Skip to content

Instantly share code, notes, and snippets.

@kinverarity1
Created October 4, 2018 03:48
Show Gist options
  • Save kinverarity1/452374cc2934f2c3df1d221d407160f0 to your computer and use it in GitHub Desktop.
Save kinverarity1/452374cc2934f2c3df1d221d407160f0 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.22\n"
]
}
],
"source": [
"import pandas as pd\n",
"import lasio\n",
"print(lasio.__version__)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame({\n",
" 'curve1': [1, 2, 3, 4],\n",
" 'curve2': [10, 20, 30, 4]\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>curve1</th>\n",
" <th>curve2</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" curve1 curve2\n",
"0 1 10\n",
"1 2 20\n",
"2 3 30\n",
"3 4 4"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['curve1', 'curve2'], dtype='object')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mnemonic Unit Value Description \n",
"-------- ---- ----- ----------- \n",
"curve1 \n",
"curve2 \n",
"UNKNOWN \n",
"\n",
"Curve data\n",
"[0 1 2 3]\n",
"[1 2 3 4]\n",
"[10 20 30 4]\n"
]
}
],
"source": [
"las = lasio.LASFile()\n",
"\n",
"las.set_data(df, names=list(df.columns))\n",
"\n",
"print(las.curves)\n",
"\n",
"print('\\nCurve data')\n",
"for curve in las.curves:\n",
" print(curve.data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Clearly an error due to the inclusion of the DataFrame index?"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mnemonic Unit Value Description \n",
"-------- ---- ----- ----------- \n",
"curve1 \n",
"curve2 \n",
"\n",
"Curve data\n",
"[1 2 3 4]\n",
"[10 20 30 4]\n"
]
}
],
"source": [
"las = lasio.LASFile()\n",
"\n",
"las.set_data(df.values, names=list(df.columns))\n",
"\n",
"print(las.curves)\n",
"\n",
"print('\\nCurve data')\n",
"for curve in las.curves:\n",
" print(curve.data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment