Created
December 23, 2013 12:45
-
-
Save kinverarity1/8096533 to your computer and use it in GitHub Desktop.
wellpy.las.read_v1_2 example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline\n", | |
"import glob\n", | |
"fns = glob.glob(r'f:\\code\\las\\examples\\1.2\\*.las')\n", | |
"pprint.pprint(fns)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"['f:\\\\code\\\\las\\\\examples\\\\1.2\\\\1475IBK3.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\4ALS.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\5_1.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\sample.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\sample_big.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\sample_curve_api.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\sample_minimal.las',\n", | |
" 'f:\\\\code\\\\las\\\\examples\\\\1.2\\\\sample_wrapped.las']\n" | |
] | |
} | |
], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import wellpy" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"6210 wellpy._logging:27 <module> : Initiated logging of calls >= DEBUG\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"log = wellpy.read_las(fns[2])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"125818 wellpy.las:58 get_text : opening f:\\code\\las\\examples\\1.2\\5_1.las\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"125819 wellpy.las:78 detect_version : LAS version 1.20\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"125891 wellpy.las:226 read_v1_2 : Replaced -9999.0 with NaN\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"125894 wellpy.las:45 read_las : elapsed time 0.0759999752045 s\n" | |
] | |
} | |
], | |
"prompt_number": 18 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"type(log)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 19, | |
"text": [ | |
"wellpy.las.LAS" | |
] | |
} | |
], | |
"prompt_number": 19 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"log.data.plot()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 20, | |
"text": [ | |
"<matplotlib.axes.AxesSubplot at 0x7eda170>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlcU1f6/z8JhH3HDRFFxbWg4IIii1BH1C5arXa6i9uM\npR2dap1Op/Zb66/S1i5f7V5xRmz7bWfqtBUttYstQaw7glDFBRV3QAVCEMh6fn8cEgIECGS7kOf9\nevHSe5Pc+8lJ8tznfs5zzhExxhgIgiCIHonY3gIIgiAI60FBniAIogdDQZ4gCKIHQ0GeIAiiB0NB\nniAIogdDQZ4gCKIHY1KQr6ioQEhICM6ePYv8/HwEBwcjKSkJSUlJ2LFjBwAgPT0dEydORExMDLKy\nsqwqmiAIgjANUUd18iqVCg899BCKi4uRmZmJ3Nxc1NTUYNWqVfrnlJWVITk5GXl5eaivr0dcXByO\nHTsGFxcXq78BgiAIom06zOTXrFmDp556CkFBQQCA48ePIysrC1OnTsXSpUtRW1uLI0eOIDY2FhKJ\nBD4+PggLC0NhYaHVxRMEQRDt49zegxkZGejduzeSk5Px2muvAQCio6OxbNkyREVFIS0tDa+88goi\nIyPh6+urf523tzdkMlmzY4lEIivIJwiC6PmYMzFBu5n8tm3b8PPPPyMpKQkFBQVYuHAhZs2ahaio\nKADA3LlzkZ+fDx8fH8jlcv3r5HI5/P39jQoV2t/LL79sdw2kiTQ5oi7SZNqfubQb5HNyciCVSpGd\nnY3IyEhs374dDzzwAI4ePQoA2Lt3LyZMmIDo6Gjk5uZCoVBAJpOhuLgY4eHhZouzBaWlpfaW0ArS\nZBqkyXSEqIs02YZ27ZqWiEQifPzxx3j66achkUgQFBSELVu2wMvLCytWrEB8fDy0Wi3S0tKo05Ug\nCEIIMBthw1N1iuzsbHtLaAVpMg3SZDpC1EWaTMPc2NlhCaWlEIlEFvGXCIIgHAlzY6fdR7wGBARA\nJBLRXwd/AQEBdv2cpFKpXc9vDNJkOkLURZpsQ6c8eWtQVVVFGb4JUAkqQRBdwe52Ddk4pkHtRBCO\nSbe3awiCIAjrQUGeMAkhepWkyXSEqIs02Qa7e/JCprS0FEOHDsWYMWMAAFqtFhKJBCtXrsQTTzyB\njIwMrFy5EkOGDGn2urFjxyIjIwPr1q3Dhx9+iODgYIhEImg0GvTp0wcffvgh1Go1Hn30UQBAZWUl\nZDIZBg8eDABISUnBypUrbftmCYLokZAn3w6lpaWIiIhoNmXD5cuXMW3aNLzxxhuQy+X4+uuvsWvX\nLqOvf+WVV3D79m28++67+n3vv/8+tm/frh81DADbt29v9ziAsNuJIAjrQZ68jRk4cCDWr1+PN998\nE0DHEwe1fPzuu+/G6dOnWz2HAjhBENaAgnwXGDNmDIqKigAAubm5iIqKava3fft2AK0DvFqtxj//\n+U/cfffdNtdsLkL0KkmT6QhRF2myDd3Ck7dUibilkmWRSAQPDw8AQHx8PHbv3t3mc//zn/9g//79\nAAClUokJEyYgPT3dMkIIgiA6oFsEeaE5GUePHkVERESHzxOJRHj44YebefLdlcTERHtLaAVpMh0h\n6iJNtoHsmk5y9uxZvPrqq3juuedM8uPJaycIwp5QkO+A+vp6vdc+fvx4LFq0CK+//jpmzZoFkUhk\n1JOPjo4GAP28Mx1h6vPsiRC9StJkOkLURZpsQ7ewa+xFaGgo1Gp1m48vXLgQCxcubPPxl19+2aTz\ndHQcgiCEQWUlYOe5AjsN1cl3E6idCMJ+3LkD/OMfwC+/ACdOAE5Otju3TerkKyoqEBISgrNnz6Kk\npARxcXFISEhAamqq/uTp6emYOHEiYmJikJWV1WVBBEEQQmLfPmDsWJ7F79tn2wBvCToM8iqVCn/+\n85/h6ekJxhhWrVqFtLQ07Nu3D4wxZGZmoqysDO+99x4OHDiAH3/8ES+88AKUSqUt9BM2QoheJWky\nHSHqErqmO3eAlSuBRx4B3nkH+Oyz7mfVACYE+TVr1uCpp55CUFAQAOD48eNISEgAAMyaNQt79+7F\n0aNHERsbC4lEAh8fH4SFhaGwsNC6ygmCIKyEYfZeVATMnm1vRV2n3Y7XjIwM9O7dG8nJyXjttdda\nlQR6e3tDJpOhpqYGvr6+rfa3JCUlBaGhoQAAPz8/REZGWuhtOAZSqVRfx6vLOGy1be/zt7VtqE0I\neoS6rdsnFD1C/fwmTkzEypXA//2fFM8+C7z4ou31SKVSZGRkAIA+XppDux2vU6dO1Zf3FRQUYPjw\n4cjPz9dbMZmZmdi7dy+Sk5Pxww8/4IMPPgAAzJs3D2vXrsW4ceOaTkQdr2ZB7UQQ1mXfPmDxYiAm\nBti8WTjWjFU7XnNyciCVSpGdnY3IyEh8+umnmDlzJnJycgAAe/bsQUJCAqKjo5GbmwuFQgGZTIbi\n4mKEh4d3WRQhPFpmXkKANJmOEHUJRZOh975okbTbeu9t0ak6eZFIhLfffhvLli2DUqnE6NGjMX/+\nfIhEIqxYsQLx8fHQarVIS0uDi4uLtTQTBEFYBMPsvagI6IldiVQn3w4dLRoCABs3bsSXX34Jxhg0\nGg1mzpyJtLQ0SCQSi2oRcjsRRHdDV/f+3/8CH30k7I5Vc3/7NOK1Azw8PJCfn6/f1i0a4unpCY1G\ng507d+LQoUNwdXWFQqHA/PnzsW7dOmzYsMGOqgmCaIuW2XtPsmaMQXPXdBLDRUPKysqg0WhQV1cH\nAHB1dcX777+PuXPn2lml5RGKf2oIaTIdIeqytSZT6t6F2E7m0i0yedErlpm8i71sGbtDt2hISkoK\nvvvuO/Tr1w/jx4/HlClTMGfOHMTHx1vkPARBWAZHy94NIU++HYyt8QoAp06dQmJiIioqKgAAFy9e\nRHZ2NqRSKXbu3InU1FS8/vrrFtUi5HYiCKHSnbz3tqA1Xu2AbtGQjRs34uDBgxg8eDAWL16MTz/9\nFHv27NGPFyAIwn70pFGr5kBBvpMYLhpSX1+Pv//977h165b+8VOnTmH8+PF2VGgdhOhVkibTEaIu\na2kyZ84ZIbaTuXQLT96e6BYNAQCxWAw3Nzf9oiEzZsyAWCxGXFwcRCIRtFotoqOj8dVXX9lZNUE4\nJo7svbcFefLdBGongmibnuC9twV58gRBODTkvbcPBXnCJIToVZIm0xGiLnM1WWO+dyG2k7lQkCcI\nottB2bvpkCffTaB2Ioie7b23BXnyBEE4BJS9dw0K8oRJCNGrJE2mI0Rdpmqy5VqrQmwnc6EgTxCE\nYKHs3XzIk2+HlvPJAwBjDCtXrsSiRYuQlZWFDRs2oK6uDmq1GnfddRfeeecdBAcHW1yLkNuJICyN\nI3rvbUHzyVuZlvPJX79+HeHh4QgLC0NKSgqOHz+OkJAQAEBaWhoeeugh/Pbbb/aSSxDdHhq1alna\ntWs0Gg0WL16MuLg4xMfH4+TJk8jPz0dwcDCSkpKQlJSEHTt2AADS09MxceJExMTEICsryybi7UH/\n/v0xbNgwSKVSKJXKZjNU/vWvf8XatWvtqM56CNGrJE2mI0RdLTXZ0ns3VVNPoN1M/rvvvoNYLMb+\n/fuRk5ODF198Effffz9Wr16NVatW6Z9XVlaG9957D3l5eaivr0dcXBymT59uuXVeRZaZTx4WsDsO\nHjyIkpISLF68GDKZDFFRUQgLC0NsbCymTZuG+fPnW0AoQTgWlL1bjw49eY1GAycnJ2zfvh3Z2dnw\n8PDAmTNnoFarMWzYMGzatAm//vor9uzZg48++ggAMG/ePPzjH//AhAkTmk7UTT35sLAwREREAADU\najV69eqFv//975gxYwYAoKqqCtnZ2cjJycG3336LgQMHYt++fRCLLdunLeR2IoiuQt57x1jdk3dy\nckJKSgp27tyJHTt24Nq1a1i2bBmioqKQlpaGV155BZGRkfD19dW/xtvbGzKZrNWxUlJSEBoaCgDw\n8/NDZGRkl4XbCnd392aevI7MzExUVlZi0aJFmDdvHubNm4e0tDSEhISgoKAA48aNs7gWqVSKxMRE\n/f8B0DZtd9vtEyeA995LREwM8NFHUvj4AIBw9NlrWyqVIiMjAwD08dIsmImUlZWxQYMGsWvXrun3\nnTp1ik2bNo3t2rWLpaam6vfPnTuX5eXlNXt9W6fqhASbc/HiRebl5WX0sezsbNavXz9WVFSk31dQ\nUMD69+/PqqurLa7F3u2UnZ1t1/MbgzSZjpB01dYytmIFY4GB2Swz095qmiOkdtJh7m+/XU/hs88+\nw2uvvQaAZ7RisRjz5s3D0aNHAQB79+7FhAkTEB0djdzcXCgUCshkMhQXFyM8PNz8K5AAELXRH5CY\nmIj3338fixcvRlhYGEaNGoXVq1cjMzOz2V0NQRBNGNa9/+tfZM/YgnY9+fr6eqSkpKCsrAwqlQov\nvPACBg4ciKeffhoSiQRBQUHYsmULvLy8sHXrVmzZsgVarRYvvvgi5s6d2/xE3dCTFxLUTkR3hrz3\nrmPub58GQ3UTqJ2I7oph5czmzVQ501logjLCJug6hoQEaTIde+jqqO5diG0lRE3mQkGeIAiLQ3PO\nCAeya7oJ1E5Ed4C8d8tDdg1BEIKAsndhQkGeMAkhepWkyXSsqaurc84Isa2EqMlcKMgTBNFlKHsX\nPuTJdxOonQghQd677aD55K1Ie4uG9OrVC//zP//T7PkXLlxAdHQ0fv75Z1tLJQibQTNGdjPMmhSh\nE7R1KhtK6DTG5q65du0a8/f3bzZnDWOMSaVS5ufnx44ePWoVLfZuJyHO6UGaTMcSunRzzvTvzywy\n54wQ20qImsz97ZMn30l0i4acPXtWv+/8+fOYP38+Pv7442bTKxNET4G89+5Lt/DkRRbq8WaN03qa\nSmlpKSIiIpqt/nTw4EHcd999KCwsRHBwMORyOSZPnowHH3wQ69evt4hOY5AnT9gD8t7tj0N48p0N\nzpakvr4eUVFRAJoWDfniiy8QHBwMrVaLxx57DKNGjbJqgCcIe0Dee8+A7JoO0C0akp+fj6KiImRn\nZ+tXhXrxxRdx9epVfPbZZ3ZWaX2EWD9MmkynM7pstdaqENtKiJrMpVtk8kLkiy++wPbt23H48GG4\nu7vbWw5BWATK3nse3cKTtxelpaUYM2YMampqWj0WFhaGuro69O3bt9n+fv36Yc+ePRbXIuR2Iro/\n5L0LF5pP3kGgdiKsBc33LmxogjLCJgjRqyRNpmNMl628985osjdC1GQu7QZ5jUaDxYsXIy4uDvHx\n8Th58iRKSkoQFxeHhIQEpKam6q8w6enpmDhxImJiYpCVlWUT8QRBdA2qe3cc2rVrMjMzsXv3bmzd\nuhU5OTl45513AACrV69GQkICnnrqKcyYMQOTJ09GcnIy8vLyUF9fj7i4OBw7dgwuLi5NJyK7xiyo\nnQhLQN5798OqdfJz5szBfffdB4B3Qvr7+2Pv3r1ISEgAAMyaNQs//fQTnJycEBsbC4lEAolEgrCw\nMBQWFpo0+tPf3x8ikajLb8BR8Pf3t7cEoptDlTOOSYcllE5OTkhJScHOnTuxY8eOZpNveXt7QyaT\noaamBr6+vq32tyQlJQWhoaEAAD8/P0RGRqKyshJAkxeW2DjwyVbbun32Or+x7ZbadI9LpVK76du0\naRMiIyMF0T667YKCAvz1r38VjB4dQvs+3bkDzJq1CadOReJf/0rE7NnCaC/6/Nr+/WdkZACAPl6a\nhamT3JSVlbGBAweygIAA/b6dO3eyZ555hu3atYulpqbq98+dO5fl5eU1e30nTmVThDghEWkyDdLU\nMTk5jA0dytj06dns9m17q2mO0NqKMWFqMjd2tuvJf/bZZ7h69SpeeOEF1NTUIDIyEsOGDcM//vEP\nTJ06FcuXL8e0adOQkJCA6dOn4+jRo2hoaMDkyZNx4sQJkzx5giAsD3nvPQerevLz589HSkoKpk6d\nCpVKhc2bN2PkyJFYtmwZlEolRo8ejfnz50MkEmHFihWIj4+HVqtFWlpaswBPEITtIO+daIYF7iZM\nwoan6hRCvD0jTaZBmprT3nzv1FamIURN5sZOGgxFED0Aqnsn2sLu0xoQBNF1yHvv+dC0BgThoFD2\nTpiCwwd5w/pYoUCaTMNRNXVlzhlHbavOIkRN5uLwQZ4guhOUvROdhTx5gugGkPfuuJAnTxA9HMre\nCXNw+CAvRA+ONJlGT9dkyfnee3pbWQohajIXhw/yBCFEKHsnLAV58gQhIMh7J1pCnjxB9BAoeyes\ngcMHeSF6cKTJNHqKJlustdpT2sraCFGTuTh8kCcIe0LZO2FtyJMnCDtA3jthKuTJE0Q3g7J3wpY4\nfJAXogdHmkyju2myhffeFV32gjTZBocP8gRhCyh7J+xFu568SqXC4sWLcenSJSgUCqxduxYDBgzA\nfffdh+HDhwMAUlNTsWDBAqSnp2PLli1wdnbG2rVrce+99zY/EXnyhANC3jthLubGznaDfEZGBgoL\nC/HOO++gqqoKY8eOxcsvvwyZTIZVq1bpn1dWVobk5GTk5eWhvr4ecXFxOHbsGC3kTTg0hmutbt5M\na60SXcOqHa8LFizA+vXrAQBarRYSiQR5eXnIysrC1KlTsXTpUtTW1uLIkSOIjY2FRCKBj48PwsLC\nUFhY2GVRtkSIHhxpMg2harKn996eLqFBmmyDc3sPenp6AgDkcjkWLFiADRs2oKGhAcuWLUNUVBTS\n0tLwyiuvIDIyEr6+vvrXeXt7QyaTtTpeSkoKQkNDAQB+fn6IjIxEYmIigKbGtfW2Dnudv7tsFxQU\nCEqPVCpFQUGBoPQAwIkTwNKlwJAh0kZ7Rhj66PMzbVuHPfVIpVJkZGQAgD5emkVHK31fvnyZTZgw\ngW3bto0xxlh1dbX+sVOnTrFp06axXbt2sdTUVP3+uXPnsry8vGbHMeFUBNFtqa1lbMUKxvr3Zywz\n095qiJ6EubGzXbumvLwcycnJ2LhxI1JSUgAAM2fOxNGjRwEAe/fuxYQJExAdHY3c3FwoFArIZDIU\nFxcjPDzc/CsQQXQDqHKGEDLtBvm0tDTIZDKsX78eSUlJSEpKwqZNm/Dss88iKSkJBw8exNq1a9G3\nb1+sWLEC8fHxmDZtGtLS0pp1ugqZlrdpQoA0mYa9NRnz3gsL7aupLezdVsYgTbahXU9+8+bN2Lx5\nc6v9+/fvb7Vv6dKlWLp0qeWUEYSAMaycKSqyf8cqQbQFzV1DEJ2A6t4JW0Nz1xCEjSDvneiOOHyQ\nF6IHR5pMw1aaOlP3LsR2AoSpizTZBocP8gTRHpS9E90d8uQJwgjkvRNCgTx5grAwlL0TPQmHD/JC\n9OBIk2lYWpMl5pwRYjsBwtRFmmyDwwd5ggAoeyd6LuTJEw4Nee+E0CFPniC6CGXvhCPg8EFeiB4c\naTKNrmqy5nzvQmwnQJi6SJNtcPggTzgWlL0TjgZ58oRDQN470V0hT54gOoCyd8KRcfggL0QPjjSZ\nRkea7LHWqhDbCRCmLtJkGxw+yBM9E8reCYJDnjzRoyDvnehpWNWTV6lUeOKJJ5CQkIBJkyZh9+7d\nKCkpQVxcHBISEpCamqo/eXp6OiZOnIiYmBhkZWV1WRBBdBXK3gnCCO2t8r1t2zb27LPPMsYYq6ys\nZCEhIWz27NksJyeHMcbY8uXL2bfffstu3LjBIiIimFKpZDKZjEVERDCFQmHRFcetRXZ2tr0ltII0\nmYZOU20tYytWMNa/P2OZmcLQJDSEqIs0mYa5sbPdNV4XLFiA+fPnAwC0Wi0kEgmOHz+OhIQEAMCs\nWbPw008/wcnJCbGxsZBIJJBIJAgLC0NhYSEmTJhg7WsU4eDQWqsE0T7tBnlPT08AgFwux4IFC/Dq\nq6/iueee0z/u7e0NmUyGmpoa+Pr6ttrfkpSUFISGhgIA/Pz8EBkZicTERABNvdq0nYjExERB6dEh\nlUoFo+eHH6RITwcOHeLeu4+PFIWFwmkvoW3r9glFT8sqFqHoEcK2VCpFRkYGAOjjpTl02PF65coV\nzJs3D08//TRSUlIQEhKCK1euAAAyMzOxd+9eJCcn44cffsAHH3wAAJg3bx7Wrl2LcePGNZ2IOl4J\nC2GYvW/eTNk70bOxasdreXk5kpOTsXHjRqSkpAAAoqKikJOTAwDYs2cPEhISEB0djdzcXCgUCshk\nMhQXFyM8PLzLomxJy4xCCJAm47Sse1+yRCq4AC+EdjKGEHWRJtvQrl2TlpYGmUyG9evXY/369QCA\nzZs3Y8WKFVAqlRg9ejTmz58PkUiEFStWID4+HlqtFmlpaXBxcbHJGyAcA2Peew/8PRKExaE6eULQ\nUN074ejQ3DVEj4Xq3gnCfBw+yAvRg3N0TabOOePo7dQZhKiLNNkGhw/yhLCg7J0gLAt58oQgIO+d\nIIxDnjzR7aHsnSCsh8MHeSF4cDsqKvD97dv6bSFoaok1NJk737ujtJMlEKIu0mQbHD7I2xvGGB46\ndQrLzpyxtxSbQtk7QdgG8uTtzOm6Okw+fhwaxiCLi4NYJLK3JKtC3jtBdA7y5Ls5h2pqMCsgAH7O\nzrjU0GBvOVaFsneCsD0OH+Tt7cEdqanBJB8fRHh6oujOHUFoMoY5mqy11mpPaydrIkRdpMk2OHyQ\ntzcn79zBGE9PhBsE+Z4EZe8EYV/Ik7cz/Q8cwOFx4yCtrsb3lZX4cvRoe0uyCOS9E4RlIE++GyNX\nq1GtViPY1RURXl49JpOn7J0ghIPDB3l7enAl9fUIc3eHWCTCSA8PnK+vh1KrFaQvaIoma3nv5miy\nNULUBAhTF2myDQ4f5O3Jufp6DHN3BwC4icUIdXPDmbo6O6vqGpS9E4QwIU/ejrx15QquKxR4JywM\nADD/5Eks6N0bf+zTx87KTIe8d4KwLuTJd2NuKBQIMlhBa5CrKy53o1p5yt4JQviYFOQPHz6MpKQk\nAEB+fj4GDBiApKQkJCUlYceOHQCA9PR0TJw4ETExMcjKyrKeYgtjTw+uTKlEkKurfnugmxsuKxSC\n9AUNNdnaezdFk1AQoiZAmLpIk21od41XANi4cSM+//xzeHl5AQDy8vKwatUqrFq1Sv+csrIyvPfe\ne8jLy0N9fT3i4uIwffp0Wue1A24olehn0EYDXV3xa1WVHRV1jLG1VgmCEC4dBvmwsDB88803eOKJ\nJwDwIH/27FlkZmZi2LBh2LRpE44cOYLY2FhIJBJIJBKEhYWhsLAQEyZMaHaslJQUhIaGAgD8/PwQ\nGRmJxMREAE1XUEfaPl9cjKBhw/TbN+vqcLlPHyQmJgpCn+F2QwPw4INSHDqUiI8+Anx8pCgstL8+\nHfZuH6Fv6/YJRQ99fm1vS6VSZGRkAIA+XpqDSR2vpaWleOSRR3Dw4EFkZGRg7NixiIqKQlpaGqqq\nqhAZGYmioiK8/vrrAICFCxfiySefxLRp05pORB2vrfDfvx8lkyYhUCIBANxUKjHyyBHcjouzs7Lm\nGGbvmzdT9k4QtsTmHa9z585FVFSU/v/5+fnw8fGBXC7XP0cul8Pf37/LomxJy4zCVtRrNKjTaBDg\n3HQz1UsiQZ1Wiz2//moXTS0x9N4XLZLazXtvC3t9du0hRE2AMHWRJtvQ6SA/c+ZMHD16FACwd+9e\nTJgwAdHR0cjNzYVCoYBMJkNxcTHCw8MtLrYnUa5SoZ+LC0QGUwuLRCIMdHVFhVJpR2WclpUzsbH2\nVkQQRFcw2a559NFHceDAAZw4cQJPP/00JBIJgoKCsGXLFnh5eWHr1q3YsmULtFotXnzxRcydO7f5\niciuacZBmQx/LSnB4fHjm+1PPnECq0NCMMNOKTPVvROEsDA3dtJgKDvx7c2b2F5ejp0t7niWnjmD\nSd7eWNa/v801kfdOEMKDBkOZib08uJblkzoGurpiX06OTbWYUvcuRK+SNJmOEHWRJtvg8EHeXpQp\nlc1Gu+oIcXVFuQ09eRq1ShA9G7Jr7MSyM2cwwdsbf25hy+y5fRubr13DD2PGWPX85L0TRPeA7Jpu\nyo02MvleEgluqVRWPTdl7wThODh8kLeXB9eWXdNLIsHVw4etck5z5pwRoldJmkxHiLpIk21w+CBv\nL24oFEY7Xnu7uKDaCpk8Ze8E4ZiQJ28HtIzBbd8+1MbHw0Xc/DrLGIN7bi4qY2Ph4eRk9rnIeyeI\n7g158t2QWyoVfJydWwV4gH+gvSQS3LZANk/ZO0EQDh/k7eHBteXH63ArLDSr89Ua870L0askTaYj\nRF2kyTY4fJC3B20NhNLh6+zc5SBP2TtBEIaQJ28HtpeV4ZeqKnw6apTRxx8+dQqzAwPxaN++Jh+T\nvHeC6JmQJ98NaatGXkfvTtbKU/ZOEERbOHyQt4cH11b5pI7avDyTgrwt11oVoldJmkxHiLpIk21w\n+CBvD1ou4N0SUzx5yt4JgjAF8uTtQEJ+PtYPHoxEPz+jj/+nogJf37yJr+66q9Vj5L0ThGNBnnw3\npKMSyrbmr6HsnSCIzmJSkD98+DCSkpIAACUlJYiLi0NCQgJSU1P1V5j09HRMnDgRMTExyMrKsp5i\nC2MXT76DEsrSQ4dw0yDI29J7bwshepWkyXSEqIs02YYOg/zGjRuxbNkyKBQKAMCqVauQlpaGffv2\ngTGGzMxMlJWV4b333sOBAwfw448/4oUXXoBSAOuUCpFajQYaxuDTzpQFhp48Ze8EQZhDh0E+LCwM\n33zzjT5jP378OBISEgAAs2bNwt69e3H06FHExsZCIpHAx8cHYWFhKCwstK5yC5GYmGjT8+msGsMF\nvFty/7RpuK1SYcVKZtfs3RBbt5MpkCbTEaIu0mQbnDt6wrx581BaWqrfNuwA8Pb2hkwmQ01NDXx9\nfVvtb0lKSgpCQ0MBAH5+foiMjNQ3qu42qadvS6Ki0MfFpd3nH94vhurQCRSdVaOoaBoCAoSjn7Zp\nm7atuy2VSpGRkQEA+nhpFswELl68yCZPnswYY2zAgAH6/Tt37mTPPPMM27VrF0tNTdXvnzt3LsvL\ny2t2DBNPZXOys7Nter6sW7fYzBMnjD5WW8vYihWMBQZms76/HGQldXU21dYetm4nUyBNpiNEXaTJ\nNMyNnZ0bqJkCAAAgAElEQVSuromKikJO40LTe/bsQUJCAqKjo5GbmwuFQgGZTIbi4mKEh4ebfwXq\ngdRoNPB1bn0DZei9/+tfwEBf668QRRBEz8ekOvnS0lI8+uijOHDgAM6dO4dly5ZBqVRi9OjRSE9P\nh0gkwtatW7FlyxZotVq8+OKLmDt3bvMTUZ08AOCT69eRJ5djy4gRANque7+3sBBPBQfjvsBAO6ol\nCMLemBs7aTCUjXnz8mWUq1R4a+hQ7NsHLF4MxMQAmzc371hdWFyMJH9/pPTrZz+xBEHYHRoMZSa6\nDg9bIdNo4K51arfuXSqV2mRB785g63YyBdJkOqbo0jKGyw0N0NooGRNiWwlRk7l0WF1DWJbiS2rk\nfOmOWXW87r2tskihBXmi57OypAT/vHEDc3r1wpejR9tbDmEhyK6xETrvPT2wGMsm+mPzrPZtmPTr\n13FYLsfWRu+eIKzJ5YYGRB07hpPR0ZiQl4esiAiM9fKytywCZNd0CwwrZ5Lu02DqhI4X6O4lkeAm\njRoWLufP846UkyftrcQi7Lh5Ewv69EE/Fxcs798fH1y7Zm9JhIVw+CBvTQ/O2Jwz9WI1fIyUULbU\n1NvFRVB2jRC9SrtpqqnhveUHDwJz5gBqtf01dUBHun6orMQ9jd7h0qAg7Lh5E3c0GrtqsgdC1GQu\nDh/krUVbc87UaDTwbWfeGh3kyQuYDz8EZswA/v1vIDAQ+PVXeysyC4VWi4M1Nfqpr/u5uCDGxwc7\nb92yszLCEpAnb2E6mu897PBhfB8RgeEeHu0e55ZKhRGHD+N2XJwV1RJdYtw4YNMmICEBWLcOUCqB\ntDR7q+oyB2UyPH3uHI5PmKDf92V5ObaXl+OHMWPsqIwAyJMXFKbMGFmpUiFAIunwWP7OzpBpNFA7\nwIWxW1FdDZw9C0yZwrcnTgSOHbOvJjM5UFODKQZzTwHAnF69cLimBjcaZ58lui8OH+Qt4cGZOt+7\nljHUaDTwM8GTdxKJ0EsiQYVAOl+F6FXaRdP588DQoYDuM5wwgQf5xouxENsJaF/X73fuYKynZ7N9\nHk5OmNurF76oqLCLJnshRE3m4vBB3lw6M9+7TK2Gl5MTnNuZZtiQYBcXXGsrk6qvB4Q0nXNRUceV\nJmfO6INhp1EoAI0GuHGja6+3FOfPA2FhTdt9+wJiMWDFYGhtztTVYYQR+/DJfv3waVmZHRQRFsWs\n6c06gQ1PZRN0M0b2789YZqZprym+c4eFHTpk8jnuLyxk3968afzBV15hDOAC/vUvk49pNZydGfPy\navvxffu43i1bOn9srZaxoCD+eoBv24sNGxhbs6b5vpgY/v6MUVjIWEkJ/7On7jbQarXMPzeXlSsU\nrR7TaLVs4IEDrEAut4MyQoe5sZMy+S7Q1dWaztXVIczd3eTzBLu6ts7kNRqeMWdkABs3AiNGAGvW\nAEeOmP4GLA1jvIywthbQao0/JzubWxvp6Z0/flkZz+B1VUklJU3ntXWfhc6uMWTYMODcudbPVSqB\nyZN55h8Wxv17gVVM3VKpwAD0NtJPJBaJ8HjfvvisvNyqGmRqtc2mUnBEHD7Id8aDM3et1d/v3MGo\nDqpqDDUFu7riassgn54OhIcDXl7Ac8/x8r30dF6v/c03povpJK3aSaEA7r+fB9xr14B+/YABAwCD\nBWaacfkysHAhUFwMVFV17uTFxUB8PL+QPPww8NtvXNPkycCQIXyWt7q6Tr+nLmEsyA8fzjtj0aKd\n9u8HIiL4BbioiL92zx7b6GxBW9/zM/X1GOHh0eZKZU/064f/Ky+3SgGAVCpFpUoF//37seb8eYsf\nvyuQJ+/AWGKtVWl1NRIaa5FNYYCxTH7fPuDttwGpFND9MOfOBf7zH2D1aqsG+mb88APw3XfABx/w\nO4tRo3gDtdVPcPkyD46TJwO5uZ0716lT/PgAcN99wMcf8+MdOcIvKv/+N/Dll4Bczq/A1lpInjH+\n4bdcK6GtTF4qBe6+m2fw4eHA3/7WuqZerW777scGnK6rw8h2Eo+RHh4IcXXF3s5emE1kx82bGO/t\njc/Lyx2ixNoeOHyQ1y2/1RbmZu86lI0DTqa2KFVrT5PRjtdjx4Dk5NYiEhKALVuAl16yStBo1U77\n9/Mr3c8/A/n5QFQUD3ZtZWRXrgADBwJJSTz4dYZTp4C77uL/f+QRwMUF+MMfkJiSwgPvjh18gNKf\n/sTb569/tY6NU1AAeHvzuxZDDDL5Zu0klQJTpzZtT5nS3Fb7+98BiaT5c6xEW9/zM3V1GNGBhZjS\nrx+2WaHDe+rUqfjnjRt4JTQU7k5OOFtfb/FzdJaO4kF3xOGDfHtYInvXcVQuR5i7O/xNqJHXEezq\nimuGJZS1tdwaGTnS+Av+8AfA1dV6mawhhw8Dqak8o/75Zx7kQ0L4dksY40E+JARITOT+fGfIz2/K\nnsVi4JNPeOa8cCHfN3MmcOIEt46OHOHTDlh67hXGgA0bgGXLWj8WFsYvboYXV40GyMvj0x/oGDWK\nW0+M8T6GN94Ann+e9zmsW8czChvTVmWNIY/27Ytfq6tRYuEg/FNVFWRqNWYEBCDO1xe5RtaFJszH\n4YO8MQ/OUtm7IdnV1Ugy0arRaerv6tp8MMq5c81rtFsiEgHr1wNPPw0cPWr8OVVV/M1JpcDatcC0\naW0/14gmADyYnTjBO1KTkrgFERfHM3XDIH/7Nvfuq6p4p6mPD7cuSkt50DeF4mL+vmNjm/aNGgUo\nFNArcnICrl/nFxt/fz4i9fjxto9ZX9+5TF+r5W166RK/S2iJlxfg5wdcvdrUThcuAH368Peso3dv\nrrW8HNi9G/jjH4HXX+d20+7dwCuvmK5HLjddP9r2mjuyawDAz9kZfwoKwrtXr3bqnM2orORDwUeN\n4hfFd9/FS//9L14KDYWTSIR4X1/sq67u+vEtRE/05Ls8n/y4cePg22g9DBkyBC+88AJSUlIgFosR\nHh6ODz74oM3OHCFjuFpTe/O9d4YGrRY7Kirw2pAhnXqdj5MT7mi10DAGJ5GIB7thw9p/0X338SB2\nzz1ATg7Qcl7w1at5hvnzz0B0NPfz77mHZ//R0aYJu3gR8PXl87a8/z63G0JDgVu3mne89uvHLwT/\n+788iwe4PbF0Ke9X2LSp43O9/z6/KLm6Nt/v4tJ8u0+fpv/r+gaM3XopFFz36tXA//t/HZ+fMeCZ\nZ7hV8/33QItBQ3qGD+efj64C6PffW3v3IhEPcvn5wNat3FoDgPHjebXUnDm8Yqo9Xn2Vt1ttLfDe\ne/zO4vBhfu6EBODAAX7B/fJL4NFHgeBgoKGBX0Q2buTBljFALIayf39cTk3F0Oee4xfiO3d4AuHs\nzD8nZ2f+uQUG4ikvL4wJC8OrRUXw0Wr5MS9d4j+UuLjWn4chmZncSpszB/i//wOUSlz98EMUjxqF\nBzZsAJ58ElNHjcJrxu4CzaGmhnfSi8XA4MH8Owtw7Q0NvA2rqvgFUy7nn+3Jk8DNm8DevfwC/eab\nltVkB7oU5BsaGgAA2Qa33bNnz0ZaWhoSEhLw1FNPITMzEw888IBlVFoRnQfX0ZwzXUajwVu//YYh\nHh6YaeIVQ6dJLBLBx8kJMrWaT4VgSpAHgAULeLXJjBn8h5WcDMyaBbz1Fr+K5edzb1nHwIHAvHnc\n6ujfv11NAHjAi4zk/w8JAVat4v8PDW0K8rqyyvJyfhFJSGh6/bPPcstp7Vr+/61bWwdxHQcOcHum\nI02GDBnCA58x8vJ48Nq6lQfIn38Gliwx/lyAfymOHgV++aV5Vt6SYcOAs2eR+NRTfPvkyaZ+BEOW\nLAEee4xfAO+5p2l/eDi/OH//Pf+sDBOkggLgn//kd0GffMLfg1rdFNSzsngQW7yY+/5PPME/n//9\nX75v+3Ykjh3Lzx0czI+p1eJCeTkGqNVwHTuWB0BPT35c3Z9KxS/oV69iQEMDpkok+KakBClnznB9\nvXvzfoVz54B77+Xnuvvu5u93925g+XIe6CdP1u/+KjgYD1dUwOv774GHHsIIiQSKd95BcVoaRg0a\nxNtz8GD+5MpKHow1Gq5Lo+Hfl9JS4Ouv+Y+3rIwPtnNx4d9Dd3d+FzhhAg/yFy/yoM4Yf8zNjb9f\nPz/+uXp5AXfuIFEs5tndyJHA44+3/Xl3I7oU5E+cOIG6ujrMmDEDarUaGzZswPHjx5HQ+EOeNWsW\nfvrpp24R5AETs3eFgmcGvXubfmDGgEcfxb6EBPwlMxPiUaP4D09sukvm5+yMKsMgHx9v2gsXLgQG\nDeIB/aWX+Bd2/HjuhxsGeIBf0YqKgPnzefbfUb+BrqO1JYGBPDBUVzdlzAUFPID4+zc9r39/oFcv\nPh/7559zyyglxfi5rl9vugswlcGDeSZrjCNHeFvk5vILW14e3zZ2kcnJ4cfJy2s/wAP8QmnYD3D1\nKmBscq8nn+QBMja2KesH+L41a/gXcdmyprsMrZYHSZWKB7TPP+efK8ArnL7/ngfa4cP5hd3Tk2ep\nbm7Ajz/yks1vvuEXiBacvnULI2/c4MmACdx74wZ+qqpCSsu7w+vXgZ07gT//mX93pk/nd3elpdyO\n2r0bmDSp2Uu+vnkTLw0ezL+bL74IUVERFl67hk+Dg/Harl28I/vyZf5b8fHh3xdnZ95mTk78++Xv\nDzz4IB91HBTEL+4iEXD6NM/Mo6M7/twcgC4FeU9PT6xZswZLlizBuXPnMHPmzGaPe3l5QWakEyUl\nJQWhoaEAAD8/P0RGRuqzMZ0XZsvthgZeYn7oUCJSU6WIjQUCAtp4/rp1wJEjSPzlF6ChAdKXXwZU\nKiSuXQsEBBg/X04OEs6exdFnnoE6OBjSl15C4oYNwEsvtavP0Bf08/JCtVrN9x09isTFizv3fp99\nFli5EtIvvwT690diY8Bs9fyYGGDXLiS+9BLw+uutHt+0aVPT51VQAOmkSYBU2vp8gwcDly5Bevgw\n4OeHRB8fIDMT0tra5s8PDgZefRWJDzwAvPcepIMGASJR8+Op1UisrAT69DH6/goKCvDXRo+82eOD\nB0NaXGxc35EjQHIypJ6ewLvvIhEArl+H9NKl1u2XlobE1auBwMCO27uykne+Np5T+vvvQHAwP37L\n5y9cyLevXm1+vHHjkHjiBBAeDmlYGDBoEBIbO3Slb74JiMWtz//8862P7+bGt11dkdhoiTX7/Bqf\n/0N5OYaPH2/8/RjZ9lYqsdfTE1rGsC8np+nx/v0hHT0a+OQTJPr6Aj/9xPU6OyMxNxcYMaLZ8W4o\nFCj87Tf8LpVi5qpVgFgMaVUVBjCGLaNH4zVd+3Sgp9V2QQHfnjSJbx8/3un4oNtnj3hkeO6MjAwA\n0MdLs+jKMFmFQsHq6+v12xMnTmTOzs767Z07d7Jnnnmm2Wu6eCqrkZPD2NChjE2fns1u3zbhBfn5\njI0ezf//t7/xsZaurowlJDCm1TKtVst+uH2b1arV/DlqNWOjRrHTP/7IBh08yPddvcrYgAGMRUfz\nv+nTGVu7lrFNmxhbv54xqZQxxlh2drb+tHfn57OfKysZu3OHMU9PPp+CtSgvZ8zXl//bAkNNbMAA\nxs6fN36M2bMZ++9/Gdu1i7F77237XK++ytvw0iXGwsKMTwtw5Qpj/fq1eYhmmgxRKBhzcWFMqWz9\n2NChjP3+e9P2lCmM5ea2fp5Gw5ifH//MTOGrrxh78MEmTdHRjOk+987y9tv8e/XAA1xDYWHXjmOA\nsbZKPXOGbb5ypVPHGXboEMs3c5qDD65eZY+fOtVKk1qrZX65uazMyBQLtqLN75QdMTd2dqm6Ztu2\nbVi9ejUA4Pr165DL5UhOTkZO49V9z549eutGaLSsnPnpp0TTOldHjeIVE3I5H4xTWAjIZPwW+csv\n8c2tW5hZWIiVuiH3X34J9OqFwxERmKSzR4KDebb3+uu8Qyc1ld96lpRwv/Cxx4C3327mNfs5O6Na\nrebea2Rk2x1/lqBPH14t88svrR7Sa5LLedVMWxmGrkzw6tUm/9cYs2bxv4EDeeXKP//Z+jk3brTZ\nR9BMU0tcXLjn3bKCp7qae7eGJajBwVxrS65f55ZHe+/BkF69gFu3mjSVlbWupzeVv/yFf7dcXbll\nERHRteMYYKytShsaEOrm1qnjTPf3xw+VlWZp+frmTTzYu3crTU4iESb7+OBQTY1ZxzeHNr9T3Zgu\n2TVLlizBokWL9IF827ZtCAwMxLJly6BUKjF69GjMnz/fokItgVmVM66uvPRr+3bu/TX+8KrefBPp\nO3bgh2HD8NHhw/ifceNwISQEQ955B0hLw5HaWkQb+oIuLjyQ6jDst1ixgnuniYncPwfQ28WFTzf8\n73/zyhlrM3Uqb6hHHjH++Jkz3P9tq19h1Cjgp5+4L95egBw3jvvJAJ8eYeNG3odh2OF44wb3WrvC\n4MG8s82woumee5rKGHUMGNDcS29o4L3vwcHNZ5vsiMBAXl0EcB/dnCAvkfC+DCtzSaHodJB/qE8f\nPHPuHJ4PCelS9dwtlQrH5HIkG/bRGDDJxwdHamowp1evTh+bME6XMnlnZ2d89tln2LdvH/bt24fJ\nkydj2LBhkEqlOHDgALZu3Sqo8sn26t4NvbgOGTuWd5xOm6bf9dWwYXh+wQIcuXULi4qKcHdBAXLf\neQeorYV2+nR8d/s2prXxhW5FcDDwl79wv7+RwW5uuFBezjvP2uqctCQJCTzIt0DfTqdPtz0YC+BB\n/tSpjjN5Q4YM4Z1qZ840399BkG/3s9MFeYBXY9y+zddk/fTT5s9rmcm/8w6vTnntNdMqmXT07g1U\nVHBNFRW8s7mTAdSatGwrxhhKGxowqJMaE3x9oWIMP3ZxmoNdt24hOSAAHk5ORj+/sZ6eKLTDoDAd\nnYoH3YQePxjKkqNWMXYst2wMysSO1tbivb59UVFWBtfPPkNMUhIOVFUBL7yA7Joa+Dk7I9LLy/Rz\nLFzIByo1DoIa4uKCCwcP8lK+rmaGnWHsWJ7Z3rxp/HFTgvzZs/zP1ExYJGq6gzDk+nXzM3mFgl9A\nVq/mI4JbVie1zOSzsnhG8PPPvCzQVPr147NOymTcJhowoGu6bUSlWg2JSATfDhawaYlIJMLGIUPw\nbEkJVF2YPkNn1bTFGC8vFNbWdvq4RNv02CBv6qjVTnlwurpng0BxuaEBQ/v0gceiRYBIhCnDh+Pg\nH/8ILFqE9Bs3sKizgbl/fySOHs2zTgBDd+7E+cDAplp0a+PkxGutW0wipm+nM2f49MZt4e3NS9sO\nHuS2jqlMncpLFg05f7653dKCdj+7sDDeN6CbEGz7duPlp4aZvEbDR/KuW8cv5g8+aLp+kQiYNAmJ\ndXW8Rr69NrIDLduqK1m8jvsDAxHi6ooPrl/v1OtkajVyZTLc0/hDNPb5DXZzQ6VajSo7TcncEz35\nHhnkLZq9GzJ9Og9+BnXmVxQKDDT4sUR6eeGCQoFTd+7gp8pKpHQl+46P5yP1SksxNC0N54OCwGxp\nf8XF8Y5eY3QU5AGexTo5dS4L1wV5w+kGzpxp/66hPaZN42MCvviCd3L/6U9Nc9201KoL8mfO8Izc\nz69pIE5n+Nvf+MX4yy+bT8MgQC52odNVh0gkwrvDhmHDpUu42In5bL6+eROJfn7waefuQSwSIcLT\nE0V2tGwMua5QYF1pKf5w4gQijx1DaeNA0O5EjwryXZlzplMenETCA2AjjDFcbmhAiMFAGolYjJkB\nAbinqAhP9O3b6dthAJD6+PBMODUVvsuXw9XJCTdtmdncdRe3ZQw1SaW8Q7GkpOMM/auvOt9xGBbG\nj3/hAh9Eo9F0eEFp97Pr25d3jn/+Oa9a+uSTpkFEhvTvz0fl6iYUa+zw7hLTpkF6zz284/mPf+z6\ncaxAy7Y6W1eH4Z1YwKYlIz088PzAgUg5fRoKE2wbLWN4+8oVrDCwsdr6/MZ4ednUl9cwhov19ThU\nU4N/7dmDj69fx/yTJ9HvwAEMP3IEN5VKrBowAB8PH44gl3ambxAoXZ67RmhYY86ZjqhSqyERi1tl\nJpvDwjC1oAB/6aove9dd3DIIDweeew5Di4pwvr4efWz1BRs+vHUnKMA7VIOC+BDw9hg4sPPn1Pny\ny5bxDHz5cp5lm9ppbYxvvuEBvL07ChcXXv54/br5QR7gnbYff9zxqGE7c6auDlM7sbaBMZ4dMABH\na2ow9tgxvDZ4MB7o1avNgos9lZVwEYsxzYRzjvX0xHEzfHmVVotjcjkCJBKEubvDSSTCcbkc+2Qy\n3FQqcba+HsV1dVAzBh8nJ/x+5w4CJRIEODujqrQUU0NDMTswEO8MHYoBrq4QC6iIpCuIGovtrX8i\nkcgqiwJYbc4ZEyiorcUTxcUoMjJknDFmXoXRm2/yycPCwvDwqVO4PzAQj/Xta4baTqBU8uHgNTVN\nE0+p1dwCGTeOVxhZg88+48P+332Xzw///PO2qSi6+27eybpzJ7+4GlRP9VQmHz+Ot4cORawJ6xt0\nxHe3b+PvFy7Ay8kJm8PCMMnIVAKJBQX4U1AQHjXhO/ybTIZVJSU4bMIFV6XV4rvbt3Gyrg6/yWS4\n3NCAc/X1GOnhgVsqFWo1Gng5OUEEINbXF3d5emKYuztC3dzgJhbjjkaDsV5e7VpI9sbc2Cncd2YC\n9sjeDWlp1RhidgnpmjX6/w51c8N5Wy6o4OLC54u5cKHJE//iCx7o33rLeud9/HFewjloEB8QZCvS\n0prmfTd1Js5ujEqrRbGJS1Gawn2BgZjh749/V1RgdlER/jlyJO4LDNQ/fkwux8X6eiwwcd6nCE9P\nnKyra5p9FXwm19zqapyqq0ODVovC2lrsl8lwTanEFB8fxPj44E9BQRjk5oYRHh7wdHICYwxVajVu\nq1QY6u7e7TPyrtItPXlLzvduqie/5/Zt9GlcW1THufp6DDPD1zRV0xB3d1ywdYePoWVTXg7pihW8\nsQ0HElkakci4b94GFqtpnjyZd8o++mjryds6iVDrrA115cpkGOnhwSe9sxASsRhP9OuH/951F5ac\nPo1zBmvu/qeiAouCgiBpMYCurbbycXbGXR4eeLm0FBllZXjw998RdOAA1l+6hHP19ahUqTDB2xt7\nxoxBQ0IC9kVF4Y2hQzG3d2+M8/aGZ+N3VCQSIUAiwTAPD5MDvFA/P3Polpn8G280Vc7YKnv/d0UF\nbqpUqFGr9bd2Z+rqENWZGvguEurmhs/Ky61+nmaMGNEU5D/9lFeLtJhJsEfROCGUI7Dr9m3cb6UR\npfF+fnhx0CD86exZZDdOR/1LVRXe68zAMgD/N3o01l68iPP19UgOCMBHw4fbrk+qh9EtPXmNxroJ\nZUvUjKH/gQN6z3GgmxvKlEqsKy1F2uDBSDKnc9AELtTXI6mgAJcMl5KzNhkZfA7wb7/lwf3VV3kJ\nKdGtYYxh6OHD2BkejjFWSlDUjGHkkSPYOmIEwj09MfTQIdyKjW2VyROm4ZCevC0DPAB8Xl6OkR4e\nuDcwEF9WVOCXqipUqFQIcnFBjAU6rjoixNUVZUolVFqt7X4oDz4IPPcc79G+cIHPp0N0ewrv3IGG\nMURYcaI7Z5EIawcNwssXLyI1OBgJfn4U4O2Iw7d8Rx6cUqvFutJSvDZkCKb7++PLigo83rcvKmNj\ncXzCBLhZ4cvbUpNELEaQqysuG673am28vXm50oIFfD76Fv0RQkCI/qkQNQFcV75cjoWnT2NVFycX\n6wyP9+0LuUaDp86exbw2rCEhtpUQNZlLt8zkbUlGWRlGuLsj1tcXWsbw0fDhWNi3L9xtfDsx2M0N\nFxsaMNQKHb1tsmBB09qXLaccILoFjDEcqqnBG5cvI9/FBS8PGoQ/tzN9s6VwFomwZ8wYFN25g7vN\nrMcnzKNbevK2QqnVYtjhw/j36NE2sWXa4y/nzsFZJMKMgACwxlkAtYwh3NMTg93c4C+RYLyXl8kZ\nmpYx5Mnl2H37Ni40DnFf1K+fbS8ihNXQMgYRgL+UlGD3rVtYFBSEZwcM6NIIbMK+OKQnby1+rKzE\nwZoarGtcEOOT69cxytPT7gEeAO4NDMSswkIcqamBBsADvXrBTSyGtLoaX6lUuNLQADexGM+GhCDJ\nzw83lEqUKZVgjGG0pyeGu7vjkkKBt65cwTG5HJcbGuDj7Ix7AwJwt58fiuvqMOn4cUzx8UF/V1dM\n8PbG7MDATlc0yNRqHKmpgatYDIlIhIsNDZjq54fgFuMJrjQ0oJdEAncnJ6i0WvxUVYWvKiogFokQ\n6eWFGQEBGOHu3uZFizGGG0olbqtU+PrWLYzx9MT9gYHNvN+bSiV8nJ3h2g39YC1j2F5WhvMNDVjc\nrx+GdOLie66uDsmFhZBrNOjn4oLfJ06ENwV3h8XhM3mpwTqgiQUFyKmuhjIhAR9cv44Nly5hX2Qk\nRllzNaYONBmiZazNel/GGL6vrET6jRv4TSbDIDc39JFIIBaJkC+XgwGo12rxVP/+uL8xeLfM2ms1\nGuy8dQtVKhVyZTLsrarCvYGBSPLzw+F9++A/cSIS/fxQUFuLnOpqAIAIfO6PyT4+kGk0+Ly8HKMb\nB9nUajQIkEhwXC7Ho337YmZAAFxEImwrK8OuW7cgFongIRZDptFgjKcnFvbrB3exGPtkMkirq1Gn\n0WBWQACivL0xysMDg9zcUKNW43x9PTZdvYqC/fsRMHEiHu3TB4flcvx+5w5cRSKoGIOy8bvWWyLB\nH/v0gUqrRbVaDbFIhJsqFarValQolahSqxHk4oLJPj4Y4eGBCd7euMvTE9cUCgx2c4OHEVtOzRik\n1dVQarUY7uGBQa6uOCaXI6OsDFm//gq3cePgKhLBz9kZcb6+iPH1xTgvL/g3rvJ1VaHAybo6VKlU\nCHVzg5Ix/H7nDg7V1OCWSgWFVosajQahbm6Y4uODT8vL0c/FBUqtFnc0GtRoNHAVi+EuFqO/iwtC\n3Nyg0mqhYAwVSiVK6uvx9tChiPP1RbCrK3ycndv8TtkT0mQalMmbSUHj4r8X6uv1gWtWUREAIDcq\nCmvSwxsAAAh5SURBVCMtNCqwK5pa0t6ADpFIhHsDA3GvwUhDHVrGcLquDsM9PODczjG8nJzweOOw\n878MGICbSiU+Ly9HdnU1SgsLMW3SJDxZXIypfn64JyAAfs7OcBaJ4OXkhF+rq+Hj5IQj48a1yjrL\nlUpsunoVH167BplajTm9emHL8OG4plTCy8kJgc7Ozfo4FjfONVNSX49fqqpwTC5H5q1buNjQgABn\nZwx0c8PKAQNwXaPBismT4dKYqZcrlWAAJCIRXEQieDg54WBNDX6tqoJH4zwm9Vot7nV3h7eTE4Jc\nXODp5ITrCgVyZTKcq69H+o0buNLQgN4uLrhYXw8PJyf8wd8fj/Tpg7m9eiG/thZPnzsHLWPo7eKC\n3+/cQblSiX4uLng6OBiP1tRgWUQEFIyhXKnEfpkM7129iuK6Osgax1j0dXFBuKcnPMRi5MpkcBWL\nMczdHX8LCUGwqytcxWK4iEQY6OYGJ5EI60JDcbHxTs1NLIa/szMUWi1qNRpcbGjALZUKrmIxXBsf\nC3N3R2CLgU5tfafsCWmyDRYL8lqtFqmpqSgsLISrqyu2bt2KoUOHWurwVqO6MbCn37ih3zfUzQ0f\nDh+uH1JtL02WQiwSYXQX7kZ6u7jg2ZAQAMA6iQTrQkP1VlZL2htc09fFBa8ZmRd+ZAcWQpi7O8Lc\n3fHnNh5fV1OjD/C687QkztcXcR3YbYPc3IxaclrGUKlWI/PWLXxw7RoWnj4Nf2dnvDZkCJ7o29fo\nRXddfT2GNSYG4Z6epq8K1g4+zs4Ya6SmvTeAwSbaOJb+TlkC0mQbLBbkd+7cCaVSiQMHDuDw4cNY\nvXo1du7caanDW520wYPx6uDBdgvshPAQi0ToJZFgSVAQlgQFoVajgYdY7LBzoBDdE4sF+d9++w0z\nZ84EAEyaNAnHjh2z1KGtSmlpKQBud9h4jFWb6DQJCdLE7ayOEGI7AcLURZpsg8U6XpctW4YHH3xQ\nH+gHDRqEixcvQtx4Oy2khb0JgiC6E4LoePXx8YFcLtdva7VafYAHzBNJEARBdA2LFRDHxsbi+++/\nBwAcOnQIY8aMsdShCYIgiC5iMbuGMaavrgGAbdu2YXhHa4ESBEEQVsVimbxIJMJHH32E3377Db/9\n9luzAK/VarF8+XJMmTIFSUlJOH/+vKVO22nGjRuHpKQkJCUlYcmSJSgpKUFcXBwSEhKQmppqU1vp\n8OHDSEpKAoA2daSnp2PixImIiYlBVlaWTTXl5+djwIAB+vbasWOHzTWpVCo88cQTSEhIwKRJk7B7\n9267t5UxTfn5+QgODrZbW2k0GixevBhxcXGIj4/HyZMn7d5OxjTZu510VFRUICQkBGfPnrV7O7Wl\ny2JtxWzA119/zRYtWsQYY+zQoUNszpw5tjhtK+rr61lUVFSzfffffz/LyclhjDG2fPly9u2339pE\nyxtvvMEiIiJYTExMmzpu3LjBIiIimFKpZDKZjEVERDCFQmEzTenp6eztt99u9hxba9q2bRt79tln\nGWOMVVZWspCQEDZ79my7tpUxTVu3brVrW+3cuZMtWbKEMcaYVCpls2fPtns7tdQ0Z84cu7cTY4wp\nlUr2wAMPsBEjRrDTp08L4rdnTJelfn82mdRDKOWVJ06cQF1dHWbMmIFp06bh0KFDOH78OBISEgAA\ns2bNwt69e22iJSwsDN98840+azCm4+jRo4iNjYVEIoGPjw/CwsL0dpgtNOXl5SErKwtTp07F0qVL\nUVtbiyNHjthU04IFC7B+/XoA/I5QIpHYva2MabJ3W82ZMweffPIJAF4G6O/vj7y8PLu2U0tNfn5+\ndm8nAFizZg2eeuopBDWOrLb396k9XZZoK5sE+ZqaGvgYrODu5OQErVZri1M3w9PTE2vWrMGPP/6I\njz/+GI899lizx728vCCTyWyiZd68eXA2GPHJDGwib29vyGQy1NTUwNdgJKZuv600TZo0CW+99RZy\ncnIwZMgQvPLKK5DL5TbV5OnpCS8vL8jlcixYsACvvvpqs++OPdqqpaYNGzYgOjra7m3l5OSElJQU\nrFy5Eo899pggvlMtNdm7nTIyMtC7d28kJycD4L87IbRTS10ALNZWNgnyHZVX2orhw4frA/uwYcMQ\nGBiIcoO1U+VyOfzsNPe1YXvU1NTAz8+vVbvJ5XL4W3mpQUPmzp2LqKgo/f/z8/PtounKlSu4++67\n8eSTT+KRRx4RRFsZanr44YcF01YZGRk4c+YMli5digaDxd/t+Z3SaVq2bBmSk5Pt2k7btm3Dzz//\njKSkJBQUFGDhwoW4efOm/nF7tZMxXbNmzbJMW1nHXWrO119/zVJSUhhjjB08eJDdc889tjhtKz7+\n+GOWmprKGGPs2rVrbOTIkeyee+5hUqmUMcbYn//8Z/bVV1/ZTM/FixfZ5MmTGWPck2+po6ysjEVE\nRLCGhgZWXV3NRo4caXVf0FDT5MmT2ZEjRxhjjL377rvs+eeft7mmsrIyNnLkSPbrr7/q99m7rYxp\nsndbffrppywtLY0xxphMJmODBw9mycnJdm0nY5omTZpk9++UjsTERL0nL4TfXktdlvpO2STIa7Va\ntnz5cjZlyhQ2ZcoUdubMGVucthUqlYo9/vjjLD4+nsXHx7ODBw+ys2fPsqlTp7KYmBi2ZMkSptVq\nbabn4sWL+k7OtnSkp6eziRMnsvHjx7NvvvnGppoKCgpYbGwsS0xMZI888giTy+U217RixQoWFBTE\nEhMT9X8nTpywa1sZ03To0CG7tlVdXR176KGHWEJCAouJiWG7du2y+3fKmCYhfKd0JCYmsjNnzti9\nndrSZam2stl88gRBEITt6X5L5hAEQRAmQ0GeIAiiB0NBniAIogdDQZ4gCKIHQ0GeIAiiB0NBniAI\nogdDQZ4gCKIH8/8BuMD939WF7yIAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7ee3770>" | |
] | |
} | |
], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print log" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"{'Curves': {'DEPT': {'api_code': None,\n", | |
" 'data': 25.0 25.0\n", | |
"25.2 25.2\n", | |
"25.4 25.4\n", | |
"25.6 25.6\n", | |
"25.8 25.8\n", | |
"26.0 26.0\n", | |
"26.2 26.2\n", | |
"26.4 26.4\n", | |
"26.6 26.6\n", | |
"26.8 26.8\n", | |
"27.0 27.0\n", | |
"27.2 27.2\n", | |
"27.4 27.4\n", | |
"27.6 27.6\n", | |
"27.8 27.8\n", | |
"...\n", | |
"407.2 407.2\n", | |
"407.4 407.4\n", | |
"407.6 407.6\n", | |
"407.8 407.8\n", | |
"408.0 408.0\n", | |
"408.2 408.2\n", | |
"408.4 408.4\n", | |
"408.6 408.6\n", | |
"408.8 408.8\n", | |
"409.0 409.0\n", | |
"409.2 409.2\n", | |
"409.4 409.4\n", | |
"409.6 409.6\n", | |
"409.8 409.8\n", | |
"410.0 410.0\n", | |
"Name: DEPT, Length: 1926, dtype: float64,\n", | |
" 'mnemonic': 'DEPT',\n", | |
" 'name': 'Depth curve',\n", | |
" 'order': 1,\n", | |
" 'unit': 'M'},\n", | |
" 'DS': {'api_code': None,\n", | |
" 'data': 25.0 NaN\n", | |
"25.2 NaN\n", | |
"25.4 0.3332\n", | |
"25.6 0.3478\n", | |
"25.8 0.3617\n", | |
"26.0 0.3763\n", | |
"26.2 0.3427\n", | |
"26.4 0.3370\n", | |
"26.6 0.3414\n", | |
"26.8 0.3363\n", | |
"27.0 0.3465\n", | |
"27.2 0.3560\n", | |
"27.4 0.3535\n", | |
"27.6 0.3376\n", | |
"27.8 0.3262\n", | |
"...\n", | |
"407.2 NaN\n", | |
"407.4 NaN\n", | |
"407.6 NaN\n", | |
"407.8 NaN\n", | |
"408.0 NaN\n", | |
"408.2 NaN\n", | |
"408.4 NaN\n", | |
"408.6 NaN\n", | |
"408.8 NaN\n", | |
"409.0 NaN\n", | |
"409.2 NaN\n", | |
"409.4 NaN\n", | |
"409.6 NaN\n", | |
"409.8 NaN\n", | |
"410.0 NaN\n", | |
"Name: DS, Length: 1926, dtype: float64,\n", | |
" 'mnemonic': 'DS',\n", | |
" 'name': 'Kavernogramma',\n", | |
" 'order': 2,\n", | |
" 'unit': 'M'},\n", | |
" 'PS': {'api_code': None,\n", | |
" 'data': 25.0 NaN\n", | |
"25.2 NaN\n", | |
"25.4 NaN\n", | |
"25.6 NaN\n", | |
"25.8 NaN\n", | |
"26.0 NaN\n", | |
"26.2 NaN\n", | |
"26.4 NaN\n", | |
"26.6 NaN\n", | |
"26.8 NaN\n", | |
"27.0 NaN\n", | |
"27.2 NaN\n", | |
"27.4 NaN\n", | |
"27.6 NaN\n", | |
"27.8 NaN\n", | |
"...\n", | |
"407.2 NaN\n", | |
"407.4 NaN\n", | |
"407.6 NaN\n", | |
"407.8 NaN\n", | |
"408.0 NaN\n", | |
"408.2 NaN\n", | |
"408.4 NaN\n", | |
"408.6 NaN\n", | |
"408.8 NaN\n", | |
"409.0 NaN\n", | |
"409.2 NaN\n", | |
"409.4 NaN\n", | |
"409.6 NaN\n", | |
"409.8 NaN\n", | |
"410.0 NaN\n", | |
"Name: PS, Length: 1926, dtype: float64,\n", | |
" 'mnemonic': 'PS',\n", | |
" 'name': 'PS',\n", | |
" 'order': 4,\n", | |
" 'unit': 'MV'},\n", | |
" 'PZ': {'api_code': None,\n", | |
" 'data': 25.0 NaN\n", | |
"25.2 NaN\n", | |
"25.4 NaN\n", | |
"25.6 NaN\n", | |
"25.8 NaN\n", | |
"26.0 NaN\n", | |
"26.2 NaN\n", | |
"26.4 NaN\n", | |
"26.6 NaN\n", | |
"26.8 NaN\n", | |
"27.0 NaN\n", | |
"27.2 NaN\n", | |
"27.4 NaN\n", | |
"27.6 NaN\n", | |
"27.8 NaN\n", | |
"...\n", | |
"407.2 36.31\n", | |
"407.4 36.31\n", | |
"407.6 36.31\n", | |
"407.8 36.31\n", | |
"408.0 36.37\n", | |
"408.2 36.58\n", | |
"408.4 36.62\n", | |
"408.6 36.63\n", | |
"408.8 36.51\n", | |
"409.0 36.47\n", | |
"409.2 NaN\n", | |
"409.4 NaN\n", | |
"409.6 NaN\n", | |
"409.8 NaN\n", | |
"410.0 NaN\n", | |
"Name: PZ, Length: 1926, dtype: float64,\n", | |
" 'mnemonic': 'PZ',\n", | |
" 'name': 'Potencial-zond',\n", | |
" 'order': 3,\n", | |
" 'unit': 'OMM'}},\n", | |
" 'Other': '',\n", | |
" 'Parameters': {'DNOM': {'name': \"Nominal'nyi' diametr skvajiny\",\n", | |
" 'unit': 'MM',\n", | |
" 'value': 298},\n", | |
" 'DTIS': {'name': \"Data okonchanija issledovanii'\",\n", | |
" 'unit': None,\n", | |
" 'value': nan},\n", | |
" 'DTVR': {'name': \"00 : Data i vremja zamera krivoi'\",\n", | |
" 'unit': None,\n", | |
" 'value': nan},\n", | |
" 'MSHGL': {'name': \"Masshtab glubin karotajnoi' diagrammy\",\n", | |
" 'unit': None,\n", | |
" 'value': 500},\n", | |
" 'OCFR': {'name': \"Ustroi'stvo ocifrovki\",\n", | |
" 'unit': None,\n", | |
" 'value': nan},\n", | |
" 'PRHJ': {'name': 'Uslovija prohojdenija pribora',\n", | |
" 'unit': None,\n", | |
" 'value': nan},\n", | |
" 'SPMS': {'name': 'Sposob poluch cifrovogo massiva',\n", | |
" 'unit': None,\n", | |
" 'value': nan},\n", | |
" 'TKRV': {'name': \"Tip krivoi' po sposobu preobrazovanija\",\n", | |
" 'unit': None,\n", | |
" 'value': nan}},\n", | |
" 'Version': {'VERS': {'description': 'CWLS LAS - VERSION 1.20',\n", | |
" 'value': 1.2},\n", | |
" 'WRAP': {'description': 'One line per depth step',\n", | |
" 'value': False}},\n", | |
" 'Well': {'API': {'key': 'API NUMBER', 'unit': None, 'value': ''},\n", | |
" 'CNTY': {'key': 'COUNTY', 'unit': None, 'value': ''},\n", | |
" 'CTRY': {'key': 'COUNTRY', 'unit': None, 'value': 'Rossija'},\n", | |
" 'DATE': {'key': 'LOG DATE', 'unit': None, 'value': '22.05.2006'},\n", | |
" 'FLD': {'key': 'FIELD', 'unit': None, 'value': 'SHkapovskaja-JEKS'},\n", | |
" 'LOC': {'key': 'LOCATION', 'unit': None, 'value': ''},\n", | |
" 'NULL': {'key': 'NULL', 'unit': None, 'value': -9999.0},\n", | |
" 'SRVC': {'key': 'SERVICE COMPANY',\n", | |
" 'unit': None,\n", | |
" 'value': 'SHkapovskaja PGJE'},\n", | |
" 'STAT': {'key': 'STATE', 'unit': None, 'value': 'Bashkortostan'},\n", | |
" 'STEP': {'key': 'STEP', 'unit': 'M', 'value': 0.2},\n", | |
" 'STOP': {'key': 'STOP', 'unit': 'M', 'value': 410.0},\n", | |
" 'STRT': {'key': 'STRT', 'unit': 'M', 'value': 25.0},\n", | |
" 'UWI': {'key': 'UNIQUE WELL ID', 'unit': None, 'value': '5 ALS'},\n", | |
" 'WELL': {'key': 'WELL', 'unit': None, 'value': '5ALS'}}}\n" | |
] | |
} | |
], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment