Last active
June 9, 2020 20:07
-
-
Save keflavich/f51bd941973435258b2328111369fa9c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"A blackbody has the form:\n", | |
"\n", | |
"$$B_\\nu = \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1}$$\n", | |
"\n", | |
"with units $[B_\\nu] = \\mathrm{Jy}$\n", | |
"\n", | |
"The spectral flux density from a blackbody $F_{\\nu} = \\pi B_{\\nu}$ from integrating over a hemisphere (see eqn 2.107-2.110 from https://www.cv.nrao.edu/~sransom/web/Ch2.html)." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The modified blackbody for dust is only valid in the Rayleigh-Jeans regime ($\\nu << \\nu_{peak}$, where $\\nu_{peak}$ is the frequency of the peak of the blackbody at a given temperature) and is given by:\n", | |
"\n", | |
"$$F_\\nu = \\pi \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1} (1-e^{-\\kappa_\\nu \\Sigma})$$\n", | |
"\n", | |
"where $\\kappa_\\nu = \\kappa_{\\nu_0} \\left(\\frac{\\nu}{\\nu_0}\\right)^{\\beta}$ is the dust opacity index with units $[\\kappa_\\nu] = \\frac{\\mathrm{cm}^2}{\\mathrm{g}}$. \n", | |
"\n", | |
"$\\Sigma$ is the surface density in $[\\Sigma] = \\frac{\\mathrm{g}}{\\mathrm{cm^2}}$. \n", | |
"\n", | |
"The optical depth $\\tau = \\kappa_nu \\Sigma$\n", | |
"\n", | |
"This approximates, in the $\\tau<<1$ regime, to:\n", | |
"$$F_\\nu = \\pi \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1} \\kappa_\\nu \\Sigma$$\n", | |
"\n", | |
"The mass of an object $M = \\Sigma A$, where $A$ is the object's area. We usually assume spheres (or, projected circles), such that $M = \\Sigma \\pi r^2$, where $r$ is the object's radius.\n", | |
"\n", | |
"$$F_\\nu = \\pi \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1} \\kappa_\\nu \\frac{M}{\\pi r^2}$$\n", | |
"\n", | |
"\n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"A blackbody of size $r$ at distance $d$ will produce an observed spectral flux density\n", | |
"\n", | |
"$$S_\\nu = B_\\nu \\frac{\\pi r^2}{d^2}$$\n", | |
"\n", | |
"\n", | |
"(section 1.4, eqn 1.6 of Tools of Radio Astronomy by Rohlfs & Wilson, 2009)\n", | |
"\n", | |
"Note that $\\Omega = \\frac{\\pi r^2}{d^2}$ is the angle a circular (or spherical) object subtends on the sky." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Putting these together, in the $\\tau << 1$ limit, the received flux from a blackbody is:\n", | |
"\n", | |
"$$S_\\nu = \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1} \\kappa_\\nu \\frac{M}{\\pi r^2} \\frac{\\pi r^2}{ d^2}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The source areas cancel:\n", | |
"\n", | |
"$$S_\\nu = \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1} \\kappa_\\nu M \\frac{1}{ d^2}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Some rearrangements yield:\n", | |
"\n", | |
"$$S_\\nu = \\frac{2 h \\nu^3}{c^2} (1-e^{h \\nu / k_B T})^{-1} \\frac{\\kappa_\\nu M}{d^2}$$\n", | |
"\n", | |
"$$S_\\nu = B_{\\nu} \\frac{\\kappa_\\nu M}{d^2}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Solving for $M$ yields:\n", | |
"$$M = \\frac{S_{\\nu} d^2}{\\kappa_\\nu B_\\nu}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We can replace $B_\\nu$ with the Rayleigh-Jeans version\n", | |
"$$B_\\nu = \\frac{2\\nu^2 k_B T}{c^2}$$\n", | |
"to obtain\n", | |
"$$M = \\frac{S_\\nu d^2 c^2}{2\\kappa_\\nu \\nu^2 k_B T}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"and\n", | |
"$$S_\\nu = \\frac{2 M \\kappa_\\nu \\nu^2 k_B T}{d^2 c^2}$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment