyJ0muSHJRksuT3CPJ05K8I8mvVNUZw5OF\nDmhVde8k5yS5PsmhC54Oq6iq1yT53SRXJfn7zP7e3S3JQ5I8Jsn5C5vcElv6J6dV1QVJTkty1hjj\nnN1e/69JXprk7WOM5y1qftxSVZ2a5JAk7x9j7Nzt9aOSXJrk3kmePsZ474KmyF5UVSX5hyT3S/I/\nk7wiyXPHGO9Y6MS4hao6I8l7knwoydPGGDtW7P+ZMcZPFjK5JbfUpxWr6v6ZRXt7kj9esfv1SW5I\ncmZVHbLBU2MVY4x/HGP83e7Rnr9+ZZK3zT99zIZPjH+Js5KcmuTZmf0d4wAzv+T0piT/nORXV0Y7\nSUR7cZY63Jn945EkF+4hBDuSfDzJzyV5+EZPjP2y6x+Sny50Fqyqqh6c5I1J3jLGuHjR82FVJ2d2\nRuT8JD+oqidX1Sur6sVVddKC57b0lv0a94Pm222r7L8ssxX55iQf3pAZsV+qalOSX59/+sFFzoU9\nm3+P3pXZfQmvWvB0uG0Pm2+/m+TTSX5x951VdXFml6S+v9ETw4r7iPn2ulX273r9zhswF9bmjUmO\nS3L+GOOCRU+GPXpdZjc1PWuMceOiJ8Ntuvt8+7wkd0ry+CSHZfZ37IIkj0ryN4uZGsse7r2p+Xa5\n7+A7wFXVWUlentlPBJy54OmwB1V1Ymar7D8cY3xy0fNhrw6ebyuzlfWHxxjXjzG+kOSpSb6V5NFO\nmy/Gsod714r6iFX2H77ifRxgquqFSd6S5ItJHjvGuGbBU2KF3U6Rb0vy2gVPh33zg/n262OMz+6+\nY362ZNdZrRM3dFYkEe6vzLebV9l/zHy72jVwFqiqXpLk3CSfzyzaVy54SuzZoZn9HXtwkh/t9tCV\nkdlPbyTJn81fe/PCZsnudv3beO0q+3eF/U4bMBdWWPab0y6ab0+rqoNW/FzwYUlOSXJjkk8tYnKs\nrqpemdl17c8kecIY46oFT4nV3ZTknavsOz6z694fyywWTqMfGC7O7KczjqmqO4wxfrxi/3Hz7fYN\nnRVJljzcY4yvVdWFmd05/sLMnuS0yxsye9DH28cYftb0AFJVr03yO0m2JjnN6fED2/zU6h4faVpV\nZ2cW7r/0AJYDxxjjqqp6d5L/kNlNha/Zta+qnpDk9MwuIfoJjgVY6nDPvSCzR56+taoel+RLSbYk\neWxmp8hfvcC5sUJVPTOzaN+c5KNJzpo9iOsWto8xztvgqcHtzcsy+7fw1VX1qMyeTHifzG5Ouzmz\np92tdiqddbT04Z6vuh+aWQyemORJmT2P961J3mA1d8C533x7cJKXrPKejyQ5b0NmA7dTY4zvVdWW\nzFbbT83sQVQ7krw/ye+PMVxCXJClf1Y5AHSy7HeVA0Arwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCP/F3rliD1zHU5hAAAA\nAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c25d3c8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"3f3c8767ae32415a8fcae6f5f8acebd7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_4f53a54693c548dda3bdfa5b1a3eb97c", | |
"max": 7, | |
"style": "IPY_MODEL_9de206fb0d7641e2842fe45e3b3f2edb" | |
} | |
}, | |
"3f78210380a341919c4a8500cb833923": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_4f32ce062687440cbd2d08330182bbdf", | |
"IPY_MODEL_7bdd7e791aef402cb3e96394e2141d40", | |
"IPY_MODEL_1c5327719c2c4de4b64403da5f0e1596", | |
"IPY_MODEL_cd026e9e5d194f2e89d2f613d6a4e2f2" | |
], | |
"layout": "IPY_MODEL_0fa0e4b55a0c47e7981b648bc72639ab" | |
} | |
}, | |
"3f9281576fac49d790044705976c535f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"nn", | |
"ee", | |
"ss", | |
"ww" | |
], | |
"description": "d", | |
"index": 3, | |
"layout": "IPY_MODEL_fb764088a1e44975a1c5c64c6ed05fab", | |
"style": "IPY_MODEL_73cae039792e48b48e07c8f472e04fe9" | |
} | |
}, | |
"3f984132df11489f973541206cfad626": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3fb84ca3f344484194690b20ad420233": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3fb9e7c346f0405bbe3823ef68e4abca": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_b08c50ec161d4700ac68ab45188f3137", | |
"max": 3, | |
"style": "IPY_MODEL_e02223d1d14b498d9db4177b2e1c4ffc", | |
"value": 2 | |
} | |
}, | |
"3fdcfc5789724f2096e68782950ec2ed": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_fa54609d1f9a41fb972b6acb105e7eb1", | |
"max": 7, | |
"style": "IPY_MODEL_5d507f2da6b149da84d2a54f0904422e", | |
"value": 4 | |
} | |
}, | |
"401d0db14d8c4e6d8b6c1cede49c89be": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4046c9572eb54a9a9fb75d1659db6d1c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"405e8425cf3d49a291dca118bd0178f0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_e5d331cb56744786b61f43212d463a2d", | |
"max": 7, | |
"style": "IPY_MODEL_c2ca02aee836479397a2fd8bdba13b7e", | |
"value": 5 | |
} | |
}, | |
"406bcf60d82a4d54b1fec5e504932cfd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"406ee844272b43fb93c114aaabb651b4": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_ab42abd541c14d92aefa301c76d0e4ec", | |
"outputs": [ | |
{ | |
"ename": "TypeError", | |
"evalue": "ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-74-72e070270bd6>\u001b[0m in \u001b[0;36mmake_laser_map_i\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-74-72e070270bd6>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0misxt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mNN\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mWW\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''" | |
] | |
} | |
] | |
} | |
}, | |
"41600a93adc645248b7445d40e8165a4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_c6081582308543c39797e04b091650cb", | |
"max": 7, | |
"style": "IPY_MODEL_2bacd89597bc41349451abe4e1a7c738", | |
"value": 1 | |
} | |
}, | |
"41685720baf34440b6cef9d94f030868": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4168bfd6b045479abcc55698fb450735": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"41dfce1db9e7462a8b5f5f0e073f8328": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"41ed47058a274215bd435c134f75217c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"421812c96f0349b883c2474bb573d393": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"421c339796ef4122bdff141545998343": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"422b5f00d1f1434197e5352ac45fa401": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4270cfbd8b014e118e823ddd7fbdc55e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_aa726a27c609472eb2e646b7bf2a28e0", | |
"IPY_MODEL_47b4014199f34c39bddeec780a4c7d87", | |
"IPY_MODEL_5afd016b020944eca9aa0d514471b75d", | |
"IPY_MODEL_c28b7d2ab4494f8888d57883920ad9a0", | |
"IPY_MODEL_27d4254c83604a8a89631e8d0b74a385" | |
], | |
"layout": "IPY_MODEL_0c02866f25564ac9b8ffc3316341dcb5" | |
} | |
}, | |
"4278f5e791c140749467634ba477d4de": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_bf7a65ff3cc64224a7f0c022965a7f2c", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWJJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInAKw8e9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbDjcVfW4qhrX8nHFFJMFgFW3bYJtfDrJi9dZd/8kJyZ57wTj\nAMDK23C4xxifzizeV1NVn5j/5+s3Og4AsMBz3FV11yT3TvL/krxnUeMAwCpZ5MVp/2W+fNMYwzlu\nAJjAFOe4r6aqDkryO0muTPLGvXzNjnVWHTXVvACgu0Xtcf9Wkpsmee8Y45sLGgMAVs5C9riTPGm+\nfN3evmCMccyenp/viW+fYlIA0N3ke9xVdZck903yrSSnTb19AFhlizhU7qI0AFiQScNdVTdIckpm\nF6W9acptAwDT73GfnORmSU5zURoATG/qcO+6KM2d0gBgASYLd1UdneR+cVEaACzMZG8HG2N8IUlN\ntT0A4Or8PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFty57AXrj9sifAdXfMsicAsPXcfoqNdAj3j+fL8zZh\nrKPmyy9uwlj7tZ2bN5SvWT++Zv34mm3c7fPLnm1IjTGm2M5+oap2JMkYww5jE75m/fia9eNrtrU4\nxw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqxxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqltX1V9V1b9W1WVVdV5VvaKqbrbsuXFVVXWLqnpCVb2rqr5SVZdU1Y+q6qNV9XtV5Xu6iao6\nparG/OMJy54Pe1ZV96+qd1TV+fPfj+dX1Qeq6qHLntuq6vD3uBeqqu6Q5ONJDk3yj5n9vdljkzwt\nyUOq6rgxxveWOEWu6uQkf5nk/CRnJPlGksOSPCrJG5P8ZlWdPNxZaEurqtskeXWSi5PcaMnTYR1V\n9bwkL01yYZJ/yuzn7pZJ7pHkhCSnLW1yK2zl75xWVe9P8uAkp44xXr3b8/8jyR8ked0Y48nLmh9X\nVVUnJjk4yXvGGFfu9vytknwqyW2SPHqM8Y4lTZFrUVWV5INJDk/yziTPTPLEMcYblzoxrqKqTk7y\nd0k+lORRY4yL1qy/3hjj50uZ3Ipb6cOKVXVEZtE+L8lfrFn9wiQ/SXJKVR28yVNjHWOMD48x3r17\ntOfPfzvJa+cPT9j0iXFdnJrkxCSPz+xnjC1mfsrp5Ul+muS310Y7SUR7eVY63Jn98kiSD+whBBcl\n+ViSGya592ZPjH2y6xfJ5UudBeuqqqOTvCzJK8cYZy17PqzrvpkdETktyQ+q6mFV9ayqelpV3WfJ\nc1t5q36O+87z5TnrrP9yZnvkRyY5fVNmxD6pqm1Jfnf+8H3LnAt7Nv8avTWz6xKes+TpcM3uOV9+\nJ8nOJHfbfWVVnZXZKanvbvbEsMd9k/nyR+us3/X8TTdhLmzMy5LcNclpY4z3L3sy7NELMruo6XFj\njEuWPRmu0aHz5ZOTHJTk15PcOLOfsfcneUCSv1/O1Fj1cF+bmi9X+wq+La6qTk3yjMzeEXDKkqfD\nHlTVsZntZf/ZGOMTy54P1+rA+bIy27M+fYxx8Rjj80kemeRbSY532Hw5Vj3cu/aob7LO+kPWfB5b\nTFU9Nckrk5yd5IFjjO8veUqssdsh8nOSPH/J02Hv/GC+PHeM8ZndV8yPluw6qnXsps6KJML9pfny\nyHXW32m+XO8cOEtUVU9P8pokn8ss2t9e8pTYsxtl9jN2dJJLd7vpysjs3RtJ8ob5c69Y2izZ3a7f\njT9cZ/2usB+0CXNhjVW/OO2M+fLBVXXAmvcF3zjJcUkuSfLJZUyO9VXVszI7r/3pJA8aY1y45Cmx\nvsuSvGmdddszO+/90cxi4TD61nBWZu/OuFNV/coY42dr1t91vjxvU2dFkhUP9xjjq1X1gcyuHH9q\nZndy2uXFmd3o43VjDO813UKq6vlJXpJkR5IHOzy+tc0Pre7xlqZV9aLMwv3XbsCydYwxLqyqtyf5\nT5ldVPi8Xeuq6kFJfiOzU4jewbEEKx3uuadkdsvTV1XVSUm+kOReSR6Y2SHy5y5xbqxRVY/NLNpX\nJPlIklNnN+K6ivPGGG/Z5KnB/uYPM/td+NyqekBmdya8XWYXp12R2d3u1juUzgKtfLjne92/llkM\nHpLkoZndj/dVSV5sb27LOXy+PDDJ09f5nDOTvGVTZgP7qTHGBVV1r8z2th+Z2Y2oLkryniR/MsZw\nCnFJVv5e5QDQyapfVQ4ArQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN/H/8CB2iR7v22gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c01fdd8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"4296dfd72b2d4899a53dc5106d406e4e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"429fce3b8111425281e0e07d1c89edf3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4345d6fb993b4b77a37b37a547c7b988": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4355895462e246ddb71850a9fbf44535": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"439ca84ed5a24ebbb1df618bddd7f17a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"43a5a644fd5d4d958d655a062d615d04": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_1c6bfad82dd84e7cbde852d89d8603a6", | |
"max": 3, | |
"style": "IPY_MODEL_92fa31d77fb5479a9e8ec7970e5d78b4", | |
"value": 2 | |
} | |
}, | |
"43ac666e54534353bdc4785dd202812d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"43fde351d36f434297f1b720110ea94e": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_dd3282c4b3d54660958830b6c0e3cfc6", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 0., 0., 0., 0., 0., 1., 0., 0.],\n [ 0., 0., 0., 0., 0., 1., 0., 0.],\n [ 0., 0., 0., 0., 0., 1., 0., 0.],\n [ 1., 1., 1., 1., 1., 1., 1., 1.],\n [ 0., 0., 0., 0., 0., 1., 0., 0.],\n [ 0., 0., 0., 0., 0., 1., 0., 0.],\n [ 0., 0., 0., 0., 0., 1., 0., 0.],\n [ 0., 0., 0., 0., 0., 1., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"4401e10403094e65a8e3ed94db856fec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"44382b545b864820bd85277bcf3582c2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_fc8d5c16e9394c31a12dd528af32177e", | |
"IPY_MODEL_ee9b92e6ac6748f19a1cb5f4f6ac0601", | |
"IPY_MODEL_7bd7e1e603db4f95acfb3694f081a276", | |
"IPY_MODEL_f89f109c60194359a16eb9b97bf2fad4" | |
], | |
"layout": "IPY_MODEL_84f65e172fa546bc822d6a16680abfef" | |
} | |
}, | |
"445689282d984ee08198c4ca7aa83c54": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_e5f0f716e89e45d2822f34eb29e4a350", | |
"max": 7, | |
"style": "IPY_MODEL_ae953cd52ed54d3691988e5f8f6cdc33", | |
"value": 2 | |
} | |
}, | |
"44b74f600c9a450cbb418c8799ad34b5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"44b807ab3a2549c3a6d6cb790fde41e6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"44ca419b9a514f25b915199bc67cd521": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"44ddeca169c948ad9f57d830db6a807b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"44eac28ed5f24ea0adfeba60ae65490e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_41dfce1db9e7462a8b5f5f0e073f8328", | |
"max": 3, | |
"style": "IPY_MODEL_812884001578481ca9ff5ab72edf0c39", | |
"value": 1 | |
} | |
}, | |
"44f8ccaa065b4b16ab111db96cedc9b8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"457075f317a0499382b56c504d0cdee1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"45756e84e9204ae297807fed73090540": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "s", | |
"layout": "IPY_MODEL_4da733428e3d4b5baffec37a91a5cd91", | |
"max": 63, | |
"style": "IPY_MODEL_fe7f099da27542ffa67e6a4cfdd41d4d" | |
} | |
}, | |
"45d719c8777140f481c8297c63254273": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"46032a2011db44b591e39105f1617f26": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"460b4f953c8e48faaa4a5b3356caa698": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"460ecefc6e2c4c218dacba380d16b6a2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_7a22925bff7e4701b8bfdcc48a7303cf", | |
"max": 7, | |
"style": "IPY_MODEL_04fa8169998f4a8d89c51b551806c01a", | |
"value": 3 | |
} | |
}, | |
"4644e146346c4220b0f9f28b85049934": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"46464e553822424ab6048e9ec5b2a862": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_2a7543b44f8e4baebff62b4931231240", | |
"max": 3, | |
"style": "IPY_MODEL_2b18cbaec66141b292e7a098036ad146", | |
"value": 2 | |
} | |
}, | |
"4651c6af1e624ba39cfb2c5a15758a26": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"4658c4d7f582457684bbdfb3b777e19f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_265dc9f550cd4cc0bdeacb8819a16931", | |
"max": 7, | |
"style": "IPY_MODEL_44b807ab3a2549c3a6d6cb790fde41e6", | |
"value": 1 | |
} | |
}, | |
"4670fcc822e7470c845a3a813f568f15": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"468c29db0bc24c02914e705b2719116c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"46ac9cdb90944b279d532e4dea6ac0e9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"46add4ce040244368e6ab34dfaad7ff3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"47106220ff0c4d94a52b7c9951739c80": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"472a1065aee94bf1b6eb55519d0bcecf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4737e242f0c04ac2ab1e6506acba9ee4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"474682a299d94ae1aab4dd6171f70b36": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"479d8e7e7c3d4c1dbae53a2dc0543ec2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"47afb6dc18d94e8abc104f35ad9493e7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"47b4014199f34c39bddeec780a4c7d87": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_f159a34c7f904185a02a167f9ebeff63", | |
"max": 7, | |
"style": "IPY_MODEL_04bfb7c1a1484e989bd896713b121088", | |
"value": 2 | |
} | |
}, | |
"47bffd35816e45689623574cfc61144d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_4bf99fa9285f4c0f9f4da9976b1faf4d", | |
"max": 3, | |
"style": "IPY_MODEL_dea4c313f8544ad28173f98fdea8e2dd", | |
"value": 1 | |
} | |
}, | |
"47c50ca33fb54b5593c48cd724097eb8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"47fa5c9f21f3480cbc0d7fe7c2c0e273": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"48027e8957e84b3a90847ab12a17e5d8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"484d4563087f4f44b80c23bdaa5eeef2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_b109ce27ecac44bfa136b093a56a6bd6", | |
"IPY_MODEL_c19fcbb45409408bb6c7034cfbcde5e1", | |
"IPY_MODEL_f833a37bed624938aed1a67f97844ae9", | |
"IPY_MODEL_f553e18be5fa49438f5e27a4f98b9c20" | |
], | |
"layout": "IPY_MODEL_6b4b69859fc347938454a88c59cddaf6" | |
} | |
}, | |
"4852ee740e16400ca9cfe8f570d77ffe": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4875def56e46499493cf84966de0bf08": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"490b069eeefe4c8e98bac096d886e38b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_9562c98d956f466584227bab002de414", | |
"max": 7, | |
"style": "IPY_MODEL_95246268f3ed444fbfd73affdfe663d2", | |
"value": 7 | |
} | |
}, | |
"4929be4720e746e1a11d4384a0140c71": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_d15f648f76804517bfd99c62e8947456", | |
"outputs": [ | |
{ | |
"ename": "TypeError", | |
"evalue": "ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-101-010b77e58ed5>\u001b[0m in \u001b[0;36mmake_laser_map_i\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 73\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 74\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 75\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-101-010b77e58ed5>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0misxt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mNN\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mWW\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''" | |
] | |
} | |
] | |
} | |
}, | |
"4989dcd8e6f24a9ca44a90d2419220a1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4993dc87014042e7863748b6d032d211": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"49aaa780dd5245a69b5655f3619f35cd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "cj", | |
"layout": "IPY_MODEL_8ab42877eacc4552acf03938fd5f6726", | |
"max": 7, | |
"style": "IPY_MODEL_8dcc47de33874f1fbe3ad4bc0811ce8a", | |
"value": 6 | |
} | |
}, | |
"4a0c72811295467f9fc2d9d3a65fe93a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"4a16dc3b88d243a5a13aecd4beb6393d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4a1d544b5c204d468cb134094a51d27e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_b42e238d87dc41c693aa7e3ce0c85a29", | |
"max": 3, | |
"style": "IPY_MODEL_d6e6e8597ec14f8a8828be0270398fea", | |
"value": 1 | |
} | |
}, | |
"4a6fc1bce6ff439a9b243eaa6c7bb306": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "ri", | |
"layout": "IPY_MODEL_bca0fa823aee44a98cc0e0c958293a49", | |
"max": 8, | |
"style": "IPY_MODEL_0a2a321d5bca430ebb99febe51ef9cb2", | |
"value": 2 | |
} | |
}, | |
"4a77f0a9ec354fb28a475f175292debc": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_9d99b51d30ce49cabf1b1dcf827cfbf9", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWJJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInAKw8e9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbDjcVfW4qhrX8nHFFJMFgFW3bYJtfDrJi9dZd/8kJyZ57wTj\nAMDK23C4xxifzizeV1NVn5j/5+s3Og4AsMBz3FV11yT3TvL/krxnUeMAwCpZ5MVp/2W+fNMYwzlu\nAJjAFOe4r6aqDkryO0muTPLGvXzNjnVWHTXVvACgu0Xtcf9Wkpsmee8Y45sLGgMAVs5C9riTPGm+\nfN3evmCMccyenp/viW+fYlIA0N3ke9xVdZck903yrSSnTb19AFhlizhU7qI0AFiQScNdVTdIckpm\nF6W9acptAwDT73GfnORmSU5zURoATG/qcO+6KM2d0gBgASYLd1UdneR+cVEaACzMZG8HG2N8IUlN\ntT0A4Or8PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFty57AXrj9sifAdXfMsicAsPXcfoqNdAj3j+fL8zZh\nrKPmyy9uwlj7tZ2bN5SvWT++Zv34mm3c7fPLnm1IjTGm2M5+oap2JMkYww5jE75m/fia9eNrtrU4\nxw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqxxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqltX1V9V1b9W1WVVdV5VvaKqbrbsuXFVVXWLqnpCVb2rqr5SVZdU1Y+q6qNV9XtV5Xu6iao6\nparG/OMJy54Pe1ZV96+qd1TV+fPfj+dX1Qeq6qHLntuq6vD3uBeqqu6Q5ONJDk3yj5n9vdljkzwt\nyUOq6rgxxveWOEWu6uQkf5nk/CRnJPlGksOSPCrJG5P8ZlWdPNxZaEurqtskeXWSi5PcaMnTYR1V\n9bwkL01yYZJ/yuzn7pZJ7pHkhCSnLW1yK2zl75xWVe9P8uAkp44xXr3b8/8jyR8ked0Y48nLmh9X\nVVUnJjk4yXvGGFfu9vytknwqyW2SPHqM8Y4lTZFrUVWV5INJDk/yziTPTPLEMcYblzoxrqKqTk7y\nd0k+lORRY4yL1qy/3hjj50uZ3Ipb6cOKVXVEZtE+L8lfrFn9wiQ/SXJKVR28yVNjHWOMD48x3r17\ntOfPfzvJa+cPT9j0iXFdnJrkxCSPz+xnjC1mfsrp5Ul+muS310Y7SUR7eVY63Jn98kiSD+whBBcl\n+ViSGya592ZPjH2y6xfJ5UudBeuqqqOTvCzJK8cYZy17PqzrvpkdETktyQ+q6mFV9ayqelpV3WfJ\nc1t5q36O+87z5TnrrP9yZnvkRyY5fVNmxD6pqm1Jfnf+8H3LnAt7Nv8avTWz6xKes+TpcM3uOV9+\nJ8nOJHfbfWVVnZXZKanvbvbEsMd9k/nyR+us3/X8TTdhLmzMy5LcNclpY4z3L3sy7NELMruo6XFj\njEuWPRmu0aHz5ZOTHJTk15PcOLOfsfcneUCSv1/O1Fj1cF+bmi9X+wq+La6qTk3yjMzeEXDKkqfD\nHlTVsZntZf/ZGOMTy54P1+rA+bIy27M+fYxx8Rjj80kemeRbSY532Hw5Vj3cu/aob7LO+kPWfB5b\nTFU9Nckrk5yd5IFjjO8veUqssdsh8nOSPH/J02Hv/GC+PHeM8ZndV8yPluw6qnXsps6KJML9pfny\nyHXW32m+XO8cOEtUVU9P8pokn8ss2t9e8pTYsxtl9jN2dJJLd7vpysjs3RtJ8ob5c69Y2izZ3a7f\njT9cZ/2usB+0CXNhjVW/OO2M+fLBVXXAmvcF3zjJcUkuSfLJZUyO9VXVszI7r/3pJA8aY1y45Cmx\nvsuSvGmdddszO+/90cxi4TD61nBWZu/OuFNV/coY42dr1t91vjxvU2dFkhUP9xjjq1X1gcyuHH9q\nZndy2uXFmd3o43VjDO813UKq6vlJXpJkR5IHOzy+tc0Pre7xlqZV9aLMwv3XbsCydYwxLqyqtyf5\nT5ldVPi8Xeuq6kFJfiOzU4jewbEEKx3uuadkdsvTV1XVSUm+kOReSR6Y2SHy5y5xbqxRVY/NLNpX\nJPlIklNnN+K6ivPGGG/Z5KnB/uYPM/td+NyqekBmdya8XWYXp12R2d3u1juUzgKtfLjne92/llkM\nHpLkoZndj/dVSV5sb27LOXy+PDDJ09f5nDOTvGVTZgP7qTHGBVV1r8z2th+Z2Y2oLkryniR/MsZw\nCnFJVv5e5QDQyapfVQ4ArQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN/H/8CB2iR7v22gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c4cf588>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"4a88ffa4784e4ca2a741d3b0e43e978d": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_2cf8fc3c3dee4f7a96928d0a48c661d0", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "<class 'int'> <class 'numpy.int64'> 0b1000000000000000000000000000000000000000000000000000000000000000 0b100010000000000100100000000000001010000100001000000000\n" | |
}, | |
{ | |
"ename": "TypeError", | |
"evalue": "ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-111-6b1961bc89a3>\u001b[0m in \u001b[0;36mmake_laser_map_i\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 75\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 76\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-111-6b1961bc89a3>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 25\u001b[0;31m \u001b[0misxt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 26\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mNN\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mWW\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''" | |
] | |
} | |
] | |
} | |
}, | |
"4a8b130242f54e71911f97216b3836da": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4aaa65b1605940b3ae24c70a854099ce": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_4c589d75c6ee48f188e0f8bb453368e8", | |
"max": 7, | |
"style": "IPY_MODEL_47afb6dc18d94e8abc104f35ad9493e7", | |
"value": 3 | |
} | |
}, | |
"4af498ab1cab4059995848fc7fcd0b2a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"4b2d6ce537814aa18f45f17508ca7061": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_23fa88aedccc4e81943d32c7dbf855b2", | |
"max": 7, | |
"style": "IPY_MODEL_5b1943d0adb543228e7ed77dbf53b404" | |
} | |
}, | |
"4b3a417b933b44fa89c2d0f63296d677": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4b7db25058a647f0859eaf7bfdc2a3ab": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"4bc738a5e204497fb3ce266e6ba6bef7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4bc93c48a3b04e9dac31facb1c42e278": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4bf99fa9285f4c0f9f4da9976b1faf4d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4c35225735744173a5eb203e9514247f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4c589d75c6ee48f188e0f8bb453368e8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4cc567b05e1c4b948baa09ce1c43f390": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_2ac84468cca5477ebced95dbe3587703", | |
"max": 3, | |
"style": "IPY_MODEL_ec6c33b14e6b4e418020049bee9e4ec7", | |
"value": 2 | |
} | |
}, | |
"4ce27cf667784da9b4fda9690fb85252": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_673f45366f984800ace7b46675979569", | |
"style": "IPY_MODEL_2549018900894675aad8e19c180a3fc1" | |
} | |
}, | |
"4d233a14f3614a6facd2a30b9cc5f42d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_a64ee936cf494e17bf5d526faf946072", | |
"max": 7, | |
"style": "IPY_MODEL_6681d838101c476c8a07ea897a74695b", | |
"value": 1 | |
} | |
}, | |
"4d701e20af2f4eef8e6e2fb6736d2808": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"4da733428e3d4b5baffec37a91a5cd91": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4e6bbc47a6c54723b305a5ebd8bbd815": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_f7259c11ac8f419db1c9228ed4dc744a", | |
"max": 7, | |
"style": "IPY_MODEL_ef04be7ccfbf4ca9b92d1a1509424890", | |
"value": 6 | |
} | |
}, | |
"4ecbf22845f846259e818bef461e9f7d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_f53098b01aae40cb929c2659e22932a5", | |
"max": 7, | |
"style": "IPY_MODEL_9be3dc6f87934e9189bad320dd7e8ccb", | |
"value": 4 | |
} | |
}, | |
"4f06f60edab64b889699f1abae7abad2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"4f32ce062687440cbd2d08330182bbdf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_99db51a533e14ae6b7998a78181970f9", | |
"max": 7, | |
"style": "IPY_MODEL_bca1ce6430684daa9977e51625801e6f", | |
"value": 3 | |
} | |
}, | |
"4f53a54693c548dda3bdfa5b1a3eb97c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4f88323b009a45029c79bd871db026ea": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4fea84e1d60242178145eda028cea42f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_9bec9e403c5f4e0382b2185077ec617f", | |
"IPY_MODEL_7b5565a724fb49c2b03a2fb6203018c0", | |
"IPY_MODEL_e014eb232ec842d2baf94a21f3a211c0", | |
"IPY_MODEL_1afcb89bf0d048d89446d047c501fa4e", | |
"IPY_MODEL_a5b5807f279c426d8bcd2688a30fb96e" | |
], | |
"layout": "IPY_MODEL_21b4aa4af143469ca9250bab436927a8" | |
} | |
}, | |
"4ff27c56abae4e75ad74164dea2a7992": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "rj", | |
"layout": "IPY_MODEL_3baba50438ea4f9e98fe96c128fa07ba", | |
"max": 8, | |
"style": "IPY_MODEL_1a2b0354a6784fa3a4cfd0c418e42f83", | |
"value": 5 | |
} | |
}, | |
"500164c52b6e4a32aa6557173eb830f0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_2c705884055b4770b87c3c9b9ad55a69", | |
"max": 7, | |
"style": "IPY_MODEL_68accc5732814230af26ecf855fa187e", | |
"value": 6 | |
} | |
}, | |
"503f86a937a140348357734524f6599d": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_873da7832bf443b297ff5e2b6e468c08", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "9 (1, 1) 0 2 1\n14 (1, 6) 1 3 2\n38 (4, 6) 2 0 3\n35 (4, 3) 3 1 0\n19 (2, 3) 0 2 1\n21 (2, 5) 1 3 2\n53 (6, 5) 2 0 3\n49 (6, 1) 3 3 -1\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xu4XGV96PHvL3eSAAmk4Q4JkhAt\nHEjCPQoIBa3UcwSlhyIUPd5Qj6DVo9YqYn2q+NBWhWpFsaJ4HqtWWg8FFUUCgqA1AUQRAUO4CEkI\nCUgSct3v+WNmJ/sy+5I9a/aad8338zz7mayZWWu92bNnvnutWbN2pJSQJEl5GFP2ACRJ0vAZbkmS\nMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluS\npIwYbkmSMmK4JUnKiOGWJCkj48oewFAi4hFgN2B5yUORJGmkZgF/SCnNbnZBbR9uatHeo/4lSVJH\ny2FX+fKyByBJUgGWF7GQHMItSZLqDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KU\nEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIk\nZaSwcEfE/hHxLxHxZERsiojlEfGZiJhe1DokSep044pYSES8CPgpMBP4LvAAcAxwMfDKiFiUUnqm\niHVJktTJitri/jy1aF+UUnpNSumDKaVTgE8DhwJ/V9B6JEnqaJFSam4BEQcDvwOWAy9KKXX1uG1X\n4CkggJkppfUjWP4SYEFTg5QkqXxLU0oLm11IEVvcp9Qvb+oZbYCU0vPAHcBk4LgC1iVJUkcr4j3u\nQ+uXDw5w+0PA6cBc4OaBFlLfsm5k3siHJklStRSxxb17/fK5AW7vvn5aAeuSJKmjFXJU+RCifjno\nm+kD7ff3PW5JknYoYou7e4t69wFu363P/SRJ0ggVEe7f1i/nDnD7nPrlQO+BS5KkYSoi3LfUL0+P\niF7Lq38cbBHwAnBXAeuSJKmjNR3ulNLvgJuAWcA7+9z8MWAK8LWRfIZbkiT1VtTBae+gdsrTKyLi\nVOA3wLHAy6ntIv+bgtYjSVJHK+SUp/Wt7qOAa6gF+73Ai4ArgOM9T7kkScUo7ONgKaXHgTcWtTxJ\nktSff49bkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJi\nuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjIyruwBdLKUyh5B60TZA5Aq\nrsIvH4QvIINyi1uSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwY\nbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKyLiyB6DW\ne3Dlgdzx8BGs2ziZqZM2sOiQe5m712NlD0tSDlaNgWXjYBMwETh4K8zsKntUHa2QcEfE64CTgCOB\nI4Bdgf+bUjqviOVrZO54+Ag+e/M5/PyRw/vddszs+7j41H9l0SH3ljAySW1v2Vi4dSI82iATB22F\nkzbBwdtGf1wiUkrNLyTiHmrBXgc8AcyjoHBHxBJgQbPLaUcFfOsH9M3/Oo2/vu5ddKUxQAKi55qB\nYEx0cdlZV/LnR/+w8PXH0HeR1IQWvnzA0vFw/SRIwUCvH0SCV2+EBVsKX31U9wVkaUppYbMLKeo9\n7vcAc4HdgLcXtEyN0B0PH9Ej2tA/o7XprjSGD173Lu54+IhRHZ+kNrZsbI9ow0CvH6So3W/Z2NEc\nnSgo3CmlW1JKD6UiNt/VtM/efE6PaA+uK43hipvPafGIJGXj1ok9oj2EFLX7a1R5VHnFPLjywPp7\n2r1/h5o4bqCHOvGzRw7nwZUHtnxsktrcqjH197T7bIONGyjOqXb/VaZkNLXNdzsiljT6ovZ+uYZp\nx27vHb8x7zpxHN9863F84sz+B6l138/d5ZJY1n0gWo8t7tknwbuWwtxXNJgh+syn0dA24VYx1m2c\n3O+6RXNmcOSB0zn32AP55aWnD3s+SR1mU5/pua+AC/4f7L4/LHr38OdTS7VNuFNKCxt9AQ+UPbac\nTJ20od913//VCn76u9UA7DZpfMN4N5pPUofpuUd87ivg3G/tmP7W+cObTy3XNuFWMXZ8Lrv3e1Tn\nfulnA8Q79ZlPUsc6eGvtsm+0L38RrF/dYIbUez6NCsNdMXP3eoxjZt9Ho09SN453cOzs+zyTmqTa\nGdEW/ckwow0QtZOxeCa1UWW4K+jiU/+VMdH4idQ33vddejoXnfqvozk8SW3rDDjtOzsmB402tZOw\nnOQb3KPNcFfQokPu5ZNnXdkj3n13m9+1Pd67ThrPokNuHeURSmo/ZwD/uWPy8oPr0e57eo76dPeZ\n0zzt6agr6lzlrwFeU5/cu355fERcU//36pTS+4pYl4bnfx79Q/afvoorbj6Hn/U7V3nw2R9dzUv2\nOYVpk48BdgeeBaaN/kAltYE+0WYmvHbNAOcqD89VXrKizlV+KfDRQe7yaEpp1giX7bnKmzT4Xwe7\nGTil/u/nKCre1T3VsNQeinv5aBBtnt4xWcJfB/Nc5YMrJNytZLhHQ/Hxru7zTmoPxbx8DBHtkhju\nwfket4BTgR/X/92921xStbVntDU0w6064y11DqOdM8OtHoy3VH1GO3eGW30Yb6m6jHYVGG41YLyl\n6jHaVWG4NQDjLVWH0a4Sw61BGG8pf0a7agy3hmC8pXwZ7Soy3BoG4y3lx2hXleHWMBlvKR9Gu8oM\nt3aC8Zban9GuOsOtnWS8pfZltDuB4dYIGG+p/RjtTmG4NULGW2ofRruTGG41wXhL5TPancZwq0nG\nWyqP0e5EhlsF6B/v6UwvcTxSJzgPo92ZDLcK0jvea1hT5mCkSruES4Bre1xjtDuJ4VaBTu01NY95\nJY1Dqra38/YeU/tjtDvLuLIH0Mmi7AG0wHgm8G2+zXf/13d54CsPlD2cwqVU9ghao4o/i92q+ZAd\nwa/5MX/BX3Afvy97MBplkdr8lSgilgALyh5HS7T3t745FS1Bmz9dRqyiDxdQ3adZlR+zCv/nlqaU\nFja7EHeVS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJG\nDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGxjW7gIjYEzgTOAM4HNgP\n2AzcB3wF+EpKqavZ9Uid5JknD+KJBxawZeNkxk/awP7zlrLnvo+WPSwNYPXjU3nsVzPYvGEcEyZv\n5cDDVjPjgHVlD0sV1XS4gbOBfwaeAm4BHgP2As4Crgb+NCLOTimlAtYlVdrjD8znFzecz5MPHdHv\ntn3n3MtRZ1zLAfPuLmFkauTR+/bkru/M4Ynf7Nnvtv1f/AzHvfYhDjr8mRJGpiqLZnsaEacAU4Ab\nem5ZR8TewM+BA4DXpZS+M8LlLwEWNDXIdlXlX2Wi7AG0Rit//bz/jj9l8dffQ0pjqf1w9Pwm1qYj\ntnHyef/ISxZ9v9B1V/ThAlr3NLvvxwfwwy8eTkrBwI9X4rS3/ZLDX/5E4euv8mNW4f/c0pTSwmYX\n0vR73CmlH6eUru+7OzyltAL4Qn3y5GbXI1XZ4w/M7xFt6P/KVZtOaSyLv/5XPP7A/FEdn3p79L49\ne0QbBn68gh9e9d949L7+W+TSSLX64LQt9cutLV6PlLVf3HB+j2gPLqWx/OKG81o8Ig3mru/M6RHt\nwaUU3HXdnBaPSJ2kZeGOiHHAX9Yni92vJ1XIM08eVH9Pe8dO3bHjx/DSs+cwcXKjw1ASTz50JM88\nedCojVE7rH58av097d474fc84CCOe+05DeZIPHH/nqx+fOqojE/VV8TBaQO5DDgMuDGl9IOh7lx/\nL7uReYWOSmozTzzQfQjHji24k889lHnH78MRpx7ANR+8g/XPbuoxR2yfzyPNR99jv5pR/9eOx2v2\n/KM464OXArDx+ee556YbeswR2+fzSHMVoSVb3BFxEfBe4AHg/FasQ6qKLRsn97tu6Q92BPkNly1i\nyrSJw5pPrbd5Q+/tnZ7RBrj/Jz8e1nzSSBUe7oh4J/BZ4H7g5SmlNcOZL6W0sNEXtfhLlTV+0oZ+\n161dsYH/+Mel26cbxbvRfGq9CZN3HLLTN9qff8vr2fzCC0POJzWj0HBHxLuBfwJ+RS3aK4pcvlRF\n+8/rDnTv90x//+CzA8Q79ZlPo+nAw1YDjaP9wh+eazBH6jWf1KzCwh0RHwA+DdxDLdqrilq2VGV7\n7vso+865l0YfXm0c70nsO+ce398uyYwD1nH0fz90mNEGCPZ/yTO+v63CFBLuiPgItYPRlgCnppT8\n1VLaCUedcS0R2xre1ijex/6Pm0ZraOrnVZz4+n/YPjV4tCEicdxZD43GwNQhijhz2gXANcA24Eqg\n0U/w8pTSNSNcvmdOy1FFz3xU5pnT9ps7ndf8Vc+nwv7A7wtZd0UfLqDop9mrgB1HjP/zW89lw3N/\nwDOnFay6/7lCzpxWxGGOs+uXY4F3D3CfW6nFXdIAXrLoe+y65wp+ccN5PPnQkX1uDVJazKrHvsDM\nA79Yv+4Jioy3htI72jCTV72ri7uum8MT9/c9M1pt9/hxZ3muchWv6S3uVnOLO1MV/Y15tJ4ug/91\nsJOp/T2fbs3Hu6IPF1DU06x/tOHp7VNl/HWwKj9mFf7PFbLFbbjL1N7f+uZU9InXPk+Xkyky3hV9\nuIAinmaDR7ssVX7MKvyfa48/MiKpDIuBl/eYfgLYr5yhVFp7RludzXBL2VqM8W4lo632ZLilrC3G\neLeC0Vb7MtxS9hZjvItktNXeDLdUCYsx3kUw2mp/hluqjMUY72YYbeXBcEuVshjjPRJGW/kw3FLl\nLMZ47wyjrbwYbqmSFmO8h8NoKz+GW6qsxRjvwRht5clwS5W2GOPdiNFWvgy3VHmLMd49GW3lzXBL\nHWExxhuMtqrAcEsdYzGdHW+jrWow3FJHWUxnxttoqzoMt9RxFtM33vtVOt5GW9ViuKWOtJie8X6C\nJ3gDbyhrMC1zEzdhtFU1kVIqewyDioglwIKyx9ES7f2tb06UPYDWaPOnywicDNyyfWoc49jGttJG\nU6S92IsVrOhxTbWiXdGnWE11/3NLU0oLm12IW9zSTojKfS3mG3wDgAsuuIBtsa3sARX29fTYp/nc\n5z4HwOt5PcHTZQ+p0C91Lre4y9Te3/rmVPWVpaKP2S6Td+GFF14oexiFGzNmDOO3jWcTm8oeinZG\nVV8/3OKWVJQqRhugq6vLaKtyDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMt\nSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZaSQ\ncEfEpyLi5oh4PCJeiIg1EXF3RHw0IvYsYh2SJAkipdT8QiI2A0uB+4FVwBTgOOAo4EnguJTS4yNc\n9hJgQdODbEfNf+vbV5Q9gBap6mNW1ccLqvuYVVl1fx6XppQWNruQcUWMBNgtpbSx75UR8XfAh4C/\nBt5R0LokSepYhewqbxTtum/VL+cUsR5Jkjpdqw9Oe3X98pctXo8kSR2hqF3lAETE+4CpwO7U3t9+\nKbVoXzaMeZcMcNO8wgYoSVLmCg038D5grx7T3wfekFJ6uuD1SJLUkQo5qrzfQiP2Ak6gtqW9K/Bn\nKaWlI1yWR5XnqKpHhVb1Mavq4wXVfcyqrLo/j4UcVd6S97hTSitTSv8OnA7sCXytFeuRJKnTtPTg\ntJTSo9Q+2/3HETGjleuSJKkTjMYpT/etX24bhXVJklRpTYc7IuZFxN4Nrh9TPwHLTOCnKaW1za5L\nkqROV8RR5a8ELo+I24DfAc9QO7L8JOBgYAXwlgLWI0lSxysi3D8CvggsAo4ApgHrgQeBa4ErUkpr\nCliPJEkdr+lwp5R+BbyzgLFIkqQh+Pe4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluS\npIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JbHbbruV\nPQTtpN3wMetUhlvqcDdxE8899xwXXnhh2UPRMJ3BGTzHc6xkJROYUPZwNMoipVT2GAYVEUuABWWP\noyXa+1vfnCh7AK3R5k+XEXgVcMP2qXGMYxvbyhuOhiX1evH4EPDJsobSElHR1w9gaUppYbMLcYtb\n6li9o302ZxvtTMxlbo+pTwB/XdZQVIJxZQ9AUhl6R3smM3map8sbjnbKQzwETAA216/5RP2yWlve\naswtbqnj9I42RjtTW6DX+9tueXcKwy11lP7RxmhnzHh3IsMtdQyjXU3Gu9MYbqkjGO1qM96dxHBL\nlWe0O4Px7hSGW6o0o91ZjHcnMNxSZRntzmS8q85wS5VktDub8a4ywy1VjtEWGO/qMtxSpRht9WS8\nq8hwS5VhtNWI8a4awy1VgtHWYIx3lRhuKXtGW8NhvKvCcEtZM9raGca7Cgy3lC2jrZEw3rkz3FKW\njLaaYbxzZril7BhtFcF452pc2QNQ6x20bjzz1+7ClK1jWD+ui7unv8CjU7eUPSwNYtNDE1h/5xS6\n1o9hzJQuphy/nolzNmO0VazueG+uT3+ifvnJ7fd4eO1EfrZiCus2j2XqhG0cu/d6Dpm+aZTHqZ5a\nFu6IOB/4Wn3yLSmlq1u1LjU2f80kzls+nSOe3aXfbfdOe4Gvz1rL3XtsLGFkGsj6Oyez+nMz2PCL\nyf1u2/PNxzHzfV/pcY3RVhEax/uup67gC/fOZMnKKf3mWLjXei48YhXH7bN+1EapHVqyqzwiDgCu\nBNa1Yvka2iuf3JXL7tmHI57dhUTqdVsiccSzu3DZPfvwyid3LWmE6uvZf9udx950QD3avR+zqSed\naLTVQv13m//8qb+rRzv1uW9iycopvO2Hs/j3h6aN3hC1XeHhjogAvgI8A3yh6OVraPPXTOI9D8xg\nLAFA1C+7dU+PJXjPAzOYv2bSqI9Rva2/czJPXbI3dHU/Vjses6knncQBV121ffrBl57A+jvd0lHR\nesf7ogUX8+bD3wx9Xj+6p7tScOmd+3HXU/23yNVardjivgg4BXgj4KtLCc5bPn17tIcyluC85dNb\nPCINZfXnZvSI9g61aO/4/ffBExaxbfVaVn9+xmgOTx1jC2/6waHbpy7eHu/GulJw1b0zR2Ng6qHQ\ncEfEi4HLgM+mlG4rctkanoPWjW+4e3wg3bvND1o3vsUj00A2PTRhgN3jDaK9Zg2Q2PBfk9n00ASk\nIj28diI/XzGB+dceuf26weOd+MXKKTy8duLoDFBAgeGOiHHAtcBjwIdGMP+SRl/AvKLG2Anmr60d\niNZ39/hAuu/XPZ9G3/o7u3c17njMJs6dO0C0d9xvx3xSMX62ovYztbVrG/Ovnb/9+osXXMwpB5zS\nYI7oNZ9GR5Fb3JcA84E3pJReKHC52glTto7sIR3pfGpe1/r+3/s9LvjL7f/uHe3B55OasW7z2O3/\n3tq1tVe8L/jjC4Y1n1qvkI+DRcQx1Lay/yGldOdIlpFSWjjAspcAC5oYXkdZP65rVOdT88ZM6f+9\nX3Hpx9i6ejXPfPFLdK1vfKhIo/mkZkydsK3X9Naurcz/2nzefuTb+eqvvzrs+dRaTYe7xy7yB4GP\nND0iNeXu6bWdHYk0rN3l3ffrnk+jb8rx3WFOdO96TFu28PSnPzPAHLX77ZhPKsaxe/f/WdyatnLl\n3VcOMEftfjvm02goYl/bVGAu8GJgY0Sk7i/go/X7fKl+3UCvRCrIo1O3cO+0F3bqPe57p3kmtTJN\nnLOZyUdtoP/HbgYSTD56Q/1MalJxDpm+iYV7rWdnfhaP2sszqY22InaVbwK+PMBtC6i973078Ftg\nRLvRtXO+Pmsth90zaVgfCdtG4uuz1o7CqDSYGe9czWNvOqDhR8L6GZOY8Y7VrR+UOtKFR6zibT+c\nRVca+mdxTCTedsSqURiVeoqUhvexoREtPOJSalvdIz7laaXf427dt55XPrnr9pOw9N1t3j29jcSn\n563m+/s+X/wAhvsLe2Za+HTh2X/bvcdJWHbsqqyvuTY9JrHPx1cw7bXPFbruij5cldbCH0Wue2g6\nH7tz33q8G/8sjonEpcf/njPnPFv4+qO6P5BLBzqea2f4R0Yq6vv7Ps/KSVsanqu8e/e45ypvL9Ne\n9xzj99vC6s/PYMN/9T1XeW33+Ix3rGbK8RtKGZ86x1lz1rLv1M1cde9MftHvXOW13eNv81zlpTHc\nFXb3Hhu5e4+n/OtgGZly/AamHP/YIH8dTBodx+2znuP2ecS/DtaGWrqrvAjuKs9URXd1tfnTZcQq\n+nBVWkV/FAF3lQ/FMzhIkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBL\nkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGRlX\n9gA6WpQ9AO2s8DHLTyp7AK3hz2LncotbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJ\nyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5J\nkjJiuCVJykgh4Y6I5RGRBvhaUcQ6JEkSjCtwWc8Bn2lw/boC1yFJUkcrMtzPppQuLXB5kiSpD9/j\nliQpI0VucU+MiPOAA4H1wC+B21JK2wpchyRJHa3IcO8NXNvnukci4o0ppVsLXI8kSR2rqHB/BfgJ\n8GvgeeBg4H8DbwW+FxHHp5TuHWwBEbFkgJvmFTRGSZKyFyml1i084u+B9wL/kVI6c4j7DhbuyUWP\nTVKHaN1LXLmi7AFoBJamlBY2u5BWh/sQ4CFgTUppzxEuYwmwoNCBSeochlvto5Bwt/qo8lX1yykt\nXo8kSR2h1eE+vn65rMXrkSSpIzQd7oj444jYo8H1BwH/VJ/8erPrkSRJxRxVfjbwwYi4BXiE2lHl\nLwLOACYBNwJ/X8B6JEnqeEWE+xbgUGA+tV3jU4Bngdupfa772tTKI+AkSeogTYe7fnIVT7AiSdIo\n8FzlkiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1J\nUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLqqz99tuPYzim7GFIhTLckipp5syZ\n3H777fyMn3E3d5c9HKkw48oeQCdLqewRtE6UPQB1vDWsYRazADiSI0lcAHy11DEVyedY53KLW1Il\nbWUrr+AVPa65BrigpNFIxTHckirrJm4Cdu1xzTUYb+XOcEuquHUYb1WJ4ZbUAYy3qsNwS+oQxlvV\nYLgldRDjrfwZbkkdxngrb4ZbUgcy3sqX4ZbUoYy38mS4JXUw4638GG5JHc54Ky+GW5KMtzJiuCUJ\nMN7KheGWpO2Mt9qf4ZakXoy32pvhlqR+jLfal+GWpIaMt9qT4ZakARlvtR/DLUmDMt5qL+PKHoBa\nb9WqP2LZstls2jSRiRM3cfDBjzBz5tNlD0vKSHe8n69PX1O//CoAW1bOYuPDC0kbpxCT1jPpkCWM\n32v5qI9SnaHQcEfEy4B3AycAewBrgPuAz6SUbixyXRrasmWzufXWE3n00Vn9bjvooOWcdNJtHHzw\nI6M+LilP/eO9ZeUs1v7Hnmx+5Mhe93wOmDD7HnY79RomHbJ0lMepqouUUjELivgw8HFgNfCfwFPA\nDGA+cEtK6f0jXO4SYEEhg2wzBX3rG1q6dD7XX/9npDQGSED0XDMQRHTx6ldfz4IF9xS+/hj6LtKo\nKP5pNpUd8YY13/4tG5aspNFzjNjG9LMuZ8rRxW+3hE+yHC1NKS1sdiGFbHFHxNnUov0j4KyU0vN9\nbh9fxHo0PMuWze4Rbeif0dp0SmO4/vpXM23ac255S8O2jo2/exmTXvQTAPY4+1AANixZ1eM+9edc\nGsva6/4PY6evcMtbhWn64LSIGAN8CtgAnNs32gAppS3NrkfDd+utJ/aI9uBSGsOtt57Y4hFJ1fKH\nH/05v7/kp9un9zj7UCYvnNn4zmksf7jZg9lUnCKOKj8BmA3cCKyNiDMi4gMRcXFEHF/A8rUTVq36\no/p72r13EE6bNo0xYxo93IlHH53FqlV/1PrBSRWwZeUsNj9yJGnz1mHGO7H5kflsWTlr1Maoaiti\nV/nR9cuVwFLg8J43RsRtwOtSSoMexlx/L7uReU2PsIMsWza7/q8du8fnzp3LOeecw/333891111H\nV1dXjzli+3weaS4NbePD3W9RBmnzNn5/yU/Z729PAGrx3rJyA1ueWNdjjtg+n0eaqwhFbHF3/4p5\nIbAL8CfUDr08DPgBcCLw7QLWo2HYtGlir+m5c+dy7rnnMmbMGPbbbz/GjWv8u1rf+SQ1ljZO6T1d\nj3fqSqQt2xgzqfFzrO980kgVscU9tn4Z1Las761P/zoizgQeBE6KiONTSncOtJCBjrSr8lHlrTBx\n4qbt/+6Odrerr76azZs3DzmfpIHFpPX9ruuO9/i9J/fZ2h58PmkkitjiXlu/XNYj2gCklF6gttUN\ncEwB69IQuo8Onzt3Tq9oX3755axf3+iFI/WaT9LgJh3S/a5enw+abe0aINqpz3xSc4oI92/rl88O\ncHt32HcpYF0awsyZT7No0e6ce+7rt183cLQBgoMOWu7729Iwjd9rORNm38Pwz1YQTJh9t+9vqzBF\nhPs2YCswJyImNLj9sPrl8gLWpSGdwWmnvWf71ODRhoguTjrpttEYmFQZu516DcS24d05trHbqV9t\n6XjUWZoOd0ppNfBNYHfgkp63RcRpwCuonQHw+82uS0M5g9pJ62ouv/xT9Wj3PXdUbbr7zGnuJpd2\nzqRDljL9rL/vEe/Gz7HuM6fm0wMEAAAIi0lEQVR58hUVqZBTnkbETOAO4BDgJ8DPgYOAM6n9BJ+b\nUhrRkeVVPjit2FOe9o42zGTZsqmlnavcszGqXbTwzMJsfHgBf7j5AjY/Mr/fbRNm381up361ZdH2\nlKdZKuSUp0Weq3wP4MPUYr0ftZP53g58MqV0VxPLNdxD6h9t2PGedRl/HczXFLWLVoa7Wxl/Hcxw\nZ6m9wt0qhnsog0e7LL6mqF209yvcyBnuLBUS7iIOTlNp2jPakqTWMdzZMtqS1IkMd5aMtiR1KsOd\nHaMtSZ3McGfFaEtSpzPc2TDakiTDnQmjLUmqMdxtz2hLknYw3G3NaEuSejPcbctoS5L6M9xtyWhL\nkhoz3G3HaEuSBma424rRliQNznC3DaMtSRqa4W4LRluSNDyGu3RGW5I0fIa7VB/GaEuSdobhLsnZ\nZ58NfLzHNUZbkjQ0w12So48+usfUfIy2JGk4xpU9gE71/ve/nxUrVvCNb3yDp556quzhSJUVZQ9A\nKliklMoew6AiYgmwoOxxSJLUpKUppYXNLsRd5ZIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KU\nEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIk\nZcRwS5KUkabDHRFviIg0xNe2IgYrSVKnG1fAMu4BPjbAbS8DTgG+V8B6JEnqeE2HO6V0D7V49xMR\nd9b/+cVm1yNJklr4HndEHAYcB/weuKFV65EkqZO08uC0t9Uvv5xS8j1uSZIKUMR73P1ExC7AeUAX\ncPUw51kywE3zihqXJEm5a9UW958D04DvpZQeb9E6JEnqOC3Z4gbeWr+8argzpJQWNrq+viW+oIhB\nSZKUu8K3uCPiJcAJwBPAjUUvX5KkTtaKXeUelCZJUosUGu6ImAScT+2gtC8XuWxJklT8FvfZwHTg\nRg9KkySpeEWHu/ugNM+UJklSCxQW7oh4MfBSPChNkqSWKezjYCml3wBR1PIkSVJ//j1uSZIyYrgl\nScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhu\nSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScpIDuGeVfYAJEkqwKwiFjKuiIW02B/ql8tHYV3z\n6pcPjMK6VAwfs/z4mOXHx6x5s9jRs6ZESqmI5VRCRCwBSCktLHssGh4fs/z4mOXHx6y95LCrXJIk\n1RluSZIyYrglScqI4ZYkKSOGW5KkjHhUuSRJGXGLW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhu\nSZIyYrglScqI4QYiYv+I+JeIeDIiNkXE8oj4TERML3ts6i0i9oyIN0fEv0fEwxHxQkQ8FxG3R8Sb\nIsKf6UxExPkRkepfby57PGosIl4WEd+JiKfqr49PRcRNEfGqssfWqXL4e9wtFREvAn4KzAS+S+3v\nzR4DXAy8MiIWpZSeKXGI6u1s4J+Bp4BbgMeAvYCzgKuBP42Is5NnFmprEXEAcCWwDpha8nA0gIj4\nMPBxYDXwn9SedzOA+cDJwI2lDa6DdfyZ0yLiB8DpwEUppSt7XP+PwHuAq1JKF5Y1PvUWEacAU4Ab\nUkpdPa7fG/g5cADwupTSd0oaooYQEQH8EJgNXAe8D3hLSunqUgemXiLibOBbwI+As1JKz/e5fXxK\naUspg+twHb1bMSIOphbt5cDn+tz8UWA9cH5ETBnloWkAKaUfp5Su7xnt+vUrgC/UJ08e9YFpZ1wE\nnAK8kdpzTG2m/pbTp4ANwLl9ow1gtMvT0eGm9uIBcFODEDwP3AFMBo4b7YFpRLpfSLaWOgoNKCJe\nDFwGfDaldFvZ49GATqC2R+RGYG1EnBERH4iIiyPi+JLH1vE6/T3uQ+uXDw5w+0PUtsjnAjePyog0\nIhExDvjL+uT3yxyLGqs/RtdSOy7hQyUPR4M7un65ElgKHN7zxoi4jdpbUk+P9sDkFvfu9cvnBri9\n+/ppozAWNecy4DDgxpTSD8oejBq6hNpBTW9IKb1Q9mA0qJn1ywuBXYA/AXal9hz7AXAi8O1yhqZO\nD/dQon7Z2UfwtbmIuAh4L7VPBJxf8nDUQEQcQ20r+x9SSneWPR4NaWz9MqhtWd+cUlqXUvo1cCbw\nBHCSu83L0enh7t6i3n2A23frcz+1mYh4J/BZ4H7g5SmlNSUPSX302EX+IPCRkoej4Vlbv1yWUrq3\n5w31vSXde7WOGdVRCTDcv61fzh3g9jn1y4HeA1eJIuLdwD8Bv6IW7RUlD0mNTaX2HHsxsLHHSVcS\ntU9vAHypft1nShuleup+bXx2gNu7w77LKIxFfXT6wWm31C9Pj4gxfT4XvCuwCHgBuKuMwWlgEfEB\nau9r3wOcllJaXfKQNLBNwJcHuG0Btfe9b6cWC3ejt4fbqH06Y05ETEgpbe5z+2H1y+WjOioBHR7u\nlNLvIuImakeOv5PamZy6fYzaiT6uSin5WdM2EhEfAf4WWAKc7u7x9lbftdrwlKYRcSm1cH/VE7C0\nj5TS6oj4JvB6agcVfrj7tog4DXgFtbcQ/QRHCTo63HXvoHbK0ysi4lTgN8CxwMup7SL/mxLHpj4i\n4gJq0d4G/AS4qHYirl6Wp5SuGeWhSVXzV9ReC/8mIk6kdmbCg6gdnLaN2tnuBtqVrhbq+HDXt7qP\nohaDVwKvonY+3iuAj7k113Zm1y/HAu8e4D63AteMymikikoprYqIY6ltbZ9J7URUzwM3AJ9MKfkW\nYkk6/lzlkiTlpNOPKpckKSuGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYk\nKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSP/H0oaL9Hmtt6WAAAA\nAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981ce7c88>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"504ecbb6840f4892a7ccb13931476d8a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"50a37b8fbdd04bd49fb198f11acdcfc5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"50d020c840714597996547b1913c7eed": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_20de5213b4fe4f16ab121791886f82e8", | |
"IPY_MODEL_490b069eeefe4c8e98bac096d886e38b", | |
"IPY_MODEL_fb30d2adabc74ae7aa7b8513b55accc5", | |
"IPY_MODEL_0669f079eac74ecbadfb86099b9e314d" | |
], | |
"layout": "IPY_MODEL_6001462796dd42b79e94bd15a0054c5d" | |
} | |
}, | |
"50f0a7073db54ee78a81781a1699e4a2": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_a11844dd37134c33807b6b1fe59b8842", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF51JREFUeJzt3WusZXd53/HfA5MUMLa5ydAqFBuK\nMY2jFJsYmzsmOATaCijuizQOoEBKoTIQkEjBXCMUUJOGWxsIEJyQF01SSqMEAy7EwhBAVONAytUE\nmADFXAzGGGe4mX9f7D3ieDzH9sxe+6zzzP58pNHy2evM+j/izDlf1tpr71NjjAAAPdxi7gEAgJtP\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAa2TP3ADelqj6f5Lgk+2YeBQCO1IlJvj3GOGnVA+36cGcR7Tss/wDARutwqXzf3AMAwAT2\nTXGQDuEGAJaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoZLJwV9VPVdUfVNWXq+p7VbWvql5ZVbefag0A2HR7\npjhIVd0jyQeSnJDkz5N8KskZSZ6R5JFV9YAxxjemWAsANtlUZ9z/LYtonz/GeMwY4zfGGGcn+d0k\n90rysonWAYCNVmOM1Q5Qdfckn02yL8k9xhg/2rLv2CRXJKkkJ4wxrj2C4+9NctpKQwLA/C4bY5y+\n6kGmOOM+e7m9eGu0k2SMcU2Sv05ymyRnTrAWAGy0KZ7jvtdye/k2+z+T5JwkJyd5z3YHWZ5ZH8op\nRz4aABxdpjjjPn65vXqb/Qcev90EawHARpvkrvKbUMvtjT6Zvt11f89xA8CPTXHGfeCM+vht9h93\n0OcBAEdoinB/erk9eZv991xut3sOHAC4maYI9yXL7TlVdb3jLV8O9oAk+5N8aIK1AGCjrRzuMcZn\nk1yc5MQkTz9o90uSHJPkj47kNdwAwPVNdXPa07J4y9NXV9XDk3wyyf2SPCyLS+TPn2gdANhok7zl\n6fKs+75JLswi2M9Oco8kr05ylvcpB4BpTPZysDHGF5M8aarjAQA35PdxA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCN7Jl7gE025h5gjWruAeAo5+fH5nLGDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajk4S7qh5f\nVa+pqvdV1beralTVH09xbADgx/ZMdJwLkvxsku8k+VKSUyY6LgCwxVSXyp+V5OQkxyX5DxMdEwA4\nyCRn3GOMSw78d1VNcUgA4BDcnAYAjUz1HPfKqmrvNrs8Xw4AS864AaCRXXPGPcY4/VCPL8/ET9vh\ncQBgV3LGDQCNCDcANCLcANCIcANAI5PcnFZVj0nymOWHd1luz6qqC5f/feUY4zlTrAUAm2yqu8r/\nRZInHPTY3Zd/kuTvkwg3AKxokkvlY4wXjzHqRv6cOMU6ALDpPMcNAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3k3vZ\n3AMALe1P8pi5h2hgz9wDcHT5myQXzD0E0M7+JLeZe4gmhHtGNfcAHLYx9wBrcjT/W/Q142jjUjkA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0AjK4e7qu5YVU+uqrdV1d9V1f6qurqq3l9Vv1pV/s8BAExkzwTH\nODfJ7yW5IsklSb6Q5M5JHpfkjUl+sarOHWOMCdYCgI02RbgvT/Kvk7x9jPGjAw9W1fOSfDjJv8ki\n4m+dYC0A2GgrX8YeY/zVGOMvtkZ7+fhXkrxu+eFDV10HAFj/zWk/WG5/uOZ1AGAjrC3cVbUnya8s\nP3znutYBgE0yxXPc23l5klOTXDTGeNdNfXJV7d1m1ymTTgUAja3ljLuqzk/y7CSfSnLeOtYAgE00\n+Rl3VT09yauSfCLJw8cY37w5f2+Mcfo2x9ub5LTpJgSAviY9466qZyZ5bZKPJXnY8s5yAGAik4W7\nqp6b5HeTfCSLaH9tqmMDAAuThLuqXpDFzWh7s7g8fuUUxwUArm/l57ir6glJXprkuiTvS3J+VR38\nafvGGBeuuhYAbLopbk47abm9ZZJnbvM5701y4QRrAcBGq93+uz/cVc5usru/W47cDa6RHUV8zdhF\nLtvuFVSHw6/cBIBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTP3ANAJzX3ABw2XzOONs64AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhkknBX1Suq6j1V9cWq2l9V36yqv6mqF1XVHadYAwBIaoyx+kGqvp/k\nsiSfSPK1JMckOTPJfZN8OcmZY4wvHuGx9yY5beUhAWBel40xTl/1IHummCTJcWOM7x78YFW9LMnz\nkvynJE+baC0A2FiTXCo/VLSX/nS5vecU6wDAplv3zWn/arn92zWvAwAbYapL5UmSqnpOktsmOT6L\n57cfmEW0X34z/u7ebXadMtmAANDcpOFO8pwkd97y8TuTPHGM8fWJ1wGAjTTJXeU3OGjVnZPcP4sz\n7WOT/MsxxmVHeCx3lQNwNJjkrvK1PMc9xvjqGONtSc5Jcsckf7SOdQBg06z15rQxxt9n8drun66q\nO61zLQDYBDvxlqf/ZLm9bgfWAoCj2srhrqpTquouh3j8Fss3YDkhyQfGGFetuhYAbLop7ip/ZJL/\nXFWXJvlskm9kcWf5Q5LcPclXkjxlgnUAYONNEe53J/n9JA9I8rNJbpfk2iSXJ3lLklePMb45wToA\nsPFWDvcY42NJnj7BLADATfD7uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARvbMPQB09OYkT5x7iAnV3ANw2Mbc\nA6yRf483zhk3HIEnJblw7iGAjSTccBi+veW/xRuYg3DDYTg24g3MS7jhMIk3MCfhhiMg3sBchBuO\nkHgDcxBuWIF4AztNuGFF4g3sJOGGCYg3sFOEGyYi3sBOEG6YkHgD6ybcMDHxBtZJuGENxBtYF+GG\nNRFvYB2EG9ZIvIGpCTesmXgDUxJu2AHiDUxFuGGHiDcwBeGGHSTewKqEG3aYeAOrWFu4q+q8qhrL\nP09e1zrQkXgDR2ot4a6quyZ5TZLvrOP4cDQQb+BITB7uqqokb07yjSSvm/r4cDQRb+BwreOM+/wk\nZ2fxM+jaNRwfjiriDRyOScNdVfdO8vIkrxpjXDrlseFodqh4vzTJj+YZB9jF9kx1oKrak+QtSb6Q\n5HlH8Pf3brPrlFXmgi4OxPu45ccvyuKS1StmmwjYjaY8435hkvskeeIYY/+Ex4WNcWySr275+OK5\nBgF2rUnOuKvqjCzOsn9njPHBIznGGOP0bY69N8lpK4wHrZyQ5MtJnpXkDTPPAuw+K4d7yyXyy5O8\nYOWJgPzjJP997iGAXWmKS+W3TXJyknsn+e6WN10ZWTxNlyRvWD72ygnWA4CNNcWl8u8ledM2+07L\n4nnv9yf5dJIjuowOACysHO7ljWiHfEvTqnpxFuH+wzHGG1ddCwA2nV8yAgCNCDcANFJjjLlnuFFe\nDsZusru/W45czT0Ah+1o/beYHNX/Hi/b7qXPh8MZNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCN75h4A\nOqm5B4Al/xY3lzNuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARiYJd1Xtq6qxzZ+vTLEGAJDsmfBYVyd5\n5SEe/86EawDARpsy3N8aY7x4wuMBAAfxHDcANDLlGfc/qqpfTvJPk1yb5G+TXDrGuG7CNQBgo00Z\n7rskectBj32+qp40xnjvhOsAwMaaKtxvTvK+JB9Pck2Suyf5j0l+Lck7quqsMcZHb+wAVbV3m12n\nTDQjALRXY4z1Hbzqt5M8O8n/GmM89iY+98bCfZupZwOAHXbZGOP0VQ+y7nD/sySfSfLNMcYdj/AY\ne5OcNulgALDzJgn3uu8q/9pye8ya1wGAjbDucJ+13H5uzesAwEZYOdxV9dNVdYdDPH63JK9dfvjH\nq64DAExzV/m5SX6jqi5J8vks7iq/R5JHJ7lVkouS/PYE6wDAxpsi3JckuVeS+2RxafyYJN9K8v4s\nXtf9lrHOO+AAYIOsHO7lm6t4gxUA2AHeqxwAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRPXMPsMnG3AOs\nUc09ACwdrd9nvsc2lzNuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABqZNNxV9aCqemtVXVFV31tu\nL66qR025DgBsqj1THaiqLkjym0muTPKXSa5Icqck90ny0CQXTbUWAGyqScJdVedmEe13J3ncGOOa\ng/b/xBTrAMCmW/lSeVXdIskrkvxDkl86ONpJMsb4warrAADTnHHfP8lJSf5Hkquq6tFJTk3y3SQf\nHmN8cII1AIBME+6fW26/muSyJD+zdWdVXZrk8WOMr9/YQapq7za7Tll5QgA4SkxxV/kJy+1Tk9w6\nyc8nOTaLs+53JXlwkj+bYB0A2HhTnHHfcrmtLM6sP7r8+ONV9dgklyd5SFWddWOXzccYpx/q8eWZ\n+GkTzAkA7U1xxn3Vcvu5LdFOkowx9mdx1p0kZ0ywFgBstCnC/enl9lvb7D8Q9ltPsBYAbLQpwn1p\nkh8muWdV/eQh9p+63O6bYC0A2Ggrh3uMcWWSP0lyfJIXbt1XVY9I8gtJrk7yzlXXAoBNN9Vbnv56\nkvsleX5VPTjJh5PcLcljk1yX5CljjO0upQMAN9Mk4R5jfK2q7pfkgixifWaSa5K8PclvjTE+NMU6\nALDpaowx9ww36mh+Odju/l9+NTX3ALB0tH6f+R5r6bLtXvp8OPw+bgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuJvf9uQeA\nLa6aewCYmHAzqf1JHjj3ELDFHZJcO/cQMCHhZjL7k9wmyf+ZexDY4lZJ/u/cQ8CE9sw9wCaruQeA\nDfDdJGfNPQRMyBk3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAIyuHu6qeWFXjJv5cN8WwALDp9kxwjI8k\neck2+x6U5Owk75hgHQDYeCuHe4zxkSzifQNV9cHlf/7+qusAAGt8jruqTk1yZpL/l+Tt61oHADbJ\nOm9O+/fL7ZvGGJ7jBoAJTPEc9w1U1a2T/HKSHyV54838O3u32XXKVHMBQHfrOuP+t0lul+QdY4wv\nrmkNANg4aznjTvJry+3rb+5fGGOcfqjHl2fip00xFAB0N/kZd1X98yT3T/KlJBdNfXwA2GTruFTu\npjQAWJNJw11Vt0pyXhY3pb1pymMDANOfcZ+b5PZJLnJTGgBMb+pwH7gpzTulAcAaTBbuqrp3kgfG\nTWkAsDaTvRxsjPHJJDXV8QCAG/L7uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARjqE+8S5BwCACZw4xUH2THGQ\nNfv2crtvB9Y6Zbn91A6sxTR8zfrxNevH12x1J+bHPVtJjTGmOM5Roar2JskY4/S5Z+Hm8TXrx9es\nH1+z3aXDpXIAYEm4AaAR4QaARoQbABoRbgBoxF3lANCIM24AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhDtJVf1UVf1BVX25qr5XVfuq6pVVdfu5Z+P6quqOVfXkqnpbVf1dVe2vqqur6v1V9atV\n5d90E1V1XlWN5Z8nzz0Ph1ZVD6qqt1bVFcufj1dU1cVV9ai5Z9tUHX4f91pV1T2SfCDJCUn+PIvf\nN3tGkmckeWRVPWCM8Y0ZR+T6zk3ye0muSHJJki8kuXOSxyV5Y5JfrKpzh3cW2tWq6q5JXpPkO0lu\nO/M4bKOqLkjym0muTPKXWXzf3SnJfZI8NMlFsw23wTb+ndOq6l1Jzkly/hjjNVse/y9JnpXk9WOM\np841H9dXVWcnOSbJ28cYP9ry+F2SfDjJXZM8fozx1plG5CZUVSX530lOSvI/kzwnyVPGGG+cdTCu\np6rOTfKnSd6d5HFjjGsO2v8TY4wfzDLchtvoy4pVdfcsor0vyX89aPeLklyb5LyqOmaHR2MbY4y/\nGmP8xdZoLx//SpLXLT986I4PxuE4P8nZSZ6UxfcYu8zyKadXJPmHJL90cLSTRLTns9HhzuKHR5Jc\nfIgQXJPkr5PcJsmZOz0YR+TAD5IfzjoF26qqeyd5eZJXjTEunXsetnX/LK6IXJTkqqp6dFU9t6qe\nUVVnzTzbxtv057jvtdxevs3+z2RxRn5ykvfsyEQckarak+RXlh++c85ZOLTl1+gtWdyX8LyZx+HG\n/dxy+9UklyX5ma07q+rSLJ6S+vpOD4Yz7uOX26u32X/g8dvtwCys5uVJTk1y0RjjXXMPwyG9MIub\nmp44xtg/9zDcqBOW26cmuXWSn09ybBbfY+9K8uAkfzbPaGx6uG9KLbebfQffLldV5yd5dhavCDhv\n5nE4hKo6I4uz7N8ZY3xw7nm4SbdcbiuLM+v3jDG+M8b4eJLHJvlSkoe4bD6PTQ/3gTPq47fZf9xB\nn8cuU1VPT/KqJJ9I8rAxxjdnHomDbLlEfnmSF8w8DjfPVcvt58YYH926Y3m15MBVrTN2dCqSCPen\nl9uTt9l/z+V2u+fAmVFVPTPJa5N8LItof2XmkTi022bxPXbvJN/d8qYrI4tXbyTJG5aPvXK2Kdnq\nwM/Gb22z/0DYb70Ds3CQTb857ZLl9pyqusVBrws+NskDkuxP8qE5hmN7VfXcLJ7X/kiSR4wxrpx5\nJLb3vSRv2mbfaVk87/3+LGLhMvrucGkWr864Z1X95Bjj+wftP3W53bejU5Fkw8M9xvhsVV2cxZ3j\nT8/inZwOeEkWb/Tx+jGG15ruIlX1giQvTbI3yTkuj+9uy0urh3xL06p6cRbh/kNvwLJ7jDGurKo/\nSfLvsrip8IID+6rqEUl+IYunEL2CYwYbHe6lp2XxlqevrqqHJ/lkkvsleVgWl8ifP+NsHKSqnpBF\ntK9L8r4k5y/eiOt69o0xLtzh0eBo8+tZ/Cx8flU9OIt3JrxbFjenXZfFu91tdymdNdr4cC/Puu+b\nRQwemeRRWbwf76uTvMTZ3K5z0nJ7yyTP3OZz3pvkwh2ZBo5SY4yvVdX9sjjbfmwWb0R1TZK3J/mt\nMYanEGey8e9VDgCdbPpd5QDQinADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI/wftOVc8zRV6OQAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4982526748>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"510115105d334c03ad1373030fe3c445": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_4b2d6ce537814aa18f45f17508ca7061", | |
"IPY_MODEL_dffcd1e335a441b2b47f3bb5788345b6", | |
"IPY_MODEL_7c4ad4e42e614b6c84b2793bab7573ca" | |
], | |
"layout": "IPY_MODEL_1da215568c4f443fba3d6c3243d03b2b" | |
} | |
}, | |
"510e65d6133b485bab8ebfdf505c1a9d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"51696c274d7941d6b3b54b04614320ce": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"51c7b3ae4cab483aaf051d08f5f2fd3f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"51d9df5674154b8789ad59a5b40fb7e7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_38e796369c024b8582833c6d0124c9e2", | |
"IPY_MODEL_352e2128f54e449d8e322f7c046dac48", | |
"IPY_MODEL_f9da394e9f3a4407894764412518298a", | |
"IPY_MODEL_b129be78f4484fe880f5c056da941c25", | |
"IPY_MODEL_29f8a4e3565a40589e7f7717965eab9c" | |
], | |
"layout": "IPY_MODEL_d0b2a34585cd4fa585e7e5b8b90b3775" | |
} | |
}, | |
"51edbfb857b2498e974c2de0a38d6cc8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "z", | |
"layout": "IPY_MODEL_6c846fb0fdef4944a315fdcc589543ac", | |
"max": 63, | |
"style": "IPY_MODEL_e9233b3174d74274a70db43f14cda7d3" | |
} | |
}, | |
"52028c3485884ad7b8cb2548f73946cb": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_74062b9f2159431aa03140d85ea10764", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGaRJREFUeJzt3WuQbWdd5/HfPxxQCCRBmEBNyZCL\nCWGM5ZBgIEQgBIgI4xQgmRdquJTgMMQJOFCDwx0tS3BUrjOCgEbDG3UYxhICZBJShJtF1cmAxTUY\nOAJDuISQCxhu4ZkXex/Sp9N9zunea/faT6/Pp6prde/VZ62n0pdv1nqevbtaawEA+nDE2AMAAA6f\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB3ZM/YADqWqPp/kqCT7Rh4KAGzXcUluaq0dv+iBVj7cmUX7J+ZvADBpPdwq3zf2AABg\nAPuGOEgP4QYA5oQbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0JHBwl1VP1lVf1ZVX66q71bVvqp6dVXdfahz\nAMDU7RniIFV1YpIPJTk2yd8m+XSSM5I8O8ljquqs1to3hjgXAEzZUFfc/yOzaF/YWnt8a+23W2vn\nJHlVkvsl+b2BzgMAk1attcUOUHVCkmuS7EtyYmvth2v23S3JtUkqybGttW9v4/h7k5y20CABYHxX\ntdZOX/QgQ1xxnzPfXro22knSWrs5yQeT3CXJgwc4FwBM2hBz3Pebb6/eZP9nk5yb5OQkl292kPmV\n9UZO2f7QAGB3GeKK++j59sZN9u9//JgBzgUAkzbIqvJDqPn2oJPpm933N8cNALcZ4op7/xX10Zvs\nP2rd5wEA2zREuD8z3568yf6T5tvN5sABgMM0RLivmG/PraoDjjd/OthZSW5J8vcDnAsAJm3hcLfW\nrklyaZLjklywbvfLkxyZ5C+38xxuAOBAQy1Oe1ZmL3n62qp6ZJJPJXlQkkdkdov8hQOdBwAmbZCX\nPJ1fdT8wyUWZBfu5SU5M8tokZ3qdcgAYxmBPB2utfTHJ04Y6HgBwe/4eNwB0RLgBoCPCDQAdEW4A\n6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcA\ndES4AaAje8YewJS1sQewRDX2AGCX8/tjulxxA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0R\nbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4M\nEu6qelJVva6q3l9VN1VVq6q3DnFsAOA2ewY6zouS/GySbyX5UpJTBjouALDGULfKfyvJyUmOSvIf\nBzomALDOIFfcrbUr9r9fVUMcEgDYgMVpE/GdJG3sQQCwsKHmuBdWVXs32WW+fEE3Jjk3s0UIb0zi\nnghwuN6R5HlJPjP2QPgRV9wTcFmSjyR5U5Jj4sobOHxfjWivmpW54m6tnb7R4/Mr8dN2eDi7yi8n\neUSSK5LclFm8b4grb+DQzk3y1iSf2MFz/v4OnqtHKxNuluu9Sc6JeANbc58kv7rD5xTug3OrfELe\nm9mVd3JbvN02B+iLcE+MeAP0TbgnSLwB+jXIHHdVPT7J4+cf3nu+PbOqLpq/f11r7XlDnIthmPMG\n6NNQi9P+TZKnrHvshPlbkvxTZk8FZIWIN0B/BrlV3lp7WWutDvJ23BDnYXhumwP0xRw34g3QEeEm\niXgD9EK4+RHxBlh9ws0BxBtgtQk3tyPeAKtLuNmQeAOsJuFmU+INsHqEm4MSb4DVItwckngDrA7h\n5rCIN8BqEG4Om3gDjE+42RLxBhiXcLNl4g0wHuFmW8QbYBzCzbaJN8DOE24WIt4AO0u4WdhG8QZg\nOYSbQayPNwDLIdwMZm28AViOPWMPYMpq7AGwZbt1/n43fy/6mrHbuOIGgI4INwB0RLgBoCPCDQAd\nEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCO\nCDcAdES4AaAjC4e7qu5RVU+vqrdX1T9W1S1VdWNVfaCqfr2q/M8BAAxkzwDHOC/JnyS5NskVSb6Q\n5F5JnpjkzUl+sarOa621Ac4FAJM2RLivTvLvkryztfbD/Q9W1QuSfCTJL2cW8bcNcC4AmLSFb2O3\n1t7bWvu7tdGeP/6VJG+Yf3j2oucBAJa/OO378+0PlnweAJiEpYW7qvYkefL8w3cv6zwAMCVDzHFv\n5hVJTk1ySWvtPYf65Krau8muUwYdFQB0bClX3FV1YZLnJvl0kvOXcQ4AmKLBr7ir6oIkr0nyySSP\nbK1dfzj/rrV2+ibH25vktOFGCAD9GvSKu6qek+T1ST6e5BHzleUAwEAGC3dVPT/Jq5J8NLNof22o\nYwMAM4OEu6penNlitL2Z3R6/bojjAgAHWniOu6qekuR3ktya5P1JLqyq9Z+2r7V20aLnAoCpG2Jx\n2vHz7R2SPGeTz3lfkosGOBcATFqt+t/+sKqcVbLaPy3bd7t7ZLuIrxkr5KrNnkG1Ff7kJgB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0BHhBoCOCDdsQRt7AMDkCTdswTERb2Bcwg1bcFPEGxjXnrEHAL25Kf6Ptyc19gBgYH7/AEBHhBsA\nOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4MEu6qemVVXV5VX6yqW6rq+qr6v1X10qq6xxDnAACSaq0t\nfpCq7yW5Ksknk3wtyZFJHpzkgUm+nOTBrbUvbvPYe5OctvAgAWBcV7XWTl/0IHuGGEmSo1pr31n/\nYFX9XpIXJPmvSZ410LkAYLIGuVW+UbTn/nq+PWmI8wDA1C17cdovzbf/sOTzAMAkDHWrPElSVc9L\nctckR2c2v/3zmUX7FYfxb/dusuuUwQYIAJ0bNNxJnpfkXms+fneSp7bWvj7weQBgkgZZVX67g1bd\nK8lDMrvSvluSf9tau2qbx7KqHIDdYJBV5UuZ426tfbW19vYk5ya5R5K/XMZ5AGBqlro4rbX2T5k9\nt/unq+qeyzwXAEzBTrzk6b+cb2/dgXMBwK62cLir6pSquvcGjx8xfwGWY5N8qLX2zUXPBQBTN8Sq\n8sck+W9VdWWSa5J8I7OV5Q9PckKSryR5xgDnAYDJGyLclyX50yRnJfnZJMck+XaSq5NcnOS1rbXr\nBzgPAEzewuFurX08yQUDjAUAOAR/jxsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeE\nGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQkT1jDwB60sYewJLU2ANg\ny3br92Li+/FQXHEDQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg1bcP7YAwAmT7hhC96a5PKxBwFM\nmnDDFj0qyc1jDwKYLOGGbThq7AEAkyXcsAWvW/O++W5gDMINW/CbSY6bv2++GxiDcMMWXbPmffPd\nwE4TbtiiI3JgvM13AztJuGEbToj5bmAcwg3bZL4bGINwwwLMdwM7TbhhAea7gZ0m3LAg893AThJu\nGID5bmCnLC3cVXV+VbX529OXdR5YFea7gZ2wlHBX1X0yu3v4rWUcH1aR+W5gJwwe7qqqJH+e5BtJ\n3jD08WGVme8Glm0ZV9wXJjknydOSfHsJx4eVZr4bWKZBw11V90/yiiSvaa1dOeSxoSfmu4Fl2TPU\ngapqT5KLk3whyQu28e/3brLrlEXGBWPYP9994vzjo5K08YYD7CJDXnG/JMkDkjy1tXbLgMeFLpnv\nBpZhkHBX1RmZXWX/UWvtw9s5Rmvt9I3eknx6iDHCGMx3A0NbONxrbpFfneTFC48Idhnz3cCQhrji\nvmuSk5PcP8l31rzoSkvy0vnnvGn+2KsHOB90xfO7gSENsTjtu0nessm+0zKb9/5Aks8k2dZtdOjd\n/vnu/zT/+PzMblMBbFW1try1rlX1ssyuup/RWnvzNo+xN7P/AYDRLfrTcnySffP3L0vyyAWPN5Qa\newBs2W5+lsIu/n68ar52ayH+yAjsIPPdwKKEG3aQ+W5gUUsNd2vtZa212u5tctiNPL8bWIQrbhiB\n53cD2yXcMBLz3cB2CDeMxHw3sB3CDSMy3w1slXDDyMx3A1sh3LACzHcDh0u4YQWY7wYOl3DDijDf\nDRwO4YYVYr4bOBThhhVjvhs4GOGGFWO+GzgY4YYVZL4b2Ixww4oy3w1sRLhhhZnvBtYTblhh5ruB\n9YQbVpz5bmAt4YYOmO8G9hNu6IT5biARbuiG+W4gSfaMPQDoSY09gHVWbTzsHF/76XLFDQAdEW4A\n6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcA\ndES4AaAjwg0AHRFuAOiIcANARwYJd1Xtq6q2ydtXhjgHAJDsGfBYNyZ59QaPf2vAcwDApA0Z7hta\nay8b8HgAwDrmuAGgI0Necf9YVf1akn+V5NtJ/iHJla21Wwc8BwBM2pDhvneSi9c99vmqelpr7X0D\nngcAJmuocP95kvcn+USSm5OckOQ3k/xGkndV1ZmttY8d7ABVtXeTXacMNEYA6F611pZ38Ko/TPLc\nJP+7tfaEQ3zuwcJ9l6HHBgA77KrW2umLHmTZ4f6pJJ9Ncn1r7R7bPMbeJKcNOjAA2HmDhHvZq8q/\nNt8eueTzAMAkLDvcZ863n1vyeQBgEhYOd1X9dFX9xAaP3zfJ6+cfvnXR8wAAw6wqPy/Jb1fVFUk+\nn9mq8hOTPC7Jjye5JMkfDnAeAJi8IcJ9RZL7JXlAZrfGj0xyQ5IPZPa87ovbMlfAAcCELBzu+Yur\neIEVANgBXqscADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3\nAHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCO7Bl7AFPWxh7AEtXYA4C53fpz5mdsulxx\nA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4\nAaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4MGu6qemhVva2qrq2q7863l1bVY4c8DwBM1Z6h\nDlRVL0ryu0muS/KOJNcmuWeSByQ5O8klQ50LAKZqkHBX1XmZRfuyJE9srd28bv8dhzgPAEzdwrfK\nq+qIJK9M8s9JfmV9tJOktfb9Rc8DAAxzxf2QJMcn+Z9JvllVj0tyapLvJPlIa+3DA5yDBd2a5Pok\n/2LsgQCwkCHC/XPz7VeTXJXkZ9burKorkzyptfb1gx2kqvZusuuUhUc4ce9N8tQkJyW5fNyhALCg\nIVaVHzvfPjPJnZM8KsndMrvqfk+ShyX5mwHOwzbdN8kXMwv4x0YeCwCLGeKK+w7zbWV2Zb2/DZ+o\nqickuTrJw6vqzIPdNm+tnb7R4/Mr8dMGGOdknbjm/bOTfHOkcQCwuCGuuPd34HNrop0kaa3dktlV\nd5KcMcC52KYL5tsbkvxgzIEAsJAhwv2Z+faGTfbvD/udBzgX2/THa95/4WijAGBRQ4T7yswu4k6q\nqjttsP/U+XbfAOdim+6U2+ZF/mDMgQCwkIXD3Vq7LslfJTk6yUvW7quqRyf5hSQ3Jnn3oudiMR9c\n875FagB9qtba4gepOjazLvxUkvcn+Uhmi5mfkKRl9sIs21pZvpsXpy3+X37rar49JstdpFaH/hTY\nEWP8nO0EP2NdumqzhdhbMcgfGWmtfS3Jg5K8Ksl9klyY5Jwk70zy0O1Gm+FZpAbQt0GuuJfJFfew\nvpfkx+bv/5fMXqt2GVwNsCpW+zfc9vkZ69LqXHHTD4vUAPom3BNkkRpAv4R7gta+Es7ZYw0CgG0R\n7omySA2gT8I9UV5JDaBPwj1RFqkB9Em4J8wiNYD+CPeEWaTGFFw+9gBgYMI9cRapsds9KsnNYw8C\nBiTcE2eRGlNw1NgDgAEJ98RZpMZUPHnsAcBAhBuL1NjVjptvL475bnYH4cYiNXa1a9a8b76b3UC4\nSWKRGrvXETkw3ua76Z1wk8QiNXa3E5K8bs3H5rvpmb/HPaJV+y9/x9x2tb3o2PytYFbF2u/l45Ps\nm79/WZJH7vhohuNnrEv+HjfDskiN3c58N7uBcPMjFqmx25nvZjcQbg5gkRq7nfluerfn0J/Csqz6\nHNUdxx4ADOBQP2cXz9+gF664AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPC\nDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoyMLhrqqnVlU7xNutQwwW\nAKZuzwDH+GiSl2+y76FJzknyrgHOAwCTt3C4W2sfzSzet1NVH56/+6eLngcAWOIcd1WdmuTBSf5f\nkncu6zwAMCXLXJz2H+bbt7TWzHEDwACGmOO+naq6c5JfS/LDJG8+zH+zd5Ndpww1LgDo3bKuuP99\nkmOSvKu19sUlnQMAJmcpV9xJfmO+fePh/oPW2ukbPT6/Ej9tiEEBQO8Gv+Kuqn+d5CFJvpTkkqGP\nDwBTtoxb5RalAcCSDBruqvrxJOdntijtLUMeGwAY/or7vCR3T3KJRWkAMLyhw71/UZpXSgOAJRgs\n3FV1/yQ/H4vSAGBpBns6WGvtU0lqqOMBALfn73EDQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOtJDuI8bewAA\nMIDjhjjIniEOsmQ3zbf7duBcp8y3n96BczEMX7P++Jr1x9dsccfltp4tpFprQxxnV6iqvUnSWjt9\n7LFweHzN+uNr1h9fs9XSw61yAGBOuAGgI8INAB0RbgDoiHADQEesKgeAjrjiBoCOCDcAdES4AaAj\nwg0AHRFuAOiIcANAR4QbADoi3Emq6ier6s+q6stV9d2q2ldVr66qu489Ng5UVfeoqqdX1dur6h+r\n6paqurGqPlBVv15Vvqc7UVXnV1Wbvz197PGwsap6aFW9raqunf9+vLaqLq2qx449tqnq4e9xL1VV\nnZjkQ0mOTfK3mf292TOSPDvJY6rqrNbaN0YcIgc6L8mfJLk2yRVJvpDkXkmemOTNSX6xqs5rXllo\npVXVfZK8Lsm3ktx15OGwiap6UZLfTXJdkndk9nN3zyQPSHJ2kktGG9yETf6V06rqPUnOTXJha+11\nax7/4yS/leSNrbVnjjU+DlRV5yQ5Msk7W2s/XPP4vZN8JMl9kjyptfa2kYbIIVRVJfk/SY5P8r+S\nPC/JM1prbx51YBygqs5L8tdJLkvyxNbazev237G19v1RBjdxk76tWFUnZBbtfUn++7rdL03y7STn\nV9WROzw0NtFae29r7e/WRnv++FeSvGH+4dk7PjC24sIk5yR5WmY/Y6yY+ZTTK5P8c5JfWR/tJBHt\n8Uw63Jn98kiSSzcIwc1JPpjkLkkevNMDY1v2/yL5waijYFNVdf8kr0jymtbalWOPh009JLM7Ipck\n+WZVPa6qnl9Vz66qM0ce2+RNfY77fvPt1Zvs/2xmV+QnJ7l8R0bEtlTVniRPnn/47jHHwsbmX6OL\nM1uX8IKRh8PB/dx8+9UkVyX5mbU7q+rKzKakvr7TA8MV99Hz7Y2b7N//+DE7MBYW84okpya5pLX2\nnrEHw4Zektmipqe21m4ZezAc1LHz7TOT3DnJo5LcLbOfsfckeViSvxlnaEw93IdS8+20V/CtuKq6\nMMlzM3tGwPkjD4cNVNUZmV1l/1Fr7cNjj4dDusN8W5ldWV/eWvtWa+0TSZ6Q5EtJHu62+TimHu79\nV9RHb7L/qHWfx4qpqguSvCbJJ5M8orV2/chDYp01t8ivTvLikYfD4fnmfPu51trH1u6Y3y3Zf1fr\njB0dFUmE+zPz7cmb7D9pvt1sDpwRVdVzkrw+ycczi/ZXRh4SG7trZj9j90/ynTUvutIye/ZGkrxp\n/tirRxsla+3/3XjDJvv3h/3OOzAW1pn64rQr5ttzq+qIdc8LvluSs5LckuTvxxgcm6uq52c2r/3R\nJI9urV038pDY3HeTvGWTfadlNu/9gcxi4Tb6argys2dnnFRVd2qtfW/d/lPn2307OiqSTDzcrbVr\nqurSzFaOX5DZKznt9/LMXujjja01zzVdIVX14iS/k2RvknPdHl9t81urG76kaVW9LLNw/4UXYFkd\nrbXrquqvkvxqZosKX7R/X1U9OskvZDaF6BkcI5h0uOeeldlLnr62qh6Z5FNJHpTkEZndIn/hiGNj\nnap6SmbRvjXJ+5NcOHshrgPsa61dtMNDg93mP2f2u/CFVfWwzF6Z8L6ZLU67NbNXu9vsVjpLNPlw\nz6+6H5hZDB6T5LGZvR7va5O83NXcyjl+vr1Dkuds8jnvS3LRjowGdqnW2teq6kGZXW0/IbMXoro5\nyTuT/H5rzRTiSCb/WuUA0JOpryoHgK4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCO/H+nah6PBB8qogAAAABJRU5ErkJg\ngg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498205ccc0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"52166c7692dd45f3aeefa75831427bfe": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"521d4c97ad504442a3e96cd04f8ff0f2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5254b015c6ef494388a6c20869d73b8f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_1a987d6afb1d47f391edb22f53ef3ebf", | |
"max": 7, | |
"style": "IPY_MODEL_746bdb8c479c4c969af357f3ec7f4501", | |
"value": 3 | |
} | |
}, | |
"5259f578cb154bf39114845735742fef": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5280453c57144e22a22c30580c844943": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"52c5a4fed2bf43338bf40580fb7f9e80": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"52f55c745f2f4a9b8e15af6d90fa3e1a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_95a7c2b98acc4b328ad037b1bfb41120", | |
"max": 7, | |
"style": "IPY_MODEL_853f067e8b7f432fb883d6ed4d985ffa" | |
} | |
}, | |
"5304ddcdf75348f4a00e223fb00085b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5327bef651bf4a43bd196abe37fe6f2f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"535045d0dc5b44438facf07db3448276": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5390bb9fcaef4c80ba10725190469f57": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_c16f5011791f49ccb6444fb1da6b0206", | |
"max": 3, | |
"style": "IPY_MODEL_ebd0b2afb4d0479585d52b530aea9a38", | |
"value": 3 | |
} | |
}, | |
"5395f83e73274ee9a24f0f065cc17bde": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"53e4e8bf3dfa48a28e8ea1ba4a978d2a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"53e5f5ab145d4222b3ffdcb401402014": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_37c6fea04db04fa481b47ef8889e2f66", | |
"IPY_MODEL_263ddc73102f468687ffae656eef908a" | |
], | |
"layout": "IPY_MODEL_d01a72c27fd941e6a1a3a2392a851923" | |
} | |
}, | |
"541fc921f9fc498a9c551582f0fb7cba": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5463de1953824a6a836fbe65f5d87110": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"54bd59ba5b1c49f6a973321b1812e442": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"54c59d7dd5ba47a8841fd4b90ef3ad12": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_1eb8722ffbbf466782a2b31fa3ac82cf", | |
"style": "IPY_MODEL_28a1c945e6a94dcbab264efe493432e5" | |
} | |
}, | |
"54d3364ad9c94b55bf1b4d8b3dc23a74": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"54ecd5f4757e4814b3bd996057b1a77c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"55696b4f71e24df8988fa025d701b363": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5597bb6120ca443cad19de68149d827b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"55c45717157048ccad6edc78f5f175cf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"55d8ad239d134976ab1858b2815d9f54": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_cdf9ef540e2a4dd0b7fb8c157d35f331", | |
"max": 3, | |
"style": "IPY_MODEL_ce4f39f4388a434d8d3588bc460dd03a", | |
"value": 2 | |
} | |
}, | |
"5664786a31164d2fba36e9810b42d3c5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5680b8d2f5704256bb2488bb4495f9e3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5697af953301464b9f795f22f4a7a623": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_e4df261197d948a88cead49cd00b029b", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "<class 'int'> <class 'numpy.int64'>\n" | |
}, | |
{ | |
"ename": "TypeError", | |
"evalue": "ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-102-f75464180bfc>\u001b[0m in \u001b[0;36mmake_laser_map_i\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-102-f75464180bfc>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0misxt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mNN\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mWW\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: ufunc 'bitwise_and' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''" | |
] | |
} | |
] | |
} | |
}, | |
"5697ddb22cb145b08f9cc25b5c61760e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_67271e0a760a45e488d5c525f59e231a", | |
"IPY_MODEL_b078eb3bb4204f10b864285edfaf5060", | |
"IPY_MODEL_47bffd35816e45689623574cfc61144d", | |
"IPY_MODEL_20cfbd64c60148368b71c743aef9f9b2" | |
], | |
"layout": "IPY_MODEL_5e2122a1128b4354a9090f6f87703416" | |
} | |
}, | |
"569935e0801a4ec2a509870a74c186a0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"56c74b8873d24727b4ddfc2f562516a7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_7ccfd3aa19e84f7b9f2920e73dc9b12b", | |
"max": 7, | |
"style": "IPY_MODEL_607d1059a6734bd7abf9805db7566981", | |
"value": 5 | |
} | |
}, | |
"56f14611b5d14f8aabadc8428450f305": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_03364b5b3e5a45fb86c2c147e6539efe", | |
"IPY_MODEL_653f1c6c9cfc47eab7fbb8ea6bf95989", | |
"IPY_MODEL_5a58512d8f3140a4a32484b52f3a01dc", | |
"IPY_MODEL_99fcf49d8ea546a2ad071dbb7ae3b89e" | |
], | |
"layout": "IPY_MODEL_7debd9d7c52743f8aafd45b53df3820c" | |
} | |
}, | |
"570e673561904b5abac46a7a3bbfc091": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5739fa50027b4cc1809bff06e78e7fdb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"573ed95e79244e598c789ecb38b4c940": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_78da9674757a41b29a50d78687ad2678", | |
"IPY_MODEL_d8d308c5c6cd451e8f13a00d0e58db66", | |
"IPY_MODEL_43a5a644fd5d4d958d655a062d615d04", | |
"IPY_MODEL_4a88ffa4784e4ca2a741d3b0e43e978d" | |
], | |
"layout": "IPY_MODEL_feab28140a8541de92dcc577cc4fb06f" | |
} | |
}, | |
"5747ff98acfc4ad2ba8bfb8bbc520462": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5755a7164bd44eef88bb544f6754ae70": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5777b21840c1480698ad762aa9849d82": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"57add9979f6d46c89d62886501c538c7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"57b526a3f5484d9b8b68cb39252c182b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"57b7b566bb644d24acf80690bdf38e37": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"582ab382c78246a0bc1010548cc8f88c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"583dbfa8323a48a2b51a67a0c580657c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"587fb05976d44b76a1619106a90c0461": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"588c59fe37a24543ae97f52cfb180741": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"589e841e492c4cccb4bdaebbad045ca1": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_e4e0d755bdba4580a9b0065b90c69e85", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWVJREFUeJzt3X2QZXdd5/HPNxkfYkiAQCXUlhgS\nSUgQVplAAgSZkCiirluENW6VS0RWcFmxAgo+8fxQliDrSiIqKCiS9Q8f0LKQANEACYkoWzMiCwSS\nGCb4AIkBhARDVpLf/nHvuJPJdGYyfW7f/vZ9vaqmTvqe7vP7Ud0zb37nnHu6xhgBAHo4bNkTAAAO\nnnADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANLJt2RM4kKr6VJKjk+xe8lQA4FA9JMmXxhgnrPdAmz7cSY4+Ikccc2pOPWbZE5narmVP\nAOa2L3sCC+TvGZvD1Ulum+RIHcK9+9SceszO7Fz2PCZXy54AzG29v13/n79nbA6nJdm1e4ojucYN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQyGThrqpvrKrfqqp/rKrbq2p3Vb2+qu4/1RgAsOq2TXGQqvrm\nJH+R5Ngkf5LkE0lOT/K8JE+pqjPHGJ+bYiwAWGVTrbh/LbNoXzDGeOoY42fHGGcn+eUkD0vy8xON\nAwArbd3hrqoTkzw5ye4kv7rP7pcn+XKS86vqyPWOBQCrbooV99nz7aVjjDv33jHGuCXJVUm+Iclj\nJxgLAFbaFNe4HzbfXrPG/mszW5GfnOSytQ5SVTvX2HXKoU8NALaWKVbc951vv7jG/j2v32+CsQBg\npU1yV/kB1Hw77umTxhin7feLZyvx7VNPCgA6mmLFvWdFfd819h+9z+cBAIdoinB/cr49eY39J823\na10DBwAO0hThft98++SqusvxquqoJGcmuS3JX04wFgCstHWHe4zxt0kuTfKQJM/dZ/crkxyZ5G1j\njC+vdywAWHVT3Zz2Y5k98vSiqjonydVJzkjypMxOkb94onEAYKVN8sjT+ar70UnemlmwX5Dkm5Nc\nlORxnlMOANOY7O1gY4y/S/LMqY4HANyd38cNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADSybdkTOBi7ktSyJ8G9\nM5Y9gQXZoj+IW/R/FmxJVtwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNbFv2BOBQPfymq3PO9Zfn6Ntv\nyZe+7qhcduKOfPzYU5c9LYCFmiTcVfX9SXYk+bYk35rkqCS/O8Z4+hTHh72dff3787LLfzE7brjq\nbvsuP/7MvGrHT+e9J5614fMC2AhTnSp/SZIfzyzc/zDRMeFu/uuut+XSi8/Njhuuythn30iy44ar\ncunF5+aZuy5exvQAFm6qcP9EkpOTHJ3kv090TLiLs69/f37jHc/L4ePOJEnts3/Px4ePO/Ob77gg\nZ1///o2cHsCGmCTcY4z3jTGuHWPsuwiCybzs8l/8t2gfyOHjzrz08tcteEYAG89d5bTw8Juu3u/p\n8bWMJGfdcGUeftPVi5wWwIbbNHeVV9XONXadsqETYVM65/rLk9z99Pha9nzeOddf7k5zYEux4qaF\no2+/ZUO/DmCz2jQr7jHGaft7fb4S377B02GT+dLXHbWhXwewWVlx08JlJ+5Iknt1jXvvrwPYKoSb\nFj5+7Km5/Pgz79U17vcf/wTXt4EtR7hp41U7fjp31MH9yN5Rh+XVO35qwTMC2HjCTRvvPfGs/Oj3\nXfhv8d7fk9OSWbSf/X0XeewpsCVN9azypyZ56vzDB823j6uqt87/++YxxgunGIvV9lvbfyi77/dN\neenlr8tZN1x5l317To+/esdPiTawZU11V/m3JXnGPq+dOP+TJDckEW4m8d4Tz8p7TzzLbwcDVlJt\n9qeUzt4Otn17stbzWdiUNveP1aE72LvjAO7itCS7dq311ud7wzVuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARrYtewIHY3uSncuexALUsicAQDtW3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI2sO9xV9YCqelZV\n/XFVXVdVt1XVF6vqyqr6karyfw4AYCLbJjjGeUl+PclnkrwvyaeTHJfkaUnenOS7q+q8McaYYCwA\nWGlThPuaJP8xyTvHGHfuebGqXpTkQ0n+U2YRf/sEYwHASlv3aewxxnvHGO/YO9rz1z+b5I3zD89a\n7zgAwOJvTvvX+farCx4HAFbCwsJdVduS/ND8w3cvahwAWCVTXONey2uSPCLJJWOM9xzok6tq5xq7\nTpl0VgDQ2EJW3FV1QZIXJPlEkvMXMQYArKLJV9xV9dwkFyb5eJJzxhifP5ivG2OctsbxdibZPt0M\nAaCvSVfcVfX8JG9I8tEkT5rfWQ4ATGSycFfVzyT55SQfzizaN011bABgZpJwV9VLM7sZbWdmp8dv\nnuK4AMBdrfsad1U9I8mrktyR5ANJLqiqfT9t9xjjresdCwBW3RQ3p50w3x6e5PlrfM7lSd46wVgA\nsNKmeOTpK8YYdYA/Z00wVwBYeX7lJgA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPblj2Bg7ErSS17ErCF\njWVPYIH828FWY8UNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCOThLuqXltVl1XV31XVbVX1+ar6\n66p6eVU9YIoxAIDpVtw/keTIJH+W5MIkv5vkq0lekeQjVfXgicYBgJW2baLjHD3G+Mq+L1bVzyd5\nUZKfS/JjE40FACtrkhX3/qI99/vz7UlTjAMAq27RN6d933z7kQWPAwArYapT5UmSqnphkvskuW+S\nRyd5QmbRfs1BfO3ONXadMtkEAaC5ScOd5IVJjtvr43cn+eExxj9NPA4ArKRJwz3GeFCSVNVxSR6f\n2Ur7r6vqP4wxdh3ga0/b3+vzlfj2KecJAF0t5Br3GOPGMcYfJ3lykgckedsixgGAVbPQm9PGGDck\n+XiSb6mqBy5yLABYBRvxyNN/N9/esQFjAcCWtu5wV9UpVfWg/bx+2PwBLMcm+YsxxhfWOxYArLop\nbk57SpLXVdUVSf42yecyu7N8R5ITk3w2ybMnGAcAVt4U4f7zJL+R5Mwk35rkfkm+nOSaJBcnuWiM\n8fkJxgGAlbfucI8xPprkuRPMBQA4AL+PGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaCRhYW7qs6vqjH/86xFjQMAq2Qh4a6qByf5lSS3LuL4ALCqJg93VVWS\n307yuSRvnPr4ALDKFrHiviDJ2UmemeTLCzg+AKysScNdVacmeU2SC8cYV0x5bAAg2TbVgapqW5KL\nk3w6yYsO4et3rrHrlPXMCwC2ksnCneRlSR6V5AljjNsmPC4AMDdJuKvq9MxW2b80xvjgoRxjjHHa\nGsfemWT7OqYHAFvGuq9x73WK/JokL133jACANU1xc9p9kpyc5NQkX9nroSsjycvnn/Ob89deP8F4\nALCypjhVfnuSt6yxb3tm172vTPLJJId0Gh0AmFl3uOc3ou33kaZV9YrMwv07Y4w3r3csAFh1fskI\nADQi3ADQyELDPcZ4xRijnCYHgGlYcQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADSybdkTYGsay57AglRq\n2VNYiK35vwq2JituAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARrZNcZCq2p3k+DV23zjGeNAU48Derrnx\nllx13c259StfzX2+flvOfOgDc/JxRy17WgALNUm4576Y5PX7ef3WCceAXHXdzbnwsmvzoU99/m77\nTj/hmDzvnJNy5kMfuISZASxejTHWf5DZijtjjIes+2B3P/bOZPv2ZOfUh2aBJvix2q/f+9+fzs/9\n0f/Jnfdw/MMqec3T/n1+4DEPnnz8qpr8mMDK2DXGOG29B3GNmzauuu7mA0Y7Se4cyc/+0Udy1XU3\nb8zEADbQlKfKv66qnp7km5J8OclHklwxxrhjwjFYYRdedu0Bo73HnSO56LJrnTIHtpwpw/2gJBfv\n89qnquqZY4zLJxyHFXTNjbfs95r2PfmrT30+19x4ixvWgC1lqnD/dpIPJPlYkluSnJjkx5P8aJJ3\nVdXjxhh/c08HmF3L3q9TJpojjR3qae+rrrtZuIEtZZJwjzFeuc9LH03ynKq6NckLkrwiyblTjMVq\nuvUrX93QrwPYrKY8Vb4/b8ws3E880CeudafdfCW+feJ50cx9vv7QflQP9esANqtF31V+03x75ILH\nYYs71JvM3JwGbDWLDvfj5tvrFzwOW9zJxx2V00845l59zRknHOP6NrDlrDvcVfUtVXW3f1Gr6vgk\nb5h/+L/WOw4875yTcthBPv/ksEouOOekxU4IYAmmWHGfl+Qfq+pdVfVrVfXaqvrDJJ9I8tAklyT5\nHxOMw4o786EPzC887ZEHjPeeJ6c5TQ5sRVPcufO+JA9L8qjMTo0fmeSfk1yZ2fu6Lx5TPFcVkvzn\nx3xTvvH+35CLLrs2f7Wf93WfccIxucCzyoEtbJJnlS+SZ5X3tBE/Vsv47WCeVQ6swyTPKvdeGdo6\n+bij3HwGrBy/ZAQAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTbsidwcHYlqWVPgnvBdwtgMay4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhk0nBX1bdX1dur6jNVdft8e2lVfc+U4wDAqto21YGq6iVJXp3k5iR/\nmuQzSR6Y5FFJzkpyyVRjAcCqmiTcVXVeZtH+8yRPG2Pcss/+r5liHABYdes+VV5VhyV5bZJ/SfKD\n+0Y7ScYY/7recQCAaVbcj09yQpI/TPKFqvreJI9I8pUkHxpjfHCCMQCATBPux8y3NybZleSRe++s\nqiuSfP8Y45/u6SBVtXONXaese4YAsEVMcVf5sfPtc5IckeQ7khyV2ar7PUmemOQPJhgHAFbeFCvu\nw+fbymxl/Tfzjz9WVecmuSbJjqp63D2dNh9jnLa/1+cr8e0TzBMA2ptixf2F+fb6vaKdJBlj3JbZ\nqjtJTp9gLABYaVOE+5Pz7T+vsX9P2I+YYCwAWGlThPuKJF9NclJVfe1+9j9ivt09wVgAsNLWHe4x\nxs1Jfi/JfZO8bO99VfWdSb4ryReTvHu9YwHAqpvqkac/meSMJC+uqicm+VCS45Ocm+SOJM8eY6x1\nKh0AOEiThHuMcVNVnZHkJZnF+rFJbknyziS/MMb4yynGAYBVV2OMZc/hHnk7WFOb+8fq0NWyJwA0\ntmuttz7fG34fNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPblj0Btqax7AksSC17AsDKs+IGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoZN3hrqofrqpxgD93TDFZAFh12yY4xoeTvHKNfd+e5Owk75pgHABYeesO\n9xjjw5nF+26q6oPz//yN9Y4DACzwGndVPSLJY5P8Q5J3LmocAFgli7w57b/Nt28ZY7jGDQATmOIa\n991U1RFJnp7kziRvPsiv2bnGrlOmmhcAdLeoFfcPJLlfkneNMf5uQWMAwMpZyIo7yY/Ot2862C8Y\nY5y2v9fnK/HtU0wKALqbfMVdVQ9P8vgkf5/kkqmPDwCrbBGnyt2UBgALMmm4q+rrk5yf2U1pb5ny\n2ADA9Cvu85LcP8klbkoDgOlNHe49N6V5UhoALMBk4a6qU5M8IW5KA4CFmeztYGOMq5PUVMcDAO7O\n7+MGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABrZtuwJHISHLHsC3HunnbbsGQBsOg+Z4iA1xpjiOAtTVZ9KcnSS\n3Rsw3Cnz7Sc2YCym4XvWj+9ZP75n6/eQJF8aY5yw3gNt+nBvpKramSRjDOvFJnzP+vE968f3bHNx\njRsAGhFuAGhEuAGgEeEGgEaEGwAacVc5ADRixQ0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqm+sqt+qqn+sqturandVvb6q7r/suXFXVfWAqnpWVf1xVV1XVbdV1Rer6sqq+pGq8jPdRFWd\nX1Vj/udZy54P+1dV315Vb6+qz8z/ffxMVV1aVd+z7Lmtqm3LnsCyVdU3J/mLJMcm+ZPMft/s6Ume\nl+QpVXXmGONzS5wid3Vekl9P8pkk70vy6STHJXlakjcn+e6qOm94stCmVlUPTvIrSW5Ncp8lT4c1\nVNVLkrw6yc1J/jSzv3cPTPKoJGcluWRpk1thK//ktKp6T5InJ7lgjPEre73+P5P8RJI3jTGes6z5\ncVdVdXaSI5O8c4xx516vPyjJh5I8OMn3jzHevqQpcgBVVUn+LMkJSf4oyQuTPHuM8ealToy7qKrz\nkvx+kj9P8rQxxi377P+aMca/LmVyK26lTytW1YmZRXt3kl/dZ/fLk3w5yflVdeQGT401jDHeO8Z4\nx97Rnr/+2SRvnH941oZPjHvjgiRnJ3lmZn/H2GTml5xem+RfkvzgvtFOEtFenpUOd2b/eCTJpfsJ\nwS1JrkryDUkeu9ET45Ds+Yfkq0udBWuqqlOTvCbJhWOMK5Y9H9b0+MzOiFyS5AtV9b1V9TNV9byq\netyS57byVv0a98Pm22vW2H9tZivyk5NctiEz4pBU1bYkPzT/8N3LnAv7N/8eXZzZfQkvWvJ0uGeP\nmW9vTLIrySP33llVV2R2SeqfNnpiWHHfd7794hr797x+vw2YC+vzmiSPSHLJGOM9y54M+/WyzG5q\n+uExxm3Lngz36Nj59jlJjkjyHUmOyuzv2HuSPDHJHyxnaqx6uA+k5tvVvoNvk6uqC5K8ILN3BJy/\n5OmwH1V1emar7F8aY3xw2fPhgA6fbyuzlfVlY4xbxxgfS3Jukr9PssNp8+VY9XDvWVHfd439R+/z\neWwyVfXcJBcm+XiSJ40xPr/kKbGPvU6RX5PkpUueDgfnC/Pt9WOMv9l7x/xsyZ6zWqdv6KxIItyf\nnG9PXmP/SfPtWtfAWaKqen6SNyT5aGbR/uySp8T+3Sezv2OnJvnKXg9dGZm9eyNJfnP+2uuXNkv2\ntuffxn9eY/+esB+xAXNhH6t+c9r75tsnV9Vh+7wv+KgkZya5LclfLmNyrK2qfiaz69ofTvKdY4yb\nlzwl1nZ7kressW97Zte9r8wsFk6jbw5XZPbujJOq6mvHGP93n/2PmG93b+isSLLi4R5j/G1VXZrZ\nnePPzexJTnu8MrMHfbxpjOG9pptIVb00yauS7EzyZKfHN7f5qdX9PtK0ql6RWbh/xwNYNo8xxs1V\n9XtJ/ktmNxW+ZM++qvrOJN+V2SVE7+BYgpUO99yPZfbI04uq6pwkVyc5I8mTMjtF/uIlzo19VNUz\nMov2HUk+kOSC2YO47mL3GOOtGzw12Gp+MrN/C19cVU/M7MmEx2d2c9odmT3tbq1T6SzQyod7vup+\ndGYxeEqS78nsebwXJXml1dymc8J8e3iS56/xOZcneeuGzAa2qDHGTVV1Rmar7XMzexDVLUnemeQX\nxhguIS7Jyj+rHAA6WfW7ygGgFeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCR/wfYoN8ibl4jDwAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c3a8c50>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"590d47fe84ae43fa9840bfddf1007c6f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_e80ab93e32fb4f8d86b8480550ad11bc", | |
"max": 7, | |
"style": "IPY_MODEL_630fbc53fbdc4a699ee233cc66fa0980", | |
"value": 2 | |
} | |
}, | |
"5923d3cb39234f09a379ef7fbb4191e1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"599ace51ebff4d4ebd739ea82d35d1d3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"59d72619e99944f09a090362cb2e9600": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_c5fa8733304a40cdbb3729f5b89bf3c5", | |
"IPY_MODEL_a91c2c15796a4aa6bbb4f7f0e6470dbb", | |
"IPY_MODEL_07c12f5c71d14d04a61f6826e854bb1a" | |
], | |
"layout": "IPY_MODEL_9d83afe31b324b8aad12ef2418320873" | |
} | |
}, | |
"5a58512d8f3140a4a32484b52f3a01dc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_7faed6592f0d4472844035a22582576d", | |
"max": 3, | |
"style": "IPY_MODEL_37085e29592040e881d5aedfef3f34b6", | |
"value": 1 | |
} | |
}, | |
"5a5ad95bd72a41819ea27c9614656445": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5a98916dcd034d5dbb2e9933d7642583": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5aa0b7fb707c45178bf92e87e42a055f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"nn", | |
"ee", | |
"ss", | |
"ww" | |
], | |
"description": "d", | |
"index": 2, | |
"layout": "IPY_MODEL_dcc82e9c469c45a4a0e3c599912d7635", | |
"style": "IPY_MODEL_4af498ab1cab4059995848fc7fcd0b2a" | |
} | |
}, | |
"5aa57593b9c04716928089442a85adc1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_348dadc35f224fe996838ec76d9a67d6", | |
"max": 7, | |
"style": "IPY_MODEL_71b34df3f023448aa2ea7299cf3ad303", | |
"value": 2 | |
} | |
}, | |
"5acd283e7609477aa944d95fed32c29a": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_c5d7077605404488ab03b3c145318ebb", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGcNJREFUeJzt3XuQpXdd5/HPNxkvISTcrITaUkIi\nhAShkImES5AJiSDiumVY41KuUVnBZUUDCt64X8oCdF1J8AIKima3yhtaFhIgGiAxEWVrZkGRQMQw\nAQUSAwgJhKiZ3/5xzsikM51Mpp/Tp799Xq+qqSd9nnOe34863f3muZyna4wRAKCHI5Y9AQDg0Ak3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCM7lj2BO1NVH01ybJK9S54KAByu+yf5/BjjxI1uaMuHO8mxR+Woe5+aU++97IlMbc+yJwBz\nO5c9gQXyc8bWcFWSmyfZUodw7z01p957d3Yvex6Tq2VPAOa230/Xl/k5Y2s4LcmevVNsyTluAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARiYLd1V9bVX9RlV9oqpuqaq9VfWaqrrXVGMAwKrbMcVGqurrk/xF\nkuOS/HGSDyU5Pcmzkzypqs4YY3x6irEAYJVNtcf9K5lF+/wxxneOMX56jHFWkl9M8qAkPzvROACw\n0jYc7qo6KckTk+xN8strVr8kyReSnFdVR290LABYdVPscZ81X14yxth34Ioxxo1JrkxytySPmmAs\nAFhpU5zjftB8efU66/8usz3yk5Ncut5Gqmr3OqtOOfypAcD2MsUe9z3my8+ts37/4/ecYCwAWGmT\nXFV+J2q+HHf0pDHGaQd98WxPfOfUkwKAjqbY496/R32PddYfu+Z5AMBhmiLcH54vT15n/QPny/XO\ngQMAh2iKcL9rvnxiVd1me1V1TJIzktyc5C8nGAsAVtqGwz3G+PsklyS5f5JnrVn9siRHJ/ntMcYX\nNjoWAKy6qS5O++HMbnl6YVWdneSqJI9M8vjMDpG/YKJxAGClTXLL0/le9zcleVNmwX5ukq9PcmGS\nR7tPOQBMY7KPg40xPp7kaVNtDwC4PX+PGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoZMeyJ3Ao9iSpZU+Cu2Ys\newILsk2/Ebfp/yzYluxxA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANLJj2ROAw/Xg66/K2ddclmNvuTGf\n/6pjculJu/LB405d9rQAFmqScFfVdyXZleQbkzwsyTFJ/s8Y43un2D4c6Kxr3p0XX/Zz2XXtlbdb\nd9kJZ+Tlu34y7zzpzE2fF8BmmOpQ+QuT/Ehm4f7HibYJt/Pf9vx2LrnonOy69sqMNetGkl3XXplL\nLjonT9tz0TKmB7BwU4X7x5KcnOTYJP9jom3CbZx1zbvza295do4c+5IktWb9/q+PHPvy6285P2dd\n8+7NnB7Appgk3GOMd40x/m6MsXYnCCbz4st+7t+jfWeOHPvyost+fsEzAth8riqnhQdff9VBD4+v\nZyQ589or8uDrr1rktAA23Za5qryqdq+z6pRNnQhb0tnXXJbk9ofH17P/eWdfc5krzYFtxR43LRx7\ny42b+jqArWrL7HGPMU472OPzPfGdmzwdtpjPf9Uxm/o6gK3KHjctXHrSriS5S+e4D3wdwHYh3LTw\nweNOzWUnnHGXznG/+4THOr8NbDvCTRsv3/WTubUO7Vv21joir9j1EwueEcDmE27aeOdJZ+aHvuOC\nf4/3we6clsyi/YzvuNBtT4Ftaap7lX9nku+cf3nf+fLRVfWm+X/fMMZ43hRjsdp+Y+f3Ze8975cX\nXfbzOfPaK26zbv/h8Vfs+gnRBratqa4q/8Yk37/msZPm/5Lk2iTCzSTeedKZeedJZ/rrYMBKqq1+\nl9LZx8F27kzWuz8LW9LW/rY6fId6dRzAbZyWZM+e9T76fFc4xw0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANDIjmVP4FDsTLJ72ZNYgFr2BIDG/AZZVfa4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtlwuKvqPlX1\n9Kr6o6r6SFXdXFWfq6orquoHq8r/OQCAieyYYBvnJvnVJJ9M8q4kH0tyfJKnJHlDkm+rqnPHGGOC\nsQBgpU0R7quT/Kckbx1j7Nv/YFU9P8l7k/znzCL+5gnGAoCVtuHD2GOMd44x3nJgtOePfyrJ6+Zf\nnrnRcQCAxV+c9q/z5b8teBwAWAkLC3dV7UjyffMv376ocQBglUxxjns9r0rykCQXjzHecWdPrqrd\n66w6ZdJZAUBjC9njrqrzkzw3yYeSnLeIMQBgFU2+x11Vz0pyQZIPJjl7jPGZQ3ndGOO0dba3O8nO\n6WYIAH1NusddVc9J8ktJPpDk8fMrywGAiUwW7qr6qSS/mOR9mUX7+qm2DQDMTBLuqnpRZhej7c7s\n8PgNU2wXALitDZ/jrqrvT/LyJLcm+fMk51fV2qftHWO8aaNjAcCqm+LitBPnyyOTPGed51yW5E0T\njAUAK22KW56+dIxRd/LvzAnmCgArz5/cBIBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTHsidwKPZkTyq1\n7GnAtjWWPYEF8puD7cYeNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNTBLuqnp1VV1aVR+vqpur\n6jNV9f+q6iVVdZ8pxgAAkhpjbHwjVf+SZE+SDya5PsnRSR6V5JuSfCLJo8YYHz/Mbe9OsnPDk2Rz\nbfzbamuqZU9gMbbr25Vs27eMnvaMMU7b6EZ2TDGTJMeOMb609sGq+tkkz0/yM0l+eKKxAGBlTXKo\n/GDRnvu9+fKBU4wDAKtu0Renfcd8+dcLHgcAVsJUh8qTJFX1vCR3T3KPzM5vPzazaL/qEF67e51V\np0w2QQBobtJwJ3lekuMP+PrtSX5gjPFPE48DACtpkqvKb7fRquOTPCazPe1jkvzHMcaew9yWq8o7\n2q6XKW/TS5S369uVbNu3jJ4muap8Iee4xxjXjTH+KMkTk9wnyW8vYhwAWDULvThtjHFtZp/t/oaq\n+ppFjgUAq2Azbnn6H+bLWzdhLADY1jYc7qo6parue5DHj5jfgOW4JH8xxvjsRscCgFU3xVXlT0ry\n81V1eZK/T/LpzK4s35XkpCSfSvKMCcYBgJU3Rbj/LMmvJTkjycOS3DPJF5JcneSiJBeOMT4zwTgA\nsPI2HO4xxgeSPGuCuQAAd8Lf4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoZGHhrqrzqmrM/z19UeMAwCpZSLir6uuSvDbJTYvYPgCsqsnDXVWV5DeTfDrJ\n66bePgCsskXscZ+f5KwkT0vyhQVsHwBW1qThrqpTk7wqyQVjjMun3DYAkOyYakNVtSPJRUk+luT5\nh/H63eusOmUj8wKA7WSycCd5cZKHJ3nsGOPmCbcLAMxNEu6qOj2zvexfGGO853C2McY4bZ1t706y\ncwPTA4BtY8PnuA84RH51khdteEYAwLqmuDjt7klOTnJqki8dcNOVkeQl8+f8+vyx10wwHgCsrCkO\nld+S5I3rrNuZ2XnvK5J8OMlhHUYHAGY2HO75hWgHvaVpVb00s3D/1hjjDRsdCwBWnT8yAgCNCDcA\nNFJjjGXP4Q75OFhTW/vb6vDVsiewGNv17Uq27VtGT3vW++jzXWGPGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoJEdy54A29NY9gQWpJY9gQXZrv+7YDuyxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDIjik2UlV7\nk5ywzurrxhj3nWIcONDV190vV37kYbnpS3fL3b/6iznjAe/Pycd/bNnTAlioScI997kkrznI4zdN\nOAbkyo88LBdc+tS896MPvd2600/8mzz77N/JGQ94/xJmBrB4NcbY+EZme9wZY9x/wxu7/bZ3J9k5\n9XZZrAm+rQ7qd//vE/Izf/ij2TeOSDKS1IGjJqkcUfvyqqe8Nt/9iD+dfPyqO38OwDr2jDFO2+hG\nnOOmjSs/8rADop3cNtpf/nrfOCI//Yc/mis/8rBNnR/AZpjyUPlXVdX3Jrlfki8k+eskl48xbp1w\nDFbYBZc+9YBo37F944hceOlTHTIHtp0pw33fJBeteeyjVfW0McZlE47DCrr6uvvNz2mvPTy+npG/\n+uhDc/V193PBGrCtTBXu30zy50n+NsmNSU5K8iNJfijJ26rq0WOMO9z1mZ/LPphTJpojjX35sPeh\nnmSuf3+dcAPbySThHmO8bM1DH0jyzKq6Kclzk7w0yTlTjMVquulLd9vU1wFsVVMeKj+Y12UW7sfd\n2RPXu9LOVeUkyd2/+oub+jqArWrRV5VfP18eveBx2Oa+fJHZoX7ObKx5HcD2sOhwP3q+vGbB47DN\nnXz8x3L6iX+Tu3KO+5En/o3z28C2s+FwV9U3VNW9D/L4CUl+af7l/97oOPDss38nR9S+Q3ruEbUv\n55/9OwueEcDmm2KP+9wkn6iqt1XVr1TVq6vqD5J8KMkDklyc5H9OMA4r7owHvD+vfMprD4j32sPm\ns6/33znNYXJgO5ri4rR3JXlQkodndmj86CT/nOSKzD7XfdGY4r6qkOS/POJP87X3uj4XXvrU/NXt\n7lU+Ozx+vnuVA9vYJPcqXyRXlfe0Gd9Wy/jrYO5VDmzAJPcqX/THwWBhTj7+Yy4+A1aOPzICAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADSyY9kTYHuqZU8AYJuyxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5OG\nu6q+uareXFWfrKpb5stLqurJU44DAKtqx1QbqqoXJnlFkhuS/EmSTyb5miQPT3JmkounGgsAVtUk\n4a6qczOL9p8lecoY48Y1679iinEAYNVt+FB5VR2R5NVJvpjke9ZGO0nGGP+60XEAgGn2uB+T5MQk\nf5Dks1X17UkekuRLSd47xnjPBGMAAJkm3I+YL69LsifJQw9cWVWXJ/muMcY/3dFGqmr3OqtO2fAM\nAWCbmOKq8uPmy2cmOSrJtyQ5JrO97nckeVyS359gHABYeVPscR85X1Zme9bvn3/9t1V1TpKrk+yq\nqkff0WHzMcZpB3t8vie+c4J5AkB7U+xxf3a+vOaAaCdJxhg3Z7bXnSSnTzAWAKy0KcL94fnyn9dZ\nvz/sR00wFgCstCnCfXmSf0vywKr6yoOsf8h8uXeCsQBgpW043GOMG5L8bpJ7JHnxgeuq6glJvjXJ\n55K8faNjAcCqm+qWpz+e5JFJXlBVj0vy3iQnJDknya1JnjHGWO9QOgBwiCYJ9xjj+qp6ZJIXZhbr\nRyW5Mclbk7xyjPGXU4wDAKuuxhjLnsMd8nGwprb2t9Xhq2VPAGhsz3offb4r/D1uAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARnYsewJsT2PZE1iQWvYEgJVnjxsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRDYe7\nqn6gqsad/Lt1iskCwKrbMcE23pfkZeus++YkZyV52wTjAMDK23C4xxjvyyzet1NV75n/569tdBwA\nYIHnuKvqIUkeleQfk7x1UeMAwCpZ5MVp/32+fOMYwzluAJjAFOe4b6eqjkryvUn2JXnDIb5m9zqr\nTplqXgDQ3aL2uL87yT2TvG2M8fEFjQEAK2che9xJfmi+fP2hvmCMcdrBHp/vie+cYlIA0N3ke9xV\n9eAkj0nyD0kunnr7ALDKFnGo3EVpALAgk4a7qr46yXmZXZT2xim3DQBMv8d9bpJ7JbnYRWkAML2p\nw73/ojR3SgOABZgs3FV1apLHxkVpALAwk30cbIxxVZKaansAwO35e9wA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCM7lj2BQ3D/ZU+Au+6005Y9A4At5/5TbKTGGFNsZ2Gq6qNJjk2ydxOGO2W+/NAmjMU0vGf9eM/6\n8Z5t3P2TfH6MceJGN7Tlw72Zqmp3kowx7C824T3rx3vWj/dsa3GOGwAaEW4AaES4AaAR4QaARoQb\nABpxVTkANGKPGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhTlJVX1tVv1FVn6iqW6pqb1W9\npqrutey5cVtVdZ+qenpV/VFVfaSqbq6qz1XVFVX1g1Xle7qJqjqvqsb839OXPR8Orqq+uareXFWf\nnP9+/GRVXVJVT1723FbVjmVPYNmq6uuT/EWS45L8cWZ/b/b0JM9O8qSqOmOM8eklTpHbOjfJryb5\nZJJ3JflYkuOTPCXJG5J8W1WdO9xZaEurqq9L8tokNyW5+5Knwzqq6oVJXpHkhiR/ktnP3dckeXiS\nM5NcvLTJrbCVv3NaVb0jyROTnD/GeO0Bj/+vJD+W5PVjjGcua37cVlWdleToJG8dY+w74PH7Jnlv\nkq9L8l1jjDcvaYrciaqqJH+a5MQkf5jkeUmeMcZ4w1Inxm1U1blJfi/JnyV5yhjjxjXrv2KM8a9L\nmdyKW+nDilV1UmbR3pvkl9esfkmSLyQ5r6qO3uSpsY4xxjvHGG85MNrzxz+V5HXzL8/c9IlxV5yf\n5KwkT8vsZ4wtZn7K6dVJvpjke9ZGO0lEe3lWOtyZ/fJIkksOEoIbk1yZ5G5JHrXZE+Ow7P9F8m9L\nnQXrqqpTk7wqyQVjjMuXPR/W9ZjMjohcnOSzVfXtVfVTVfXsqnr0kue28lb9HPeD5sur11n/d5nt\nkZ+c5NJNmRGHpap2JPm++ZdvX+ZcOLj5e3RRZtclPH/J0+GOPWK+vC7JniQPPXBlVV2e2Smpf9rs\niWGP+x7z5efWWb//8XtuwlzYmFcleUiSi8cY71j2ZDioF2d2UdMPjDFuXvZkuEPHzZfPTHJUkm9J\nckxmP2PvSPK4JL+/nKmx6uG+MzVfrvYVfFtcVZ2f5LmZfSLgvCVPh4OoqtMz28v+hTHGe5Y9H+7U\nkfNlZbZnfekY46Yxxt8mOSfJPyTZ5bD5cqx6uPfvUd9jnfXHrnkeW0xVPSvJBUk+mOTxY4zPLHlK\nrHHAIfKrk7xoydPh0Hx2vrxmjPH+A1fMj5bsP6p1+qbOiiTC/eH58uR11j9wvlzvHDhLVFXPSfJL\nST6QWbQ/teQpcXB3z+xn7NQkXzrgpisjs09vJMmvzx97zdJmyYH2/27853XW7w/7UZswF9ZY9YvT\n3jVfPrGqjljzueBjkpyR5OYkf7mMybG+qvqpzM5rvy/JE8YYNyx5SqzvliRvXGfdzszOe1+RWSwc\nRt8aLs/s0xkPrKqvHGP8y5r1D5kv927qrEiy4uEeY/x9VV2S2ZXjz8rsTk77vSyzG328fozhs6Zb\nSFW9KMnLk+xO8kSHx7e2+aHVg97StKpemlm4f8sNWLaOMcYNVfW7Sf5rZhcVvnD/uqp6QpJvzewU\nok9wLMFKh3vuhzO75emFVXV2kquSPDLJ4zM7RP6CJc6NNarq+zOL9q1J/jzJ+bMbcd3G3jHGmzZ5\narDd/HhmvwtfUFWPy+zOhCdkdnHarZnd7W69Q+ks0MqHe77X/U2ZxeBJSZ6c2f14L0zyMntzW86J\n8+WRSZ6zznMuS/KmTZkNbFNjjOur6pGZ7W2fk9mNqG5M8tYkrxxjOIW4JCt/r3IA6GTVryoHgFaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARv4/0ycAdeMm+YEAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498228fd68>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"5afd016b020944eca9aa0d514471b75d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_1c42d0a20b524fddb6f86ad382941218", | |
"max": 3, | |
"style": "IPY_MODEL_9dd22cc0f6cf4f4ab65c12edf69c27bc", | |
"value": 2 | |
} | |
}, | |
"5b1027d83b6b4a97a0b5c7a58208c9f0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_9c5bec08a846414a9deb54443aab3ce1", | |
"max": 7, | |
"style": "IPY_MODEL_6ab97527ad9f43d7aa4d1504f8c8ae62", | |
"value": 3 | |
} | |
}, | |
"5b1943d0adb543228e7ed77dbf53b404": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5b2bd2fe178f415aa6b944e9a6ade8e7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5b39108059b345cab113d1cc8dbc5996": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_ad23a7c3539345bf9b71852ea0975183", | |
"max": 7, | |
"style": "IPY_MODEL_5280453c57144e22a22c30580c844943", | |
"value": 2 | |
} | |
}, | |
"5b737e8ed0f94bd1be187f846f319072": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_83f1a2a10011427e8748266ce25169e6", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGRFJREFUeJzt3X+07XVd5/HX+3rTEFETF7pmKSiO\nyJ1kHC+FCCZo+SOdZoUTjasJzZU1jk5g5fTDH6m5WtpvQZu0dDLpD6txapZJShqBgMVa545UalIh\noBNKpBIoYsFn/tj7xuVyz70Xzneffd9nPx5rnfXl7O/e38/nrnPvefL9sb+7xhgBAHrYtuwJAAAH\nT7gBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGtm+7AkcSFV9OskDk1yz5KkAwL31qCT/OMZ49EY3dMiHO8kDDzvssIfs2LHjIcueyNR2\nLXsCMLdz19b927h1/2Ssqg7hvmbHjh0PWVtbW/Y8JlfLngDMrdXW/du4df9kNHTNFBtxjhsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaGT7sidwyLjhk8nVFye33Zzc74jk2NOSo3Yse1awpVz10KNz2TFPyC33vX8e\n8LWv5NRrr8xxN1637GlBK5OFu6oekeSnkzw7yZFJrk/y+0leP8b44lTjTO7qP0ku/rnk2svuvu6Y\nU5PTfiw59vRNnhRsLZcd84Sce8rzc8XRJ9xt3UnX/UXOufw9OfXaK5cwM+hnkkPlVfWYJGtJXpTk\niiS/nOTqJOck+WhVHTnFOJPb9e7k/DP2He1k9vj5ZyS7zt/cecEW8tv/9hk567vfMIv2GHddOUau\nOPqEnPXdb8jvnPCM5UwQmpnqHPf/SHJUkrPHGN85xviJMcbTMwv445L8zETjTOfqP0ned04y7tj/\n88YdyfvOnj0fuEcuO+YJ+cln/VDu2Db/VVN11yfMv79j27b8xLN/KJcd84RNniH0s+FwV9WxSZ6Z\n5Jokv7LX6tcm+XKSs6rq8I2ONamLf+7A0d5t3JFc/POLnQ9sQeee8vw7o30Ad2zblvNOef6CZwT9\nTbHH/fT58sIx7lrCMcbNSS5Lcv8kJ08w1jRu+OT6h8fXc+2ls9cBB+Wqhx6978Pj6xkjf3b0Cbnq\noUcvdmLQ3BThftx8edU66/96vjxufxupqrV9fSU5foI53tXVF2/u62AF/cth770Pj69n/jyHy2H/\npgj3g+bLm9ZZv/vxB08w1jRuu3lzXwcr6Jb73n9TXwerYjPex737f7f3e7xsjHHiPl882+veOemM\n7nfE5r4OVtADvvaVTX0drIop9rh371E/aJ31D9zrect37Gmb+zpYQf/yvux7cI77Lq8D9mmKcH9q\nvlzvHPZj58v1zoFvvqN2zG6uck8c8xR3UoN74Lgbr8tJ1/3FPTrH/aTr/sKd1OAApgj3RfPlM6vq\nLturqiOSnJrk1iR/OsFY0zntx5I6yD9+bUtO+++LnQ9sQedc/p5su+Pg3na57Y47cvbl71nwjKC/\nDYd7jPG3SS5M8qgkL9tr9euTHJ7k3WOML290rEkde3ryHeceON61LfmO89z2FO6FU6+9Mm/84Fvu\njPc+7pyWzKL9pg+8xWFyOAhTXZz20iSXJzmvqr41ySeTPCnJ0zI7RP6qicaZ1s4XJA8+enZzlWsv\nvfv6Y54y29M+9vTNnhlsGf/pz/8oj7jphpx3yvPzZ3vfq3x+ePxs9yqHg1bjYC8cOdCGqh6Z9T9k\n5Asb2O7azp07d66trU0yz3Ut4dPBDvLMHyzcONjz0Bu0jE8H8++MQ8iu9d5BdU9M9nawMcZnMvuQ\nkZ6O2uHiM1iw4268zsVnsEFTfcgIALAJhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa2b7sCRyMXbt2paqWPQ3Ysvzr\ngj7scQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyCThrqrvqqq3VNVHquofq2pU1W9NsW0A4E7b\nJ9rOq5M8IcktST6b5PiJtgsA7GGqQ+U/nOS4JA9M8l8n2iYAsJdJ9rjHGBft/u+qmmKTAMA+uDgN\nABqZ6hz3hlXV2jqrnC8HgDl73ADQyCGzxz3GOHFfj8/3xHdu8nQA4JBkjxsAGhFuAGhEuAGgEeEG\ngEYmuTitqr4zyXfOv334fPnkqnrX/L9vHGO8YoqxAGCVTXVV+b9L8sK9Hjt2/pUk1yYRbgDYoEkO\nlY8xXjfGqP18PWqKcQBg1TnHDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mj2ZU/gYOxMsrbsSSxALXsC\nALRjjxsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRDYe7qo6sqhdX1e9V1d9U1a1VdVNVXVpV319V/ucA\nACayfYJtnJnkV5Ncn+SiJNcleViS5yV5R5Jvr6ozxxhjgrEAYKVNEe6rkvyHJO8fY9yx+8GqemWS\nK5L8x8wi/t4JxgKAlbbhw9hjjD8eY7xvz2jPH/9ckrfNvz19o+MAAIu/OO2f5st/XvA4ALASFhbu\nqtqe5AXzbz+wqHEAYJVMcY57PW9K8vgkF4wxPnigJ1fV2jqrjp90VgDQ2EL2uKvq7CQ/muSvkpy1\niDEAYBVNvsddVS9Lcm6STyT51jHGFw7mdWOME9fZ3lqSndPNEAD6mnSPu6penuStSf4yydPmV5YD\nABOZLNxV9eNJfjnJxzKL9g1TbRsAmJkk3FX1mswuRlvL7PD4jVNsFwC4qw2f466qFyb56SS3J/lI\nkrOrau+nXTPGeNdGxwKAVTfFxWmPni/vk+Tl6zzn4iTvmmAsAFhpU9zy9HVjjDrA1+kTzBUAVp6P\n3ASARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhk+7IncDB2JallTwK2sLHsCSyQ3x1sNfa4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhkknBX1c9W1Yer6jNVdWtVfaGq/m9VvbaqjpxiDAAgqTHGxjdS9bUk\nu5J8IskNSQ5PcnKSb0ryd0lOHmN85l5uey3Jzg1PEljXxn8LHLpq2ROAO+0aY5y40Y1sn2ImSR44\nxvjq3g9W1c8keWWSn0zy0onGAoCVNcmh8n1Fe+535svHTjEOAKy6RV+c9h3z5Z8veBwAWAlTHSpP\nklTVK5I8IMmDMju//ZTMov2mg3jt2jqrjp9sggDQ3KThTvKKJA/b4/sPJPm+McbfTzwOAKykSa4q\nv9tGqx6W5JTM9rSPSPLvxxi77uW2XFUOC+aqctgUk1xVvpBz3GOMz48xfi/JM5McmeTdixgHAFbN\nQi9OG2Ncm9l7u7+xqh66yLEAYBVsxi1P/9V8efsmjAUAW9qGw11Vx1fVw/fx+Lb5DViOSnL5GOOL\nGx0LAFbdFFeVPzvJz1fVJUn+Nsk/ZHZl+WlJjk3yuSQ/MME4ALDypgj3h5L8WpJTkzwhyYOTfDnJ\nVUnOT3LeGOMLE4wDACtvw+EeY/xlkpdNMBcA4AB8HjcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAIwsLd1WdVVVj/vXiRY0DAKtkIeGuqkcmeUuSWxaxfQBY\nVZOHu6oqyW8k+Yckb5t6+wCwyhaxx312kqcneVGSLy9g+wCwsiYNd1XtSPKmJOeOMS6ZctsAQLJ9\nqg1V1fYk5ye5Lskr78Xr19ZZdfxG5gUAW8lk4U7yU0memOQpY4xbJ9wuADA3Sbir6qTM9rJ/cYzx\n0XuzjTHGietsey3Jzg1MDwC2jA2f497jEPlVSV6z4RkBAOua4uK0ByQ5LsmOJF/d46YrI8lr58/5\n9fljb55gPABYWVMcKr8tyTvXWbczs/Pelyb5VJJ7dRgdAJjZcLjnF6Lt85amVfW6zML9m2OMd2x0\nLABYdT5kBAAaEW4AaKTGGMuew355Oxgs3qH9W2BjatkTgDvtWu+tz/eEPW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGti97AmxNY9kTWJBa9gQWZKv+uWArsscNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyCTh\nrqprqmqs8/W5KcYAAJLtE27rpiRv3sfjt0w4BgCstCnD/aUxxusm3B4AsBfnuAGgkSn3uO9XVd+b\n5OgkX07y50kuGWPcPuEYALDSpgz3w5Ocv9djn66qF40xLp5wHABYWVOF+zeSfCTJx5PcnOTYJP8t\nyQ8m+cOqevIY48r9baCq1tZZdfxEcwSA9mqMsbiNV/1Ckh9N8vtjjDMO8Nz9hfv+U8+NxVrc36rl\nqmVPAOhs1xjjxI1uZNHh/tdJ/jrJF8YYR97Lbawl2TnpxFg44Qa4m0nCveirym+YLw9f8DgAsBIW\nHe4nz5dXL3gcAFgJGw53VX1jVT1kH48fk+St829/a6PjAADTXFV+ZpKfqKqLknw6s6vKH5PkuUm+\nPskFSX5hgnEAYOVNEe6LkjwuyRMzOzR+eJIvJbk0s/d1nz8WeQUcAKyQDYd7fnMVN1gBgE3gXuUA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbF/2BNiaatkTANii7HEDQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0Mik4a6qb6mq91bV9VV123x5YVU9Z8pxAGBVbZ9qQ1X16iRvSHJjkj9Icn2ShyZ5YpLTk1ww\n1VgAsKomCXdVnZlZtD+U5HljjJv3Wv91U4wDAKtuw4fKq2pbkp9N8pUk37N3tJNkjPFPGx0HAJhm\nj/uUJI9O8r+SfLGqnpvk8Um+muSKMcZHJxgDAMg04f7m+fLzSXYlOWHPlVV1SZLvGmP8/f42UlVr\n66w6fsMzBIAtYoqryo+aL1+S5LAk35bkiMz2uj+Y5KlJfneCcQBg5U2xx32f+bIy27O+cv79x6vq\njCRXJTmtqp68v8PmY4wT9/X4fE985wTzBID2ptjj/uJ8efUe0U6SjDFuzWyvO0lOmmAsAFhpU4T7\nU/Pll9ZZvzvsh00wFgCstCnCfUmSf07y2Kq67z7WP36+vGaCsQBgpW043GOMG5P8dpIHJfmpPddV\n1TOSPCvJTUk+sNGxAGDVTXXL0x9J8qQkr6qqpya5IskxSc5IcnuSHxhjrHcoHQA4SJOEe4xxQ1U9\nKcmrM4v1yUluTvL+JG8cY/zpFOMAwKqrMcay57Bf3g4GwBaxa723Pt8TPo8bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgke3LngBb01j2BBaklj0BYOXZ4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkw+Guqu+r\nqnGAr9unmCwArLrtE2zjY0lev866b0ny9CR/OME4ALDyNhzuMcbHMov33VTVR+f/+WsbHQcAWOA5\n7qp6fJKTk/y/JO9f1DgAsEoWeXHaf5kv3znGcI4bACYwxTnuu6mqw5J8b5I7krzjIF+zts6q46ea\nFwB0t6g97u9O8uAkfzjG+MyCxgCAlbOQPe4kPzhfvv1gXzDGOHFfj8/3xHdOMSkA6G7yPe6q+jdJ\nTkny2SQXTL19AFhlizhU7qI0AFiQScNdVV+f5KzMLkp755TbBgCm3+M+M8k3JLnARWkAML2pw737\nojR3SgOABZgs3FW1I8lT4qI0AFiYyd4ONsb4ZJKaansAwN35PG4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJHt\ny57AQXjUsifAPXfisicAcOh51BQb6RDuf5wvr9mEsY6fL/9qE8ba0nZt3lB+Zv34mfXjZ7Zxj8qd\nPduQGmNMsZ0toarWkmSMYYexCT+zfvzM+vEzO7Q4xw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqx\nxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcCepqkdU1f+sqr+rqtuq6pqqenNVfcOy58Zd\nVdWRVfXiqvq9qvqbqrq1qm6qqkur6vuryt/pJqrqrKoa868XL3s+7FtVfUtVvbeqrp//fry+qi6s\nqucse26rqsPncS9UVT0myeVJjkryfzL7vNmTkpyT5NlVdeoY4x+WOEXu6swkv5rk+iQXJbkuycOS\nPC/JO5J8e1WdOdxZ6JBWVY9M8pYktyR5wJKnwzqq6tVJ3pDkxiR/kNm/u4cmeWKS05NcsLTJrbCV\nv3NaVX0wyTOTnD3GeMsej/9Skh9O8vYxxkuWNT/uqqqenuTwJO8fY9yxx+MPT3JFkkcm+a4xxnuX\nNEUOoKoqyR8leXSS/53kFUl+YIzxjqVOjLuoqjOT/E6SDyV53hjj5r3Wf90Y45+WMrkVt9KHFavq\n2MyifU2SX9lr9WuTfDnJWVV1+CZPjXWMMf54jPG+PaM9f/xzSd42//b0TZ8Y98TZSZ6e5EWZ/Rvj\nEDM/5fSzSb6S5Hv2jnaSiPbyrHS4M/vlkSQX7iMENye5LMn9k5y82RPjXtn9i+SflzoL1lVVO5K8\nKcm5Y4xLlj0f1nVKZkdELkjyxap6blX9eFWdU1VPXvLcVt6qn+N+3Hx51Trr/zqzPfLjknx4U2bE\nvVJV25O8YP7tB5Y5F/Zt/jM6P7PrEl655Omwf988X34+ya4kJ+y5sqouyeyU1N9v9sSwx/2g+fKm\nddbvfvzBmzAXNuZNSR6f5IIxxgeXPRn26acyu6jp+8YYty57MuzXUfPlS5IcluTbkhyR2b+xDyZ5\napLfXc7UWPVwH0jNl6t9Bd8hrqrOTvKjmb0j4KwlT4d9qKqTMtvL/sUxxkeXPR8O6D7zZWW2Z/3h\nMcYtY4yPJzkjyWeTnOaw+XKserh371E/aJ31D9zreRxiquplSc5N8okkTxtjfGHJU2IvexwivyrJ\na5Y8HQ7OF+fLq8cYV+65Yn60ZPdRrZM2dVYkEe5PzZfHrbP+sfPleufAWaKqenmStyb5y8yi/bkl\nT4l9e0Bm/8Z2JPnqHjddGZm9eyNJfn3+2JuXNkv2tPt345fWWb877IdtwlzYy6pfnHbRfPnMqtq2\n1/uCj0hyapJbk/zpMibH+qrqxzM7r/2xJM8YY9y45CmxvtuSvHOddTszO+99aWaxcBj90HBJZu/O\neGxV3XeM8bW91j9+vrxmU2dFkhUP9xjjb6vqwsyuHH9ZZndy2u31md3o4+1jDO81PYRU1WuS/HSS\ntSTPdHj80DY/tLrPW5pW1esyC/dvugHLoWOMcWNV/XaS/5zZRYWv3r2uqp6R5FmZnUL0Do4lWOlw\nz700s1uenldV35rkk0melORpmR0if9US58ZequqFmUX79iQfSXL27EZcd3HNGONdmzw12Gp+JLPf\nha+qqqdmdmfCYzK7OO32zO52t96hdBZo5cM93+v+psxi8Owkz8nsfrznJXm9vblDzqPny/skefk6\nz7k4ybs2ZTawRY0xbqiqJ2W2t31GZjeiujnJ+5O8cYzhFOKSrPy9ygGgk1W/qhwAWhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAa+f9MIucuFh4XswAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498211f898>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"5b7aaf9fbd4c4976a2570c8016af4c18": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5b96c2469a434c22b2a38b517a40edb0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_57add9979f6d46c89d62886501c538c7", | |
"max": 7, | |
"style": "IPY_MODEL_2d0e2696f8a047f59cbabf29a1ab8f89" | |
} | |
}, | |
"5bfc156673ea46b28721e42ee0a19f30": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5bfeb129946146878e75488269d1fa8b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5c31f0f69c4841a4b3286da0510e1bb0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_1fc3ce5b92f94c6a9175e20ce2bc9088", | |
"max": 7, | |
"style": "IPY_MODEL_7f305a1cfee14b54aefe97eab73fcefe", | |
"value": 2 | |
} | |
}, | |
"5c4b350cdf734db29f88a4a2ceb737da": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5c886288141f463bb4a9962a583a5363": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5c9bfac3b4d2484cbcc35fcdbec3df28": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5cb8d60def054e77ac4c1b6f9d12c1b9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_5259f578cb154bf39114845735742fef", | |
"style": "IPY_MODEL_5ecb805ce3f349bbb0653c2dca18a0ea" | |
} | |
}, | |
"5d078fa113204e5187abde60027aa73f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5d507f2da6b149da84d2a54f0904422e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5d62e2e0ba01452d85bb631e34289ab3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_97eed0164c8b4be6a73937a47de7008a", | |
"max": 7, | |
"style": "IPY_MODEL_00a3fcd75397428d9fd40b704079fdf8", | |
"value": 3 | |
} | |
}, | |
"5de8945af7904942b92476bea1bb3708": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5df81aa00efe44ac92f0d5c87d672298": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5e2122a1128b4354a9090f6f87703416": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5e24fda600fd4cadbf7807c5f5c6351b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5e5d1cbbefb249528e660bde63882e4f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_eccd4d80a0e24e4f8740c30f690aa5bd", | |
"IPY_MODEL_b8601263f4994ec998e1b24ef0ee4512", | |
"IPY_MODEL_4a1d544b5c204d468cb134094a51d27e", | |
"IPY_MODEL_034f91ab73fc4edd8871743c4f07ca72" | |
], | |
"layout": "IPY_MODEL_e9f7281af50f4e06b7809860e104adb7" | |
} | |
}, | |
"5e658f83c2254d4b8e0de6aadee08c5c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_cc161978ef7e43d9ada000f4ddddff03", | |
"IPY_MODEL_b4b9b6cd54624343a06cf802fbe8bf2b" | |
], | |
"layout": "IPY_MODEL_a0d3f15cdcd547fd9c2097e3d940fc5c" | |
} | |
}, | |
"5ea30c2bf9f14f9d9dcb6e28d1cbc396": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_9dee5811b2804697b9fad4ed65a5574b", | |
"IPY_MODEL_cdb41b9bbc8f4dd9ab11f8372997e9e5", | |
"IPY_MODEL_a3d60f4ed4b347a19fbd6878de1d16a7", | |
"IPY_MODEL_e1cbd83fa19146728ecf6b1eecd1d282" | |
], | |
"layout": "IPY_MODEL_05e3a2135d9e4c93a6fa8ee4af26a945" | |
} | |
}, | |
"5eafb70a09de4935853ce108d295d061": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_0996f44dfede4b2db3e8dc21f79c8554", | |
"max": 7, | |
"style": "IPY_MODEL_79bc1e00ba114d5f9a48fde5e75cc9ec" | |
} | |
}, | |
"5ecb805ce3f349bbb0653c2dca18a0ea": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5eeb9ff526164017916bef9eab25ae75": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_84878fcf14d54ad7bbc69fa1c67ccdbf", | |
"max": 7, | |
"style": "IPY_MODEL_fb93f364f4db4ed8870ad9ce02ceda8d", | |
"value": 2 | |
} | |
}, | |
"5f46aef35d0f4b069fe737678ea67939": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_a47f15fedae943f8ad0893678b3d0de5", | |
"max": 7, | |
"style": "IPY_MODEL_ae83be642d6644ea8f6b2ff37512e49c", | |
"value": 7 | |
} | |
}, | |
"5f6e99dd3a5743a48c48fac463ab2d99": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5f76ddd601a24679a9c47119e29d8c7c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"5fb758cad1864203a0adaa040fb9bc93": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5fe035567f37416a8bc15030370fe2b6": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_dc09006195cc44b0b86d97b5b21ef53b", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGXZJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInsDD761cM\ntopjkuycZEv2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZcLir6nFVNa7l44opJgsAq27bBNv4dJIX\nr7Pu/klOTPLeCcYBgJW34XCPMT6dWbyvpqo+Mf/P1290HABggee4q+quSe6d5P8lec+ixgGAVbLI\ni9P+y3z5pjGGc9wAMIEpznFfTVUdlOR3klyZ5I17+Zod66w6aqp5AUB3i9rj/q0kN03y3jHGNxc0\nBgCsnIXscSd50nz5ur19wRjjmD09P98T3z7FpACgu8n3uKvqLknum+RbSU6bevsAsMoWcajcRWkA\nsCCThruqbpDklMwuSnvTlNsGAKbf4z45yc2SnOaiNACY3tTh3nVRmjulAcACTBbuqjo6yf3iojQA\nWJjJ3g42xvhCkppqewDA1fl73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI9uWPYG9cPtlT4Dr7phlT4DryFcM\nFusLyUQ9qzHGFNtZmKr6WpJDkpy3CcMdNV9+cRPGYhq+Zv34mvXja7Zxt0/y4zHG4Rvd0JYP92aq\nqh1JMsaw+9GEr1k/vmb9+JptLc5xA0Ajwg0AjQg3ADQi3ADQiHADQCOuKgeARuxxA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcSarq1lX1V1X1r1V1WVWdV1WvqKqbLXtuXFVV3aKqnlBV76qq\nr1TVJVX1o6r6aFX9XlX5nm6iqk6pqjH/eMKy58OeVdX9q+odVXX+/Pfj+VX1gap66LLntqq2LXsC\ny1ZVd0jy8SSHJvnHzP7e7LFJnpbkIVV13Bjje0ucIld1cpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\n7iy0pVXVbZK8OsnFSW605Omwjqp6XpKXJrkwyT9l9nN3yyT3SHJCktOWNrkVtvJ3Tquq9yd5cJJT\nxxiv3u35/5HkD5K8bozx5GXNj6uqqhOTHJzkPWOMK3d7/lZJPpXkNkkePcZ4x5KmyLWoqkrywSSH\nJ3lnkmcmeeIY441LnRhXUVUnJ/m7JB9K8qgxxkVr1l9vjPHzpUxuxa30YcWqOiKzaJ+X5C/WrH5h\nkp8kOaWqDt7kqbGOMcaHxxjv3j3a8+e/neS184cnbPrEuC5OTXJiksdn9jPGFjM/5fTyJD9N8ttr\no50kor08Kx3uzH55JMkH9hCCi5J8LMkNk9x7syfGPtn1i+Typc6CdVXV0UleluSVY4yzlj0f1nXf\nzI6InJbkB1X1sKp6VlU9rarus+S5rbxVP8d95/nynHXWfzmzPfIjk5y+KTNin1TVtiS/O3/4vmXO\nhT2bf43emtl1Cc9Z8nS4ZvecL7+TZGeSu+2+sqrOyuyU1Hc3e2LY477JfPmjddbvev6mmzAXNuZl\nSe6a5LQxxvuXPRn26AWZXdT0uDHGJcueDNfo0PnyyUkOSvLrSW6c2c/Y+5M8IMnfL2dqrHq4r03N\nl6t9Bd8WV1WnJnlGZu8IOGXJ02EPqurYzPay/2yM8Yllz4drdeB8WZntWZ8+xrh4jPH5JI9M8q0k\nxztsvhyrHu5de9Q3WWf9IWs+jy2mqp6a5JVJzk7ywDHG95c8JdbY7RD5OUmev+TpsHd+MF+eO8b4\nzO4r5kdLdh3VOnZTZ0US4f7SfHnkOuvvNF+udw6cJaqqpyd5TZLPZRbtby95SuzZjTL7GTs6yaW7\n3XRlZPbujSR5w/y5Vyxtluxu1+/GH66zflfYD9qEubDGql+cdsZ8+eCqOmDN+4JvnOS4JJck+eQy\nJsf6qupZmZ3X/nSSB40xLlzylFjfZUnetM667Zmd9/5oZrFwGH1rOCuzd2fcqap+ZYzxszXr7zpf\nnrepsyLJiod7jPHVqvpAZleOPzWzOznt8uLMbvTxujGG95puIVX1/CQvSbIjyYMdHt/a5odW93hL\n06p6UWbh/ms3YNk6xhgXVtXbk/ynzC4qfN6udVX1oCS/kdkpRO/gWIKVDvfcUzK75emrquqkJF9I\ncq8kD8zsEPlzlzg31qiqx2YW7SuSfCTJqbMbcV3FeWOMt2zy1GB/84eZ/S58blU9ILM7E94us4vT\nrsjsbnfrHUpngVY+3PO97l/LLAYPSfLQzO7H+6okL7Y3t+UcPl8emOTp63zOmUnesimzgf3UGOOC\nqrpXZnvbj8zsRlQXJXlPkj8ZYziFuCQrf69yAOhk1a8qB4BWhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEb+P/j/JfTgn6DC\nAAAAAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4982341668>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"5fe6790f78284c5cba71c51e0b03e040": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_f74b0db43d7a4d93aa7efa08baf48ca4", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "53 (6, 5) 1 0 0\n21 (2, 5) 0 3 3\n19 (2, 3) 3 2 2\n35 (4, 3) 2 1 1\n38 (4, 6) 1 0 0\n14 (1, 6) 0 3 3\n9 (1, 1) 3 2 2\n49 (6, 1) 2 3 -1\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmYXGWd6PHvLzRJSEJISAwMywQi\nYFAYIGGVgbCMCzI8A2juow4MOHcYcZzH5ep1G9frdXtmcRt3HUGci46jow+CygwSEASVBBgX0GAI\ngiRAVsi+vfePqk56qerudJ3qU++p7+d5+qmu5ZzzpqurvjlLnY6UEpIkKQ/jyh6AJEkaOcMtSVJG\nDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KU\nEcMtSVJGDLckSRkx3JIkZaSn7AEMJyIeBqYCy0seiiRJo3UE8HRK6chWZ9Tx4aYW7QPrX5IkdbUc\nNpUvL3sAkiQVYHkRM8kh3JIkqc5wS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx\n3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJGDLckSRkx3JIkZcRwS5KUEcMtSVJG\nCgt3RBwWEf8SEY9HxNaIWB4RH4uI6UUtQ5KkbtdTxEwi4tnAj4FZwHeAB4FTgdcDL46IM1NKq4tY\nliRJ3ayoNe5PU4v261JKF6eU3pZSOg/4KPAc4AMFLUeSpK4WKaXWZhAxB/gtsBx4dkppV5/79gdW\nAAHMSiltHMX8FwPzWhqkJEnlW5JSmt/qTIpY4z6vfnlz32gDpJSeAe4EJgGnF7AsSZK6WhH7uJ9T\nv/xNk/uXAi8EjgFuaTaT+pp1I3NHPzRJkqqliDXuA+qX65vc33v7tAKWJUlSVyvkqPJhRP1yyJ3p\nzbb7u49bkqQ9iljj7l2jPqDJ/VMHPE6SJI1SEeH+df3ymCb3H12/bLYPXJIkjVAR4b61fvnCiOg3\nv/rHwc4ENgN3F7AsSZK6WsvhTin9FrgZOAJ47YC73wdMBr4yms9wS5Kk/oo6OO1vqJ3y9BMRcT7w\nAHAacC61TeR/V9ByJEnqaoWc8rS+1n0ycA21YL8JeDbwCeAMz1MuSVIxCvs4WErpUeBVRc1PkiQN\n5t/jliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5J\nkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSM9JQ9gG6WUtkjaJ8oewBSxVX4\n7YPwDWRIrnFLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1J\nUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGTHckiRlxHBLkpQRwy1JUkYMtyRJGekpewBqvyef\nfBbLlh3J1q0TmDBhK3PmPMysWU+VPSxJGdj+xBFseWg+actkYuJGJh61mH0PWl72sLpaIeGOiJcB\nC4ATgROA/YF/TSldVsT8NTrLlh3JbbedzSOPHDHovtmzl7Ngwe3MmfPwmI9LUufb8tA8nr7lSrY9\nfGK/29cD44+8j6nnX8PEo5aUM7guFyml1mcScR+1YG8AHgPmUlC4I2IxMK/V+XSiAn70TS1ZchI3\n3PCnpDQOSED0XTIQROziootuYN68+wpffgz/EEktaOPbBxt/diFrv/VmSPvQ7P2D2Mn0S/+eyafc\nVPjyo7pvIEtSSvNbnUlR+7jfCBwDTAVeU9A8NUrLlh3ZJ9owOKO16ymN44YbLmLZsiPHdHySOteW\nh+b1iTY0e/8g7cPab/1vtjxUyfWqjlZIuFNKt6aUlqYiVt/VsttuO7tPtIeW0jhuu+3sNo9IUi6e\nvuXKPtEeRtqHp2+5oq3j0WAeVV4xTz75rPo+7f7/h+rpaXY4Q+KRR47gySef1d6BSep42584or5P\ne8A6WE+zbdeJbQ+fxPYnjmjzyNRXxxxVXt+X3cjcMR1I5vZs9t7zQpswYQKXX345TzzxBDfccMOA\nKWL3dB5pLnW3LQ/17n7t8/7x7GlMX3gM6779EFseXDNgitg9nUeajx3XuCtm69YJg26bM2cOhx12\nGPPnz+dtb3vbiKeT1F3Slsn9rk+ceyDPuup4eqZNYP8Fh414OrVXx4Q7pTS/0RfwYNljy8mECVsH\n3fbAAw/w8MO1j31NnDixYbwbTSepu8TEjbu/nzj3QGZe+bzd11d/9YERTaf265hwqxh7Ppfdfx/V\ntdde2yTeacB0krrVxKNqeywnzp3eL9qPv/9udm3c3mCK1G86jQ3DXTGzZj3F7NnLafRJ6sbxDmbP\nXu7+bUnse9BypixYx8wrj9t9W/NoAwTjj7zX/dtjzHBX0IIFtxOxq+F9jeK9YMHtYzk8SR3rQqZd\ncNHua0NHG4idTD3/2jEYl/oy3BU0Z87DXHTRd/vEe+Bm82v6xXvOnHvHeISSOs+FwHd3X3v8/95Z\nj/bA03PUr9fPnOZpT8deUecqvxi4uH714PrlGRFxTf37VSmlNxexLI3MvHn3Mm3auibnKg8WLXof\nBx/81+y33/OBA4B1wLSxHqakjtA/2jCLA19+OE/fcgXbHj5pwGNrm8ennn+t0S5JUecqfy/wniEe\n8khK6YhRzttzlbdo6L8OdgtwXv379RQV7+qealjqDMW9fQyONuw55qWMvw7mucqHVki428lwj4Xi\n413d153UGYp5+xg62mUx3ENzH7eA84Ef1r/v3Wwuqdo6M9oanuFWnfGWuofRzpnhVh/GW6o+o507\nw60BjLdUXUa7Cgy3GjDeUvUY7aow3GrCeEvVYbSrxHBrCMZbyp/RrhrDrWEYbylfRruKDLdGwHhL\n+THaVWW4NULGW8qH0a4yw629YLylzme0q85way8Zb6lzGe1uYLg1CsZb6jxGu1sYbo2S8ZY6h9Hu\nJoZbLTDeUvmMdrcx3GqR8ZbKY7S7keFWAQbHezrTSxyP1A0uw2h3J8OtgvSP9xrWlDkYqdLezbuB\n6/rcYrS7ieFWgc7vd20uc0sah1Rtr+E1fa4dhtHuLj1lD6CbRdkDaIN9Gc83+Abf+cvv8OCXHyx7\nOIVLqewRtEcVfxd7VfMpO4Ff8kNewSv4Ob8vezAaY5E6/J0oIhYD88oeR1t09o++NRUtQYe/XEat\nok8XUN2XWZWfswr/45aklOa3OhM3lUuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZ\nMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlS\nRnpanUFEzAAuAS4EjgcOBbYBPwe+DHw5pbSr1eVI3WTr0vFsvGsyuzaOY9zkXUw+YyMTjt5W9rDU\nxENrJ/CTlZPZsG0fpozfyWkHb+So6VvLHpYqquVwAwuBzwArgFuB3wEHAZcCXwQuiIiFKaVUwLKk\nStt41yRWfWomm+6ZNOi+SSdvYuZrVzH5jE0ljEyN3L1iMp+9fxaLn5g86L75B23k6hOe5PQ/2FjC\nyFRl0WpPI+I8YDJwY98164g4GPgpcDjwspTSN0c5/8XAvJYG2amq/F+ZKHsA7dHO/36u+/cDWPHu\ng2FXUPvl6PtDrF8fl/iD969k2kvXF7rsij5dQPteZt9aOp333XUIu1Lz52tcJN57xu+55Oh1hS+/\nys9Zhf9xS1JK81udScv7uFNKP0wp3TBwc3hKaSXw2frVc1pdjlRlG++a1CfaMPidq359V7DiXQez\n8a7Ba+QaO3evmNwn2tDs+dqVgvfedSh3rxi8Ri6NVrsPTttev9zR5uVIWVv1qZl9oj2MXcGqT89s\n74A0pM/eP6tPtIe2KwWfu39Wm0ekbtK2cEdED/AX9avfb9dypNxtXTq+vk97z0bdmDCBg97+dsYd\ncECDKRKbfjaJrUvHj9kYtcdDayfU92n33wh/1LSjuPqPrm4wReKeJybz0NoJYzI+VV8RB6c182Hg\nOOCmlNIPhntwfV92I3MLHZXUYTbe1bsZdc8a3MHvey/TLr6YA6/4C5YuOIcdTzzRZ4rYPZ1Hmo+9\nn6wc/HyddehZfPpPPg3Auq3r+Nqvv9Znitg9nUeaqwhtWeOOiNcBbwIeBC5vxzKkqti1cfDLcPXn\nv7D7+6NvW0TPQQeNaDq134Zt+/S73jfaADcsu2FE00mjVfgrPyJeC3wc+BVwbkppzUimSynNb/RF\nLf5SZY2bPPg0B9uWLeORK67Yfb1RvBtNp/abMn7n7u8HRnvB1xewcXvjj3/1nU5qRaHhjog3AP8M\n/IJatFcWOX+piiaf0ftG33+f6aaf/LRJvNOA6TSWTju49nNvFO01Wxqtp6R+00mtKizcEfFW4KPA\nfdSi/WRR85aqbMLR25h08iYafXi1cbwPZtIpm9y/XZKjpm/lL487dYTRBghOPsgzqak4hYQ7It5F\n7WC0xcD5KaVVRcxX6hYzX7sKxjU+VUijeD/rDR5RXp6X8Mb5X9p9behow7hIvPoE12NUnCLOnHYF\ncA2wE/gk0OiUTstTSteMcv6eOS1HFT3zUZlnTpt02mnMvvbaPrcdBvy+kGVX9OkCin6ZvQS4cfe1\nc//tbFZtXotnTitYdf9xhZw5rYiPgx1Zv9wHeEOTx9xGLe6Smpj2svXse+h2Vn16Jpt+NvDMaAG7\nFrH5lxew3/O+V7/tMYqMt4bTP9owiw+dtYnP3T+Lewadq7y2efzVnqtcbdDyGne7ucadqYr+j3ms\nXi5D/3Wwc6j9PZ9erce7ok8XUNTLbHC04and18r462BVfs4q/I8rZI3bcJeps3/0ranoC69zXi7n\nUGS8K/p0AUW8zIaOdlmq/JxV+B/XGX9kRFIZFgHn9rn+GHBoOUOptM6Mtrqb4ZaytQjj3U5GW53J\ncEtZW4Txbgejrc5luKXsLcJ4F8loq7MZbqkSFmG8i2C01fkMt1QZizDerTDayoPhliplEcZ7NIy2\n8mG4pcpZhPHeG0ZbeTHcUiUtwniPhNFWfgy3VFmLMN5DMdrKk+GWKm0RxrsRo618GW6p8hZhvPsy\n2sqb4Za6wiKMNxhtVYHhlrrGIro73kZb1WC4pa6yiO6Mt9FWdRhuqessYmC8D610vI22qsVwS11p\nEX3j/RiPcSVXljWYtrmZmzHaqppIKZU9hiFFxGJgXtnjaIvO/tG3JsoeQHt0+MtlFM4Bbt19rYce\ndrKztNEU6SAOYiUr+9xSrWhX9CVWU91/3JKU0vxWZ+Iat7QXonJfi7ie6wG44oor2Bk7yx5QYV9P\n7fMUn/rUpwD4c/6c4Kmyh1Tol7qXa9xl6uwffWuq+s5S0edsv0n7sXnz5rKHUbhx48ax78592crW\nsoeivVHV9w/XuCUVpYrRBti1a5fRVuUYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGW\nJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4\nJUnKSCHhjoiPRMQtEfFoRGyOiDURcW9EvCciZhSxDEmSBJFSan0mEduAJcCvgCeBycDpwMnA48Dp\nKaVHRznvxcC8lgfZiVr/0XeuKHsAbVLV56yqzxdU9zmrsur+Pi5JKc1vdSY9RYwEmJpS2jLwxoj4\nAPAO4O3A3xS0LEmSulYhm8obRbvu3+qXRxexHEmSul27D067qH75321ejiRJXaGoTeUARMSbgSnA\nAdT2b/8xtWh/eATTLm5y19zCBihJUuYKDTfwZuCgPte/D1yZUnqq4OVIktSVCjmqfNBMIw4Cnk9t\nTXt/4E9TSktGOS+PKs9RVY8KrepzVtXnC6r7nFVZdX8fCzmqvC37uFNKT6SU/gN4ITAD+Eo7liNJ\nUrdp68FpKaVHqH22+3kRMbOdy5IkqRuMxSlPD6lf7hyDZUmSVGkthzsi5kbEwQ1uH1c/Acss4Mcp\npbWtLkuSpG5XxFHlLwb+PiJuB34LrKZ2ZPkCYA6wEriqgOVIktT1igj3fwGfB84ETgCmARuB3wDX\nAZ9IKa0pYDmSJHW9lsOdUvoF8NoCxiJJkobh3+OWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluS\npIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGW\nxNSpU8segvbSVHzOupXhlrrczdzM+vXrufrqq8seikboQi5kPet5gicYz/iyh6MxFimlsscwpIhY\nDMwrexxt0dk/+tZE2QNojw5/uYzCS4Abd1/roYed7CxvOBqR1O/N4x3Ah8oaSltERd8/gCUppfmt\nzsQ1bqlr9Y/2QhYa7UwcwzF9rn0QeHtZQ1EJesoegKQy9I/2LGbxFE+VNxztlaUsBcYD2+q3fLB+\nWa01bzXmGrfUdfpHG6Odqe3Qb/+2a97dwnBLXWVwtDHaGTPe3chwS13DaFeT8e42hlvqCka72ox3\nNzHcUuUZ7e5gvLuF4ZYqzWh3F+PdDQy3VFlGuzsZ76oz3FIlGe3uZryrzHBLlWO0Bca7ugy3VClG\nW30Z7yoy3FJlGG01YryrxnBLlWC0NRTjXSWGW8qe0dZIGO+qMNxS1oy29obxrgLDLWXLaGs0jHfu\nDLeUJaOtVhjvnBluKTtGW0Uw3rnqKXsAkgZb/fhsHntwHtu3TGLfiZs4bO4SZhzyCEZbxeqN97b6\n9Q/WLz+0+xGrHp3C734xk22behg/aQd/eNwqZh6+YYzHqb7aFu6IuBz4Sv3qVSmlL7ZrWVJVPPrg\nSdxz4+U8vvSEQfed9MKnef6lF/e5xWirCI3j/cjPP8/d3zyaxx6YMWiKw45dzekvXcrs41eP2Si1\nR1s2lUfE4cAnAf9bJo3Qr+68gBs+/pF6tFO/+2Yfd6DRVhsN3mz+6C//sR7tNOCxiccemME3P3Aa\nP7/1sLEbonYrPNwREcCXgdXAZ4uev1RFjz54Eou++kZS2qd+S+y+b/ZxM/jTvz1x9/Uvv2URjz7o\nG6aK1j/ef/zyKzj14oX0/V2sqV1PKfjPz/0Rj/x88Bq52qsda9yvA84DXgVsbMP8pcq558bL+0R7\nj1q092w2/5f//SM2Pb2Le268bCyHp66xnW+8/6zd1856RW+8G0spuPtbR4/FwNRHoeGOiGOBDwMf\nTyndXuS8papa/fjsJpvHB0d78zPbgcTjS09k9eOzx3agqrzagWgH8NFX/tnu24aOd+KxX81g1aNT\nxmaAAgoMd0T0ANcBvwPeMYrpFzf6AuYWNUapEz324Lz6d3s2Sc44dHKTaO953J7ppGL87hczAdi1\ncycffeWeYyrOesUVHHXy6Q2miH7TaWwUucb9buAk4MqU0uYC5ytV2vYtkwbddsJ5h+/+vn+0h55O\nasW2TXs+aLRr545+8T75oktGNJ3ar5CfdkScSm0t+x9TSneNZh4ppflN5r0YcNVClbXvxE2Dblt0\n/a/Z9PQ2Fv/gEbZv2Tni6aRWjJ+0o9/1Wrz/jDNe9goWf/fbI55O7dVyuPtsIv8N8K6WRyR1mcPm\nLql/l+jd9LhrR+Lu7yxrMkXtcXumk4rxh8etqn/X53dx507u/PpXm0xRe9ye6TQWithUPgU4BjgW\n2BIRqfcLeE/9MV+o3/axApYnVcqMQx7hkKPvZ/DHbpoJDjn6vvqZ1KTizDx8A4cdu5q9+V087Lmr\nPZPaGCtiU/lW4EtN7ptHbb/3HcCvgVFtRpeq7uQLr+OGjx/X8CNhA0Xs5OQLm60BSa05/aVL+eYH\nDiSl4eMdkTj90qVjMCr1FSkNPCtOgTOPeC+1te5Rn/K00vu42/ejL99I/8OemTa+XPjVnRf0OQnL\nnk2V9SUDQcROzrnsn3jumd8vdNkVfboqrZ1vHz//4eH85+ePr8e72e9i4gWv/m+OP/exwpcf1f2F\nXNLseK694aGAUod47pnfY/8ZK7nnxst4fOmJA+6tbR4/+cKvcvjce0sZn7rH8ec9ytRnbeLubx3N\nY78aeGa02ubx0y/1XOVlMdxSBzl87r0cPvfeIf46mDQ2Zh+/mtnHr/avg3Wgtm4qL4KbyjNV0U1d\nHf5yGbWKPl2VVtFfRcBN5cNpy18HkyRJ7WG4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkj\nhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnK\niOGWJCkjPWUPQMpJRNkj0F5LZQ+gPfxd7F6ucUuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlS\nRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgy3JEkZMdySJGXEcEuS\nlBHDLUlSRgy3JEkZKSTcEbE8IlKTr5VFLEOSJEFPgfNaD3yswe0bClyGJEldrchwr0spvbfA+UmS\npAHcxy1JUkaKXOOeEBGXAX8IbAT+G7g9pbSzwGVIktTVigz3wcB1A257OCJelVK6rcDlSJLUtYoK\n95eBHwG/BJ4B5gB/C/w18L2IOCOldP9QM4iIxU3umlvQGCVJyl6klNo384h/AN4EfDuldMkwjx0q\n3JOKHltHaN+PvnxR9gCkuqq+znyN5WhJSml+qzNpd7iPApYCa1JKM0Y5j8XAvEIH1imq+oYCvqmo\nc1T1deZrLEeFhLvdR5U/Wb+c3OblSJLUFdod7jPql8vavBxJkrpCy+GOiOdFxIENbp8N/HP96ldb\nXY4kSSrmqPKFwNsi4lbgYWpHlT8buBCYCNwE/EMBy5EkqesVEe5bgecAJ1HbND4ZWAfcQe1z3del\ndh4BJ0lSF2k53PWTq3iCFUmSxoDnKpckKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIy\nYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW1Jl\nHXrooZzKqWUPQyqU4ZZUSbNmzeKOO+7gJ/yEe7m37OFIhekpewDdLJU9gDaKsgfQLlV+0ipmDWs4\ngiMAOJETSVwBXFvqmIpU2deYhuUat6RK2sEOXsSL+txyDXBFSaORimO4JVXWzdwM7N/nlmsw3sqd\n4ZZUcRsw3qoSwy2pCxhvVYfhltQljLeqwXBL6iLGW/kz3JK6jPFW3gy3pC5kvJUvwy2pSxlv5clw\nS+pixlv5MdySupzxVl4MtyQZb2XEcEsSYLyVC8MtSbsZb3U+wy1J/RhvdTbDLUmDGG91LsMtSQ0Z\nb3Umwy1JTRlvdR7DLUlDMt7qLD1lD0Dtt2HDvqxdux87doyjp2cX06dvZsqU7WUPq2UTTzyT/c6+\ngJi8P2njM2y+/Xtsue/OsoelSuqN9zP169fUL6+tXTw5Dpb1wFZgAjBnB8zaNcZjVLcoNNwRcRbw\nBuD5wIHAGuDnwMdSSjcVuSwNb82aiTy8fDrr1u036L5p0zZz5BFrOfDALSWMrDWTX/xyplx+FfzB\ngf1uH3/xhRywYg0brvsCG7//tZJGp+pqEO8nx8GNX4dHGryVzt4BC7bCnJ1jN0R1hUgpFTOjiHcC\n7wdWAd8FVgAzgZOAW1NKbxnlfBcD8woZZIcp6Eff0OOP788DD84EAkj1y91L3n37sXNXccghzzSa\nRUsihn/MaEy76h1MePnLagtIqf+Ceq+nxJbrv8H6L36o+AG08TlTexT/lE1hT7yBb78G7vtXGr7G\nIsFFW2Be8Vu42vUaU1stSSnNb3UmhaxxR8RCatH+L+DSlNIzA+7ft4jlaGTWrJnYJ9rQ/w2Ffrc/\n8OBMJk7cnsWa9+QXv3xPtGHwO1ef2ye+YiE7HnvYNW+1wQZ4eBocua529eLP1C7v+399HlP/XUwB\nN0yEabtc81ZhWj44LSLGAR8BNgGvHBhtgJRS/jtUM/Lw8ukMjnUzUX9855ty+VUjX82IYMplV7V3\nQOpei7bDBw/dc/3iz8CJr2z82BRw24SxGZe6QhFHlT8fOBK4CVgbERdGxFsj4vURcUYB89de2LBh\n3/o+7f4bCCdOPIyIfRpMkVi3bj82bOjsjSITTzyztk97pPsXUoJDDqxNJxXpyXG1fdrbnhlhvFPt\n8U/6IR4Vo4jfpFPql08AS6jt3/4w8DHgxxFxW0Q8a7iZRMTiRl/A3ALG2DXWru09EG3PmumMGedy\nxum38LznfrRBvGPAdJ1pv7MvqH2zF2vc/aaTirKsdw9jwLYNg+N96MBDcmLAdFJrigj3rPrl1cB+\nwJ9QO/TyOOAHwNnANwpYjkZgx47+T+mMGedy4glfZNy4HqZO/SPGjZs4ouk6TUzef/gHFTid1NTW\nAdd7471rJ2zfDBOmjmw6aZSK+C9g7ypcAC9LKd1fv/7LiLgE+A2wICLOSCnd1WwmzY60q/JR5e3Q\n07Pns6O90e71s3teys6dG4edrhOljaM78n2000lNNdpdvW0DfPAQOOi58PslI59OGoUiVrPW1i+X\n9Yk2ACmlzdTWugFOLWBZGsb06ZuBwdG+/Uensn376gZTpH7TdarNt3+v9s3e7OPuO51UlDk76t8M\n+F3csaVJtNOA6aTWFBHuX9cv1zW5vzfsnb0TtSKmTNnO7D88c4TRBgimTev8M6ltue9OWLFm7/Zx\nP77GM6mpeLN21U6ushef3GC2Z1JTcYoI9+3ADuDoiBjf4P7j6pfLC1iWhnUhRx31ld3Xho42QOLI\nI9YOcX/n2HDdF/ZqjXvDV7/Q3gGpey3YWju5ykhEqj1eKkjL4U4prQK+DhwAvLvvfRHxAuBFwHrg\n+60uS8O5kNpB/TW3/+iUerQHvsGk3ZfHzl2VxclXADZ+/2ts/dq/74n3wIj3uX3L9d/w5Ctqnzk7\na2dEiz2vpf7q13vPnObJV1SgQk55GhGzgDuBo4AfAT8FZgOXUPsNfmVKaVRHllf54LRiT3naP9ow\nizVrnintXOXtPB3j5Be/vHZpaPXHAAAIY0lEQVRylUMOHHzn42vY8NU2nqvcU55mp61P2bJ9aidX\nKeFc5Z7yNEuFnPK0yHOVHwi8k1qsD6V2Mt87gA+llO5uYb6Ge1iDow1P7b5Wxl8HG4s3lVL+Opjh\nzs6YPGUl/HUww52lzgp3uxju4Qwd7bJU9k2ls18uaqCqT1llX2PVVki4O/usGxpGZ0ZbktQ+hjtb\nRluSupHhzpLRlqRuZbizY7QlqZsZ7qwYbUnqdoY7G0ZbkmS4M2G0JUk1hrvjGW1J0h6Gu6MZbUlS\nf4a7YxltSdJghrsjGW1JUmOGu+MYbUlSc4a7oxhtSdLQDHfHMNqSpOEZ7o5gtCVJI2O4S2e0JUkj\nZ7hL9U6MtiRpbxjukixcuBB4f59bjLYkaXiGuySnnHJKn2snYbQlSSPRU/YAutVb3vIWVq5cyfXX\nX8+KFSvKHo5GKsoegPaWT5mqJlJKZY9hSBGxGJhX9jgkSWrRkpTS/FZn4qZySZIyYrglScqI4ZYk\nKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrglScqI4ZYkKSOGW5KkjBhuSZIyYrgl\nScqI4ZYkKSOGW5KkjBhuSZIyYrglScpIy+GOiCsjIg3ztbOIwUqS1O16CpjHfcD7mtx3FnAe8L0C\nliNJUtdrOdwppfuoxXuQiLir/u3nW12OJElq4z7uiDgOOB34PXBju5YjSVI3aefBaa+uX34ppeQ+\nbkmSClDEPu5BImI/4DJgF/DFEU6zuMldc4salyRJuWvXGvf/AKYB30spPdqmZUiS1HXassYN/HX9\n8nMjnSClNL/R7fU18XlFDEqSpNwVvsYdEc8Fng88BtxU9PwlSepm7dhU7kFpkiS1SaHhjoiJwOXU\nDkr7UpHzliRJxa9xLwSmAzd5UJokScUrOty9B6V5pjRJktqgsHBHxLHAH+NBaZIktU1hHwdLKT0A\nRFHzkyRJg/n3uCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojh\nliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpI4ZbkqSMGG5JkjJiuCVJyojhliQpIzmE+4iyByBJUgGO\nKGImPUXMpM2erl8uH4Nlza1fPjgGy1IxfM7y43OWH5+z1h3Bnp61JFJKRcynEiJiMUBKaX7ZY9HI\n+Jzlx+csPz5nnSWHTeWSJKnOcEuSlBHDLUlSRgy3JEkZMdySJGXEo8olScqIa9ySJGXEcEuSlBHD\nLUlSRgy3JEkZMdySJGXEcEuSlBHDLUlSRgw3EBGHRcS/RMTjEbE1IpZHxMciYnrZY1N/ETEjIv4q\nIv4jIh6KiM0RsT4i7oiI/xkR/k5nIiIuj4hU//qrssejxiLirIj4ZkSsqL8/roiImyPiJWWPrVvl\n8Pe42yoing38GJgFfIfa35s9FXg98OKIODOltLrEIaq/hcBngBXArcDvgIOAS4EvAhdExMLkmYU6\nWkQcDnwS2ABMKXk4aiIi3gm8H1gFfJfa624mcBJwDnBTaYPrYl1/5rSI+AHwQuB1KaVP9rn9n4A3\nAp9LKV1d1vjUX0ScB0wGbkwp7epz+8HAT4HDgZellL5Z0hA1jIgI4D+BI4FvAW8GrkopfbHUgamf\niFgI/BvwX8ClKaVnBty/b0ppeymD63JdvVkxIuZQi/Zy4FMD7n4PsBG4PCImj/HQ1ERK6YcppRv6\nRrt++0rgs/Wr54z5wLQ3XgecB7yK2mtMHaa+y+kjwCbglQOjDWC0y9PV4ab25gFwc4MQPAPcCUwC\nTh/rgWlUet9IdpQ6CjUVEccCHwY+nlK6vezxqKnnU9sichOwNiIujIi3RsTrI+KMksfW9bp9H/dz\n6pe/aXL/Umpr5McAt4zJiDQqEdED/EX96vfLHIsaqz9H11E7LuEdJQ9HQzulfvkEsAQ4vu+dEXE7\ntV1ST431wOQa9wH1y/VN7u+9fdoYjEWt+TBwHHBTSukHZQ9GDb2b2kFNV6aUNpc9GA1pVv3yamA/\n4E+A/am9xn4AnA18o5yhqdvDPZyoX3b3EXwdLiJeB7yJ2icCLi95OGogIk6ltpb9jymlu8oej4a1\nT/0yqK1Z35JS2pBS+iVwCfAYsMDN5uXo9nD3rlEf0OT+qQMepw4TEa8FPg78Cjg3pbSm5CFpgD6b\nyH8DvKvk4Whk1tYvl6WU7u97R31rSe9WrVPHdFQCDPev65fHNLn/6Ppls33gKlFEvAH4Z+AX1KK9\nsuQhqbEp1F5jxwJb+px0JVH79AbAF+q3fay0Uaqv3vfGdU3u7w37fmMwFg3Q7Qen3Vq/fGFEjBvw\nueD9gTOBzcDdZQxOzUXEW6nt174PeEFKaVXJQ1JzW4EvNblvHrX93ndQi4Wb0TvD7dQ+nXF0RIxP\nKW0bcP9x9cvlYzoqAV0e7pTSbyPiZmpHjr+W2pmcer2P2ok+PpdS8rOmHSQi3gX8H2Ax8EI3j3e2\n+qbVhqc0jYj3Ugv3tZ6ApXOklFZFxNeBP6d2UOE7e++LiBcAL6K2C9FPcJSgq8Nd9zfUTnn6iYg4\nH3gAOA04l9om8r8rcWwaICKuoBbtncCPgNfVTsTVz/KU0jVjPDSpav4XtffCv4uIs6mdmXA2tYPT\ndlI7212zTelqo64Pd32t+2RqMXgx8BJq5+P9BPA+1+Y6zpH1y32ANzR5zG3ANWMyGqmiUkpPRsRp\n1Na2L6F2IqpngBuBD6WU3IVYkq4/V7kkSTnp9qPKJUnKiuGWJCkjhluSpIwYbkmSMmK4JUnKiOGW\nJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4JUnKiOGWJCkjhluSpIwYbkmSMmK4\nJUnKyP8H7CYhMBJvOFYAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498e8ee9b0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"5ff431b560c84010bbace62d7e22ce54": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6001462796dd42b79e94bd15a0054c5d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"602ecd0e95b641a898b1a64a91630013": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_94578e031aca4d7ca6a9741f79c42f02", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF7BJREFUeJzt3WuwZWV95/Hfv2lCALkIFqIVRHRA\nnGChYEDAKyoYnZlSR3yRCVErmnF0Cq9VZrxiUqlozSTxlokmmpCYeZFkHCeViEI0lKjoWNWOGK8Y\ntUUNiIAgYMso/cyLvbvsPpxDt5x1evef/flUnVp99tpnPU/VofvLs9Y669QYIwBAD5sWPQEAYM8J\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajmxc9gd2pqm8kOTTJ1gVPBQDurgcm+cEY47j1HmifD3eSQzdlvyMOziFHLHoicE91/MO2\nLXoKG+ar/3TgoqcAuS23ZHvumORYHcK99eAccsTp9aRFzwPusS659LOLnsKGOff+D1/0FCD/Z3w4\nt+SmrVMcyzVuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARiYLd1X9QlX9aVX9S1XdXlVbq+otVXXvqcYA\ngGW3eYqDVNWDk1yR5Kgkf5vky0lOS/KSJE+pqrPGGDdMMRYALLOpVtz/PbNoXzDGePoY4zfHGGcn\n+YMkD0nyOxONAwBLbd3hrqoHJTknydYkf7hi9xuS3Jbk/Ko6eL1jAcCym2LFffZ8e+kYY/vOO8YY\ntyT5RJKDkjxqgrEAYKlNcY37IfPtVWvs/2pmK/ITknxkrYNU1ZY1dp1496cGAPcsU6y4D5tvb15j\n/47XD59gLABYapPcVb4bNd+Ou3rTGOPUVb94thI/ZepJAUBHU6y4d6yoD1tj/6Er3gcA3E1ThPsr\n8+0Ja+w/fr5d6xo4ALCHpgj3ZfPtOVW1y/Gq6pAkZyXZluRTE4wFAEtt3eEeY3wtyaVJHpjkxSt2\nvzHJwUn+Yoxx23rHAoBlN9XNaS/K7JGnb6uqJyb5UpLTkzwhs1Pkr5loHABYapM88nS+6n5kkosy\nC/Yrkjw4yduSnOE55QAwjcl+HGyM8a0kz5vqeADAnfl93ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNTBLuqnpWVb29qj5WVT+oqlFVfznFsQGAn9o80XFe\nm+TkJLcm+XaSEyc6LgCwk6lOlb8syQlJDk3ynyY6JgCwwiQr7jHGZTv+XFVTHBIAWIWb0wCgkamu\nca9bVW1ZY5fr5QAwZ8UNAI3sMyvuMcapq70+X4mfspenAwD7JCtuAGhEuAGgEeEGgEaEGwAameTm\ntKp6epKnzz89er49o6oumv/5+jHGK6cYCwCW2VR3lT88yXNWvPag+UeSfDOJcAPAOk1yqnyMceEY\no+7i44FTjAMAy841bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBG1h3uqjqyqp5fVe+vqn+uqm1VdXNVfbyqfr2q/M8BAExk8wTHOC/JHyW5JsllSa5Oct8k\nz0zy7iS/XFXnjTHGBGMBwFKbItxXJfl3ST4wxti+48WqenWSTyf595lF/H0TjAUAS23dp7HHGP84\nxvi7naM9f/3aJO+cf/r49Y4DAGz8zWk/nm9/ssHjAMBS2LBwV9XmJL82//RDGzUOACyTKa5xr+VN\nSU5KcvEY45Ldvbmqtqyx68RJZwUAjW3IiruqLkjyiiRfTnL+RowBAMto8hV3Vb04yVuTfDHJE8cY\nN+7J140xTl3jeFuSnDLdDAGgr0lX3FX10iTvSPL5JE+Y31kOAExksnBX1auS/EGSz2YW7eumOjYA\nMDNJuKvqdZndjLYls9Pj109xXABgV+u+xl1Vz0nyW0nuSPKxJBdU1cq3bR1jXLTesQBg2U1xc9px\n8+1+SV66xns+muSiCcYCgKU2xSNPLxxj1G4+Hj/BXAFg6fmVmwDQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI1sXvQEgMU79/4PX/QUgD1kxQ0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI5kVPAFgetx95eLYde79s\nP2D/bLr9xznwm9fkgBtuWvS0oJVJwl1Vb07yyCQnJLlPkm1Jvpnkfyd5xxjjhinGAXr64QPulxvP\nOjnbjjn6TvsO/Na1OeITV+agq69ZwMygn6lOlb8sycFJ/iHJW5P8jyQ/SXJhks9V1TETjQM0c/PD\njs93nv3kWbTH2HXnGNl2zNH5zrOfnJsf9q8WM0FoZqpT5YeOMX608sWq+p0kr07yX5K8aKKxgCZ+\n+ID75bpzz0g2zdcIVbu+YcfnmzblunPPzP4332blDbsxyYp7tWjP/fV8e/wU4wC93HjWyT+N9u5s\n2pQbzzx5YycE9wAbfVf5v51vP7fB4wD7mNuPPHz10+NrGSPbHnB0bj/y8I2dGDQ36V3lVfXKJPdK\nclhmN6s9OrNov2kPvnbLGrtOnGyCwF6z7dj7zf6w8vT4Wubv23bs/dxpDndh6h8He2WS++70+YeS\nPHeM8b2JxwH2cdsP2H+vfh0si0nDPcY4Okmq6r5Jzsxspf1/q+rfjDE+s5uvPXW11+cr8VOmnCew\n8Tbd/uO9+nWwLDbkGvcY47tjjPcnOSfJkUn+YiPGAfZdB35zfnf4z3CNe5evA1a1oTenjTG+meSL\nSX6xqu6zkWMB+5YDbrgpB37r2p/pGveBV1/r+jbsxt54Vvn959s79sJYwD7kiE9cmWzfvmdv3r49\nR1xx5cZOCO4B1h3uqjqxqu70HMOq2jR/AMtRSa4YY3x/vWMBvRx09TU56pJP/jTeqzw5LUmyfXuO\nuuQKD1+BPTDFzWlPSfJfq+ryJF9LckNmd5Y/LsmDklyb5AUTjAM0dNg/fTX733xrbjzz5Gx7wIr/\nx5+fHj/iCs8qhz01Rbg/nOSPk5yV5OQkhye5LclVSd6b5G1jjBsnGAdo6qCrr8lBV1/jt4PBBNYd\n7jHG55O8eIK5APdwB9xwk1DDOu2Nm9MAgIkINwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0MiGhbuqzq+qMf94/kaNAwDLZEPCXVXHJHl7kls34vgAsKwmD3dVVZI/\nS3JDkndOfXwAWGYbseK+IMnZSZ6X5LYNOD4ALK1Jw11VD03ypiRvHWNcPuWxAYBk81QHqqrNSd6b\n5Ookr74bX79ljV0nrmdeAHBPMlm4k7w+ySOSPHqMsW3C4wIAc5OEu6pOy2yV/XtjjE/enWOMMU5d\n49hbkpyyjukBwD3Guq9x73SK/Kokr1v3jACANU1xc9q9kpyQ5KFJfrTTQ1dGkjfM3/Mn89feMsF4\nALC0pjhVfnuS96yx75TMrnt/PMlXktyt0+gAwMy6wz2/EW3VR5pW1YWZhfvPxxjvXu9YALDs/JIR\nAGhEuAGgkQ0N9xjjwjFGOU0OANOw4gaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoZJJwV9XWqhprfFw7xRgAQLJ5wmPdnOQtq7x+64RjAMBSmzLcN40xLpzw\neADACq5xA0AjU664D6iqX03ygCS3JflcksvHGHdMOAYALLUpw310kveueO0bVfW8McZHJxwHAJbW\nVOH+syQfS/KFJLckeVCS/5zkN5J8sKrOGGNceVcHqKota+w6caI5AkB7k4R7jPHGFS99PskLq+rW\nJK9IcmGSZ0wxFgAssylPla/mnZmF+7G7e+MY49TVXp+vxE+ZeF4A0NJG31V+3Xx78AaPAwBLYaPD\nfcZ8+/UNHgcAlsK6w11Vv1hVR6zy+rFJ3jH/9C/XOw4AMM017vOS/GZVXZbkG5ndVf7gJE9L8vNJ\nLk7y3yYYBwCW3hThvizJQ5I8IrNT4wcnuSnJxzP7ue73jjHGBOMAwNJbd7jnD1fxgBUA2As8qxwA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEYmDXdV\nPaaq3ldV11TV7fPtpVX11CnHAYBltXmqA1XVa5P8dpLrk/x9kmuS3CfJI5I8PsnFU40FAMtqknBX\n1XmZRfvDSZ45xrhlxf79pxgHAJbduk+VV9WmJG9O8sMkv7Iy2kkyxvjxescBAKZZcZ+Z5Lgk/zPJ\n96vqaUlOSvKjJJ8eY3xygjEAgEwT7l+ab7+b5DNJHrbzzqq6PMmzxhjfu6uDVNWWNXaduO4ZAsA9\nxBR3lR81374wyYFJnpTkkMxW3ZckeWySv5lgHABYelOsuPebbyuzlfWV88+/UFXPSHJVksdV1Rl3\nddp8jHHqaq/PV+KnTDBPAGhvihX39+fbr+8U7STJGGNbZqvuJDltgrEAYKlNEe6vzLc3rbF/R9gP\nnGAsAFhqU4T78iQ/SXJ8Vf3cKvtPmm+3TjAWACy1dYd7jHF9kr9KcliS1++8r6qenOTcJDcn+dB6\nxwKAZTfVI09fnuT0JK+pqscm+XSSY5M8I8kdSV4wxljrVDoAsIcmCfcY47qqOj3JazOL9aOS3JLk\nA0l+d4zxqSnGAYBlN9kvGRlj3JjZyvvlUx0TANiV38cNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mi6w11Vz62qsZuPO6aYLAAsu80THOOzSd64xr7HJDk7\nyQcnGAcAlt66wz3G+Gxm8b6Tqvrk/I9/vN5xAIANvMZdVScleVSS7yT5wEaNAwDLZCNvTvuP8+17\nxhiucQPABKa4xn0nVXVgkl9Nsj3Ju/fwa7assevEqeYFAN1t1Ir72UkOT/LBMca3NmgMAFg6G7Li\nTvIb8+279vQLxhinrvb6fCV+yhSTAoDuJl9xV9W/TnJmkm8nuXjq4wPAMtuIU+VuSgOADTJpuKvq\n55Ocn9lNae+Z8tgAwPQr7vOS3DvJxW5KA4DpTR3uHTeleVIaAGyAycJdVQ9N8ui4KQ0ANsxkPw42\nxvhSkprqeADAnfl93ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAIzXGWPQc7lJV3bAp+x1xcA5Z9FQA4G65Lbdk\ne+64cYxx5HqPtXmKCW2wH2zPHbklN23dC2OdON9+eS+MxTR8z/rxPevH92z9HpjkB1McaJ9fce9N\nVbUlScYYpy56LuwZ37N+fM/68T3bt7jGDQCNCDcANCLcANCIcANAI8INAI24qxwAGrHiBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4k1TVL1TVn1bVv1TV7VW1tareUlX3XvTc2FVVHVlVz6+q\n91fVP1fVtqq6uao+XlW/XlX+m26iqs6vqjH/eP6i58PqquoxVfW+qrpm/u/jNVV1aVU9ddFzW1Yd\nfh/3hqqqBye5IslRSf42s983e1qSlyR5SlWdNca4YYFTZFfnJfmjJNckuSzJ1Unum+SZSd6d5Jer\n6rzhyUL7tKo6Jsnbk9ya5F4Lng5rqKrXJvntJNcn+fvM/t7dJ8kjkjw+ycULm9wSW/onp1XVJUnO\nSXLBGOPtO73++0leluRdY4wXLmp+7Kqqzk5ycJIPjDG27/T60Uk+neSYJM8aY7xvQVNkN6qqkvxD\nkuOS/K8kr0zygjHGuxc6MXZRVecl+eskH07yzDHGLSv27z/G+PFCJrfklvq0YlU9KLNob03yhyt2\nvyHJbUnOr6qD9/LUWMMY4x/HGH+3c7Tnr1+b5J3zTx+/1yfGz+KCJGcneV5mf8fYx8wvOb05yQ+T\n/MrKaCeJaC/OUoc7s388kuTSVUJwS5JPJDkoyaP29sS4W3b8Q/KThc6CNVXVQ5O8KclbxxiXL3o+\nrOnMzM6IXJzk+1X1tKp6VVW9pKrOWPDclt6yX+N+yHx71Rr7v5rZivyEJB/ZKzPibqmqzUl+bf7p\nhxY5F1Y3/x69N7P7El694Olw135pvv1uks8kedjOO6vq8swuSX1vb08MK+7D5tub19i/4/XD98Jc\nWJ83JTkpycVjjEsWPRlW9frMbmp67hhj26Inw106ar59YZIDkzwpySGZ/R27JMljk/zNYqbGsod7\nd2q+Xe47+PZxVXVBkldk9hMB5y94Oqyiqk7LbJX9e2OMTy56PuzWfvNtZbay/sgY49YxxheSPCPJ\nt5M8zmnzxVj2cO9YUR+2xv5DV7yPfUxVvTjJW5N8MckTxhg3LnhKrLDTKfKrkrxuwdNhz3x/vv36\nGOPKnXfMz5bsOKt12l6dFUmE+yvz7Qlr7D9+vl3rGjgLVFUvTfKOJJ/PLNrXLnhKrO5emf0de2iS\nH+300JWR2U9vJMmfzF97y8Jmyc52/Nt40xr7d4T9wL0wF1ZY9pvTLptvz6mqTSt+LviQJGcl2Zbk\nU4uYHGurqldldl37s0mePMa4fsFTYm23J3nPGvtOyey698czi4XT6PuGyzP76Yzjq+rnxhj/b8X+\nk+bbrXt1ViRZ8nCPMb5WVZdmduf4izN7ktMOb8zsQR/vGmP4WdN9SFW9LslvJdmS5Bynx/dt81Or\nqz7StKouzCzcf+4BLPuOMcb1VfVXSf5DZjcVvnbHvqp6cpJzM7uE6Cc4FmCpwz33osweefq2qnpi\nki8lOT3JEzI7Rf6aBc6NFarqOZlF+44kH0tywexBXLvYOsa4aC9PDe5pXp7Zv4WvqarHZvZkwmMz\nuzntjsyedrfWqXQ20NKHe77qfmRmMXhKkqdm9jzetyV5o9XcPue4+Xa/JC9d4z0fTXLRXpkN3EON\nMa6rqtMzW20/I7MHUd2S5ANJfneM4RLigiz9s8oBoJNlv6scAFoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGvn/ZdCOKEIB\nShsAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7ffb5803f128>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"607d1059a6734bd7abf9805db7566981": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"60da29bcf8c549709a4094ef7b684dfd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_666e838eb6ea405d9f1f376af43d5580", | |
"max": 7, | |
"style": "IPY_MODEL_059f0ff78d784599907ced84084f104f", | |
"value": 4 | |
} | |
}, | |
"60f4f3454f2e41308b6d2049033cc438": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6119971e6b154994b29d41f6d3f59c6e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_b8f36ae416174d8789fe41843ac1e5ef", | |
"IPY_MODEL_e103215e6201444a928d5c4e0fa54059", | |
"IPY_MODEL_75cd8cb86db14cd2b835c12bafa42892", | |
"IPY_MODEL_7db6eacc2c414420a92ce5bef1280d19", | |
"IPY_MODEL_bb9a2dabea364f2b90c6f8edfeba2001" | |
], | |
"layout": "IPY_MODEL_17da1c963d574904b21ad2c81f694557" | |
} | |
}, | |
"613ad35a328145f39c4354038b2b8a5c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "cj", | |
"layout": "IPY_MODEL_60f4f3454f2e41308b6d2049033cc438", | |
"max": 7, | |
"style": "IPY_MODEL_b21af21fe06d4369ab1260481e8b48d9", | |
"value": 6 | |
} | |
}, | |
"617b83d51b8c465e9a8fd24a45f775f0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6181abb2dc024adc900877d2a33286fe": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"618b9a1f24ff4ab69abecdc20a9ed3af": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_bd7fd36c748a490fb22a87e58b9443f7", | |
"max": 7, | |
"style": "IPY_MODEL_79dc0bb37d15427fae2044808bd25416", | |
"value": 1 | |
} | |
}, | |
"61fa25d741614a64add4d57ea3ef753a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"61fbb3ba93f844c58cc7caf9ce5b7447": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"621894e2006f4c79b3f79a2f3d43a959": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"626efb60688a411ba6e744fe4d01c056": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"62d7013bfb27414fb4a0508f57828e8e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"62f0bbd4aa4f463fbd1a4dcc4c69a803": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"630fbc53fbdc4a699ee233cc66fa0980": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6391225d67a2485bb6745389ed7d1437": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"640a20ccfe7f4450bf0544adea1b3f4f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"641cc0952f804b96855075c2291f15f8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_307d407883cf47c28d9a5fb0d5f668cd", | |
"max": 7, | |
"style": "IPY_MODEL_6a0c0f85a89e4b93a5d579d66762352e", | |
"value": 7 | |
} | |
}, | |
"6420af3b4e374f069d2564fa786b9461": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_2bab9ece6b3b42e5bfe988b3cce7971a", | |
"max": 7, | |
"style": "IPY_MODEL_b63ada4c2b7b40baa6478240ed26e2da", | |
"value": 1 | |
} | |
}, | |
"64295e4ef9b04e95af00a4cb96c00e02": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6468f5bcb90e4ba8bed2b367d32a4d74": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_8b661908c6604076aa0ac4651ccd851b", | |
"max": 7, | |
"style": "IPY_MODEL_f38569584c0b492481f317a07967d71c", | |
"value": 7 | |
} | |
}, | |
"647df796ad1c4e8591193b6309544a8a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"64a6eaae2849403f93390b1f53867f38": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"64e7647e80394aa49f9c0a25a4449b3d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_121c0a35b94e4159b6e1d5ac452cbac3", | |
"max": 3, | |
"style": "IPY_MODEL_14cd40fbe73045a69d175b5d5dc4d340", | |
"value": 2 | |
} | |
}, | |
"6520e7bc44c4407f843d102971d80fe4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"65392c01e7c64b79a4cd4e15e69c7833": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_ef471a0951cd445498bdcd5f63314387", | |
"IPY_MODEL_445689282d984ee08198c4ca7aa83c54", | |
"IPY_MODEL_d912f5c5466e4f29a41eca6eeb43f561", | |
"IPY_MODEL_4ce27cf667784da9b4fda9690fb85252", | |
"IPY_MODEL_b100a1fd984d4f1b8ccc527f934b980e" | |
], | |
"layout": "IPY_MODEL_206f79dcd3204a4fa1ed91fd59bc230a" | |
} | |
}, | |
"653f1c6c9cfc47eab7fbb8ea6bf95989": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_4345d6fb993b4b77a37b37a547c7b988", | |
"max": 7, | |
"style": "IPY_MODEL_4f06f60edab64b889699f1abae7abad2", | |
"value": 4 | |
} | |
}, | |
"654aecddb377476c8905ae8034aabeab": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_1d64affcb063497ba7ecf1a9642ada66", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "578721382704613376 34360262656\n" | |
}, | |
{ | |
"ename": "TypeError", | |
"evalue": "unsupported operand type(s) for &: 'NoneType' and 'int'", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-67-9da0b3813db0>\u001b[0m in \u001b[0;36mlazertrace\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 69\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 70\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-67-9da0b3813db0>\u001b[0m in \u001b[0;36mmake_laser_map\u001b[0;34m(q, directions, r, c, d)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0misxt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misxt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for &: 'NoneType' and 'int'" | |
] | |
} | |
] | |
} | |
}, | |
"6581688428944e908816ed139c1ed5fc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"65b757a24e614c02a99b001c9fa7b938": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_7fd30956e32c4840a353ecbd4cfb0b11", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGKNJREFUeJzt3XuQZnV95/HPF0aM4aKCpahIvIG4\nIRUFAypeUcHo7pa6slZlQ9SKZr0Fr1VmvWJSbrR2s/FCNppoYmL2D826bioBxWgo8QpV46rlFW8j\nUUEFBAeCXH/7x/OMGZpuGKZP9zPfeV6vqq4z/Zx+zu9XjD1vf+ecPl1jjAAAPeyz6AkAALtOuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAa2bLoCdyaqvpOkoOSbFvwVABgd907yU/HGPdZ74H2+HAnOWif7Hvw/jnw4EVPBAB2x1XZnhtz\nwyTH6hDubfvnwIOPr8cveh4AsFvOGx/N9ly+bYpjucYNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQyGTh\nrqrDquovquoHVXVNVW2rqrdU1Z2nGgMAlt2WKQ5SVfdL8ukkd03yd0m+luS4JC9O8sSqOmGMcekU\nYwHAMptqxf0/M4v2aWOMp4wxfm+McWKSP07ygCRvnGgcAFhq6w53Vd03yUlJtiX5kxW7X5/kqiSn\nVtX+6x0LAJbdFCvuE+fbj4wxbtx5xxhje5JPJfnFJA+dYCwAWGpTXON+wHx7wRr7v5HZivzIJB9b\n6yBVtXWNXUft/tQAYO8yxYr7jvPtFWvs3/H6nSYYCwCW2iR3ld+Kmm/HLX3RGOPYVd88W4kfM/Wk\nAKCjKVbcO1bUd1xj/0Ervg4A2E1ThPvr8+2Ra+w/Yr5d6xo4ALCLpgj3OfPtSVV1k+NV1YFJTkhy\ndZLPTjAWACy1dYd7jPGtJB9Jcu8kL1yx+w1J9k/y12OMq9Y7FgAsu6luTntBZo88fVtVPS7JV5Mc\nn+SxmZ0if/VE4wDAUpvkkafzVfdDkrwns2C/PMn9krwtycM8pxwApjHZj4ONMf45ybOnOh4AcHN+\nHzcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5OEu6qe\nXlVvr6pPVNVPq2pU1d9McWwA4F9tmeg4r0nyq0muTPK9JEdNdFwAYCdTnSp/aZIjkxyU5PkTHRMA\nWGGSFfcY45wdf66qKQ4JAKzCzWkA0MhU17jXraq2rrHL9XIAmLPiBoBG9pgV9xjj2NVen6/Ej9nk\n6QDAHsmKGwAaEW4AaES4AaAR4QaARia5Oa2qnpLkKfNPD51vH1ZV75n/+ZIxxiumGAsAltlUd5U/\nKMkzV7x23/lHknw3iXADwDpNcqp8jHH6GKNu4ePeU4wDAMvONW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARtYd7qo6pKqeU1UfrKpvVtXVVXVFVX2yqn67\nqvyfAwCYyJYJjnFKkj9NclGSc5JcmORuSZ6W5F1Jfr2qThljjAnGAoClNkW4L0jy75OcOca4cceL\nVfWqJOcn+Q+ZRfwDE4wFAEtt3aexxxj/NMb4+52jPX/94iTvmH/6mPWOAwBs/M1p182312/wOACw\nFDYs3FW1JclvzT/98EaNAwDLZIpr3Gt5U5Kjk5w1xjj71r64qrauseuoSWcFAI1tyIq7qk5L8vIk\nX0ty6kaMAQDLaPIVd1W9MMlbk3wlyePGGJftyvvGGMeucbytSY6ZboYA0NekK+6qekmSM5J8Kclj\n53eWAwATmSzcVfXKJH+c5POZRftHUx0bAJiZJNxV9drMbkbbmtnp8UumOC4AcFPrvsZdVc9M8vtJ\nbkjyiSSnVdXKL9s2xnjPescCgGU3xc1p95lv903ykjW+5uNJ3jPBWACw1KZ45OnpY4y6lY/HTDBX\nAFh6fuUmADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI1sWPQH2Tmf/4POLngLQ1Mn3eNCip7BHs+IGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoZMuiJwC764JLD82nLzwyV157+xyw3zV5+OEX5MhDLl70tGDvctn1\nyfevTa4dyX6V3HO/5GDpWKRJ/utX1ZuTPCTJkUnukuTqJN9N8n+TnDHGuHSKcSBJPnXhEXn7eSfn\n/O/f/2b7jrvnN/O7x5+dEw7/xgJmBnuR712b2npV6qLrbrZr3P12Gcfunxy23wImxlSnyl+aZP8k\n/5jkrUn+V5Lrk5ye5ItVda+JxmHJve9Lx+eZH3z+PNpjxd6R879//zzzg8/P+798/CKmB3uHr16d\nOvPy1EXXrfJdltRF16XOvDz52tWLmN3Sm+p8x0FjjJ+tfLGq3pjkVUn+S5IXTDQWS+pTFx6RV3/s\nGblx7Pj/m7XiK2af3zj2yas++ozc88DLrLzhtvretalzt6fmxV79uyyz/R/fnnHAvlbem2ySFfdq\n0Z57/3x7xBTjsNzeft7JO0X7lt049skZ5528wTOCvU9tvern0b7Vrx2zr2dzbfRd5f9uvv3iBo/D\nXu6CSw9d4/T4WkbO+/79c8Glh27ktGDvctn1q54eX8uO0+a57PqNnBUrTHprYFW9IskBSe6Y2c1q\nj8gs2m/ahfduXWPXUZNNkLY+feGR8z+tPHG3lvr5+9xpDrvo+9cmua3fZfP3udN800z9X/oVSe62\n0+cfTvKsMcaPJx6HJXPltbff1PfBUrp2V9faE72P3TJpuMcYhyZJVd0tycMzW2n/v6r6t2OMz93K\ne49d7fX5SvyYKedJPwfsd82mvg+W0n67utae6H3slg25xj3G+OEY44NJTkpySJK/3ohxWB4PP/yC\n+Z9uy9W3nd8H3Kp7zu4Ov23fZf/6PjbHht6cNsb4bpKvJPnlqrrLRo7F3u3IQy7Ocff8Zm7L1bfj\n7/lN17fhtjh4S8bdb3ebrnGPu9/O9e1NthnPKr/HfHvDJozFXux3jz87+9SNu/S1+9SNedHxZ2/w\njGDvM47dP2MXyz1q9vVsrnWHu6qOqqqb/cxNVe0zfwDLXZN8eozxk/WOxXI74fBv5I2Pe99O8V7t\nmU6zaP/Xx7/Pw1dgdxy2X8ajDvx5vFf/LptH+9EHevjKAkxxfuOJSf5bVZ2b5FtJLs3szvJHJ7lv\nkouTPHeCcSDPOPq8HHbQZTnjvJNz3s2eVT47Pf4izyqH9XngHTIO3DdZ5VnlO06Pe1b54kwR7o8m\n+bMkJyT51SR3SnJVkguSvDfJ28YYl00wDiSZrbxPOPwbfjsYbKTD9ss4bL8Mvx1sj7Pu//pjjC8l\neeEEc4Hb5MhDLhZq2GgHbxHqPcxm3JwGAExEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRLYueAHunk+/xoEVPAWCv\nZMUNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCMbFu6qOrWqxvzjORs1DgAskw0Jd1XdK8nbk1y5\nEccHgGU1ebirqpL8ZZJLk7xj6uMDwDLbiBX3aUlOTPLsJFdtwPEBYGlNGu6qemCSNyV56xjj3CmP\nDQAkW6Y6UFVtSfLeJBcmedVuvH/rGruOWs+8AGBvMlm4k7wuyYOTPGKMcfWExwUA5iYJd1Udl9kq\n+4/GGJ/ZnWOMMY5d49hbkxyzjukBwF5j3de4dzpFfkGS1657RgDAmqa4Oe2AJEcmeWCSn+300JWR\n5PXzr/nz+WtvmWA8AFhaU5wqvybJu9fYd0xm170/meTrSXbrNDoAMLPucM9vRFv1kaZVdXpm4f6r\nMca71jsWACw7v2QEABoRbgBoZEPDPcY4fYxRTpMDwDSsuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVbWtqsYaHxdPMQYAkGyZ8FhXJHnLKq9fOeEY\nALDUpgz35WOM0yc8HgCwgmvcANDIlCvu21fVbyY5PMlVSb6Y5Nwxxg0TjgEAS23KcB+a5L0rXvtO\nVT17jPHxCccBgKU1Vbj/Msknknw5yfYk903yoiS/k+RDVfWwMcYXbukAVbV1jV1HTTRHAGhvknCP\nMd6w4qUvJXleVV2Z5OVJTk/y1CnGAoBlNuWp8tW8I7NwP+rWvnCMcexqr89X4sdMPC8AaGmj7yr/\n0Xy7/waPAwBLYaPD/bD59tsbPA4ALIV1h7uqfrmqDl7l9V9Kcsb8079Z7zgAwDTXuE9J8ntVdU6S\n72R2V/n9kjw5yS8kOSvJf59gHABYelOE+5wkD0jy4MxOje+f5PIkn8zs57rfO8YYE4wDAEtv3eGe\nP1zFA1YAYBN4VjkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI1MGu6qemRVfaCqLqqqa+bbj1TVk6YcBwCW1ZapDlRVr0nyB0kuSfIPSS5KcpckD07y\nmCRnTTUWACyrScJdVadkFu2PJnnaGGP7iv23m2IcAFh26z5VXlX7JHlzkn9J8hsro50kY4zr1jsO\nADDNivvhSe6T5H8n+UlVPTnJ0Ul+luT8McZnJhgDAMg04f61+faHST6X5Fd23llV5yZ5+hjjx7d0\nkKrausauo9Y9QwDYS0xxV/ld59vnJblDkscnOTCzVffZSR6V5G8nGAcAlt4UK+5959vKbGX9hfnn\nX66qpya5IMmjq+pht3TafIxx7Gqvz1fix0wwTwBob4oV90/m22/vFO0kyRjj6sxW3Uly3ARjAcBS\nmyLcX59vL19j/46w32GCsQBgqU0R7nOTXJ/kiKrab5X9R8+32yYYCwCW2rrDPca4JMn7ktwxyet2\n3ldVT0hycpIrknx4vWMBwLKb6pGnL0tyfJJXV9Wjkpyf5JeSPDXJDUmeO8ZY61Q6ALCLJgn3GONH\nVXV8ktdkFuuHJtme5MwkfzjG+OwU4wDAspvsl4yMMS7LbOX9sqmOCQDclN/HDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDIusNdVc+qqnErHzdMMVkAWHZb\nJjjG55O8YY19j0xyYpIPTTAOACy9dYd7jPH5zOJ9M1X1mfkf/2y94wAAG3iNu6qOTvLQJN9PcuZG\njQMAy2Qjb077z/Ptu8cYrnEDwASmuMZ9M1V1hyS/meTGJO/axfdsXWPXUVPNCwC626gV939Mcqck\nHxpj/PMGjQEAS2dDVtxJfme+feeuvmGMcexqr89X4sdMMSkA6G7yFXdV/ZskD0/yvSRnTX18AFhm\nG3Gq3E1pALBBJg13Vf1CklMzuynt3VMeGwCYfsV9SpI7JznLTWkAML2pw73jpjRPSgOADTBZuKvq\ngUkeETelAcCGmezHwcYYX01SUx0PALg5v48bABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGikxhiLnsMtqqpL98m+\nB++fAxc9FQDYLVdle27MDZeNMQ5Z77G2TDGhDfbTG3NDtufybZsw1lHz7dc2YSym4e+sH39n/fg7\nW797J/npFAfa41fcm6mqtibJGOPYRc+FXePvrB9/Z/34O9uzuMYNAI0INwA0ItwA0IhwA0Ajwg0A\njbirHAAaseIGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLiTVNVhVfUXVfWDqrqmqrZV1Vuq\n6s6Lnhs3VVWHVNVzquqDVfXNqrq6qq6oqk9W1W9Xlf9NN1FVp1bVmH88Z9HzYXVV9ciq+kBVXTT/\n9/GiqvpIVT1p0XNbVh1+H/eGqqr7Jfl0krsm+bvMft/scUlenOSJVXXCGOPSBU6RmzolyZ8muSjJ\nOUkuTHK3JE9L8q4kv15VpwxPFtqjVdW9krw9yZVJDljwdFhDVb0myR8kuSTJP2T2fXeXJA9O8pgk\nZy1sckts6Z+cVlVnJzkpyWljjLfv9Pr/SPLSJO8cYzxvUfPjpqrqxCT7JzlzjHHjTq8fmuT8JPdK\n8vQxxgcWNEVuRVVVkn9Mcp8k/yfJK5I8d4zxroVOjJuoqlOSvD/JR5M8bYyxfcX+240xrlvI5Jbc\nUp9WrKr7ZhbtbUn+ZMXu1ye5KsmpVbX/Jk+NNYwx/mmM8fc7R3v++sVJ3jH/9DGbPjFui9OSnJjk\n2Zl9j7GHmV9yenOSf0nyGyujnSSivThLHe7M/vFIko+sEoLtST6V5BeTPHSzJ8Zu2fEPyfULnQVr\nqqoHJnlTkreOMc5d9HxY08MzOyNyVpKfVNWTq+qVVfXiqnrYgue29Jb9GvcD5tsL1tj/jcxW5Ecm\n+dimzIjdUlVbkvzW/NMPL3IurG7+d/TezO5LeNWCp8Mt+7X59odJPpfkV3beWVXnZnZJ6sebPTGs\nuO84316xxv4dr99pE+bC+rwpydFJzhpjnL3oybCq12V2U9OzxhhXL3oy3KK7zrfPS3KHJI9PcmBm\n32NnJ3lUkr9dzNRY9nDfmppvl/sOvj1cVZ2W5OWZ/UTAqQueDquoquMyW2X/0RjjM4ueD7dq3/m2\nMltZf2yMceUY48tJnprke0ke7bT5Yix7uHesqO+4xv6DVnwde5iqemGStyb5SpLHjjEuW/CUWGGn\nU+QXJHntgqfDrvnJfPvtMcYXdt4xP1uy46zWcZs6K5II99fn2yPX2H/EfLvWNXAWqKpekuSMJF/K\nLNoXL3hKrO6AzL7HHpjkZzs9dGVk9tMbSfLn89fesrBZsrMd/zZevsb+HWG/wybMhRWW/ea0c+bb\nk6pqnxU/F3xgkhOSXJ3ks4uYHGurqldmdl3780meMMa4ZMFTYm3XJHn3GvuOyey69yczi4XT6HuG\nczP76Ywjqmq/Mca1K/YfPd9u29RZkWTJwz3G+FZVfSSzO8dfmNmTnHZ4Q2YP+njnGMPPmu5Bquq1\nSX4/ydYkJzk9vmebn1pd9ZGmVXV6ZuH+Kw9g2XOMMS6pqvcl+U+Z3VT4mh37quoJSU7O7BKin+BY\ngKUO99wLMnvk6duq6nFJvprk+CSPzewU+asXODdWqKpnZhbtG5J8Islpswdx3cS2McZ7NnlqsLd5\nWWb/Fr66qh6V2ZMJfymzm9NuyOxpd2udSmcDLX2456vuh2QWgycmeVJmz+N9W5I3WM3tce4z3+6b\n5CVrfM3Hk7xnU2YDe6kxxo+q6vjMVttPzexBVNuTnJnkD8cYLiEuyNI/qxwAOln2u8oBoBXhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgkf8PAwzb4XSwEfsAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7fb477c55ba8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"660c98ff2b46440faf9c2c6a0136a7dd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"660e1289bff043a9a991c1f8dca3b22d": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_974be0ea5a644c89934b47c4993447e3", | |
"outputs": [ | |
{ | |
"ename": "NameError", | |
"evalue": "name 'ones' is not defined", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-9-6926fe8dafd6>\u001b[0m in \u001b[0;36mops\u001b[0;34m(s, t)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m63\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m<<\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m|\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m<<\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mbsr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbsf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlzcnt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpopcnt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mones\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;31mNameError\u001b[0m: name 'ones' is not defined" | |
] | |
} | |
] | |
} | |
}, | |
"666e838eb6ea405d9f1f376af43d5580": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6681d838101c476c8a07ea897a74695b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"66a1a6be627141ee974ef8598b962b8f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"66aa76879ee645a2a88f79075fe16e8d": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_d3605a09dac3431b959f7a92d9159221", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHqZJREFUeJzt3X2QZXdd5/HPFyaBBEiIWAO1AQ2w\nDGFJCkgkDyAYEgxI1i1Bs1UKGCiR5cGKUSlRIAGkFnFX5VGEFTSIVZSyKBQEYVYIhAiINQOoPCWC\nIwQTEgiEBEIeJr/9495hZpruycz0uX3u797Xq6rrzL23+5xvpaf7nfNwz1RrLQBAH+4w9gAAwP4T\nbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4I\nNwB0RLgBoCObxh7g9lTVvyU5IsmOkUcBgIN1TJJvt9buu94VzX24M4n2D00/AGCp9XCofMfYAwDA\nAHYMsZIewg0ATAk3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0A\nHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCODhbuq7l1Vf1pV/1FVN1XVjqp6VVUdNdQ2\nAGDZbRpiJVV1/yQfTbI5ybuSfD7JSUl+Ncnjq+qRrbVvDLEtAFhmQ+1xvz6TaJ/bWvuZ1tpvtdZO\nT/LKJA9M8j8H2g4ALLVqra1vBVX3S/LFJDuS3L+1dtser90tyZVJKsnm1tp3DmL925KcsK4hAWB8\n21trJ653JUPscZ8+XW7dM9pJ0lq7PsnfJzk8ySkDbAsAltoQ57gfOF1etsbrlyc5M8mWJB9YayXT\nPevVHHvwowHAYhlij/vI6fK6NV7f9fzdB9gWACy1Qa4qvx01Xe7zZPpax/2d4waA3YbY4961R33k\nGq8fseLzAICDNES4vzBdblnj9QdMl2udAwcA9tMQ4b54ujyzqvZa3/TtYI9McmOSjw+wLQBYausO\nd2vti0m2JjkmyXNXvPzSJHdJ8ucH8x5uAGBvQ12c9pxMbnn6mqo6I8nnkpyc5DGZHCJ/4UDbAYCl\nNsgtT6d73T+W5MJMgv0bSe6f5DVJTnWfcgAYxmBvB2utfSXJ04daHwDwg/x73ADQEeEGgI4INwB0\nRLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6\nItwA0BHhBoCObBp7gGXWxh5ghmrsAWDB+f2xvOxxA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8IN\nAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEG\ngI4MEu6q+rmqem1VfaSqvl1Vrar+Yoh1AwC7bRpoPS9K8pAkNyS5IsmxA60XANjDUIfKfy3JliRH\nJHn2QOsEAFYYZI+7tXbxrj9X1RCrBABW4eK0ZXGnO409AdArvz/mytyEu6q2rfYR58vX74gjkg9/\nOHnjG8eeBOjN6acnl1+enHXW2JMwNTfhZoYe+9jk5JOTZz4z+da3xp4G6MVZZyUf+EByn/skz3/+\n2NMwNdRV5evWWjtxteene90nbPA4i+Wv/zr54Acn/+d85JGTeN/97mNPBcyzs85K3vOe3Y9/9mfH\nm4W92ONeFmecMYl3sjveAKtZGe3Nm5NrrhlvHvYi3MtEvIHbI9pzT7iXjXgDaxHtLgj3MhJvYCXR\n7sYgF6dV1c8k+Znpw3tNl6dW1YXTP3+9tfa8IbbFQM44Y3K1qAvWANHuylBXlT80yTkrnrvf9CNJ\n/j2JcM8b8QZEuzuDHCpvrb2ktVb7+DhmiO0wAw6bw/IS7S45x414wzIS7W4JNxPiDctDtLsm3Owm\n3rD4RLt7ws3exBsWl2gvBOHmB4k3LB7RXhjCzerEGxaHaC8U4WZt4g39E+2FI9zsm3hDv0R7IQk3\nt0+8oT+ivbCEm/0j3tAP0V5ows3+E2+Yf6K98ISbAyPeML9EeykINwdOvGH+iPbSEG4OjnjD/BDt\npSLcHDzxhvGJ9tIRbtZHvGE8or2UhJv1WyXeRx111LgzwaJ7ylNEe0kJN8NYEe9rr7123HlggV1w\nwQXJW9+6+wnRXirCzXDOOGOvh8cee+xIg8Bie/azn737wb3vLdpLZtPYAyyzGnuAGTjk0EPz9re/\nPe9617vy+c9/fuxxBtfGHmBGFvHv4i4L+T17yEPymQ9+MD//8z+ff/7qV8eehg1Wrc33X+uq2pbk\nhLHngGRBIxDh7tEif88W2PbW2onrXYlD5QDQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsA\nOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOrDvcVXWPqnpGVf1N\nVf1rVd1YVddV1aVV9UtV5X8OAGAgmwZYx9lJ/jjJlUkuTvLlJPdM8qQkb0ryU1V1dmutDbAtAFhq\nQ4T7siT/LclFrbXbdj1ZVS9I8okkP5tJxN8xwLYAYKmt+zB2a+2DrbV37xnt6fNXJXnD9OFp690O\nADD7i9NumS5vnfF2AGApzCzcVbUpyS9OH75vVtuBhXTnOyevfGVy1FFjT8L+evCDk/PPH3sKlsAQ\n57jX8ookxyV5b2vt/bf3yVW1bY2Xjh10KujBG96QnHNOct55yb3vnXz1q2NPxL484QnJRRdN/vyN\nbySvf/2487DQahYXe1fVuUleneTzSR7ZWrt2P75mX+E+fMDx4KBt2Fsjjj02+dzndj+ecbxrZmse\n38y/Z3tGO0mOOCK5/vpZb3Whv2cLbHtr7cT1rmTwcFfVc5O8Lslnk5wxvUhtPevbluSEIWaD9drQ\n9zSedlpy8cW7H88w3oscgZl+z1ZGe/Pm5JprZrnF71vk79kCGyTcg57jrqrzMon2vyR5zHqjDUvt\nQx9KHvOY3Y+vuCI5+ujRxmGFEaPNchss3FX1/CSvTPKpTKJ99VDrhqUl3vNJtBnRIOGuqvMzuRht\nWyaHx78+xHqBiPe8EW1Gtu5z3FV1TpILk+xM8tok163yaTtaaxce5Pqd42ZujHrf3hme817k86WD\nfs/mKNqL/D1bYIOc4x7i7WD3nS7vmOS8NT7nw5nEHThYu/a8d8X7iiu8VWwjzVG0WW4zeTvYkOxx\nM0/m4qdlBnvei7z3Nsj3bA6jvcjfswU2f1eVAxvAOe+NNYfRZrkJN/RIvDeGaDOHhBt6Jd6zJdrM\nKeGGnon3bIg2c0y4oXfiPSzRZs4JNywC8R6GaNMB4YZFId7rI9p0QrhhkYj3wRFtOiLcsGjE+8CI\nNp0RblhE4r1/RJsOCTcsKvHeN9GmU8INi0y8VyfadEy4YdGJ995Em84JNywD8Z4QbRaAcMOyWPZ4\nizYLQrhhmSxrvEWbBSLcsGxWiffRixxv0WbBCDcsoxXxvuKKK/K0pz1ttHFmZevWraLNwqnW2tgz\n7FNVbUtywthzQJLM90/LQTjttOTii7//cNOmTdm5c+d48wzonve8Z6666qrdTyxYtGvsATgY21tr\nJ653Jfa44QDUon186EN529veliQ5J+dk5607J/93sgAf11x1Tf4of5QkeXKenLr6mlTLwnyM/d/X\nxwF+DLj7aY8byGHtsNyYG8ceY3B3yB1ySA7JTblp7FFYdicm2W6PGxjIIkY7SW7LbaLNwhFuAOiI\ncANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB0RbgDoyKaxBwB+0EO2HJ0zj9+cI+50h3z7ptuy9Z+vzqcv++rYYwFzYJBwV9XvJfmx\nJFuS/HCSG5P8e5J3Jnlda+0bQ2wHFt3jT9mSCx51SE49/CtJrv/+8//ruORj331wfucjt+R9H79s\nvAGB0VVrbf0rqbo5yfYkn01ydZK7JDklk5j/R5JTWmtfOch1b0tywrqHhDn3nJ9+SF7zsB25Y7W0\nllTtfm3X452t8ivbj8kb3vPpYTe+/l8DwL6cmGR7trfWTlzvqoY6VH5Ea+17K5+sqv+Z5AVJfjvJ\ncwbaFiycx5+y5fvRTvaO9p6P71gtrzthR3Z8fYs9b1hSg1yctlq0p/5qunzAENuBRXXBow75frRv\nzx2r5fxHHTrjiYB5Neuryn96uvynGW8HuvWQLUfn1MO/kv09a9Va8ojDv5yHbDl6toMBc2nQq8qr\n6nlJ7prkyEzOb/94JtF+xX587bY1Xjp2sAFhDp15/OYk1//A4fG17Pq8M4/f7EpzWEJDvx3seUnu\nucfj9yV5WmvtmoG3AwvjiDsd3IGvg/06oG+Dhru1dq8kqap7JnlEJnvan6yq/9pa2347X7vqlXau\nKmfRffum2zb064C+zeR/2VtrX2ut/U2SM5PcI8mfz2I7sAi2/vPVSXJA57j3/Dpgucz0WFtr7d8z\neW/3g6vqh2e5LejVpy/7aj723fsc0Dnuj373R5zfhiW1ESfJ/tN0uXMDtgVd+p2P3JKdbf/KvbNV\nXvaRm2c8ETCv1h3uqjq2qu61yvN3mN6AZXOSj7bWvrnebcGiet/HL8u5nzzm+/Feedh81+Ndd05z\n8xVYXkNcnPb4JP+7qi5J8sUk38jkyvKfSHK/JFcl+eUBtgML7fXv/nS+dM2WnP+oQ/OIw7+812u7\nDo+/7CM3530fH/h2p0BX1n2v8qo6Lsmzkzwyyb2T3D3Jd5JcluSiJK9prV27jvW7qpyls+H/Oph7\nlcNsDXiv8kH+kZFZEm7YAPP9awD6N2C43cEBADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6Ihw\nA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEG8gROWLsEThAvmfLS7hhyW3d\nujXX5bo8K88aexT201k5K9flunwtX8uhOXTscdhg1Vobe4Z9qqptSU4Yew5Ikvn+aTkIT3hCctFF\n33+4adOm7Ny5c8SB2B97/d5+wQuS3/3d8YaZgRp7gNnZ3lo7cb0rsccNy2pFtM8++2zR7sSWLVt2\nP3j5y5Pf/u3xhmHDbRp7AGAEK6K9efPmXHPNNSMOxIG4/PLLk0MPTW6+efLEy18+WS7Ynjers8cN\ny2ZFtCPafbrllkm8d7HnvTSEG5bJKtGOaPdLvJeScMOyEO3FJN5LR7hhGYj2YhPvpSLcsOhEezmI\n99IQblhkor1cxHspCDcsKtFeTuK98IQbFpFoLzfxXmjCDYtGtEnEe4EJNywS0WZP4r2QhBsWhWiz\nGvFeOMINi0C02RfxXijCDb0TbfaHeC8M4YaeiTYHQrwXgnBDr0SbgyHe3RNu6JFosx7i3TXhht6I\nNkMQ724JN/REtBmSeHdpZuGuqqdWVZt+PGNW24GlIdrMgnh3Zybhrqr7JHltkhtmsX5YOqLNLIl3\nVwYPd1VVkj9L8o0kbxh6/bB0RJuNIN7dmMUe97lJTk/y9CTfmcH6YXmINhtJvLswaLir6kFJXpHk\n1a21S4ZcNywd0WYM4j33Ng21oqralOStSb6c5AUH8fXb1njp2PXMBV06/njRZjy74n3zzZPHL395\n8tnPJu9617hzkWTYPe4LkjwsydNaazcOuF5YPuedt/vPos0YVu55P+95483CXgbZ466qkzLZy/6D\n1trHDmYdrbUT11j3tiQnrGM86M+zn51cdVXyilck118/9jQsq1tuSQ45JHnxi5M//MOxp2Fq3eHe\n4xD5ZUnOX/dEwOQQ5QtfOPYUkNx6a3K+X+3zZIhD5XdNsiXJg5J8b4+brrQkL55+zp9Mn3vVANsD\ngKU1xKHym5K8eY3XTsjkvPelSb6Q5KAOowMAE+sO9/RCtFVvaVpVL8kk3G9prb1pvdsCgGXnHxkB\ngI4INwB0pFprY8+wT94OxjyZ75+Wg1djD8ABW9S/i8lC/33cvtZbnw+EPW4A6IhwA0BHhBsAOiLc\nANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFu\nAOiIcANAR4QbADqyaewBoCc19gAw5e/i8rLHDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANARwYJd1Xt\nqKq2xsdVQ2wDAEg2Dbiu65K8apXnbxhwGwCw1IYM97daay8ZcH0AwArOcQNAR4bc475TVT0lyY8k\n+U6Sf0pySWtt54DbAIClNmS475XkrSue+7eqenpr7cMDbgcAltZQ4f6zJB9J8pkk1ye5X5JfSfLM\nJH9bVae21j69rxVU1bY1Xjp2oBkBoHvVWpvdyqt+P8lvJHlna+2Jt/O5+wr34UPPBgAbbHtr7cT1\nrmTW4f7PSS5Pcm1r7R4HuY5tSU4YdDAA2HiDhHvWV5VfPV3eZcbbAYClMOtwnzpdfmnG2wGApbDu\ncFfVg6vqh1Z5/keTvG768C/Wux0AYJirys9O8ltVdXGSf8vkqvL7JzkryZ2TvDfJ7w+wHQBYekOE\n++IkD0zysEwOjd8lybeSXJrJ+7rf2mZ5BRwALJF1h3t6cxU3WAGADeBe5QDQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0BHhBhbW0UcfnZNOOmnsMWBQwg0spM2bN+fSSy/NP/zDP+STn/zk2OPAYIR7RG2BP2Bs1157bY45\n5pgkyUMf+tC0c84Z/efCzxhDEG5gId1666153OMet/uJCy9MzjlntHlgKMINLKytW7cmd7vb7ifE\nmwUg3MBiu+EG8WahCDew+MSbBSLcwHIQbxaEcAPLQ7xZAMINLBfxpnPCDSwf8aZjwg0sJ/GmU8IN\nLC/xpkPCDSw38aYzwg0g3nREuAES8aYbwg2wi3jTAeEG2JN4M+eEG2Al8WaOCTfAasSbOSXcAGsR\nb+aQcAPsi3gzZ4Qb4PaIN3Nk0HBX1aOq6h1VdWVV3TRdbq2qJwy5HYANJ97MicHCXVUvSnJJkkcn\neV+SP0jy7iRHJTltqO0AjEa8mQObhlhJVZ2d5GVJ/i7Jk1pr1694/ZAhtgMwul3xvn76a+7CCyfL\nt7xltJFYLuve466qOyT5vSTfTfILK6OdJK21W9a7HYC5Yc+bEQ2xx/2IJPdN8n+TfLOqzkpyXJLv\nJflEa+1jA2yD9TrmmOQrX0l27hx7ElgM9rwZyRDhfvh0+bUk25Mcv+eLVXVJkp9rrV2zr5VU1bY1\nXjp23RMuu7POSt75zuQd70ie/GTxhqGsFu/Pfjb5x38cdSwW2xAXp22eLp+V5LAkj01yt0z2ut+f\nycVqbx9gOxyMs85K3vOeZNOm5KSTksMOG3siWCy74r1zZ3LjjckRR4w9EQtuiD3uO06Xlcme9aen\njz9TVU9MclmSn6iqU/d12Ly1duJqz0/3xE8YYM7lsyvau5x88uSXDDCsG25I7nrX5Pjj7W0zc0Ps\ncX9zuvzSHtFOkrTWbsxkrztJThpgW+yvldHevDm5Zp9nK4D1+N73RJsNMUS4vzBdfmuN13eF3THa\njSLaAAtriHBfkuTWJA+oqkNXef246XLHANvi9og2wEJbd7hba19P8pdJjkxywZ6vVdVPJnlckusy\nuZsasyTaAAtvkDunJfn1JCcneWFVPTrJJ5L8aJInJtmZ5Jdba2sdSmcIog2wFAYJd2vt6qo6OcmL\nMon1KUmuT3JRkt9trX18iO2wBtEGWBrVWht7hn1a5LeDDfJffk6jXWMPAFPz/Rvu4PkZ69L2td76\nfCD8e9w9m9NoAzA7wt0r0QZYSsLdI9EGWFrC3RvRBlhqwt0T0QZYesLdC9EGIMLdB9EGYEq4551o\nA7AH4Z5nog3ACsI9r0QbgFUI9zwSbQDWINzzRrQB2AfhnieiDcDtEO55IdoA7AfhngeiDcB+Eu6x\niTYAB0C4x/SiF4k2AAdEuEdy9tlnJy972e4nRBuA/SDcI3n4wx+++8HDHibaAOyXTWMPsKx+8zd/\nM1dddVXe9ra35corrxx7HFhYNfYAMLBqrY09wz5V1bYkJ4w9BwCs0/bW2onrXYlD5QDQEeEGgI4I\nNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeE\nGwA6ItwA0BHhBoCOrDvcVfW0qmq387FziGEBYNltGmAdn0ry0jVee1SS05P87QDbAYClt+5wt9Y+\nlUm8f0BVfWz6x/+z3u0AADM8x11VxyU5JclXk1w0q+0AwDKZ5cVp/2O6fHNrzTluABjAEOe4f0BV\nHZbkKUluS/Km/fyabWu8dOxQcwFA72a1x/3fk9w9yd+21r4yo20AwNKZyR53kmdOl2/c3y9orZ24\n2vPTPfEThhgKAHo3+B53Vf2XJI9IckWS9w69fgBYZrM4VO6iNACYkUHDXVV3TvLUTC5Ke/OQ6wYA\nht/jPjvJUUne66I0ABje0OHedVGaO6UBwAwMFu6qelCSH4+L0gBgZgZ7O1hr7XNJaqj1AQA/yL/H\nDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHh\nBoCOCDcAdES4AaAjwg0AHRFuAOhID+E+ZuwBAGAAxwyxkk1DrGTGvj1d7tiAbR07XX5+A7bFMHzP\n+uN71h/fs/U7Jrt7ti7VWhtiPQuhqrYlSWvtxLFnYf/4nvXH96w/vmfzpYdD5QDAlHADQEeEGwA6\nItwA0BHhBoCOuKocADpijxsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHAnqap7V9WfVtV/\nVNVNVbWjql5VVUeNPRt7q6p7VNUzqupvqupfq+rGqrquqi6tql+qKn+nO1FVT62qNv14xtjzsLqq\nelRVvaOqrpz+fryyqrZW1RPGnm1Z9fDvcc9UVd0/yUeTbE7yrkz+vdmTkvxqksdX1SNba98YcUT2\ndnaSP05yZZKLk3w5yT2TPCnJm5L8VFWd3dxZaK5V1X2SvDbJDUnuOvI4rKGqXpTkZUm+nuQ9mfzc\n/XCShyU5Lcl7RxtuiS39ndOq6v1JzkxybmvttXs8/4dJfi3JG1trzxprPvZWVacnuUuSi1prt+3x\n/L2SfCLJfZL8XGvtHSONyO2oqkry/5LcN8lfJ3lekl9urb1p1MHYS1WdneSvkvxdkie11q5f8foh\nrbVbRhluyS31YcWqul8m0d6R5I9WvPziJN9J8tSqussGj8YaWmsfbK29e89oT5+/Kskbpg9P2/DB\nOBDnJjk9ydMz+RljzkxPOf1eku8m+YWV0U4S0R7PUoc7k18eSbJ1lRBcn+Tvkxye5JSNHoyDsusX\nya2jTsGaqupBSV6R5NWttUvGnoc1PSKTIyLvTfLNqjqrqp5fVb9aVaeOPNvSW/Zz3A+cLi9b4/XL\nM9kj35LkAxsyEQelqjYl+cXpw/eNOQurm36P3prJdQkvGHkc9u3h0+XXkmxPcvyeL1bVJZmckrpm\nowfDHveR0+V1a7y+6/m7b8AsrM8rkhyX5L2ttfePPQyruiCTi5qe1lq7cexh2KfN0+WzkhyW5LFJ\n7pbJz9j7kzw6ydvHGY1lD/ftqelyua/gm3NVdW6S38jkHQFPHXkcVlFVJ2Wyl/0HrbWPjT0Pt+uO\n02Vlsmf9gdbaDa21zyR5YpIrkvyEw+bjWPZw79qjPnKN149Y8XnMmap6bpJXJ/lskse01q4deSRW\n2OMQ+WVJzh95HPbPN6fLL7XWPr3nC9OjJbuOap20oVORRLi/MF1uWeP1B0yXa50DZ0RVdV6S1yX5\nl0yifdXII7G6u2byM/agJN/b46YrLZN3byTJn0yfe9VoU7KnXb8bv7XG67vCftgGzMIKy35x2sXT\n5ZlVdYcV7wu+W5JHJrkxycfHGI61VdXzMzmv/akkP9la+/rII7G2m5K8eY3XTsjkvPelmcTCYfT5\ncEkm7854QFUd2lq7ecXrx02XOzZ0KpIsebhba1+sqq2ZXDn+3Ezu5LTLSzO50ccbW2veazpHqur8\nJL+TZFuSMx0en2/TQ6ur3tK0ql6SSbjf4gYs86O19vWq+sskT87kosIX7Xqtqn4yyeMyOYXoHRwj\nWOpwTz0nk1uevqaqzkjyuSQnJ3lMJofIXzjibKxQVedkEu2dST6S5NzJjbj2sqO1duEGjwaL5tcz\n+V34wqp6dCZ3JvzRTC5O25nJ3e7WOpTODC19uKd73T+WSQwen+QJmdyP9zVJXmpvbu7cd7q8Y5Lz\n1vicDye5cEOmgQXVWru6qk7OZG/7iZnciOr6JBcl+d3WmlOII1n6e5UDQE+W/apyAOiKcANAR4Qb\nADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8IN\nAB0RbgDoyP8HixUxTGmKIXkAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49817d3a90>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"67271e0a760a45e488d5c525f59e231a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_7711d221952b41e69ab381b0e73d1c8f", | |
"max": 7, | |
"style": "IPY_MODEL_a4f2cc78aa224c71ab1409be7be49e40", | |
"value": 6 | |
} | |
}, | |
"6736582ecdc0488cb11bae74dafaf064": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_19e568f179b745c0aa90cde002d091ad", | |
"max": 7, | |
"style": "IPY_MODEL_70818f8fc8e347c6bbd36682e01c0f15", | |
"value": 2 | |
} | |
}, | |
"673f45366f984800ace7b46675979569": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6748bd399dae40b49ab4c12bc8b59f05": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"67530d8f1110490b86d65dd8da951864": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"677345b58461465b85af1be81c5daa44": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6773954e0e634dfca9279e18a63bc206": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_7e29caf21b9e4aac84898447663a5e81", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWJJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInAKw8e9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbDjcVfW4qhrX8nHFFJMFgFW3bYJtfDrJi9dZd/8kJyZ57wTj\nAMDK23C4xxifzizeV1NVn5j/5+s3Og4AsMBz3FV11yT3TvL/krxnUeMAwCpZ5MVp/2W+fNMYwzlu\nAJjAFOe4r6aqDkryO0muTPLGvXzNjnVWHTXVvACgu0Xtcf9Wkpsmee8Y45sLGgMAVs5C9riTPGm+\nfN3evmCMccyenp/viW+fYlIA0N3ke9xVdZck903yrSSnTb19AFhlizhU7qI0AFiQScNdVTdIckpm\nF6W9acptAwDT73GfnORmSU5zURoATG/qcO+6KM2d0gBgASYLd1UdneR+cVEaACzMZG8HG2N8IUlN\ntT0A4Or8PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFty57AXrj9sifAdXfMsicAsPXcfoqNdAj3j+fL8zZh\nrKPmyy9uwlj7tZ2bN5SvWT++Zv34mm3c7fPLnm1IjTGm2M5+oap2JMkYww5jE75m/fia9eNrtrU4\nxw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqxxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqltX1V9V1b9W1WVVdV5VvaKqbrbsuXFVVXWLqnpCVb2rqr5SVZdU1Y+q6qNV9XtV5Xu6iao6\nparG/OMJy54Pe1ZV96+qd1TV+fPfj+dX1Qeq6qHLntuq6vD3uBeqqu6Q5ONJDk3yj5n9vdljkzwt\nyUOq6rgxxveWOEWu6uQkf5nk/CRnJPlGksOSPCrJG5P8ZlWdPNxZaEurqtskeXWSi5PcaMnTYR1V\n9bwkL01yYZJ/yuzn7pZJ7pHkhCSnLW1yK2zl75xWVe9P8uAkp44xXr3b8/8jyR8ked0Y48nLmh9X\nVVUnJjk4yXvGGFfu9vytknwqyW2SPHqM8Y4lTZFrUVWV5INJDk/yziTPTPLEMcYblzoxrqKqTk7y\nd0k+lORRY4yL1qy/3hjj50uZ3Ipb6cOKVXVEZtE+L8lfrFn9wiQ/SXJKVR28yVNjHWOMD48x3r17\ntOfPfzvJa+cPT9j0iXFdnJrkxCSPz+xnjC1mfsrp5Ul+muS310Y7SUR7eVY63Jn98kiSD+whBBcl\n+ViSGya592ZPjH2y6xfJ5UudBeuqqqOTvCzJK8cYZy17PqzrvpkdETktyQ+q6mFV9ayqelpV3WfJ\nc1t5q36O+87z5TnrrP9yZnvkRyY5fVNmxD6pqm1Jfnf+8H3LnAt7Nv8avTWz6xKes+TpcM3uOV9+\nJ8nOJHfbfWVVnZXZKanvbvbEsMd9k/nyR+us3/X8TTdhLmzMy5LcNclpY4z3L3sy7NELMruo6XFj\njEuWPRmu0aHz5ZOTHJTk15PcOLOfsfcneUCSv1/O1Fj1cF+bmi9X+wq+La6qTk3yjMzeEXDKkqfD\nHlTVsZntZf/ZGOMTy54P1+rA+bIy27M+fYxx8Rjj80kemeRbSY532Hw5Vj3cu/aob7LO+kPWfB5b\nTFU9Nckrk5yd5IFjjO8veUqssdsh8nOSPH/J02Hv/GC+PHeM8ZndV8yPluw6qnXsps6KJML9pfny\nyHXW32m+XO8cOEtUVU9P8pokn8ss2t9e8pTYsxtl9jN2dJJLd7vpysjs3RtJ8ob5c69Y2izZ3a7f\njT9cZ/2usB+0CXNhjVW/OO2M+fLBVXXAmvcF3zjJcUkuSfLJZUyO9VXVszI7r/3pJA8aY1y45Cmx\nvsuSvGmdddszO+/90cxi4TD61nBWZu/OuFNV/coY42dr1t91vjxvU2dFkhUP9xjjq1X1gcyuHH9q\nZndy2uXFmd3o43VjDO813UKq6vlJXpJkR5IHOzy+tc0Pre7xlqZV9aLMwv3XbsCydYwxLqyqtyf5\nT5ldVPi8Xeuq6kFJfiOzU4jewbEEKx3uuadkdsvTV1XVSUm+kOReSR6Y2SHy5y5xbqxRVY/NLNpX\nJPlIklNnN+K6ivPGGG/Z5KnB/uYPM/td+NyqekBmdya8XWYXp12R2d3u1juUzgKtfLjne92/llkM\nHpLkoZndj/dVSV5sb27LOXy+PDDJ09f5nDOTvGVTZgP7qTHGBVV1r8z2th+Z2Y2oLkryniR/MsZw\nCnFJVv5e5QDQyapfVQ4ArQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN/H/8CB2iR7v22gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498223ae80>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"67867e99c25e4d3b8a0969506488c49e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"67de580cb3a1468da01c15296d24f294": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"680cf4ec4cf2484894b8c1b0d6cb22a8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "t", | |
"layout": "IPY_MODEL_dbff702f9ecb43feb87a546758180bdd", | |
"max": 63, | |
"style": "IPY_MODEL_25d0b8ad54a24322a444748861ec61f5", | |
"value": 63 | |
} | |
}, | |
"680fe867ab7b4e1f98e27e4a594edf5e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_bed294a2178b4597acae58c605c0a56e", | |
"IPY_MODEL_6f53207e7ee145ff8993539271edf25b", | |
"IPY_MODEL_2310a75f92d84c5d9de940cb7ba4aeb5", | |
"IPY_MODEL_c47ce7e209be43a9bd4d11fd7d670613", | |
"IPY_MODEL_a874640c989f457e901392fbfacd6ed1" | |
], | |
"layout": "IPY_MODEL_fd735c75c1344a23b8d7fcd86547a002" | |
} | |
}, | |
"68accc5732814230af26ecf855fa187e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"68d057fedfae4f11af51b9700c440c8e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"68dba047e5884f059f36e2c43731a085": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"68dce86854644135a2b31cb3ba937886": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_becd52ca767646d0ab344b0c41146464", | |
"max": 7, | |
"style": "IPY_MODEL_203a1660b8dd40a69c166cc5605f53f9", | |
"value": 7 | |
} | |
}, | |
"6924af023aa44e18a01538982e8093ad": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6935e6df9ec34cab91017d33b6568906": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"69415eaad8974e9687f5205b8d7302f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_392f6f4a97f343148a58c24e29e0eab8", | |
"style": "IPY_MODEL_a3e9ffaad1224bf78609ead9c50f12cf" | |
} | |
}, | |
"69504bb02c36441f938e747a1e2fea3b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"696d1cef80a6484f84459e295cb5b4a9": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_23ddccb91ddc483cba020309d21477be", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF6pJREFUeJzt3XuQZnV95/HPFyYawk3FUsoLXhlx\ngxUFwwh4RQWju1vqylqVDVErmvUWvFaZ9YpJudHKZqNCNppoQmL2D826bioRhWgo8QpV46rrdfAy\nEg2ogCAQRGV++8fzzO7QTDOT6dP9zJfn9arqOtPPefr8flXNzJvfOadP1xgjAEAPByx6AgDA3hNu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEY2LXoCe1JV30pyWJLtC54KAOyr+yb50Rjjfms90H4f7iSHHZAD73JwDr3LoicCAPvihlyX\nHbl5kmN1CPf2g3PoXbbUExY9DwDYJxePj+S6XLN9imO5xg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI\nZOGuqntV1Z9V1T9V1U1Vtb2q3lpVd55qDABYdpumOEhVPSDJp5LcLcnfJPlqkhOSvCTJk6rq5DHG\nVVOMBQDLbKoV93/LLNpnjjGeOsb47THGKUn+MMmDkrxponEAYKmtOdxVdf8kpybZnuSPVux+Q5Ib\nkpxRVQevdSwAWHZTrLhPmW8vGGPs2HXHGOO6JJ9M8gtJHjHBWACw1Ka4xv2g+XbbKvsvzWxFvjnJ\nR1c7SFVtXWXXMfs+NQC4fZlixX34fHvtKvt3vn6nCcYCgKU2yV3le1Dz7bitN40xjt/tF89W4sdN\nPSkA6GiKFffOFfXhq+w/bMX7AIB9NEW4vzbfbl5l/9Hz7WrXwAGAvTRFuC+cb0+tqlscr6oOTXJy\nkhuTfGaCsQBgqa053GOMbyS5IMl9k7xoxe43Jjk4yV+OMW5Y61gAsOymujnthZk98vTtVfX4JF9J\nsiXJ4zI7Rf6aicYBgKU2ySNP56vuhyc5N7NgvyLJA5K8PcmJnlMOANOY7MfBxhj/mOQ5Ux0PALg1\nv48bABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFJwl1V\nz6iqs6vq41X1o6oaVfVXUxwbAPj/Nk10nNcm+aUk1yf5TpJjJjouALCLqU6VvyzJ5iSHJXnBRMcE\nAFaYZMU9xrhw55+raopDAgC74eY0AGhkqmvca1ZVW1fZ5Xo5AMxZcQNAI/vNinuMcfzuXp+vxI/b\n4OkAwH7JihsAGhFuAGhEuAGgEeEGgEYmuTmtqp6a5KnzT4+cb0+sqnPnf75yjPHKKcYCgGU21V3l\nD03yrBWv3X/+kSTfTiLcALBGk5wqH2OcNcao2/i47xTjAMCyc40bABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJE1h7uqjqiq51bVB6rq61V1Y1VdW1WfqKrf\nqCr/cwAAE9k0wTFOT/LHSS5PcmGSy5LcPcnTk7wrya9U1eljjDHBWACw1KYI97Yk/zbJB8cYO3a+\nWFWvTnJJkn+XWcTfP8FYALDU1nwae4zxD2OMv9012vPXr0jyjvmnj13rOADA+t+c9tP59mfrPA4A\nLIV1C3dVbUry6/NPP7xe4wDAMpniGvdq3pzk2CTnjTHO39Obq2rrKruOmXRWANDYuqy4q+rMJK9I\n8tUkZ6zHGACwjCZfcVfVi5K8LcmXkzx+jHH13nzdGOP4VY63Nclx080QAPqadMVdVS9Nck6SLyZ5\n3PzOcgBgIpOFu6peleQPk3wus2h/f6pjAwAzk4S7ql6X2c1oWzM7PX7lFMcFAG5pzde4q+pZSX4n\nyc1JPp7kzKpa+bbtY4xz1zoWACy7KW5Ou998e2CSl67yno8lOXeCsQBgqU3xyNOzxhi1h4/HTjBX\nAFh6fuUmADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5sWPYG9cfRDbsz5F3xu0dMA2G+cdo+HLnoKLIgV\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCObFj0BYHlsu+rIfOqyzbn+J3fMIXe4KScdtS2bj7hi0dOC\nViYJd1W9JcnDk2xOctckNyb5dpL/leScMcZVU4wD9PTJy47O2Reflku++8Bb7Tvhnl/Pb205Pycf\ndekCZgb9THWq/GVJDk7y90neluS/J/lZkrOSfKGq7j3ROEAz7/3iljzrAy+YR3us2DtyyXcfmGd9\n4AV535e2LGJ60M5Up8oPG2P8eOWLVfWmJK9O8p+SvHCisYAmPnnZ0XnNR5+ZHWPnGqFWvGP2+Y5x\nQF79kWfmnodebeUNezDJint30Z5733x79BTjAL2cffFpu0T7tu0YB+Sci09b5xlBf+t9V/m/mW+/\nsM7jAPuZbVcducrp8dWMXPzdB2bbVUeu57SgvUnvKq+qVyY5JMnhmd2s9sjMov3mvfjaravsOmay\nCQIb5lOXbZ7/aeXp8dXU//s6d5rD6qb+cbBXJrn7Lp9/OMmzxxg/mHgcYD93/U/uuKFfB8ti0nCP\nMY5Mkqq6e5KTMltp/++q+tdjjM/u4WuP393r85X4cVPOE1h/h9zhpg39OlgW63KNe4zxvTHGB5Kc\nmuSIJH+5HuMA+6+Tjto2/9PeX+O+5dcBu7OuN6eNMb6d5MtJfrGq7rqeYwH7l81HXJET7vn1/Euu\ncW+559dd34Y92Ihnld9jvr15A8YC9iO/teX8HFA79uq9B9SOvHjL+es8I+hvzeGuqmOq6lY/v1FV\nB8wfwHK3JJ8aY/xwrWMBvZx81KV50+Pfu0u8b/3ktGQW7f/8hPd6+ArshSluTntSkt+vqouSfCPJ\nVZndWf6YJPdPckWS500wDtDQM4+9OPc67Oqcc/FpufhWzyqfnR5/sWeVw16bItwfSfInSU5O8ktJ\n7pTkhiTbkrwnydvHGFdPMA7Q1MlHXZqTj7rUbweDCaw53GOMLyZ50QRzAW7nNh9xhVDDGm3EzWkA\nwESEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABrZtOgJ7I1L/89BOe0eD130NABg4ay4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhk3cJdVWdU1Zh/PHe9xgGAZbIu4a6qeyc5O8n163F8AFhWk4e7qirJnye5Ksk7pj4+\nACyz9Vhxn5nklCTPSXLDOhwfAJbWpOGuqgcneXOSt40xLpry2ABAsmmqA1XVpiTvSXJZklfvw9dv\nXWXXMWuZFwDcnkwW7iSvT/KwJI8cY9w44XEBgLlJwl1VJ2S2yv6DMcan9+UYY4zjVzn21iTHrWF6\nAHC7seZr3LucIt+W5HVrnhEAsKopbk47JMnmJA9O8uNdHroykrxh/p4/nb/21gnGA4ClNcWp8puS\nvHuVfcdldt37E0m+lmSfTqMDADNrDvf8RrTdPtK0qs7KLNx/McZ411rHAoBl55eMAEAjwg0Ajaxr\nuMcYZ40xymlyAJiGFTcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI5OEu6q2V9VY5eOKKcYAAJJNEx7r2iRv3c3r1084BgAstSnDfc0Y46wJjwcArOAaNwA0\nMuWK+45V9WtJjkpyQ5IvJLlojHHzhGMAwFKbMtxHJnnPite+VVXPGWN8bMJxAGBpTRXuP0/y8SRf\nSnJdkvsneXGS30zyoao6cYzx+ds6QFVtXWXXMRPNEQDamyTcY4w3rnjpi0meX1XXJ3lFkrOSPG2K\nsQBgmU15qnx33pFZuB+9pzeOMY7f3evzlfhxE88LAFpa77vKvz/fHrzO4wDAUljvcJ84335znccB\ngKWw5nBX1S9W1V128/p9kpwz//Sv1joOADDNNe7Tk/x2VV2Y5FuZ3VX+gCRPSfLzSc5L8l8mGAcA\nlt4U4b4wyYOSPCyzU+MHJ7kmyScy+7nu94wxxgTjAMDSW3O45w9X8YAVANgAnlUOAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajk4a7qh5VVe+vqsur\n6qb59oKqevKU4wDAsto01YGq6rVJfjfJlUn+LsnlSe6a5GFJHpvkvKnGAoBlNUm4q+r0zKL9kSRP\nH2Nct2L/z00xDgAsuzWfKq+qA5K8Jck/J/nVldFOkjHGT9c6DgAwzYr7pCT3S/I/kvywqp6S5Ngk\nP05yyRjj0xOMAQBkmnD/8nz7vSSfTfKQXXdW1UVJnjHG+MFtHaSqtq6y65g1zxAAbiemuKv8bvPt\n85MclOQJSQ7NbNV9fpJHJ/nrCcYBgKU3xYr7wPm2MltZf37++Zeq6mlJtiV5TFWdeFunzccYx+/u\n9flK/LgJ5gkA7U2x4v7hfPvNXaKdJBlj3JjZqjtJTphgLABYalOE+2vz7TWr7N8Z9oMmGAsAltoU\n4b4oyc+SHF1Vd9jN/mPn2+0TjAUAS23N4R5jXJnkvUkOT/L6XfdV1ROTnJbk2iQfXutYALDspnrk\n6cuTbEnymqp6dJJLktwnydOS3JzkeWOM1U6lAwB7aZJwjzG+X1Vbkrw2s1g/Isl1ST6Y5PfGGJ+Z\nYhwAWHaT/ZKRMcbVma28Xz7VMQGAW/L7uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaWXO4q+rZVTX28HHzFJMFgGW3aYJjfC7JG1fZ96gkpyT50ATjAMDS\nW3O4xxifyyzet1JVn57/8U/WOg4AsI7XuKvq2CSPSPLdJB9cr3EAYJms581p/3G+ffcYwzVuAJjA\nFNe4b6WqDkrya0l2JHnXXn7N1lV2HTPVvACgu/Vacf/7JHdK8qExxj+u0xgAsHTWZcWd5Dfn23fu\n7ReMMY7f3evzlfhxU0wKALqbfMVdVf8qyUlJvpPkvKmPDwDLbD1OlbspDQDWyaThrqqfT3JGZjel\nvXvKYwMA06+4T09y5yTnuSkNAKY3dbh33pTmSWkAsA4mC3dVPTjJI+OmNABYN5P9ONgY4ytJaqrj\nAQC35vdxA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN1Bhj0XO4TVV11QE58C4H59BFTwUA9skNuS47cvPVY4wj\n1nqsTVNMaJ39aEduznW5ZvsGjHXMfPvVDRiLafie9eN71o/v2drdN8mPpjjQfr/i3khVtTVJxhjH\nL3ou7B3fs358z/rxPdu/uMYNAI0INwA0ItwA0IhwA0Ajwg0AjbirHAAaseIGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLiTVNW9qurPquqfquqmqtpeVW+tqjsvem7cUlUdUVXPraoPVNXXq+rG\nqrq2qj5RVb9RVf6bbqKqzqiqMf947qLnw+5V1aOq6v1Vdfn838fLq+qCqnryoue2rDr8Pu51VVUP\nSPKpJHdL8jeZ/b7ZE5K8JMmTqurkMcZVC5wit3R6kj9OcnmSC5NcluTuSZ6e5F1JfqWqTh+eLLRf\nq6p7Jzk7yfVJDlnwdFhFVb02ye8muTLJ32X29+6uSR6W5LFJzlvY5JbY0j85rarOT3JqkjPHGGfv\n8vp/TfKyJO8cYzx/UfPjlqrqlCQHJ/ngGGPHLq8fmeSSJPdO8owxxvsXNEX2oKoqyd8nuV+S/5nk\nlUmeN8Z410Inxi1U1elJ3pfkI0mePsa4bsX+nxtj/HQhk1tyS31asarun1m0tyf5oxW735DkhiRn\nVNXBGzw1VjHG+Icxxt/uGu3561ckecf808du+MT4lzgzySlJnpPZ3zH2M/NLTm9J8s9JfnVltJNE\ntBdnqcOd2T8eSXLBbkJwXZJPJvmFJI/Y6ImxT3b+Q/Kzhc6CVVXVg5O8OcnbxhgXLXo+rOqkzM6I\nnJfkh1X1lKp6VVW9pKpOXPDclt6yX+N+0Hy7bZX9l2a2It+c5KMbMiP2SVVtSvLr808/vMi5sHvz\n79F7Mrsv4dULng637Zfn2+8l+WySh+y6s6ouyuyS1A82emJYcR8+3167yv6dr99pA+bC2rw5ybFJ\nzhtjnL/oybBbr8/spqZnjzFuXPRkuE13m2+fn+SgJE9Icmhmf8fOT/LoJH+9mKmx7OHek5pvl/sO\nvv1cVZ2Z5BWZ/UTAGQueDrtRVSdktsr+gzHGpxc9H/bowPm2MltZf3SMcf0Y40tJnpbkO0ke47T5\nYix7uHeuqA9fZf9hK97HfqaqXpTkbUm+nORxY4yrFzwlVtjlFPm2JK9b8HTYOz+cb785xvj8rjvm\nZ0t2ntU6YUNnRRLh/tp8u3mV/UfPt6tdA2eBquqlSc5J8sXMon3FgqfE7h2S2d+xByf58S4PXRmZ\n/fRGkvzp/LW3LmyW7Grnv43XrLJ/Z9gP2oC5sMKy35x24Xx7alUdsOLngg9NcnKSG5N8ZhGTY3VV\n9arMrmt/LskTxxhXLnhKrO6mJO9eZd9xmV33/kRmsXAaff9wUWY/nXF0Vd1hjPGTFfuPnW+3b+is\nSLLk4R5jfKOqLsjszvEXZfYkp53emNmDPt45xvCzpvuRqnpdkt9JsjXJqU6P79/mp1Z3+0jTqjor\ns3D/hQew7D/GGFdW1XuT/IfMbip87c59VfXEJKdldgnRT3AswFKHe+6FmT3y9O1V9fgkX0myJcnj\nMjtF/poFzo0VqupZmUX75iQfT3Lm7EFct7B9jHHuBk8Nbm9entm/ha+pqkdn9mTC+2R2c9rNmT3t\nbrVT6ayjpQ/3fNX98Mxi8KQkT87sebxvT/JGq7n9zv3m2wOTvHSV93wsybkbMhu4nRpjfL+qtmS2\n2n5aZg+iui7JB5P83hjDJcQFWfpnlQNAJ8t+VzkAtCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA08n8BFj+E0FgYyUIAAAAA\nSUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981814a20>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"6986d649e6b54d1bb02cc3bacfc0e1fd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"69c66c2ed567480385f0b0e30e743376": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"69ff519e87934ca99ee8b5f91fede255": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6a0c0f85a89e4b93a5d579d66762352e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6a2f286d6c1e42738bbe60b39498e003": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6a706fb811bc4ce6ae7829b807a18303": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6ab19d77ce8246b192d5058ddc938e7a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6ab97527ad9f43d7aa4d1504f8c8ae62": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6aba1399aa9b4e2fa59849ce69523beb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_7bad7cf20f46451e93f1367b0fdfd2cf", | |
"max": 7, | |
"style": "IPY_MODEL_9cba5510d0b74b8dad9c4f57892eff25", | |
"value": 4 | |
} | |
}, | |
"6acbceb43bb8417ab7fb7dff1e4a8a75": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_9d6781346dfb42d69292c77612ed0ac7", | |
"max": 7, | |
"style": "IPY_MODEL_9b765d48e989402d9d7ca0b305e28125", | |
"value": 3 | |
} | |
}, | |
"6b499903beaa4683aa6fce93788a104f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6b4b69859fc347938454a88c59cddaf6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6b82e958dd9a421088dc036b8e6cb658": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_f4a57ca179774535a56b991203b06048", | |
"style": "IPY_MODEL_945b2306da054feaa5c5c9320c122e7e" | |
} | |
}, | |
"6b99f624fb0f4d23b73b62d65e709b92": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_c247bea58df042cb878fc3cca1e82d1b", | |
"max": 7, | |
"style": "IPY_MODEL_b73b6639978f490f95b1c020d6dbfb4f", | |
"value": 2 | |
} | |
}, | |
"6bb89d4e344a47539ab32b8d32671fc5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_78a0561b42444342826cf4749af1aa52", | |
"style": "IPY_MODEL_d67729d9751f4db9b51e69b72de03d36" | |
} | |
}, | |
"6bbfc581f3304f79bf7c79f7dd9ddaf8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6bc61f1483e142249f59dd14ac1fb0f0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_618b9a1f24ff4ab69abecdc20a9ed3af", | |
"IPY_MODEL_b3bede87b3d74e378b50bd116b474768", | |
"IPY_MODEL_46464e553822424ab6048e9ec5b2a862", | |
"IPY_MODEL_292a4c669f8a4935982186b3b3952346", | |
"IPY_MODEL_589e841e492c4cccb4bdaebbad045ca1" | |
], | |
"layout": "IPY_MODEL_3e3eb8cd46c64c489bdeb4eff99d11ca" | |
} | |
}, | |
"6bd9e3d2a21948958a42b8abb6a4dac3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_a45d6f40891f47bc9aff2b72eb4ff6ac", | |
"max": 7, | |
"style": "IPY_MODEL_5a5ad95bd72a41819ea27c9614656445" | |
} | |
}, | |
"6bdf61b7fc2f4bb7acc0060fc558256f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6c074018f08c42db930ee467a62e2e13": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6c5649fad8f9420690b0012207781b54": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6c846fb0fdef4944a315fdcc589543ac": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6ca0d8c3e0bf4eefa6a949c8ffb3bbcf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_7c6b79f1bad546bb86f7e81b2a855957", | |
"max": 7, | |
"style": "IPY_MODEL_0140fe344e48415b90b807325063565f", | |
"value": 4 | |
} | |
}, | |
"6ca69aa4b2624a458921006bf9d14183": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6e0bca1adb864cad85db0d094105a77e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "ci", | |
"layout": "IPY_MODEL_baa5069cb2bd4709b9fef76d99fda61f", | |
"max": 7, | |
"style": "IPY_MODEL_46ac9cdb90944b279d532e4dea6ac0e9", | |
"value": 5 | |
} | |
}, | |
"6ea580619fa8454696b4c8f73a6e9924": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_deb067e7eb84471f976304935577ed8b", | |
"max": 3, | |
"style": "IPY_MODEL_4651c6af1e624ba39cfb2c5a15758a26", | |
"value": 3 | |
} | |
}, | |
"6efb9bc1b598450596e5567f322e0bb4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6efbed735ed844e298bdad8c0eaa2fd7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_10219a1832324e829d1befb89d27408c", | |
"max": 7, | |
"style": "IPY_MODEL_f6d7c224a18b4a05bbaf387f2430e0e5", | |
"value": 2 | |
} | |
}, | |
"6f1f7f644a8d410c8d413bf5f5d3a20e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"6f3557b366b24053b16b76ec2916abf3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_77e0e381fa7a40d19350700c38e775f1", | |
"max": 7, | |
"style": "IPY_MODEL_9569bc7dedd242b2a2f44105996485f8", | |
"value": 3 | |
} | |
}, | |
"6f4134db5cb64bf09bf7f2c4b2a2f27d": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_2b2555c095ba40d1906900d1b3f6c323", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGKlJREFUeJzt3WuwZWV95/HfH1qM4aKCpRiReANx\nQioRFFS8X8DozJQ6MlZlQtSKZrwFr1VmvGJSTrQymaiQiSaamJh5oRnHSSWgGA0lXrGqHXW8gpeW\nqKACog1BEHjmxd5tmsM5dNtnnbPP3/35VHWtPnvtvZ6n6kh/fdZaZ50aYwQA6GG/RU8AANh7wg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQyLZFT2BPqurrSQ5JsmPBUwGAfXW3JD8cY9x9vQfa8uFOcsh+2f/QA3PwoYueCADsi6uzMzfm\nhkmO1SHcOw7MwYeeWI9e9DwAYJ9cMD6QnblyxxTHco0bABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkcnC\nXVVHVNVfVNW3q+raqtpRVW+oqttPNQYALLttUxykqu6Z5GNJ7pjk75J8KckJSZ6f5LFVddIY4/Ip\nxgKAZTbVivt/ZBbt08cYTxhj/O4Y45FJ/jjJvZO8dqJxAGCprTvcVXWPJCcn2ZHkT1bsfnWSq5Oc\nVlUHrncsAFh2U6y4Hznfvn+McePuO8YYO5N8NMnPJ3nABGMBwFKb4hr3vefbC9fYf1FmK/Kjk3xw\nrYNU1fY1dh2z71MDgJ8tU6y4bzvf/mCN/btev90EYwHAUpvkrvI9qPl23NKbxhjHr/rh2Ur8uKkn\nBQAdTbHi3rWivu0a+w9Z8T4AYB9NEe4vz7dHr7H/qPl2rWvgAMBemiLc5823J1fVTY5XVQcnOSnJ\nNUk+McFYALDU1h3uMcZXk7w/yd2SPHfF7tckOTDJX48xrl7vWACw7Ka6Oe05mT3y9E1V9agkX0xy\nYpJHZHaK/OUTjQMAS22SR57OV933S/L2zIL94iT3TPKmJA/0nHIAmMZkPw42xvjnJE+f6ngAwM35\nfdwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjUwS7qp6\nclWdWVUfrqofVtWoqr+Z4tgAwL/aNtFxXpHkV5JcleSbSY6Z6LgAwG6mOlX+wiRHJzkkybMnOiYA\nsMIkK+4xxnm7/l5VUxwSAFiFm9MAoJGprnGvW1VtX2OX6+UAMGfFDQCNbJkV9xjj+NVen6/Ej9vk\n6QDAlmTFDQCNCDcANCLcANCIcANAI5PcnFZVT0jyhPmXh8+3D6yqt8//ftkY4yVTjAUAy2yqu8p/\nNclTV7x2j/mfJPlGEuEGgHWa5FT5GOOMMUbdwp+7TTEOACw717gBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGll3uKvqsKp6RlW9p6q+UlXXVNUPquojVfVb\nVeX/HADARLZNcIxTk/xpkkuSnJfk4iR3SvKkJG9N8mtVdeoYY0wwFgAstSnCfWGSf5/k7DHGjbte\nrKqXJflkkv+QWcTfPcFYALDU1n0ae4zxT2OMv9892vPXL03y5vmXD1/vOADAxt+c9uP59voNHgcA\nlsKGhbuqtiX5zfmX79uocQBgmUxxjXstr0tybJJzxhjn7unNVbV9jV3HTDorAGhsQ1bcVXV6khcn\n+VKS0zZiDABYRpOvuKvquUnemOQLSR41xrhibz43xjh+jeNtT3LcdDMEgL4mXXFX1QuSnJXkc0ke\nMb+zHACYyGThrqqXJvnjJJ/OLNrfnerYAMDMJOGuqldmdjPa9sxOj182xXEBgJta9zXuqnpqkt9L\nckOSDyc5vapWvm3HGOPt6x0LAJbdFDen3X2+3T/JC9Z4z4eSvH2CsQBgqU3xyNMzxhi1hz8Pn2Cu\nALD0/MpNAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARrYtegIAG+ncb3960VOA3P/ka/Kp/zfNsay4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGtm26AkAdHfh5YfnYxcfnauuu3UOOuDaPOjIC3P0YZcuelrckiuu\nT751XXLdSA6o5C4HJIf2SOIks6yq1ye5X5Kjk9whyTVJvpHk/yQ5a4xx+RTjAGwlH734qJx5wSn5\n5LfudbN9J9zlK/mdE8/NSUdetICZsaZvXpfafnXqkh/fbNe4860yjj8wOeKABUxs7011qvyFSQ5M\n8o9J3pjkfya5PskZST5bVXedaByALeGdnzsxT33Ps+fRHiv2jnzyW/fKU9/z7Lzr8ycuYnqs5ovX\npM6+MnXJj1f5jiV1yY9TZ1+ZfOmaRcxur011XuCQMcaPVr5YVa9N8rIk/yXJcyYaC2ChPnrxUXn5\nB5+SG8eutU+teMfs6xvHfnnZB56Suxx8hZX3on3zutT5O1PzYq/+Hcts/4d2Zhy0/5ZdeU+y4l4t\n2nPvmm+PmmIcgK3gzAtO2S3at+zGsV/OuuCUDZ4Re1Lbr/5JtPf43jF7/1a10XeV/7v59rMbPA7A\nprjw8sPXOD2+lpELvnWvXHj54Rs5LW7JFdevenp8LbtOm+eK6zdyVvts0lvoquolSQ5KctvMblZ7\ncGbRft1efHb7GruOmWyCAOv0sYuPnv9t5cnWtdRPPudO8wX51nVJftrv2PxzW/BO86ln9JIkd9rt\n6/cledoY43sTjwOwEFddd+tN/RwTuG5v19oTfW6DTRruMcbhSVJVd0ryoMxW2v+3qv7tGONTe/js\n8au9Pl+JHzflPAH21UEHXLupn2MCB+ztWnuiz22wDbnGPcb4zhjjPUlOTnJYkr/eiHEANtuDjrxw\n/ref5orp7p9j091ldnf4T/cd+9fPbTUbenPaGOMbSb6Q5Jeq6g4bORbAZjj6sEtzwl2+kp/miumJ\nd/mK69uLdOi2jDvf6qe6xj3ufKsteX072Zxnlf/CfHvDJowFsOF+58Rzs1/duFfv3a9uzPNOPHeD\nZ8SejOMPzNjLco+avX+rWne4q+qYqrrZzzlU1X7zB7DcMcnHxhjfX+9YAFvBSUdelNc+6p27xXu1\n53DNov1fH/1OD1/ZCo44IOOhB/8k3qt/x+bRftjBW/bhK8k0N6c9NskfVtX5Sb6a5PLM7ix/WJJ7\nJLk0yTMnGAdgy3jKsRfkiEOuyFkXnJILbvas8tnp8ed5VvnWcp/bZBy8f7LKs8p3nR7v8KzyKcL9\ngSR/luSkJL+S5HZJrk5yYZJ3JHnTGOOKCcYB2FJOOvKinHTkRX47WCdHHJBxxAEZy/zbwcYYn0vy\n3AnmAtDS0YddKtTdHLqtTahX2oyb0wCAiQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANLJt0RMA2Ein/MKvLnoKkIvG\nZUmuneRYVtwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANLJh4a6q06pqzP88Y6PGAYBlsiHhrqq7\nJjkzyVUbcXwAWFaTh7uqKslfJrk8yZunPj4ALLONWHGfnuSRSZ6e5OoNOD4ALK1Jw11V90nyuiRv\nHGOcP+WxAYBk21QHqqptSd6R5OIkL9uHz29fY9cx65kXAPwsmSzcSV6V5L5JHjzGuGbC4wIAc5OE\nu6pOyGyV/UdjjI/vyzHGGMevceztSY5bx/QA4GfGuq9x73aK/MIkr1z3jACANU1xc9pBSY5Ocp8k\nP9rtoSsjyavn7/nz+WtvmGA8AFhaU5wqvzbJ29bYd1xm170/kuTLSfbpNDoAMLPucM9vRFv1kaZV\ndUZm4f6rMcZb1zsWACw7v2QEABoRbgBoZEPDPcY4Y4xRTpMDwDSsuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVbWjqsYafy6dYgwAINk24bF+kOQN\nq7x+1YRjAMBSmzLcV44xzpjweADACq5xA0AjU664b11Vv5HkyCRXJ/lskvPHGDdMOAYALLUpw314\nkneseO3rVfX0McaHJhwHAJbWVOH+yyQfTvL5JDuT3CPJ85L8dpL3VtUDxxifuaUDVNX2NXYdM9Ec\nAaC9ScI9xnjNipc+l+RZVXVVkhcnOSPJE6cYCwCW2ZSnylfz5szC/dA9vXGMcfxqr89X4sdNPC8A\naGmj7yr/7nx74AaPAwBLYaPD/cD59msbPA4ALIV1h7uqfqmqDl3l9V9Mctb8y79Z7zgAwDTXuE9N\n8rtVdV6Sr2d2V/k9kzw+yc8lOSfJf5tgHABYelOE+7wk905y38xOjR+Y5MokH8ns57rfMcYYE4wD\nAEtv3eGeP1zFA1YAYBN4VjkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI1MGu6qekhVvbuqLqmqa+fb91fV46YcBwCW1bapDlRVr0jy+0kuS/IPSS5J\ncock903y8CTnTDUWACyrScJdVadmFu0PJHnSGGPniv23mmIcAFh26z5VXlX7JXl9kn9J8usro50k\nY4wfr3ccAGCaFfeDktw9yf9K8v2qenySY5P8KMknxxgfn2AMACDThPv+8+13knwqyS/vvrOqzk/y\n5DHG927pIFW1fY1dx6x7hgDwM2KKu8rvON8+K8ltkjw6ycGZrbrPTfLQJH87wTgAsPSmWHHvP99W\nZivrz8y//nxVPTHJhUkeVlUPvKXT5mOM41d7fb4SP26CeQJAe1OsuL8/335tt2gnScYY12S26k6S\nEyYYCwCW2hTh/vJ8e+Ua+3eF/TYTjAUAS22KcJ+f5PokR1XVAavsP3a+3THBWACw1NYd7jHGZUne\nmeS2SV61+76qekySU5L8IMn71jsWACy7qR55+qIkJyZ5eVU9NMknk/xikicmuSHJM8cYa51KBwD2\n0iThHmN8t6pOTPKKzGL9gCQ7k5yd5A/GGJ+YYhwAWHaT/ZKRMcYVma28XzTVMQGAm/L7uAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaWXe4q+ppVTX28OeG\nKSYLAMtu2wTH+HSS16yx7yFJHpnkvROMAwBLb93hHmN8OrN430xVfXz+1z9b7zgAwAZe466qY5M8\nIMm3kpy9UeMAwDLZyJvT/vN8+7YxhmvcADCBKa5x30xV3SbJbyS5Mclb9/Iz29fYdcxU8wKA7jZq\nxf0fk9wuyXvHGP+8QWMAwNLZkBV3kt+eb9+ytx8YYxy/2uvzlfhxU0wKALqbfMVdVf8myYOSfDPJ\nOVMfHwCW2UacKndTGgBskEnDXVU/l+S0zG5Ke9uUxwYApl9xn5rk9knOcVMaAExv6nDvuinNk9IA\nYANMFu6quk+SB8dNaQCwYSb7cbAxxheT1FTHAwBuzu/jBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaqTHGoudw\ni6rq8v2y/6EH5uBFTwUA9snV2Zkbc8MVY4zD1nusbVNMaIP98MbckJ25cscmjHXMfPulTRiLafie\n9eN71o/v2frdLckPpzjQll9xb6aq2p4kY4zjFz0X9o7vWT++Z/34nm0trnEDQCPCDQCNCDcANCLc\nANCIcANAI+4qB4BGrLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEe4kVXVEVf1FVX27qq6t\nqh1V9Yaquv2i58ZNVdVhVfWMqnpPVX2lqq6pqh9U1Ueq6reqyv+mm6iq06pqzP88Y9HzYXVV9ZCq\nendVXTL/9/GSqnp/VT1u0XNbVh1+H/eGqqp7JvlYkjsm+bvMft/sCUmen+SxVXXSGOPyBU6Rmzo1\nyZ8muSTJeUkuTnKnJE9K8tYkv1ZVpw5PFtrSququSc5MclWSgxY8HdZQVa9I8vtJLkvyD5n9d3eH\nJPdN8vAk5yxsckts6Z+cVlXnJjk5yeljjDN3e/2/J3lhkreMMZ61qPlxU1X1yCQHJjl7jHHjbq8f\nnuSTSe6a5MljjHcvaIrsQVVVkn9Mcvck/zvJS5I8c4zx1oVOjJuoqlOTvCvJB5I8aYyxc8X+W40x\nfryQyS25pT6tWFX3yCzaO5L8yYrdr05ydZLTqurATZ4aaxhj/NMY4+93j/b89UuTvHn+5cM3fWL8\nNE5P8sgkT8/svzG2mPklp9cn+Zckv74y2kki2ouz1OHO7B+PJHn/KiHYmeSjSX4+yQM2e2Lsk13/\nkFy/0Fmwpqq6T5LXJXnjGOP8Rc+HNT0oszMi5yT5flU9vqpeWlXPr6oHLnhuS2/Zr3Hfe769cI39\nF2W2Ij86yQc3ZUbsk6raluQ351++b5FzYXXz79E7Mrsv4WULng637P7z7XeSfCrJL+++s6rOz+yS\n1Pc2e2JYcd92vv3BGvt3vX67TZgL6/O6JMcmOWeMce6iJ8OqXpXZTU1PG2Ncs+jJcIvuON8+K8lt\nkjw6ycGZ/Td2bpKHJvnbxUyNZQ/3ntR8u9x38G1xVXV6khdn9hMBpy14Oqyiqk7IbJX9R2OMjy96\nPuzR/vNtZbay/uAY46oxxueTPDHJN5M8zGnzxVj2cO9aUd92jf2HrHgfW0xVPTfJG5N8IckjxhhX\nLHhKrLDbKfILk7xywdNh73x/vv3aGOMzu++Yny3ZdVbrhE2dFUmE+8vz7dFr7D9qvl3rGjgLVFUv\nSHJWks9lFu1LFzwlVndQZv+N3SfJj3Z76MrI7Kc3kuTP56+9YWGzZHe7/m28co39u8J+m02YCyss\n+81p5823J1fVfit+LvjgJCcluSbJJxYxOdZWVS/N7Lr2p5M8Zoxx2YKnxNquTfK2NfYdl9l1749k\nFgun0beG8zP76YyjquqAMcZ1K/YfO9/u2NRZkWTJwz3G+GpVvT+zO8efm9mTnHZ5TWYP+njLGMPP\nmm4hVfXKJL+XZHuSk50e39rmp1ZXfaRpVZ2RWbj/ygNYto4xxmVV9c4k/ymzmwpfsWtfVT0mySmZ\nXUL0ExwLsNThnntOZo88fVNVPSrJF5OcmOQRmZ0if/kC58YKVfXUzKJ9Q5IPJzl99iCum9gxxnj7\nJk8Nfta8KLN/C19eVQ/N7MmEv5jZzWk3ZPa0u7VOpbOBlj7c81X3/TKLwWOTPC6z5/G+KclrrOa2\nnLvPt/snecEa7/lQkrdvymzgZ9QY47tVdWJmq+0nZvYgqp1Jzk7yB2MMlxAXZOmfVQ4AnSz7XeUA\n0IpwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQyP8HhkriItB2p5EAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7fb477a65780>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"6f53207e7ee145ff8993539271edf25b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_826511d60f2e499390b128bcf7bcef41", | |
"max": 7, | |
"style": "IPY_MODEL_5739fa50027b4cc1809bff06e78e7fdb", | |
"value": 7 | |
} | |
}, | |
"6f8a9b87a9374d74a0a8ae2509276b7d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"6fa5df7eff2849eb8d19e00c8e1fe64c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_8a71e82eba0240da9d0c187c35b11607", | |
"IPY_MODEL_c26d541ce2674fc6b541bbba82f0a8cc" | |
], | |
"layout": "IPY_MODEL_97cf6906ac7e46f8bf9c64c7d444841f" | |
} | |
}, | |
"6fb540013d1e4107ba74152c035588e3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"700e3cbca69c412dadc77a8c0f0f3096": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7023bb7aae314c7b807e8ddbd26c78a2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"705501eb3b954641ba75ba2422b53fce": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_fccc35dd15154d7fab7a7f3e9f987b60", | |
"max": 7, | |
"style": "IPY_MODEL_14e7e8050ac846d9b3c85106d2285a7c", | |
"value": 1 | |
} | |
}, | |
"705aa2f75c5c4861b4f245520976546e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7070aedcaac94409aee5047526cdd8c1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"707400213700438aa2e3efa831a9d8a7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"707ddd12e91848888188ac9d155535c5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"70818f8fc8e347c6bbd36682e01c0f15": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7089a5d2792b4289bd9d93530bb6a01a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_5df81aa00efe44ac92f0d5c87d672298", | |
"max": 3, | |
"style": "IPY_MODEL_e15491dc40704862b83a715a08375401", | |
"value": 1 | |
} | |
}, | |
"7098391907084c9aabe0fb531d2cdb7d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"70a68b0e3eb34b5eaa4cd62b70d789a1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"70d71a011c4948b6b23ff62b5c6678b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_054a5a68d582420da4adff64ff3ebd69", | |
"max": 7, | |
"style": "IPY_MODEL_50a37b8fbdd04bd49fb198f11acdcfc5", | |
"value": 3 | |
} | |
}, | |
"70e4555dfef14f1c8847f5d1a5559521": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"71a91b57451043918d6404597af22906": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_ead10c0d017541a681cbaa19b9180aa5", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHlRJREFUeJzt3XuQZnV95/HPFwcELyDRGq31AuqK\nuMqiTAQvG6PgLc7uVjRhK4katGJcjRtCohUTrxgrSmo38RYTTTTBkC2TuCaxIkYxiiLRxNTgHVFy\nQcSAclEEBYTht388z8jQds8M06fnPL/nvF5VXWee53Sf8y2b7re/85x5plprAQD6sN/YAwAAe064\nAaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLc\nANAR4QaAjmwae4Ddqap/S3JwkotGHgUA9tbhSb7dWrvveg+08OHOLNo/NP8AYNkdM/YAG+CLSa4b\n5lA9hPuiiDbAdGwbe4ANsCXJecNcOfYaNwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaA\njgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRks3FV1r6r6\no6r696q6oaouqqrXV9WhQ50DAKZu0xAHqar7J/l4ks1J3pPkgiTHJvmlJE+uqke31q4c4lwAMGVD\nrbh/L7Non9xa+/HW2q+11o5P8rokD0zymwOdBwAmbd3hrqr7JXlikouSvHnF7lcm+U6SZ1bVHdd7\nLgCYuiFW3MfPt2e11m7eeUdr7Zokf5/kDkkeMcC5AGDShniN+4Hz7ZfX2H9hZivyI5J8aK2DVNW2\nNXYdufejAcByGWLFfch8e/Ua+3c8f5cBzgUAkzbIXeW7UfNt29Untda2rPrFs5X4MUMPBQA9GmLF\nvWNFfcga+w9e8XkAwF4aItxfmm+PWGP/A+bbtV4DBwD20BDhPnu+fWJV3ep4VXXnJI9Ocl2Sfxjg\nXAAwaesOd2vtX5KcleTwJC9YsftVSe6Y5E9aa99Z77kAYOqGujntFzJ7y9M3VtUJSb6Y5Lgkj8vs\nEvlLBzoPAEzaIG95Ol91/3CS0zML9guT3D/JG5M80vuUA8AwBvvrYK21ryZ59lDHAwB+kH+PGwA6\nItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAd\nEW4A6IhwA0BHhBsAOiLcANCRTWMPMGVt7AE2UI09ACw5vz+my4obADoi3ADQEeEGgI4INwB0RLgB\noCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0BHhBoCOCDcAdGSQcFfVT1bVm6rqY1X17apqVfWnQxwbALjFpoGO87IkRye5NsklSY4c6LgAwE6G\nulT+y0mOSHJwkucPdEwAYIVBVtyttbN3/LmqhjgkALAKN6dNxe1vP/YEQK/8/lgoCxPuqtq22ke8\nXr5+Bx+cfPSjyVvfOvYkQG+OPz658MJk69axJ2FuYcLNBnr845Pjjkue+9zkW98aexqgF1u3Jh/6\nUHLveycvfvHY0zA31F3l69Za27La8/NV9zH7eJzl8pd/mXz4w7P/53zIIbN43+UuY08FLLKtW5P3\nvveWxz/xE+PNwq1YcU/FCSfM4p3cEm+A1ayM9ubNyeWXjzcPtyLcUyLewO6I9sIT7qkRb2Atot0F\n4Z4i8QZWEu1uDHJzWlX9eJIfnz+8x3z7yKo6ff7nK1prLxriXAzkhBNmd4u6YQ0Q7a4MdVf5Q5Oc\ntOK5+80/kuQrSYR70Yg3INrdGeRSeWvt1NZa7eLj8CHOwwZw2RymS7S75DVuxBumSLS7JdzMiDdM\nh2h3Tbi5hXjD8hPt7gk3tybesLxEeykINz9IvGH5iPbSEG5WJ96wPER7qQg3axNv6J9oLx3hZtfE\nG/ol2ktJuNk98Yb+iPbSEm72jHhDP0R7qQk3e068YfGJ9tITbm4b8YbFJdqTINzcduINi0e0J0O4\n2TviDYtDtCdFuNl74g3jE+3JEW7WR7xhPKI9ScLN+q0S70MPPXTcmWDZPeMZoj1Rws0wVsT7qquu\nGnceWGKveMUrkjPOuOUJ0Z4U4WY4J5xwq4dHHnnkSIPAcnv+859/y4N73Uu0J2bT2ANMWY09wAbY\n/4AD8q53vSvvec97csEFF4w9zuDa2ANskGX8b3GHpfyeHX10vvDhD+enf/qn87mvfW3sadjHqrXF\n/s+6qrYlOWbsOSBZ0ghEuHu0zN+zpfymbUlyXs5rrW1Z76FcKgeAjgg3AHREuAGgI8INAB0RbgDo\niHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0\nZN3hrqq7VtVzquqvquqfq+q6qrq6qs6tqp+rKv/nAAAGsmmAY5yY5PeTXJrk7CQXJ7l7kqcleVuS\nH6uqE1trbYBzAcCkDRHuLyf570nObK3dvOPJqnpJkk8m+YnMIv7uAc4FAJO27svYrbUPt9b+Zudo\nz5+/LMlb5g8fu97zAAAbf3PajfPtTRt8HgCYhA0Ld1VtSvKz84fv36jzwFI68MDkda9LDj107EnY\nUw9+cPLyl489BRMwxGvcazktyUOSvK+19oHdfXJVbVtj15GDTgU9eMtbkpNOSk45JbnXvZKvfW3s\nidiVpzwlOfPM2Z+vvDL5vd8bdx6W2oasuKvq5CQvTHJBkmduxDlgqZ122i1/vuSS5J73HG8Wdm3n\naCfJGWeMNwuTMPiKu6pekOQNSc5PckJr7ao9+brW2pY1jrctyTHDTQgduOCC5HGPS84+e/b4kkus\nvBfRymhv3pxcc8148zAJg664q+qUJL+b5PNJHje/sxzYGx/5yCzeO1h5L5bVon355ePNw2QMFu6q\nenGS1yX5dGbR/sZQx4bJEu/FJNqMaJBwV9XLM7sZbVtml8evGOK4QMR70Yg2I1v3a9xVdVKS30iy\nPcnHkpxcVSs/7aLW2unrPRdM1o54e817XKLNAhji5rT7zre3S3LKGp/z0SSnD3AumC7xHpdosyCG\neMvTU1trtZuPxw4wK+Cy+ThEmwXin9yE3oj3viXaLBjhhh6J974h2iwg4YZeiffGEm0WlHBDz8R7\nY4g2C0y4oXfiPSzRZsEJNywD8R6GaNMB4YZlId7rI9p0QrhhmYj33hFtOiLcsGzE+7YRbToj3LCM\nxHvPiDYdEm5YVuK9a6JNp4Qblpl4r0606Zhww7IT71sTbTon3DAF4j0j2iwB4YapmHq8RZslIdww\nJVONt2izRIQbpmaVeN9zmeMt2iwZ4YYpWhHvSy65JM961rNGG2ejnHXWWaLN0qnW2tgz7FJVbUty\nzNhzQJIs9k/LXnjsY5Ozz/7+w02bNmX79u3jzTOgu9/97rnssstueWLJol1jD7CRlu4HLcmWJOfl\nvNbalvUeyoobboNato+PfCTvfOc7kyQnnXTS0kQ7SS6//PK8+c1vTpI8/elPT11++fj/ew/4wXRZ\ncQM56KCDct111409xuD222+/7L///rnhhhvGHoXbYrGztHesuIEhLWO0k+Tmm28WbZaOcANAR4Qb\nADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8IN\nAB0RbgDoiHADQEeEGwA6Mki4q+q3qupDVfXVqrquqq6qqk9V1Sur6q5DnAMAGG7F/ctJ7pjkg0ne\nkOT/JrkpyalJPltV9x7oPAAwaZsGOs7BrbXrVz5ZVb+Z5CVJfj3JLwx0LgCYrEFW3KtFe+4v5tsH\nDHEeAJi6jb457b/Nt5/d4PMAwCQMdak8SVJVL0pypySHJPnhJP8ls2iftgdfu22NXUcONiAAdG7Q\ncCd5UZK77/T4/Ume1Vq7fODzAMAkDRru1to9kqSq7p7kUZmttD9VVf+1tXbebr52y2rPz1fixww5\nJwD0akNe426tfb219ldJnpjkrkn+ZCPOAwBTs6E3p7XWvpLk/CQPrqq7beS5AGAK9sVbnv6H+Xb7\nPjgXACy1dYe7qo6sqnus8vx+8zdg2Zzk4621b673XAAwdUPcnPbkJP+7qs5J8i9JrszszvIfTXK/\nJJcl+fkBzgMAkzdEuP8uyR8keXSSo5PcJcl3knw5yRlJ3thau2qA8wDA5K073K21zyd5wQCzAAC7\n4d/jBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A\n6IhwA0BHhBsAOiLcANAR4QZy8MEHjz0Ct5Hv2XQJN0zcWWedlauvvjrPe97zxh6FPbR169ZcffXV\n+frXv54DDjhg7HHYx6q1NvYMu1RV25IcM/YckCSL/dOyF57ylOTMM7//cNOmTdm+ffuIA7EnbvV7\n+yUvSV772vGG2QC1dD9oSbYkOS/ntda2rPdQVtwwVSuifeKJJ4p2J4444ohbHrzmNcmv//p4w7DP\nbRp7AGAEK6K9efPmXH755SMOxG1x4YUXJgcckHzve7MnXvOa2XbJVt6szoobpmZFtCPafbrxxlm8\nd7DyngzhhilZJdoR7X6J9yQJN0yFaC8n8Z4c4YYpEO3lJt6TItyw7ER7GsR7MoQblploT4t4T4Jw\nw7IS7WkS76Un3LCMRHvaxHupCTcsG9EmEe8lJtywTESbnYn3UhJuWBaizWrEe+kINywD0WZXxHup\nCDf0TrTZE+K9NIQbeiba3BbivRSEG3ol2uwN8e6ecEOPRJv1EO+uCTf0RrQZgnh3S7ihJ6LNkMS7\nSxsW7qp6ZlW1+cdzNuo8MBmizUYQ7+5sSLir6t5J3pTk2o04PkyOaLORxLsrg4e7qirJHye5Mslb\nhj4+TI5osy+Idzc2YsV9cpLjkzw7yXc24PgwHaLNviTeXRg03FX1oCSnJXlDa+2cIY8NkyPajEG8\nF96moQ5UVZuSnJHk4iQv2Yuv37bGriPXMxd06aijRJvx7Ij39743e/ya1yTnn5+85z3jzkWSYVfc\nr0jysCTPaq1dN+BxYXpOOeWWP4s2Y1i58n7Ri8abhVsZZMVdVcdmtsr+7dbaJ/bmGK21LWsce1uS\nY9YxHvTn+c9PLrssOe205Jprxp6GqbrxxmT//ZNXvjL5nd8Zexrm1h3unS6RfznJy9c9ETC7RPnS\nl449BSQ33ZS83K/2RTLEpfI7JTkiyYOSXL/Tm660JK+cf84fzp97/QDnA4DJGuJS+Q1J3r7GvmMy\ne9373CRfSrJXl9EBgJl1h3t+I9qqb2laVadmFu53tNbett5zAcDU+UdGAKAjwg0AHdnQcLfWTm2t\nlcvkADAMK24A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA\n0BHhBoCOCDcAdES4AaAjwg0AHRFuAOiIcANAR4QbADqyaewBoCc19gAw57/F6bLiBoCOCDcAdES4\nAaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6IhwA0BHhBsAOiLc\nANAR4QaAjgg3AHREuAGgI4OEu6ouqqq2xsdlQ5wDAEg2DXisq5O8fpXnrx3wHAAwaUOG+1uttVMH\nPB4AsILXuAGgI0OuuG9fVc9Icp8k30ny2STntNa2D3gOAJi0IcN9jyRnrHju36rq2a21jw54HgCY\nrKHC/cdJPpbkC0muSXK/JP8ryXOT/G1VPbK19pldHaCqtq2x68iBZgSA7g0S7tbaq1Y89fkkz6uq\na5O8MMmpSZ46xLkAYMqqtbZxB6/6j0kuTHJVa+2ue3mMbUmOGXQwABbXxmVpPFuSnJfzWmtb1nuo\njb6r/Bvz7R03+DwAMAkbHe5Hzrf/usHnAYBJWHe4q+rBVfVDqzx/WJLfnT/80/WeBwAY5ua0E5P8\nWlWdneTfMrur/P5JtiY5MMn7kvyfAc4DAJM3RLjPTvLAJA/L7NL4HZN8K8m5mf297jPaRt4BBwAT\nsu5wz99cxRusAMA+4L3KAaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAd\nEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHREuAGgI8INLK173vOeOfbYY8ceAwYl3MBS2rx5c849\n99z84z/+Yz71qU+NPQ4MRrhH1Jb4A8Z21VVX5fDDD0+SPPShD0076aTRfy78jDEE4QaW0k033ZQn\nPelJtzxx+unJSSeNNg8MRbiBpXXWWWcld77zLU+IN0tAuIHldu214s1SEW5g+Yk3S0S4gWkQb5aE\ncAPTId4sAeEGpkW86ZxwA9Mj3nRMuIFpEm86JdzAdIk3HRJuYNrEm84IN4B40xHhBkjEm24IN8AO\n4k0HhBtgZ+LNghNugJXEmwUm3ACrEW8WlHADrEW8WUDCDbAr4s2CEW6A3RFvFsig4a6qH6mqd1fV\npVV1w3x7VlU9ZcjzAOxz4s2CGCzcVfWyJOckeUyS9yf57SR/k+TQJI8d6jwAoxFvFsCmIQ5SVScm\neXWSv0vytNbaNSv27z/EeQBGtyPe18x/zZ1++mz7jneMNhLTsu4Vd1Xtl+S3knw3yc+sjHaStNZu\nXO95ABaGlTcjGmLF/agk903y/5J8s6q2JnlIkuuTfLK19okBzsF6HX548tWvJtu3jz0JLAcrb0Yy\nRLgfPt9+Pcl5SY7aeWdVnZPkJ1trl+/qIFW1bY1dR657wqnbujX5679O3v3u5OlPF28YymrxPv/8\n5J/+adSxWG5D3Jy2eb59XpKDkjw+yZ0zW3V/ILOb1d41wHnYG1u3Ju99b7JpU3LssclBB409ESyX\nHfHevj257rrk4IPHnoglN8SK+3bzbWW2sv7M/PEXquqpSb6c5Eer6pG7umzeWtuy2vPzlfgxA8w5\nPTuivcNxx81+yQDDuvba5E53So46ymqbDTfEivub8+2/7hTtJElr7brMVt1JcuwA52JPrYz25s3J\n5bt8tQJYj+uvF232iSHC/aX59ltr7N8Rdtdo9xXRBlhaQ4T7nCQ3JXlAVR2wyv6HzLcXDXAudke0\nAZbausPdWrsiyZ8nOSTJK3beV1VPSPKkJFdn9m5qbCTRBlh6g7xzWpJfSXJckpdW1WOSfDLJYUme\nmmR7kp9vra11KZ0hiDbAJAwS7tbaN6rquCQvyyzWj0hyTZIzk7y2tfYPQ5yHNYg2wGQMteJOa+2q\nzFbevzLUMdkDog0wKf497p6JNsDkCHevRBtgkoS7R6INMFnC3RvRBpg04e6JaANMnnD3QrQBiHD3\nQbQBmBPuRSfaAOxEuBeZaAOwgnAvKtEGYBXCvYhEG4A1CPeiEW0AdkG4F4loA7Abwr0oRBuAPSDc\ni0C0AdhDwj020QbgNhDuMb3sZaINwG0i3CM58cQTk1e/+pYnRBuAPSDcI3n4wx9+y4OHPUy0Adgj\nm8YeYKp+9Vd/NZdddlne+c535tJLLx17HFhaNfYA3Ha+abtUrbWxZ9ilqtqW5Jix5wCAdTqvtbZl\nvQdxqRwAOiLcANAR4QaAjgg3AHREuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4\nAaAjwg0AHRFuAOiIcANAR4QbADqyaewBAGBf2/9u98mBhx2d/Q64Q27+3ndz/Vc+kxuvuHjssfbI\nusNdVc9K8se7+bSbW2u3W++5AGA9Djzs6BzyqJ/Kgfc56gf2XX/x53L1x/8s13/lMyNMtueGWHF/\nOsmr1tj3I0mOT/K3A5wHAPbanf7zE/JDT/rF1H77pbWWqvr+vtZaDrzPUbn9vR6cK9//pnzncx8c\ncdJdW3e4W2ufzizeP6CqPjH/4x+s9zwAsLcOPOzo70c7ya2ivfPj2m+/3PXJv5jt3/7Gwq68N+zm\ntKp6SJJHJPlakjM36jwAsDuHPOqnvh/t3an99sshj/qpDZ5o723kXeX/c759e2tt+waeBwDWtP/d\n7pMD73NUWmt79Pk7Lpvvf7f7bPBke2dD7iqvqoOSPCPJzUnetodfs22NXUcONRcA03PgYUcn+cHL\n42vZ8XkHHnb0Qt5pvlEr7v+R5C5J/ra19tUNOgcA7NZ+B9xhn37dRtuov8f93Pn2rXv6Ba21Las9\nP1+JHzPEUABMz83f++4+/bqNNviKu6r+U5JHJbkkyfuGPj4A3BY77g6/La9x7/x1i2YjLpW7KQ2A\nhXHjFRfn+os/d5te477+4s8t5OvbycDhrqoDkzwzs5vS3j7ksQFgb1398T9Lu/nmPfrcdvPNufrj\nf7bBE+29oVfcJyY5NMn73JQGwKK4/iufyVUfeNP3473ysvmOx+3mm3Pl+9+0sJfJk+FvTttxU5p3\nSgNgoVz72Q/mpqu/sep7le+4PN7De5XXnr5Yv9sDVT0oyfmZ3ZR2+FCvb7urHIChjfSvg5231t+g\nui0GW3G31r6YZM9e+QeAEd14xcULe/PZ7mzkW54CAAMTbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcA\ndES4AaAjwg0AHRFuAOiIcANAR4QbADoi3ADQEeEGgI4INwB0RLgBoCPCDQAdEW4A6EgP4T587AEA\nYACHD3GQTUMcZIN9e769aB+c68j59oJ9cC6G4XvWH9+z/vierd/huaVn61KttSGOsxSqaluStNa2\njD0Le8b3rD++Z/3xPVssPVwqBwDmhBsAOiLcANAR4QaAjgg3AHTEXeUA0BErbgDoiHADQEeEGwA6\nItwA0BHhBoCOCDcAdES4AaAjwp2kqu5VVX9UVf9eVTdU1UVV9fqqOnTs2bi1qrprVT2nqv6qqv65\nqq6rqqur6tyq+rmq8t90J6rqmVXV5h/PGXseVldVP1JV766qS+e/Hy+tqrOq6iljzzZVPfx73Buq\nqu6f5ONJNid5T2b/3uyxSX4pyZOr6tGttStHHJFbOzHJ7ye5NMnZSS5OcvckT0vytiQ/VlUnNu8s\ntNCq6t5J3pTk2iR3Gnkc1lBVL0vy6iRXJHlvZj93d0vysCSPTfK+0YabsMm/c1pVfSDJE5Oc3Fp7\n007P/06SX07y1tba88aaj1urquOT3DHJma21m3d6/h5JPpnk3kl+srX27pFGZDeqqpJ8MMl9k/xl\nkhcl+fnW2ttGHYxbqaoTk/xFkr9L8rTW2jUr9u/fWrtxlOEmbtKXFavqfplF+6Ikb16x+5VJvpPk\nmVV1x308GmtorX24tfY3O0d7/vxlSd4yf/jYfT4Yt8XJSY5P8uzMfsZYMPOXnH4ryXeT/MzKaCeJ\naI9n0uHO7JdHkpy1SgiuSfL3Se6Q5BH7ejD2yo5fJDeNOgVrqqoHJTktyRtaa+eMPQ9relRmV0Te\nl+SbVbW1ql5cVb9UVY8cebbJm/pr3A+cb7+8xv4LM1uRH5HkQ/tkIvZKVW1K8rPzh+8fcxZWN/8e\nnZHZfQkvGXkcdu3h8+3Xk5yX5Kidd1bVOZm9JHX5vh4MK+5D5tur19i/4/m77INZWJ/Tkjwkyfta\nax8YexhW9YrMbmp6VmvturGHYZc2z7fPS3JQkscnuXNmP2MfSPKYJO8aZzSmHu7dqfl22nfwLbiq\nOjnJCzP7GwHPHHkcVlFVx2a2yv7t1tonxp6H3brdfFuZraw/1Fq7trX2hSRPTXJJkh912XwcUw/3\njhX1IWvsP3jF57FgquoFSd6Q5Pwkj2utXTXySKyw0yXyLyd5+cjjsGe+Od/+a2vtMzvvmF8t2XFV\n69h9OhVJhPtL8+0Ra+x/wHy71mvgjKiqTknyu0k+n1m0Lxt5JFZ3p8x+xh6U5Pqd3nSlZfa3N5Lk\nD+fPvX60KdnZjt+N31pj/46wH7QPZmGFqd+cdvZ8+8Sq2m/F3wu+c5JHJ7kuyT+MMRxrq6oXZ/a6\n9qeTPKG1dsXII7G2G5K8fY19x2T2uve5mcXCZfTFcE5mfzvjAVV1QGvteyv2P2S+vWifTkWSiYe7\ntfYvVXVWZneOvyCzd3La4VWZvdHHW1tr/q7pAqmqlyf5jSTbkjzR5fHFNr+0uupbmlbVqZmF+x3e\ngGVxtNauqKo/T/L0zG4qfNmOfVX1hCRPyuwlRH+DYwSTDvfcL2T2lqdvrKoTknwxyXFJHpfZJfKX\njjgbK1TVSZlFe3uSjyU5efZGXLdyUWvt9H08GiybX8nsd+FLq+oxmb0z4WGZ3Zy2PbN3u1vrUjob\naPLhnq+6fzizGDw5yVMyez/eNyZ5ldXcwrnvfHu7JKes8TkfTXL6PpkGllRr7RtVdVxmq+2nZvZG\nVNckOTPJa1trXkIcyeTfqxwAejL1u8oBoCvCDQAdEW4A6IhwA0BHhBsAOiLcANAR4QaAjgg3AHRE\nuAGgI8INAB0RbgDoiHADQEeEGwA6ItwA0BHhBoCOCDcAdES4AaAj/x9PmUv6C9DJZgAAAABJRU5E\nrkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49817b32b0>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"71b34df3f023448aa2ea7299cf3ad303": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"71e50a0d240f4c44aa512c96b1c78878": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"722990fd56aa449ebba0ebbfc7694220": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_0fa23ae3851d40d0a45761aed21b529a", | |
"IPY_MODEL_c098f2323e3c415b80cb2f2113729af6", | |
"IPY_MODEL_221bd7a8149b4ab78460d37e1c4e79f2", | |
"IPY_MODEL_e518180666da4f4ead574e5b9ade4bda", | |
"IPY_MODEL_97b2ce7c5a824ff49ffa25f76ef127aa" | |
], | |
"layout": "IPY_MODEL_96f4581f27814806ad144e96f2e4e7d7" | |
} | |
}, | |
"723183ba171c415fb30599aeb6df3600": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"nn", | |
"ee", | |
"ss", | |
"ww" | |
], | |
"description": "d", | |
"index": 0, | |
"layout": "IPY_MODEL_457075f317a0499382b56c504d0cdee1", | |
"style": "IPY_MODEL_0a17a87151ce4d4e904ea8ce1b06b4b9" | |
} | |
}, | |
"72334b4dd9b343c19bc661dd2424702e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_51696c274d7941d6b3b54b04614320ce", | |
"max": 3, | |
"style": "IPY_MODEL_91c00c7f8c4e40f68c8dc0bb2f4a2227", | |
"value": 2 | |
} | |
}, | |
"7267c2a3724d40b3a1a4776722d9f832": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_422b5f00d1f1434197e5352ac45fa401", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF/hJREFUeJzt3X2QZXV95/HPF8dkEAUVS6yt+IAi\nwopFnFEUn4VIjG5SysqWlZWoFc26usHHKrM+YlKpaO1mo2I2mmhC4qbKJKtWKhEVJZRo1HJriPgs\nokzUDaKAEkDGVfjtH/eONYzTME6fO7e/fV+vqq5D39N9fj+q6X7zO+f06RpjBADo4ZBlTwAA2H/C\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANDIlmVP4LZU1eVJDk+yc8lTAYADdZ8k/zrGOHq9B9rw4U5y+KHJXY9P7rrsiUzt4mVPAOa2\nLXsCC+T7jM2mQ7h3Hp/cdceyZ7EAtewJwNxm/P7azfcZG8jOKQ7iGjcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajk4W7qn6uqv60qv6lqn5QVTur6o1VdZepxgCAVbdlioNU1f2SfDzJ3ZP8bZIvJTkpyQuT\nPLGqHjnGuHqKsQBglU214v6fmUX7rDHGU8YYvzXGOCXJHyR5QJLfnWgcAFhp6w53Vd03yWlJdib5\nw712vzbJDUnOrKrD1jsWAKy6KVbcp8y3548xbt5zxxjjuiT/mOQOSR4+wVgAsNKmuMb9gPn20jX2\nfyWzFfmxSS5Y6yBVtWONXccd+NQAYHOZYsV9xHx77Rr7d79+5wnGAoCVNsld5beh5ttxax80xti+\nz0+ercS3TT0pAOhoihX37hX1EWvsP3yvjwMADtAU4f7yfHvsGvvvP9+udQ0cANhPU4T7wvn2tKq6\nxfGq6k5JHpnkxiSfnGAsAFhp6w73GOOrSc5Pcp8kL9hr9+uSHJbkL8YYN6x3LABYdVPdnPb8zB55\n+uaqOjXJF5M8LMnjMztF/sqJxgGAlTbJI0/nq+6HJDk3s2C/NMn9krw5ycmeUw4A05js18HGGN9I\n8uypjgcA/CR/jxsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTLsiewPy5OUsueBGxivr/YUMayJ7AA2zOL2QSs\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABrZsuwJAMDBdvsr75Wtl52YQ3bdITdv/X52HXNJfnjU15c9\nrf0ySbir6mlJHpvk55OcmOROSf5yjPGMKY4PAFPYetmJOeKCp2fr5Q/6iX27jv5srj31Xdl1zCVL\nmNn+m2rF/arMgn19km8mOW6i4wLAJO74f56Qu77nN1PjkIyMVOrH+0ZGtl7+oPzsOx6Yq08/Jzc8\n9ENLnOmtm+oa94uTHJvk8CT/eaJjAsAktl524o+jneQW0d7z/RqH5Mj3/Ga2XnbiQZ/j/pok3GOM\nC8cYXxljjCmOBwBTOuKCp/842relxiE54oKnL3hGB85d5QBsare/8l7ZevmDMrJ/a8vdp81vf+W9\nFjyzA7Nh7iqvqh1r7HK9HIADtvu0996nx9ey++O2XnbihrzT3IobgE3tkF13OKift2gbZsU9xti+\nr9fnK/FtB3k6AGwSN2/9/kH9vEWz4gZgU9v9e9k/zTXuPT9voxFuADa1Hx719ew6+rM/1TXuXUd/\ndkNe306EG4AVcO2p78qom/frY0fdnGtPfdeCZ3TghBuATW/XMZfkmtPP+XG89z5tvvv9UTfn6tPP\n2bCnyZPpnlX+lCRPmb97j/n25Ko6d/7PV40xXjbFWABwIK5/6Ifyo7t8e5/PKt99enyVnlX+80me\nuddr952/Jck/JxFuAJZq1zGXZNcxl7T+62C10Z9S6tfBAFbMxs7Sgdme5OJcvNavPv80XOMGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoZMuyJ7A/tiXZsexJLEAtewIAtGPFDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0Mi6w11VR1bVc6rqvVV1WVXdWFXXVtXHqurXq8r/HADARLZMcIwzkvxRkiuSXJjk60mOSnJ6\nkrcn+aWqOmOMMSYYCwBW2hThvjTJryR53xjj5t0vVtUrknwqyb/PLOLvnmAsAFhp6z6NPcb4hzHG\n3+0Z7fnr30ry1vm7j1vvOADA4m9O++F8+6MFjwMAK2Fh4a6qLUl+bf7uBxY1DgCskimuca/l9UlO\nSHLeGOODt/XBVbVjjV3HTTorAGhsISvuqjoryUuTfCnJmYsYAwBW0eQr7qp6QZI3JflCklPHGNfs\nz+eNMbavcbwdSbZNN0MA6GvSFXdVvSjJW5J8Lsnj53eWAwATmSzcVfXyJH+Q5NOZRfvbUx0bAJiZ\nJNxV9erMbkbbkdnp8aumOC4AcEvrvsZdVc9M8ttJbkry0SRnVdXeH7ZzjHHuescCgFU3xc1pR8+3\nt0vyojU+5iNJzp1gLABYaVM88vTsMUbdxtvjJpgrAKw8f3ITABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nkS3LnsD+uDhJLXsSsImNZU9ggfzsYLOx4gaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkUnCXVVv\nqKoLquobVXVjVV1TVf9UVa+tqiOnGAMAmG7F/eIkhyX5UJI3JfnLJD9KcnaSz1TVPScaBwBW2paJ\njnP4GGPX3i9W1e8meUWS/5rk+RONBQAra5IV976iPffX8+39pxgHAFbdom9O++X59jMLHgcAVsJU\np8qTJFX1siR3THJEkockeVRm0X79fnzujjV2HTfZBAGguUnDneRlSY7a4/0PJHnWGOM7E48DACtp\n0nCPMe6RJFV1VJJHZLbS/qeq+ndjjItv43O37+v1+Up825TzBICuFnKNe4xx5RjjvUlOS3Jkkr9Y\nxDgAsGoWenPaGOOfk3whyQOr6m6LHAsAVsHBeOTpv5lvbzoIYwHAprbucFfVcVV1j328fsj8ASx3\nT/LxMcZ31zsWAKy6KW5Oe2KS/1ZVFyX5apKrM7uz/LFJ7pvkW0meO8E4ALDypgj3h5P8cZJHJjkx\nyZ2T3JDk0iTvTPLmMcY1E4wDACtv3eEeY3wuyQsmmAsAcBv8PW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARhYW7qo6s6rG/O05ixoHAFbJQsJdVfdMck6S\n6xdxfABYVZOHu6oqyZ8luTrJW6c+PgCsskWsuM9KckqSZye5YQHHB4CVNWm4q+r4JK9P8qYxxkVT\nHhsASLZMdaCq2pLknUm+nuQVB/D5O9bYddx65gUAm8lk4U7ymiQPTvKoMcaNEx4XAJibJNxVdVJm\nq+zfH2N84kCOMcbYvsaxdyTZto7pAcCmse5r3HucIr80yavXPSMAYE1T3Jx2xyTHJjk+ya49Hroy\nkrx2/jF/Mn/tjROMBwAra4pT5T9I8o419m3L7Lr3x5J8OckBnUYHAGbWHe75jWj7fKRpVZ2dWbj/\nfIzx9vWOBQCrzh8ZAYBGhBsAGllouMcYZ48xymlyAJiGFTcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nW5Y9ATansewJLEgtewILsln/vWAzsuIGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoZJJwV9XOqhprvH1r\nijEAgGTLhMe6Nskb9/H69ROOAQArbcpwf2+McfaExwMA9uIaNwA0MuWK+2er6hlJ7pXkhiSfSXLR\nGOOmCccAgJU2ZbjvkeSde712eVU9e4zxkQnHAYCVNVW4/yzJR5N8Psl1Se6b5L8k+Y0k76+qk8cY\nl9zaAapqxxq7jptojgDQ3iThHmO8bq+XPpfkeVV1fZKXJjk7yVOnGAsAVlmNMRZ38KpjknwlyTVj\njCMP8Bg7kmybdGIs3OL+q1quWvYEYBVsxh8g25NcnIvHGNvXe6hF31X+7fn2sAWPAwArYdHhPnm+\n/dqCxwGAlbDucFfVA6vqrvt4/d5J3jJ/93+tdxwAYJqb085I8ltVdWGSyzO7q/x+SZ6cZGuS85L8\n9wnGAYCVN0W4L0zygCQPzuzU+GFJvpfkY5n9Xvc7xyLvgAOAFbLucM8fruIBKwBwEHhWOQA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCNblj0BNqda9gQANikrbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nmTTcVfXoqnp3VV1RVT+Yb8+vqidNOQ4ArKotUx2oql6V5HeSXJXk75NckeRuSR6c5HFJzptqLABY\nVZOEu6rOyCzaH05y+hjjur32336KcQBg1a37VHlVHZLkDUm+n+RX9452kowxfrjecQCAaVbcj0hy\ndJL/neS7VfXkJCck2ZXkU2OMT0wwBgCQacL90Pn2yiQXJ3nQnjur6qIkTxtjfOfWDlJVO9bYddy6\nZwgAm8QUd5Xffb59XpJDk/xCkjtltur+YJLHJPmbCcYBgJU3xYr7dvNtZbayvmT+/uer6qlJLk3y\n2Ko6+dZOm48xtu/r9flKfNsE8wSA9qZYcX93vv3aHtFOkowxbsxs1Z0kJ00wFgCstCnC/eX59ntr\n7N8d9kMnGAsAVtoU4b4oyY+S3L+qfmYf+0+Yb3dOMBYArLR1h3uMcVWSv0pyRJLX7Lmvqp6Q5BeT\nXJvkA+sdCwBW3VSPPH1JkocleWVVPSbJp5LcO8lTk9yU5LljjLVOpQMA+2mScI8xvl1VD0vyqsxi\n/fAk1yV5X5LfG2N8copxAGDVTfZHRsYY12S28n7JVMcEAG7J3+MGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoZMuyJ8DmNJY9gQWpZU8AWHlW3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI2sO9xV9ayqGrfxdtMU\nkwWAVbdlgmN8Osnr1tj36CSnJHn/BOMAwMpbd7jHGJ/OLN4/oao+Mf/HP17vOADAAq9xV9UJSR6e\n5P8med+ixgGAVbLIm9P+03z7jjGGa9wAMIEprnH/hKo6NMkzktyc5O37+Tk71th13FTzAoDuFrXi\n/g9J7pzk/WOMbyxoDABYOQtZcSf5jfn2bfv7CWOM7ft6fb4S3zbFpACgu8lX3FX1b5M8Isk3k5w3\n9fEBYJUt4lS5m9IAYEEmDXdVbU1yZmY3pb1jymMDANOvuM9Icpck57kpDQCmN3W4d9+U5klpALAA\nk4W7qo5P8qi4KQ0AFmayXwcbY3wxSU11PADgJ/l73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI1uWPYH9cJ9l\nT4Cf3vZlTwDoazP+APlikol6VmOMKY6zMFV1eZLDk+w8CMMdN99+6SCMxTR8zfrxNevH12z97pPk\nX8cYR6/3QBs+3AdTVe1IkjHGZvz/vU3J16wfX7N+fM02Fte4AaAR4QaARoQbABoRbgBoRLgBoBF3\nlQNAI1bcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQh3kqr6uar606r6l6r6QVXtrKo3VtVd\nlj03bqmqjqyq51TVe6vqsqq6saquraqPVdWvV5X/ppuoqjOraszfnrPs+bBvVfXoqnp3VV0x//l4\nRVWdX1VPWvbcVtWWZU9g2arqfkk+nuTuSf42s783e1KSFyZ5YlU9coxx9RKnyC2dkeSPklyR5MIk\nX09yVJLTk7w9yS9V1RnDk4U2tKq6Z5Jzklyf5I5Lng5rqKpXJfmdJFcl+fvMvu/uluTBSR6X5Lyl\nTW6FrfyT06rqg0lOS3LWGOOcPV7/H0lenORtY4znLWt+3FJVnZLksCTvG2PcvMfr90jyqST3TPK0\nMca7lzRFbkNVVZIPJTk6yXuSvCzJc8cYb1/qxLiFqjojyV8n+XCS08cY1+21//ZjjB8uZXIrbqVP\nK1bVfTOL9s4kf7jX7tcmuSHJmVV12EGeGmsYY/zDGOPv9oz2/PVvJXnr/N3HHfSJ8dM4K8kpSZ6d\n2fcYG8z8ktMbknw/ya/uHe0kEe3lWelwZ/bDI0nO30cIrkvyj0nukOThB3tiHJDdP0h+tNRZsKaq\nOj7J65O8aYxx0bLnw5oekdkZkfOSfLeqnlxVL6+qF1bVyUue28pb9WvcD5hvL11j/1cyW5Efm+SC\ngzIjDkhVbUnya/N3P7DMubBv86/ROzO7L+EVS54Ot+6h8+2VSS5O8qA9d1bVRZldkvrOwZ4YVtxH\nzLfXrrF/9+t3PghzYX1en+SEJOeNMT647MmwT6/J7KamZ40xblz2ZLhVd59vn5fk0CS/kOROmX2P\nfTDJY5L8zXKmxqqH+7bUfLvad/BtcFV1VpKXZvYbAWcueTrsQ1WdlNkq+/fHGJ9Y9ny4Tbebbyuz\nlfUFY4zrxxifT/LUJN9M8linzZdj1cO9e0V9xBr7D9/r49hgquoFSd6U5AtJHj/GuGbJU2Ive5wi\nvzTJq5c8HfbPd+fbr40xLtlzx/xsye6zWicd1FmRRLi/PN8eu8b++8+3a10DZ4mq6kVJ3pLkc5lF\n+1tLnhL7dsfMvseOT7Jrj4eujMx+eyNJ/mT+2huXNkv2tPtn4/fW2L877IcehLmwl1W/Oe3C+fa0\nqjpkr98LvlOSRya5McknlzE51lZVL8/suvankzxhjHHVkqfE2n6Q5B1r7NuW2XXvj2UWC6fRN4aL\nMvvtjPtX1c+MMf7fXvtPmG93HtRZkWTFwz3G+GpVnZ/ZneMvyOxJTru9LrMHfbxtjOF3TTeQqnp1\nkt9OsiPJaU6Pb2zzU6v7fKRpVZ2dWbj/3ANYNo4xxlVV9VdJ/mNmNxW+ave+qnpCkl/M7BKi3+BY\ngpUO99zzM3vk6Zur6tQkX0zysCSPz+wU+SuXODf2UlXPzCzaNyX5aJKzZg/iuoWdY4xzD/LUYLN5\nSWY/C19ZVY/J7MmE987s5rSbMnva3Vqn0lmglQ/3fNX9kMxi8MQkT8rsebxvTvI6q7kN5+j59nZJ\nXrTGx3wkybkHZTawSY0xvl1VD8tstf3UzB5EdV2S9yX5vTGGS4hLsvLPKgeATlb9rnIAaEW4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBo5P8Dr3mAKjS4LF0AAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981acaa20>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"727b29ba31f54dcf93f38e4d0617394c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"72c6a8d0aebc4f60b2a4d1ad97291a7f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"72d9b5d5b75f44db88e061139f2a1e01": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"72dad161634e4c4c86779d8f767457c6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"72dfd676acfa43d5a188e91cd4a9f9b0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"72e54f8ed4784fc0a8769391085c940a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_460b4f953c8e48faaa4a5b3356caa698", | |
"max": 7, | |
"style": "IPY_MODEL_a50859436cc1428b850309cec694ca18", | |
"value": 3 | |
} | |
}, | |
"72fbac53d6134082becf9ecb83a41b3a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"73280704c70248f1954b26064d0eceef": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"73451e439732494088726f3d6cbf3bc5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7349df40db084842b4f8b8882031fb4c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"736a8a9062064dcb9156cf5c0bba8288": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_70e4555dfef14f1c8847f5d1a5559521", | |
"max": 7, | |
"style": "IPY_MODEL_5bfeb129946146878e75488269d1fa8b", | |
"value": 1 | |
} | |
}, | |
"736bae832221475e846268ed40d9f648": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7399c3ff04d643de99a1ab273b66950d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"73cae039792e48b48e07c8f472e04fe9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"74062b9f2159431aa03140d85ea10764": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"740ce70b481743589731d3b45ff36185": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"743fd1270c864cbbb53f0de48512d60f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_f285f70ca0f649af84a7e66b9b150caa", | |
"IPY_MODEL_9f3b0abc5a0d4ddc8174fb541eef1043", | |
"IPY_MODEL_9e03f3bd910d479abf4488d6a5c6bf7f", | |
"IPY_MODEL_66aa76879ee645a2a88f79075fe16e8d" | |
], | |
"layout": "IPY_MODEL_44b74f600c9a450cbb418c8799ad34b5" | |
} | |
}, | |
"746bdb8c479c4c969af357f3ec7f4501": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"74831a3d4b384b04be492d78acfc1513": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_2077355d4e0348f680bb8573523d5c3a", | |
"IPY_MODEL_926ba3b9961a4db0845111fa55302daa", | |
"IPY_MODEL_89ef17f3a45246f881b8f50e0f7105c6", | |
"IPY_MODEL_dd419e5308394551bf5ca768bd9cda57" | |
], | |
"layout": "IPY_MODEL_72c6a8d0aebc4f60b2a4d1ad97291a7f" | |
} | |
}, | |
"74a12bc163244d6780cef87073e5de45": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"74a1e395247b4c3da90c72c188d56205": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_b34a73388bf1450d934aa7ca7a3ca022", | |
"max": 7, | |
"style": "IPY_MODEL_b8859fd4bb4541bf9b9a3af3d209e840", | |
"value": 3 | |
} | |
}, | |
"74ab23ca61d54d8fbe9961ef7861983f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_9745ae69b5a34945855c9de7e705996a", | |
"IPY_MODEL_4ecbf22845f846259e818bef461e9f7d", | |
"IPY_MODEL_a12591b09a1e4bbe973d433a802618dd", | |
"IPY_MODEL_952bfb1499f44555ac75dc246052ba8f" | |
], | |
"layout": "IPY_MODEL_5d078fa113204e5187abde60027aa73f" | |
} | |
}, | |
"74fe8986dca6467b91c6d4b9733d0d90": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"750cb1c32295446abeabba667571da1d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_c2aa01fe7c2441349cc47c10545bba22", | |
"style": "IPY_MODEL_8980b7bdd603448eb5956ce97968f797" | |
} | |
}, | |
"759568dd3dec41778e222534c512b168": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"75ac245bb48840a88aadb1afa522d0ea": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"75cd8cb86db14cd2b835c12bafa42892": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_352dcecfd07d4fc3a66f8ed1d917ae1f", | |
"max": 3, | |
"style": "IPY_MODEL_759568dd3dec41778e222534c512b168", | |
"value": 2 | |
} | |
}, | |
"763708015afb4091a28146c365c5b2c5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"765469fad0ce44fb8164602d76bf2f12": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"76707a12dea84de2b6e8c2edad09d2bb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"76cf95d633b8471aa527646ff430a5e0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_77093dc37dad4e94b9221970af783146", | |
"IPY_MODEL_b2981c1faccb41b6910477f007957359", | |
"IPY_MODEL_03e98c88dbfe43998f05b428ad473136", | |
"IPY_MODEL_05b4fb33a18143e086368b47cd5eb0f0" | |
], | |
"layout": "IPY_MODEL_928eeee2a51c4909b320fc570d799797" | |
} | |
}, | |
"76e712d407cf4c02a3e4f471de25a056": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"76eba57177d24c34962705620fc9f72c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"76f44678e5004ef4ac4861065d91f375": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_d7901cbb68ee4063a62ec45130905684", | |
"max": 7, | |
"style": "IPY_MODEL_7f1997f3aca340e4928147c3c279dced" | |
} | |
}, | |
"77093dc37dad4e94b9221970af783146": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_bde37a78ef304f4fbeaca2e103b3c829", | |
"max": 7, | |
"style": "IPY_MODEL_8a539da523f14b3182d5a146fae00ccd", | |
"value": 3 | |
} | |
}, | |
"770bed02ea3940e88ad1fbd9b6dd1d3d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_c07372aea83a4139b60c14b97a2f2ea5", | |
"style": "IPY_MODEL_1e0075e1a7224e4bb75191214bae1c7c" | |
} | |
}, | |
"7711d221952b41e69ab381b0e73d1c8f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7736f3ad65cd4e29ac62e79cd2609ce8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"773cef1d816948c6ae292996b9a6e6de": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7745f2c8a85a4ba4b60996202298da9d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_1d9c5597659a4fb9840e0cdbe3c5367a", | |
"IPY_MODEL_6e0bca1adb864cad85db0d094105a77e", | |
"IPY_MODEL_8aaa40e76617454692e09813e3b7c51f", | |
"IPY_MODEL_6f4134db5cb64bf09bf7f2c4b2a2f27d" | |
], | |
"layout": "IPY_MODEL_4989dcd8e6f24a9ca44a90d2419220a1" | |
} | |
}, | |
"774d32198ed045ef989414aa926cc262": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"77e0e381fa7a40d19350700c38e775f1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"77f29f2bee054117977b947024d52018": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_c8d90671d12a484988cf285d40dd2f3a", | |
"max": 7, | |
"style": "IPY_MODEL_329dce5487124f8aabfda00ba894bde3", | |
"value": 1 | |
} | |
}, | |
"784593522e5447c08ce0cc59d512b96a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"784e359c001149eaa8671c7c51d0e3a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"78863d2f1365414e8d27e091f2e015f9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"788c7aab1c6b4117895c19280b1e673b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"78922e80949a4e3fbaed8cb17f5175b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_f622484ba2b149c4a9c2968e8551d0dd", | |
"max": 7, | |
"style": "IPY_MODEL_971328fba43d47cb9f5d78def1b5548f", | |
"value": 2 | |
} | |
}, | |
"78a0561b42444342826cf4749af1aa52": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"78c0c78a5e6e4aaa99d4fe7b0e0ec371": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"78da9674757a41b29a50d78687ad2678": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_96265dea24c94d499752cb187262e232", | |
"max": 7, | |
"style": "IPY_MODEL_521d4c97ad504442a3e96cd04f8ff0f2", | |
"value": 6 | |
} | |
}, | |
"7999fda91007478f8adc90256c24e54e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"79aee2c918e34bdca48957fc1d962993": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_afb9b2de0c194612befebed8a6bbaa9a", | |
"max": 7, | |
"style": "IPY_MODEL_2c4b05bcb0f64397b8e31cdd63ffc052" | |
} | |
}, | |
"79bc1e00ba114d5f9a48fde5e75cc9ec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"79c727b412f141adac1ea46c05286149": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_1d7aa738d528426480221e265683507d", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "289360691352306688 0\n" | |
}, | |
{ | |
"ename": "AttributeError", | |
"evalue": "'int' object has no attribute 'reshape'", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m/data/vision/torralba/scratch2/jhgilles/miniconda3/envs/flowstone/lib/python3.6/site-packages/ipywidgets/widgets/interaction.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interact_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mwidget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_kwarg\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mshow_inline_matplotlib_plots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_display\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-66-eb93afdcf8d3>\u001b[0m in \u001b[0;36mlazertrace\u001b[0;34m(r, c, d)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdec\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 69\u001b[0;31m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmake_laser_map\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpresent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdirections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 70\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msqof\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m<ipython-input-3-0170cf0d9b16>\u001b[0m in \u001b[0;36menc\u001b[0;34m(arr)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0marr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m|=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m<<\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mAttributeError\u001b[0m: 'int' object has no attribute 'reshape'" | |
] | |
} | |
] | |
} | |
}, | |
"79dc0bb37d15427fae2044808bd25416": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"79ec0297d9d04797801957125a78e8f5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7a0bbc207eca432586671f6420dd73ba": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_1d141cb62c8b4a11bdf94013e5a0d0fc", | |
"IPY_MODEL_9aa661f40256414b90910763894386dc", | |
"IPY_MODEL_2a381c289c354980a0f3ca40ff550c50" | |
], | |
"layout": "IPY_MODEL_04f30796f2294f4fbd3536565e0bad9c" | |
} | |
}, | |
"7a22925bff7e4701b8bfdcc48a7303cf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7a22a376cbe4444f941a62d859936406": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7a70381238f041b89703967b460480b1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7acd4bd6ca48477ea7dc6550200fc0da": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_6391225d67a2485bb6745389ed7d1437", | |
"max": 7, | |
"style": "IPY_MODEL_d3f115c4b4b34ef58ea9204c49d3cd5b" | |
} | |
}, | |
"7afbdf85b39e4a9591c1375c9efe2098": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7b12cbf854ae4fea850cc6ef350040be": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7b5565a724fb49c2b03a2fb6203018c0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_8adad0beaa1d44619a21b9b017503e46", | |
"max": 7, | |
"style": "IPY_MODEL_e5bfd73ad3f44badbddb4d066da7c171", | |
"value": 2 | |
} | |
}, | |
"7b7424de64cc4213a9b8a325ae295ea2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7b974cdf6df141c89f9dfe295fb813ec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_a80802c2410c49f2b38d91d046a1586b", | |
"max": 3, | |
"style": "IPY_MODEL_72dfd676acfa43d5a188e91cd4a9f9b0", | |
"value": 1 | |
} | |
}, | |
"7b9e27b5dcf64ef082658b9d117b29ea": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7bad7cf20f46451e93f1367b0fdfd2cf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7bbac25012224bb8b6f3f94cabd875cf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7bbd991a26ea4b1180a08cd520ba977e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7bd7e1e603db4f95acfb3694f081a276": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_773cef1d816948c6ae292996b9a6e6de", | |
"max": 3, | |
"style": "IPY_MODEL_4168bfd6b045479abcc55698fb450735", | |
"value": 1 | |
} | |
}, | |
"7bdd7e791aef402cb3e96394e2141d40": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "ri", | |
"layout": "IPY_MODEL_7c7b48fac22f48e995e7743cf76806d0", | |
"max": 8, | |
"style": "IPY_MODEL_c69821728d834462b203b0832f486865", | |
"value": 3 | |
} | |
}, | |
"7bee61b1da674484b38ec79eb01542d4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7c154350826248718b70fb7913244484": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_8bebcb8c4b514642a74a96dcc19e194b", | |
"IPY_MODEL_0a202292f9cd4698b5c8277c64f2b291", | |
"IPY_MODEL_9295b473574d4125b590d304c3c32875", | |
"IPY_MODEL_06053f0e526e44cb8f896c8c936ba1d4" | |
], | |
"layout": "IPY_MODEL_fcb76a368045417e8d5b3fecef3e46d6" | |
} | |
}, | |
"7c49195e739c4235aca5c433a889cfd4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7c4ad4e42e614b6c84b2793bab7573ca": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_84a1f6abdbb64bf0a33ea88cde8eaa19", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGLxJREFUeJzt3WuwZWV95/HfH9tWgqABSzEiKgrC\nSCoRFFS8ooLRmSl1JFZlQtSKZhw1eK0y4xVNmWjNZKJiJproaGLmhck4zlQCCtFQ4hWm2qjxCl4I\nyoAKeAGCIPDMi71bm8M5dMtZ5+zzd38+VV2rz157r+cp2+4vz1rrrFNjjAAAPey16AkAAHtOuAGg\nEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAa2bboCexOVX0jyX5JLlzwVADg1rpXkh+OMe693gNt+XAn2W/v29f+Rxy6ff9FTwQAbo0vXXBd\nrvnRmORYHcJ94RGHbt///551j0XPAwBulQed8M18+p+uvXCKY7nGDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nsm3RE9gyrrg+ufi65LqRbK/k7tuT/f3PA8DWMlmZquqgJK9L8vgkByS5JMn/TvLaMcb3phpnct+6\nLrXj6tQlP77ZrnG322YcvU9y0PYFTAwAbm6SU+VVdZ8kO5I8M8l5Sf44ydeTvCDJJ6vqgCnGmdyX\nrkmd/v3UJT/OWLFrJKlLfpw6/fvJl69ZxOwA4Gamusb935LcJckpY4wnjTF+b4xxfGYBv1+S1080\nznS+dV3qnCtT82LXit07v66R1EeuTL513WbODgBWte5wV9UhSU5IcmGSP1mx+zVJrk5yclXts96x\nplQ7rv5JtHf73jF7PwAs2hQr7uPn27PGGDfuumOMcWWSjyf5hSQPnmCsaVxx/aqnx9ey87R5rrh+\nI2cFALs1xc1p95tvz19j/wWZrcgPS/LhtQ5SVTvW2HX4rZ/aGi6enfZeeXp8LT9538XXudMcgIWa\nYsV9x/n2B2vs3/n6nSYYaxrX7elae6LPAcBENmP5uHPBeovVG2McveqHZyvxoyad0fY9XWtP9DkA\nmMgUK+6dK+o7rrF/vxXvW7y7z74v+2e5xr3r5wBgUaYI91fm28PW2H/ofLvWNfDNt/+2jLvd9me6\nxj3udlvXtwFYuCnCffZ8e0JV3eR4VbVvkuOSXJPkUxOMNZlx9D4Ze1juUbP3A8CirTvcY4yvJTkr\nyb2SPG/F7tcm2SfJX44xttY3Qh+0PeMR+/4k3qs9OS2ZR/uR+3rsKQBbwlTnfp+b5BNJ3lJVj0ny\npSTHJnl0ZqfIXzHRONM6Yu+MfW+TrPKs8p2nxz2rHICtZJJwjzG+VlUPzE9/yMgTMvshI2/J7IeM\nXDHFOBvioO0ZB23P8NPBAGhgsjKNMb6Z2Q8Z6Wn/bUINwJY31Q8ZAQA2gXADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI9sWPYFlduIv/eqipwDAJrhgXJbk2kmOZcUNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCOThLuq\nnlpVp1XVR6vqh1U1quqvpjg2APBT2yY6ziuT/EqSq5J8K8nhEx0XANjFVKfKX5TksCT7JfmPEx0T\nAFhhkhX3GOPsnb+vqikOCQCsws1pANDIVNe4162qdqyxy/VyAJiz4gaARrbMinuMcfRqr89X4kdt\n8nQAYEuy4gaARoQbABoRbgBoRLgBoJFJbk6rqicledL8ywPn24dU1bvnv79sjPHSKcYCgGU21V3l\nv5rk6SteO2T+K0n+OYlwA8A6TXKqfIxx6hijbuHXvaYYBwCWnWvcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI2sO9xVdUBVPauq3l9VX62qa6rqB1X1sar6\n7aryHwcAMJFtExzjpCR/muSSJGcnuSjJXZM8Jck7kvxaVZ00xhgTjAUAS22KcJ+f5N8mOX2McePO\nF6vq5UnOS/LvMov4+yYYCwCW2rpPY48x/mGM8be7Rnv++qVJ3jb/8lHrHQcA2Pib0348316/weMA\nwFLYsHBX1bYkvzX/8oMbNQ4ALJMprnGv5Q1JjkxyxhjjzN29uap2rLHr8ElnBQCNbciKu6pOSfKS\nJF9OcvJGjAEAy2jyFXdVPS/Jm5N8McljxhhX7MnnxhhHr3G8HUmOmm6GANDXpCvuqnphkrcm+XyS\nR8/vLAcAJjJZuKvqZUn+OMlnMov2d6Y6NgAwM0m4q+pVmd2MtiOz0+OXTXFcAOCm1n2Nu6qenuR1\nSW5I8tEkp1TVyrddOMZ493rHAoBlN8XNafeeb2+T5IVrvOcjSd49wVgAsNSmeOTpqWOM2s2vR00w\nVwBYen7kJgA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjUwS7qp6Y1V9uKq+WVXXVNUVVfWPVfWaqjpgijEAgOlW3C9Ksk+Sv0/y5iT/I8n1SU5N8rmq\nusdE4wDAUts20XH2G2P8aOWLVfX6JC9P8p+SPHeisQBgaU2y4l4t2nN/Pd8eOsU4ALDsNvrmtH8z\n335ug8cBgKUw1anyJElVvTTJHZLcMckDkzwss2i/YQ8+u2ONXYdPNkEAaG7ScCd5aZK77vL1B5M8\nY4zx3YnHAYClNGm4xxgHJklV3TXJQzNbaf9jVf3rMcand/PZo1d7fb4SP2rKeQJAVxtyjXuM8e0x\nxvuTnJDkgCR/uRHjAMCy2dCb08YY/5zki0nuX1V33sixAGAZbMYjT39pvr1hE8YCgJ9r6w53VR1e\nVQeu8vpe8wew3CXJJ8YY31vvWACw7Ka4Oe3xSf5zVZ2T5GtJLs/szvJHJjkkyaVJnj3BOACw9KYI\n94eS/FmS45L8SpI7Jbk6yflJ3pPkLWOMKyYYBwCW3rrDPcb4fJLnTTAXAGA3/DxuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2LNxVdXJVjfmvZ23UOACw\nTDYk3FV1jySnJblqI44PAMtq8nBXVSV5V5LLk7xt6uMDwDLbiBX3KUmOT/LMJFdvwPEBYGlNGu6q\nOiLJG5K8eYxxzpTHBgCSbVMdqKq2JXlPkouSvPxWfH7HGrsOX8+8AODnyWThTvLqJA9I8rAxxjUT\nHhcAmJsk3FV1TGar7D8aY3zy1hxjjHH0GsfekeSodUwPAH5urPsa9y6nyM9P8qp1zwgAWNMUN6fd\nIclhSY5I8qNdHroykrxm/p4/n7/2pgnGA4ClNcWp8muTvHONfUdldt37Y0m+kuRWnUYHAGbWHe75\njWirPtK0qk7NLNx/McZ4x3rHAoBl54eMAEAjwg0AjWxouMcYp44xymlyAJiGFTcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5OEu6ourKqxxq9LpxgDAEi2\nTXisHyR50yqvXzXhGACw1KYM9/fHGKdOeDwAYAXXuAGgkSlX3Lerqt9McnCSq5N8Lsk5Y4wbJhwD\nAJbalOE+MMl7Vrz2jap65hjjIxOOAwBLa6pwvyvJR5N8IcmVSQ5J8vwkv5PkA1X1kDHGZ2/pAFW1\nY41dh080RwBob5JwjzFeu+Klzyd5TlVdleQlSU5N8uQpxgKAZTblqfLVvC2zcD9id28cYxy92uvz\nlfhRE88LAFra6LvKvzPf7rPB4wDAUtjocD9kvv36Bo8DAEth3eGuqvtX1f6rvH7PJG+df/lX6x0H\nAJjmGvdJSX6vqs5O8o3M7iq/T5InJrl9kjOS/JcJxgGApTdFuM9Ocr8kD8js1Pg+Sb6f5GOZfV/3\ne8YYY4JxAGDprTvc84ereMAKAGwCzyoHgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaCRScNdVQ+vqvdV1SVVde18e1ZVPWHKcQBgWW2b6kBV9cokv5/k\nsiR/l+SSJHdO8oAkj0pyxlRjAcCymiTcVXVSZtH+UJKnjDGuXLH/tlOMAwDLbt2nyqtqryRvTPIv\nSX5jZbSTZIzx4/WOAwBMs+J+aJJ7J/mfSb5XVU9McmSSHyU5b4zxyQnGAAAyTbgfNN9+O8mnk/zy\nrjur6pwkTx1jfPeWDlJVO9bYdfi6ZwgAPyemuKv8LvPtc5LsneSxSfbNbNV9ZpJHJPmbCcYBgKU3\nxYr7NvNtZbay/uz86y9U1ZOTnJ/kkVX1kFs6bT7GOHq11+cr8aMmmCcAtDfFivt78+3Xd4l2kmSM\ncU1mq+4kOWaCsQBgqU0R7q/Mt99fY//OsO89wVgAsNSmCPc5Sa5PcmhVbV9l/5Hz7YUTjAUAS23d\n4R5jXJbkvUnumOTVu+6rqsclOTHJD5J8cL1jAcCym+qRpy9OcmySV1TVI5Kcl+SeSZ6c5IYkzx5j\nrHUqHQDYQ5OEe4zxnao6NskrM4v1g5NcmeT0JH84xvjUFOMAwLKb7IeMjDGuyGzl/eKpjgkA3JSf\nxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADSybdET2CrOv/zA\nfOKiw3LVdbfLHbZfm4cefH4OO+DSRU8LAG5i3eGuqmckeddu3nbjGOM26x1rI3z8okNz2rkn5ryL\n73uzfcfc/av53WPPzHEHX7CAmQHAzU2x4v5Mkteuse/hSY5P8oEJxpncez9/bF7x4aflxrFXkpGk\ndtk7ct7F983T339I/uCx782v3//cBc0SAH5q3eEeY3wms3jfTFV9cv7bP1vvOFP7+EWH7hLt5KbR\n/unXN4698vIPPS133/cKK28AFm7Dbk6rqiOTPDjJxUlO36hxbq3Tzj1xl2jfshvHXnnruSdu8IwA\nYPc28q7y/zDfvnOMccMGjvMzO//yA+fXtMcefmLk3Ivvm/MvP3AjpwUAu7Uhd5VX1d5JfjPJjUne\nsYef2bHGrsOnmtdOn7josJ2j7uEn6iefc6c5AIu0USvuX09ypyQfGGN8c4PGuNWuuu52m/o5AJjK\nRn0f9+/Mt2/f0w+MMY5e7fX5SvyoKSa10x22X7upnwOAqUy+4q6qf5XkoUm+leSMqY8/hYcefP78\nd3t+jfumnwOAxdiIU+Vb9qa0nQ474NIcc/ev5me5xn3s3b/q+jYACzdpuKvq9klOzuymtHdOeeyp\n/e6xZ2avunGP3rtX3ZjnH3vmBs8IAHZv6hX3SUl+MckZW/GmtF0dd/AFef1j3rtLvFeeNp99vVfd\nmD947Hs9fAWALWHqm9N23pS25Z6UtpqnHXluDtrvirz13BNz7s2eVT47Pf58zyoHYAuZLNxVdUSS\nh2UL35S2muMOviDHHXyBnw4GQAuThXuM8aXs+d1eW85hB1wq1ABseRv5yFMAYGLCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI3UGGPRc7hFVXX53rev/Y84dPuipzK5C/5p70VPAYBNcHWuzI254YoxxgHrPVaHcH8jyX5J\nLtyE4Q6fb7+8CWMxDX9m/fgz68ef2frdK8kPxxj3Xu+Btny4N1NV7UiSMcbRi54Le8afWT/+zPrx\nZ7a1uMYNAI0INwA0ItwA0IhwA0Ajwg0AjbirHAAaseIGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLiTVNVBVfXfq+r/VdW1VXVhVb2pqn5x0XPjpqrqgKp6VlW9v6q+WlXXVNUPqupjVfXbVeX/\n001U1clVNea/nrXo+bC6qnp4Vb2vqi6Z//t4SVWdVVVPWPTcltW2RU9g0arqPkk+keQuSf5PZj9v\n9pgkL0jy+Ko6boxx+QKnyE2dlORPk1yS5OwkFyW5a5KnJHlHkl+rqpOGJwttaVV1jySnJbkqyR0W\nPB3WUFWvTPL7SS5L8neZ/b27c5IHJHlUkjMWNrkltvRPTquqM5OckOSUMcZpu7z+X5O8KMnbxxjP\nWdT8uKmqOj7JPklOH2PcuMvrByY5L8k9kjx1jPG+BU2R3aiqSvL3Se6d5H8leWmSZ48x3rHQiXET\nVXVSkr9O8qEkTxljXLli/23HGD9eyOSW3FKfVqyqQzKL9oVJ/mTF7tckuTrJyVW1zyZPjTWMMf5h\njPG3u0Z7/vqlSd42//JRmz4xfhanJDk+yTMz+zvGFjO/5PTGJP+S5DdWRjtJRHtxljrcmf3jkSRn\nrRKCK5N8PMkvJHnwZk+MW2XnPyTXL3QWrKmqjkjyhiRvHmOcs+j5sKaHZnZG5Iwk36uqJ1bVy6rq\nBVX1kAXPbekt+zXu+82356+x/4LMVuSHJfnwpsyIW6WqtiX5rfmXH1zkXFjd/M/oPZndl/DyBU+H\nW/ag+fbbST6d5Jd33VlV52R2Seq7mz0xrLjvON/+YI39O1+/0ybMhfV5Q5Ijk5wxxjhz0ZNhVa/O\n7KamZ4wxrln0ZLhFd5lvn5Nk7ySPTbJvZn/HzkzyiCR/s5ipsezh3p2ab5f7Dr4trqpOSfKSzL4j\n4OQFT4dVVNUxma2y/2iM8clFz4fdus18W5mtrD88xrhqjPGFJE9O8q0kj3TafDGWPdw7V9R3XGP/\nfivexxZTVc9L8uYkX0zy6DHGFQueEivscor8/CSvWvB02DPfm2+/Psb47K475mdLdp7VOmZTZ0US\n4f7KfHvYGvsPnW/XugbOAlXVC5O8NcnnM4v2pQueEqu7Q2Z/x45I8qNdHroyMvvujST58/lrb1rY\nLNnVzn8bv7/G/p1h33sT5sIKy35z2tnz7QlVtdeK7wveN8lxSa5J8qlFTI61VdXLMruu/Zkkjxtj\nXLbgKbG2a5O8c419R2V23ftjmcXCafSt4ZzMvjvj0KraPsa4bsX+I+fbCzd1ViRZ8nCPMb5WVWdl\nduf48zJ7ktNOr83sQR9vH2P4XtMtpKpeleR1SXYkOcHp8a1tfmp11UeaVtWpmYX7LzyAZesYY1xW\nVe9N8u8zu6nwlTv3VdXjkpyY2SVE38GxAEsd7rnnZvbI07dU1WOSfCnJsUkendkp8lcscG6sUFVP\nzyzaNyT5aJJTZg/iuokLxxjv3uSpwc+bF2f2b+ErquoRmT2Z8J6Z3Zx2Q2ZPu1vrVDobaOnDPV91\nPzCzGDw+yRMyex7vW5K81mpuy7n3fHubJC9c4z0fSfLuTZkN/JwaY3ynqo7NbLX95MweRHVlktOT\n/OEYwyXEBVn6Z5UDQCfLflc5ALQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANPL/Aauh33txYYIKAAAAAElFTkSuQmCC\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c425a90>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"7c6937baecf0411f82272079229c4d05": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7c6b79f1bad546bb86f7e81b2a855957": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7c72d534224d4aaaae112e631065c1a9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_fa1e1f050f974b19b95486d5bf1e0ac8", | |
"max": 7, | |
"style": "IPY_MODEL_84b970950e6d43ebba6d793157633c8f", | |
"value": 7 | |
} | |
}, | |
"7c7b48fac22f48e995e7743cf76806d0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7ccfd3aa19e84f7b9f2920e73dc9b12b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7d0bc612ba6141719cf58680f7ff0458": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7d24db5ea21144508c6a4d399ebefc38": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7d7d774954e7461fa99b6c5e588fbd3e": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_5e24fda600fd4cadbf7807c5f5c6351b", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGMNJREFUeJzt3WuwZWV95/HfH1oM4aKCpSiIVxAm\nWFEwIOL9AkZnpsSRsSoJUWc04y14rTLxikk50ZrJRMVMNNFIYuaFZhwrlYhCNJR4xao26ngFLx0E\nQQVEG4Ig8MyLvdtpmj5022ed3uff+/Op6lp99tpnPU9Vc86XZ6111qkxRgCAHvZa9AQAgJ0n3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNbFj0BHakqr6T5MAkmxY8FQDYVfdJ8pMxxn1Xe6B1H+4kB+6VvQ/aLwcctOiJAMCuuC6bc0tu\nnuRYHcK9ab8ccNAJ9YRFzwMAdsmF46PZnGs2TXEs17gBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSzc\nVXVYVf1lVX2vqm6oqk1V9ZaqustUYwDAstswxUGq6v5JPp3kbkn+LsnXkxyf5MVJnlRVJ40xrppi\nLABYZlOtuP9nZtE+Y4zx1DHG740xHpfkT5I8MMkbJxoHAJbaqsNdVfdLcnKSTUn+dJvdr09yXZLT\nq2q/1Y4FAMtuihX34+bb88YYt2y9Y4yxOcmnkvxykodNMBYALLUprnE/cL69aIX9F2e2Ij8yycdW\nOkhVbVxh11G7PjUA2LNMseK+03z74xX2b3n9zhOMBQBLbZK7yneg5ttxe28aYxy33U+ercSPnXpS\nANDRFCvuLSvqO62w/8Bt3gcA7KIpwv2N+fbIFfYfMd+udA0cANhJU4T7/Pn25Kq61fGq6oAkJyW5\nPslnJxgLAJbaqsM9xvhWkvOS3CfJC7fZ/YYk+yX56zHGdasdCwCW3VQ3p70gs0eevq2qHp/ka0lO\nSPLYzE6Rv3qicQBgqU3yyNP5qvuhSc7OLNgvT3L/JG9LcqLnlAPANCb7cbAxxneTPHuq4wEAt+X3\ncQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0Mkm4q+rp\nVXVWVX2iqn5SVaOq/maKYwMA/9+GiY7zmiS/muTaJJcmOWqi4wIAW5nqVPlLkxyZ5MAkz5/omADA\nNiZZcY8xzt/y96qa4pAAwHa4OQ0AGpnqGveqVdXGFXa5Xg4Ac1bcANDIullxjzGO297r85X4sbt5\nOgCwLllxA0Ajwg0AjQg3ADQi3ADQyCQ3p1XVU5M8df7hIfPtiVV19vzvV44xXjHFWACwzKa6q/zB\nSZ65zWv3m/9Jkn9JItwAsEqTnCofY5w5xqjb+XOfKcYBgGXnGjcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0AjGxY9Aejk3O99YdFTWBOn3PPBi54CsJOsuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZsNoDVNXB\nSU5N8pQkD0pyaJIbk/zfJO9J8p4xxi2rHQeWyUVXHZJPX3Jkrr3xjtl/nxvy8MMvypEHX7HoaQHr\nwKrDneS0JH+W5PIk5ye5JMndkzwtybuS/HpVnTbGGBOMBXu0T11yRM668JR87rIH3Gbf8Yd+M797\nwrk56fCLFzAzYL2Y4lT5RUn+fZLDxhi/Ocb4/THGf0pyVJLvJvkPmUUcuB3v+/IJeeYHnz+P9rb/\nnzvyucsekGd+8Pl5/1dOWMT0gHVi1eEeY/zTGOPvtz0dPsa4Isk75h8+ZrXjwJ7sU5cckVd/7Bm5\nZWz5kqxt3jH7+JaxV1710WfkU5ccsVvnB6wfa31z2s/m25vWeBxo7awLT9kq2rfvlrFX3n7hKWs8\nI2C9WrNwV9WGJL89//AjazUOdHfRVYescHp8JSMXXvaAXHTVIWs5LWCdmuLmtJW8KckxSc4ZY5y7\nozdX1cYVdh016axgnfn0JUfO/7bt6fGV1M8/z53msHzWZMVdVWckeXmSryc5fS3GgD3FtTfecbd+\nHtDb5Cvuqnphkrcm+WqSx48xrt6ZzxtjHLfC8TYmOXa6GcL6sv8+N+zWzwN6m3TFXVUvSfL2JF9O\n8tj5neXA7Xj44RfN/7bz17hv/XnAMpks3FX1yiR/kuQLmUX7B1MdG/ZkRx58RY4/9Jv5Ra5xn3Do\nN13fhiU1Sbir6rWZ3Yy2MbPT41dOcVxYFr97wrnZq3buycB71S150Qk7vN8T2ENN8azyZyb5gyQ3\nJ/lEkjOqbrNy2DTGOHu1Y8Ge6qTDL84bH/++rR7CMnLrFfjs473qlvzXJ7zPY09hiU1xc9p959u9\nk7xkhfd8PMnZE4wFe6xnHHNhDjvw6rz9wlNy4W2eVT47Pf4izyqHpbfqcI8xzkxy5qpnAuSkwy/O\nSYdf7LeDAStaywewALvoyIOvEGpgu9b6WeUAwISEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaGSScFfVm6vqY1X13aq6vqqurqp/rqrXV9XBU4wBAEy34n5pkv2S\n/GOStyb5X0luSnJmki9V1b0mGgcAltqGiY5z4Bjjp9u+WFVvTPKqJL+f5AUTjQUAS2uSFff2oj33\n/vn2iCnGAYBlt9Y3p/27+fZLazwOACyFqU6VJ0mq6hVJ9k9ypyQPTfKIzKL9pp343I0r7DpqsgkC\nQHOThjvJK5LcfauPP5LkWWOMH048DgAspUnDPcY4JEmq6u5JHp7ZSvufq+rfjjE+v4PPPW57r89X\n4sdOOU8A6GpNrnGPMb4/xvhgkpOTHJzkr9diHABYNmt6c9oY41+SfDXJr1TVXddyLABYBrvjkaf3\nnG9v3g1jAcAebdXhrqqjquqQ7by+1/wBLHdL8ukxxo9WOxYALLspbk57UpL/VlUXJPlWkqsyu7P8\n0Unul+SKJM+dYBwAWHpThPujSf48yUlJfjXJnZNcl+SiJO9N8rYxxtUTjAMAS2/V4R5jfDnJCyeY\nCwCwA34fNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\naxbuqjq9qsb8z3PWahwAWCZrEu6quleSs5JcuxbHB4BlNXm4q6qSvCfJVUneMfXxAWCZrcWK+4wk\nj0vy7CTXrcHxAWBpTRruqjo6yZuSvHWMccGUxwYAkg1THaiqNiR5b5JLkrxqFz5/4wq7jlrNvABg\nTzJZuJO8LslDkjxijHH9hMcFAOYmCXdVHZ/ZKvuPxxif2ZVjjDGOW+HYG5Mcu4rpAcAeY9XXuLc6\nRX5RkteuekYAwIqmuDlt/yRHJjk6yU+3eujKSPL6+Xv+Yv7aWyYYDwCW1hSnym9I8u4V9h2b2XXv\nTyb5RpJdOo0OAMysOtzzG9G2+0jTqjozs3D/1RjjXasdCwCWnV8yAgCNCDcANLKm4R5jnDnGKKfJ\nAWAaVtwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWyY\n4iBVtSnJvVfY/f0xxiFTjANL4+qbkstuTG4cyT6VHLpPctAkX65Ac1N+J/hxkrds5/VrJxwD9myX\n3pjaeF3q8p/dZte4xx0yjtsvOWyfBUwMWC+mDPc1Y4wzJzweLJevXZ+6YHNqJCNJbbVrJLOYf+ia\njEcfkBy174ImCSyaa9ywHlx648+jndw62lt/XCOpj29OLr1xd84OWEemXHHfsap+K8nhSa5L8qUk\nF4wxbp5wDNgj1cbrfh7tHb53JNl4XYZT5rCUpgz3IUneu81r36mqZ48xPj7hOLBnufqm1OU/u83p\n8ZVsOW0+rr7JDWuwhKb6qn9Pkk8k+UqSzUnul+RFSX4nyYer6sQxxhdv7wBVtXGFXUdNNEdYny6b\nnfbemWjf6n2X3SjcsIQm+aofY7xhm5e+nOR5VXVtkpcnOTPJqVOMBXucG3fyHPlUnwe0ttb/u/6O\nzML9qB29cYxx3PZen6/Ej514XrB+7LOza+2JPg9oba3vKv/BfLvfGo8DfR06u8lsZ9fPP3/foW5O\ng2W01uE+cb799hqPA30dtCHjHnf4ha5xj3vcwfVtWFKrDndV/UpVHbSd1++d5O3zD/9mtePAnmwc\nt1/GTpZ71Oz9wHKa4n/ZT0vye1V1fpLvZHZX+f2TPCXJLyU5J8l/n2Ac2HMdtk/Gow5Ibu/JaZlH\n+9EHeOwpLLEpwn1+kgcmeUhmp8b3S3JNkk9m9nPd7x1juP0VduTofTMO2DvZzrPKt5we96xyYNXh\nnj9cxQNWYAqH7ZNx2D6zh6v47WDAdvhOAOvRQRuEGtguv2QEABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkw6In\nAJ2ccs8HL3oKwJKz4gaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkUnDXVWPrKoPVNXlVXXDfHte\nVT15ynEAYFltmOpAVfWaJH+Y5Mok/5Dk8iR3TfKQJI9Jcs5UYwHAspok3FV1WmbR/miSp40xNm+z\n/w5TjAMAy27Vp8qraq8kb07yr0l+Y9toJ8kY42erHQcAmGbF/fAk903yv5P8qKqekuSYJD9N8rkx\nxmcmGAMAyDTh/rX59vtJPp/kQVvvrKoLkjx9jPHD2ztIVW1cYddRq54hAOwhprir/G7z7fOS7Jvk\nCUkOyGzVfW6SRyX52wnGAYClN8WKe+/5tjJbWX9x/vFXqurUJBcleXRVnXh7p83HGMdt7/X5SvzY\nCeYJAO1NseL+0Xz77a2inSQZY1yf2ao7SY6fYCwAWGpThPsb8+01K+zfEvZ9JxgLAJbaFOG+IMlN\nSY6oqn22s/+Y+XbTBGMBwFJbdbjHGFcmeV+SOyV53db7quqJSU5J8uMkH1ntWACw7KZ65OnLkpyQ\n5NVV9agkn0ty7ySnJrk5yXPHGCudSgcAdtIk4R5j/KCqTkjymsxi/bAkm5N8KMkfjTE+O8U4ALDs\nJvslI2OMqzNbeb9sqmMCALfm93EDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANLLqcFfVs6pq7ODPzVNMFgCW3YYJjvGFJG9YYd8jkzwuyYcnGAcAlt6qwz3G\n+EJm8b6NqvrM/K9/vtpxAIA1vMZdVcckeViSy5J8aK3GAYBlspY3p/2X+fbdYwzXuAFgAlNc476N\nqto3yW8luSXJu3byczausOuoqeYFAN2t1Yr7Pya5c5IPjzG+u0ZjAMDSWZMVd5LfmW/fubOfMMY4\nbnuvz1fix04xKQDobvIVd1X9myQPT3JpknOmPj4ALLO1OFXupjQAWCOThruqfinJ6ZndlPbuKY8N\nAEy/4j4tyV2SnOOmNACY3tTh3nJTmielAcAamCzcVXV0kkfETWkAsGYm+3GwMcbXktRUxwMAbsvv\n4waARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGqkxxqLncLuq6qq9svdB++WARU8FAHbJddmcW3Lz1WOMg1d7rA1T\nTGiN/eSW3JzNuWbTbhjrqPn267thLKbh36wf/2b9+Ddbvfsk+ckUB1r3K+7dqao2JskY47hFz4Wd\n49+sH/9m/fg3W19c4waARoQbABoRbgBoRLgBoBHhBoBG3FUOAI1YcQNAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3Emq6rCq+suq+l5V3VBVm6rqLVV1l0XPjVurqoOr6jlV9cGq+mZVXV9VP66q\nT1bVf64q/003UVWnV9WY/3nOoufD9lXVI6vqA1V1+fz74+VVdV5VPXnRc1tWHX4f95qqqvsn+XSS\nuyX5u8x+3+zxSV6c5ElVddIY46oFTpFbOy3JnyW5PMn5SS5JcvckT0vyriS/XlWnDU8WWteq6l5J\nzkpybZL9FzwdVlBVr0nyh0muTPIPmX3d3TXJQ5I8Jsk5C5vcElv6J6dV1blJTk5yxhjjrK1e/x9J\nXprknWOM5y1qftxaVT0uyX5JPjTGuGWr1w9J8rkk90ry9DHGBxY0RXagqirJPya5b5L/k+QVSZ47\nxnjXQifGrVTVaUnen+SjSZ42xti8zf47jDF+tpDJLbmlPq1YVffLLNqbkvzpNrtfn+S6JKdX1X67\neWqsYIzxT2OMv9862vPXr0jyjvmHj9ntE+MXcUaSxyV5dmZfY6wz80tOb07yr0l+Y9toJ4loL85S\nhzuzbx5Jct52QrA5yaeS/HKSh+3uibFLtnwjuWmhs2BFVXV0kjcleesY44JFz4cVPTyzMyLnJPlR\nVT2lql5ZVS+uqhMXPLelt+zXuB843160wv6LM1uRH5nkY7tlRuySqtqQ5LfnH35kkXNh++b/Ru/N\n7L6EVy14Oty+X5tvv5/k80ketPXOqrogs0tSP9zdE8OK+07z7Y9X2L/l9TvvhrmwOm9KckySc8YY\n5y56MmzX6zK7qelZY4zrFz0Zbtfd5tvnJdk3yROSHJDZ19i5SR6V5G8XMzWWPdw7UvPtct/Bt85V\n1RlJXp7ZTwScvuDpsB1VdXxmq+w/HmN8ZtHzYYf2nm8rs5X1x8YY144xvpLk1CSXJnm00+aLsezh\n3rKivtMK+w/c5n2sM1X1wiRvTfLVJI8dY1y94Cmxja1OkV+U5LULng4750fz7bfHGF/cesf8bMmW\ns1rH79ZZkUS4vzHfHrnC/iPm25WugbNAVfWSJG9P8uXMon3FgqfE9u2f2dfY0Ul+utVDV0ZmP72R\nJH8xf+0tC5slW9vyvfGaFfZvCfu+u2EubGPZb047f749uar22ubngg9IclKS65N8dhGTY2VV9crM\nrmt/IckTxxhXLnhKrOyGJO9eYd+xmV33/mRmsXAafX24ILOfzjiiqvYZY9y4zf5j5ttNu3VWJFny\ncI8xvlVV52V25/gLM3uS0xZvyOxBH+8cY/hZ03Wkql6b5A+SbExystPj69v81Op2H2laVWdmFu6/\n8gCW9WOMcWVVvS/Jb2Z2U+FrtuyrqicmOSWzS4h+gmMBljrccy/I7JGnb6uqxyf5WpITkjw2s1Pk\nr17g3NhGVT0zs2jfnOQTSc6YPYjrVjaNMc7ezVODPc3LMvte+OqqelRmTya8d2Y3p92c2dPuVjqV\nzhpa+nDPV90PzSwGT0ry5Myex/u2JG+wmlt37jvf7p3kJSu85+NJzt4ts4E91BjjB1V1Qmar7VMz\nexDV5iQfSvJHYwyXEBdk6Z9VDgCdLPtd5QDQinADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI/wMRgcjuQzZm+QAAAABJRU5E\nrkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7fb4777e1e80>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"7da3e5f201914378b8239390c6e281e4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7db6eacc2c414420a92ce5bef1280d19": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_8b8d7ae8fad149f19bdbf9985df344d4", | |
"style": "IPY_MODEL_05b687f486764b029e0335898bc35a37" | |
} | |
}, | |
"7dce1e1433c849f6a63b6ecc05226ded": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7debd9d7c52743f8aafd45b53df3820c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7e00014069dc4edc9de0ef780619b625": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_24e5d704ecbe4a839d41823e718cd29d", | |
"max": 7, | |
"style": "IPY_MODEL_ece7379b80414ce08272b5d44651ccf5" | |
} | |
}, | |
"7e29caf21b9e4aac84898447663a5e81": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7e2eaeab842e4b2d98a584ba4a9bcf79": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_474682a299d94ae1aab4dd6171f70b36", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 1., 1., 1., 1., 1., 1., 1., 1.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"7f13eba66f6a4cb9a08362f044238219": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7f1997f3aca340e4928147c3c279dced": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7f305a1cfee14b54aefe97eab73fcefe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7faed6592f0d4472844035a22582576d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7fd30956e32c4840a353ecbd4cfb0b11": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7fdbdf5c2dbd451aa0a7ac491c7da7b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_867aedc634394fa29cf135a1f3b881ac", | |
"IPY_MODEL_eeafbd817b2d4cb1ac55a0928a6d64bb", | |
"IPY_MODEL_85045ada46354ed8bd42f3564e22a167" | |
], | |
"layout": "IPY_MODEL_61fa25d741614a64add4d57ea3ef753a" | |
} | |
}, | |
"802af33bb3d44d56853628676e0fa543": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_10bcc5c085304a7a8a9f8b087b42f39c", | |
"style": "IPY_MODEL_31dc67c136c24fedbc43bb3cf810a0cf" | |
} | |
}, | |
"803d404e865e49f096c8df265b81392e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"805476b8accc4d3190f0952de2290205": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_83d641dca07647d3a9cae3b1f38980a8", | |
"max": 3, | |
"style": "IPY_MODEL_b55b8a173f724fd1af439c80b04b1feb", | |
"value": 2 | |
} | |
}, | |
"807034d8b2f04584b5f6b0522c38c247": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "s", | |
"layout": "IPY_MODEL_51c7b3ae4cab483aaf051d08f5f2fd3f", | |
"max": 63, | |
"style": "IPY_MODEL_6fb540013d1e4107ba74152c035588e3" | |
} | |
}, | |
"8097c2696a924bae9836e868ccab72c4": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_ee4308da6a0b43b686a2b672d0c85c50", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGKZJREFUeJzt3XuQZnV95/HPF0aM4aKCpahIvIG4\nIRUFAyrebxjd3VJX1qpsiFrRrLfgtcqsV0zKjdZuNipko4kmJmb/0KzrphJQjIYSr1g1rlpewctI\nVFABwYEgCPz2j+cZMzTdMEyf7qe/PK9XVdeZfk4/5/cbxpm3v3NOn64xRgCAHvZZ9AQAgD0n3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNbFv0BG5OVX07yUFJdix4KgCwt+6Z5CdjjHut90BbPtxJDton+x68fw48eNETAYC9cWV25vpc\nN8mxOoR7x/458ODj63GLngcA7JVzx0eyM5ftmOJYrnEDQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0Mlm4\nq+qwqvqLqvp+VV1dVTuq6i1VdcepxgCAZbdtioNU1X2SfCrJnZP8XZKvJTkuyYuTPLGqThhjXDLF\nWACwzKZacf/PzKJ9yhjjKWOM3xtjPCbJHye5X5I3TjQOACy1dYe7qu6d5AlJdiT5kxW7X5/kyiQn\nV9X+6x0LAJbdFCvux8y3Hx5jXL/7jjHGziSfTPKLSR48wVgAsNSmuMZ9v/n2vDX2n5/ZivzIJB9d\n6yBVtX2NXUft/dQA4NZlihX37efby9fYv+v1O0wwFgAstUnuKr8ZNd+Om/qiMcaxq755thI/ZupJ\nAUBHU6y4d62ob7/G/oNWfB0AsJemCPfX59sj19h/xHy71jVwAGAPTRHus+fbJ1TVDY5XVQcmOSHJ\nVUk+M8FYALDU1h3uMcY3k3w4yT2TvHDF7jck2T/JX48xrlzvWACw7Ka6Oe0FmT3y9G1V9dgkX01y\nfJJHZ3aK/NUTjQMAS22SR57OV90PSvLuzIL98iT3SfK2JA/xnHIAmMZk3w42xvjnJM+e6ngAwI35\nedwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjUwS7qp6\nelWdVlUfr6qfVNWoqr+Z4tgAwL/aNtFxXpPkV5NckeS7SY6a6LgAwG6mOlX+0iRHJjkoyfMnOiYA\nsMIkK+4xxtm7fl1VUxwSAFiFm9MAoJGprnGvW1VtX2OX6+UAMGfFDQCNbJkV9xjj2NVen6/Ej9nk\n6QDAlmTFDQCNCDcANCLcANCIcANAI5PcnFZVT0nylPmnh863D6mqd89/ffEY4xVTjAUAy2yqu8of\nkOSZK1679/wjSb6TRLgBYJ0mOVU+xjh1jFE38XHPKcYBgGXnGjcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI+sOd1UdUlXPqaoPVNU3quqqqrq8qj5RVb9d\nVf7PAQBMZNsExzgpyZ8muTDJ2UkuSHKXJE9L8s4kv15VJ40xxgRjAcBSmyLc5yX590nOGGNcv+vF\nqnpVks8m+Q+ZRfz9E4wFAEtt3aexxxj/NMb4+92jPX/9oiRvn3/6qPWOAwBs/M1pP5tvr93gcQBg\nKWxYuKtqW5Lfmn/6oY0aBwCWyRTXuNfypiRHJzlzjHHWzX1xVW1fY9dRk84KABrbkBV3VZ2S5OVJ\nvpbk5I0YAwCW0eQr7qp6YZK3JvlKkseOMS7dk/eNMY5d43jbkxwz3QwBoK9JV9xV9ZIkpyf5UpJH\nz+8sBwAmMlm4q+qVSf44yeczi/YPpzo2ADAzSbir6rWZ3Yy2PbPT4xdPcVwA4IbWfY27qp6Z5PeT\nXJfk40lOqaqVX7ZjjPHu9Y4FAMtuipvT7jXf7pvkJWt8zceSvHuCsQBgqU3xyNNTxxh1Mx+PmmCu\nALD0/MhNAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARrYtegIAG+ms739+0VPgFjrxbg9Y9BS2NCtuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARrYtegIA3Z13yaH51AVH5oprbpsD9rs6Dz38vBx5yEWLntY0Lr02\n+d41yTUj2a+Su++XHCwdizTJf/2qenOSByU5MsmdklyV5DtJ/m+S08cYl0wxDsBW8skLjshp556Y\nz37vvjfad9zdv5HfPf6snHD4+QuY2QS+e01q+5WpC392o13jrrfJOHb/5LD9FjAxpjpV/tIk+yf5\nxyRvTfK/klyb5NQkX6yqe0w0DsCW8N4vHZ9nfuD582iPFXtHPvu9++aZH3h+3vfl4xcxvfX56lWp\nMy5LXfizVX5nSV34s9QZlyVfu2oRs1t6U53vOGiM8dOVL1bVG5O8Ksl/SfKCicYCWKhPXnBEXv3R\nZ+T6sWvtUyu+Yvb59WOfvOojz8jdD7y0z8r7u9ekztmZmhd79d9ZZvs/tjPjgH2tvDfZJCvu1aI9\n97759ogpxgHYCk4798Tdon3Trh/75PRzT9zgGU2ntl/582jf7NeO2dezuTb6rvJ/N99+cYPHAdgU\n511y6Bqnx9cycu737pvzLjl0I6c1jUuvXfX0+Fp2nTbPpddu5KxYYdJbA6vqFUkOSHL7zG5We1hm\n0X7THrx3+xq7jppsggDr9KkLjpz/auVJ5LXUz9+35e80/941SW7p72z+Pneab5qp/0u/Islddvv8\nQ0meNcb40cTjACzEFdfcdlPft6mu2dO19kTvY69MGu4xxqFJUlV3SfLQzFba/6+q/u0Y43M3895j\nV3t9vhI/Zsp5AuytA/a7elPft6n229O19kTvY69syDXuMcYPxhgfSPKEJIck+euNGAdgsz308PPm\nv7olV4J3f98WdvfZ3eG37Hf2r+9jc2zozWljjO8k+UqSX66qO23kWACb4chDLspxd/9GbsmV4OPv\n/o2tf307SQ7elnHX29yia9zjrrdxfXuTbcazyu823163CWMBbLjfPf6s7FPX79HX7lPX50XHn7XB\nM5rOOHb/jD0s96jZ17O51h3uqjqqqm70fQ5Vtc/8ASx3TvKpMcaP1zsWwFZwwuHn542Pfe9u8V7t\n+WKzaP/Xx723z8NXkuSw/TIeceDP473672we7Uce6OErCzDF+Y0nJvlvVXVOkm8muSSzO8sfmeTe\nSS5K8twJxgHYMp5x9Lk57KBLc/q5J+bcGz2rfHZ6/EVdn1V+/9tlHLhvssqzynedHves8sWZItwf\nSfJnSU5I8qtJ7pDkyiTnJXlPkreNMS6dYByALeWEw8/PCYeff+v86WCH7Zdx2H4ZfjrYlrPu//pj\njC8leeEEcwFo6chDLuof6rUcvE2ot5jNuDkNAJiIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj2xY9AYCNdOLdHrDo\nKcCkrLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGTDwl1VJ1fVmH88Z6PGAYBlsiHhrqp7JDkt\nyRUbcXwAWFaTh7uqKslfJrkkydunPj4ALLONWHGfkuQxSZ6d5MoNOD4ALK1Jw11V90/ypiRvHWOc\nM+WxAYBk21QHqqptSd6T5IIkr9qL929fY9dR65kXANyaTBbuJK9L8sAkDxtjXDXhcQGAuUnCXVXH\nZbbK/qMxxqf35hhjjGPXOPb2JMesY3oAcKux7mvcu50iPy/Ja9c9IwBgTVPcnHZAkiOT3D/JT3d7\n6MpI8vr51/z5/LW3TDAeACytKU6VX53kXWvsOyaz696fSPL1JHt1Gh0AmFl3uOc3oq36SNOqOjWz\ncP/VGOOd6x0LAJadHzICAI0INwA0sqHhHmOcOsYop8kBYBpW3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0\nItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNTBLuqtpRVWONj4umGAMASLZNeKzLk7xlldev\nmHAMAFhqU4b7sjHGqRMeDwBYwTVuAGhkyhX3bavqN5McnuTKJF9Mcs4Y47oJxwCApTZluA9N8p4V\nr327qp49xvjYhOMAwNKaKtx/meTjSb6cZGeSeyd5UZLfSfLBqnrIGOMLN3WAqtq+xq6jJpojALQ3\nSbjHGG9Y8dKXkjyvqq5I8vIkpyZ56hRjAcAym/JU+Wrenlm4H3FzXzjGOHa11+cr8WMmnhcAtLTR\nd5X/cL7df4PHAYClsNHhfsh8+60NHgcAlsK6w11Vv1xVB6/y+i8lOX3+6d+sdxwAYJpr3Ccl+b2q\nOjvJtzO7q/w+SZ6c5BeSnJnkv08wDgAsvSnCfXaS+yV5YGanxvdPclmST2T2fd3vGWOMCcYBgKW3\n7nDPH67iASsAsAk8qxwAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgEeEGgEYmDXdVPbyq3l9VF1bV1fPth6vqSVOOAwDLattUB6qq1yT5gyQXJ/mHJBcmuVOS\nByZ5VJIzpxoLAJbVJOGuqpMyi/ZHkjxtjLFzxf7bTDEOACy7dZ8qr6p9krw5yb8k+Y2V0U6SMcbP\n1jsOADDNivuhSe6V5H8n+XFVPTnJ0Ul+muSzY4xPTzAGAJBpwv1r8+0Pknwuya/svrOqzkny9DHG\nj27qIFW1fY1dR617hgBwKzHFXeV3nm+fl+R2SR6X5MDMVt1nJXlEkr+dYBwAWHpTrLj3nW8rs5X1\nF+aff7mqnprkvCSPrKqH3NRp8zHGsau9Pl+JHzPBPAGgvSlW3D+eb7+1W7STJGOMqzJbdSfJcROM\nBQBLbYpwf32+vWyN/bvCfrsJxgKApTZFuM9Jcm2SI6pqv1X2Hz3f7phgLABYausO9xjj4iTvTXL7\nJK/bfV9VPT7JiUkuT/Kh9Y4FAMtuqkeevizJ8UleXVWPSPLZJL+U5KlJrkvy3DHGWqfSAYA9NEm4\nxxg/rKrjk7wms1g/OMnOJGck+cMxxmemGAcAlt1kP2RkjHFpZivvl011TADghvw8bgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG1h3uqnpWVY2b+bhuiskC\nwLLbNsExPp/kDWvse3iSxyT54ATjAMDSW3e4xxifzyzeN1JVn57/8s/WOw4AsIHXuKvq6CQPTvK9\nJGds1DgAsEw28ua0/zzfvmuM4Ro3AExgimvcN1JVt0vym0muT/LOPXzP9jV2HTXVvACgu41acf/H\nJHdI8sExxj9v0BgAsHQ2ZMWd5Hfm23fs6RvGGMeu9vp8JX7MFJMCgO4mX3FX1b9J8tAk301y5tTH\nB4BlthGnyt2UBgAbZNJwV9UvJDk5s5vS3jXlsQGA6VfcJyW5Y5Iz3ZQGANObOty7bkrzpDQA2ACT\nhbuq7p/kYXFTGgBsmMm+HWyM8dUkNdXxAIAb8/O4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGaoyx6DncpKq6\nZJ/se/D+OXDRUwGAvXJldub6XHfpGOOQ9R5r2xQT2mA/uT7XZWcu27EJYx01335tE8ZiGv7M+vFn\n1o8/s/W7Z5KfTHGgLb/i3kxVtT1JxhjHLnou7Bl/Zv34M+vHn9nW4ho3ADQi3ADQiHADQCPCDQCN\nCDcANOKucgBoxIobABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeFOUlWHVdVfVNX3q+rqqtpR\nVW+pqjsuem7cUFUdUlXPqaoPVNU3quqqqrq8qj5RVb9dVf433URVnVxVY/7xnEXPh9VV1cOr6v1V\ndeH838cLq+rDVfWkRc9tWXX4edwbqqruk+RTSe6c5O8y+3mzxyV5cZInVtUJY4xLFjhFbuikJH+a\n5MIkZye5IMldkjwtyTuT/HpVnTQ8WWhLq6p7JDktyRVJDljwdFhDVb0myR8kuTjJP2T29+5OSR6Y\n5FFJzlzY5JbY0j85rarOSvKEJKeMMU7b7fX/keSlSd4xxnjeoubHDVXVY5Lsn+SMMcb1u71+aJLP\nJrlHkqePMd6/oClyM6qqkvxjknsl+T9JXpHkuWOMdy50YtxAVZ2U5H1JPpLkaWOMnSv232aM8bOF\nTG7JLfVpxaq6d2bR3pHkT1bsfn2SK5OcXFX7b/LUWMMY45/GGH+/e7Tnr1+U5O3zTx+16RPjljgl\nyWOSPDuzv2NsMfNLTm9O8i9JfmNltJNEtBdnqcOd2T8eSfLhVUKwM8knk/xikgdv9sTYK7v+Ibl2\nobNgTVV1/yRvSvLWMcY5i54Pa3poZmdEzkzy46p6clW9sqpeXFUPWfDclt6yX+O+33x73hr7z89s\nRX5kko9uyozYK1W1LclvzT/90CLnwurmf0bvyey+hFcteDrctF+bb3+Q5HNJfmX3nVV1TmaXpH60\n2RPDivv28+3la+zf9fodNmEurM+bkhyd5MwxxlmLngyrel1mNzU9a4xx1aInw02683z7vCS3S/K4\nJAdm9nfsrCSPSPK3i5kayx7um1Pz7XLfwbfFVdUpSV6e2XcEnLzg6bCKqjous1X2H40xPr3o+XCz\n9p1vK7OV9UfHGFeMMb6c5KlJvpvkkU6bL8ayh3vXivr2a+w/aMXXscVU1QuTvDXJV5I8eoxx6YKn\nxAq7nSI/L8lrFzwd9syP59tvjTG+sPuO+dmSXWe1jtvUWZFEuL8+3x65xv4j5tu1roGzQFX1kiSn\nJ/lSZtG+aMFTYnUHZPZ37P5JfrrbQ1dGZt+9kSR/Pn/tLQubJbvb9W/jZWvs3xX2223CXFhh2W9O\nO3u+fUJV7bPi+4IPTHJCkquSfGYRk2NtVfXKzK5rfz7J48cYFy94Sqzt6iTvWmPfMZld9/5EZrFw\nGn1rOCez7844oqr2G2Ncs2L/0fPtjk2dFUmWPNxjjG9W1Yczu3P8hZk9yWmXN2T2oI93jDF8r+kW\nUlWvTfL7SbYneYLT41vb/NTqqo80rapTMwv3X3kAy9Yxxri4qt6b5D9ldlPha3btq6rHJzkxs0uI\nvoNjAZY63HMvyOyRp2+rqscm+WqS45M8OrNT5K9e4NxYoaqemVm0r0vy8SSnzB7EdQM7xhjv3uSp\nwa3NyzL7t/DVVfWIzJ5M+EuZ3Zx2XWZPu1vrVDobaOnDPV91PyizGDwxyZMyex7v25K8wWpuy7nX\nfLtvkpes8TUfS/LuTZkN3EqNMX5YVcdnttp+amYPotqZ5IwkfzjGcAlxQZb+WeUA0Mmy31UOAK0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0Ajfx/wAHb4Tti6jwAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c448400>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"80cc8cca053942adba56e5e887ee5e9b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_23eda160167b448a9773f9af2097de3b", | |
"max": 7, | |
"style": "IPY_MODEL_1823a0beb59e4237b3be1fc85bba3111", | |
"value": 6 | |
} | |
}, | |
"80ea10b7f8604a10867df604906aff15": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"812884001578481ca9ff5ab72edf0c39": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8145c904097b4e889c0d03e136a8c336": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_0df982da822e48adbe898d260217bdb8", | |
"max": 7, | |
"style": "IPY_MODEL_eccecb18c4964bc1813bfa8b87c5586d", | |
"value": 2 | |
} | |
}, | |
"8159b38c3d0f4a22a33f4162dba9d17e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_0d691e1fc934488bad97f10852326e11", | |
"IPY_MODEL_36f62c8bfa1c4e4f97df22c359e285e5", | |
"IPY_MODEL_64e7647e80394aa49f9c0a25a4449b3d", | |
"IPY_MODEL_f92298513fb54ff7b2756749ba411e65", | |
"IPY_MODEL_97af6a17a1e14aa2ab5ec81b1290c715" | |
], | |
"layout": "IPY_MODEL_3213ed1e9f2e46e884f48fd498a768b5" | |
} | |
}, | |
"8171b0ac18784964b521d5f8e52ad87d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"81ac2fba08c54664ab1d20c755f6535a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"81ae1747adac4de48c80b3ac87a46a1c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"826511d60f2e499390b128bcf7bcef41": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8294a87e660f4ca381e73298e59e54a7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"829ee72a52c04fe898c8a77c968da446": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"82b19f7d131844c6866ea7b08a96e7c0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_8dfccf8822f54faaa7cdf5100f8bd065", | |
"max": 3, | |
"style": "IPY_MODEL_841c549f28954929ac089b0807264905", | |
"value": 2 | |
} | |
}, | |
"82ca84bebe9c43be98e8a03579c2e76d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_5b2bd2fe178f415aa6b944e9a6ade8e7", | |
"max": 7, | |
"style": "IPY_MODEL_3e619e35b3b74d8695bcbc304141786f", | |
"value": 4 | |
} | |
}, | |
"82ed833961444ddfb104c7e96d04da1d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"831702e251174a628ba066c0067bdbbe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"833832fed0bd49eeb759637ddc2dc28b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"833987ea080441bc8b689bebf09cad79": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"83aabf3d0d3a46c698895818fb4aaa7d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"83bd11bdd1914f138eb6b3296101f775": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_0cce4ed6fb9240d9a12e946998b02d2f", | |
"max": 7, | |
"style": "IPY_MODEL_020ccfa5cfa945d0ae5dc394ea06a942", | |
"value": 1 | |
} | |
}, | |
"83d641dca07647d3a9cae3b1f38980a8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"83d6aa92bf8a47ee87530b404274277c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"83e985a5278f41e484a3b57cf64b9efd": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"83f1a2a10011427e8748266ce25169e6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"841c549f28954929ac089b0807264905": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"84878fcf14d54ad7bbc69fa1c67ccdbf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"84a1f6abdbb64bf0a33ea88cde8eaa19": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"84b970950e6d43ebba6d793157633c8f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"84d7060143604c70bfd1b520373a0169": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"84f65e172fa546bc822d6a16680abfef": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"85045ada46354ed8bd42f3564e22a167": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_2d20fe38a9b94ad181386cfa508a84ea", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "array([[ 1., 1., 1., 1., 1., 1., 1., 1.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.],\n [ 1., 0., 0., 0., 0., 0., 0., 0.]])" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"8516fe4cb3664221b45f95a3637c969b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_57b7b566bb644d24acf80690bdf38e37", | |
"max": 7, | |
"style": "IPY_MODEL_7afbdf85b39e4a9591c1375c9efe2098", | |
"value": 2 | |
} | |
}, | |
"85342569b4a64508b3763fc4ea5e75a3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"853f067e8b7f432fb883d6ed4d985ffa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"857a340231fd4bf8a18e0143ae317ce4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"85a3f4ca30ea43da86a48080dcd0dcb3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"85afea475c7a40009cd18f1fa9fcc042": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_325ff122f8c04b978fec34f672c54a8c", | |
"style": "IPY_MODEL_6a706fb811bc4ce6ae7829b807a18303" | |
} | |
}, | |
"85bd99f279f1457d9b1641a345e90a9c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"85e62cf8395b4cb29ed949954b4ff37c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"861b13986b7843c693cdfff59b722e84": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"863b9c846dc546a78005001585edd4a0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"86620c093da4466882902a0c5bdca163": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"867aedc634394fa29cf135a1f3b881ac": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_80ea10b7f8604a10867df604906aff15", | |
"max": 7, | |
"style": "IPY_MODEL_d4fada6645a14602aca0016315b3cbd6" | |
} | |
}, | |
"8710a17258eb44dcb496ab1d3b9ba58b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"873da7832bf443b297ff5e2b6e468c08": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"873e2835ece840eaaa8b6e00f8a684af": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"87abfc1d10e64cf8a4e0fb59d129e9f0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"87fd9e4b40fe4509a28991ce3975ea36": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"88133c93f2a049c8959210bd94d9ae67": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"881a73841a884aad9860c4ddf65da4a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_0573e3638e3a4c9ab0f87e1837be3158", | |
"max": 7, | |
"style": "IPY_MODEL_9af1da6500384b448edd595172e1638d", | |
"value": 2 | |
} | |
}, | |
"8843098a807249c39ac3dd4dcb8e7c22": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8853690690a64f4d863dd8222bb630eb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"88552f08bc754124b67e3f82d66c4ad6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8858393f5a324a4da61f306645797578": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"88aec23bb2934dc6998a00af00e6cbeb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"88c041b69c354240b55c825e7a1e0654": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"up", | |
"right", | |
"down", | |
"left" | |
], | |
"description": "d", | |
"index": 0, | |
"layout": "IPY_MODEL_97d9ea8eb5da4a34879c71e87b9d8374", | |
"style": "IPY_MODEL_bcb18c766435447aa872636d2c25e8dc" | |
} | |
}, | |
"88cb6fef02324941b2bd0a207b3f6918": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_971d9c96b0514c539115fac99bc8b031", | |
"IPY_MODEL_e4eb492a8bb145a28abe58a84ebc60ff", | |
"IPY_MODEL_c8d3e74e9b8942479a66600af088a69a", | |
"IPY_MODEL_3dd1a670485c45b494e9139b90022d3e" | |
], | |
"layout": "IPY_MODEL_8294a87e660f4ca381e73298e59e54a7" | |
} | |
}, | |
"89007683a42b4db1b257d84ada84eb4e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_ba044f0020bb40698f8c1b2e0194b57d", | |
"max": 3, | |
"style": "IPY_MODEL_9d5bc21ca80e4274b04ccec82ec8d7bf", | |
"value": 2 | |
} | |
}, | |
"891a47fd8ee647fa851776f9c70a8e90": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"89200fede16344e9b331e3d05473aff1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8934d345526f42919a92cc197377c59d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"894ffd8c00a940a7adf3b5818c354686": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_2a8ec7d566fd43628e406e8aed4a96f9", | |
"style": "IPY_MODEL_9e3c84b9fc2a44068b0e35fadf6ec876" | |
} | |
}, | |
"8980b7bdd603448eb5956ce97968f797": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8983b4e8eb014621b44c84fb12de27f0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"89c6a8342fe74311abee99d2610c657f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_f2888470eae74c33bc0a0c8d8bcfbc8a", | |
"IPY_MODEL_30c6de60f810493eaea3809eab3b080e", | |
"IPY_MODEL_16f4c58d09c1499fad1016169bb6f186", | |
"IPY_MODEL_966672946706467e9764f5e9ddd27b7e", | |
"IPY_MODEL_b8d9eec47fe5428ba1da65bc88478327" | |
], | |
"layout": "IPY_MODEL_39b3c37f65eb4723b6d9b755c20a9baf" | |
} | |
}, | |
"89d0c2739a3446bda0b2f3b2e01febf8": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_833987ea080441bc8b689bebf09cad79", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGYFJREFUeJzt3XuQpXdd5/HPN2nkEpJAoBJqS8wF\nEhLEdZlAAkRISARR1y1hjVvlGoUVXBasgEIVyv1SFlC7rhBvqKBodv/wgpaFBMga2EQiyNbMAotc\nkhAGUCAxXBNMIkl++8c5Y00m05nJ9HP69LfP61U19aTPc87z+1Gnu988l/N0jTECAPRw2LInAAAc\nPOEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaGRt2RM4kKr6bJKjkuxe8lQA4FCdkOSbY4wTN7qhLR/uJEfdNznmtOSYZU9karuWPQGY\n27HsCSyQnzO2mw7h3n1acszOZc9iAWrZE4C57fjztYefM7aQ3VNsxDluAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARiYLd1V9Z1X9XlV9sapurardVfWmqnrgVGMAwKpbm2IjVfWwJH+T5Ngkf5HkU0nOSPKC\nJE+rqrPGGF+ZYiwAWGVT7XH/ZmbRvnCM8aNjjF8cY5yb5FeTPCLJL080DgCstA2Hu6pOSvLUJLuT\n/MY+q1+V5FtJLqiqIzY6FgCsuin2uM+dLy8dY9yx94oxxo1JrkxyvySPm2AsAFhpU5zjfsR8edU6\n66/ObI/8lCSXrbeRqtq5zqpTD31qALC9TLHHffR8+Y111u95/AETjAUAK22Sq8oPoObLcXdPGmOc\nvt8Xz/bEd0w9KQDoaIo97j171Eevs/6ofZ4HAByiKcL96fnylHXWnzxfrncOHAA4SFOE+/3z5VOr\n6k7bq6ojk5yV5OYkH5pgLABYaRsO9xjjM0kuTXJCkufvs/o1SY5I8odjjG9tdCwAWHVTXZz2vMxu\neXpRVZ2X5JNJzkzy5MwOkb9sonEAYKVNcsvT+V73Y5K8PbNgvyjJw5JclOTx7lMOANOY7ONgY4wv\nJHnWVNsDAO7K3+MGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABpZW/YEDsauJLXsSXDPjGVPYEG26TfiNv2fBduS\nPW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBG1pY9AThUj7z+sJx37VqOujX55r2Ty066LZ849o5lTwtg\noSYJd1X9WJKzk/ybJN+b5Mgk/3OM8ZNTbB/2du61h+eVl987Z3/urt++lx9/W1579q1530m3L2Fm\nAIs31aHylyf5uczC/Q8TbRPu4j/tulcuvfh+OftzaxkZd1o3MnL259Zy6cX3y7N23WtJMwRYrKnC\n/fNJTklyVJL/MtE24U7Ovfbw/M4775PDRyVJKnWn9Xu+PnxUfved98m51x6+6XMEWLRJwj3GeP8Y\n4+oxxjjws+HQvPLye/9LtA/k8FF5xeX3XvCMADafq8pp4ZHXH7bfw+PrGRk553NreeT1vsWB7WXL\nXFVeVTvXWXXqpk6ELem8a2ffqvseHl/Pnuedd+1aPnHsPy9sXgCbze4ILRx16+a+DmCr2jJ73GOM\n0/f3+HxPfMcmT4ct5puHeLr6UF8HsFXZ46aFy066LUnu0TnuvV8HsF0INy184tg7cvnxt92jc9z/\n+3h3UgO2H+GmjdeefWtur4Pb4769Rl53thPcwPYj3LTxvpNuz8/+yC3/Eu/93TktmUX7OT9yi9ue\nAtvSVPcq/9EkPzr/8iHz5eOr6u3z/75hjPHiKcZitf3ejm9n9wPuyCsuv3fO2ede5XsOj7/OvcqB\nbaymuNlZVb06yavu5imfG2OccIjbdlV5R5twD72l/HWwgzvFDrA/u9b7BNU9MUm4F0m4m9ra31aH\nTriBQzdJuJ3jBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGRt2RM4GDuS7Fz2JBaglj0BANqxxw0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANDIhsNdVQ+qqmdX1Z9X1TVVdXNVfaOqPlBVP1NV/s8BAExkbYJtnJ/k\nt5J8Kcn7k3w+yXFJnpHkrUl+sKrOH2OMCcYCgJU2RbivSvLvkrxrjHHHnger6qVJPpzk32cW8XdM\nMBYArLQNH8YeY7xvjPHOvaM9f/zLSd4y//KcjY4DACz+4rRvz5e3LXgcAFgJCwt3Va0l+an5l+9Z\n1DgAsEqmOMe9njckeVSSS8YY7z3Qk6tq5zqrTp10VgDQ2EL2uKvqwiQvSvKpJBcsYgwAWEWT73FX\n1fOTvDnJJ5KcN8b46sG8boxx+jrb25lkx3QzBIC+Jt3jrqoXJvn1JB9P8uT5leUAwEQmC3dVvSTJ\nryb5SGbRvn6qbQMAM5OEu6pekdnFaDszOzx+wxTbBQDubMPnuKvqp5O8NsntSf46yYVVte/Tdo8x\n3r7RsQBg1U1xcdqJ8+XhSV64znMuT/L2CcYCgJU2xS1PXz3GqAP8O2eCuQLAyvMnNwGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABpZW/YEDsauJLXsScA2NpY9gQXyu4Ptxh43ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncANAI8INAI1MEu6qemNVXVZVX6iqm6vqq1X1f6vqVVX1oCnGAACSGmNsfCNV/5xkV5JPJLk+yRFJ\nHpfkMUm+mORxY4wvHOK2dybZseFJsrk2/m21NdWyJ7AY2/XtSrbtW0ZPu8YYp290I2tTzCTJUWOM\nW/Z9sKp+OclLk/xSkudNNBYArKxJDpXvL9pzfzxfnjzFOACw6hZ9cdqPzJcfW/A4ALASpjpUniSp\nqhcnuX+SozM7v/19mUX7DQfx2p3rrDp1sgkCQHOThjvJi5Mct9fX70nyzDHGP048DgCspEmuKr/L\nRquOS/KEzPa0j0zyb8cYuw5xW64q72i7Xqa8TS9R3q5vV7Jt3zJ6muSq8oWc4x5jXDfG+PMkT03y\noCR/uIhxAGDVLPTitDHG5zL7bPd3V9WDFzkWAKyCzbjl6b+aL2/fhLEAYFvbcLir6tSqesh+Hj9s\nfgOWY5P8zRjjaxsdCwBW3RRXlT8tyX+tqiuSfCbJVzK7svzsJCcl+XKS50wwDgCsvCnC/VdJfifJ\nWUm+N8kDknwryVVJLk5y0RjjqxOMAwArb8PhHmN8PMnzJ5gLAHAA/h43ADQi3ADQiHADQCPCDQCN\nCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCMLC3dVXVBVY/7v2YsaBwBWyULCXVUP\nTfJrSW5axPYBYFVNHu6qqiS/n+QrSd4y9fYBYJUtYo/7wiTnJnlWkm8tYPsAsLImDXdVnZbkDUne\nPMa4YsptAwDJ2lQbqqq1JBcn+XySlx7C63eus+rUjcwLALaTycKd5JVJHp3k+8YYN0+4XQBgbpJw\nV9UZme1l/8oY44OHso0xxunrbHtnkh0bmB4AbBsbPse91yHyq5K8YsMzAgDWNcXFafdPckqS05Lc\nstdNV0aSV82f87vzx940wXgAsLKmOFR+a5K3rbNuR2bnvT+Q5NNJDukwOgAws+Fwzy9E2+8tTavq\n1ZmF+w/GGG/d6FgAsOr8kREAaES4AaCRGmMsew53y8fBmtra31aHrpY9gcXYrm9Xsm3fMnratd5H\nn+8Je9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNrC17AmxPI2PZU1iISi17CguxPf9XwfZkjxsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaES4AaCRtSk2UlW7kxy/zurrxhgPmWIc2NtV192YK6+5ITfdclvuf5+1nPXw\nB+eU445c9rQAFmqScM99I8mb9vP4TROOAbnymhvy5suuzoc/+9W7rDvjxGPygvNOzlkPf/ASZgaw\neDXG2PhGZnvcGWOcsOGN3XXbO5PsmHq7LNYU31f780f/5/P5pT/7f7njbjZ/WCVveMa/zo8/9qGT\nj19Vk28TWBm7xhinb3QjznHTxpXX3HDAaCfJHSP5xT/7WK685obNmRjAJpryUPm9q+onk3xXkm8l\n+ViSK8YYt084BivszZddfcBo73HHSC667GqHzIFtZ8pwPyTJxfs89tmqetYY4/IJx2EFXXXdjfs9\np313/vazX81V193ogjVgW5kq3L+f5K+T/F2SG5OclOTnkvxskndX1ePHGB+9uw3Mz2Xvz6kTzZHG\nDvWw95XX3CDcwLYySbjHGK/Z56GPJ3luVd2U5EVJXp3k6VOMxWq66ZbbNvV1AFvVlIfK9+ctmYX7\nSQd64npX2rmqnCS5/30O7Vv1UF8HsFUt+qry6+fLIxY8DtvcoV5k5uI0YLtZdLgfP19eu+Bx2OZO\nOe7InHHiMffoNWeeeIzz28C2s+FwV9V3V9VdfqNW1fFJfn3+5f/Y6DjwgvNOzmEHef+Twyq58LyT\nFzshgCWYYo/7/CRfrKp3V9VvVtUbq+pPk3wqycOTXJLkv00wDivurIc/OK9/xvccMN577pzmMDmw\nHU1x5c77kzwiyaMzOzR+RJKvJ/lAZp/rvngs6v6XrJz/8Njvync+8H656LKr87f7+Vz3mScekwvd\nqxzYxia5V/kiuaq8p834vlrGXwdzr3JgAya5V7nPytDWKccd6eIzYOX4IyMA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCNry54A21MtewIA25Q9bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamTTcVfXEqnpHVX2p\nqm6dLy+tqh+achwAWFVrU22oql6e5HVJbkjyl0m+lOTBSR6d5Jwkl0w1FgCsqknCXVXnZxbtv0ry\njDHGjfusv9cU4wDAqtvwofKqOizJG5P8U5Kf2DfaSTLG+PZGxwEAptnjfkKSE5P8aZKvVdUPJ3lU\nkluSfHiM8cEJxgAAMk24HztfXpdkV5Lv2XtlVV2R5MfGGP94dxupqp3rrDp1wzMEgG1iiqvKj50v\nn5vkvkm+P8mRme11vzfJk5L8yQTjAMDKm2KP+/D5sjLbs/7o/Ou/q6qnJ7kqydlV9fi7O2w+xjh9\nf4/P98R3TDBPAGhvij3ur82X1+4V7STJGOPmzPa6k+SMCcYCgJU2Rbg/PV9+fZ31e8J+3wnGAoCV\nNkW4r0hyW5KTq+o79rP+UfPl7gnGAoCVtuFwjzFuSPJHSY5O8sq911XVU5L8QJJvJHnPRscCgFU3\n1S1PfyHJmUleVlVPSvLhJMcneXqS25M8Z4yx3qF0AOAgTRLuMcb1VXVmkpdnFuvHJbkxybuSvH6M\n8aEpxgGAVVdjjGXP4W75OFhTW/z76pBVLXsGQF+71vvo8z3h73EDQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0srbsCbA9jWVPYEFq2RMAVp49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6qemZVjQP8u32K\nyQLAqlubYBsfSfKaddY9Mcm5Sd49wTgAsPI2HO4xxkcyi/ddVNUH5//5OxsdBwBY4DnuqnpUkscl\n+Yck71rUOACwShZ5cdp/ni/fNsZwjhsAJjDFOe67qKr7JvnJJHckeetBvmbnOqtOnWpeANDdova4\nfzzJA5K8e4zxhQWNAQArZyF73El+dr787YN9wRjj9P09Pt8T3zHFpACgu8n3uKvqkUmekOTvk1wy\n9fYBYJUt4lC5i9IAYEEmDXdV3SfJBZldlPa2KbcNAEy/x31+kgcmucRFaQAwvanDveeiNHdKA4AF\nmCzcVXVaku+Li9IAYGEm+zjYGOOTSWqq7QEAd+XvcQNAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjawtewIH4YRl\nT4B77vTTT1/2FAC2mhOm2EiNMabYzsJU1WeTHJVk9yYMd+p8+alNGItpeM/68Z714z3buBOSfHOM\nceJGN7Tlw72Zqmpnkowx7C424T3rx3vWj/dsa3GOGwAaEW4AaES4AaAR4QaARoQbABpxVTkANGKP\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhTlJV31lVv1dVX6yqW6tqd1W9qaoeuOy5cWdV\n9aCqenZV/XlVXVNVN1fVN6rqA1X1M1Xle7qJqrqgqsb837OXPR/2r6qeWFXvqKovzX8/fqmqLq2q\nH1r23FbV2rInsGxV9bAkf5Pk2CR/kdnfmz0jyQuSPK2qzhpjfGWJU+TOzk/yW0m+lOT9ST6f5Lgk\nz0jy1iQ/WFXnD3cW2tKq6qFJfi3JTUnuv+TpsI6qenmS1yW5IclfZvZz9+Akj05yTpJLlja5Fbby\nd06rqvcmeWqSC8cYv7bX4/89yc8n+e0xxnOXNT/urKrOTXJEkneNMe7Y6/GHJPlwkocm+bExxjuW\nNEUOoKoqyf9KcmKSP0vy4iTPGWO8dakT406q6vwkf5zkr5I8Y4xx4z7r7zXG+PZSJrfiVvqwYlWd\nlFm0dyf5jX1WvyrJt5JcUFVHbPLUWMcY431jjHfuHe35419O8pb5l+ds+sS4Jy5Mcm6SZ2X2M8YW\nMz/l9MYk/5TkJ/aNdpKI9vKsdLgz++WRJJfuJwQ3Jrkyyf2SPG6zJ8Yh2fOL5LalzoJ1VdVpSd6Q\n5M1jjCuWPR/W9YTMjohckuRrVfXDVfWSqnpBVT1+yXNbeat+jvsR8+VV66y/OrM98lOSXLYpM+KQ\nVNVakp+af/meZc6F/Zu/Rxdndl3CS5c8He7eY+fL65LsSvI9e6+sqisyOyX1j5s9MexxHz1ffmOd\n9Xsef8AmzIWNeUOSRyW5ZIzx3mVPhv16ZWYXNT1zjHHzsifD3Tp2vnxukvsm+f4kR2b2M/beJE9K\n8ifLmRqrHu4Dqflyta/g2+Kq6sIkL8rsEwEXLHk67EdVnZHZXvavjDE+uOz5cECHz5eV2Z71ZWOM\nm8YYf5fk6Un+PsnZDpsvx6qHe88e9dHrrD9qn+exxVTV85O8Ocknkjx5jPHVJU+Jfex1iPyqJK9Y\n8nQ4OF+bL68dY3x07xXzoyV7jmqdsamzIolwf3q+PGWd9SfPl+udA2eJquqFSX49ycczi/aXlzwl\n9u/+mf2MnZbklr1uujIy+/RGkvzu/LE3LW2W7G3P78avr7N+T9jvuwlzYR+rfnHa++fLp1bVYft8\nLvjIJGcluTnJh5YxOdZXVS/J7Lz2R5I8ZYxxw5KnxPpuTfK2ddbtyOy89wcyi4XD6FvDFZl9OuPk\nqvqOMcY/77P+UfPl7k2dFUlWPNxjjM9U1aWZXTn+/Mzu5LTHazK70cdvjzF81nQLqapXJHltkp1J\nnurw+NY2P7S631uaVtWrMwv3H7gBy9Yxxrihqv4oyX/M7KLCl+9ZV1VPSfIDmZ1C9AmOJVjpcM89\nL7Nbnl5UVecl+WSSM5M8ObND5C9b4tzYR1X9dGbRvj3JXye5cHYjrjvZPcZ4+yZPDbabX8jsd+HL\nqupJmd2Z8PjMLk67PbO73a13KJ0FWvlwz/e6H5NZDJ6W5Icyux/vRUleY29uyzlxvjw8yQvXec7l\nSd6+KbOBbWqMcX1VnZnZ3vbTM7sR1Y1J3pXk9WMMpxCXZOXvVQ4Anaz6VeUA0IpwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\nyP8H5V731ilfosYAAAAASUVORK5CYII=\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c3a8f98>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"89d155ea29064caf9a6b1ad8184988ce": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"89ef17f3a45246f881b8f50e0f7105c6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_ae4301bed20d484fafbdae495f062695", | |
"max": 3, | |
"style": "IPY_MODEL_7c49195e739c4235aca5c433a889cfd4", | |
"value": 1 | |
} | |
}, | |
"89f14b2e51d946a1953fcacfef1fef9d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_765469fad0ce44fb8164602d76bf2f12", | |
"max": 7, | |
"style": "IPY_MODEL_cc746b87667743d2bede11b9083dd774", | |
"value": 2 | |
} | |
}, | |
"89fdc60033c046ed9aa7ba7c306c19b7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8a0ae48bc71546589a41e198cebedbe1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_6f3557b366b24053b16b76ec2916abf3", | |
"IPY_MODEL_9a1151f25a7247fcbd8e097efc8b49a7", | |
"IPY_MODEL_0849f93e699d43cd8f01228b24a461d3", | |
"IPY_MODEL_602ecd0e95b641a898b1a64a91630013" | |
], | |
"layout": "IPY_MODEL_ecc8c94a791f41838cd9ed091ad8286c" | |
} | |
}, | |
"8a539da523f14b3182d5a146fae00ccd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8a71e82eba0240da9d0c187c35b11607": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "i", | |
"layout": "IPY_MODEL_311ca0f80b07454e96bdd59df5205a95", | |
"max": 63, | |
"style": "IPY_MODEL_9b4c56bf449f49d586caad3753639a22", | |
"value": 29 | |
} | |
}, | |
"8aaa40e76617454692e09813e3b7c51f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "cj", | |
"layout": "IPY_MODEL_0fcf23c58f164f83a1db0d13046f2490", | |
"max": 7, | |
"style": "IPY_MODEL_a68ef487697a473f8a76d93369d0952b", | |
"value": 7 | |
} | |
}, | |
"8ab391f7f14a4b158a291c8001fbc9f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8ab42877eacc4552acf03938fd5f6726": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8adad0beaa1d44619a21b9b017503e46": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8affb455707648e9939133a95dd93eee": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8b661908c6604076aa0ac4651ccd851b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8b8d7ae8fad149f19bdbf9985df344d4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8ba1ee80220541999d12c96416062030": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_1d8defcc17c1468fa31f0ad31a4170c5", | |
"IPY_MODEL_7c72d534224d4aaaae112e631065c1a9", | |
"IPY_MODEL_e73d9b362fdf4c86a182a82924fb9183", | |
"IPY_MODEL_5697af953301464b9f795f22f4a7a623" | |
], | |
"layout": "IPY_MODEL_b5131e6bcd414affbe2cf747259f48d3" | |
} | |
}, | |
"8bebcb8c4b514642a74a96dcc19e194b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_4a16dc3b88d243a5a13aecd4beb6393d", | |
"max": 7, | |
"style": "IPY_MODEL_2f4a589b7ff048f8971a02397a3d5880", | |
"value": 3 | |
} | |
}, | |
"8bf9b641fccc4549b53d848e29729af8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8c55081815574d7e951183677458ced9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8c55b63d23b6457081b01065d05fb67e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8c60b4a5db634b4c9c426bacc21a9d8a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8c88ad114fcb4060b2e20154c2ce0e88": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_30064a6eba374f66aa5250d8f48da0e1", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(0, 0, 63, 1)" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"8c9d57e9a4d14b18a25f076f383ced03": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8cd3b0dea7c14ac5872011419d4db46d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8ce6d26ef476485a910c947d1a9ac02c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8d12187f246f4a87bdcea5c24265beb7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8d3a993c4e314b25adf5ceda42b88382": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8d3e1ec102bf4ac6a187b57e01091f24": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8d728bd935164b93b8f4862db19c6f21": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_e846120505894151a83322586fa6e23d", | |
"style": "IPY_MODEL_efb26d722184423c9f397d1ae42fb904" | |
} | |
}, | |
"8d852564c0b240609d26b3acfd8af106": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8da24f1144e84e66ba6b6d51b0e98b16": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_aa1fed2fd340435097631ba422c60853", | |
"max": 7, | |
"style": "IPY_MODEL_f172473ee04448a09385b4203e7a6410", | |
"value": 4 | |
} | |
}, | |
"8dcc47de33874f1fbe3ad4bc0811ce8a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8dfb2c70c5d44532839856e3160fd57d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8dfccf8822f54faaa7cdf5100f8bd065": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8f5fc23e8a774a2fbf01a2eaf5690a75": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8fa2a6412a8d44728385fba0e0b03ffd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_c593214a8af04e9589b1c540eb171311", | |
"max": 7, | |
"style": "IPY_MODEL_1eff752eed464a08a2effb1116ccf5cd", | |
"value": 1 | |
} | |
}, | |
"8fefa82b04b647baaa6d26b042ad2d16": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_4670fcc822e7470c845a3a813f568f15", | |
"max": 7, | |
"style": "IPY_MODEL_a731f02213bf4d9d84aa8be5fb594365", | |
"value": 3 | |
} | |
}, | |
"90549046fbc648698c1b33dda9934a82": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"905696e7f41a46bc8ac18c5f2ad3c2dc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"90d8437102164e40a27b547cd23b722b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_73451e439732494088726f3d6cbf3bc5", | |
"max": 3, | |
"style": "IPY_MODEL_f8bbea9fda2a45ad97776d260ea69edb", | |
"value": 2 | |
} | |
}, | |
"912150fbe0af4defb627fd46f7e390aa": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"912ad108155f48189f46058aa8007ced": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_401d0db14d8c4e6d8b6c1cede49c89be", | |
"max": 7, | |
"style": "IPY_MODEL_83d6aa92bf8a47ee87530b404274277c", | |
"value": 3 | |
} | |
}, | |
"913d5e8d3c224d9188485e0180f46168": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_fed7b3fef36c46479d4017c289deeb84", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWJJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInAKw8e9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbDjcVfW4qhrX8nHFFJMFgFW3bYJtfDrJi9dZd/8kJyZ57wTj\nAMDK23C4xxifzizeV1NVn5j/5+s3Og4AsMBz3FV11yT3TvL/krxnUeMAwCpZ5MVp/2W+fNMYwzlu\nAJjAFOe4r6aqDkryO0muTPLGvXzNjnVWHTXVvACgu0Xtcf9Wkpsmee8Y45sLGgMAVs5C9riTPGm+\nfN3evmCMccyenp/viW+fYlIA0N3ke9xVdZck903yrSSnTb19AFhlizhU7qI0AFiQScNdVTdIckpm\nF6W9acptAwDT73GfnORmSU5zURoATG/qcO+6KM2d0gBgASYLd1UdneR+cVEaACzMZG8HG2N8IUlN\ntT0A4Or8PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFty57AXrj9sifAdXfMsicAsPXcfoqNdAj3j+fL8zZh\nrKPmyy9uwlj7tZ2bN5SvWT++Zv34mm3c7fPLnm1IjTGm2M5+oap2JMkYww5jE75m/fia9eNrtrU4\nxw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqxxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqltX1V9V1b9W1WVVdV5VvaKqbrbsuXFVVXWLqnpCVb2rqr5SVZdU1Y+q6qNV9XtV5Xu6iao6\nparG/OMJy54Pe1ZV96+qd1TV+fPfj+dX1Qeq6qHLntuq6vD3uBeqqu6Q5ONJDk3yj5n9vdljkzwt\nyUOq6rgxxveWOEWu6uQkf5nk/CRnJPlGksOSPCrJG5P8ZlWdPNxZaEurqtskeXWSi5PcaMnTYR1V\n9bwkL01yYZJ/yuzn7pZJ7pHkhCSnLW1yK2zl75xWVe9P8uAkp44xXr3b8/8jyR8ked0Y48nLmh9X\nVVUnJjk4yXvGGFfu9vytknwqyW2SPHqM8Y4lTZFrUVWV5INJDk/yziTPTPLEMcYblzoxrqKqTk7y\nd0k+lORRY4yL1qy/3hjj50uZ3Ipb6cOKVXVEZtE+L8lfrFn9wiQ/SXJKVR28yVNjHWOMD48x3r17\ntOfPfzvJa+cPT9j0iXFdnJrkxCSPz+xnjC1mfsrp5Ul+muS310Y7SUR7eVY63Jn98kiSD+whBBcl\n+ViSGya592ZPjH2y6xfJ5UudBeuqqqOTvCzJK8cYZy17PqzrvpkdETktyQ+q6mFV9ayqelpV3WfJ\nc1t5q36O+87z5TnrrP9yZnvkRyY5fVNmxD6pqm1Jfnf+8H3LnAt7Nv8avTWz6xKes+TpcM3uOV9+\nJ8nOJHfbfWVVnZXZKanvbvbEsMd9k/nyR+us3/X8TTdhLmzMy5LcNclpY4z3L3sy7NELMruo6XFj\njEuWPRmu0aHz5ZOTHJTk15PcOLOfsfcneUCSv1/O1Fj1cF+bmi9X+wq+La6qTk3yjMzeEXDKkqfD\nHlTVsZntZf/ZGOMTy54P1+rA+bIy27M+fYxx8Rjj80kemeRbSY532Hw5Vj3cu/aob7LO+kPWfB5b\nTFU9Nckrk5yd5IFjjO8veUqssdsh8nOSPH/J02Hv/GC+PHeM8ZndV8yPluw6qnXsps6KJML9pfny\nyHXW32m+XO8cOEtUVU9P8pokn8ss2t9e8pTYsxtl9jN2dJJLd7vpysjs3RtJ8ob5c69Y2izZ3a7f\njT9cZ/2usB+0CXNhjVW/OO2M+fLBVXXAmvcF3zjJcUkuSfLJZUyO9VXVszI7r/3pJA8aY1y45Cmx\nvsuSvGmdddszO+/90cxi4TD61nBWZu/OuFNV/coY42dr1t91vjxvU2dFkhUP9xjjq1X1gcyuHH9q\nZndy2uXFmd3o43VjDO813UKq6vlJXpJkR5IHOzy+tc0Pre7xlqZV9aLMwv3XbsCydYwxLqyqtyf5\nT5ldVPi8Xeuq6kFJfiOzU4jewbEEKx3uuadkdsvTV1XVSUm+kOReSR6Y2SHy5y5xbqxRVY/NLNpX\nJPlIklNnN+K6ivPGGG/Z5KnB/uYPM/td+NyqekBmdya8XWYXp12R2d3u1juUzgKtfLjne92/llkM\nHpLkoZndj/dVSV5sb27LOXy+PDDJ09f5nDOTvGVTZgP7qTHGBVV1r8z2th+Z2Y2oLkryniR/MsZw\nCnFJVv5e5QDQyapfVQ4ArQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN/H/8CB2iR7v22gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49824023c8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"91c00c7f8c4e40f68c8dc0bb2f4a2227": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"91cc393a05bb4f8486df50e18280aa5c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9225367327fd464db45ffb13bdcbee64": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"922e5d3ecb7e44c89bf2c0ea6076c9d9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9244731a913c48aba255c0d11a4723cf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"926ba3b9961a4db0845111fa55302daa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_1a06e0e6ef224e3c9e8ecaa1a006ecf7", | |
"max": 7, | |
"style": "IPY_MODEL_76e712d407cf4c02a3e4f471de25a056", | |
"value": 4 | |
} | |
}, | |
"926ea96d477043d084bfa2cd04ed4d59": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9271edebcf8e4e059590f12b3e11e3e2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_9850c6832a0544e6b84bbb68ce320926", | |
"max": 7, | |
"style": "IPY_MODEL_ab83e0bca6044d12bc5c1a9cd1642b75", | |
"value": 6 | |
} | |
}, | |
"928eeee2a51c4909b320fc570d799797": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9295b473574d4125b590d304c3c32875": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"nn", | |
"ee", | |
"ss", | |
"ww" | |
], | |
"description": "d", | |
"index": 1, | |
"layout": "IPY_MODEL_3e1a224c5513438d8e3f8d91a3859d0d", | |
"style": "IPY_MODEL_2589f38157b145dcb22d0e0c4a27ea2f" | |
} | |
}, | |
"92f0b217742e4c14a3d4a5bdda1f0919": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"92fa31d77fb5479a9e8ec7970e5d78b4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9318a3c2d3224b63ac7c798a79d2fcdb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9321167707fd405a984dcdee7072ca29": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"93460bb5e7fd4b6d8db0f0d03f02ea61": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"93827a6079b548d284c64d054592d620": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"93899163802e473da64c074075425c7c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_7e00014069dc4edc9de0ef780619b625", | |
"IPY_MODEL_d27f3343c2764abd94ca3c79097086c7", | |
"IPY_MODEL_d87d3d1ca3e7498092fa43181fbf2fbc", | |
"IPY_MODEL_802af33bb3d44d56853628676e0fa543", | |
"IPY_MODEL_5fe035567f37416a8bc15030370fe2b6" | |
], | |
"layout": "IPY_MODEL_cdbea7e658b14358ad671a390925757c" | |
} | |
}, | |
"940139b30e1643af9caef61f73d07f5b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_e87806f443c443408f29b1eea8332ab7", | |
"max": 7, | |
"style": "IPY_MODEL_14b36ffa92d54a8f80e090c2a9280ca9", | |
"value": 2 | |
} | |
}, | |
"94256584fff04db29d02736831e2ae24": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_ca8e135f32724176b4bce8082061587b", | |
"max": 7, | |
"style": "IPY_MODEL_6bdf61b7fc2f4bb7acc0060fc558256f", | |
"value": 1 | |
} | |
}, | |
"94578e031aca4d7ca6a9741f79c42f02": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"945b2306da054feaa5c5c9320c122e7e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"949e719912b84fd1ac7bb159aa52eb3e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_2d16fba751e847b580b09dcde9857808", | |
"max": 7, | |
"style": "IPY_MODEL_d3a5861d9969493ba1edc0b6ac9f755c", | |
"value": 3 | |
} | |
}, | |
"94b3d2a2734b4e9397b4a63a34c74582": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "t", | |
"layout": "IPY_MODEL_ce794e9f6c5543b2a7f6e78e0dcba634", | |
"max": 63, | |
"style": "IPY_MODEL_831702e251174a628ba066c0067bdbbe", | |
"value": 63 | |
} | |
}, | |
"94cda22269b745708b054cb991f8c65a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"950cd9e290ea4a2c841f7cc4ad608e1f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"95245cb4f462485f9100eb2342b11c05": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_5bfc156673ea46b28721e42ee0a19f30", | |
"max": 7, | |
"style": "IPY_MODEL_c2ea8358b6c94c898f69dcd376a0daf1", | |
"value": 4 | |
} | |
}, | |
"95246268f3ed444fbfd73affdfe663d2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"952bfb1499f44555ac75dc246052ba8f": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_169e0e617f2f4240932810d086a96fd9", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF6lJREFUeJzt3XuQZnV95/HPFyYawk3FUsoLXhlx\ngxUFwwh4RQWju1vqylqVDVErmvUWvFaZ9YpJudHKZqNCNppoQmL2D826bioRhWgo8QpV46rrdfAy\nEg2ogCAQRGV++8fzzO7QTDOT6dP9zJfn9arqOtPPefr8flXNzJvfOadP1xgjAEAPByx6AgDA3hNu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEY2LXoCe1JV30pyWJLtC54KAOyr+yb50Rjjfms90H4f7iSHHZAD73JwDr3LoicCAPvihlyX\nHbl5kmN1CPf2g3PoXbbUExY9DwDYJxePj+S6XLN9imO5xg0AjQg3ADQi3ADQiHADQCPCDQCNCDcA\nNCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI\nZOGuqntV1Z9V1T9V1U1Vtb2q3lpVd55qDABYdpumOEhVPSDJp5LcLcnfJPlqkhOSvCTJk6rq5DHG\nVVOMBQDLbKoV93/LLNpnjjGeOsb47THGKUn+MMmDkrxponEAYKmtOdxVdf8kpybZnuSPVux+Q5Ib\nkpxRVQevdSwAWHZTrLhPmW8vGGPs2HXHGOO6JJ9M8gtJHjHBWACw1Ka4xv2g+XbbKvsvzWxFvjnJ\nR1c7SFVtXWXXMfs+NQC4fZlixX34fHvtKvt3vn6nCcYCgKU2yV3le1Dz7bitN40xjt/tF89W4sdN\nPSkA6GiKFffOFfXhq+w/bMX7AIB9NEW4vzbfbl5l/9Hz7WrXwAGAvTRFuC+cb0+tqlscr6oOTXJy\nkhuTfGaCsQBgqa053GOMbyS5IMl9k7xoxe43Jjk4yV+OMW5Y61gAsOymujnthZk98vTtVfX4JF9J\nsiXJ4zI7Rf6aicYBgKU2ySNP56vuhyc5N7NgvyLJA5K8PcmJnlMOANOY7MfBxhj/mOQ5Ux0PALg1\nv48bABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFJwl1V\nz6iqs6vq41X1o6oaVfVXUxwbAPj/Nk10nNcm+aUk1yf5TpJjJjouALCLqU6VvyzJ5iSHJXnBRMcE\nAFaYZMU9xrhw55+raopDAgC74eY0AGhkqmvca1ZVW1fZ5Xo5AMxZcQNAI/vNinuMcfzuXp+vxI/b\n4OkAwH7JihsAGhFuAGhEuAGgEeEGgEYmuTmtqp6a5KnzT4+cb0+sqnPnf75yjPHKKcYCgGU21V3l\nD03yrBWv3X/+kSTfTiLcALBGk5wqH2OcNcao2/i47xTjAMCyc40bABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJE1h7uqjqiq51bVB6rq61V1Y1VdW1WfqKrf\nqCr/cwAAE9k0wTFOT/LHSS5PcmGSy5LcPcnTk7wrya9U1eljjDHBWACw1KYI97Yk/zbJB8cYO3a+\nWFWvTnJJkn+XWcTfP8FYALDU1nwae4zxD2OMv9012vPXr0jyjvmnj13rOADA+t+c9tP59mfrPA4A\nLIV1C3dVbUry6/NPP7xe4wDAMpniGvdq3pzk2CTnjTHO39Obq2rrKruOmXRWANDYuqy4q+rMJK9I\n8tUkZ6zHGACwjCZfcVfVi5K8LcmXkzx+jHH13nzdGOP4VY63Nclx080QAPqadMVdVS9Nck6SLyZ5\n3PzOcgBgIpOFu6peleQPk3wus2h/f6pjAwAzk4S7ql6X2c1oWzM7PX7lFMcFAG5pzde4q+pZSX4n\nyc1JPp7kzKpa+bbtY4xz1zoWACy7KW5Ou998e2CSl67yno8lOXeCsQBgqU3xyNOzxhi1h4/HTjBX\nAFh6fuUmADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI5sWPYG9cfRDbsz5F3xu0dMAGjrtHg9d9BRgUlbc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxa9ASA5bHtqiPzqcs25/qf3DGH3OGmnHTUtmw+4opFTwta\nmSTcVfWWJA9PsjnJXZPcmOTbSf5XknPGGFdNMQ7Q0ycvOzpnX3xaLvnuA2+174R7fj2/teX8nHzU\npQuYGfQz1anylyU5OMnfJ3lbkv+e5GdJzkryhaq690TjAM2894tb8qwPvGAe7bFi78gl331gnvWB\nF+R9X9qyiOlBO1OdKj9sjPHjlS9W1ZuSvDrJf0rywonGApr45GVH5zUffWZ2jJ1rhFrxjtnnO8YB\nefVHnpl7Hnq1lTfswSQr7t1Fe+598+3RU4wD9HL2xaftEu3btmMckHMuPm2dZwT9rfdd5f9mvv3C\nOo8D7Ge2XXXkKqfHVzNy8XcfmG1XHbme04L2Jr2rvKpemeSQJIdndrPaIzOL9pv34mu3rrLrmMkm\nCGyYT122ef6nlafHV1P/7+vcaQ6rm/rHwV6Z5O67fP7hJM8eY/xg4nGA/dz1P7njhn4dLItJwz3G\nODJJquruSU7KbKX9v6vqX48xPruHrz1+d6/PV+LHTTlPYP0dcoebNvTrYFmsyzXuMcb3xhgfSHJq\nkiOS/OV6jAPsv046atv8T3t/jfuWXwfszrrenDbG+HaSLyf5xaq663qOBexfNh9xRU6459fzL7nG\nveWeX3d9G/ZgI55Vfo/59uYNGAvYj/zWlvNzQO3Yq/ceUDvy4i3nr/OMoL81h7uqjqmqW/38RlUd\nMH8Ay92SfGqM8cO1jgX0cvJRl+ZNj3/vLvG+9ZPTklm0//MT3uvhK7AXprg57UlJfr+qLkryjSRX\nZXZn+WOS3D/JFUmeN8E4QEPPPPbi3Ouwq3POxafl4ls9q3x2evzFnlUOe22KcH8kyZ8kOTnJLyW5\nU5IbkmxL8p4kbx9jXD3BOEBTJx91aU4+6lK/HQwmsOZwjzG+mORFE8wFuJ3bfMQVQg1rtBE3pwEA\nExFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaGTToiewNy79PwfltHs8dNHTAICFs+IGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoJF1C3dVnVFVY/7x3PUaBwCWybqEu6runeTsJNevx/EBYFlNHu6qqiR/nuSqJO+Y+vgA\nsMzWY8V9ZpJTkjwnyQ3rcHwAWFqThruqHpzkzUneNsa4aMpjAwDJpqkOVFWbkrwnyWVJXr0PX791\nlV3HrGVeAHB7Mlm4k7w+ycOSPHKMceOExwUA5iYJd1WdkNkq+w/GGJ/el2OMMY5f5dhbkxy3hukB\nwO3Gmq9x73KKfFuS1615RgDAqqa4Oe2QJJuTPDjJj3d56MpI8ob5e/50/tpbJxgPAJbWFKfKb0ry\n7lX2HZfZde9PJPlakn06jQ4AzKw53PMb0Xb7SNOqOiuzcP/FGONdax0LAJadXzICAI0INwA0sq7h\nHmOcNcYop8kBYBpW3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNTBLuqtpeVWOVjyumGAMASDZNeKxrk7x1N69fP+EYALDUpgz3NWOMsyY8HgCwgmvcANDI\nlCvuO1bVryU5KskNSb6Q5KIxxs0TjgEAS23KcB+Z5D0rXvtWVT1njPGxCccBgKU1Vbj/PMnHk3wp\nyXVJ7p/kxUl+M8mHqurEMcbnb+sAVbV1lV3HTDRHAGhvknCPMd644qUvJnl+VV2f5BVJzkrytCnG\nAoBlNuWp8t15R2bhfvSe3jjGOH53r89X4sdNPC8AaGm97yr//nx78DqPAwBLYb3DfeJ8+811HgcA\nlsKaw11Vv1hVd9nN6/dJcs78079a6zgAwDTXuE9P8ttVdWGSb2V2V/kDkjwlyc8nOS/Jf5lgHABY\nelOE+8IkD0rysMxOjR+c5Jokn8js57rfM8YYE4wDAEtvzeGeP1zFA1YAYAN4VjkANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1MGu6qelRVvb+qLq+q\nm+bbC6rqyVOOAwDLatNUB6qq1yb53SRXJvm7JJcnuWuShyV5bJLzphoLAJbVJOGuqtMzi/ZHkjx9\njHHdiv0/N8U4ALDs1nyqvKoOSPKWJP+c5FdXRjtJxhg/Xes4AMA0K+6Tktwvyf9I8sOqekqSY5P8\nOMklY4xPTzAGAJBpwv3L8+33knw2yUN23VlVFyV5xhjjB7d1kKrausquY9Y8QwC4nZjirvK7zbfP\nT3JQkickOTSzVff5SR6d5K8nGAcAlt4UK+4D59vKbGX9+fnnX6qqpyXZluQxVXXibZ02H2Mcv7vX\n5yvx4yaYJwC0N8WK+4fz7Td3iXaSZIxxY2ar7iQ5YYKxAGCpTRHur82316yyf2fYD5pgLABYalOE\n+6IkP0tydFXdYTf7j51vt08wFgAstTWHe4xxZZL3Jjk8yet33VdVT0xyWpJrk3x4rWMBwLKb6pGn\nL0+yJclrqurRSS5Jcp8kT0tyc5LnjTFWO5UOAOylScI9xvh+VW1J8trMYv2IJNcl+WCS3xtjfGaK\ncQBg2U32S0bGGFdntvJ++VTHBABuye/jBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhkzeGuqmdX1djDx81TTBYAlt2mCY7xuSRvXGXfo5KckuRDE4wDAEtv\nzeEeY3wus3jfSlV9ev7HP1nrOADAOl7jrqpjkzwiyXeTfHC9xgGAZbKeN6f9x/n23WMM17gBYAJT\nXOO+lao6KMmvJdmR5F17+TVbV9l1zFTzAoDu1mvF/e+T3CnJh8YY/7hOYwDA0lmXFXeS35xv37m3\nXzDGOH53r89X4sdNMSkA6G7yFXdV/askJyX5TpLzpj4+ACyz9ThV7qY0AFgnk4a7qn4+yRmZ3ZT2\n7imPDQBMv+I+Pcmdk5znpjQAmN7U4d55U5onpQHAOpgs3FX14CSPjJvSAGDdTPbjYGOMrySpqY4H\nANya38cNAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8IN\nAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADRSY4xFz+E2VdVVB+TAuxycQxc9FQDYJzfkuuzIzVePMY5Y\n67E2TTGhdfajHbk51+Wa7Rsw1jHz7Vc3YCym4XvWj+9ZP75na3ffJD+a4kD7/Yp7I1XV1iQZYxy/\n6Lmwd3zP+vE968f3bP/iGjcANCLcANCIcANAI8INAI0INwA04q5yAGjEihsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4U5SVfeqqj+rqn+qqpuqantVvbWq7rzouXFLVXVEVT23qj5QVV+vqhur\n6tqq+kRV/UZV+W+6iao6o6rG/OO5i54Pu1dVj6qq91fV5fN/Hy+vqguq6smLntuy6vD7uNdVVT0g\nyaeS3C3J32T2+2ZPSPKSJE+qqpPHGFctcIrc0ulJ/jjJ5UkuTHJZkrsneXqSdyX5lao6fXiy0H6t\nqu6d5Owk1yc5ZMHTYRVV9dokv5vkyiR/l9nfu7smeViSxyY5b2GTW2JL/+S0qjo/yalJzhxjnL3L\n6/81ycuSvHOM8fxFzY9bqqpTkhyc5INjjB27vH5kkkuS3DvJM8YY71/QFNmDqqokf5/kfkn+Z5JX\nJnneGONdC50Yt1BVpyd5X5KPJHn6GOO6Fft/bozx04VMbskt9WnFqrp/ZtHenuSPVux+Q5IbkpxR\nVQdv8NRYxRjjH8YYf7trtOevX5HkHfNPH7vhE+Nf4swkpyR5TmZ/x9jPzC85vSXJPyf51ZXRThLR\nXpylDndm/3gkyQW7CcF1ST6Z5BeSPGKjJ8Y+2fkPyc8WOgtWVVUPTvLmJG8bY1y06PmwqpMyOyNy\nXpIfVtVTqupVVfWSqjpxwXNbest+jftB8+22VfZfmtmKfHOSj27IjNgnVbUpya/PP/3wIufC7s2/\nR+/J7L6EVy94Oty2X55vv5fks0kesuvOqroos0tSP9joiWHFffh8e+0q+3e+fqcNmAtr8+YkxyY5\nb4xx/qInw269PrObmp49xrhx0ZPhNt1tvn1+koOSPCHJoZn9HTs/yaOT/PVipsayh3tPar5d7jv4\n9nNVdWaSV2T2EwFnLHg67EZVnZDZKvsPxhifXvR82KMD59vKbGX90THG9WOMLyV5WpLvJHmM0+aL\nsezh3rmiPnyV/YeteB/7map6UZK3JflykseNMa5e8JRYYZdT5NuSvG7B02Hv/HC+/eYY4/O77pif\nLdl5VuuEDZ0VSYT7a/Pt5lX2Hz3frnYNnAWqqpcmOSfJFzOL9hULnhK7d0hmf8cenOTHuzx0ZWT2\n0xtJ8qfz1966sFmyq53/Nl6zyv6dYT9oA+bCCst+c9qF8+2pVXXAip8LPjTJyUluTPKZRUyO1VXV\nqzK7rv25JE8cY1y54CmxupuSvHuVfcdldt37E5nFwmn0/cNFmf10xtFVdYcxxk9W7D92vt2+obMi\nyZKHe4zxjaq6ILM7x1+U2ZOcdnpjZg/6eOcYw8+a7keq6nVJfifJ1iSnOj2+f5ufWt3tI02r6qzM\nwv0XHsCy/xhjXFlV703yHzK7qfC1O/dV1ROTnJbZJUQ/wbEASx3uuRdm9sjTt1fV45N8JcmWJI/L\n7BT5axY4N1aoqmdlFu2bk3w8yZmzB3HdwvYxxrkbPDW4vXl5Zv8WvqaqHp3Zkwnvk9nNaTdn9rS7\n1U6ls46WPtzzVffDM4vBk5I8ObPn8b49yRut5vY795tvD0zy0lXe87Ek527IbOB2aozx/araktlq\n+2mZPYjquiQfTPJ7YwyXEBdk6Z9VDgCdLPtd5QDQinADQCPCDQCNCDcANCLcANCIcANAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI/wWQl4TQuM42kgAAAABJ\nRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49823f2a58>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"9553d6c064ee481f934400d71d2d200e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_54bd59ba5b1c49f6a973321b1812e442", | |
"max": 3, | |
"style": "IPY_MODEL_d3ee9fbeb0504fd6b5e73f5e3455f2fd", | |
"value": 3 | |
} | |
}, | |
"9562c98d956f466584227bab002de414": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9569bc7dedd242b2a2f44105996485f8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"958ff74913304bafb0df9ec0eff7ea07": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_45756e84e9204ae297807fed73090540", | |
"IPY_MODEL_fedd61d598e7467c9b9afe47d8027809" | |
], | |
"layout": "IPY_MODEL_db611c82416a44f29f9165081d8a2cbb" | |
} | |
}, | |
"95a7c2b98acc4b328ad037b1bfb41120": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"95d3ece0b1674c0788c658dc2f9c48d8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9619eb25e18a4c639e9e7f14a9bc3d32": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"96265dea24c94d499752cb187262e232": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9640315857244f72987bb17d7c07a442": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"964f8bd2e97c4701b56d8ee0b30c483d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"966672946706467e9764f5e9ddd27b7e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DropdownModel", | |
"state": { | |
"_options_labels": [ | |
"8192", | |
"288234843186200593" | |
], | |
"description": "q", | |
"index": 1, | |
"layout": "IPY_MODEL_b1bb9348632c408f8e7e12fa2a0720b8", | |
"style": "IPY_MODEL_a95a486f8fa44f9f9e76dd1ecf1dc276" | |
} | |
}, | |
"96f4581f27814806ad144e96f2e4e7d7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"97124d0a9f314eb486a054bd281944e0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_1f7c51f5f91e4a4eadb2833a694a68b6", | |
"max": 7, | |
"style": "IPY_MODEL_c81c82909c844ebc93745e708fc176e8", | |
"value": 1 | |
} | |
}, | |
"971328fba43d47cb9f5d78def1b5548f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"971d9c96b0514c539115fac99bc8b031": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_ec41ce8cfef14a2f8b5ffad570ee3691", | |
"max": 7, | |
"style": "IPY_MODEL_9fa386ae08ad47c3926a6a1b88aed534", | |
"value": 1 | |
} | |
}, | |
"9745ae69b5a34945855c9de7e705996a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_6181abb2dc024adc900877d2a33286fe", | |
"max": 7, | |
"style": "IPY_MODEL_0c52aba3dac04b14a4949af91656bec3", | |
"value": 3 | |
} | |
}, | |
"974be0ea5a644c89934b47c4993447e3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"97777be91276419c801567df7e2c73bb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_ee60453494114407b734636d7f7083a0", | |
"IPY_MODEL_1fb2ceeaa53146528e3a1378f6866bec", | |
"IPY_MODEL_e002f4f7d07d4062bb57e13a1a6c8c9f", | |
"IPY_MODEL_b5b37e76cae04e8e871e3bb5ab47a62c" | |
], | |
"layout": "IPY_MODEL_5c9bfac3b4d2484cbcc35fcdbec3df28" | |
} | |
}, | |
"979201da9f5342a284e45ee333af6eb3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"97af6a17a1e14aa2ab5ec81b1290c715": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_e6a38f949a7a43bb86eb6813f9beadce", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGDxJREFUeJzt3X+wZ3V93/HXe10NiIAKo05HQbQi\nVCwRDAL+xohG245a6TipRJ1oarVBE50x9bfJZGImSaNiGk00IbGdMUmtzSQioIYRDTrOLBV/i1EX\ntKIIKAFk/QGf/vH9rrMse2HZe777ve/7fTxmdg73e+49n8/O7t0nn3PO99waYwQA6GHLsicAAOw9\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoZOuyJ3BHqurrSQ5Jsn3JUwGAffXAJP88xjhqvQfa8OFOcsiByb2PTe697IlM7ZJlTwDm\nTlj2BBbI9xmbTYdwbz82ufe2Zc9iAWrZE4C5zfj9tZPvMzaQ7VMcxDVuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARiYLd1Xdv6r+rKq+VVU/rKrtVfWWqrrXVGMAwKrbOsVBqurBSS5Ocp8kf5vkS0lOSvKy\nJE+tqkePMa6ZYiwAWGVTrbj/e2bRPmuM8Ywxxm+MMU5L8odJHprktycaBwBW2rrDXVUPSnJ6ku1J\n/mi33W9IcmOSM6vqoPWOBQCrbooV92nz7QVjjFt23THGuD7JPya5e5KTJxgLAFbaFNe4HzrfXrbG\n/q9ktiI/OslH1jpIVW1bY9cx+z41ANhcplhxHzrfXrfG/p2v33OCsQBgpU1yV/kdqPl23N4njTFO\n3OMXz1biJ0w9KQDoaIoV984V9aFr7D9kt88DAPbRFOH+8nx79Br7HzLfrnUNHADYS1OE+8L59vSq\nutXxqurgJI9OclOST04wFgCstHWHe4zx1SQXJHlgkpfutvtNSQ5K8pdjjBvXOxYArLqpbk57SWaP\nPH1bVT0pyReTPCrJEzM7Rf6aicYBgJU2ySNP56vuRyY5J7NgvyLJg5O8LckpnlMOANOY7O1gY4xv\nJHnBVMcDAG7Lz+MGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABrZuuwJ7I1LktSyJwGbmO8v6MOKGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoJGty54AcFt3PfyIHHDk8dlyt7vnlh/9IDsuvzQ/vvqKZU8L2AAmCXdVPTvJ\n45P8bJLjkxyc5H+OMZ47xfFhVRxw5PE59NTn5IAjHn6bfTuu+Gyuu/i92XH5pUuYGbBRTLXifm1m\nwb4hyTeTHDPRcWFl3ONfPzn3fsqvprZsyRgjVfXTfWOMHHDEw/Mz939Yrjnv7Nz42Q8tcabAMk11\njfvXkhyd5JAk/3miY8LKOODI438a7SS3ivauH9eWLTnsqb+aA448fr/PEdgYJgn3GOPCMcZXxhhj\niuPBqjn01Of8NNp3pLZsyaGnPmfBMwI2KneVw5Ld9fAjcsARD8/e/n/vztPmdz38iAXPDNiINsxd\n5VW1bY1drpezqe087b376fG17Py8A4483p3msIKsuGHJttzt7vv164DeNsyKe4xx4p5en6/ET9jP\n04H95pYf/WC/fh3QmxU3LNnO92XfmWvcu34dsFqEG5bsx1dfkR1XfPZOXePeccVnXd+GFSXcsAFc\nd/F7M265Za8+d9xyS667+L0LnhGwUQk3bAA7Lr80155/9k/jvftp850fj1tuyTXnne00OaywqZ5V\n/owkz5h/eL/59pSqOmf+31ePMV45xViwWd3wmQ/lJ9ddtcdnle88Pe5Z5cBUd5X/bJLn7fbag+a/\nkuTyJMINd2DH5Zdmx+WX+ulgwJpqoz+l1NvBANgkLlnrrc93hmvcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjWxd9gT2xglJti17EgtQy54Ad94Yy57BYpS/jdCFFTcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\n6w53VR1WVS+sqvdX1T9V1U1VdV1Vfbyqfrmq/M8BAExk6wTHOCPJHye5MsmFSa5Ict8kz0ryriS/\nUFVnjDHGBGMBwEqbItyXJfl3ST4wxrhl54tV9eokn0ry7zOL+PsmGAsAVtq6T2OPMf5hjPF3u0Z7\n/vq3k7xj/uET1jsOALD4m9N+PN/+ZMHjAMBKWFi4q2prkl+af3jeosYBgFUyxTXutbw5yXFJzh1j\nnH9Hn1xV29bYdcykswKAxhay4q6qs5K8IsmXkpy5iDEAYBVNvuKuqpcmeWuSLyR50hjj2r35ujHG\niWscb1uSE6abIQD0NemKu6penuTtST6X5InzO8sBgIlMFu6qelWSP0zy6cyifdVUxwYAZiYJd1W9\nLrOb0bZldnr86imOCwDc2rqvcVfV85L8ZpKbk3wsyVlVtfunbR9jnLPesQBg1U1xc9pR8+1dkrx8\njc/5aJJzJhgLAFbaFI88feMYo+7g1xMmmCsArDw/chMAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRrcue\nwN64JEktexKwiY1lT2CB/NvBZmPFDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajk4S7qn63qj5S\nVd+oqpuq6tqq+r9V9YaqOmyKMQCApMYY6z9I1Y+SXJLkC0muSnJQkpOTPDLJt5KcPMb4xj4ee1uS\nE9Y9SZjCBN8vG9GoWvYUFmbz/s5o6JIxxonrPcjWKWaS5JAxxo7dX6yq307y6iT/NclLJhoLAFbW\nJKfK9xTtub+ebx8yxTgAsOoWfXPav51vP7PgcQBgJUx1qjxJUlWvTHKPJIdmdn37MZlF+8178bXb\n1th1zGQTBIDmJg13klcmue8uH5+X5PljjO9OPA4ArKRJ7iq/zUGr7pvk1MxW2gcn+TdjjEv28Vju\nKmfjcFd5O5v3d0ZDk9xVvpBr3GOM74wx3p/k9CSHJfnLRYwDAKtmoTenjTEuz+y93Q+rqsMXORYA\nrIL98cjTfzHf3rwfxgKATW3d4a6qY6rqfnt4fcv8ASz3SXLxGON76x0LAFbdFHeVPzXJ71XVRUm+\nmuSazO4sf3ySByX5dpIXTTAOAKy8KcL94SR/kuTRSY5Pcs8kNya5LMl7krxtjHHtBOMAwMpbd7jH\nGJ9L8tIJ5gIA3AE/jxsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgB\noBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG\nhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFu\nAGhEuAGgkYWFu6rOrKox//XCRY0DAKtkIeGuqgckOTvJDYs4PgCsqsnDXVWV5M+TXJPkHVMfHwBW\n2SJW3GclOS3JC5LcuIDjA8DKmjTcVXVskjcneesY46Ipjw0AJFunOlBVbU3yniRXJHn1Pnz9tjV2\nHbOeeQHAZjJZuJO8PskjkjxmjHHThMcFAOYmCXdVnZTZKvsPxhif2JdjjDFOXOPY25KcsI7pAcCm\nse5r3LucIr8syevWPSMAYE1T3Jx2jyRHJzk2yY5dHroykrxh/jl/On/tLROMBwAra4pT5T9M8u41\n9p2Q2XXvjyf5cpJ9Oo0OAMysO9zzG9H2+EjTqnpjZuH+izHGu9Y7FgCsOj9kBAAaEW4AaKTGGMue\nw+3ydjA2lA3+/bKvRtWyp7Awm/d3RkOXrPXW5zvDihsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4\nAaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaCRrcue\nAJvTWPYEFqSWPYEF2ay/L9iMrLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVbW9qsYav749xRgA\nQLJ1wmNdl+Qte3j9hgnHAICVNmW4vz/GeOOExwMAduMaNwA0MuWK+2eq6rlJjkhyY5LPJLlojHHz\nhGMAwEqbMtz3S/Ke3V77elW9YIzx0QnHAYCVNVW4/zzJx5J8Psn1SR6U5L8k+ZUkH6yqU8YYl97e\nAapq2xq7jplojgDQXo0xFnfwqt9P8ook/2eM8cw7+NzbC/fdp54bi7W4v1XLVQv8flmqqmXPAFbB\nJWOME9d7kEWH+18m+UqSa8cYh+3jMbYlOWHSibFwmzRvwg2sxyThXvRd5VfNtwcteBwAWAmLDvcp\n8+3XFjwOAKyEdYe7qh5WVffew+tHJnn7/MP/sd5xAIBp7io/I8lvVNWFSb6e2V3lD07y9CQHJDk3\nye9PMA4ArLwpwn1hkocmeURmp8YPSvL9JB/P7H3d7xmLvAMOAFbIusM9f7iKB6wAwH7gWeUA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNbF32BNicatkTANikrLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4A\naGTScFfVY6vqfVV1ZVX9cL69oKqeNuU4ALCqtk51oKp6bZLfSnJ1kr9PcmWSw5M8IskTkpw71VgA\nsKomCXdVnZFZtD+c5FljjOt323/XKcYBgFW37lPlVbUlye8m+UGSX9w92kkyxvjxescBAKZZcZ+a\n5Kgk/yvJ96rq6UmOS7IjyafGGJ+YYAwAINOE++fm2+8kuSTJw3fdWVUXJXn2GOO7t3eQqtq2xq5j\n1j1DANgkprir/D7z7YuTHJjk55McnNmq+/wkj0vyNxOMAwArb4oV913m28psZX3p/OPPV9Uzk1yW\n5PFVdcrtnTYfY5y4p9fnK/ETJpgnALQ3xYr7e/Pt13aJdpJkjHFTZqvuJDlpgrEAYKVNEe4vz7ff\nX2P/zrAfOMFYALDSpgj3RUl+kuQhVXW3Pew/br7dPsFYALDS1h3uMcbVSf4qyaFJXr/rvqp6cpKn\nJLkuyXnrHQsAVt1Ujzz99SSPSvKaqnpckk8lOTLJM5PcnORFY4y1TqUDAHtpknCPMa6qqkcleW1m\nsT45yfVJPpDkd8YYn5xiHABYdTXGWPYcbpe3g7GhbPDvl31WtewZwCq4ZK23Pt8Zfh43ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI1uXPQE2p7HsCSxILXsCwMqz4gaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhk\n3eGuqudX1biDXzdPMVkAWHVbJzjGp5O8aY19j01yWpIPTjAOAKy8dYd7jPHpzOJ9G1X1ifl//sl6\nxwEAFniNu6qOS3Jykv+X5AOLGgcAVskib077T/Ptu8cYrnEDwASmuMZ9G1V1YJLnJrklybv28mu2\nrbHrmKnmBQDdLWrF/R+S3DPJB8cY31jQGACwchay4k7yK/PtO/f2C8YYJ+7p9flK/IQpJgUA3U2+\n4q6qf5Xk1CTfTHLu1McHgFW2iFPlbkoDgAWZNNxVdUCSMzO7Ke3dUx4bAJh+xX1GknslOddNaQAw\nvanDvfOmNE9KA4AFmCzcVXVsksfETWkAsDCTvR1sjPHFJDXV8QCA2/LzuAGgEeEGgEaEGwAaEW4A\naES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR\n4QaARrYuewJ74YHLngB33onLnsCinLhpf2fA4j1wioPUGGOK4yxMVX09ySFJtu+H4Y6Zb7+0H8Zi\nGv7M+vFn1o8/s/V7YJJ/HmMctd4Dbfhw709VtS1JxhiWVU34M+vHn1k//sw2Fte4AaAR4QaARoQb\nABoRbgBoRLgBoBF3lQNAI1bcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQh3kqq6f1X9WVV9\nq6p+WFXbq+otVXWvZc+NW6uqw6rqhVX1/qr6p6q6qaquq6qPV9UvV5W/001U1ZlVNea/Xrjs+bBn\nVfXYqnpfVV05//fxyqq6oKqetuy5raqty57AslXVg5NcnOQ+Sf42s583e1KSlyV5alU9eoxxzRKn\nyK2dkeSPk1yZ5MIkVyS5b5JnJXlXkl+oqjOGJwttaFX1gCRnJ7khyT2WPB3WUFWvTfJbSa5O8veZ\nfd8dnuQRSZ6Q5NylTW6FrfyT06rq/CSnJzlrjHH2Lq//tyS/luSdY4wXL2t+3FpVnZbkoCQfGGPc\nssvr90vyqSQPSPLsMcb7ljRF7kBVVZIPJTkqyf9O8sokLxpjvGupE+NWquqMJH+d5MNJnjXGuH63\n/XcdY/x4KZNbcSt9WrGqHpRZtLcn+aPddr8hyY1Jzqyqg/bz1FjDGOMfxhh/t2u0569/O8k75h8+\nYb9PjDvjrCSnJXlBZt9jbDDzS06/m+QHSX5x92gniWgvz0qHO7N/PJLkgj2E4Pok/5jk7klO3t8T\nY5/s/IfkJ0udBWuqqmOTvDnJW8cYFy17Pqzp1MzOiJyb5HtV9fSqelVVvayqTlny3Fbeql/jfuh8\ne9ka+7+S2Yr86CQf2S8zYp9U1dYkvzT/8LxlzoU9m/8ZvSez+xJeveTpcPt+br79TpJLkjx8151V\ndVFml6S+u78nhhX3ofPtdWvs3/n6PffDXFifNyc5Lsm5Y4zzlz0Z9uj1md3U9Pwxxk3Lngy36z7z\n7YuTHJjk55McnNn32PlJHpfkb5YzNVY93Hek5tvVvoNvg6uqs5K8IrN3BJy55OmwB1V1Umar7D8Y\nY3xi2fPhDt1lvq3MVtYfGWPcMMb4fJJnJvlmksc7bb4cqx7unSvqQ9fYf8hun8cGU1UvTfLWJF9I\n8sQxxrVLnhK72eUU+WVJXrfk6bB3vjfffm2McemuO+ZnS3ae1Tppv86KJML95fn26DX2P2S+Xesa\nOEtUVS9P8vYkn8ss2t9e8pTYs3tk9j12bJIduzx0ZWT27o0k+dP5a29Z2izZ1c5/G7+/xv6dYT9w\nP8yF3az6zWkXzrenV9WW3d4XfHCSRye5KcknlzE51lZVr8rsuvankzx5jHH1kqfE2n6Y5N1r7Dsh\ns+veH88sFk6jbwwXZfbujIdU1d3GGD/abf9x8+32/Torkqx4uMcYX62qCzK7c/ylmT3Jaac3Zfag\nj3eOMbzXdAOpqtcl+c0k25Kc7vT4xjY/tbrHR5pW1RszC/dfeADLxjHGuLqq/irJf8zspsLX7txX\nVU9O8pTMLiF6B8cSrHS4516S2SNP31ZVT0ryxSSPSvLEzE6Rv2aJc2M3VfW8zKJ9c5KPJTlr9iCu\nW9k+xjhnP08NNptfz+zfwtdU1eMyezLhkZndnHZzZk+7W+tUOgu08uGer7ofmVkMnprkaZk9j/dt\nSd5kNbfhHDXf3iXJy9f4nI8mOWe/zAY2qTHGVVX1qMxW28/M7EFU1yf5QJLfGWO4hLgkK/+scgDo\nZNXvKgeAVoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaA\nRoQbABoRbgBoRLgBoBHhBoBG/j96kaj32ujlGgAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f49824d3b00>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"97b21dd08ae94e168cf89861f61cbf98": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_2d58d9227f3c4d9e8c9de08e46d4bca5", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGZ5JREFUeJzt3XuQpXdd5/HPN2nkEgjXSqgtIBch\nJAjFMpFwCZKQCKIuW8Ial3KJygouKxpQqEK5X8oSynWF4AW5iWa3yhtQFhIgENhEEGVrZkERIUAY\nQIHEAEICSSSZ3/5xzuhkMp2ZTD+nT3/7vF5VU0/6POc8vx91uvvNczlP1xgjAEAPRyx7AgDAoRNu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEbWlj2Bg6mqzyU5OsnuJU8FAA7X8Um+OcY4YaMb2vLhTnL07ZO7nZLcbdkTmdquZU8A5nYs\newIL5OeM7aZDuHefktxt57JnsQC17AnA3Hb8+drLzxlbyO4pNuIcNwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCOThbuq7lVVb66qL1XV9VW1u6peXVV3nWoMAFh1a1NspKq+O8lfJjkmyZ8l+WSS05I8K8nj\nq+r0McZXpxgLAFbZVHvcv51ZtM8bY/zIGOOXxhhnJfmNJPdP8isTjQMAK23D4a6qE5M8LsnuJL+1\n3+qXJPlWknOr6qiNjgUAq26KPe6z5suLxhh79l0xxrg6yYeS3CHJwycYCwBW2hTnuO8/X162zvpP\nZ7ZHflKSi9fbSFXtXGfVyYc/NQDYXqbY477zfPmNddbvffwuE4wFACttkqvKD6Lmy3FLTxpjnHrA\nF8/2xHdMPSkA6GiKPe69e9R3Xmf90fs9DwA4TFOE+1Pz5UnrrL/ffLneOXAA4BBNEe4PzJePq6qb\nbK+q7pTk9CTXJvmrCcYCgJW24XCPMT6b5KIkxyd55n6rX5bkqCR/MMb41kbHAoBVN9XFaT+b2S1P\nz6+qs5P8fZKHJXlMZofIXzDROACw0ia55el8r/t7k7wls2A/J8l3Jzk/ySPcpxwApjHZx8HGGF9M\n8tSptgcA3Jy/xw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Ihw\nA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANLK27Akcil1JatmT4NYZy57AgmzTb8Rt+j8LtiV7\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI2sLXsCcLgecOUROfvytRx9ffLN2yYXn3hDPnHMnmVPC2Ch\nJgl3Vf1okjOS/PskD05ypyT/e4zxlCm2D/s66/Ij8+JLbpszPn/zb99LjrshLz/j+rz/xBuXMDOA\nxZvqUPkLk/xcZuH+x4m2CTfzX3fdJhddcIec8fm1jIybrBsZOePza7nogjvkqbtus6QZAizWVOH+\nhSQnJTk6yX+faJtwE2ddfmRe/47b5chRSZJK3WT93q+PHJU3vON2OevyIzd9jgCLNkm4xxgfGGN8\neowxDv5sODwvvuS2/xrtgzlyVF50yW0XPCOAzeeqclp4wJVHHPDw+HpGRs78/FoecKVvcWB72TJX\nlVfVznVWnbypE2FLOvvy2bfq/ofH17P3eWdfvpZPHPMvC5sXwGazO0ILR1+/ua8D2Kq2zB73GOPU\nAz0+3xPfscnTYYv55mGerj7c1wFsVfa4aeHiE29Iklt1jnvf1wFsF8JNC584Zk8uOe6GW3WO+/8c\n505qwPYj3LTx8jOuz411aHvcN9bIK85wghvYfoSbNt5/4o35mSdc96/xPtCd05JZtJ/+hOvc9hTY\nlqa6V/mPJPmR+Zf3nC8fUVVvmf/3VWOM504xFqvtzTu+k9132ZMXXXLbnLnfvcr3Hh5/hXuVA9tY\nTXGzs6p6aZKX3MJTPj/GOP4wt+2q8o424R56S/nrYId2ih3gQHat9wmqW2OScC+ScDe1tb+tDp9w\nA4dvknA7xw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANDI2rIncCh2JNm57EksQC17AgC0Y48bABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgkQ2Hu6ruXlVPq6q3V9VnquraqvpGVX2wqn66qvyfAwCYyNoE2zgnye8k\n+XKSDyT5QpJjkzwpyRuT/GBVnTPGGBOMBQArbYpwX5bkPyZ55xhjz94Hq+r5ST6S5D9lFvG3TjAW\nAKy0DR/GHmO8f4zxjn2jPX/8K0leN//yzI2OAwAs/uK078yXNyx4HABYCQsLd1WtJfmJ+ZfvXtQ4\nALBKpjjHvZ5XJnlgkgvHGO852JOrauc6q06edFYA0NhC9rir6rwkz0nyySTnLmIMAFhFk+9xV9Uz\nk7wmySeSnD3G+NqhvG6Mceo629uZZMd0MwSAvibd466qZyf5zSQfT/KY+ZXlAMBEJgt3VT0vyW8k\n+Whm0b5yqm0DADOThLuqXpTZxWg7Mzs8ftUU2wUAbmrD57ir6ieTvDzJjUn+Isl5VbX/03aPMd6y\n0bEAYNVNcXHaCfPlkUmevc5zLknylgnGAoCVNsUtT186xqiD/DtzgrkCwMrzJzcBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaWVv2BA7FriS17EnANjaWPYEF8ruD7cYeNwA0ItwA0IhwA0Ajwg0AjQg3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNTBLuqnpVVV1cVV+sqmur6mtV9f+q6iVVdfcpxgAAkhpjbHwjVf+SZFeSTyS5MslRSR6e\n5HuTfCnJw8cYXzzMbe9MsmPDk2RzbfzbamuqZU9gMbbr25Vs27eMnnaNMU7d6EbWpphJkqPHGNft\n/2BV/UqS5yf55SQ/O9FYALCyJjlUfqBoz/3xfHm/KcYBgFW36IvTnjBf/s2CxwGAlTDVofIkSVU9\nN8kdk9w5s/Pbj8os2q88hNfuXGfVyZNNEACamzTcSZ6b5Nh9vn53kp8aY/zTxOMAwEqa5Krym220\n6tgkj8xsT/tOSf7DGGPXYW7LVeUdbdfLlLfpJcrb9e1Ktu1bRk+TXFW+kHPcY4wrxhhvT/K4JHdP\n8geLGAcAVs1CL04bY3w+s892f09V3WORYwHAKtiMW57+u/nyxk0YCwC2tQ2Hu6pOrqp7HuDxI+Y3\nYDkmyV+OMb6+0bEAYNVNcVX545P8WlVdmuSzSb6a2ZXlZyQ5MclXkjx9gnEAYOVNEe73JXl9ktOT\nPDjJXZJ8K8llSS5Icv4Y42sTjAMAK2/D4R5jfDzJMyeYCwBwEP4eNwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPC\nDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0AjCwt3VZ1bVWP+72mLGgcAVslCwl1V907y\n2iTXLGL7ALCqJg93VVWS30vy1SSvm3r7ALDKFrHHfV6Ss5I8Ncm3FrB9AFhZk4a7qk5J8sokrxlj\nXDrltgGAZG2qDVXVWpILknwhyfMP4/U711l18kbmBQDbyWThTvLiJA9J8qgxxrUTbhcAmJsk3FV1\nWmZ72b8+xvjw4WxjjHHqOtvemWTHBqYHANvGhs9x73OI/LIkL9rwjACAdU1xcdodk5yU5JQk1+1z\n05WR5CXz57xh/tirJxgPAFbWFIfKr0/ypnXW7cjsvPcHk3wqyWEdRgcAZjYc7vmFaAe8pWlVvTSz\ncP/+GOONGx0LAFadPzICAI0INwA0UmOMZc/hFvk4WFNb+9vq8NWyJ7AY2/XtSrbtW0ZPu9b76POt\nYY8bABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgkbVlT4DtaSx7AgtSy57AgmzX/12wHdnjBoBGhBsAGhFu\nAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGg\nEeEGgEaEGwAaEW4AaGRtio1U1e4kx62z+ooxxj2nGAf2ddkV98mHPvPgXHPdHXLH2307p9/3Yznp\n2C8se1oACzVJuOe+keTVB3j8mgnHgHzoMw/Oay5+cj7yuQfdbN1pJ/xtnnX2H+b0+35sCTMDWLwa\nY2x8I7M97owxjt/wxm6+7Z1Jdky9XRZrgm+rA/qj//vY/PLbfj57xhFJRpLad9QklSNqT175pNfm\nxx763snHrzr4cwDWsWuMcepGN+IcN2186DMP3ifayU2j/W9f7xlH5Jfe9vP50GcevKnzA9gMUx4q\nv21VPSXJfZJ8K8nfJLl0jHHjhGOwwl5z8ZP3ifYt2zOOyPkXP9khc2DbmTLc90xywX6Pfa6qnjrG\nuGTCcVhBl11xn/k57f0Pj69n5K8/96BcdsV9XLAGbCtThfv3kvxFkr9LcnWSE5P8XJKfSfKuqnrE\nGOMWd33m57IP5OSJ5khj/3bY+1BPMte/vk64ge1kknCPMV6230MfT/KMqromyXOSvDTJE6cYi9V0\nzXV32NTXAWxVUx4qP5DXZRbuRx/sietdaeeqcpLkjrf79qa+DmCrWvRV5VfOl0cteBy2uX+7yOxQ\nP2c29nsdwPaw6HA/Yr68fMHjsM2ddOwXctoJf5tbc477YSf8rfPbwLaz4XBX1fdU1d0O8PhxSX5z\n/uX/2ug48Kyz/zBH1J5Deu4RtSfnnf2HC54RwOabYo/7nCRfqqp3VdVvV9WrqupPk3wyyX2TXJjk\nf0wwDivu9Pt+LL/6pNfuE+/9D5vPvt575zSHyYHtaIqL0z6Q5P5JHpLZofGjkvxzkg9m9rnuC8YU\n91WFJP/5oe/Nve56Zc6/+Mn565vdq3x2ePw89yoHtrFJ7lW+SK4q72kzvq2W8dfB3Ksc2IBJ7lW+\n6I+DwcKcdOwXXHwGrBx/ZAQAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaGRt2RNge6plTwBgm7LHDQCNCDcANCLc\nANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajk4a7qr6vqt5aVV+uquvny4uq6oemHAcAVtXaVBuqqhcmeUWSq5L8\neZIvJ7lHkockOTPJhVONBQCrapJwV9U5mUX7fUmeNMa4er/1t5liHABYdRs+VF5VRyR5VZJvJ/nx\n/aOdJGOM72x0HABgmj3uRyY5IcmfJvl6Vf1wkgcmuS7JR8YYH55gDAAg04T7ofPlFUl2JXnQviur\n6tIkPzrG+Kdb2khV7Vxn1ckbniEAbBNTXFV+zHz5jCS3T/L9Se6U2V73e5I8OsmfTDAOAKy8Kfa4\nj5wvK7M964/Nv/67qnpiksuSnFFVj7ilw+ZjjFMP9Ph8T3zHBPMEgPam2OP++nx5+T7RTpKMMa7N\nbK87SU6bYCwAWGlThPtT8+U/r7N+b9hvP8FYALDSpgj3pUluSHK/qvquA6x/4Hy5e4KxAGClbTjc\nY4yrkvxRkjsnefG+66rqsUl+IMk3krx7o2MBwKqb6panv5jkYUleUFWPTvKRJMcleWKSG5M8fYyx\n3qF0AOAQTRLuMcaVVfWwJC/MLNYPT3J1kncm+dUxxl9NMQ4ArLoaYyx7DrfIx8Ga2trfVoevlj0B\noLFd6330+dbw97gBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoR\nbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaWVv2BNiexrInsCC17AkAK88eNwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCMbDndV/VRVjYP8u3GKyQLAqlubYBsfTfKyddZ9X5KzkrxrgnEAYOVt\nONxjjI9mFu+bqaoPz//z9RsdBwBY4Dnuqnpgkocn+cck71zUOACwShZ5cdp/my/fNMZwjhsAJjDF\nOe6bqarbJ3lKkj1J3niIr9m5zqqTp5oXAHS3qD3uH0tylyTvGmN8cUFjAMDKWcged5KfmS9/91Bf\nMMY49UCPz/fEd0wxKQDobvI97qp6QJJHJvmHJBdOvX0AWGWLOFTuojQAWJBJw11Vt0tybmYXpb1p\nym0DANPvcZ+T5K5JLnRRGgBMb+pw770ozZ3SAGABJgt3VZ2S5FFxURoALMxkHwcbY/x9kppqewDA\nzfl73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQ\niHADQCPCDQCNCDcANCLcANCIcANAI2vLnsAhOH7ZE+DWO/XUZc8AYMs5foqN1Bhjiu0sTFV9LsnR\nSXZvwnAnz5ef3ISxmIb3rB/vWT/es407Psk3xxgnbHRDWz7cm6mqdibJGMP+YhPes368Z/14z7YW\n57gBoBHhBoBGhBsAGhFuAGhEuAGgEVeVA0Aj9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEe4kVXWvqnpzVX2pqq6vqt1V9eqquuuy58ZNVdXdq+ppVfX2qvpMVV1bVd+oqg9W1U9Xle/pJqrq\n3Koa839PW/Z8OLCq+r6qemtVfXn++/HLVXVRVf3Qsue2qtaWPYFlq6rvTvKXSY5J8meZ/b3Z05I8\nK8njq+r0McZXlzhFbuqcJL+T5MtJPpDkC0mOTfKkJG9M8oNVdc5wZ6EtraruneS1Sa5JcsclT4d1\nVNULk7wiyVVJ/jyzn7t7JHlIkjOTXLi0ya2wlb9zWlW9J8njkpw3xnjtPo//zyS/kOR3xxjPWNb8\nuKmqOivJUUneOcbYs8/j90zykST3TvKjY4y3LmmKHERVVZL3JjkhyduSPDfJ08cYb1zqxLiJqjon\nyR8neV+SJ40xrt5v/W3GGN9ZyuRW3EofVqyqEzOL9u4kv7Xf6pck+VaSc6vqqE2eGusYY7x/jPGO\nfaM9f/wrSV43//LMTZ8Yt8Z5Sc5K8tTMfsbYYuannF6V5NtJfnz/aCeJaC/PSoc7s18eSXLRAUJw\ndZIPJblDkodv9sQ4LHt/kdyw1Fmwrqo6Jckrk7xmjHHpsufDuh6Z2RGRC5N8vap+uKqeV1XPqqpH\nLHluK2/Vz3Hff768bJ31n85sj/ykJBdvyow4LFW1luQn5l++e5lz4cDm79EFmV2X8PwlT4db9tD5\n8ooku5I8aN+VVXVpZqek/mmzJ4Y97jvPl99YZ/3ex++yCXNhY16Z5IFJLhxjvGfZk+GAXpzZRU0/\nNca4dtmT4RYdM18+I8ntk3x/kjtl9jP2niSPTvIny5kaqx7ug6n5crWv4Nviquq8JM/J7BMB5y55\nOhxAVZ2W2V72r48xPrzs+XBQR86Xldme9cVjjGvGGH+X5IlJ/iHJGQ6bL8eqh3vvHvWd11l/9H7P\nY4upqmcmeU2STyR5zBjja0ueEvvZ5xD5ZUletOTpcGi+Pl9ePsb42L4r5kdL9h7VOm1TZ0US4f7U\nfHnSOuvvN1+udw6cJaqqZyf5zSQfzyzaX1nylDiwO2b2M3ZKkuv2uenKyOzTG0nyhvljr17aLNnX\n3t+N/7zO+r1hv/0mzIX9rPrFaR+YLx9XVUfs97ngOyU5Pcm1Sf5qGZNjfVX1vMzOa380yWPHGFct\neUqs7/okb1pn3Y7Mznt/MLNYOIy+NVya2acz7ldV3zXG+Jf91j9wvty9qbMiyYqHe4zx2aq6KLMr\nx5+Z2Z2c9npZZjf6+N0xhs+abiFV9aIkL0+yM8njHB7f2uaHVg94S9Oqemlm4f59N2DZOsYYV1XV\nHyX5L5ldVPjCveuq6rFJfiCzU4g+wbEEKx3uuZ/N7Jan51fV2Un+PsnDkjwms0PkL1ji3NhPVf1k\nZtG+MclfJDlvdiOum9g9xnjLJk8NtptfzOx34Quq6tGZ3ZnwuMwuTrsxs7vdrXconQVa+XDP97q/\nN7MYPD7JD2V2P97zk7zM3tyWc8J8eWSSZ6/znEuSvGVTZgPb1Bjjyqp6WGZ720/M7EZUVyd5Z5Jf\nHWM4hbgkK3+vcgDoZNWvKgeAVoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBG/j+Xogb/3Yhn3gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c45c860>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"97b2ce7c5a824ff49ffa25f76ef127aa": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_2d3725de9b904e1db22c88b402ea27d8", | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGWJJREFUeJzt3XmwpXV95/HPF9ooorgWWFNuoCIY\nLccm4oIKQjRGxyl1JGNlQtSJOo5O0ESrNO5LpaI1ycQtE9doYv7QZNSkjLgiA65xqns0Kioq4jJB\nEVdQQIHf/HFOa3PpC03f59xzv31er6pbD+c89zy/H3WXdz/LeW6NMQIA9HDAsicAAOw94QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZNuyJ3BtquprSQ5Jct6SpwIA++r2SX48xjh8oxva8uFOcshBB+XmRx+dmy97IlPbuewJwNz2ZU9g\ngfycsSV8Ickl02yqQ7jPO/ro3HzHjmVPY3q17AnA3H744/ULfs7YEo5JsnOaI8fOcQNAI8INAI0I\nNwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjWxb9gSA1XHOd26bj33l7rn40hvmRjf4aY6742dy5GHfWPa0WEF3ueCAnHTuthxy\nWfLj6yenH3F5zj70ymVPa69MFu6qunWSlyR5SJJbJDk/yT8kefEY4wdTjQP087Gv3D2vPP0x+dTX\n7na1dcce/tk87aS35bg7fmYJM2PVnHjugXnBmdfP8V+/ev7OvN3lecnxl+XDR1yxhJntvRpjbHwj\nVXdI8vEkhyb5xyRfTHJskgcm+VKS48YY39vHbe/Yvj3bd+zY8DS3nFr2BGBu478F1vf2//Og/NE7\nfz9XjgPmI+3+nT97fEBdmZc96tX5rXt+cPLx/Zyxy3/eeb28/t03yIGjMjJSu3137Hp8RY088eGX\n5s3bfz7t4Mck2ZmdY4xjNrqpqc5x/8/Mon3qGOMRY4xnjzFOTPLnSe6c5I8nGgdo5GNfuftu0U6u\nntHZ4yvHAXn2O38/H/vK3Td1fqyOE8898BfRTnKVaO/++MBRecO7b5ATzz1w0+e4tzYc7qo6IsmD\nk5yX5C/WrH5hkp8kOaWqDt7oWEAvrzz9MbtF+5pdOQ7Iq05/zIJnxKp6wZnX/0W0r82Bo/L8M6+/\n4Bntuyn2uE+cLz8wxrjKmf0xxkVJPpbkhknuPcFYQBPnfOe283Pae3sgfuSfv3a3nPOd2y5yWqyg\nu1xwQI7/+raMvfxeHBk54evbcpcLtuYbr6aY1Z3ny3PWWf/l+fLIa9pIVe3Y00eSoyaYI7DJfnnY\ne2/PMtea18E0Tjp3diHa2sPj69n1ebtet9VMEe6bzJc/Wmf9rudvOsFYQBMXX3rDTX0drOeQyzb3\ndYu2Gf+c2PVPnGs8RrHelXbzve7tU08KWKwb3eCnm/o6WM+P9/F09b6+btGm2OPetUd9k3XWH7Lm\n84AV8Mv3Ze/9Oe6rvg6mcfoRlyfJdTrHvfvrtpopwv2l+XK9c9h3mi/XOwcO7IeOPOwbOfbwz+a6\nnOO+1+GfdSc1Jnf2oVfmzNtdfp3Ocf/v223dO6lNEe4z5ssHV9VVtldVN05yXJJLknxygrGARp52\n0ttyQO3dL78D6sqcetLbFjwjVtVLjr8sV9Te7XFfUSMvPX6LnuDOBOEeY3w1yQeS3D7JU9esfnGS\ng5P8zRjjJxsdC+jluDt+Jn/yqFfvFu+1vzhnj3fdOc1hchblw0dckSc9/NJfxHvtYfNdj3fdOW0r\n3/Z0qovTnpLZLU9fVVUnJflCkntldsvTc5I8d6JxgGb+4z0/mFvf7IK86vTH5J+vdq/y2eHxU92r\nnE3wV9t/nvNuemWef+b1c8Kae5XvOjz+0lW5V3mSVNVtsv4fGfn+BrbrXuWwYIu8V/nulvHXwfyc\nsSeb/tfBJrxX+WRvBxtjfDPJ46faHrD/OfKwb7j4jC3h7EOvzNmH/mzZ09gnW/N+bgDAHgk3ADQi\n3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANLJt2RPYGzt3JlXLngXsv/x4QR/2uAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQb\nABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBo\nZJJwV9Wjq+rVVfWRqvpxVY2q+tsptg0A/NK2ibbzvCR3T3Jxkm8lOWqi7QIAu5nqUPkfJDkyySFJ\n/utE2wQA1phkj3uMccau/66qKTYJAOyBi9MAoJGpznFvWFXtWGeV8+UAMGePGwAa2TJ73GOMY/b0\n/HxPfPsmTwcAtiR73ADQiHADQCPCDQCNCDcANDLJxWlV9Ygkj5g/vNV8eZ+qesv8vy8cYzxzirEA\nYJVNdVX5v03y2DXPHTH/SJKvJxFuANigSQ6VjzFeNMaoa/i4/RTjAMCqc44bABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgkW3LnsDe2J5kx7InsQC17AkA0I49bgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEG\ngEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEY2HO6q\nukVVPaGq3lVVX6mqS6rqR1X10ar6varyjwMAmMi2CbZxcpK/THJ+kjOSfCPJYUkeleSNSX6zqk4e\nY4wJxgKAlTZFuM9J8u+TvGeMceWuJ6vqOUk+leQ/ZBbxd0wwFgCstA0fxh5jfHiM8e7doz1//ttJ\nXjt/eMJGxwEAFn9x2s/ny8sXPA4ArISFhbuqtiX53fnD9y1qHABYJVOc417Py5LcNclpY4z3X9sn\nV9WOdVYdNemsAKCxhexxV9WpSZ6R5ItJTlnEGACwiibf466qpyZ5ZZKzk5w0xvj+3rxujHHMOtvb\nkWT7dDMEgL4m3eOuqqcneU2SzyV54PzKcgBgIpOFu6qeleTPk3w6s2hfMNW2AYCZScJdVc/P7GK0\nHZkdHr9wiu0CAFe14XPcVfXYJC9JckWSjyQ5tarWftp5Y4y3bHQsAFh1U1ycdvh8eWCSp6/zOWcm\necsEYwHASpvilqcvGmPUtXycMMFcAWDl+ZObANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3\nADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjWxb9gT2xs4k\ntexJwH5sLHsCC+R3B/sbe9wA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANA\nI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANDJJuKvq5VV1elV9s6ou\nqarvV9X/raoXVtUtphgDAEhqjLHxjVT9LMnOJGcnuSDJwUnuneTXkvxrknuPMb65j9vekWT7hicJ\nrGvjvwW2rlr2BOCXdo4xjtnoRrZNMZMkh4wxLl37ZFX9cZLnJPmjJE+ZaCwAWFmTHCrfU7Tn/m6+\nvNMU4wDAqlv0xWkPny//ZcHjAMBKmOpQeZKkqp6Z5EZJbpLZ+e37ZRbtl+3Fa3ess+qoySYIAM1N\nGu4kz0xy2G6P35fkcWOM7048DgCspEmuKr/aRqsOS3LfzPa0b5zk340xdu7jtlxVDgvmqnLYFJNc\nVb6Qc9xjjO+MMd6V5MFJbpHkbxYxDgCsmoVenDbG+Hpm7+3+1aq65SLHAoBVsBm3PP038+UVmzAW\nAOzXNhzuqjqqqm61h+cPmN+A5dAkHx9j/GCjYwHAqpviqvKHJPnvVXVWkq8m+V5mV5Yfn+SIJN9O\n8sQJxgGAlTdFuD+U5PVJjkty9yQ3TfKTJOckeWuSV40xvj/BOACw8jYc7jHG55I8dYK5AADXwt/j\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsA\nGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhE\nuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhkYeGuqlOq\nasw/nrCocQBglSwk3FV1mySvTnLxIrYPAKtq8nBXVSV5c5LvJXnt1NsHgFW2iD3uU5OcmOTxSX6y\ngO0DwMqaNNxVdXSSlyV55RjjrCm3DQAk26baUFVtS/LWJN9I8px9eP2OdVYdtZF5AcD+ZLJwJ3lB\nknskud8Y45IJtwsAzE0S7qo6NrO97D8bY3xiX7YxxjhmnW3vSLJ9A9MDgP3Ghs9x73aI/Jwkz9/w\njACAdU1xcdqNkhyZ5Ogkl+5205WR5IXzz3nD/LlXTDAeAKysKQ6VX5bkTeus257Zee+PJvlSkn06\njA4AzGw43PML0fZ4S9OqelFm4f7rMcYbNzoWAKw6f2QEABoRbgBopMYYy57DNfJ2MFi8rf1bYGNq\n2ROAX9q53lufrwt73ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI1sW/YE2D+NZU9gQWrZE1iQ/fX/C/ZH\n9rgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHh\nBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAamSTcVXVeVY11Pr49xRgAQLJtwm39KMkr9vD8xROOAQAr\nbcpw/3CM8aIJtwcArOEcNwA0MuUe9/Wr6neS3DbJT5L8S5KzxhhXTDgGAKy0KcN9qyRvXfPc16rq\n8WOMMyccBwBW1lThfnOSjyT5fJKLkhyR5L8leVKS91bVfcYYn7mmDVTVjnVWHTXRHAGgvRpjLG7j\nVX+a5BlJ/mGM8chr+dxrCvcNp54bi7W476rlqmVPAOhs5xjjmI1uZNHhvmOSLyf5/hjjFvu4jR1J\ntk86MRZOuAGuZpJwL/qq8gvmy4MXPA4ArIRFh/s+8+W5Cx4HAFbChsNdVb9aVTffw/O3S/Ka+cO/\n3eg4AMA0V5WfnOTZVXVGkq9ldlX5HZI8LMkNkpyW5E8nGAcAVt4U4T4jyZ2T3COzQ+MHJ/lhko9m\n9r7ut45FXgEHACtkw+Ge31zFDVYAYBO4VzkANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0A\njQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj25Y9AfZPtewJ\nAOyn7HEDQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Ajwg0AjQg3ADQi3ADQiHAD\nQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0Mik4a6q+1fVO6rq/Kq6bL78QFU9dMpxAGBV\nbZtqQ1X1vCQvTXJhkn9Kcn6SWya5R5ITkpw21VgAsKomCXdVnZxZtD+U5FFjjIvWrL/eFOMAwKrb\n8KHyqjogycuT/DTJb6+NdpKMMX6+0XEAgGn2uO+b5PAk/yvJD6rqYUnumuTSJJ8aY3xigjEAgEwT\n7nvOl99JsjPJ3XZfWVVnJXn0GOO717SRqtqxzqqjNjxDANhPTHFV+aHz5ZOTHJTk15PcOLO97vcn\neUCSv59gHABYeVPscR84X1Zme9afmT/+fFU9Msk5SY6vqvtc02HzMcYxe3p+vie+fYJ5AkB7U+xx\n/2C+PHe3aCdJxhiXZLbXnSTHTjAWAKy0KcL9pfnyh+us3xX2gyYYCwBW2hThPivJ5UnuVFW/sof1\nd50vz5tgLABYaRsO9xjjwiRvT3KTJC/YfV1VPSjJbyT5UZL3bXQsAFh1U93y9A+T3CvJc6vqAUk+\nleR2SR6Z5IokTxxjrHcoHQDYS5OEe4xxQVXdK8nzMov1vZNclOQ9Sf5kjPHJKcYBgFVXY4xlz+Ea\neTsYAPuJneu99fm68Pe4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaE\nGwAaEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGtm27AmwfxrLnsCC1LInAKw8e9wA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA0IhwA0Aj\nwg0AjQg3ADQi3ADQiHADQCPCDQCNbDjcVfW4qhrX8nHFFJMFgFW3bYJtfDrJi9dZd/8kJyZ57wTj\nAMDK23C4xxifzizeV1NVn5j/5+s3Og4AsMBz3FV11yT3TvL/krxnUeMAwCpZ5MVp/2W+fNMYwzlu\nAJjAFOe4r6aqDkryO0muTPLGvXzNjnVWHTXVvACgu0Xtcf9Wkpsmee8Y45sLGgMAVs5C9riTPGm+\nfN3evmCMccyenp/viW+fYlIA0N3ke9xVdZck903yrSSnTb19AFhlizhU7qI0AFiQScNdVTdIckpm\nF6W9acptAwDT73GfnORmSU5zURoATG/qcO+6KM2d0gBgASYLd1UdneR+cVEaACzMZG8HG2N8IUlN\ntT0A4Or8PW4AaES4AaAR4QaARoQbABoRbgBoRLgBoBHhBoBGhBsAGhFuAGhEuAGgEeEGgEaEGwAa\nEW4AaES4AaAR4QaARoQbABoRbgBoRLgBoJFty57AXrj9sifAdXfMsicAsPXcfoqNdAj3j+fL8zZh\nrKPmyy9uwlj7tZ2bN5SvWT++Zv34mm3c7fPLnm1IjTGm2M5+oap2JMkYww5jE75m/fia9eNrtrU4\nxw0AjQg3ADQi3ADQiHADQCPCDQCNuKocABqxxw0AjQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCI\ncCepqltX1V9V1b9W1WVVdV5VvaKqbrbsuXFVVXWLqnpCVb2rqr5SVZdU1Y+q6qNV9XtV5Xu6iao6\nparG/OMJy54Pe1ZV96+qd1TV+fPfj+dX1Qeq6qHLntuq6vD3uBeqqu6Q5ONJDk3yj5n9vdljkzwt\nyUOq6rgxxveWOEWu6uQkf5nk/CRnJPlGksOSPCrJG5P8ZlWdPNxZaEurqtskeXWSi5PcaMnTYR1V\n9bwkL01yYZJ/yuzn7pZJ7pHkhCSnLW1yK2zl75xWVe9P8uAkp44xXr3b8/8jyR8ked0Y48nLmh9X\nVVUnJjk4yXvGGFfu9vytknwqyW2SPHqM8Y4lTZFrUVWV5INJDk/yziTPTPLEMcYblzoxrqKqTk7y\nd0k+lORRY4yL1qy/3hjj50uZ3Ipb6cOKVXVEZtE+L8lfrFn9wiQ/SXJKVR28yVNjHWOMD48x3r17\ntOfPfzvJa+cPT9j0iXFdnJrkxCSPz+xnjC1mfsrp5Ul+muS310Y7SUR7eVY63Jn98kiSD+whBBcl\n+ViSGya592ZPjH2y6xfJ5UudBeuqqqOTvCzJK8cYZy17PqzrvpkdETktyQ+q6mFV9ayqelpV3WfJ\nc1t5q36O+87z5TnrrP9yZnvkRyY5fVNmxD6pqm1Jfnf+8H3LnAt7Nv8avTWz6xKes+TpcM3uOV9+\nJ8nOJHfbfWVVnZXZKanvbvbEsMd9k/nyR+us3/X8TTdhLmzMy5LcNclpY4z3L3sy7NELMruo6XFj\njEuWPRmu0aHz5ZOTHJTk15PcOLOfsfcneUCSv1/O1Fj1cF+bmi9X+wq+La6qTk3yjMzeEXDKkqfD\nHlTVsZntZf/ZGOMTy54P1+rA+bIy27M+fYxx8Rjj80kemeRbSY532Hw5Vj3cu/aob7LO+kPWfB5b\nTFU9Nckrk5yd5IFjjO8veUqssdsh8nOSPH/J02Hv/GC+PHeM8ZndV8yPluw6qnXsps6KJML9pfny\nyHXW32m+XO8cOEtUVU9P8pokn8ss2t9e8pTYsxtl9jN2dJJLd7vpysjs3RtJ8ob5c69Y2izZ3a7f\njT9cZ/2usB+0CXNhjVW/OO2M+fLBVXXAmvcF3zjJcUkuSfLJZUyO9VXVszI7r/3pJA8aY1y45Cmx\nvsuSvGmdddszO+/90cxi4TD61nBWZu/OuFNV/coY42dr1t91vjxvU2dFkhUP9xjjq1X1gcyuHH9q\nZndy2uXFmd3o43VjDO813UKq6vlJXpJkR5IHOzy+tc0Pre7xlqZV9aLMwv3XbsCydYwxLqyqtyf5\nT5ldVPi8Xeuq6kFJfiOzU4jewbEEKx3uuadkdsvTV1XVSUm+kOReSR6Y2SHy5y5xbqxRVY/NLNpX\nJPlIklNnN+K6ivPGGG/Z5KnB/uYPM/td+NyqekBmdya8XWYXp12R2d3u1juUzgKtfLjne92/llkM\nHpLkoZndj/dVSV5sb27LOXy+PDDJ09f5nDOTvGVTZgP7qTHGBVV1r8z2th+Z2Y2oLkryniR/MsZw\nCnFJVv5e5QDQyapfVQ4ArQg3ADQi3ADQiHADQCPCDQCNCDcANCLcANCIcANAI8INAI0INwA0ItwA\n0IhwA0Ajwg0AjQg3ADQi3ADQiHADQCPCDQCN/H/8CB2iR7v22gAAAABJRU5ErkJggg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f498c4a7f98>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"97cf6906ac7e46f8bf9c64c7d444841f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"97d2c77310d44a2fa5ea0d0de913999f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"97d9ea8eb5da4a34879c71e87b9d8374": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"97eed0164c8b4be6a73937a47de7008a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9813bcf081a14a65942b5633b087ec20": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"98279b4bb055400d8d099fadd3e424e5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_ad5826a409f640a196a248d46108b9f9", | |
"max": 7, | |
"style": "IPY_MODEL_31ec3e73abd74c76ad8282f48fb42ec5", | |
"value": 3 | |
} | |
}, | |
"9850c6832a0544e6b84bbb68ce320926": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"986e248fc9324228bea2a1395adf92d7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "d", | |
"layout": "IPY_MODEL_cbfea6b254f24d7ea374146b5b271496", | |
"max": 3, | |
"style": "IPY_MODEL_31f29787b222418fbb947a328b8e65fa", | |
"value": 2 | |
} | |
}, | |
"98786938cd3c482daa83858a125dcb7b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"98bf7e26082446d78a83ffd3b75af004": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"98d5bc47d5e040eeb60430f2424e20f2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9921f49e2d3e4aef814409f9426e4507": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"99592559e62d4a34b3e9dee8faaae969": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"99696801cb024ef9bbc075f393c437fc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_1105d6f463db450d974d875cdeb1fb0d", | |
"max": 7, | |
"style": "IPY_MODEL_df2db481f8c3476b800227bff30a22a9", | |
"value": 2 | |
} | |
}, | |
"996bbc11f21c488489cb21b947a026f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"999b7cd1514945419aec1b709cdfd117": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_9fa743d0deed4887a3daac9880d8807d", | |
"max": 7, | |
"style": "IPY_MODEL_d30ccdddab1248438b17af11361f9556", | |
"value": 3 | |
} | |
}, | |
"99a9f1e4fc474fb285832bc36bbcfff6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"99db51a533e14ae6b7998a78181970f9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"99de53c21f5849bf938bf131c944546f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_9271edebcf8e4e059590f12b3e11e3e2", | |
"IPY_MODEL_0fc1097ecd8b40a8ad3bd35a5b2253a1", | |
"IPY_MODEL_fe6484518e24403a9f2e373f184c912f", | |
"IPY_MODEL_5fe6790f78284c5cba71c51e0b03e040" | |
], | |
"layout": "IPY_MODEL_d716368f2a974864bcfd4ae1c73f1e8e" | |
} | |
}, | |
"99f4991f6f2246ae83a62f20da3c87a2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_5254b015c6ef494388a6c20869d73b8f", | |
"IPY_MODEL_d9c91e98a0d34216bcc94539cf30f89b", | |
"IPY_MODEL_43fde351d36f434297f1b720110ea94e" | |
], | |
"layout": "IPY_MODEL_d8321ee36d4e43b08e0ac9539a0abecf" | |
} | |
}, | |
"99fcf49d8ea546a2ad071dbb7ae3b89e": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_37898c0d500c4f61873c432da1019947", | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "1 0\n0\n0 0\n-1\n" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAH0CAYAAAD7Ws6rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAH+BJREFUeJzt3X2QXXWZ4PHvA00Ao4HoTMMY1Kgj\nhhcXTRQEBuVF0SG7W75lq3wbsMZxQbeQWSkZEVDXGsTaUfFdZ3QGh5mlZix1KQE1CsiLom4lwoy8\nZtSMgATCW4RMSEJ49o9zm3Q63Umn77l97u+c76eq6+Te233OE253fznnnnsSmYkkSSrDbk0PIEmS\nps9wS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUEMMtSVJBDLck\nSQUx3JIkFcRwS5JUEMMtSVJBDLckSQUZaXqAnYmIXwPzgNUNjyJJ0kwtBH6Xmc/td0VDH26qaD+9\n9yFJUqeVcKh8ddMDSJJUg9V1rKSEcEuSpB7DLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkF\nMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlS\nQQy3JEkFqS3cEXFARPxtRPw2IjZGxOqIuDAi5te1DUmSum6kjpVExPOBHwOjwKXAbcDhwHuB10bE\n0Zn5QB3bkiSpy+ra4/4CVbRPz8zXZeZfZObxwKeAFwJ/WdN2JEnqtMjM/lYQ8Tzgl8Bq4PmZ+cS4\nx54G3AMEMJqZ62ew/hXA4r6GlCSpeSszc0m/K6ljj/v43nL5+GgDZOYjwI+ApwAvr2FbkiR1Wh2v\ncb+wt7xjisdXAScCBwJXTrWS3p71ZBbNfDRJktqljj3ufXrLdVM8Pnb/vjVsS5KkTqvlrPKdiN5y\nhy+mT3Xc39e4JUnaqo497rE96n2meHzehM+TJEkzVEe4b+8tD5zi8Rf0llO9Bi5JkqapjnBf3Vue\nGBHbrK/3drCjgQ3AT2rYliRJndZ3uDPzl8ByYCHwngkPfwSYC/z9TN7DLUmStlXXyWnvprrk6Wci\n4gTgVuAI4DiqQ+QfrGk7kiR1Wi2XPO3tdb8UuIgq2O8Dng98BjjS65RLklSP2t4Olpl3Au+oa32S\nJGl7/nvckiQVxHBLklQQwy1JUkEMtyRJBTHckiQVxHBLklQQwy1JUkEMtyRJBTHckiQVxHBLklQQ\nwy1JUkEMtyRJBTHckiQVxHBLklQQwy1JUkEMtyRJBTHckiQVxHBLklSQkaYH6LJseoABiqYHkFrO\n3x/d5R63JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXE\ncEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQWoJd0S8\nKSI+GxHXRcTvIiIj4h/qWLckSdpqpKb1nAMcBjwK3AUsqmm9kiRpnLoOlf85cCAwDzitpnVKkqQJ\natnjzsyrx/4cEXWsUpIkTcKT07pizz2bnkBSqfz9MVSGJtwRsWKyD3y9vH/z5sE118CXv9z0JJJK\nc/zxsGoVLF3a9CTqGZpwa4Be9So44gh417vg4YebnkZSKZYuhSuvhGc9C846q+lp1FPXWeV9y8wl\nk93f2+tePMvjtMs3vwlXXVX9n/M++1Tx3nffpqeSNMyWLoXLLtt6+41vbG4WbcM97q444YQq3rA1\n3pI0mYnRHh2FtWubm0fbMNxdYrwl7YzRHnqGu2uMt6SpGO0iGO4uMt6SJjLaxajl5LSIeB3wut7N\n/XvLIyPiot6f78/MM+vYlmpywgnV2aKesCbJaBelrrPKXwycPOG+5/U+AP4dMNzDxnhLMtrFqeVQ\neWZ+ODNjBx8L69iOBsDD5lJ3Ge0i+Rq3jLfURUa7WIZbFeMtdYfRLprh1lbGW2o/o108w61tGW+p\nvYx2Kxhubc94S+1jtFvDcGtyxltqD6PdKoZbUzPeUvmMdusYbu2Y8ZbKZbRbyXBr54y3VB6j3VqG\nW9NjvKVyGO1WM9yaPuMtDT+j3XqGW7vGeEvDy2h3guHWrjPe0vAx2p1huDUzxlsaHka7Uwy3Zs54\nS80z2p1juNUf4y01x2h3kuFW/yaJ9/z585udSWq7t73NaHeU4VY9JsT7wQcfbHYeqcXOO+88uPji\nrXcY7U4x3KrPCSdsc3PRokUNDSK122mnnbb1xgEHGO2OGWl6gC6LpgcYgD3mzOHrX/86l156Kbfd\ndlvT49Qumx5gQNr4vTimlc/ZYYdx81VX8eY3v5l/vfvupqfRLIvM4f62jogVwOKm55CgpRHAcJeo\nzc9Zi63MzCX9rsRD5ZIkFcRwS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUEMMtSVJBDLckSQUx3JIk\nFcRwS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUkL7DHRHPiIh3\nRsS3IuLfImJDRKyLiOsj4k8jwv85kCSpJiM1rGMZ8EXgHuBq4DfAfsAbgK8AfxwRyzIza9iWJEmd\nVke47wD+K3B5Zj4xdmdEnA38DHgjVcS/UcO2JEnqtL4PY2fmVZn57fHR7t2/BvhS7+ax/W5HkiQN\n/uS0zb3l4wPejiRJnTCwcEfECPAnvZvfHdR2pFbaay/41Kdg/vymJ9F0HXIInHtu01OoA+p4jXsq\nFwCHAldk5vd29skRsWKKhxbVOpVUgi99CU4+Gc44Aw44AO6+u+mJtCMnnQSXX179+YEH4AtfaHYe\ntVoM4mTviDgd+DRwG3B0Zj44ja/ZUbifUuN40ozN2lsjFi2CW2/denvA8Y6Brbl5A3/OxkcbYN48\neOSRQW+11c9Zi63MzCX9rqT2cEfEe4DPAbcAJ/ROUutnfSuAxXXMJvVrVt/TeOyxcPXVW28PMN5t\njsBAn7OJ0R4dhbVrB7nFJ7X5OWuxWsJd62vcEXEGVbR/ARzXb7SlTvvhD+G447bevusuWLCgsXE0\nQYPRVrfVFu6IOAv4FHAjVbTvq2vdUmcZ7+FktNWgWsIdEedSnYy2gurw+P11rFcSxnvYGG01rO/X\nuCPiZOAiYAvwWWDdJJ+2OjMvmuH6fY1bQ6PR6/YO8DXvNr9eWutzNkTRbvNz1mK1vMZdx9vBnttb\n7g6cMcXnXEMVd0kzNbbnPRbvu+7yrWKzaYiirW4byNvB6uQet4bJUPy0DGDPu817b7U8Z0MY7TY/\nZy02fGeVS5oFvuY9u4Yw2uo2wy2VyHjPDqOtIWS4pVIZ78Ey2hpShlsqmfEeDKOtIWa4pdIZ73oZ\nbQ05wy21gfGuh9FWAQy31BbGuz9GW4Uw3FKbGO+ZMdoqiOGW2sZ47xqjrcIYbqmNjPf0GG0VyHBL\nbWW8d8xoq1CGW2oz4z05o62CGW6p7Yz3toy2Cme4pS4w3hWjrRYw3FJXdD3eRlstYbilLulqvI22\nWsRwS10zSbwXtDneRlstY7ilLpoQ77vuuotTTjmlsXEGZfny5UZbrROZ2fQMOxQRK4DFTc8hAQz3\nT8sMHHssXH31kzdHRkbYsmVLc/PUaL/99mPNmjVb72hZtKPpATQTKzNzSb8rcY9b2gXRto8f/pBL\nLrkEgJNPPrk10QZYu3Ytn//85wF461vfSqxd2/x/7xo/1F3ucUti7733ZsOGDU2PUbvddtuNPfbY\ng40bNzY9igTucUuqSxujDfDEE08YbbWO4ZYkqSCGW5KkghhuSZIKYrglSSqI4ZYkqSCGW5Kkghhu\nSZIKYrglSSqI4ZYkqSCGW5KkghhuSZIKYrglSSqI4ZYkqSCGW5KkghhuSZIKYrglSSqI4ZYkqSCG\nW5KkgtQS7oj4eERcGRF3RsSGiHgwIn4eER+KiGfUsQ1JkgSRmf2vJGITsBK4BbgPmAu8HHgp8Fvg\n5Zl55wzXvQJY3PeQkiQ1a2VmLul3JSN1TALMy8zHJt4ZEX8JnA18AHh3TduSJKmzajlUPlm0e/65\nt3xBHduRJKnrBn1y2n/pLf9lwNuRJKkT6jpUDkBEnAk8FdiH6vXtP6KK9gXT+NoVUzy0qLYBJUkq\nXK3hBs4E9ht3+7vAKZm5tubtSJLUSbWcVb7dSiP2A46i2tN+GvCfM3PlDNflWeWSpDao5azygbzG\nnZn3Zua3gBOBZwB/P4jtSJLUNQM9OS0z/53qvd2HRMTvDXJbkiR1wWxc8vSZveWWWdiWJEmt1ne4\nI2JRROw/yf279S7AMgr8ODMf6ndbkiR1XR1nlb8W+N8RcS3wS+ABqjPLXwk8D1gD/FkN25EkqfPq\nCPcPgL8GjgYOA/YF1gN3ABcDn8nMB2vYjiRJndd3uDPzF8B7aphFkiTthP8etyRJBTHckiQVxHBL\nklQQwy1JUkEMtyRJBTHckiQVxHBLklQQwy1JUkEMtyRJBTHckiQVxHBLklQQwy1JUkEMtyRJBTHc\nkiQVxHBLklQQwy1JUkEMtyTmzZvX9AjaRT5n3WW4pY5bvnw569at49RTT216FE3T0qVLWbduHffe\ney9z5sxpehzNssjMpmfYoYhYASxueg4JYLh/WmbgpJPg8sufvDkyMsKWLVsaHEjTsc3v7bPPho99\nrLlhBiCaHmBwVmbmkn5X4h631FUTor1s2TKjXYgDDzxw643zz4cPfKC5YTTrRpoeQFIDJkR7dHSU\ntWvXNjiQdsWqVatgzhzYtKm64/zzq2XL9rw1Ofe4pa6ZEG2Mdpk2b67iPcY9784w3FKXTBJtjHa5\njHcnGW6pK4x2OxnvzjHcUhcY7XYz3p1iuKW2M9rdYLw7w3BLbWa0u8V4d4LhltrKaHeT8W49wy21\nkdHuNuPdaoZbahujLTDeLWa4pTYx2hrPeLeS4ZbawmhrMsa7dQy31AZGWztivFvFcEulM9qaDuPd\nGoZbKpnR1q4w3q1guKVSGW3NhPEunuGWSmS01Q/jXTTDLZXGaKsOxrtYhlsqidFWnYx3kQYW7oh4\ne0Rk7+Odg9qO1BlGW4NgvIszkHBHxLOAzwKPDmL9UucYbQ2S8S5K7eGOiAD+DngA+FLd65c6x2hr\nNhjvYgxij/t04HjgHcD6Aaxf6g6jrdlkvItQa7gj4iDgAuDTmXltneuWOsdoqwnGe+iN1LWiiBgB\nLgZ+A5w9g69fMcVDi/qZSyrSi15ktNWcsXhv2lTdPv98uOUWuPTSZucSUO8e93nAS4BTMnNDjeuV\nuueMM7b+2WirCRP3vM88s7lZtI1a9rgj4nCqvexPZOYNM1lHZi6ZYt0rgMV9jCeV57TTYM0auOAC\neOSRpqdRV23eDHvsAR/6EHzyk01Po56+wz3uEPkdwLl9TySpOkT5wQ82PYUEjz8O5/qrfZjUcaj8\nqcCBwEHAY+MuupLAh3qf8ze9+y6sYXuSJHVWHYfKNwJfneKxxVSve18P3A7M6DC6JEmq9B3u3olo\nk17SNCI+TBXur2XmV/rdliRJXec/MiJJUkEMtyRJBYnMbHqGHfLtYBomw/3TMnPR9ADaZW39XoRW\nfz+unOqtz7vCPW5JkgpiuCVJKojhliSpIIZbkqSCGG5JkgpiuCVJKojhliSpIIZbkqSCGG5Jkgpi\nuCVJKojhliSpIIZbkqSCGG5JkgpiuCVJKojhliSpIIZbkqSCGG5JkgpiuCVJKojhliSpICNNDyCV\nJJoeQOrxe7G73OOWJKkghluSpIIYbkmSCmK4JUkqiOGWJKkghluSpIIYbkmSCmK4JUkqiOGWJKkg\nhluSpIIYbkmSCmK4JUkqiOGWJKkghluSpIIYbkmSCmK4JUkqiOGWJKkghluSpIIYbkmSClJLuCNi\ndUTkFB9r6tiGJEmCkRrXtQ64cJL7H61xG5IkdVqd4X44Mz9c4/okSdIEvsYtSVJB6tzj3jMi3gY8\nG1gP/AtwbWZuqXEbkiR1Wp3h3h+4eMJ9v46Id2TmNTVuR5Kkzqor3H8HXAfcDDwCPA/4H8C7gO9E\nxJGZedOOVhARK6Z4aFFNM0qSVLzIzMGtPOKvgPcB/zczX7+Tz91RuJ9S92ySJM2ylZm5pN+VDDrc\nfwisAh7MzGfMcB0rgMW1DiZJ0uyrJdyDPqv8vt5y7oC3I0lSJww63Ef2lr8a8HYkSeqEvsMdEYdE\nxNMnuf85wOd6N/+h3+1IkqR6zipfBvxFRFwN/JrqrPLnA0uBvYArgL+qYTuSJHVeHeG+Gngh8BKq\nQ+NzgYeB66ne131xDvIMOEmSOqTvcPcuruIFViRJmgVeq1ySpIIYbkmSCmK4JUkqiOGWJKkghluS\npIIYbkmSCmK4JUkqiOGWJKkghluSpIIYbkmSCmK4JUkqiOGWJKkghluSpIIYbkmSCmK4JUkqiOGW\nJKkghluSpIIYbkmttWDBAg4//PCmx5BqZbgltdLo6CjXX389P/3pT/n5z3/e9DhSbSIzm55hhyJi\nBbC46TkGYbj/y/cnmh5Au6aF34wjjLCZzePuOQX4WkPT1C/8ISvRysxc0u9K3OOW1EqP8ziv4TXj\n7rkIOLmhaaT6GG5JrbWc5cDTxt1zEcZbpTPcklruUYy32sRwS+oA4632MNySOsJ4qx0Mt6QOMd4q\nn+GW1DHGW2Uz3JI6yHirXIZbUkcZb5XJcEvqMOOt8hhuSR1nvFUWwy1JxlsFMdySBBhvlcJwS9KT\njLeGn+GWpG0Ybw03wy1J2zHeGl6GW5ImZbw1nAy3JE3JeGv4GG5J2iHjreEy0vQAkrpjz4f2ZO6a\nuey+aXe2zNnC+v3Xs3H+xqbHmoaxeD/Su31Rb/k1AFbfuoA1N46Sj+1G7PUE+7/4PhYedPfsj6lO\nqDXcEXEMcAZwFPB04EHgX4ELM/OKOrclqRxz75nL6E2jzL137naPrd9vPfcddh/r/2B9A5Ptiu3j\nfdft+/O7b1zGwZvuZOGT9wO3wy1zDuGJYzZz6DF3NDCr2qy2Q+URcQ5wLfAK4LvAJ4BvA/OBY+va\njqSyzF81n4XfX8jce+eS5DaPJcnce+ey8PsL2XfVvg1NuCu2PWx+wAsv4OCDjyG3/WuRCQdvupOD\nfnAv/++bh83uiGq9Wva4I2IZ8FHgB8AbMvORCY/vUcd2JJVl7j1zeeYNzyQyAAhim8fHbkcGC25Y\nwOanbi5iz/uWHy/m4KNWVjdf98Xqb3Hj/3nyM6L319w9ksU3reYXv3+ge96qTd973BGxG/Bx4D+A\nt0yMNkBmbu53O5LKM3rT6JPR3pnIYPSm0QFPVJMfboLzF2y9/bovwovfMumn7h5JXDdnlgZTF9Rx\nqPwo4LnAFcBDEbE0Is6KiPdGxJE1rF91WLgQdt+96SnUIXs+tOekh8enMnbYfM+H9hzwZP1ZfesC\nDt50J7nx0WnFOxMO2fQbVt+6YLvHpJmoI9wv6y3vBVYClwEXABcCP46IayLi93e2kohYMdkHsKiG\nGbtt6VJYtQr+8R+Nt2bN3DXViWgTD49PZezzxr5uWK25sToqEAFsmiTeCxZv8/ljh83Hvk7qVx3h\nHvtuPBXYG3gV1dkbhwLfozpZ7es1bEczsXQpXHYZjIzA4YfD3ns3PZE6YvdNM/ufxJl+3WzJxyb8\n2hyL9xNbYPMG2HPe9L5OmqE6Tk4b+ykL4E2ZeVPv9s0R8XrgDuCVEXFkZt4w1Uoyc8lk9/f2uhdP\n9ph2YizaY444Ah59tLl51Clb5myZ1a+bLbHXE9vfuelROP+ZsN/BcPfK6X+dNAN1/C/gQ73lr8ZF\nG4DM3EC11w1weA3b0nRNjPboKKxd29w86pz1+1dnh+/Ka9zjv25Y7f/i+wC2ewsYjz82abTHPm/s\n66R+1RHu23vLh6d4fCzsHqOdLUZbQ2Dj/I2s32/9Lr3GvX6/4b+S2sKD7uaWOc968rXrnYmAm+c8\n2yupqTZ1hPta4HHgBREx2XseDu0tV9ewLe2M0dYQue+w+8iY5h53JPcdVsZe6RPHbGbLNN/mtiWD\nPGbTgCdSl/Qd7sy8H/gnYB/gvPGPRcSrgdcA66iupqZBMtoaMuv/YD2/PfK3T8Z7siunQRXtu4+8\nu4CLr1QOPeYOVvynhU/Ge7Irp0EV7ZWHLfTiK6pV5HYv1MxgJRGjwI+APwSuA34GPAd4PZBUF2aZ\n0ZnlbT45rf//8uMMWbSneRRRw6LWb8btNXmt8kH+1X5x3YHEdXM4ZNNvtnvs5jnPJo/ZNLBoT/dQ\nvYbKyqlOxN4VtYQbICKeDpxDFesFVFfivx74WGb+pI/1Gu6dGbJog+EuzoDDPaaJfx1sNv5qTfzr\nYIa7SMMV7kEx3DsxhNEGw12c4f410Je2/tUMd5FqCbdXBCjZkEZbkjQ4hrtURluSOslwl8hoS1Jn\nGe7SGG1J6jTDXRKjLUmdZ7hLYbQlSRjuMhhtSVKP4R52RluSNI7hHmZGW5I0geEeVkZbkjQJwz2M\njLYkaQqGe9gYbUnSDhjuYWK0JUk7YbiHhdGWJE2D4R4GRluSNE2Gu2lGW5K0Cwx3k845x2hLknaJ\n4W7IsmXL4KMf3XqH0ZYkTYPhbsjLXvayrTde8hKjLUmalpGmB+iq97///axZs4ZLLrmEe+65p+lx\n1HXR9ACD0+K/mjoqMrPpGXYoIlYAi5ueQ5KkPq3MzCX9rsRD5ZIkFcRwS5JUEMMtSVJBDLckSQUx\n3JIkFcRwS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUEMMtSVJBDLckSQUx3JIkFcRwS5JUEMMtSVJB\nDLckSQUx3JIkFcRwS5JUkL7DHRGnRETu5GNLHcNKktR1IzWs40bgI1M8dgxwPPCdGrYjSVLn9R3u\nzLyRKt7biYgben/86363I0mSBvgad0QcCrwcuBu4fFDbkSSpSwZ5ctp/7y2/mpm+xi1JUg3qeI17\nOxGxN/A24AngK9P8mhVTPLSorrkkSSrdoPa4/xuwL/CdzLxzQNuQJKlzBrLHDbyrt/zydL8gM5dM\ndn9vT3xxHUNJklS62ve4I+Jg4CjgLuCKutcvSVKXDeJQuSelSZI0ILWGOyL2At5OdVLaV+tctyRJ\nqn+PexkwH7jCk9IkSapf3eEeOynNK6VJkjQAtYU7Ig4C/ghPSpMkaWBqeztYZt4KRF3rkyRJ2/Pf\n45YkqSCGW5KkghhuSZIKYrglSSqI4ZYkqSCGW5KkghhuSZIKYrglSSqI4ZYkqSCGW5KkghhuSZIK\nYrglSSqI4ZYkqSCGW5KkghhuSZIKYrglSSqI4ZYkqSCGW5KkgpQQ7oVNDyBJUg0W1rGSkTpWMmC/\n6y1Xz8K2FvWWt83CtlQPn7Py+JyVx+esfwvZ2rO+RGbWsZ5WiIgVAJm5pOlZND0+Z+XxOSuPz9lw\nKeFQuSRJ6jHckiQVxHBLklQQwy1JUkEMtyRJBfGsckmSCuIetyRJBTHckiQVxHBLklQQwy1JUkEM\ntyRJBTHckiQVxHBLklQQww1ExAER8bcR8duI2BgRqyPiwoiY3/Rs2lZEPCMi3hkR34qIf4uIDRGx\nLiKuj4g/jQi/pwsREW+PiOx9vLPpeTS5iDgmIr4REff0fj/eExHLI+KkpmfrqhL+Pe6BiojnAz8G\nRoFLqf692cOB9wKvjYijM/OBBkfUtpYBXwTuAa4GfgPsB7wB+ArwxxGxLL2y0FCLiGcBnwUeBZ7a\n8DiaQkScA3wUuB+4jOrn7veAlwDHAlc0NlyHdf7KaRHxPeBE4PTM/Oy4+z8J/Dnw5cw8tan5tK2I\nOB6YC1yemU+Mu39/4GfAs4A3ZeY3GhpROxERAXwfeC7wTeBM4M8y8yuNDqZtRMQy4J+BHwBvyMxH\nJjy+R2ZubmS4juv0YcWIeB5VtFcDn5/w8IeA9cDbI2LuLI+mKWTmVZn57fHR7t2/BvhS7+axsz6Y\ndsXpwPHAO6h+xjRkei85fRz4D+AtE6MNYLSb0+lwU/3yAFg+SQgeAX4EPAV4+WwPphkZ+0XyeKNT\naEoRcRBwAfDpzLy26Xk0paOojohcATwUEUsj4qyIeG9EHNnwbJ3X9de4X9hb3jHF46uo9sgPBK6c\nlYk0IxExAvxJ7+Z3m5xFk+s9RxdTnZdwdsPjaMde1lveC6wEXjT+wYi4luolqbWzPZjc496nt1w3\nxeNj9+87C7OoPxcAhwJXZOb3mh5GkzqP6qSmUzJzQ9PDaIdGe8tTgb2BVwFPo/oZ+x7wCuDrzYym\nrod7Z6K37PYZfEMuIk4H3kf1joC3NzyOJhERh1PtZX8iM29oeh7t1O69ZVDtWV+ZmY9m5s3A64G7\ngFd62LwZXQ/32B71PlM8Pm/C52nIRMR7gE8DtwDHZeaDDY+kCcYdIr8DOLfhcTQ9D/WWv8rMm8Y/\n0DtaMnZU6/BZnUqA4b69tzxwisdf0FtO9Rq4GhQRZwCfA35BFe01DY+kyT2V6mfsIOCxcRddSap3\nbwD8Te++CxubUuON/W58eIrHx8K+9yzMogm6fnLa1b3liRGx24T3BT8NOBrYAPykieE0tYg4i+p1\n7RuBV2fm/Q2PpKltBL46xWOLqV73vp4qFh5GHw7XUr074wURMSczN014/NDecvWsTiWg4+HOzF9G\nxHKqM8ffQ3UlpzEfobrQx5cz0/eaDpGIOBf4X8AK4EQPjw+33qHVSS9pGhEfpgr317wAy/DIzPsj\n4p+At1KdVHjO2GMR8WrgNVQvIfoOjgZ0Otw976a65OlnIuIE4FbgCOA4qkPkH2xwNk0QESdTRXsL\ncB1wenUhrm2szsyLZnk0qW3+J9Xvwg9GxCuorkz4HKqT07ZQXe1uqkPpGqDOh7u31/1Sqhi8FjiJ\n6nq8nwE+4t7c0Hlub7k7cMYUn3MNcNGsTCO1VGbeFxFHUO1tv57qQlSPAJcDH8tMX0JsSOevVS5J\nUkm6fla5JElFMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkFMdySJBXE\ncEuSVBDDLUlSQQy3JEkFMdySJBXEcEuSVBDDLUlSQQy3JEkF+f89Yy/iWUuCpQAAAABJRU5ErkJg\ngg==\n", | |
"text/plain": "<matplotlib.figure.Figure at 0x7f4981b386d8>" | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 250, | |
"width": 247 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"9a0ac1bf194f451d84e2223afb6cf322": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9a1151f25a7247fcbd8e097efc8b49a7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_5327bef651bf4a43bd196abe37fe6f2f", | |
"max": 7, | |
"style": "IPY_MODEL_0b3b724d1f8a4a86acd605094b8cc6ff", | |
"value": 4 | |
} | |
}, | |
"9a6a97b45cbc44169bbeb167d00186bb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9a8e6efb57994afc949d0827d044db7a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9aa661f40256414b90910763894386dc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "t", | |
"layout": "IPY_MODEL_8d3e1ec102bf4ac6a187b57e01091f24", | |
"max": 63, | |
"style": "IPY_MODEL_0ee639cc1c594e87bba225fc05846088", | |
"value": 63 | |
} | |
}, | |
"9ac6fe09178042a39d4ce26fe059ce12": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_e3d10b8263494ffc94d38c40b27b970f", | |
"IPY_MODEL_ce35a9cd827041b1a3f1c43bca55f713", | |
"IPY_MODEL_26b0f8079e6b42cbb52a70ab23498456", | |
"IPY_MODEL_2fb709e889724076ad4991650eb4c938", | |
"IPY_MODEL_7267c2a3724d40b3a1a4776722d9f832" | |
], | |
"layout": "IPY_MODEL_64295e4ef9b04e95af00a4cb96c00e02" | |
} | |
}, | |
"9aee1ec157c44eca96aa75fe27eb02e9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9af1da6500384b448edd595172e1638d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9af65cd27a06447e9c03ab089b4a6d0f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9b16d224f87a4f1b9f67aadde5c9092a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_bc882d7eee5640f3835c326663ed02e4", | |
"IPY_MODEL_b1f2c99fdccc40a69e84173bf76475b7", | |
"IPY_MODEL_660e1289bff043a9a991c1f8dca3b22d" | |
], | |
"layout": "IPY_MODEL_67de580cb3a1468da01c15296d24f294" | |
} | |
}, | |
"9b3350ab62d340e192d6c6d5a2c5bdfe": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9b4c56bf449f49d586caad3753639a22": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9b765d48e989402d9d7ca0b305e28125": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9bb99c77e12e4887a42c7ed52d2365cb": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_7c6937baecf0411f82272079229c4d05", | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "(0, 0, 63, 1)" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
] | |
} | |
}, | |
"9bd82d9f4f6141138e77c5b23a327e84": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9be341d0247d459e89dc71759f109a7f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_1239a35c277545d8abb2d9eb159fe8a9", | |
"IPY_MODEL_ed850f3b81f743f089cdad7970e83b09", | |
"IPY_MODEL_bcd6a83a1fa54226a26eee2469fd0a29", | |
"IPY_MODEL_cf647288ed65412091ad8ed969a41214" | |
], | |
"layout": "IPY_MODEL_d022de8862ac4e9a95c5ea9a9983987c" | |
} | |
}, | |
"9be3dc6f87934e9189bad320dd7e8ccb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9bec9e403c5f4e0382b2185077ec617f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_5de8945af7904942b92476bea1bb3708", | |
"max": 7, | |
"style": "IPY_MODEL_7f13eba66f6a4cb9a08362f044238219", | |
"value": 1 | |
} | |
}, | |
"9c40e613d7f04c93b4e42fd487a5f5f6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9c40f3ea377a456da924b01b8e39e52e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9c5bec08a846414a9deb54443aab3ce1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9c7dd281ef7d4e348c25b9a8067e37c6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "VBoxModel", | |
"state": { | |
"_dom_classes": [ | |
"widget-interact" | |
], | |
"children": [ | |
"IPY_MODEL_a6681ea060a64c4eac907c7455dbdf2e", | |
"IPY_MODEL_d530a1d1dd5f461f9246044ea5253b21", | |
"IPY_MODEL_44eac28ed5f24ea0adfeba60ae65490e", | |
"IPY_MODEL_a04c9a5721d347f1ae79e320cefa7e35" | |
], | |
"layout": "IPY_MODEL_1b1fabe578f842d7bd0dce4be0ac2518" | |
} | |
}, | |
"9c9f9301e86845fe996867d5f3bcea4b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9cae4a4b1bed4cb2a6163f11aa28550e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9cba5510d0b74b8dad9c4f57892eff25": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9cbecd37e67943bdb340220ae31059da": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "c", | |
"layout": "IPY_MODEL_d6e6acc9813c4ca0b404eae819a3a075", | |
"max": 7, | |
"style": "IPY_MODEL_5304ddcdf75348f4a00e223fb00085b7", | |
"value": 4 | |
} | |
}, | |
"9d5bc21ca80e4274b04ccec82ec8d7bf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9d6781346dfb42d69292c77612ed0ac7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9d7cf49f0d914c67954423c068cc221c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "IntSliderModel", | |
"state": { | |
"description": "r", | |
"layout": "IPY_MODEL_8d3a993c4e314b25adf5ceda42b88382", | |
"max": 7, | |
"style": "IPY_MODEL_e7efc3a4fe034aa0b2e14193280eed31", | |
"value": 7 | |
} | |
}, | |
"9d83afe31b324b8aad12ef2418320873": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9d99b51d30ce49cabf1b1dcf827cfbf9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9dbe94287cb14ebdbcf1d5eb3868f5af": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9dc509fc6da0449dbc649e92d9b26ec2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.0.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"9dd22cc0f6cf4f4ab65c12edf69c27bc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.0.0", | |
"model_name": "SliderStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9ddda276105449b993d1e529678cab85": { | |
"model_module": "@jupyter-widgets/output", | |
"model_module_version": "1.0.0", | |
"model_name": "OutputModel", | |
"state": { | |
"layout": "IPY_MODEL_72fbac53d6134082becf9ecb83a41b3a", | |
"outputs": [ | |
{ | |
"data": { | |
"image |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment