Created
July 20, 2016 16:34
-
-
Save khushmeeet/23236861ad43ac18012b623282f18928 to your computer and use it in GitHub Desktop.
Numpy cheatsheet
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Numpy CheatSheet" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" Numpy stands for **Numerical Python**. \n", | |
" It is a python library that adds support for large arrays and matrices and high level mathematical functions to operate on these arrays. The core feature of numpy is the **ndarray** (n-dimensional array data structure).\n", | |
" As opposed to the lists in python these arrays must be **homogeneous**: all the elements must be of same type. \n", | |
" \n", | |
" It is created by **Travis Oliphant**." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from IPython.display import display" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Importing Numpy module" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"# linalg for linear algebra calculations\n", | |
"from numpy import linalg as lg\n", | |
"# random for generating random numbers\n", | |
"from numpy import random as rd" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Array creation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 1., 2., 3., 4., 5.])" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# from python list\n", | |
"a = np.array([1,2,3,4,5],float)\n", | |
"a" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 2., 3., 4., 5.],\n", | |
" [ 6., 7., 8., 9., 10.]])" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# 2-dimensional array\n", | |
"b = np.array([[1,2,3,4,5],[6,7,8,9,10]],float) #float specifies the array datatype\n", | |
"b" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# another way using python range function\n", | |
"c = np.array(range(10))\n", | |
"c" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0., 1., 2., 3., 4., 5., 6.])" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# using numpy's arange function\n", | |
"d = np.arange(7,dtype=float)\n", | |
"d" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 1., 1.],\n", | |
" [ 1., 1., 1.],\n", | |
" [ 1., 1., 1.]])" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# creating arrays using numpy's ones and zeros function\n", | |
"# It will have only ones and zeros as elements\n", | |
"e = np.ones((3,3)) # arguments -> (array size in tuple,datatype(optional))\n", | |
"e" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[0, 0, 0, 0],\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 0]])" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f = np.zeros((3,4),dtype=int)\n", | |
"f" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"g = \n", | |
" [[ 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0.]]\n", | |
"h = \n", | |
" [[ 1. 1. 1.]\n", | |
" [ 1. 1. 1.]\n", | |
" [ 1. 1. 1.]]\n" | |
] | |
} | |
], | |
"source": [ | |
"# zeros_like and ones_like create new arrays using dimensions of existing arrays\n", | |
"g = np.zeros_like(b) #In[4]:\n", | |
"h = np.ones_like(e) #In[7]:\n", | |
"print('g = \\n',g)\n", | |
"print('h = \\n',h)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 0, 0],\n", | |
" [0, 1, 0],\n", | |
" [0, 0, 1]])" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# for creating identitiy matrix\n", | |
"np.identity(3,dtype=int) #where 3 is the size of matrix" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0., 1., 0., 0.],\n", | |
" [ 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 1.],\n", | |
" [ 0., 0., 0., 0.]])" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# creating matrix with ones along the kth diagonal\n", | |
"np.eye(4,k=1,dtype=float)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Array info" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(3, 3)" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# getting dimensions of the array\n", | |
"h.shape # In[9]:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"dtype('float64')" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# types of values staored in array\n", | |
"h.dtype # In[9]:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"3" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# array length\n", | |
"len(h) # In[9]:\n", | |
" # Not a numpy function" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(True, False)" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# presence of element in an array\n", | |
"( 8 in b , 11 in b ) # In[4]:" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Accessing array elements" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([12, 32, 42, 12, 23, 54])" | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# creating an array\n", | |
"matx = np.array([12,32,42,12,23,54],dtype=int)\n", | |
"matx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"12" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# accessing array elements using bracket notation\n", | |
"matx[3] # 3 is the position in the array" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 12, 32, 42, 12, 100, 54])" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# array modification \n", | |
"matx[4] = 100 # replace 4the element in the array\n", | |
"matx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[12, 32, 42, 12],\n", | |
" [ 2, 34, 55, 21],\n", | |
" [45, 99, 10, 67]])" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# accessing elements in n-dimensional array\n", | |
"# creating 2D array\n", | |
"matx = np.array([[12,32,42,12],[2,34,55,21],[45,99,10,67]],dtype=int)\n", | |
"matx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"55" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"matx[1,2] # rows and columns start with zero" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Array modification" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[12, 32, 42, 12],\n", | |
" [ 2, 34, 55, 21],\n", | |
" [45, 99, 10, 67]])" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# creating an array\n", | |
"matx = np.array([[12,32,42,12],[2,34,55,21],[45,99,10,67]],dtype=int)\n", | |
"matx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 12, 32, 42, 12],\n", | |
" [ 2, 34, 55, 1100],\n", | |
" [ 45, 99, 10, 67]])" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# changing elements in an array\n", | |
"matx[1,3] = 1100\n", | |
"matx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0, 1, 2, 3, 4],\n", | |
" [ 5, 6, 7, 8, 9],\n", | |
" [10, 11, 12, 13, 14]])" | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# reshaping array to a new dimensions\n", | |
"# vector -> 3x5 matrix\n", | |
"matx = np.array(range(15),dtype=int)\n", | |
"matx = matx.reshape((3,5)) # creates new array\n", | |
"matx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0, 1, 2, 3, 4],\n", | |
" [ 5, 6, 7, 8, 9],\n", | |
" [10, 11, 12, 13, 14]])" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# copying an array\n", | |
"matx2 = matx.copy()\n", | |
"matx2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14]], list)" | |
] | |
}, | |
"execution_count": 25, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# arrays to list\n", | |
"mylist = matx.tolist()\n", | |
"mylist , type(mylist)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"b'\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x03\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x05\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x06\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x07\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x08\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\t\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\n\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x0b\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x0c\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\r\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x0e\\x00\\x00\\x00\\x00\\x00\\x00\\x00'" | |
] | |
}, | |
"execution_count": 26, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# converting array to string\n", | |
"string = matx.tostring()\n", | |
"string" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0.00000000e+000, 4.94065646e-324, 9.88131292e-324,\n", | |
" 1.48219694e-323, 1.97626258e-323, 2.47032823e-323,\n", | |
" 2.96439388e-323, 3.45845952e-323, 3.95252517e-323,\n", | |
" 4.44659081e-323, 4.94065646e-323, 5.43472210e-323,\n", | |
" 5.92878775e-323, 6.42285340e-323, 6.91691904e-323])" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# string to array\n", | |
"np.fromstring(string)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[10, 10, 10, 10, 10],\n", | |
" [10, 10, 10, 10, 10],\n", | |
" [10, 10, 10, 10, 10]])" | |
] | |
}, | |
"execution_count": 28, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# filling existing array with single values\n", | |
"matx2.fill(10) # In[24]:\n", | |
"matx2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0, 5, 10],\n", | |
" [ 1, 6, 11],\n", | |
" [ 2, 7, 12],\n", | |
" [ 3, 8, 13],\n", | |
" [ 4, 9, 14]])" | |
] | |
}, | |
"execution_count": 29, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Transpose of a arrays\n", | |
"matx2 = matx.transpose()\n", | |
"matx2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0, 5, 10, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14])" | |
] | |
}, | |
"execution_count": 30, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# generating vectors from arrays\n", | |
"matx2 = matx2.flatten()\n", | |
"matx2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([0, 1, 2, 0, 1, 2, 3, 4, 0, 1])" | |
] | |
}, | |
"execution_count": 31, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# concatenating arrays\n", | |
"a = np.array(range(3))\n", | |
"b = np.array(range(5))\n", | |
"c = np.array(range(2))\n", | |
"np.concatenate((a,b,c))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 2, 3],\n", | |
" [2, 3, 4],\n", | |
" [3, 4, 7],\n", | |
" [9, 8, 7],\n", | |
" [6, 5, 7],\n", | |
" [5, 4, 3]])" | |
] | |
}, | |
"execution_count": 32, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# concatenating with higher dimensions\n", | |
"a = np.array([[1,2,3],[2,3,4],[3,4,7]])\n", | |
"b = np.array([[9,8,7],[6,5,7],[5,4,3]])\n", | |
"np.concatenate((a,b),axis=0) # vertical" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 2, 3, 9, 8, 7],\n", | |
" [2, 3, 4, 6, 5, 7],\n", | |
" [3, 4, 7, 5, 4, 3]])" | |
] | |
}, | |
"execution_count": 33, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.concatenate((a,b),axis=1) #horizontal" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[[1, 2, 3],\n", | |
" [2, 3, 4]]])" | |
] | |
}, | |
"execution_count": 34, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# increasing dimensions of the array\n", | |
"a = np.array([[1,2,3],[2,3,4]])\n", | |
"a[np.newaxis,:]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Array mathematics" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 5, 7, 9],\n", | |
" [11, 13, 15]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[-3, -3, -3],\n", | |
" [-3, -3, -3]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 4, 10, 18],\n", | |
" [28, 40, 54]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0.25 , 0.4 , 0.5 ],\n", | |
" [ 0.57142857, 0.625 , 0.66666667]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 2, 3],\n", | |
" [4, 5, 6]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1, 32, 729],\n", | |
" [ 16384, 390625, 10077696]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# general arithmetic applied element by element\n", | |
"# dimensions need to match\n", | |
"a = np.array([[1,2,3],[4,5,6]],dtype=int)\n", | |
"b = np.array([[4,5,6],[7,8,9]],dtype=int)\n", | |
"display(a+b)\n", | |
"display(a-b)\n", | |
"display(a*b)\n", | |
"display(a/b)\n", | |
"display(a%b)\n", | |
"display(a**b)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Several common mathematical operations are provided by numpy and these are performed elementwise. Like: **abs** , **sqrt** , **log** , **log10** , **sign** , **exp** , **sin** , **cos** , **tan** , **arcsin** , **arccos** , **arctan** , **arcsinh** , **arccosh** , **arctanh** , **sinh** , **cosh** , **tanh** , **floor** , **ceil** and **rint**." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025 ,\n", | |
" -0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849])" | |
] | |
}, | |
"execution_count": 36, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"a = np.array(range(10))\n", | |
"np.sin(a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.rint(a)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Numpy also provides physical and mathematical constants. These include **pi** , **golden_ratio** , **c** , **speed_of_light** , **h** , **Plank** , **gravitational_constant** and many others." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"3.141592653589793" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"2.718281828459045" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"display(np.pi)\n", | |
"display(np.e)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Array Iteration" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[1 2 3 4]\n", | |
"[6 7 8 9]\n" | |
] | |
} | |
], | |
"source": [ | |
"# iterating over arrays using for loop\n", | |
"a = np.array([range(1,5),range(6,10)])\n", | |
"for i in a:\n", | |
" print(i)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"6\n", | |
"15\n" | |
] | |
} | |
], | |
"source": [ | |
"# taking more than one element , summing row as a whole\n", | |
"a = np.array([[1,2,3],[4,5,6]])\n", | |
"for (i,j,k) in a:\n", | |
" print(i+j+k)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Operating on arrays" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 2, 3],\n", | |
" [4, 5, 6]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"21" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"720" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# summing and multiplying all elements of an array\n", | |
"display(a)\n", | |
"display(np.sum(a))\n", | |
"display(np.prod(a))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 2, 3],\n", | |
" [4, 5, 6]])" | |
] | |
}, | |
"execution_count": 42, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"#statistical functions\n", | |
"a" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"3.5" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"2.9166666666666665" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"1.707825127659933" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"----------------\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 2.5, 3.5, 4.5])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0.66666667, 0.66666667])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0.81649658, 0.81649658])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# mean , variance , standard deviation\n", | |
"# use axis parameter to calculate mean , variance and standard deviation along specified axis\n", | |
"# 0 -> column 1 -> rows\n", | |
"display(np.mean(a))\n", | |
"display(np.var(a))\n", | |
"display(np.std(a))\n", | |
"print('----------------')\n", | |
"display(np.mean(a,axis=0))\n", | |
"display(np.var(a,axis=1))\n", | |
"display(np.std(a,axis=1))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"6" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"1" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# max and min values in array\n", | |
"display(np.max(a))\n", | |
"display(np.min(a))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"5" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# argmin and argmax returns the indices of the min and max element\n", | |
"display(np.argmin(a))\n", | |
"display(np.argmax(a))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1, 5, 6],\n", | |
" [1, 5, 9]])" | |
] | |
}, | |
"execution_count": 46, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# sorting arrays\n", | |
"a = np.array([[1,5,6],[9,5,1]])\n", | |
"np.sort(a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([1, 2, 3, 4, 5])" | |
] | |
}, | |
"execution_count": 47, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# extracting unique elements\n", | |
"a = np.array([1,3,4,5,5,3,2,1,1,4])\n", | |
"np.unique(a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([1, 7])" | |
] | |
}, | |
"execution_count": 48, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# extracting diagonals\n", | |
"a = np.array([range(1,5),range(6,10)])\n", | |
"a.diagonal()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Comparing arrays" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ True, True, True, True], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([False, False, False, False], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([False, False, False, False], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([False, False, True, True], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# general comparisons elementwise\n", | |
"a = np.array([5,6,7,8])\n", | |
"b = np.array([1,2,3,6])\n", | |
"display(a>b)\n", | |
"display(a==b)\n", | |
"display(a<=b)\n", | |
"display(b>2)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"**any** and **all** functions are used to check if any or all elements are true in an array." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ True, True, True, False], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ True, True, True, True], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([False, False, False, False], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# logical and , or , not\n", | |
"display(np.logical_and(a>2,b<5))\n", | |
"display(np.logical_or(a>b,b>2))\n", | |
"display(np.logical_not(b))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([5, 6, 7, 8])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([1, 2, 3, 6])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# creating new array using conditions on existing arrays\n", | |
"display(a)\n", | |
"display(b)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([3, 3, 3, 3])" | |
] | |
}, | |
"execution_count": 52, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.where(a>2,3,4)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([0, 1, 2, 3]),)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([False, False, False, False], dtype=bool)" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# checking if values are zero or NaN\n", | |
"display(a.nonzero())\n", | |
"display(np.isnan(b))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([3, 6])" | |
] | |
}, | |
"execution_count": 54, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# using conditions to select elements in array\n", | |
"b[b>2]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 55, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([4, 5, 2, 7])" | |
] | |
}, | |
"execution_count": 55, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# use another array to select elements from an array\n", | |
"# can also be used with multi dimensional arrays\n", | |
"# np.take is also used to perfrom same operation\n", | |
"a = np.array([1,2,3,4])\n", | |
"b = np.array([3,4,5,2,7,8,9,0,2,3,5])\n", | |
"b[a]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Above operation can also be used with multi dimensional arrays. **np.take( )** is used to perform the same above operation with an array and axis as an argument.\n", | |
"**np.put( )** does the opposite of **np.take( )** by putting the elements at the given indices in an array." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Matrix mathematics" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[23, 29],\n", | |
" [49, 61]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 4, 5, 8, 9, 1, 2],\n", | |
" [ 8, 10, 16, 18, 2, 4],\n", | |
" [12, 15, 24, 27, 3, 6],\n", | |
" [12, 15, 24, 27, 3, 6],\n", | |
" [16, 20, 32, 36, 4, 8],\n", | |
" [20, 25, 40, 45, 5, 10]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# dot and outer product\n", | |
"# same for inner and cross product\n", | |
"a = np.array([[1,2,3],[3,4,5]])\n", | |
"b = np.array([[4,5],[8,9],[1,2]])\n", | |
"display(np.dot(a,b))\n", | |
"display(np.outer(a,b))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Numpy has many builtin mathematical functions for linear algebra calculations and can be found in **linalg** module." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 57, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"-9.5161973539299405e-16" | |
] | |
}, | |
"execution_count": 57, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# calculating determinant of a\n", | |
"a = np.array([[1,2,3],[4,5,6],[7,8,9]])\n", | |
"lg.det(a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 58, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 1.61168440e+01, -1.11684397e+00, -9.75918483e-16])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[-0.23197069, -0.78583024, 0.40824829],\n", | |
" [-0.52532209, -0.08675134, -0.81649658],\n", | |
" [-0.8186735 , 0.61232756, 0.40824829]])" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# finding eigen values and eigen vectors \n", | |
"values,vectors = lg.eig(a)\n", | |
"display(values)\n", | |
"display(vectors)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 59, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 3.15251974e+15, -6.30503948e+15, 3.15251974e+15],\n", | |
" [ -6.30503948e+15, 1.26100790e+16, -6.30503948e+15],\n", | |
" [ 3.15251974e+15, -6.30503948e+15, 3.15251974e+15]])" | |
] | |
}, | |
"execution_count": 59, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# inverse of a matrix\n", | |
"lg.inv(a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 60, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([[-0.21483724, 0.88723069, 0.40824829],\n", | |
" [-0.52058739, 0.24964395, -0.81649658],\n", | |
" [-0.82633754, -0.38794278, 0.40824829]]),\n", | |
" array([ 1.68481034e+01, 1.06836951e+00, 3.33475287e-16]),\n", | |
" array([[-0.47967118, -0.57236779, -0.66506441],\n", | |
" [-0.77669099, -0.07568647, 0.62531805],\n", | |
" [-0.40824829, 0.81649658, -0.40824829]]))" | |
] | |
}, | |
"execution_count": 60, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# singular value decomposition\n", | |
"lg.svd(a)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Polynomial mathematics" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Given a set of roots, its polynomial coefficients can be found using **np.poly( )** which corresponds to \n", | |
"\n", | |
"\\begin{array}{*{20}c} {ax^4 + bx^3 + cx^2 + dx + k} \\\\ \\end{array}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 61, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 1., -4., -1., 16., -12.])" | |
] | |
}, | |
"execution_count": 61, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.poly([1,-2,3,2])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 62, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([-2., 3., 2., 1.])" | |
] | |
}, | |
"execution_count": 62, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# now using coefficients to find roots\n", | |
"np.roots([1,-4,-1,16,-12])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 63, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"310" | |
] | |
}, | |
"execution_count": 63, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# evaluating polynomial at a particular value\n", | |
"# evaluates at x=5\n", | |
"np.polyval([2,3,-4,5],5)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Statistical functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 64, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"5.0" | |
] | |
}, | |
"execution_count": 64, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# finding mean\n", | |
"a = np.array([[1,2,3],[7,8,9]])\n", | |
"np.median(a)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 1.],\n", | |
" [ 1., 1.]])" | |
] | |
}, | |
"execution_count": 65, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# covariance\n", | |
"np.cov(a)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Random Numbers" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We use **random** module in numpy to produce pseudo random numbers." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 66, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# random numbers are generted from a seed value\n", | |
"rd.seed(101196)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 67, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0.66862748, 0.74182791, 0.26280242],\n", | |
" [ 0.96054286, 0.12304381, 0.43631083]])" | |
] | |
}, | |
"execution_count": 67, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# random numbers b/w 0 and 1\n", | |
"rd.rand(2,3) # where 2,3 are matrix dimensions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 68, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"9" | |
] | |
}, | |
"execution_count": 68, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# generating random integers only\n", | |
"# randint(min,max)\n", | |
"rd.randint(2,10)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 69, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[4, 5, 6],\n", | |
" [1, 2, 3]])" | |
] | |
}, | |
"execution_count": 69, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# shuffling numbers in a list or an array\n", | |
"a = np.array([[1,2,3],[4,5,6]])\n", | |
"rd.shuffle(a)\n", | |
"a" | |
] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [Root]", | |
"language": "python", | |
"name": "Python [Root]" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment