Last active
March 7, 2017 23:00
-
-
Save ketch/8adf1ba9eb6e11ca8dfa996e7e1193a5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"from ipywidgets import interact" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from clawpack.pyclaw import examples" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"2017-03-07 15:00:16,478 INFO CLAW: Solution 0 computed for time t=0.000000\n", | |
"2017-03-07 15:00:16,523 INFO CLAW: Solution 1 computed for time t=0.100000\n", | |
"2017-03-07 15:00:16,569 INFO CLAW: Solution 2 computed for time t=0.200000\n", | |
"2017-03-07 15:00:16,609 INFO CLAW: Solution 3 computed for time t=0.300000\n", | |
"2017-03-07 15:00:16,659 INFO CLAW: Solution 4 computed for time t=0.400000\n", | |
"2017-03-07 15:00:16,712 INFO CLAW: Solution 5 computed for time t=0.500000\n", | |
"2017-03-07 15:00:16,759 INFO CLAW: Solution 6 computed for time t=0.600000\n", | |
"2017-03-07 15:00:16,803 INFO CLAW: Solution 7 computed for time t=0.700000\n", | |
"2017-03-07 15:00:16,842 INFO CLAW: Solution 8 computed for time t=0.800000\n", | |
"2017-03-07 15:00:16,886 INFO CLAW: Solution 9 computed for time t=0.900000\n", | |
"2017-03-07 15:00:16,918 INFO CLAW: Solution 10 computed for time t=1.000000\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"{'cflmax': 0.9014577115207897,\n", | |
" 'dtmax': 0.0011485652165592229,\n", | |
" 'dtmin': 0.0010716263579387897,\n", | |
" 'numsteps': 908}" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f=examples.shallow_1d.sill.setup(kernel_language='Fortran')\n", | |
"f.run()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"2017-03-07 15:00:17,499 INFO CLAW: Solution 0 computed for time t=0.000000\n", | |
"2017-03-07 15:00:17,601 INFO CLAW: Solution 1 computed for time t=0.100000\n", | |
"2017-03-07 15:00:17,688 INFO CLAW: Solution 2 computed for time t=0.200000\n", | |
"2017-03-07 15:00:17,774 INFO CLAW: Solution 3 computed for time t=0.300000\n", | |
"2017-03-07 15:00:17,864 INFO CLAW: Solution 4 computed for time t=0.400000\n", | |
"2017-03-07 15:00:17,948 INFO CLAW: Solution 5 computed for time t=0.500000\n", | |
"2017-03-07 15:00:18,035 INFO CLAW: Solution 6 computed for time t=0.600000\n", | |
"2017-03-07 15:00:18,123 INFO CLAW: Solution 7 computed for time t=0.700000\n", | |
"2017-03-07 15:00:18,206 INFO CLAW: Solution 8 computed for time t=0.800000\n", | |
"2017-03-07 15:00:18,289 INFO CLAW: Solution 9 computed for time t=0.900000\n", | |
"2017-03-07 15:00:18,369 INFO CLAW: Solution 10 computed for time t=1.000000\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"{'cflmax': 0.90145771152078968,\n", | |
" 'dtmax': 0.001148565216559225,\n", | |
" 'dtmin': 0.0010716263579387895,\n", | |
" 'numsteps': 908}" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"p = examples.shallow_1d.sill.setup(kernel_language='Python')\n", | |
"\n", | |
"p.run()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "b178f932a28c40789c8fd7a9d160d074" | |
} | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def compare(i):\n", | |
" plt.plot(f.frames[i].q[0,:]+f.frames[i].aux[0,:],lw=3)\n", | |
" plt.plot(p.frames[i].q[0,:]+p.frames[i].aux[0,:],'.')\n", | |
" plt.show()\n", | |
" \n", | |
"interact(compare,i=(0,10,1));" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "1a638d97104146459e40e331fea825b2" | |
} | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def diff(i):\n", | |
" plt.plot(f.frames[i].q[0,:]+f.frames[i].aux[0,:]-(p.frames[i].q[0,:]+p.frames[i].aux[0,:]))\n", | |
" plt.show()\n", | |
"interact(diff,i=(0,10,1));" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x110f90a50>]" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm8JGV5739vbd199lnOzJwzC8MOg2wyIuICeEHBJZoQ\nNRpj7tUEE0lijNFgvGqi5l41nyhqUMNVQxZRNAoKqCiLYRGBAWbYBhgYBmZj5sycOXPW7q7lvX9U\nPW+9VV3VXd2nT5/unvf7+cxnzunTXV3Vy6+e+j3P+zyMcw6FQqFQdA/aYu+AQqFQKJqLEnaFQqHo\nMpSwKxQKRZehhF2hUCi6DCXsCoVC0WUoYVcoFIouY9GEnTH2bcbYfsbYY03a3s8ZYxOMsZtit1/D\nGHuOMbY5+HdGM55PoVAo2pXFjNivAXBxE7f3jwD+IOVvH+GcnxH829zE51QoFIq2Y9GEnXN+J4Bx\n+TbG2LFB5P0gY+wuxthJdWzvNgBTzd5PhUKh6DTazWO/GsCfc87PAvDXAL7WpO3+A2PsEcbYlxhj\nuSZtU6FQKNoSY7F3gGCM9QE4F8APGGN0cy742+8A+HTCw3Zzzl9fY9MfA/AiAAv+ieNvUralUCgU\nXUHbCDv8q4cJznlFcpNz/iMAP2pko5zzvcGPJcbYv8K/ElAoFIqupW2sGM75JIDnGGNvAwDmc/p8\nt8sYG6HtAXgrgKZU4SgUCkW7wharuyNj7LsAzgewHMA+AJ8CcDuArwMYAWAC+B7nPJNtwhi7C8BJ\nAPoAHATwPs75LYyx2wEMA2AANgP4E875dHOPRqFQKNqHRRN2hUKhUCwMbWPFKBQKhaI5LErydPny\n5Xz9+vWL8dQKhULRsTz44IMHOOfDte63KMK+fv16bNq0aTGeWqFQKDoWxtjzWe6nrBiFQqHoMpSw\nKxQKRZehhF2hUCi6DCXsCoVC0WUoYVcoFIouQwm7QqFQdBlK2BUKhaLL6Ehh55zjhw/uwmzZWexd\nUSgUirajI4V90/OH8OEfbMFnbnpisXdFoVAo2o6OFPbpoh+p7z1cXOQ9USgUivZj3sLOGMszxu5n\njG1hjD3OGPv7ZuxYNThUR0qFQqFIoxm9YkoAXss5n2aMmQDuZoz9jHP+myZsO5HZsgsAUB2HFQqF\nopJ5Czv3G7rT4Aoz+LegkjtVVElThUKhSKMpHjtjTGeMbQawH8AvOef3JdznMsbYJsbYprGxsXk9\n37QSdoVCoUilKcLOOXeDIdRrAJzNGHtJwn2u5pxv5JxvHB6u2U64KlNFGwDgKS9GoVAoKmhqVQzn\nfALAHQAubuZ240wGEbuyZBQKhaKSZlTFDDPGhoKfCwAuAvDkfLdbDRL06ZISdoVCoYjTjKqYEQD/\nxhjT4Z8ovs85v6kJ202FrBj6X6FQKBQhzaiKeQTAmU3Yl0w89MIh/OKJfQCiVsyOAzN48z/fjVce\nuxzf+IOzWrU7CoVC0XZ03MrTbfumAACrhwoo2i54kEB9YXwWU0UHP3/8xcXcPYVCoVh0Ok7YS44H\nALhow0p4HHA8X9hdT1XIKBQKBdCBwl4OhL0/b0R+d5SwKxQKBYAOFHaK2PtyRuR3FbErFAqFT+cK\neyxiV8Kencmijb/83sP45l3bF3tXFArFAtBxwl52PFi6hpyhi98BwPG8xdytjmLLzgncsHkPPnvz\n1sXeFYVCsQB0nLCXHBc5Q0PO0MTvgIrY60Gt2FUoupuOE/ay48EyNFhC2CutGK56yFRFLexSKLqb\njhf2slsp7Cp6r46K2BWK7qbjhL3keFErxq4sd1Slj9UhYTd1Frn92bFpPLN/OukhCoWig2hGr5iW\nQhF7Lhaxyy18bddD3tQXZf86ARL2+Pnvf/zTfwMAdnzuja3eJYVC0UQ6MGJ3kTN0URVTsv3kqeNK\nEburIvZqkMfuehyeurpRKLqOjhP2slvbY7dV6WNVZI9dvVYKRffRecIe1LFbuiZ+BwCXq4g9K3If\ne/VaKRTdR8cJe8nxkDM15Mz0csesYjVbdo6I0kjP4ygGlhUQLXe03cqI/Uh4TRSKbqbjhD0tYpfF\nPIu9MFm0seGTt+DLt21bmB1tIz5+w6M46RM/F4IdsWISToIzZbfiNoVC0Tl0nLD7EbuOXFD1Eq48\nDcU8Sx372FQJAHDDw7sXYC/bi+/evxNAmI+YLDpgQaVjUisGtYBJoehsOk7Ys3jsSfZC0nYAwNA7\n7iVomGLZP+apoo1lvRYAwHYqT4JqAZNC0dl0nKqVgjp2U2dgLLkfexaPnRKIhsZq3LPzoei86Lgo\nOx5KjoclPYGwBxG77KsrYVcoOpuOW6BETcAYY7B0LUyeynXsGTx2shvMIyBi1xiDyznmyi5M3Rft\nJRSxu5UnRmXFKBSdTcepWjloKQAAliEJuxRxXvr1e0UknwZFpYbe/RG7HoTsc7YrRHtpELHT1Y38\neqmIXaHobDpK2G3XtxF6LP9Cw9I1EXHGE6YHpktVtzVJ/VK0jnoJGoKsGF/YkyP2kiTsc6oqRqHo\naDrKipkJfHGad2roTESc9Tb+mj6CInYtUPZi2UWR+aItkqcJEfucrYRdoehkOkrYKdqksXiGponk\nX7znSW0rxrckvCNgMY6uhVYMXdlQxO4EEbsSdoWie+goYZ8MxHggEHazSsReyuixF+3u75UiWzHU\n5nhprwkgrG2n9QCAsmIUik6nowxmEuP+vC9Khq6JCpi4x541Yi8uQnS6de8k/uvBXS17PhGxl118\n5XZ/pe3S3hyAMHkqnwgX4zVRKBTNo6Mi9lDYyYphwiN2PA7GAHJW5Ag0idkgKl0MEbvky3cBAH7n\nzNXQWlBHTx77nokinj84CyD02OnEqIRdoegeOipiny75UTZF7KauCY/Y8zjyRjhco1bETtbNYvrJ\nB2aqV+40CxL2Q7NlAMA//u5pyJvU9lglTxWKbqOjhF0kT3NSVYxHEbsnxAoASjXaClCZ32L6yXsm\nii15HrooGJ/xhT1v6jCCMk+RPHVlYe/+vINC0c10pLCTFWNq0Tr2nBSxl2qIE3nLrU6eykv390zM\nteQ5Kf9AEXvB1GEaJOyBx26r5KlC0S10lLBPFm1YuibmmepaWBXjelxMVQL8CNR2PTy663Ditshb\nLrueiFpbwaHZcLn+Qgu763Fs2TkhbBaK2AuWDjMI4ylSf/D5QwD8k2ZWj/3ubQdw8yN7MRGcMBQK\nRXvQUcI+VXREtA7ErRiO3lz4t5Lt4nM/exJv/ue78ezYdMW25D7kxRp+fDPZNxnaLwttxdy2dR/e\nctU9mAoWdh2SrRg9tGJcj+Nf7twOAFg9VMjksT9/cAbv/tZ9uPzah/DV259ZoCNQKBSN0FHC/qEL\nT8B17z9H/G7Gyh17LR23f/g8AH4k+tALfhR6cLoyopQbhbXSepicCyP2vYcXNmLfPxVNzh4Onrtg\n6jCDFbe2y0X7hb947XFYs6Qn0+sh95N5YXy2WbusUCiaQEcJ+3B/Dset6Be/GzErRteYaEcrV3kk\nrS6VW/u2sryPBHGox1xwKybezIsmIxUsXXS1tD0Pu4P9OGPdEAqWjmKNUlEgLI/UNdayXIFCochG\nRwl7HDPWBMzQWWQWKlWIz5QquxXKwzhaKuxByeaJK/uxe4GtGCoPjeNH7GHylIR5ZLCAgqmhmCFi\np3UC65f1KGFXKNqMjhb2uMeuBT3agdptaB2Pi7LJVtZt076ctKofB6ZLNRdSNeO54uRNDbrmDyqx\nXQ97gxPM6FABeVPHgZmodcU5F4NJCHp9j17ei0OztqqkUSjaiM4Wdk2LWDGGxmDovmjJgpk0OMJx\nuUjEThcdrL/iZlx1R+NJwL/7yeNYf8XNVe9z/cO78MkfPw4AOGGVbym9eHjhovZ0YferivxyUY49\nh+fQa+kYyBvoyxkoOx6+/qtnxf3/z0+34iWfugU/3hzOhyUrZv2yXgDAngXOFygUiux0tLCbOotY\nMXqw6MbStUjEPpkYsXtC2J8Pkn9X3vp0w/tyza93iP1I44cPhsJ4NAniAtoxSSc0xiAGlfhN1Dwc\nnrUx1GOBMYb/ee56AMDOQ2FC9Jn9flXRs/vD6iJ6fVcO5AGEiVmFQrH4dLSwy1YMReyAP1mp7Hii\npDFuIwAUsfutCUiwmtHBd6acPn1oWZ8lfh4ZKgBY2Fp2+YRGFlXB1MGCFgNGkKOYlMpIVwzksXIg\nF2mDPFNyK7ZHwr683z8mNXVJoWgf5i3sjLG1jLE7GGNPMMYeZ4x9sBk7lgVDWnnqeJ7oYpgLRuZR\nxJoUudpuGLEn1bk3SjWBWxZ0VASAkUE/0l1IYZf3hU4qBTNcnWvqDLbHMV2yMRCc5IDA4pKEndol\nyydIsmLomKaVsCsUbUMzInYHwIc55xsAnAPgcsbYhiZstyZyP3aPh+1pKWInYUtLnlLEvv3AzLz2\nQ7Zfqg2C7s2Fopo3dSzrtbBnAT12uSpmeV9OPC9h6hrs4HWSF35pWvyY6HUMt1cOchh0wlADsBWK\n9mHews4538s5fyj4eQrAVgCr57vdLBi6hjnbxaVf/zWeOzCTELH7gvTjzXuw48AMSo6L917zAP7q\nus2R5Cm1snW8yuqPLOyfCsVZPonc8PBufO1XYUI23nFydKhQNWKfLjn4wHcebDjBmhSxy43SyMqa\nKjpiKhXgR+yux/HQC4fwt9c/Kl35VEbsdMJo1IrZtGMcv/21e3DDw7tr31mhUGSiqf3YGWPrAZwJ\n4L6Ev10G4DIAWLduXVOej/qdUJ8TWk1p6hpKjhvpWLhl1wRcPojbn9wvbuvPVR7+oZmyKIPMyoTU\n/0WOXP/yus0AgA+cfxyAUAy/8e6XAvAXKU1WiXRveexF/PTRF2HpGq78vTPr2ifOeVTYA8tEPjZa\nBzBVtCMRu64xuB7HbVv34dr7XpCOrdJjH+oxwVjjEfuvnz2Ih1+YQH9+N956ZkviAYWi62la8pQx\n1gfghwD+knM+Gf875/xqzvlGzvnG4eHhpjwn9TshqLujrjExSOPd5/gnkZLjVfjAPZYhxsYR1YQ2\nDXmBU7XIteR4WN6Xw8UvGQn2V6vahZKsm0aiYXm+KQAMFnzbSY7MqTumb8XIHjuD41W+XhErxvWg\nMT8p22cZoh9NvVADtn0LaEkpFEcaTRF2xpgJX9S/wzn/UTO2mQVDj6oydXc0JGEnwZKtGfnxlEyk\nnuWNiihBj5fb89LPZccTpYaAfyIqV+ksSRF+I6IZPw6yYPpzkoDrDNMlJ8g3SB478yN2eRsaq7Ri\nLEMDYwz9eaNhK8YOTj6qDl6haB7NqIphAL4FYCvn/Ivz36XsGFqysGsaEyshSbDKUpUMYUrCPjLo\nlx82Ut2RFLGPS6s3qed72fUirYUpyZtGteRvLeLHSs/bG7NixmeiU6kAX/Bdj0fKG0eHChVWDJVQ\n9ufNhq0YuqqYKjoqAatQNIlmROyvBPAHAF7LGNsc/HtDE7ZbE5oCROTkiN2ODr4+PFvGN+9+ruLx\nVCUyOuSXH06VbPzyiX3YOT6LXYdm8fPH9tbcj7lyKM7fvGs7XI9HFh6RYJVsNxKxW0EugLj+4V2R\nE0JSNUpW4icDsqlyUvLU1Jlo5SvnG3SNkqrh844OFVB2PXESKzkucsFrN6+IXbpi2avsGIWiKcw7\neco5vxvAwk9kTiDetZGiUl1jmA0W1ZBgfSWhZ7ipMxHRjw4VABzCVNHBh67bgmW9Fkxdw4uTRTz9\n2UsikXYc2Yo5OFPGtv1TohUu4C/sWTFQGbHnzDBif2b/ND503Ra8bsNKXP2ejQBCQW+kUoeEdtVA\nHieN9IeLt6S8hKFp4kQSSZ4mWDG0wnS27CJv6r4Vo4dXARMNrjyVu2zunyzhhJX9Ve6tUCiy0NEr\nT0sxG4OiUkPThNjmpd7jcQxdE4I1GqwE3T/pC/LBmTJeDIZiyMMxkqDn+sKlpwHwrZeo704Ru5cQ\nsXvB8/rPIS/NJ0FvpPskifI1730ZrvlfZwsvX35+09DE7bIVQ1Ux8gllWa9fLilmpDqeiP5rWUrV\nkPviKytGoWgOHS3s8Y6CssdOydOcoUWiVBlDYxgIqkWW9VqwdC0xibe7xupQanNL2yrZbmTfSCCr\nRexjQYS/tDdsO0DiXLS9SDI2CySSJNj0PBFhl3IU8clUbsyKof2iE4EcsfvrBhrr7ihPsmq0skah\nUETpbGGPRbKyx05Yhia84DimroWDsYOf9yY05ao16YgiaiopLLteZFgFCbRfFRPui6XrcDwO1+PC\nXx7qkYU9FNb41Ukt4oO/SZDlE4spnfDiVTFOzIohYSchlit85hWxu5543VS/GYWiOXSlsOuSsFeN\n2CWPfapooy9vJEbst23dX3Hb/skiNu+cwIuHi5iYs2HqTNSdl2wvErELK8ZxI/tCIlt2PLEClf7s\nuB7uf248PNYq/c5t18OmHeMRG2eqaIMxoM8yxD7Jz0nHT0TKIDWGmaAMEvA7Qg71mOK56FhEQtbQ\n6z7xiH33OJYE2962b6rhE4Si/SjaLu5/bhyzVRrjKRaGjhb209cMRn5Pj9jTrBgNLz96KQDghJX9\nGCyY2Jkwv/OmR/Zie6xR2Nv/5V689ap7cM7/vQ3fuvs55E09FGqpegQIV6aWnZgVIwk7+fhUYXPD\n5j2RcsNqw0D+68Fd+N1v3IuPX/+ouG265KLH1KEFr8Xpa/3X6iWj4WsmR+x9kZWnGg5Jq2n7coa4\nLwlv2fFgGmELh/lE7HSC+N4DO/H3Nz7e0HYU7cfVd27H2//lXnzlNjXsvNV0tLC/feNa3PXRC4RY\nyh47kTN0ESXrGsOdH7lA/M3UGV570krc+ZEL8LpTVmHlQB7xduqvPn45AESEDgB2HIyeAAqmHpne\nNGe70DWGXksXSdhSbIES7W/JcTEXRNR0QqDo+yOvPxFAdWE/GPjz8vBqO+bn/9bpo7jroxfg3OOW\nR44fAHotPXKVY2gMh+fCssuBvCmOLeymyYXYW/Pw2B2XR64cfrP9YEPbUbQfh2b9z9DEbOUwecXC\n0tHCzhjD2qU94ndLp6qYaMROAreiP4dVQbtcIGxJsG6Zv43VQWWMzIbRAQCoOZGpYOnCyy85LubK\nHnpMPdLoKy1iLzme6JZIAu4G1SK0T9WsGHpMSRJ/x/MiLRfir5V8/HJFDOCfAOWkZn8+jNhlj92U\nkqdlp/4EL+BbMfJ+Dvfnqty7cUqOiy/fuq2l822PdMiea9SmUzRORwt7HLJc4h47CWghVvpoxlau\njkiiT4iEqFN9IU3eqIzY85aOkaGCWKxUiidPJeuGtk/CQ/42Ne2qJki0slVOPtourzi+OOHK0ehy\nBj32OF/YWbBdOWIPa+M9jkgP96w4rhfZzxX9le9BM7j2vhfwpVufxv+7c/uCbF9RiWzbKVpLVwm7\nsFxYcsSel6YHAZVNxEYTInYSdjnqSCp/zFu6OLGUHA8l20Xe1LB6KC+qaioj9jDZStun6JsW7vRm\nGLhNf5M9ecf1Ko4vDl3Z9MWEPd6qoT9vwpROQrR9EbGblQPEsxK3YuQpU82EWheMK1ugZYQRu7pK\najVdJewkMLJQWIYmBLRgRcse46tJVy9JF3ZZtJJ6qBfMsPqmFETsBVPH6qECDkyXceqnbkHZjTcB\nq4zYyXKJR+zVrBiqo58q2jjhf/8M/37vjsDiqB6xp1kxWsxvHyxIHnuwn7bLRUsH+tspn7olMlJP\n5ou/fBrrr7gZ66+4GWNyLsDzIkncZownTILee2XFtA6yF5UV03q6StjlJCmRkyJ2avj1jXefhb+5\n+CScEvjnxOlrhvCxS07COsmLTrRiJooVdsXyvlyFFVMwdbxt41q88+x1YvFNvAkY3b8Us2Jcz4Oh\nMSFIWSJ236v38OkbnwgsjupvrxUI/3Bf1NeWI/avvPNMXH7BsUJ86YRju15oxUj20sGZ5Ij4K7dt\nEz8/9MIh8TPNqv3Fh14TbH9hRIBei2onSEVzUVbM4tFVwk7JS7k5mKWHHjs1/Lr4Javwp+cfG4kU\nAf+E8P7zjsWlL10jbhsq+NZAKRaxrxqIesGrhwrQNCbaBMwFPVVWDuTxnlccFe5jYvLUDSN2yWPX\nJWGv1rc9qZ7fcXnFyaeCwJZaNRgVdvlxrz9lFY5b0V/hsdtuNHlK1FrMBUT7w9guh65pOGFlP4b7\nc5G/NZNSLDmtWHhU8nTx6Cphp4hZY+HsU8ZYGLFbyStQ4xSs8GUJI/ZQEHZPzFUkWul3WoVZtF3x\nfEliTvf1t+2FwhNElK7rR7J0lVE1Yk9orWBLyc00qEwyHrGTsMtlkPE6dtkbl69CsgznlqNyR4r8\nzVg1TjOh169Y5QSpaC4qYl88ukrY4x57TkSUgceeslApTkFqQZCUPN17uFiRaF0SLLmnmm6yYug2\nIjF56shVMWHViZ5R2OO+sWVomZKn5HUPxypRSMxl7532m4TX9qK9YojdCS0Z4shfdEcqdzR0TZR5\nNhta+KWsmNahkqeLR1cIO8WlcY+dxCgX89hrkZfu1xO0CSAx+uUT+/DC+GyFsA8EIkg13bKwyyWO\nieWOksdedj24HocTJBVp30mQrrz1aXzwew9jruziX+95DndvO4A52xUnIHoOJ/Cuq0ELSFYMJHvs\nchlkWMcuJU8TIvbP3PSEaHr2q6f244/+bRM++ePHItv/mx8+IiwbWyp3NHQmJirVw87xWXz6xicq\nErf/787tuHvbAQDhifFwg+2FFfVTlj7TncrNj+zFjzd33qD1pg6zXiyu/eOX4webdlW0FKDfzztx\nGJt3TuD8E1dk2p4skobGwFj44bwheJMvPHkFNh61BNdv3g1DYzj3uGUAKGL3MFsKrZi0iJ2En8bT\n9eUMTJccFIN5pbrGoGkMeVMTUfmVt/pJyPe+8mj8/Y1PAADWLe3B6qGCEC2K2Hus6m/vP/z2qfjG\nr57FGWuHIrfrQY6iJzJtKfTYOedB0jO64pfYuncSL1u/FD/ZvAe3bt1X8bweBz5781Zc9a6XRiwd\nU9NEW+B6+JP/fBCP75nE7529NtLP/R9+uhUAsONzbxSvXyO97RWNQd+ZTrZiLr/2IQDAW87orEHr\nXSHsZx21FGcdtVT8LnvsAHDBiStwQUZRB6L17IyxoC1tcFlpezh5ZAAb1/vPd+GGlZHHUsQuD4iO\n92AnKCI+OO1HzoMFE9MlB3O26wtecILKmzrmbDd12tCc7eL0tUN4Yu+keD4nQ7njCSv78cV3nFFx\nO+1iITJtKSzNJDsmvCKKXgnRF7la9J0PHiOvkDV01lDylF4LOekrr4J1PS6VkXauyHQaJVuVOy4W\nXWHFxAkj9mzWS5y4zWLpWuSysto0JcvQMFWyUXY9IdyymMsNyXqC5OTBGd/rpn7uc2XX99gDYS6Y\nOubKbmQe61MvTomfi2UXy6WFPZahRerM64UidtmSElaMw8UJJn5lRIQJ1vQv9BLRLZJLVozWkBVD\nU6DkXMOM5KU/OzYtrJiFSs4qKumGiL1T6Uph1xO833og0SFypi4SQPG5pXEsXRMR+EAg7PKCH1nk\nGWPoyxlijN5QIOxF2xd2qr0uBBG73DLg6X2hsMt+PhBaGrWqYtJIEmxdY9CYb8VQVG0mrBsAwmRZ\nNRHtCWwqOclraqwhKyZ83uRpTJNztiTsSmRaBZXoqoi99XSnsLPkSDIrctsBIDrCLr56NE7O0IVQ\nx5fqA6gY+tGfN3BAsmIAX6hdzxOCmTd1FG0XU6VQrJ58cVL87Hg8Iuxl14tUm9RLvMSRMHUNtuuJ\nSCxe214wwyoff7/Sv9Alya4hy6hRK4aQI3b56qbkhG2UlbC3jlLwWrvBMBlF6+hOYdfmF7EDwMkj\nAzgt6Pcu9xsvSyPhkujN6UKo5eEVRPyxcsQ+KFsx0gKjgqWjaHuRiD3eNnj98l689YxRsY9ytUm9\npL1+lq4FJ43AigmOZc0Sf6XuZa85Rjw/gKoiHfbECVfImroGu04PXC6lkyPDyYiwu5KwK4FpBZzz\nyJQtZce0lq5InsYxmiDsP/vgq8XPlpw8lYY4JyG3BY53TQRQ8diBvImnAluFphTNBVaMIXvsMStG\njoDOPnop3nz6KN58+ihsj+PJvZMVzbXqQbx+8Yjd0BKtmKW9FnZ87o3YP1nEl2/bFkbjroezj16K\n77//Fdh1aBav+vwdAPzFXHNlF57H4fFw3YGh1R+xT0h98uW2xZGxgtJwcdfj8DwesccUzUcekl6a\nLqHkuJkXCCrmT3dG7AkLZ+ZDPRH7yGCYeI031wIqxbI/b4gyxQHhsXvBAqUwiTlXdhP7wPvPGZ5M\nclJU3agVQ1VFlVaML7xxK0YcWyw6k1v7ylZRwdRRdDzRd8YUVTFa3VbJIalbY9Rjj1ox8sKkeq8K\nFPVDnwHKM6mIvbV0p7CLcsfmRAj+TE8q3XKrVtvIwzoSI3ajUtgJitiLgcduRqyYMGJf1httbdsn\n1ZvnTA0l28vUjz0Nj0fLGQmTThqxiD08tpjH7nqiMkeO1uhEJSwd4emzunu6j0tNx+R+OlMVVkz4\nN2XHLDz0GaDPd6cnUNO6lrYrXSnsaWV4jWLFI/Yq2x2tKezx5GkY1cvJU9ljzxsa5mxXLK5ZFetT\nE1n6L8S38YidIvK4lWPpfhllvNxR/D0WsdtuGLHnpeOmE9ULwXxZUccuLVCaKTmZEm6HZsKrmKLk\nt09LieZSkHMg5lN5o8hG2QmtGKDzhf1QrI9/2tVzu9CVwt6M5KmMvECplrDLLX/lSJqIP1aunKG2\nBHNlf+Wp8Ngt32OfLNqwDA3LYk27Tl0dDqimk1CWfuxp0JeywmPXNZSkhVJJ3TF1jaHshouBKGIn\nT/u0NYMomDrufuYALr7yLv81CNo2GHrYBOyUT92Cj/7XIzX3VR6cIUfsclVM2fEreehz0clL3DsF\n+gzRd6DT+8Wc9dlbxc93bzuAU//uF/j1MwcWcY+q09XC3qyIncoNgcqB1HFWDebxvcvOwQ2XvzIx\nYo4Le4/kPS8NLJY524UteewF4bE7GMgb4krgzHVDuP4D5+KNp42Ibfi2URCxN2jFpAl3b07HTNmp\n8MZlcoZJ4Ww4AAAgAElEQVQmBNZxw0VWAHDrX52H7/zRyyMLnz79llPEcm1DY3C8MLr+4UO7au7r\nIcmKkcsdi04o5CXHg+14onZeWTELDyWrl/f7n2n5RNup0BXkPc/6gv7wzonF3J2qdGVVTLMjdl/Y\nqTkXr7ndc45ZVnPfCNl7Hsib0Filx543fbE+PGejP2+KhFSPpePMdUsi27MMTXwAG115Gm8ZQPTn\nTRyaLYspSklXBJahhePzvKjPf9yKvopjfu1JK4TQG7rfR76enumHZsvoyxmYLTuRy/2y46HX0jFZ\ndFCyXZRdD8sLOUwVHbH/ioWD3kOaYTvVBcJedjwULD31iradaN89mwfCY2/SC1+wfI+b3tBGWxUk\nIUevBUsX0Xm8jh0ADkyV0J83hG+Z1K1SvppodOUpHWc8Iu/PG74wZo7Yk31+uQdNdMWsnzwt1tFa\nd2LWxmDBjFxVAf6lf97UkTM0FB0/mSxWu6qqmAWH3sMV/b5tKC+u61TkAgqgeYHjQtC+ezYPhBWT\nsU1vLUhsxZm6iW9oIS7sgZ/uxurYAWBsuoS+nCF8y3zC8cn71mjylKwQK3Zi6M+bmCo6IvmYdOKQ\nI/a0YR/xY5b313G9uiL2qaKN/rwRyYMAvv3iz7vVRLRIg8HLjrJiFhpKZFNL6G6wYuKDQ5Swtxg9\nZYFNo/h11+6CnKkjZYCGhryp4zv3vYBt+6cjHjsAbB+bCSJ2I3K7TETYG/TY6YQRr8MfyBuYKtpS\nVUxCDkFqmCaXO0a2HzlmWdj9fuz1TDny8w5JEXsg7KYuKhhCj73zI/bfbD+Ii6+8c17Dubftm8Kr\nv3A7PnPTE03cMx8abDLc51sxk10g7J006q+rPfZqK0TrIW/p4Dz8cDaSlL3xz16F58dnKrdtRiPs\nXqmHOgnz+ScNi9v686YQ3KSIXX58klWShb+66AQs7bXw5tNHI7f35Qy/13yZTnCVJw655j9t9Svt\nI/WbF/urNRKxOxgZzFdE7P5ydh1lwxNlovS83WDF/O2PHsX2AzPYcXAGJ60aqP2ABJ7aN4Wd43P4\nt1/vwCfetKGp+0fv4VCPCVNnXeGxl2IRe2keJ9WFpisjdjEAookROxBO32lE2E9dM4g3nTZacXtc\nnOXadxL2Ff15/GEwEDsSsScs0Y48vkGPvTdn4PILjqtI9NK2aVFQYsQuCazteYknF9pOvE7d0Bk8\nDszWMQxjquRbMfGIvdzlVgwFGfY8joUWmtW7KCwLJOx5Uw8svM732ONWTDuXzXalsDc7Yg+F3Re0\nZpVRytsmZGGWv26rglYFDEzcJylil+0Ts8GqmDRo27RYw0x4HeTIWR4WkraPMnQSkC/b5YEZSdBA\nk0qP3W+vnDN04e/25rrHiqEFWPNJSi7k60DJ04Kli6R7pxFfbRomT8OhO+1KVwu7pTcpeWpFI/aF\n8tgBoE8SPdmSoFWpU0VbdI1M8tibEbGnEY/Yk1oW0AIpznlq6+CkhVtAeIUSaeBVxc/knGO66KAv\nb8DUtYjFQp0Fc6YmrJieLrJiKA8xH8FciEidEBG7oaE/b3TkSML460OROh2bithbTPNXngbCHnQS\nbNYJA6gesctlf3T7dMmRkqfVRbPRqpg0KNIWVkxKuWNZbvCVIP4DCa0W5O3JYlVNuKhZWn/e8BOv\nki1RCpq15QwNk8GJIs2KeerFKXznvudTn6fdkK9i5iXs8xSmFw7O4lt3P5d4VTVnu7B0DYauoS9n\n1G3FXP/wLjyyK9sCoOmSgytvfTrz8XDO8bVfPYP9U8Wq9/Nix1V2PTw7No0Hnz8EAPjq7c/gw9/f\ngjufHhP3eXrfFL53/wuZ9mMh6UphP3a4Fy8/eilOGW0sqRSHomoStILVGitmVhL2804cxktWD+CD\nFx6PkaE8zjthODLnlRiQIn5aqt8saGXsi5N+//ikUkaaz0r+bZL4p1kxdCKmKyPA7xmTBolFf96s\n6OVeDtor5wxdSp4mWzG//bV78PHrH+uYDoRpk6LqRV6B28ggjA9c+yA+c9MTkfm7RNF2RWEAlcnW\nw4eu24Lf+ud7Mt33zqfHcOWt27B171TtOwPYvHMCX/j5U/ibGi0r4hF7yfZw05a9kdt++NAuXPPr\nHeL3133pTlzxo0cz7cdC0pXCPtRj4br3v6JidmmjyHXkQLowNUI+ZsXIi59mJStmIG/ipj9/NU5a\nNYCcoePf3ns2Tl0ziDhy7xm5hXAzGBnyS9d2Bs27khOjfqKMRDZJ/JOaowHh6zwh9X8pVukxQl78\nQGDFyIJddv2I3TI0UODVk0u2YugEum+yegTXLkxKYj6f+nD5dWiklws9fP9UqeJvRTvsv16vx14r\nrxJnMggEslojdKKvdX83OPG9Y+Nacf+poi3KZomkgKDeY2g2TRF2xti3GWP7GWOPNWN77QYJzv5J\nEvbmVYkm+eTEXLn+L61cydKsExsxkDfRnzNCjz1B2AfyBiaLThixJyZPqwv7uDQ8Y67KKlT6gvbl\njIohHSXbL3eUE90iYo9ZMTQJcffEXOpztRMRq2oe3rUcsVd7ndMYDlaVvni48nWbK4dzeAfyZuRk\nVIt668Tp9chqxdCx5musIHcDcaYTVMlxg2R99PObdFJc7Fr3ZkXs1wC4uEnbajvIelmIiL1arXk9\n9dxJpHnZ84GidsYq+94AvmiXHQ+zwUkpMXmasl906S439qr2GsxIwk7TnYiyS+WO4ZeXkqfxSI0E\naG+CQLUj0RxE41aMfCJs5LNGwr5novJKZ852pYVufvI0axRbz0kACE9uWZPBIrFbY6ITXdFQhF52\n/DURch5LY8kR+2InVpsi7JzzOwGMN2Nb7Uheitg1FkZ+C4EslbR6r+FtseZWxQDhVUBaKSWd9Ghk\nXZIVk9ZrhwRW7n1dbWUlCXtvzoCpsUgEWrLdYOWpFLEHOYd4ZEfPmyRQ7Yhsv8xnRadsxTSygpUE\nbk/Clc6c7YnvTV/OAOfATMargnr9eDq5ZS3fpGOtdrUMhHkHWdgni3YksFvWl0uMzhc7X9Myj50x\ndhljbBNjbNPY2FjtB7QR9AF+cbKIvpyxIIJ5/on+6lK5M+SlL13d0LYG8gZGY8M4msXKoFtfWoOx\neEmkXqWW/sKTV0R+pwgqErFXOblR5NVj6aLPDFF2g3JH2YoJ3sd4217aTqd47CRkBVMXlVqNELVi\n6hciOjGkeexy8hTIfnVRb94gtGKyReyUU6kl7LS9ghVOgYpbMct6rUQRX2wrpmUtBTjnVwO4GgA2\nbtzYUUv/BgvhAphm2jDEk5+5WFgyrzh2GZ749OuhMdbwytlN//uiZu5eBPIb00op6SQoFjGlnADk\nYxbbFh57GYwBnNeyYvy/9eaMYGyf/7HyPA7b9dsry1fnvQlWTNF2xRd9tgGfeTEgITthZd+87CNX\nitgbsWIoV5EUKduuJz4LJIR++4fa252qs3UHnTCyWjF0pVdruDaVO/YIj91PnsrjL4f7c9g+Vtkq\n5IiJ2DsZxph4M5uZOCXyph7xq3ssf4m81mATL8vQFqzzHG03LTdQUeueErHHjxkIhb1oe1jaEw4d\nSYN8/IKlB/NSo0u9rVjELtr2SpGdbPs0kkBcDMiDPnFVP/ZMFBuuwLDn6bGToCcJu7zqWBb2LMSb\nttViWnjs2cSU9qPWhbfjJQl7ZcSeFJ0v9sQoJewZGV1AYe8kckLYq1sxhwKLoJ7Vr3IEtSSoma/W\nm50i9h5T98sdY933coYe8djzpg7GopGqXDM/20AV0mJAQnb8in7M2a7IZ9SLLISNnNToBFpOsEDk\nVcf1WjEkvEktM6rdP6sVI5KtNe5PHruuMdG1NJ48HeqxUE4Q8a6I2Blj3wVwL4ATGWO7GGPva8Z2\n24mRwLNeCCumkyB7KE2uaYEUlcDVM+xDLj9b0hMO9k5jtuwgZ/irG6nlLxAdhCAnai1dg6GF9wOi\nC6A6yYrptXSsXeoHG42WacrC1kjyVETsCSLmuJ547+uN2CelHEIWaLtZk6d7g9erVnlkOImMwTI0\nzJYdzJbdiAbkpPkDMknCfnjWbll9e7OqYt7JOR/hnJuc8zWc8281Y7vtxNpgSPVQz5Et7BQBp9mZ\ng8Hr8/1N/rzSesbz5a1ootPUWfWqmLIjEqKWlDwNJ11FrRjL0GBo0STrdBD19+eMefU2byXUH4cW\noCWt/MyCLU3p+svrNuPPv/tw3Y/3/08Qdo+L9z6LsH/sR49g/RU3AwivSLLaifV47A/sGMcdT/nF\nG3aN+1/yZX/Yuq75n6N/v9dvO7GkNyrsRdsT+07E7Zkbt+zB6Z/+BT7548dr7mMzOLJ9hTp49zlH\nYVmfhdccP1z7zl0MRezxPhrEYMHEa04YFv0zsl5O07Y15p80CqYu2hOkMVt2hf9paH6i1PW4ZMVE\nhSFvBpG9WxmxD/fnOiZin7Vd9FqGCDJkO6keHM/DqoG8iPhv3LIHX33nmZkfX81jt11P2HB0JVbN\nd/7u/TvFz3RizhrcTtaxQOm5A2GiM+uCJl3zA42DQd7orWeuxv84eSUmZsu448n9iY+JR+yUYH12\nbDrTc84X5bFnZGmvhd9/+VEicj9SsYIvabVg502njoifs15OA36Smu5fMP35r9Wi6NmSKypdSERs\n14sMG5bFnTEGQ2ORvigUHS7vIGGfK7uizznQ+CIlx+XIm1rNJGIaYV/yBI/d5WKtA13lZSkBpK6g\nACK9f9IoOeHIyngZaxJ01dCfN6p67LJlomuauOq44MRhDORNrB4q4JTRwchVhXyCix8rvUet+owp\nYVfURSiU6V8KeUVfvQ3TKIGap/mv1ZKnZQc9waIjupKwXS+M2E2tYjGUEWvvK0fs813p2yqoD0u9\n3nUc2/UHoTRq+1ativHCiJ3emywJxbLrie1lSYbKNe9ZqmLo/kt6rKpWjHzyNzQmEqZ9sRyb/PmS\n9yV+dUIBRKvaFysrRlEXFKFU6wYoR+n1WDHy/Slir2XFxCN2x+VSxK6DseiXPb5CVQh7X65jyh3n\nbL8Pi6lryJta4xG7Fx1dmNYnP41qHrvtclESa+gadI1lE3bHCyc7ZbBK5JNatojdb+KVM7Sq25f9\neo0xcXUUr4qTI3Z5X+LHSn9r1SQpFbEr6oIi9mpWjCzs9VgxQFTY86Ze9dJ1puSICJ9ExPZCK8aP\n2KMf8fgK1emS3zd8oGBiznbheRz/9IuncNMje+ra71ZCVgzgV2lRFHjn02P4yA+2ZN6OHQwbpwqk\negsDqkXW/iDz8KRh6Vqm2u6S44nIu1ZyE4iKaZYIn+rQDV2reiKQT1aGzkTfpbiwy5+vySoDYuhv\nrZokpYRdUReWUT15CkTtl1qr++JQ1FiwdCzpMcVCpySmSw76g/ubwmPnYbmjHlox9HdDY5FobLpk\nozeniyRs0XHx1dufwZ9dW1+FSCspOlJL3Jwhkofv+fb9+MGDuzKX1Dkuh6kzXPvH5wCof0ZwWMee\nELHHpmfRZK2a23Q8IbiZInZpNGAWK8afkWtGFrQlIZ8kdI2JPMFAzIqRI3Z5PUFaxD5bduc94CQL\nStgVdUEf5GraIdsvtVqjxqFhHnlTx+hQIbHBFCGvAqTSOkdOnkrljpawBaLtfWdKLnpzhhD2Thjh\nViy7yBthKWE8CszaWdDx/Ij95JEBvO2sNXWXe1ZfeepF1jDEZ9Km4Vsx2T32+q2YIGKPtXmOIydu\n5SuPuF0lnwwPzoQ9c+LvgWzBtOIzpoRdURcUAVeLCmVhr7ctAtkBlqFhdKiAQ7N2ovfNOfdXAQbC\nToO1I8lTQxONqOjvhhZNntJKQrKM9h2ubGjVbsxFhliYFb5t1lWPtht67LVKSxMfT71iYs/neRwe\nj65hqBaxO7FqEruOqpioFZPt/n05smKyReyaVDYU/zzLV64HpsOry/ig6+mSA3poK+wYJeyKuqAI\n2K1mxdTpq8tQj5ipoo3RoPf7nqRBDrYL1+MiqUWzVW05eWpoYj4tRVb+JXg0edqbM4RQ7p6YFX9b\n7Ck4aVDyFEiJ2DMKux+x+69bwdLFgOysCC88FvmSIBsZI3Y5gq0/YpetmGz3HxBWTPr901blxsMU\n+ZgOTssRe/QkOVV0RFsSJeyKtqPe5Gm9UI+YiVkbo8HKyiQ7Rq5HBsLkqSN57DlDBw/KMslC0mOX\n4Lsn5rBqIC9OEM8fDIU9a//wVuJ5HEWp13l/3qhoc5u1Zazjhj44Rez1nMzCOnYv8rik6VmWoafu\n11SsTFBUxXg8dX8mZsv44i+ews8efRGA36o6S0sBsmJ0za8muvLWp3Hb1n24e9sBPL7nsLiffLVQ\nLYEvH9PXfvWs+Plf79khKscc18Ns2ZWEfeErY1S5o6IuQo+9WvK0cWH/rdNH8U+/eApvPWO1EO29\nCQMw5EHWQBgdliUrxjI09OfzyBka/vYNJwf3Cy/BS46LneOzeMsZqzFY8LezQxL2A1OluksAFxo6\nNnqNh3osjM+WI+9H9oidCx+cTsYlx8tcoipH6vK2kgaZp/VUAfz1CPK+y9Uwbqwkk7jjqf34yu3P\nwDI0nLF2CHsm5jJF+P5qZX8wy9P7pvH0vm2iRTQA7PjcG8XzEqeMDmBJj4Xv3r9TzE0gXnXc8tTn\neXrfFE4eGRCzi1cO+J/FYgsahLXXp1bR9uQyrDzN2kc7ibVLe7D9//pfLtv1wFhyk6t4xG7pUvLU\nlT12HU999hLxOL//jP/35w/OwuPAscO9opxth7Tk/MB0CeuX9zZ8LAvBXGz6z+hgHmXHE8vdgXoi\ndk/44IUgFyGXUtbCDkoaHY+LxU4AEgeZW4aGUoqHL/vRJdeLdN/0a+0rH0Pv4X9/5HyMDBbwys/d\nnsmKKTkuckFrCSIpRqGT/zfefRaW9eWwrC8nRF9mdKiAHZ97I27bug/v+7dNAID3vOIo/Pu9z4sT\nDR3fy9Yvqatlw3xQVoyiLrJE7M2aMGXqGlb056pbMTlaoETJUy6+SEnle37y1N/37UHfjmOW90kR\neyjs7VghExf2keDyXr6qaSR5SlcAWROonucv/adqInlAeGjFZIvY5dtLthe5EkizV+gkQYGGUaN8\nkfbZdrnoCFoNOoas3UkjrXyDz1J8PsB8Ap56UcKuqAsrg8feTEaHCondC8OIPWrF2J4fsZs6S6zI\n8cvc/C8abXfNkgIGgi+j/Fzt2DuGEnnUtoEGwMhXNfHEXRqO54l+LhSlZxV2isqpu6YsziTGFcnT\nlOSsfCIqu16kuiXNXpGHqQCoWb4Yf4xZo1rLEQngbBIpt/IdCgoAyM6Rk/mtQgm7oi5aGXUAwOhg\nci176LFHrRjb8VCyvdSB2XId+9hUCYbGMFgwYeqaGFJOFxztKOxU+kl17JSQk0fkpQloHCdW7ggg\nccxbEhRVU8T+3IEZkbSmK6K4FZMWscsrUku2G7FU0koe41dlZo3yRf95KHLWawo2HV+tEwAhr0il\nkl06DjmZ3yqUsCvqgiod3nDqqpr3HWnCQO1Vg3m8mDBkmmySvlhVjO1ylF03NToydE2IxdhUCcv7\nciKyJztm/TLfV2/HiUrCigkEdUmPCUvXIq9RKeMCpbLkiy/vywEAPnHDY9n2IzjBUFOst//Lvfir\n6/x2BhRxR60YPdUiikfskaRslYidMWlFcY3yRfl5LEOrabEkJYCrIa9IXRJE7F48Ym9whnEjqOSp\noi4YY3jg4xcKEUxj8ycvSp2LWg+9OQOzZb8MT/bu4z3XScipbW/al0hu23tguoTh/pz420DBxJ7D\nRaxb2oPnDsyI0XvtRLwaiDGGvBm1ObJG7CWpbPKl64bw6uOX4/7nxite6yT2BSeStUsK2LJzAgBw\n86N7cRWkaFeO2Kv0ipGTvXIdO1BF2IP3mPbT0LJE7EHkrGs1B8Ak1eJXo0+K2Cl6DyP2sHdRq1AR\nu6JuhvtzNf3CoR5L+K/zQS7DkynFoiDan5LjouR4qV8if4JSYMVMl7C8zxJ/o5PVmiUFMNaeETvl\nFuRkXc6MtjfO0lKAqofo9WWM4fwTV6DkeGJebTXI0z9qWeV8AuFPyxG7mb7yVH5v/SZgGawYx4vY\ngqaewWOXBLaWYIvkacYJYPJgdvq5wmNvYcSuhF3R1uSlMjyZsuPBMsKITe75XS1iN3UmIruxqWjE\nfnRQ2qhrDL2W0aYRuy/sA1KEaOlapLNglqoYqqWWG7atppW+GWao7hHCXlkOagsbIx6xZ7BiHL8f\nO73vaWJdcjwx9AWobBWR9hjal1pXk05CAjgrdEKLC3tuHgv36kUJu6KtKaRUa5QcNxKxyVN6qkbs\ngRfLOcfB6TKW9YXC/ofnrgcAbBgZQI+lY85u34g9MlDZ1CLj8bK0xy3GyiYBiBmqWYR97+EicoaG\nlQPRPArnXIiiLJ7ZI3Z/5SntV2q5Y+z9j488TCISsddIitoJCeCsUMQeT56qiF2hCEirry7HLsXp\nS+MLu1vFY/f7sRdt/5JfTnqdPDKAhz5xEd6+cS16LL2tIvYPf38L1l9xMz7/8ycBhFcygH/sv372\noPg9S8QuqmtkYc8YsZ/3j3fg6ju3Y3SoUPE6T5UcIWiyeBZMHY7H8ZJP3YKd47ORx8j7e9Udz2L/\nVFEIe1pCNP7+x6tifrx5N9ZfcXPETgsj9tpVMUkJ4KyQsP/Jfz6IG7fsUR67QhGHhCfeUrYUs1vo\nS152PEzOOaIuPQ6tlIyXSxJLey1oGkOPZbSVx/7Dh3ZFfpeTm/ES1CwrT4ux6hogzDHU6pFD/XRG\nh/LozUXthZmSI9Wxh/t16Vlr8I6NazFdciqEnSLat5wxCiAYZm5Vj9jJiiN6YmMUv/TLpwFE1yWk\nDWD5/KWnYuVADhoLF945CXZSLX58+Stx45+9KuK3f+W2bRX5oFaghF3R1hRShL3seBHPkjEmfNzx\nmbLoEhnHn6DExXCKuLATvbn2itirQfXR1MckU8SeYMVYugaNVeYz0hgZLEQsIXrupFWbI4MF/N7Z\nawFUnnjKjt+a4K1nrha3UeI9rcInnjztz5viPY1vW/zshpaILLLveNk6vPvlR8Hj4RVC2BYhu0Se\nvnYIp64ZjFypzNnhsG218lShCBBWTDleFVNpt1DP70OzZdElMo6pM9ielxqxE+0WsVeDIte+nAGN\n1WfFFGInx1pzZmVGhwoVTdLk0XZ6zMcOK5cqhd0yNOT0aAQOpK+ijUfsfvviymoeuS2EWNRkaBVV\nXZZ0xQeEEXv8GLIgP6YYEXaVPFUoAIQTmBI99phnmTP8VqyzZVfM8YyjawycQyQb4xEn0WPpbdm2\nNwmKBAumjpyhZ0qezsVaExAFK7uwL+0xK06MZalcMR7t5qSSVBmKvuX3s69mxO5GhLI/Z6DkhNOz\nyKqSxV7u2RKPnnOxkw5ZQFnLHWVkYZ8ru5Fuo61CCbuiraFyPBKbb961HXc+PVbhsQP+F4dWYKZH\n7P5jaD5lWsReMPW6R8XJTJccXP6dh/CFINm5kJBgFCwdlqHhRw/txnuveQDb9k2lPkb0nIlFkXlT\nRzHhhPb5nz+Jv/juw5HXRNdYRSfIkmTFxCtPSIjjVxQUfdNQFMC/YgLSa/LLbmXEDoRCTl55pNd7\n1Yg9um9UqthYuWOyFdNKYVcrTxVtjUieBqtPP3vzVgDAxqOWJEbstCIy1WMPvnSHZv02t2kRe26e\nwn73tjHc/OheAMD7zzu25krdarixypB/fle09aslRew9lo69h4u4/cn9eOVxy3H8yv7EbcZbExBp\nVszXgyES7z/vGHGb7IkTJccVYhyP2IXd4SbYarGInZKy1Wrf4x474Au5XMIq++4lN7RE4rZILm7F\nzEPY5Yjd4/7xGRpryNZpFBWxK9oauY5d/pKW3ZSIPaiCGKqSPAWAQzMk7MmxTd7U6h4VJ7NpxyHx\n88MvHKpyz9rIPvHIYB5vOm008ncS0LypR46nmtdOOYv4tKskK0Y+sdCVzocvOiHxpFh2vNTyPmF3\nxF7Xsus3bZPfz94gYk8T9lKCxw5Ujp2bjkTsQfK0isdONlGzrBig8iTUCpSwK9oaiiiLthupry7Z\nXuKXk8R/SW9yhEyVGuNBxN5npQn7/CL2zTsncMroAHSNRUS+EWSfOCnmo9b4BUuPJDOrCXvSAiXA\nt2bixy3/TsKup0Syss+d06PbTovYaaVwpHyR2gFXidjlE0EYsfv7R4uV0jz2dGEPk6caq38YO5Ag\n7G7lZ3WhUVaMoq2Rk6fUmpZawFZeTlfWZMehyOnAVNmvIkn54tKCGsf1Mnf4k9k/VcJZRy2Bxhg2\nPT9e9+Nlag0/Jj85b2iRKLpaEjVMnkaPLW/pkVWs8n2B0MJKW7lZDhaIAZURu1hEZsetGK+itrxP\nWDHpjcPk7YuIPbi6oRYLiR67niF56jX2vgOVi5qqtZFeKFTErmhrNI3BMjTM2S52T4T+ecmubM2b\nFMHFIc/+wHSpYnFN9H7+thqdT3lopoyhHhMb1y/Bb7aP4yHJjhmfKeNXT+3HTY/sEa1dqyGLU9K9\n3UDYC1bUiinaHm56ZA/ueGq/sJ5+/cwBjE2VULRdaKxy0UzB1CqSp3JdO20nbUWmHLHHt23oGnSN\noey62LRjHP9x7w4UbVckwuX3sxBcSV3/0G7c/Iifq5guObht6z4AFLGH7x+tIL75kb14dmxa2Fdy\nMpUWedFnSoZ+PzxXxq1P7IPj8sy92OPEXxoVsSsUCfRYOmZLLsaCxGhvzo8qK6KuQIwZA3pSGi6R\n9TA+UxaVF0nIK17rHWhddjxMlRws7bFwxroh/Os9O/DpG5/ADZe/EgDwp//5IO57zo/iv/h2D7/z\n0jVVtzddCiPoPz3/2Iq/kweeM3ThTQPAd+9/Ad++5zkAwCuPW4b/eO/L8a5v3odjlvfi1ccvR2/O\nqGjPm5Q8LUYidn9f5KTim08fxY1b9ohjLzvpE6ws3V9r8N5rHsBk0cG6Zb0oOR4G8kYkqqVBItv2\nTytT2YQAABq+SURBVOPyax/C+Se+Hlf88BHc9Mhe3PHX5/u95I1w+8v7LSzpMfGTLXtQdjxhT9FJ\n8dmxGew6NCdsksqI3X/uH2zahZ899iLeeOpI0yL26ZITaQHRClTErmh7+nIGpkuO8M/LrpfssevS\nQp00iyXw7A/OlCv8ZRmygBrx2ScCu2JJr4VXHz+Mt5wxGskPPCcNzK5ls8j3ue3D5+E9r1hf8XcS\nMU1jkHVaFugdB2YxEyy42n5gBnsOFzEaNP2SSUqezkU8dv/YZB/5q+88Ew9/4iIAYdvktOXzOdNf\nHUzv5VzZCZKLemSlavyKq2i7eGa/P6N2puTA9XjEDuqxDNz/8QuxYWQAB6ZL4nayZg7P+fv9zfds\n9PcjxYqhctlDs+WGE57xj97EbLnu4GC+KGFXtD39eRNTRVsI3FzZQynh8pZ+H0ixYYAwYj88Z4vV\njUlQ9N9IZQwlZpcGtfTrl/VibLokLArZLql2ciFqtT/wAmXXWVTYZfyVmeFJZM/EHEaHKidcJdWx\nR6yYFI9dXrkZXxUauZ8e7fLoWzd+p0b56qFi4ZPrib+XHA+ux6HFDtbUNQwWTLGPQHhSpNdwMFi4\nZqUkdg9Ol8XjGrVP4ldB4zPlVGtwoVDCrmh7+vMGJouO8EtpmXZa8jRNAIFoN8N4DXfS/RqJ2McD\nH5pGpK0eKoDzcOqQ/CWfydC2gI477YRFwl7NEh7ImxFh33u4iJGhhIjd1FGMJSzlPMM4VcVoyREv\nJU/TkoUUsROizXJMROPvoZxwpcRoXNjpcfKgkKlYEpX62KeVYh4Mov2pYqXV1yiHZu2qn8mFQAm7\nou0ZCKJN+nJSYiz+xaMIq9qXSBbzatFyWvOxLFBJIJVc0sBpsmPkK4UkK8Z2vUiZ3lTRgaGxVKGh\n6kEtaJeQRM7UIl79+EwZq1OE3XZ5pKsiReymznA4iIbjfcqNoIHYvqliXRF7WoRf0VxM2p/D4uRS\nKex9eUOcWAumLl7f+EjBpDUQQNjZ0o/Ym1PJoiJ2hSIBYcWUomV4AzEBJ8GslhSVxbyaFRNG7A1Y\nMbGIfVUw1Jv821nJ2khqXPXNu57DJV++S/w+XXTQn69MdBKnrRkE4F8ZnLJ6MPE+M1KOglg1kGzF\nAFFfnU5uw305EQ0niarHgf/8zQu4YfOe1JOQFetlQwuaKoW9sgcNlXVSOWbSPshXNUt7LUyXHHDO\nK0YKVkbs0c/CVNFp6qKi+Gd1oVFVMYq2h/zh+Bf5bRvXRn4/eWQAQGh5JBG1YqpZNuSx1x+xh5f9\nvsgMBb4uCdJU0cZpawaxde9kYsS+e2IWuw7NwfU4dI1hqmhXjfguv+A4XHjySmwYHcApowM4c+0Q\nPnPTE7jvuXHkDA3Hr+zDdMmpeK6hhEZpJHhyVE0i3583cWCmeh07kRax54zoil4qj6xpxTiVi6TS\nrBhiqMfE7ok5zNkupoo2dI2Jk3laxE40u0RRJU8Vihj9eaNCmM47YbiiAdXL1i8BADxdpfmVHLFX\nrYqhiN1x8fS+Kdz6xL7U+3LO8f0HdmL/lH9CmSraMDQmTg7x5e5TRQcnrxrA2iU9ompDhpb7h7XY\nTlV7SdcYNoz6JzXGGF6yelCI0tqlPTh51UBgZUWvDpJOFvLs2HB/SNgNcXvcY6/YTmrErkWOuex4\niSIaj6BLjidyCRNzVJlTuX35daLk9VTRwXTRQZ9U3hkvZUyq4mlmxN6RHjtj7GLG2FOMsWcYY1c0\nY5sKBdGXM+F6HOMzZdGOd2lC98Z1S3tw7HAv/s9vn5q6LfnLWtWKMUIr5nVfuhN/9O+bUu/7+J5J\nfPSHj+DvfvI4gFCISUSoD4os7P15o6JShaCrBDnxV68wyInk/iBxOh17rqRtyrNjiTBiD+9fqzlW\nmihSa2Vi1vZLF2utzCw5ntj/w1Uj9vBkRVYYVVRVew1NvbKiqLnC3lqPfd6nEcaYDuAqABcB2AXg\nAcbYTzjnT8x32woFEBUUWqiZZCMwxnDbh8+vui2q9ea8VlVMpRXjeTyxPv7R3YfF8wNItE5oEITt\nepizXfTnTZE7iDNnhwk8wK8CWbu0p+pxxcmJRLIprnjirQKS7AEqA5Qjdlql2iPdv7YVk1IVY2iR\nkxn9XMv2KDueuO9EFY9d/qxQEDBZ9PML1cRVnsAVHsORHbGfDeAZzvl2znkZwPcAvKUJ21UoAES/\nFCRGSRUdWaHKkaoRu1VZFTOZIMJA2L1xOGgXOxVc9stQdD4T2BB9QcQ+ORcueb/4yjvxo4d2CetD\nrgLqr9OjzUkVQvT6fS1ovUsklU/GJwkBvhWTN/XIEvtaLWjTI3a9ouIHqD0PtGi7mA5KQ5MWSRH9\nkeSp/3589L8eCU621V/DtNWozaCvA4V9NYCd0u+7gtsiMMYuY4xtYoxtGhsba8LTKo4UhvvD/tp/\n/foT8NGLT0xcgVkv1YS9zzJg6VokEUvVLnH2T1Htc2C1lCov+yk6p2i8x9Ix3J/DWPDYkuPhyRen\n8Fff3yLqyEkA58qumAGaFRLo4b4c3nDqSPIxJlkxCVOOZsoOenNGxJdO6hVzzf96Gc45Zmnk+eMU\nLD2SPJ0OjpEsoOsuOwf/8b6zAQA/+sC5+NSbNwDwe9TQCXkueHySFSPnTc5cNwQAGJsq+VZM7DX8\n+u+/FDf/xavE7/GrjGYOn65WqbUQtCx5yjm/mnO+kXO+cXh4uFVPq+gC5Oj8mOV9+MD5xzXlMjme\nfJXRNIaRoTy27DwsbpNXNMrMlpI88Wg03JfzI3a5QdboUAGTRSeSGGbSMGlKns7Zbt29RshSGB3K\nY3SogEuDfjTLpSEUSRFvUsQ+GfjTcu160mPPP3EFfut0P6bLpYhi/IQXj9hffswyvPp4Xx9eum4J\nLnmJf1I6MB2+9uXgpFNt/wH/5Pk/z10Pj3NMlSoj9ktOHcEpo2F5aNq6iGbQzJNEFprxbLsByHVn\na4LbFIqmQHXgADCSsAy+Xk5a5U8Vkq8EkhgZzOP+HWHL3fGZZCtm1g6Tov7/dkXdMlkx8hCKkeC4\n9k7MiZOCqWnC/pks+jXYc7abqfWADPVLocVRq4PX7Yy1Q1UfF29fS8fVnzcjUXp8gRJBbQrideJE\n/IRHr1ku5fjEitCZsP8L9VrXEyJ2WZwNXYOpMzguD9YCVE9gpvWPaQZpr8dC0YzrgwcAHM8YOxq+\noP8egHc1YbsKBYCo17m8t7oYZ+HaPz4Hew/PYUNQ957GaMzHrxmxl9KrWPrzJqZL0Yh96YBftbF7\nYk5UcBg6k5KnNkpBp8L40OlaUM+TkaDRF42LW5YyC5aID5yg/RjIG5FKmDSPnV6ztAg1fsKjE1ra\n/Wl/ohF7YMXUiNgNjcHQNTieh6miV9NjT+s91Aw6LmLnnDsA/gzALQC2Avg+5/zx+W5XoUiikYk2\ncZb2WjhldDB1JScRT9AeSvHYqd/LdBBhT5ecCv/a73djS0ModNGr5YXxWfzdjf5XRteYsGIm5xx8\n4edPAcjWLEyGItyVA76gZ33ZRM+XYAn/LY+/iIdfmEBfzojMME3rx05XIWkReJoVk75SNdrDpS9n\niH1L0kpZQE1dg6kx2C6H4/EGIvbmJU9bPRqvKY4+5/ynAH7ajG0pFEn87RtOytTitpnI/qvG0qti\nQo/dwZztwk0Qkd6cjtmyKyJhS9ewsj8HjQFX37kduw75fWRMXRP12vduP4gtOycA1C/sX3r7Gbjq\nV8+IiP1Np43iJ1v24PILjsOKgVxqfoHEjOaDvv8/HgTgC7KRoSqmP2/id85cjVccuyzx73258HXp\nsXSxWClN+AyNQWN+m2XAn4xFlURJyVPZ8jB0Fkn41qpMWciIvdUTlFRLAUVHcNlrKgdMLDQXbVgJ\nADj/xGHc/9x4xUg3wC9TpIhdblQWj0wtXYfrcRGN50wNhq5h1UAe+ydD/1hjYbQsXyFUq7lP4tzj\nluPc45aL35f0WvjBn5wLAPjw605MfVzaXNL+vBkRyTSPHQC++I4zUv8mvy79eUP0zUkTUcb8aUcH\nguqhJb0mxoLoPenkIs9ZNTUtYh/V6teyoFaMGmatULQHusbw2N+/Ht9491nIGdHFK4S/1D1Ybu96\nia15gTCSpEoXsgxGhgoREXWlUXkHpYER1Sp4molInsZOYj1WfXXsaUSFPXyNqkW0OUMXXReX9Fhh\nW4MMEbspWUa169jjbaCVsCsUXUlfzkDe1P0BFAkNwSjipGqT32w/CCApYve/apMxTzmeoKWKDyBs\nIQvUb8U0ihyxc6kH8GzZrVnHngVZzOXXqJrw0d90jUUWfqWN3hP7qLNIxF7LY7d0DUyaA9tMMW70\nRNgoStgVigykRey0kvTVx/u2xx1P+ovv4othKJKkKhCKDuNTjKYTmoIBrYvY5SZg8kKiqaJds449\nC0mriIEawi6NPJSfNylil8Xet2LqiNhNzd+nYBOtTng2k87dc4WihdSK2FcP+Q3IHgjq3uPRIYnT\ndKw3StLcUaBSVFoVsRu6Bl1jKDluZOn/BSeuiCRPa/WKSUPu8SOvI6i2AEvukpklgSv2UWcR+6i3\nxurPtUt6cMxwH84Mrr5WJvSrz8q6Onv7NBuVPFUoMpAasQeJ056cjo1HLcWzY/6g6gorxqCIPdmK\nGcgbuPSsNfjXe3YA8Estt0tDrwtW62IwmnJEttEXLj0Nl5w6gv/4zfPiPrW6O6aRM3Rs+dTrAA5c\n9atnxO3V+pX3BSfJ/rwZichrlb4amhYR/1qLhD500Qn44IXHw+Mch2dtrJiHsN/x1+djYraMsz57\na8PbmA8qYlcoMpBLi9iDUsdey8BZQT94oFLYyXoRC3ICYae678EeM9KUK+69t8qKAcK5pLSvy/v9\nRU1mJGJvXDoGCyYGe8yIXVUtmqZqloqIvcY6BENnkdr7WiWHuubfP2fo8xJ12lYr37M4StgVigyk\nRewk9jlDw8vW+w2wGKsUqlxKxE6LoPpzZqSkcWQwKiytsmKAMGInv59sJdmvbkYyUD75VYu+6X4D\neSMy4KPWucVfeSpF7K1eJNTgVU0zUMKuUGQgb+rB8n6OA9MlUTHieMGCI0PD+mU9WNZroc8yKoRK\nFnaNhSI51GOiYOrozxvIS8IzEovY661jnw+WoUX6n5OwysnTRj12mazDJ/qDRU19ufoidsZY5Mqi\n1cv6zXlc1cwXJewKRQZyhoaS7eJrv3oWGz97K77x39sBAOWgPNHUNTDGcPbRS7G0r7Ifi/DYS07E\nEmCMYd3SHizrsyKtXY+KJd9auXKRrk4o0UtXH0YkWp6/sGftUd4nrBgzWhWTYR/kk1Ez9rkeWv18\nMip5qlBkgCL2J/ZOAgCeHZsGANhSiwAA+OSbNyT2bZc99nhp31ffdSYKpo5ngm0CwBtP89vVrllS\ngGloLa2D9numuyi5YSdKoPnWQtapQnS/npwOR6rzr9XrB6icbXqkoIRdochAzvDb6e6Z8Hu60BQf\nOxA/0/BFZmSwIPqzyMhVMXFhP2Gl30Z4VlqQlDd1XHrWmiYfRTYKpo4524VDxxZE6tXaCDRC0gSn\nJCgBysAgv3SZIvZFjJoXkyPzdKZQ1AlF7CTsFJULYa8RGYYeu52axIsvVlos8kLY/eiYIvX5VMIk\nkTVip3wGR3TmbC2PHThyI/Yj86gVijrJGRqmS44Yg3do1i8FlD32alCU7vH0VZatnmSfRt7UMVd2\nYXvRk1azrZhqtetpGJE69gz3X8TKlMVEWTEKRQaoJpkHwhyP2GtVXMhi3urqjHopBDX7ImIPxJQE\nvlmWDJ3Iqs2eBcL8RM7QI33ls1kx7f1aLxRK2BWKDMj2yQkr+/D4nkk4rieSp7XETn58tcHUV73r\npU33susl7rGTgJLAN2vhjWVouOKSk3DeCdVnIL/7nKPw4mQR73/NMfj23c+J29OsmGv/+OXYHfS3\nX+yI/fOXnoqjl/e1/HmVsCsUGZDFbN3SHjy2exKH52zYrgfGakePcsRezVumapjFxK+K8WB7HKbO\nRPUJRezNXCz1J+fV7rNfsHR84k0bAAB6hvLFc48N+9Av9knyHS9btyjPe2RepygUdSI3qVob1Jgf\nmi2j7HJRw14NK9JlsD289DTyUsQuJ0wp+l3MpfL1LFDy739kStyRedQKRZ0MFsJFR0ct7QUAjM/4\nEXsWz5wmAQGNJQ1bScHUUXY8lB0vYmUEudSWtjeII7cUyOKxL7YVs1goYVcoMrC0VxL2ZX7EPj5T\nhu16mS/3yWevNaJtsaFOklNFJxIhzwV9cfItbG8QR36ps6zsrFWt1K0cmUetUNTJEqmPOPXanpgl\nYc/2NaLqjqz124sFReSTRSdSB378yj4UTB0fvuiExdo16HIjsgxWTKsnF7UL7f0JUyjahCVSxL68\nzx8QMT5bhh147Fnozxs4MF3qCI8dCKYmScI4kDex9TMXL9ZuAai/jv1ILXc8Mo9aoaiToUIoxgVL\nR97UcCiwYrLOxiRvve0j9sBqmS45bbdyU47Ss608PTIj9vZ61xSKNiUucEt7LJE8zdrClgS9Wh17\nO0BWjC/s7SWM9XZ3bLf9bxVK2BWKBhjqsTAxW0bZqc+KARDpUNiOFIQV47SdlWHU2Ya33fa/VRyZ\nR61QNAjZKUt6TRyi5GlGK+bCk1cCWPxBx7WgqpfJObvtIl6tTiuGxP+Sl6xasH1qR9r7mlChaCMe\n/bvXCWEpmAbGZ2zkTQ9WRvF728a1eM0Jw1g5z3maCw3NInU83nYeu1GnFQMAD33iorZfO9Bsjqyj\nVSjmgVzNQsMobFevq1a63UUdiB5nu/Uzl8VcyxCxA9E1CEcK7XU6Vig6hIKpYa7sipYC3YQ8sq7d\nrBh5f47UGvUsdNcnUqFoEdQB0XayL1DqFHqtsD1uux2bHKUrXU+nvd41haJDyFuBsLseLKO7FIYx\nJjzprKWcrUJu6pVl5umRihJ2haIBqFFWqQsjdiD02dstearsl2y017umUHQIkWX3bSZ+zYBq7he7\nn3kcJezZ6L5PpELRAmgRz+E5O3NLgU6ChL3d+pkrYc9Ge71rCkWHQMLu8bDuu5sQVkybCWm77U+7\nooRdoWgAuSd5uzf1agQRsSsrpiPpvk+kQtEC5ClC7d6GtxFoUU+7JU+PXt6LC09eiWOHexd7V9oa\nJewKRQNEhb37vkarhwoAgNmSs8h7EqU3Z+Cbf7hxsXej7ZnX6Zgx9jbG2OOMMY8xpl5txREDjY8D\n2n+GaSOMDPrCPjZdWuQ9UTTCfK+zHgPwOwDubMK+KBQdQ77LrZjRIb+nzf5JJeydyLxCDc75VkCt\nAFMceeSPECtm/5QS9k6kZZkRxthljLFNjLFNY2NjrXpahWJBWNITdgwc6MKInea6/tkFxy3yniga\noWaowRi7FUBSl/qPc85/nPWJOOdXA7gaADZu3NjeI2QUihrIrWC7MWLXNIYdn3vjYu+GokFqfiI5\n5xe2YkcUik6lrwuFXdHZqE+kQtEgP/2LV+O/nx7ryl4xis5mXsLOGPttAF8FMAzgZsbYZs7565uy\nZwpFm7NhdAAbRgcWezcUigrmWxVzPYDrm7QvCoVCoWgC6hpSoVAougwl7AqFQtFlKGFXKBSKLkMJ\nu0KhUHQZStgVCoWiy1DCrlAoFF2GEnaFQqHoMhjnrW/bwhgbA/B8gw9fDuBAE3enE1DHfGSgjvnI\nYD7HfBTnfLjWnRZF2OcDY2wT5/yIGuqhjvnIQB3zkUErjllZMQqFQtFlKGFXKBSKLqMThf3qxd6B\nRUAd85GBOuYjgwU/5o7z2BUKhUJRnU6M2BUKhUJRBSXsCoVC0WV0lLAzxi5mjD3FGHuGMXbFYu9P\ns2CMfZsxtp8x9ph021LG2C8ZY9uC/5cEtzPG2FeC1+ARxthLF2/PG4MxtpYxdgdj7AnG2OOMsQ8G\nt3ftMQMAYyzPGLufMbYlOO6/D24/mjF2X3B81zHGrOD2XPD7M8Hf1y/m/jcKY0xnjD3MGLsp+L2r\njxcAGGM7GGOPMsY2M8Y2Bbe17PPdMcLOGNMBXAXgEgAbALyTMbZhcfeqaVwD4OLYbVcAuI1zfjyA\n24LfAf/4jw/+XQbg6y3ax2biAPgw53wDgHMAXB68l918zABQAvBazvnpAM4AcDFj7BwAnwfwJc75\ncQAOAXhfcP/3ATgU3P6l4H6dyAcBbJV+7/bjJS7gnJ8h1ay37vPNOe+IfwBeAeAW6fePAfjYYu9X\nE49vPYDHpN+fAjAS/DwC4Kng538B8M6k+3XqPwA/BnDREXbMPQAeAvBy+KsQjeB28TkHcAuAVwQ/\nG8H92GLve53HuSYQsdcCuAkA6+bjlY57B4Dlsdta9vnumIgdwGoAO6XfdwW3dSsrOed7g59fBLAy\n+LmrXofgcvtMAPfhCDjmwJbYDGA/gF8CeBbABOfcCe4iH5s47uDvhwEsa+0ez5srAXwUgBf8vgzd\nfbwEB/ALxtiDjLHLgtta9vme18xTRWvgnHPGWNfVpTLG+gD8EMBfcs4nGWPib916zJxzF8AZjLEh\n+POCT1rkXVowGGNvArCfc/4gY+z8xd6fFvMqzvluxtgKAL9kjD0p/3GhP9+dFLHvBrBW+n1NcFu3\nso8xNgIAwf/7g9u74nVgjJnwRf07nPMfBTd39THLcM4nANwB34oYYoxRkCUfmzju4O+DAA62eFfn\nwysB/BZjbAeA78G3Y76M7j1eAed8d/D/fvgn8LPRws93Jwn7AwCODzLqFoDfA/CTRd6nheQnAP4w\n+PkP4fvQdPt7gkz6OQAOS5d3HQHzQ/NvAdjKOf+i9KeuPWYAYIwNB5E6GGMF+HmFrfAF/neDu8WP\nm16P3wVwOw9M2E6Ac/4xzvkazvl6+N/X2znnv48uPV6CMdbLGOunnwG8DsBjaOXne7GTDHUmJN4A\n4Gn4vuTHF3t/mnhc3wWwF4AN3197H3xv8TYA2wDcCmBpcF8GvzroWQCPAti42PvfwPG+Cr4H+QiA\nzcG/N3TzMQfHcRqAh4PjfgzAJ4PbjwFwP4BnAPwAQC64PR/8/kzw92MW+xjmceznA7jpSDje4Pi2\nBP8eJ61q5edbtRRQKBSKLqOTrBiFQqFQZEAJu0KhUHQZStgVCoWiy1DCrlAoFF2GEnaFQqHoMpSw\nKxQKRZehhF2hUCi6jP8PhVhcxoiKnH4AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x110d22c50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"i = 5\n", | |
"plt.plot(f.frames[i].q[0,:]+f.frames[i].aux[0,:]-(p.frames[i].q[0,:]+p.frames[i].aux[0,:]))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x110f4eed0>]" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmclNWd7/HPr6qbTcQF0CCriSgh16hJD24xk0UUl6vJ\nK+qgmVESJt5MrjOSTO5Ek4xGk8xoMlGckSTDxD2J0SQThyDQoLggSzfNJioiOzT7vjfdVfW7f9RT\n3VXV1dDQ1bV+369Xv6x66mnqPFj0t8/5nXMec3dEREQSQvlugIiIFBYFg4iIpFAwiIhICgWDiIik\nUDCIiEgKBYOIiKRQMIiISAoFg4iIpFAwiIhIiop8N+BE9OnTx4cMGZLvZoiIFJUFCxbscPe+xzqv\nKINhyJAh1NXV5bsZIiJFxczWtec8DSWJiEgKBYOIiKRQMIiISAoFg4iIpFAwiIhICgWDiIikUDCI\niBSBP09+idX//SDRdTWd/l5FuY5BRKSc7F8xmyvnf41KIjS9/R8cvO0lep17eae9n3oMIiIF7oOa\naXShiQqLUUkTvbbO69T3UzCIiBS4VRs2EsJxhxAO3Xt36vtlJRjMbJSZLTezlWZ2T4bXu5rZC8Hr\nNWY2JO31QWZ2wMy+nY32iIiUijWLXuOLDS8BYAZgcHhnp75nh4PBzMLABOAaYDhwq5kNTzttLLDb\n3c8BHgUeTnv9EWBqR9siIlJqdsx+mjBRzMABC4VhyBWd+p7Z6DGMAFa6+2p3bwR+B9yYds6NwDPB\n4z8AnzcLss/sC8Aa4N0stEVEpGQ0rZ3Hx3dMxgB3cAvDtT+DgSM69X2zEQz9gQ1Jz+uDYxnPcfcI\nsBfobWY9ge8ADxzrTczsTjOrM7O67du3Z6HZIiKFbfX8aVR40Fsw4BO3Q9WYTn/ffBeffwA86u4H\njnWiu0909yp3r+rb95jbiYuIFL2V6zc1F50NCPW7MCfvm411DBuBgUnPBwTHMp1Tb2YVwCnATuBi\n4CYz+wlwKhAzswZ3fzwL7RIRKVq73p/FVfv+ABDUFzq/6JyQjWCYDww1s7OJB8Bo4La0cyYBdwBz\ngZuAme7uQHMFxcx+ABxQKIiIwMraaXwyx0XnhA4PJQU1g7uAamAZ8KK7v2tmD5rZDcFpTxCvKawE\nvgW0mtIqIiIt5m5xQsSLzgBcelenF50TsrIlhrtPAaakHbsv6XEDcPMx/owfZKMtIiLFbvmW/fTe\n9z4ehpCBE4JuvXL2/vkuPouISJrV1RMYHX4tPk0VsHBlzoaRQMEgIlJQYutquHLNTwgTa1npfNFt\nORtGAgWDiEhBqV88nZC3FJ0JheGC9Pk8nUvBICJSQGq3WkrR2XJYdE5QMIiIFIiGpijRjYvjdQUD\nclx0TlAwiIgUiIWzq/kiM5uLzuS46JygYBARKRCNC35DZbCoDcCGjsz5MBIoGERECsLug40c2bMl\n9WDP/OwLp2AQESkANW9O4zOhxUBiC4zKnM9GSlAwiIgUgNDS56kk0rJh3if+Oi/DSKBgEBHJu13v\nz+IvD05vviGPhfPXWwAFg4hI3q2eX01FYidVM+yiL+ettwAKBhGRvFu3eXPSDXkcPpSbG/K0RcEg\nIpJH29+bxQ0H/wTQsjdSjm7I0xYFg4hIHq2pm0YoTzfkaYuCQUQkj2q3krcb8rRFwSAikidrdxzk\n1L3L8r43UjoFg4hIntS9Vc3N4TfydkOetigYRETypNt7L6YuasvxDXnaomAQEcmD+rdfZ+SRGUmL\n2rrkdVFbMgWDiEgerFuQvqitMHoLoGAQEck5d2fdpi0FtagtmYJBRCTH1i1+nZsb/wconEVtyRQM\nIiI5tmfes4QLbFFbMgWDiEgO+foaPrp1UnPR2S0M1/6sYOoLoGAQEcmprW+/QoW39BZiF94OVWPy\n3awUCgYRkRxauD3UUnQ2qOhfOEXnBAWDiEiOuDsN9Yuat8BwQgVVdE5QMIiI5Mjyule5LvJqwW2B\nkU7BICKSIxsXzWhZ1EZhLWpLlpVgMLNRZrbczFaa2T0ZXu9qZi8Er9eY2ZDg+AgzWxx8LTGzL2aj\nPSIihSYWc+q3FO6itmQdDgYzCwMTgGuA4cCtZjY87bSxwG53Pwd4FHg4OP4OUOXuFwKjgP80s4qO\ntklEpNC8P/9Vbov+GSjMRW3JstFjGAGsdPfV7t4I/A64Me2cG4Fngsd/AD5vZubuh9w9EhzvRnzY\nTUSk5ByY/1xBL2pLlo1g6A9sSHpeHxzLeE4QBHuB3gBmdrGZvQssBb6eFBQiIiUhuq6GC3ZMLuhF\nbcnyXnx29xp3/xjwF8C9ZtYt03lmdqeZ1ZlZ3fbt23PbSBGRDqhfNL1lUZsBnyi8RW3JshEMG4GB\nSc8HBMcynhPUEE4BUgbX3H0ZcAD4X5nexN0nunuVu1f17ds3C80WEcmNlEVtQKhfYRadE7IRDPOB\noWZ2tpl1AUYDk9LOmQTcETy+CZjp7h58TwWAmQ0GhgFrs9AmEZGCEInGiGxanHpf5wItOid0eAaQ\nu0fM7C6gGggDT7r7u2b2IFDn7pOAJ4DnzGwlsIt4eAB8CrjHzJqAGPANd9/R0TaJiBSK92pf4YbY\nzOZFbRToorZkWZka6u5TgClpx+5LetwA3Jzh+54DnstGG0RECtGmJTP4WDAbKYYRKtBFbcnyXnwW\nESlVTdEYtVsoikVtyRQMIiKdZO6qnXw4sqqo6gugYBAR6TTbXv8lo8OvFfymeekUDCIinaBp7Txu\n3PQoYWItW2AUQX0BFAwiIp1i/cLphJLu1EYoDBfclu9mtYuCQUSkEyzYZoSIb4EBYJfeVRS9BVAw\niIhk3ZFIFN+yJLXo3K1XnlvVfgoGEZEse3vODL7grxXVorZkCgYRkSzbuvSVorhTW1sUDCIiWdTQ\nFGX+Niu6RW3JFAwiIln0xgfbGRotvkVtyRQMIiJZtOvNiUW5qC2ZgkFEJEuOrJ7LTVvGF+WitmQK\nBhGRLFm7oJoQxbmoLZmCQUQkS+q2F++itmQKBhGRLDjUGCG85e2iXdSWTMEgIpIFC9+q5ov2elEX\nnRMUDCIiWRBZ9FsqiTQvaivGonOCgkFEpIMOrJzDZfumxnsLTnwLjCIsOicoGEREOmjLm09RGcxG\nwiA09Kqi7S2AgkFEpMN2b6tPPdCzb34akiUKBhGRDti1fBYfP1wLBMNIoYqiHkYCBYOISIesmV/d\nspOqgX3ib4p6GAkUDCIiHVKzlaSdVCm6nVQzUTCIiJygDbsO0Wv3e0W9k2omCgYRkRNUO2saN4ff\nKIlFbckUDCIiJ6jruy+WzKK2ZAoGEZETsH7J61x1ZHrzojYLdyn62UgJCgYRkROwa84zKYvabOjI\nkugtgIJBROS4uTt7t29MPVjki9qSKRhERI7TigUzuSS6AEgsaivuvZHSZSUYzGyUmS03s5Vmdk+G\n17ua2QvB6zVmNiQ4PtLMFpjZ0uC/n8tGe0REOtOGhdOTFrUZ9om/LplhJMhCMJhZGJgAXAMMB241\ns+Fpp40Fdrv7OcCjwMPB8R3A/3b384E7gOc62h4Rkc4UjTn1m7ckLWrzkljUliwbPYYRwEp3X+3u\njcDvgBvTzrkReCZ4/Afg82Zm7r7I3TcFx98FuptZ1yy0SUSkU7w9dzq3xf4MJBa1WUksakuWjWDo\nD2xIel4fHMt4jrtHgL1A77RzvgQsdPcjmd7EzO40szozq9u+fXsWmi0icvwOzf814cQwEmChcEks\naktWEMVnM/sY8eGl/9PWOe4+0d2r3L2qb9/Sqf6LSPE4vGouVbunNK9dcAvDtT8rqfoCZCcYNgID\nk54PCI5lPMfMKoBTgJ3B8wHAn4Db3X1VFtojItIpVs2flraT6u1QNSbfzcq6bATDfGComZ1tZl2A\n0cCktHMmES8uA9wEzHR3N7NTgZeBe9x9dhbaIiLSaVbXb0rZSdX6lVbROaHDwRDUDO4CqoFlwIvu\n/q6ZPWhmNwSnPQH0NrOVwLeAxJTWu4BzgPvMbHHwdUZH2yQikm07l83imv1/BEq36JxQkY0/xN2n\nAFPSjt2X9LgBuDnD9/0I+FE22iAi0plWzp9GVYkXnRMKovgsIlLI3J25m5wQwUpngEvvKrmic4KC\nQUTkGN7bvI8+B95PvSFPt155blXnUTCIiBzDmuoJjA6/VnI35GmLgkFE5Cgi6+Zx9bp/I0yspehc\nIjfkaYuCQUTkKNYvnE7IW4rOhMIltZNqJgoGEZGjqN1KStHZSrjonKBgEBFpw97DTfjGJWVTdE5Q\nMIiItGHu61P5Uqh8is4JCgYRkTbEFv+25b7OACV0X+ejUTCIiGSwbPM+QgfTtvgvofs6H42CQUQk\ng7mvT+Wz4cVAYguM0rqv89EoGERE0hyJRDl5+e+pJBJMUzUosfs6H42CQUQkzYK3qrnRZyYVnbuU\nTW8BFAwiIq001P0mpehsZVJ0TlAwiIgk2bz3MI17tqQeLJOic4KCQUQkybLJ/86V4YVA+RWdExQM\nIiKB2LoarljxcPOGeeVWdE5QMIiIBNYtrE7ZMM/KYMO8TBQMIiKB99duLLsN8zJRMIiIALven8WV\ne34P0HLfhTLYMC8TBYOICLBs7lRCpA0jlcGGeZkoGESk7EWiMVZtSB1GokyHkUDBICLCgtnV3Br9\nM6BhJFAwiIhwoPbXhDWM1EzBICJlbcs7b3LF/qnxfZHiGyPBtT8r22EkUDCISJnb9OZTLfsiGdh5\n10DVmHw3K68UDCJStg43Rtm9bUPqwTLbFykTBYOIlK1ZM1/mCm/ZF4ky3BcpEwWDiJQld6dH3YTU\n7bXPvbqsawsJCgYRKUtvz53BJU21qQc1jARkKRjMbJSZLTezlWZ2T4bXu5rZC8HrNWY2JDje28xe\nM7MDZvZ4NtoiItIeu+Y8Q6h5F1UwK88N8zLpcDCYWRiYAFwDDAduNbPhaaeNBXa7+znAo8DDwfEG\n4J+Bb3e0HSIi7bVp6RtcnjRF1S0M1z2iYaRANnoMI4CV7r7a3RuB3wE3pp1zI/BM8PgPwOfNzNz9\noLu/RTwgRERyYuMbT6ZMUQ1pimqKbARDfyB5vld9cCzjOe4eAfYCvbPw3iIix2VfQxN7ttWnHlRt\nIUXRFJ/N7E4zqzOzuu3bt+e7OSJSpGZO/zN/aYsATVFtSzaCYSMwMOn5gOBYxnPMrAI4Bdh5PG/i\n7hPdvcrdq/r2VbqLyPE7EolyyqJfaIrqMWQjGOYDQ83sbDPrAowGJqWdMwm4I3h8EzDTvXlzWxGR\nnHjz1Ze5IlaXelDDSK1UdPQPcPeImd0FVANh4El3f9fMHgTq3H0S8ATwnJmtBHYRDw8AzGwt0Avo\nYmZfAK5y9/c62i4RkWTRmHNo/m80RbUdOhwMAO4+BZiSduy+pMcNwM1tfO+QbLRBRORoat+cyjVN\nM+JTVCG+i6qmqGZUNMVnEZET5e4w+7HU2oKmqLZJwSAiJW/VtMcZ0Tgv9aBqC21SMIhISfP1NQyp\nuZ8QqLbQTgoGESlp6xZMxzy4bWf8vp2qLRyDgkFESpa7s3DFOkIkQgHssn9QbeEYFAwiUrIWz5nO\nDQf/CBAUnQ269cprm4qBgkFESpK7c+SNRwmnrFsIwZAr8t20gqdgEJGStHzK4/zFkbmpB88bpdpC\nOygYRKTkRNfVcM78+1rPRLp8XL6bVhQUDCJSctbM/BVhj7XMRMI0E+k4KBhEpKQcboyyYf3algMG\nNuxazUQ6DgoGESkpL095ictjC4Ck+y1oCOm4KBhEpGTsOHCEU3W/hQ5TMIhIyXjz+Z/yWeanHtSe\nSMdNwSAiJWF53SvcUP8z7YmUBQoGESl60Zizs/qnqYvZNBPphCkYRKToTa/+MyMaa1IPaibSCVMw\niEhR27K3gcqafyeMJ/UWQpqJ1AEKBhEpWu7OtGce4rOeVnAedo2GkDqgrIJh057DxGKe72aISJYs\n/O/x/M3O8dr6Issq8t2AXNm2v4H7JzzFl7vN5vKP9KHyk1/WbxQiRWznsllcsPQBQilDSCo4Z0NZ\nBENDU5SfPfFrHm/8Z7o0RmAx+JJnseseVXFKpAhFY87Kl37MCPfmhWyACs5ZUhbBUBkOMarnSip2\nR5o/RO4xfPI4DPRBkpyI1D5JdMGzRJoasIZ98WOVvaiM7CMcMqzXQCo+NAy78Db9xnsMM3/9MJ9r\naNlSWwXn7DL34htzr6qq8rq6uuP7pg21RJ8YRcijSeEAbhC6fByMfCD7DZWy1rR2Hntm/BuxHSuw\nI/vp6zvb9X1usDV8FhWVXaio7EaPiigVZ5xL+FPjFBjA0nkz+OjUW1qvWbh+vH7JOwYzW+DuVcc6\nryx6DAAMHEH4+kfwyeNwHCO41Z+Dzx5PbN8mwl/6r3y3UkrAruWzODD5+wzYv5g+ab93pQx7tMXh\nQ5FNEAEOJ/7QFUSXv8yB8OmEu3QndOoAup81vOx6F1vffZMe0+5OCQUUCllXPsEAUDUGA3zyN3Fi\n4DTv1x5a+iKR3RuouPrBsvqHJtnTsHouGyb/Kx/e+QanBcfSg+Co/fPg89hWeIQcekV2xQPj0EbY\nXENswVPs7TaQrl270vXM8whfUbq9ikOr5nL677/AGR5NOa4ttbOvfIaSkm2oJVJ9H+H6uSnhgIFb\niJCK0nKc1lZPYMDc7xEO/j01D1emnWcAJ58FoYr4Sd16weG9EG2EA1vaDI62Ohrp/3zd4HBlH7z3\nR+jRfzihEulRRKIxVj38ac49sjTl79YsDF+dVhLXmAvtHUoqz2AIxP74NWzpi83hAPEPm2OE1DWV\ndoism8eql/6FobveaBmeDCT+ZVnPM6HnGRDuAhfd3vbnakMtzB4PO1ZCRReINEKsCXatzhgYmcIi\n5Z9zMNSyr/sgup18Ot1GfKUoP9PRmPPqf/wdI3c9D6C6QgcoGNprxv347PGp4RAUpe3yu7GRD2bn\nfaTkHJrzBF2n/yOhNnoJhsHld3d8YsOGWljyW9j+AezZANFG/MCW1ud5hqGrtKDYW9GHyu6n0LXf\neVRc8c2C/007FnNem/ANPrvjt83BG3Tu4frHFArHScFwPOqexiePg6AoDS1DS7FBlxEe+UDB/wOS\n3Kpf+jr9/vgFQmnz6Jt/aA27Ph4KnfW5Se9d7N+GH9yackp6jyL9n3rM4FC3s+hy+iC6njUcLri1\noD7njZEYSx67hap9MwCSis1gmkl4QhQMx6vuaXzyNyGtKB3/NSWkxXDSbNXCmfiku/iIb2zdS7AQ\n5OuzUvc0zPs5NOxt3aNoR2/CgUOnfZTuH76EcJ5rEwdWzGH9i//ERxuXxpunUMiKnAaDmY0CHgPC\nwK/c/aG017sCzwKfBHYCf+Xua4PX7gXGAlHgH9y9+ljv1ynBAPGi9PT7CW+Y06ruAIZpPLPsra2e\nwIA53yNMy/BRznoJxyO5R3FkP75/U8rLR61PBNd0oMdguvfqTWXVHTn93K+f8XPOmv3dlEK+QiE7\nchYMZhYGPgBGAvXAfOBWd38v6ZxvAB9396+b2Wjgi+7+V2Y2HHgeGAGcBbwCnOueNh8tTacFQ8Bn\n3IfPfgzLUHfQYrjyteGF/0f/9yamFJmLpgha9zQsehYO725dzG5Hb2J/5RmETz2LHhePwaq+0ilN\nPLJmLmsn/QtDd73Z6u8YwM6/BbTWqENyGQyXAj9w96uD5/cCuPu/Jp1THZwz18wqgC1AX+Ce5HOT\nzzvae3Z2MABQ9zSxyeOwpDHk5qGl82/B9AEtK2ue/zZD3o//Py+6UEiXVsz2vetTXj5qbcLgYOhk\nrFsvuvS/gMpPd7yAHVk3jy1TH6bfltcyFvIN4ltd6BeyDsvlyuf+wIak5/XAxW2d4+4RM9sL9A6O\nz0v73v6Z3sTM7gTuBBg0aFAWmn0MVWMIkXkxHEtfJLq3XkXpMrHkpUc5PykUCqKe0BEDR6R8bi0x\n7LR5Kb53/VF7E+5wUnQ/HNwPH2wktmIKByt64yedQY/u3alo57CTr69h99xnaFxXyxmHVtA/eNPW\nhfwiDN4SUDQrn919IjAR4j2GnLxp1RjszOEcmfbPdNk4D09eKb1+Dv7UNdhXpiocSth7z47j/FVP\npUyVBLDBl8GVJfKLwcARMPq3QFJIJNUmUjoMrboT0LNpJ+zZCXvAJy9kx8s/xMIVhEIQqehFJRGi\noQq6NB3A3TkcC3FGZCOneeY/t+iDtwRkIxg2AgOTng8IjmU6pz4YSjqFeBG6Pd+bXwNH0PVr1UT+\n8LeE3/l9czgAeCzCwZe/z0lfn57fNkqnWPLUOD6+9ikg9QeXDb4MvjI1T63qZEkhAWBJtQlvZ22i\nj++AWHDgSOv1Fr0Sf3Yb24UYBsOuK5xCfhnKxh3c5gNDzexsM+sCjAYmpZ0zCbgjeHwTMNPjxY1J\nwGgz62pmZwNDgdostCnrKm76FVx+N25JY64OPTbXsOvxK+PjtlIS3J1Xf/0w5yeFQnxFPFioMt5T\nKBdVY+BrM+EfFmFjZ2DDrsNOGYR1P7159lLzV9JeT+35gtTvN8CGXQ9jp8Po3ygU8ihb01WvBcYT\nn676pLv/2MweBOrcfZKZdQOeAy4CdgGj3X118L3fA75KfGuwce5+zF/FclJ8bkvd08Qm3908Yynx\n1xezEKHrH+m0GRuSG+7O3P/8ey7Z/FxpDx9lQ2LdRKQBok2tpsS2hwGcOhg+dL56CDmgBW6dKbGN\nBi0zOBLTWSPXPEKXi8fmr21ywqIxZ8ljt3DRnvjQYMrMmFIePsqWxLBTtDG+MWBik8BIY3x1dvqx\nPkMVBjmm+zF0ppEPxLfvnj2+pQsc3NuhYuq3OLhjFSdd9y/5baMcl6ZojNce/wYjk0KhuadQbsNH\nJ6pqjArFJSIbNYbyNPIB7PrHAEuaRQHm0GP+BA78cqTqDkXiUGOE6eO/zpVpu3dCoqcwRb/VSllR\nMHRE1Zj4NhmEUopvOJy0uZbYE1fBjPvz3Eg5mt3L32Llw5/m2n0vtK4pnH9LfPhIoSBlRsHQUVVj\nsLHV8d8sE/vmJGZeuOOzxxN98hr1HgrQttd/ycnPX8/5kXeBDHvyaHW7lCkFQzYMHAFfmRr/YQIp\nQ0skFsM9eXW8OCcFYU31BHq//h3CwZYnyZvhaaM2KXcKhmxKqzs0z+sG8Fj8ng8Kh7x7/9lvMXjO\ndwml7aCrPXlE4hQM2VY1Bhs7HR8UDC0l9oABcCc2+W58xn35bGHZikRjLHnsZs5b9UQbO6Q+plAQ\nQcHQOQaOIPTVqdj1j+HWetYSsx+j8cW/zWcLy86+D2bzwUOf5uO7UqejxmtCIW3UJpJEwdCZqsYQ\namPWUuV7v+fALzSlNRfqX/k5PX57Xea7gQ2+DL5arVAQSaJg6GzBrKXowJahpeYprVtqiT5xFbHn\nb1NAdAJ3Z/YL/0a/Wfe2KjKDpqOKtEXBkAsDR1Axdmr8B1FSOJgRv5n88pc1aynL9q+YzQcPXcGl\n7/2QEK2LzJqOKtI2bYmRS1/6L6zXWa230gDcY8Qmj4sntYY1OmRt9QQGzP0u56bd/EU3fhFpH/UY\ncq15SmtL3QGCkAhmLUV+NUpDSyegoSnKnF/exaA53yWc1CtTkVnk+CgY8iGxWnrYdc2rpaFl1lK4\nfm58Ow0NLbXbhhk/Z9ePz+PSpO2yIWnoSEVmkXZTMORLcKes9N5DYkGceg/t09AU5Z3H/4oBb91L\nP98OpPUSsPiiNRWZRdpNwZBvQe+BQZcdtffgdU/ltZmFaPnL/8HOH5/Hx7ZPA2g962jwZfG7gWnR\nmshxUTAUgoEjsK+m7rWU3nvwyeNomHi1eg/AzmWzWPfjizi39vuc1UYvwdRLEDlhuoNbodlQi8+4\nH9bPAVLvEAfxu8TFzr2Wiiu+WXY/9I6smcv2P93LWXsXNf+9JNcSAOzM8+H6R8ru70akPXRrz2KX\ndPtQkjd7C6qpjsF51xL61LiS/yEYW1fDpqkP0W/LTEIZpqBCopZwt4aNRI5CwVAKNtTCK/fj61J7\nD5AaEKES/YHo62vYUf1TTt/4CqHgc9o6EAD1EkTapb3BoBpDIctwn4eU4jQtNwNq+OnwkilQuztr\nfvdt/Mmr6FM/I7463DKEwqmD4jui/t1bCgWRLFKPoVhsqIXZ4/H3pwDeengJwOBQz8H0OO9z2IW3\nFd0Py8i6eWyf9hMqNy+kt+8GWq4RNGwk0lEaSipVzQHxcvx5GwHhGJFL/p4uo36Yl2Yej4Ozf0XD\n7Mc57dCa+LbkgYx1hGHXxUOhyEJPpBAoGEpdWv0hOSCgpQaxv6I3oT7ncFL/4QXVi4iuq2HrrKcI\nr32TM5o2Nh/P3EMAhl2vQBDpIAVDudhQCy9/C98Sv9dAxh4ENC+ea+r9MbqefTFccGvOf8hG19Ww\na87TRNbP58zDKzL2DiAtEAZfBlc+oEAQyQIFQ7mpexrm/Rzfsbz5kKWdkjrUBA0nD6Zrz96EP3lH\np+0htG/2RJj3C/zQHnpGdzVPN4XMYdDcbgWCSNYpGMpV+hATtBpmgta9iT0VfQh160VFl6507dqd\niuMMC3fn0NwniC18liMNh6FhH+HIAU71AynntWpHSxPgtA/DRz6Tl96MSDlQMJS7oEjN5qX43vUt\nx48VEgkG2+kN4UrCBofDPekePQAGh0M96RqJ/8A/QA+INdI1eoh+titjU9oKg+BtoO8wuPjvtPOp\nSCdrbzDoRj2lKti9FcDSQiIlBzIEBcTDoi87IRIcaMr8Nn0SD4I/I+OflfbcAE4dDB86XwVlkQKk\nYCgHmUJix0o4sh/fv6nVD+62wqI92uh8QM8zofc50Pc8DRWJFLgOBYOZnQ68AAwB1gK3uAcrk1LP\nuwP4fvD0R+7+THD8x8DtwGnu3rMjbZF2SgoJAKt7GhY9C9FGiDS2HRbtZAAnnwWhini6qFcgUnQ6\nVGMws58Au9z9ITO7h/gP+O+knXM6UAdUEf+FcgHwSXffbWaXAOuAFccTDKoxdLLksDi8N/4Dvluv\nth9HGqGiC4S7wEW3q1YgUqByVWO4EfhM8PgZ4HXgO2nnXA3McPddQcNmAKOA5919XnCsg82QrKoa\nox/uImXlRBK0AAAEsElEQVSso5vonenum4PHW4AzM5zTH9iQ9Lw+OCYiIgXomD0GM3sF+FCGl76X\n/MTd3cw6be6rmd0J3AkwaNCgznobEZGyd8xgcPcr23rNzLaaWT9332xm/YBtGU7bSMtwE8AA4kNO\nx8XdJwITIV5jON7vFxGR9unoUNIk4I7g8R3A/2Q4pxq4ysxOM7PTgKuCYyIiUoA6GgwPASPNbAVw\nZfAcM6sys18BBEXnHwLzg68HkwrRPzGzeqCHmdWb2Q862B4REekgbYkhIlImSnqvJDPbTnz9w4no\nA+zIYnOKga65POiay0NHrnmwu/c91klFGQwdYWZ17UnMUqJrLg+65vKQi2vuaI1BRERKjIJBRERS\nlGMwTMx3A/JA11wedM3lodOvuexqDCIicnTl2GMQEZGjKJtgMLNRZrbczFYGW4SXDDN70sy2mdk7\nScdON7MZZrYi+O9pwXEzs38P/h7eNrNP5K/lJ8bMBprZa2b2npm9a2Z3B8dL+Zq7mVmtmS0JrvmB\n4PjZZlYTXNsLZtYlON41eL4yeH1IPtvfEWYWNrNFZjY5eF7S12xma81sqZktNrO64FhOP9tlEQxm\nFgYmANcAw4FbzWx4fluVVU8T38o82T3Aq+4+FHg1eA7xv4OhwdedwC9y1MZsigD/6O7DgUuA/xv8\n/yzlaz4CfM7dLwAuBEYF9zN5GHjU3c8BdgNjg/PHAruD448G5xWru4FlSc/L4Zo/6+4XJk1Lze1n\n291L/gu4FKhOen4vcG++25XlaxwCvJP0fDnQL3jcD1gePP5P4NZM5xXrF/E9ukaWyzUDPYCFwMXE\nFzpVBMebP+fE9yO7NHhcEZxn+W77CVzrAOI/CD8HTCZ+k8BSv+a1QJ+0Yzn9bJdFj4HyvCdEW/fK\nKKm/i2C44CKghhK/5mBIZTHxXYxnAKuAPe4eCU5Jvq7maw5e3wv0zm2Ls2I88E9ALHjem9K/Zgem\nm9mC4HYDkOPPdkfv4CZFwL1z75WRL2bWE/gjMM7d9yXfCbAUr9ndo8CFZnYq8CdgWJ6b1KnM7Hpg\nm7svMLPP5Ls9OfQpd99oZmcAM8zs/eQXc/HZLpcew0ZgYNLzAcGxUrY1uEcGaffKKIm/CzOrJB4K\nv3H3/w4Ol/Q1J7j7HuA14sMop5pZ4he85Otqvubg9VOAnTluakddDtxgZmuB3xEfTnqM0r5m3H1j\n8N9txH8BGEGOP9vlEgzzgaHBbIYuwGji95IoZW3dK2MScHswm+ESYG9SF7UoWLxr8ASwzN0fSXqp\nlK+5b9BTwMy6E6+pLCMeEDcFp6Vfc+Lv4iZgpgeD0MXC3e919wHuPoT4v9mZ7v5lSviazewkMzs5\n8Zj4/WveIdef7XwXWnJY0LkW+ID4uOz38t2eLF/b88BmoIn4GONY4mOrrwIrgFeA04NzjfgMrVXA\nUqAq3+0/gev9FPFx2LeBxcHXtSV+zR8HFgXX/A5wX3D8w0AtsBL4PdA1ON4teL4yeP3D+b6GDl7/\nZ4DJpX7NwbUtCb7eTfysyvVnWyufRUQkRbkMJYmISDspGEREJIWCQUREUigYREQkhYJBRERSKBhE\nRCSFgkFERFIoGEREJMX/BwDOD1vY2YiVAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x110f4e1d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
" plt.plot(f.frames[i].q[0,:]+f.frames[i].aux[0,:],lw=3)\n", | |
" plt.plot(p.frames[i].q[0,:]+p.frames[i].aux[0,:],'.')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.13" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment