Skip to content

Instantly share code, notes, and snippets.

Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6221b5b1-d974-4167-9350-bcfa864f4e10",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from scipy import constants"
]
},
{
"cell_type": "markdown",
"id": "45232365-044b-4257-aec9-85a93f7c569f",
"metadata": {
"tags": [],
"user_expressions": [
{
"expression": "datetime.now().strftime('%H:%M:%S')",
"result": {
"data": {
"text/plain": "'22:57:42'"
},
"metadata": {},
"status": "ok"
}
},
{
"expression": "f\"{constants.pi:.2f}\" ",
"result": {
"data": {
"text/plain": "'3.14'"
},
"metadata": {},
"status": "ok"
}
}
]
},
"source": [
"# Some constants:\n",
"\n",
"* This cell was executed at {eval}`datetime.now().strftime('%H:%M:%S')`\n",
"* The number of pi: $ \\pi = $ {eval}`f\"{constants.pi:.2f}\" `\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "559de7e8-ccf6-49e6-a558-34450dde6297",
"metadata": {
"tags": [],
"user_expressions": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"x = pd.DataFrame({'A': [1, 2, 3]})"
]
},
{
"cell_type": "markdown",
"id": "8cb16029-3766-427c-afcf-4de6ac1bfb05",
"metadata": {
"tags": [],
"user_expressions": [
{
"expression": "x ",
"result": {
"data": {
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>A</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>1</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2</td>\n </tr>\n <tr>\n <th>2</th>\n <td>3</td>\n </tr>\n </tbody>\n</table>\n</div>",
"text/plain": " A\n0 1\n1 2\n2 3"
},
"metadata": {},
"status": "ok"
}
},
{
"expression": "x.describe()",
"result": {
"data": {
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>A</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td>3.0</td>\n </tr>\n <tr>\n <th>mean</th>\n <td>2.0</td>\n </tr>\n <tr>\n <th>std</th>\n <td>1.0</td>\n </tr>\n <tr>\n <th>min</th>\n <td>1.0</td>\n </tr>\n <tr>\n <th>25%</th>\n <td>1.5</td>\n </tr>\n <tr>\n <th>50%</th>\n <td>2.0</td>\n </tr>\n <tr>\n <th>75%</th>\n <td>2.5</td>\n </tr>\n <tr>\n <th>max</th>\n <td>3.0</td>\n </tr>\n </tbody>\n</table>\n</div>",
"text/plain": " A\ncount 3.0\nmean 2.0\nstd 1.0\nmin 1.0\n25% 1.5\n50% 2.0\n75% 2.5\nmax 3.0"
},
"metadata": {},
"status": "ok"
}
}
]
},
"source": [
"And now you can find a pandas dataframe here: \n",
"{eval}`x ` \n",
"It also has some intersting stats: \n",
"{eval}`x.describe()`\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5077e626",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment