Created
November 3, 2015 13:41
-
-
Save kbarbary/6bed79dfd44a0f6e0da4 to your computer and use it in GitHub Desktop.
Testing bounding ellipsoid in nestle
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import math\n", | |
"import nestle" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def random_ellipsoid(n):\n", | |
" \"\"\"Return a random `n`-d ellipsoid centered at the origin\"\"\"\n", | |
"\n", | |
" # `a` in the ellipsoid must be positive definite, so we have to construct\n", | |
" # a positive definite matrix. For any real, non-singular matrix A,\n", | |
" # `A^T A` will be positive definite.\n", | |
" det = 0.\n", | |
" while abs(det) < 1.e-10: # ensure a non-singular matrix\n", | |
" A = np.random.rand(n, n)\n", | |
" det = np.linalg.det(A)\n", | |
"\n", | |
" return nestle.Ellipsoid(np.zeros(n), np.dot(A.T, A))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"SQRTEPS = math.sqrt(float(np.finfo(np.float64).eps))\n", | |
"\n", | |
"def est_ellipsoid(x):\n", | |
" \"\"\"Like bounding ellipsoid, but don't scale to include the outermost point.\n", | |
" This is useful for comparing to the result of bounding_ellipsoid to see if\n", | |
" the outermost point is usually outside the 'estimated' ellipsoid.\"\"\"\n", | |
" \n", | |
" npoints, ndim = x.shape\n", | |
" \n", | |
" ctr = np.mean(x, axis=0)\n", | |
" delta = x - ctr\n", | |
" cov = np.atleast_2d(np.cov(delta, rowvar=0)) * (ndim + 2)\n", | |
" \n", | |
" a = np.linalg.inv(cov)\n", | |
"\n", | |
" return nestle.Ellipsoid(ctr, a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"ndim true_vol est_vol bounding_vol\n", | |
"---- -------- ------- ------------\n", | |
" 1 7.0890 7.1841 7.1841\n", | |
" 2 15.8982 16.7563 16.7563\n", | |
" 3 163.6792 152.9843 186.6362\n", | |
" 4 26.5588 27.3430 33.5129\n", | |
" 5 114.1826 109.4350 228.6318\n", | |
" 6 253.1310 235.7950 416.4938\n", | |
" 7 145.5416 129.0424 355.7259\n", | |
" 8 58.3859 45.3929 142.8048\n", | |
" 9 635.2109 519.4966 1026.8658\n", | |
"10 47.5843 43.4041 275.6352\n", | |
"11 57.1798 39.7135 153.4214\n", | |
"12 80.2361 75.3141 219.1016\n", | |
"13 5.9599 4.5178 20.2549\n", | |
"14 386.6646 225.3474 1055.4631\n", | |
"15 49.9046 28.9416 127.8040\n", | |
"16 165.1167 81.5517 587.5828\n", | |
"17 3.7018 1.3528 25.6952\n", | |
"18 1.4007 0.5769 10.0011\n", | |
"19 0.3621 0.1116 1.3829\n", | |
"20 0.7569 0.2576 2.4605\n" | |
] | |
} | |
], | |
"source": [ | |
"# For dimensions 1-20, draw points uniformly within a random ellipsoid,\n", | |
"# calculate the bounding ellipsoid and the 'estimated ellipsoid', which\n", | |
"# is the bounding ellipsoid before scaling to include the outermost point.\n", | |
"# Compare the volumes of the true ellipsoid, and the two bounding ellipsoids.\n", | |
"\n", | |
"npoints = 100\n", | |
"\n", | |
"print(\"ndim true_vol est_vol bounding_vol\")\n", | |
"print(\"---- -------- ------- ------------\")\n", | |
"for ndim in range(1, 21):\n", | |
" ell_gen = random_ellipsoid(ndim)\n", | |
" x = ell_gen.samples(npoints)\n", | |
" ell1 = est_ellipsoid(x)\n", | |
" ell2 = nestle.bounding_ellipsoid(x)\n", | |
"\n", | |
" print(\"{:2d} {:12.4f} {:12.4f} {:12.4f}\"\n", | |
" .format(ndim, ell_gen.vol, ell1.vol, ell2.vol))\n" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment