Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save kimbosliceit/2bfcfa918ba239a3d1569aaa1be85e8c to your computer and use it in GitHub Desktop.
Save kimbosliceit/2bfcfa918ba239a3d1569aaa1be85e8c to your computer and use it in GitHub Desktop.
Created on Cognitive Class Labs
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3> Get to Know a numpy Array </h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"cast the following list to a numpy array:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"a=np.array([1,2,3,4,5])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1) type using the function type "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"numpy.ndarray"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2) the shape of the array "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(5,)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3) the type of data in the array "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"dtype('int64')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"4) find the mean of the array "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3> Creating and Plotting Functions </h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1) create the following functions using the numpy array <code> x </code>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$y=sin(x)+2$$"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"x=np.linspace(0,2*np.pi,100)\n",
"𝑦=np.𝑠𝑖𝑛(π‘₯)+2\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2) plot the function"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7fd20bb9f2e8>]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4lNX5//H3nYUECEkghC2EBEgIe1gCgqhsCrgU3JdatdZKKShqrba1/WpdvlW/tu6i4lKXKtYqKFoQFzZBUcMmYCCEsIUtYSdA1rl/f2ToL40JmSSTPLPcr+uai8nznGfmM3px53DmPOeIqmKMMSZ4hDgdwBhjTNOywm+MMUHGCr8xxgQZK/zGGBNkrPAbY0yQscJvjDFBxgq/McYEGSv8xhgTZKzwG2NMkAlzOkB12rZtq8nJyU7HMMYYv7Fy5cr9qhrvSVufLPzJyclkZmY6HcMYY/yGiGz3tK0N9RhjTJCxwm+MMUHGCr8xxgQZK/zGGBNkrPAbY0yQqbXwi0ikiHwrImtFZIOI3F9NmwgR+aeI5IjINyKSXOncH9zHN4nIeO/GN8YYU1ee9PiLgTGqmg4MACaIyLAqbW4CDqlqCvAE8CiAiPQGrgb6ABOAGSIS6q3wxhhj6q7WefxasTdjofvHcPej6n6Nk4A/u5+/BzwrIuI+/o6qFgNbRSQHGAp83fDopq4OFBazOb+QbfuPU1hcRnGZi5IyFzHNw2kXHUH76Eh6tG9FTPNwp6MaYxqRRzdwuXvpK4EU4DlV/aZKkwRgJ4CqlonIESDOfXxFpXZ57mPVvcdkYDJAly5d6vARTE0OFBazJLuARZsK+CpnPweOl9R6jQiktotiUJfWjO7ZjlFp8USE2T/SjAkkHhV+VS0HBohILDBHRPqq6vpKTaS6y05zvLr3mAnMBMjIyLAd4OvJ5VKWbi7gHyu2s3BjPi6FtlERjOwRT5+EGFLaRdGtbUuim4cTERZCeGgIh0+UUFBYzJ4jRazPO8LKHYf497o9vPPdTqIjw7iwf0euGdqF/p1jnf54xhgvqNOSDap6WEQWUzFeX7nw5wGJQJ6IhAExwMFKx0/pDOxuSGBTvXKXMntVHs8tymHbgRO0jWrGlJHdmdC3A307xRASUt3v4ApxURHERUXQs0M0o9PaAVBW7mJZzn4+XLObD9fsZta3Ozk7tS3TRqdwRtc2VIzkGWP8Ua2FX0TigVJ30W8OnIv7y9tK5gI3UDF2fzmwUFVVROYCb4vI40AnIBX41psfINipKos3FfDoJxvZuPcY/RJieOrqAUzo26FBQzRhoSGMSmvHqLR2FBaX8daK7bz05VaunrmCESlx3D+xDyntWnnxkxhjmopUfHd7mgYi/YHXgVAqZgG9q6oPiMgDQKaqzhWRSOBNYCAVPf2rVTXXff0fgV8AZcDtqjq/tlAZGRlqi7TVLv9oEffMWc/nWftIimvBXePTuLBfx0brjReVlvP2Nzt48vNsTpaWc9NZ3Zg+NoUWzXxyrT9jgoqIrFTVDI/a1lb4nWCF//RUlTmrd/HnuRsoLnPx23Fp3HBmMs3CmuZ+vP2FxTwyfyPvrcyjS5sWPH3NQAYk2vi/MU6qS+G3O3f9zPHiMm6dtZrfvLuW1PatmH/b2dx8TrcmK/pQ8WXxX69I55+Th1HuUi5//iteWLIFl8v3OhHGmB+zwu9HcgsKuWTGcuat28Nd49N491fD6RYf5VieM7rFMW/62ZzXuz2PzN/Ija99x9GiUsfyGGM8Y4XfTyzamM+kZ5dTcKyYN35xBtNGpxB6mpk6TSWmRTgzrh3EQxf3ZXnOfi6b8RU7D55wOpYx5jSs8PuBf2Xu5JdvZNIlrgUf3XoWZ6W2dTrSfxERfjYsiTduGkr+sWIufm45K7cfdDqWMaYGVvh9mKry/OIt3PXe95zZPY5//mo4nVu3cDpWjc7s3pY5U8+kVWQYP33pG5ZkFzgdyRhTDSv8PkpVeXj+Rh79ZCMT0zvxyg1DiIrw/WmT3eKjmD11BN3jo7j59Uw+3bDX6UjGmCqs8PsgVeWRTzYyc2ku1w9P4smrBjTprJ2GatOyGbNuHkavTtFMfWsVH39vN2sb40v8p5oECVXlb59m8+KSXH42rAv3T+xz2uUWfFVMi3D+cdNQBnVpzW3vrGGB9fyN8RlW+H3MMwtzeHZRDlcPSeSBiX39ek2cVpHh/P3GIfRLiOHWt1fzVc5+pyMZY7DC71NmfbuDxz/L5tJBCfzlkn5+2dOvqmVEGK/dOISubVty8xuZrN152OlIxgQ9K/w+YuHGffzpg/WM7BHPo5f1D4iif0psi2a8cdNQ2kQ14+d//5Zt+487HcmYoGaF3wes3XmYaW+tplfHVsy4dhDhoYH3v6V9dCT/uOkMAH7x2nccOWF3+BrjlMCrMH5mz5GT3PR6JnFRzXj150No6QdTNusrKa4lM6/PIO/QSX791kpKy11ORzImKFnhd1BRaTlT3lzJyZIy/v7zIbRrFel0pEY3JLkND1/aj6+2HODeD9fji6vDGhPoArd76eNUlXvmrGNt3hFmXjeY1PbBs6nJZYM7k7u/kOcWbaF3pxiuG5bkdCRjgkqtPX4RSRSRRSKSJSIbROS2atrcJSJr3I/1IlIuIm3c57aJyDr3OVtk3+3V5duYvWoXd5zbg3F9Ojgdp8ndeV4ao9LieeCjDayxmT7GNClPhnrKgDtVtRcwDJgmIr0rN1DVx1R1gKoOAP4ALFHVyqt0jXaf92iTgECXue0gf5mXxfg+7bl1TIrTcRwREiI8edUA2kdHMvUfKzl4vMTpSMYEjVoLv6ruUdVV7ufHgCwg4TSXXAPM8k68wHPoeAm3zlpN59bNeeyK9ICatllXsS2a8cLPBrP/eAnTZ62m3DZyMaZJ1OnLXRFJpmJf3W9qON8CmAC8X+mwAp+KyEoRmVy/mIHB5VLu/NdaDhSW8NxPBxEdGe50JMf1TYjhwUl9WJaznxmLcpyOY0xQ8Ljwi0gUFQX9dlU9WkOznwDLqwzzjFDVQcD5VAwTnVPD608WkUwRySwoCMzlfF/6MpeFG/P500W96JsQ43Qcn3FlRiKTBnTiyS82s3L7IafjGBPwPCr8IhJORdF/S1Vnn6bp1VQZ5lHV3e4/84E5wNDqLlTVmaqaoaoZ8fHxnsTyK9/nHeaxBZs4v28Hm8VShYjw4MV96RQbyfRZqzly0m7uMqYxeTKrR4BXgCxVffw07WKAkcCHlY61FJFWp54D44D1DQ3tb06WlHP7P9cQ3yqCRy7t79cLrzWW6Mhwnrp6IHuPFvHHOetsfr8xjciTHv8I4DpgTKUpmxeIyBQRmVKp3SXAp6paeSGW9sAyEVkLfAv8W1U/8Vp6P/Hw/CxyC47z1yvSiWlh4/o1GdSlNXecm8rH3+9hzupdTscxJmDVegOXqi4Dau2iquprwGtVjuUC6fXMFhAWb8rnja+3c9NZXRmR4lt75fqiX49KYfGmAu6bu4Hh3ePoGNPc6UjGBBxbsqERHT5Rwl3vfU9a+1bcNT7N6Th+ITRE+OsV6ZSVK79734Z8jGkMVvgb0QMf/8Ch4yU8flU6keGhTsfxG8ltW/L783uyNLuAd77b6XQcYwKOFf5GsnDjPmav2sXUUd3p08mmbtbVdcOSOLN7HA99/AM7D55wOo4xAcUKfyM4WlTKPbPXk9a+FbeMSXU6jl8KCRH+7/L+APzxA1vF0xhvssLfCB6el0X+sSL+7/L+NAuz/8T11bl1C+6eUDHk88Eam+VjjLdYVfKyr7ccYNa3O7n5nG6kJ8Y6Hcfv/WxYEoO6xPLARz9woLDY6TjGBAQr/F5UXFbOH+eso0ubFtxxbg+n4wSE0BDhkcv6U1hcxoMf/+B0HGMCghV+L3p+8RZy9x/noYv72iweL+rRvhVTR6XwwZrdLN6U73QcY/yeFX4v2VJQyIxFW5iY3olzegTeWkNOmzq6O93iW3LvhxsoKi13Oo4xfs0KvxeoKn+cs47I8BD+dFEvp+MEpIiwUB6c1JcdB0/w/OItTscxxq9Z4feCD9fsZkXuQX53fs+g2DDdKSNS2jIxvRPPL9nCtv3Ha7/AGFMtK/wNdKyolP+dl0V65xiuGdLF6TgB708X9qJZaAj3zt1gc/uNqScr/A30zMIc9hcW88CkvkG9jWJTaRcdyZ3jerA0u4BP1u91Oo4xfskKfwNs3neMV5dt5aqMRJuz34SuG5ZEzw6teOjfWZwssS96jakrK/z1pKr8+aMNtGgWaitvNrGw0BD+PLEPuw6f5MWl9kWvMXVlhb+ePlm/l+U5B7hrfBpxURFOxwk6w7rFcWH/jrywZAu7Dp90Oo4xfsWTrRcTRWSRiGSJyAYRua2aNqNE5EilHbrurXRugohsEpEcEfm9tz+AE4pKy/nL/CzS2rfimqH2ha5T7rmgYursX+ZlOZzEGP/iSY+/DLhTVXsBw4BpItK7mnZfquoA9+MBABEJBZ4Dzgd6A9fUcK1f+fvybew8eJJ7f9KbsFD7R5NTEmKbM2Vkd/79/R5W5B5wOo4xfqPWqqWqe1R1lfv5MSALSPDw9YcCOaqaq6olwDvApPqG9QX5x4p4duFmzuvd3rZS9AG/Oqc7CbHNefDjH3C5bHqnMZ6oU3dVRJKBgcA31ZweLiJrRWS+iPRxH0sAKm+hlIfnvzR80t8WZFNS7vrPMINxVvNmodw9IY0Nu48y2zZoN8YjHhd+EYkC3gduV9WjVU6vApJUNR14Bvjg1GXVvFS13TIRmSwimSKSWVBQ4GmsJrV+1xHeXbmTn5+ZTNe2LZ2OY9wmpnciPTGWxxZs5ERJmdNxjPF5HhV+EQmnoui/paqzq55X1aOqWuh+Pg8IF5G2VPTwEys17Qzsru49VHWmqmaoakZ8vO8tcqaq/GVeFrHNw21XLR8jIvzPhb3Yd7SYmUtznY5jjM/zZFaPAK8AWar6eA1tOrjbISJD3a97APgOSBWRriLSDLgamOut8E1p8aYCvtpygOljU4lpHu50HFNFRnIbLuzXkReX5LLvaJHTcYzxaZ70+EcA1wFjKk3XvEBEpojIFHeby4H1IrIWeBq4WiuUAbcAC6j4UvhdVd3QCJ+jUZWVu3h4fhbJcS249owkp+OYGvxuQk/KXcpfF2xyOooxPi2stgaquozqx+ort3kWeLaGc/OAefVK5yPeW5lH9r5Cnr92kO2h68O6xLXg+uFJvLp8K788uxtpHVo5HckYn2RVrBYnSsp4/LNsBie1ZkLfDk7HMbWYNjqFlhFhPPrJRqejGOOzrPDX4uUvt5J/rJh7LuiJ+2sM48Nat2zG1FEpLNyYbzd1GVMDK/yncaCwYpbI+D7tGZzUxuk4xkM3jkimY0wkD8/faGv2G1MNK/yn8dyiLZwoKbPVN/1MZHgod5zXg7U7DzPf1uw35kes8Ncg79AJ/rFiO1cMTiSlnX1J6G8uG9SZtPateGzBJkrLXU7HMcanWOGvweOfZSMCt59nN2v5o9AQ4a7xaWzdf5z3VuY5HccYn2KFvxqb9h5jzupd/PzMZDrGNHc6jqmnsb3aMahLLE99vpmiUtupy5hTrPBX47EFm4iKCOPXo7o7HcU0gIhw94Se7D1axJtfb3c6jjE+wwp/Fat3HOLzrH386pxuxLZo5nQc00DDusVxTo94ZizO4VhRqdNxjPEJVvir+Ounm4hr2YwbR3R1OorxkrvHp3HoRCkv2QJuxgBW+P/LVzn7WZ5zgKnuuz9NYOibEMOF/TryyrKtHDxe4nQcYxxnhd9NVXns0010jInk2jNsH91Ac8d5qZwsLeeFJVucjmKM46zwu32Rlc/qHYeZPjaVyPBQp+MYL0tp14qLBybw+lfbyLdlm02Qs8IPuFzK3z7LJimuBZcP7ux0HNNIbhubSrlLeW5RjtNRjHGUFX5gwYa9ZO05yu3nphIeav9JAlVSXEuuyEjk7W93kHfohNNxjHFM0Fe5cpfyxOfZdI9vycR0v94H3njg1jEpCMIzX1iv3wQvT7ZeTBSRRSKSJSIbROS2atpcKyLfux9fiUh6pXPbRGSde+euTG9/gIb6+PvdZO8r5PZzexAaYssuB7pOsc356RldeG9VHtsPHHc6jjGO8KTHXwbcqaq9gGHANBHpXaXNVmCkqvYHHgRmVjk/WlUHqGpGgxN7UVm5i6c+30zPDq24sF9Hp+OYJjJ1VHfCQoRnFlqv3wSnWgu/qu5R1VXu58eo2Ds3oUqbr1T1kPvHFYBffEP6wZrd5O4/zu3n9iDEevtBo110JD8blsTsVXls3W+9fhN86jTGLyLJwEDgm9M0uwmYX+lnBT4VkZUiMvk0rz1ZRDJFJLOgoKAuseqlrNzFMws306dTNOP7tG/09zO+ZcrI7jQLC+GZLzY7HcWYJudx4ReRKOB94HZVPVpDm9FUFP7fVTo8QlUHAedTMUx0TnXXqupMVc1Q1Yz4+HiPP0B9zV69i+0HTnDHuT1sS8UgFN8qguuHJ/PBml1sKSh0Oo4xTcqjwi8i4VQU/bdUdXYNbfoDLwOTVPU/m52q6m73n/nAHGBoQ0M3VKm7t98vIYaxvdo5Hcc4ZPI53YgIC+Wpz63Xb4KLJ7N6BHgFyFLVx2to0wWYDVynqtmVjrcUkVanngPjgPXeCN4Qc1btYufBk9x+bqr19oNY26gIbjgzmY++301O/jGn4xjTZDzp8Y8ArgPGuKdkrhGRC0RkiohMcbe5F4gDZlSZttkeWCYia4FvgX+r6ife/hB1UVru4plFm+nfOYYxPa23H+xuPrsrzcNDedrm9ZsgUusSlKq6DDhtt1hVfwn8sprjuUD6j69wzuxVeew8eJL7J/ax3r4hLqpirP/FpVuYPjbF9lc2QSGo7tytGNvPIb1zDKPTrLdvKliv3wSboCr8s1flkXfoJLfZ2L6p5FSvv2Ks32b4mMAXNIW/tNzFs4ty6G+9fVONU73+ZxbaDB8T+IKm8M9ZXTGTZ/oY6+2bH4uLiuC64UnMXWu9fhP4gqLwl5W7eG5RDn0Tom3evqnR5LO7ERkWauv1m4AXFIX/gzW72X7ghPX2zWmd6vV/uGYXuXY3rwlgAV/4T/X2e3eM5rzetiaPOb2bz+5Gs7AQnltke/OawBXwhf/j7/ewdf9xpo+13r6pXXyrCK49I4kP1uyy9fpNwArowl/uUp5ZWLHe/jjr7RsP/eqcboSFiI31m4AV0IV/3ro9bCk4zq1jUm29feOxdtGRXDO0C7NX7WLnQdub1wSegC38LndvP7VdFOf37eB0HONnpozsTogIMxbbWL8JPAFb+Bds2Ev2vkJuHWu9fVN3HWIiuWpIIu+t3MmuwyedjmOMVwVk4Xe5lKcX5tAtvqXtpWvqbcqo7gC8uMR6/SawBGTh/zxrH1l7jnLL6BRCrbdv6ikhtjmXD07knW93svdIkdNxjPGagCv8qsozC3NIimvBxPROTscxfm7qqO6Uq/LiUuv1m8DhyQ5ciSKySESyRGSDiNxWTRsRkadFJEdEvheRQZXO3SAim92PG7z9AapavKmAdbuOMG1UCmGhAfd7zTSxxDYtuHRgAm9/s4P8Y9brN4HBk8pYBtypqr2AYVRsmN67SpvzgVT3YzLwPICItAHuA86gYq/d+0SktZey/4iq8tQXm0mIbc4lgxIa621MkJk2OoXSchcvf7nV6SjGeEWthV9V96jqKvfzY0AWULWqTgLe0AorgFgR6QiMBz5T1YOqegj4DJjg1U9QybKc/azZeZipo7sTbr194yXJbVsyaUACb369nQOFxU7HMabB6lQdRSQZGAh8U+VUArCz0s957mM1Hfc6VeWpzzfTMSaSywd3boy3MEFs2ugUisrKeWWZ9fpN4/hX5k7+OGcdRaXljf5eHhd+EYkC3gduV9WjVU9Xc4me5nh1rz9ZRDJFJLOgoMDTWP9xrLgMpeLGm4iw0Dpfb8zppLSL4sJ+HXnj6+0cPlHidBwTYErLXTz1xWbW7z5KRFjjj1Z49A4iEk5F0X9LVWdX0yQPSKz0c2dg92mO/4iqzlTVDFXNiI+P9yTWf4mODOe9KcP52bCkOl9rjCduGZNCYXEZry7f5nQUE2DmrN5VsS3s2JQmWUzSk1k9ArwCZKnq4zU0mwtc757dMww4oqp7gAXAOBFp7f5Sd5z7WKMQEZu3bxpNzw7RTOjTgb8v38rRolKn45gAUVbuYoZ7o6im2hbWkx7/COA6YIyIrHE/LhCRKSIyxd1mHpAL5AAvAVMBVPUg8CDwnfvxgPuYMX7pljEpHCsq43Xr9Rsv+ej73Ww7cIJbm3CjqLDaGqjqMqofq6/cRoFpNZx7FXi1XumM8TF9E2I4t1c7Xlm+lRvP6kpURK1/hYypUblLeXZhDj07tOK8Xk23dLzNeTSmjm4dk8rhE6W8+fV2p6MYP+fU0vFW+I2po/TEWEalxfPSl7mcKClzOo7xUy53bz/FgaXjrfAbUw+3jknl4PES3lqxw+koxk99+sNeNu07xq1jUpp86Xgr/MbUw+Ck1pyV0pYXl+Y2yQ03JrBULC+TQ7e2Lbmof9MvJmmF35h6mj42lf2Fxbz9jfX6Td18npVfsXT8GGeWjrfCb0w9De3ahmHd2vDCki3W6zceU1We/mKzo0vHW+E3pgGmj00l/1gx//xuZ+2NjQEWbcqvWDp+tHNLx1vhN6YBhneLY2hyG55fvIXiMuv1m9M7NbbfuXVzLhno3NLxVviNaQARYfrYVPYeLeLdzDyn4xgftyS7gLU7DzNtdIqjS8db4TemgUakxDE4qTXPL8qxXr+pUeWNoi4b5OzS8Vb4jWmgU73+3UeKeG+l9fpN9ZZu3s/qHRUbRTVrgqWXT8cKvzFecE5qWwYkxjJj0RZKylxOxzE+pmKjqGw6xURyxeDE2i9oZFb4jfECEeH2c1PZdfik9frNjyzL2c+qHYf59egUx3v7YIXfGK8Z2SOeAYmxPLcox3r95j8qbwt7ZYZvbAtrhd8YL6nc639/lfX6TYXlOQfI3H6IqaN8Z1tYK/zGeNGpXv+zC63Xbyp6+098nl3R2x/i/Nj+KZ5svfiqiOSLyPoazt9VaWeu9SJSLiJt3Oe2icg697lMb4c3xtfYWL+p7MvN+1m5/RBTR6f4TG8fPOvxvwZMqOmkqj6mqgNUdQDwB2BJle0VR7vPZzQsqjH+wcb6DVT09p90z+TxlbH9U2ot/Kq6FPB0n9xrgFkNSmSMnxMR7jivB7sOn+TdTFvDJ1gt3Vwxk2faGN/q7YMXx/hFpAUV/zJ4v9JhBT4VkZUiMtlb72WMrzsntS2Dk1rznN3NG5RO9fYTYpv7xLz9qrz55e5PgOVVhnlGqOog4HxgmoicU9PFIjJZRDJFJLOgoMCLsYxpeiLCHef2YM+RIlu5Mwgt3lTA6h0Va/L4wrz9qryZ6GqqDPOo6m73n/nAHGBoTRer6kxVzVDVjPj4eC/GMsYZI1IqVu58blGOrdcfRFSVxz/LJrFNc67wsbH9U7xS+EUkBhgJfFjpWEsRaXXqOTAOqHZmkDGB6NRY/76jtktXMPn0h32s23WE6WNSHV2B83Q8mc45C/gaSBORPBG5SUSmiMiUSs0uAT5V1eOVjrUHlonIWuBb4N+q+ok3wxvj64Z3j2N4tzhmLN7CiZIyp+OYRuZyKU98lk3Xti0dXW+/NmG1NVDVazxo8xoV0z4rH8sF0usbzJhAcee4Hlz+wte88fV2pozs7nQc04jmr9/Lxr3HePKqAY7truUJ301mTIDISG7DqLR4XliyhaNFpU7HMY2k3FVxl25Kuyh+4tBeup6ywm9ME7jzvDQOnyjl1WVbnY5iGsmHa3aRk1/IHef2IDREnI5zWlb4jWkC/TrHML5Pe175ciuHjpc4Hcd4WUmZiyc+z6ZPp2jO79vB6Ti1ssJvTBP5zXlpFJaU8eLSXKejGC97N3MnOw+e5Lfj0gjx8d4+WOE3psmkdWjFxPROvPbVVvKPFjkdx3hJUWk5zyzcTEZSa0al+cc9SFb4jWlCvzmvB2XlyjMLc5yOYrzkza+3s+9oMb8dn4aI7/f2wQq/MU0qKa4lVw1JZNa3O9h+4HjtFxifdqyolBmLczg7tS3DusU5HcdjVviNaWLTx6YSFio88Vm201FMA720NJdDJ0q5a3ya01HqxAq/MU2sfXQkN5yZzIdrd7Nx71Gn45h6KjhWzMvLtnJhv4707xzrdJw6scJvjAN+PbI7URFhPPbJJqejmHp6ZuFmistc3Dmuh9NR6swKvzEOiG3RjCkju/PFxny+yT3gdBxTR9sPHOftb3Zw1ZBEusVHOR2nzqzwG+OQX4zoSofoSB6evxFVdTqOqYO/fZpNWKhw29hUp6PUixV+YxzSvFkod5yXypqdh5m/fq/TcYyH1u86wty1u/nFiK60j450Ok69WOE3xkGXDepMarsoHluwidJy25jd16kq//vvLNq0bMaUUf670qoVfmMcFBYawu8m9GTr/uO8861t1uLrFm3K5+vcA0wfk0J0ZLjTcerNCr8xDhvbqx1Du7bhyc83c8yWbfZZZeUuHp63keS4Fvz0jCSn4zSIJztwvSoi+SJS7baJIjJKRI6IyBr3495K5yaIyCYRyRGR33szuDGBQkT44wW9OHC8hOcXb3E6jqnBv1bmsTm/kN+f39MnN1CvC0/SvwZMqKXNl6o6wP14AEBEQoHngPOB3sA1ItK7IWGNCVTpibFcPKATLy/bSt6hE07HMVUcLy7j8c+yyUhqzfg+vr/scm1qLfyquhQ4WI/XHgrkqGquqpYA7wCT6vE6xgSFuyb0RIDHFthNXb7mhSVbKDhWzB8u6OU3C7Gdjrf+vTJcRNaKyHwR6eM+lgDsrNQmz33MGFONhNjm3Hx2Nz5cs5s1Ow87Hce45R06wcyluUxM78TgpNZOx/EKbxT+VUCSqqYDzwAfuI9X92uxxrtURGSyiGSKSGZBQYEXYhnjf6aM6k7bqAge/PgHu6nLRzz6ySZE4Pfn93Q6itc0uPCr6lFVLXQ/nweEi0hbKnr4iZWadgZ2n+Z1ZqpqhqpmxMf7x2YGxnhbVEQYvx3Xg5XbDzHcqv9eAAAO80lEQVR3bY1/XUwTWbn9IB+t3c3kc7rTKba503G8psGFX0Q6iHvQS0SGul/zAPAdkCoiXUWkGXA1MLeh72dMoLsiI5F+CTE8PG8jJ0rKnI4TtFwu5YGPfqB9dARTRnZzOo5XeTKdcxbwNZAmInkicpOITBGRKe4mlwPrRWQt8DRwtVYoA24BFgBZwLuquqFxPoYxgSM0RPjzxN7sPVrEjEU2vdMp76/KY23eEe4e35MWzcKcjuNVtX4aVb2mlvPPAs/WcG4eMK9+0YwJXoOT2nDxgE7M/DKXKzMS6RLXwulIQeXIyVIe/WQjg7rEcsnAwJuT4t93IRgTwH5/fi/CQoT/nfeD01GCzhOfZXPgeAkPTOpLSIj/T9+sygq/MT6qQ0wkt4xJYcGGfSzelO90nKCRtecob3y9jWvP6ELfhBin4zQKK/zG+LBfntWN7vEtuW/uBopKy52OE/BUlfvmbiCmeTi/Hedf++jWhRV+Y3xYs7AQHpzUl+0HTvDCEvuit7F9sGYX3249yF3jexLbopnTcRqNFX5jfNyZKW2ZmN6JGYu3sG3/cafjBKzDJ0p46OMsBiTGctWQxNov8GNW+I3xA3+6sBfNQkO4b+4Gu6O3kTz6yUYOnyzlL5f0IzQAv9CtzAq/MX6gXXQkd47rwZLsAj76fo/TcQLOd9sOMuvbndx0Vld6d4p2Ok6js8JvjJ+4fngy6Ymx3D93A4eOlzgdJ2CUlLm4Z/Y6EmKbc/u5/rl5el1Z4TfGT4SGCI9e1o8jJ0t56N9ZTscJGC8u2cLm/EIemNQn4O7QrYkVfmP8SM8O0UwZ2Z33V+Xx5WZbxbahsvcd4+mFm7mof0fG9mrvdJwmY4XfGD9zy5gUurVtyT1z1nG82BZxq6+ychd3/WstrSLDuX9in9ovCCBW+I3xM5HhoTxyWX/yDp3kkfkbnY7jt15ZtpW1eUe4f2If4qIinI7TpKzwG+OHhnZtwy9GdOXNFdtZtnm/03H8Tm5BIY9/ls243u25qH9Hp+M0OSv8xvipu8an0S2+JXe/t5ajRaVOx/EbZeUu7nh3LZHhoTx0cd+A2EO3rqzwG+OnIsND+dsV6ew9WsRDH9sKnp56dlEOa3ce5n8v6Uu76Ein4zjCCr8xfmxgl9ZMGdmddzPzWLBhr9NxfN7qHYd4ZmEOlwxM4KL+nZyO4xhPduB6VUTyRWR9DeevFZHv3Y+vRCS90rltIrJORNaISKY3gxtjKtx+bg/6JkTzu/e/Z8+Rk07H8VknSsr4zbtr6RAdyf2TgmsWT1We9PhfAyac5vxWYKSq9gceBGZWOT9aVQeoakb9IhpjTqdZWAhPXz2QkjIXd/xzDeUuW8unOg989APbDhznb1emEx0Z7nQcR9Va+FV1KXDwNOe/UtVD7h9XAJ29lM0Y46Fu8VH8eWIfVuQetOWbq/HB6l28891Ofj2yO8O6xTkdx3HeHuO/CZhf6WcFPhWRlSIy+XQXishkEckUkcyCArsj0Zi6umJwZy7q35HHP8smc1uNfbWgs6WgkHvmrGNocht+c14Pp+P4BK8VfhEZTUXh/12lwyNUdRBwPjBNRM6p6XpVnamqGaqaER8f761YxgQNEeEvl/YjsXVzpr29ioJjxU5HclxRaTnT3lpFZHgoT10zgLBQm88CXir8ItIfeBmYpKoHTh1X1d3uP/OBOcBQb7yfMaZ60ZHhPP+zwRw5Wcqts1ZRVu5yOpJjVJV7P1zPxr3HePzKdDrGNHc6ks9ocOEXkS7AbOA6Vc2udLyliLQ69RwYB1Q7M8gY4z29Okbzl0v6sSL3II8t2OR0HMe8uWI772bmccvoFEaltXM6jk+pdQ1SEZkFjALaikgecB8QDqCqLwD3AnHADPcdcGXuGTztgTnuY2HA26r6SSN8BmNMFZcO6syqHYd4cWku/TrHBN2c9a+3HOD+j35gbM92Nq5fjVoLv6peU8v5XwK/rOZ4LpD+4yuMMU3hfy7qzaa9x7jz3bUkxDZnYJfWTkdqEnmHTjDt7VUkx7XgiasHEBLg2yjWh33TYUyAiggL5cXrMmgfHcnNb6xk1+HAv7nraFEpv3w9k9JyFy9dnxH08/VrYoXfmADWpmUzXv15BsVl5dz02ncUBvD6/SVlLqa8uZKc/EJmXDuIbvFRTkfyWVb4jQlwKe1aMePaQWzOL+RXb2ZSVFrudCSvc7mUu99by1dbDvB/l/fn7FSbEn46VviNCQJnp8bz2OX9WZ5zgOmzVgfUNE9V5dFPNvLBmt3cNT6NSwfZ4gG1scJvTJC4dFBn7vtJbz79YR+/n70OV4Cs6fPE55t5cWku1w1LYuqo7k7H8QvBsaW8MQaAG0d05cjJUp78fDMRYSE8OKmvX896efqLzTz9xWauzOjM/RP7BOWmKvVhhd+YIHPb2FSKSl28sGQLxWUuHr2sP6F+WPyfW5TD459lc+nABB6+tL9f/wJralb4jQkyIsLvJqQRGR7Ck59vpqi0nCeuGkC4n6xj43IpD8/P4qUvtzJpQCceuyLdL39xOckKvzFBSES4/dweRIaH8sj8jRwrKuPZnw6klY/Pey8td3H3e98zZ/Uurh+exH0/6WNFvx7841e8MaZRTBnZnYcv7ceynP1c/vzX5B064XSkGh05UcovXvuOOat38dtxPbh/ohX9+rLCb0yQu2ZoF16/cSi7j5zk4ueWs3K7763ln7XnKD95dhkrcg/w6GX9uGVMqn2R2wBW+I0xnJXaljlTz6RFszCufHEFzy3K8ZktHD9cs4tLZiynqLScdyYP46ohXZyO5Pes8BtjgIo7fD+efhbn9+3AYws2cd0r37D3SJFjeQ4eL+GWt1dx2ztr6J8Qy8fTz2JwUhvH8gQSUfWN3+qVZWRkaGZmptMxjAlKqsq/MvO4b+4GwkKEO87rwfXDk5ps9ypVZf76vfzPB+s5WlTKbWNT+dXI7n4z68gpIrLSvSR+rWxWjzHmv4gIVw5JZGjXNtw7dwMPfPwD/1qZx30/6d3oG5Wv3nGIR+Zv5JutB+mbEM1bV5xBzw7RjfqewcijX6Ei8qqI5ItItTtoSYWnRSRHRL4XkUGVzt0gIpvdjxu8FdwY07iS27bk9RuH8Py1gzh8ooSrZ67gyhe+Zkl2Ad4cKVBVVu04xNS3VnLJjK/YUlDIg5P6MGfqCCv6jcSjoR73JumFwBuq2rea8xcAtwIXAGcAT6nqGSLSBsgEMgAFVgKDVfXQ6d7PhnqM8S0nS8r553c7eHFpLnuOFNGzQysuHpjAxPROdIqt3162h46X8OkPe3lzxXbW7zpKVEQYN53VlZvP6UZUhA1G1FVdhno8HuMXkWTg4xoK/4vAYlWd5f55ExXbNY4CRqnqr6prVxMr/Mb4ppIyF3NW5/HOdztZveMwAAO7xDIkuQ2DurSmb0I07VpF0izsvwcTXC5l1+GT5OQXsn7XERZnF7B6xyFcCj3aR3Hd8GQuGZhgBb8BnBjjTwB2Vvo5z32spuPGGD/ULCyEq4Z04aohXdh+4DgfrtnN0uwCXvtqGzOX5v6nXZuWzYhpHk5JmYviMhfHikopLvv/S0H37xzDLWNSGdOzHemdY2xOfhPzVuGv7v+anub4j19AZDIwGaBLF5una4yvS4pryfSxqUwfm0pxWTkbdh9l455j5B8rIv9YMUdPlhIRFkpEeAhREWF0bduS1HZRpLZrRUwL314aItB5q/DnAYmVfu4M7HYfH1Xl+OLqXkBVZwIzoWKox0u5jDFNICIslEFdWjMoSDZ093femhg7F7jePbtnGHBEVfcAC4BxItJaRFoD49zHjDHGOMSjHr+IzKKi595WRPKA+4BwAFV9AZhHxYyeHOAEcKP73EEReRD4zv1SD6iq7y0EYowxQcSjwq+q19RyXoFpNZx7FXi17tGMMcY0BrsH2hhjgowVfmOMCTJW+I0xJshY4TfGmCBjhd8YY4KMT67HLyIFwPZ6Xt4W2O/FOE3N3/OD/38Gf88P/v8ZLH/dJalqvCcNfbLwN4SIZHq6UJEv8vf84P+fwd/zg/9/BsvfuGyoxxhjgowVfmOMCTKBWPhnOh2ggfw9P/j/Z/D3/OD/n8HyN6KAG+M3xhhzeoHY4zfGGHMaAVP4RWSCiGxyb/j+e6fz1FVtG9r7OhFJFJFFIpIlIhtE5DanM9WViESKyLcistb9Ge53OlN9iEioiKwWkY+dzlIfIrJNRNaJyBoR8bs9WEUkVkTeE5GN7r8Pw53OVFVADPWISCiQDZxHxeYv3wHXqOoPjgarg9o2tPd1ItIR6Kiqq0SkFbASuNjP/h8I0FJVC0UkHFgG3KaqKxyOVici8hsgA4hW1YuczlNXIrINyFBVv5zHLyKvA1+q6ssi0gxooaqHnc5VWaD0+IcCOaqaq6olwDvAJIcz1YmqLgX8dq8CVd2jqqvcz48BWfjZ/spaodD9Y7j74Vc9IxHpDFwIvOx0lmAkItHAOcArAKpa4mtFHwKn8Num7j5ERJKBgcA3ziapO/cwyRogH/hMVf3tMzwJ3A24amvowxT4VERWuvfi9ifdgALg7+7htpdFpKXToaoKlMLv8abupnGJSBTwPnC7qh51Ok9dqWq5qg6gYn/ooSLiN8NuInIRkK+qK53O0kAjVHUQcD4wzT0M6i/CgEHA86o6EDgO+Nx3joFS+Gva7N00Ife4+PvAW6o62+k8DeH+5/liYILDUepiBDDRPUb+DjBGRP7hbKS6U9Xd7j/zgTlUDOX6izwgr9K/FN+j4heBTwmUwv8dkCoiXd1fplxNxQbwpom4vxh9BchS1cedzlMfIhIvIrHu582Bc4GNzqbynKr+QVU7q2oyFX8HFqrqzxyOVSci0tI9OQD3EMk4wG9muqnqXmCniKS5D40FfG6Cg0d77vo6VS0TkVuABUAo8KqqbnA4Vp1Ut6G9qr7ibKo6GQFcB6xzj5ED3KOq8xzMVFcdgdfds8RCgHdV1S+nRPqx9sCcin4EYcDbqvqJs5Hq7FbgLXcnNBe40eE8PxIQ0zmNMcZ4LlCGeowxxnjICr8xxgQZK/zGGBNkrPAbY0yQscJvjDFBxgq/McYEGSv8xhgTZKzwG2NMkPl/O40CLf5v/4IAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline \n",
"plt.plot(x,y)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<hr>\n",
"<small>Copyright &copy; 2018 IBM Cognitive Class. This notebook and its source code are released under the terms of the [MIT License](https://cognitiveclass.ai/mit-license/).</small>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment