Command Flags
Flag | Options | Description |
---|---|---|
-codec:a |
libfaac, libfdk_aac, libvorbis | Audio Codec |
-quality |
best, good, realtime | Video Quality |
-b:a |
128k, 192k, 256k, 320k | Audio Bitrate |
-codec:v |
mpeg4, libx264, libvpx-vp9 | Video Codec |
library(XML) | |
library(ggplot2) | |
df <- readHTMLTable("http://projects.dailycal.org/paychecker")[[1]] | |
colnames(df)[4] <- "Salary" | |
df$Salary <- as.numeric(gsub('[$,]', '', df$Salary)) | |
p <- ggplot(df, aes(x=Department, y=Salary)) + coord_flip() | |
p + geom_boxplot(aes(color=Rank, | |
x=reorder(Department, Salary, FUN=max))) + |
# Animated dplyr joins with gganimate | |
# * Garrick Aden-Buie | |
# * garrickadenbuie.com | |
# * MIT License: https://opensource.org/licenses/MIT | |
# Note: I used Fira Sans and Fira Mono fonts. | |
# Use search and replace to use a different font if Fira is not available. | |
library(tidyverse) | |
library(gganimate) |
# pkgs | |
pacman::p_load(tidyverse, polite, scales, ggimage, ggforce, | |
rvest, glue, extrafont, ggrepel, magick) | |
loadfonts() | |
## add_logo function from Thomas Mock | |
add_logo <- function(plot_path, logo_path, logo_position, logo_scale = 10){ | |
# Requires magick R Package https://github.com/ropensci/magick |
library(dplyr, warn.conflicts = FALSE) | |
library(gapminder) | |
probs <- c(0.1, 0.5, 0.9) | |
gapminder %>% | |
group_by(continent) %>% | |
summarise( | |
probs = probs, | |
across(is.numeric & !year, ~ quantile(.x, probs)) | |
) |
Command Flags
Flag | Options | Description |
---|---|---|
-codec:a |
libfaac, libfdk_aac, libvorbis | Audio Codec |
-quality |
best, good, realtime | Video Quality |
-b:a |
128k, 192k, 256k, 320k | Audio Bitrate |
-codec:v |
mpeg4, libx264, libvpx-vp9 | Video Codec |
## Context: https://twitter.com/grant_mcdermott/status/1493400952878952448 | |
options(collapse_mask = "all") # NB: see `help('collapse-options')` | |
library(dplyr) | |
library(data.table) | |
library(collapse) # Needs to come after library(dplyr) for collapse_mask to work | |
flights = fread('https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flights14.csv') |
macOS has ncurses version 5.7 which does not ship the terminfo description for tmux. There're two ways that can help you to solve this problem.
Instead of tmux-256color
, use screen-256color
which comes with system. Place this command into ~/.tmux.conf
or ~/.config/tmux/tmux.conf
(for version 3.1 and later):
snps <- | |
list(r = "~/.config/rstudio/snippets/r.snippets") %>% | |
purrr::map(readLines, warn = FALSE) %>% | |
purrr::map(paste, collapse = "\n") %>% | |
purrr::map(trimws) %>% | |
purrr::map(strsplit, split = "(^|\n)snippet ") %>% | |
purrr::map_depth(2, ~ .x[.x != ""]) %>% | |
purrr::map_depth(2, ~ { | |
nm <- gsub("^([^\n\t ]+).*", "\\1", .x) | |
names(.x) <- nm |
tl;dr this demo shows how to call OpenAI's gpt-4o-mini model, provide it with URL of a screenshot of a document, and extract data that follows a schema you define. The results are pretty solid even with little effort in defining the data — and no effort doing data prep. OpenAI's API could be a cost-efficient tool for large scale data gathering projects involving public documents.
OpenAI announced Structured Outputs for its API, a feature that allows users to specify the fields and schema of extracted data, and guarantees that the JSON output will follow that specification.
For example, given a Congressional financial disclosure report, with assets defined in a table like this: