Created
January 26, 2018 06:05
-
-
Save khanrc/a21dbe0dc316c31387a56b683b94aa2d to your computer and use it in GitHub Desktop.
DataParallel module leaks memory
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"import torch.nn.functional as F\n", | |
"from torch.autograd import Variable\n", | |
"from torch.utils.data import Dataset, sampler\n", | |
"from torchvision import datasets, transforms\n", | |
"import gc" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"train_ds = datasets.MNIST('./data', train=True, download=True, transform=transforms.ToTensor())\n", | |
"test_ds = datasets.MNIST('./data', train=False, transform=transforms.ToTensor())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"train_loader = torch.utils.data.DataLoader(train_ds, batch_size=128, shuffle=True)\n", | |
"test_loader = torch.utils.data.DataLoader(test_ds, batch_size=128, shuffle=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"class CNN(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(CNN, self).__init__()\n", | |
"\n", | |
" # 28x28\n", | |
" self.conv1 = nn.Conv2d( 1, 32, 3, 1, 1) # 14x14\n", | |
" self.conv2 = nn.Conv2d(32, 32, 3, 1, 1) # 7x7\n", | |
" self.conv3 = nn.Conv2d(32, 32, 3, 1, 1) # 4x4\n", | |
" self.linear = nn.Linear(4*4*32, 10)\n", | |
" \n", | |
" def forward(self, x):\n", | |
" out = self.conv1(x)\n", | |
" out = F.max_pool2d(out, 2)\n", | |
" out = F.relu(out, True)\n", | |
" \n", | |
" out = self.conv2(out)\n", | |
" out = F.max_pool2d(out, 2)\n", | |
" out = F.relu(out, True)\n", | |
" \n", | |
" out = self.conv3(out)\n", | |
" out = F.max_pool2d(out, 2, padding=[1, 1])\n", | |
" out = F.relu(out, True)\n", | |
" \n", | |
" out = out.view(out.size(0), -1) # flatten\n", | |
" out = self.linear(out)\n", | |
" \n", | |
" return out" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"4L" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"torch.cuda.device_count()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"model = CNN()\n", | |
"model = torch.nn.DataParallel(model)\n", | |
"model = model.cuda()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def train(epoch):\n", | |
" model.train()\n", | |
" cc = 0\n", | |
" for batch_idx, (data, target) in enumerate(train_loader):\n", | |
" data, target = data.cuda(), target.cuda()\n", | |
" data, target = Variable(data), Variable(target)\n", | |
" optimizer.zero_grad()\n", | |
" output = model(data)\n", | |
" loss = criterion(output, target)\n", | |
" loss.backward()\n", | |
" optimizer.step()\n", | |
" if batch_idx % 100 == 0:\n", | |
" print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", | |
" epoch, batch_idx * len(data), len(train_loader.dataset), \n", | |
" 100. * batch_idx / len(train_loader), loss.data[0]))\n", | |
" \n", | |
" collected = gc.collect()\n", | |
" cc += collected\n", | |
" print \"collected\", collected\n", | |
" print gc.garbage\n", | |
" if batch_idx == 5:\n", | |
" break\n", | |
" print\n", | |
" \n", | |
" print \"total collected\", cc\n", | |
"\n", | |
"def test():\n", | |
" model.eval()\n", | |
" test_loss = 0\n", | |
" correct = 0\n", | |
" for data, target in test_loader:\n", | |
" data, target = data.cuda(), target.cuda()\n", | |
" data, target = Variable(data, volatile=True), Variable(target)\n", | |
" output = model(data)\n", | |
" test_loss += criterion(output, target).data[0] # sum up batch loss\n", | |
" pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability\n", | |
" correct += pred.eq(target.data.view_as(pred)).cpu().sum()\n", | |
"\n", | |
" test_loss /= len(test_loader.dataset)\n", | |
" print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n", | |
" test_loss, correct, len(test_loader.dataset), \n", | |
" 100. * correct / len(test_loader.dataset)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Train Epoch: 0 [0/60000 (0%)]\tLoss: 2.299755\n", | |
"collected 118\n", | |
"[]\n", | |
"\n", | |
"collected 118\n", | |
"[]\n", | |
"\n", | |
"collected 118\n", | |
"[]\n", | |
"\n", | |
"collected 118\n", | |
"[]\n", | |
"\n", | |
"collected 118\n", | |
"[]\n", | |
"\n", | |
"collected 118\n", | |
"[]\n", | |
"total collected 708\n" | |
] | |
} | |
], | |
"source": [ | |
"n_epochs = 1\n", | |
"optimizer = torch.optim.Adam(model.parameters())\n", | |
"criterion = nn.CrossEntropyLoss().cuda()\n", | |
"\n", | |
"# gc.set_debug(gc.DEBUG_LEAK)\n", | |
"gc.set_debug(0)\n", | |
"gc.disable()\n", | |
"\n", | |
"for epoch in range(n_epochs):\n", | |
" train(epoch)\n", | |
"# test()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2 - tf.latest", | |
"language": "python", | |
"name": "python2-tf-latest" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment