Skip to content

Instantly share code, notes, and snippets.

@koolhead17
Last active October 1, 2017 17:32
Show Gist options
  • Save koolhead17/8aca5ba19132041327a32640be7eaa0e to your computer and use it in GitHub Desktop.
Save koolhead17/8aca5ba19132041327a32640be7eaa0e to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### Blog: \n",
"http://atuljha.com/blog/2017/10/01/playing-with-python-pandas/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### Import pandas library and call it as pd.\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State/ UTs</th>\n",
" <th>1951</th>\n",
" <th>1961</th>\n",
" <th>1971</th>\n",
" <th>1981</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Andaman and Nicobar Islands</td>\n",
" <td>30.30</td>\n",
" <td>40.07</td>\n",
" <td>51.15</td>\n",
" <td>63.19</td>\n",
" <td>73.02</td>\n",
" <td>81.30</td>\n",
" <td>86.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Andhra Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>21.19</td>\n",
" <td>24.57</td>\n",
" <td>35.66</td>\n",
" <td>44.08</td>\n",
" <td>60.47</td>\n",
" <td>67.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arunachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>7.13</td>\n",
" <td>11.29</td>\n",
" <td>25.55</td>\n",
" <td>41.59</td>\n",
" <td>54.34</td>\n",
" <td>65.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>18.53</td>\n",
" <td>32.95</td>\n",
" <td>33.94</td>\n",
" <td>NaN</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>13.49</td>\n",
" <td>21.95</td>\n",
" <td>23.17</td>\n",
" <td>32.32</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Chandigarh</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>70.43</td>\n",
" <td>74.80</td>\n",
" <td>77.81</td>\n",
" <td>81.94</td>\n",
" <td>86.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Chhattisgarh</td>\n",
" <td>9.41</td>\n",
" <td>18.14</td>\n",
" <td>24.08</td>\n",
" <td>32.63</td>\n",
" <td>42.91</td>\n",
" <td>64.66</td>\n",
" <td>70.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Dadra and Nagar Haveli</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>18.13</td>\n",
" <td>32.90</td>\n",
" <td>40.71</td>\n",
" <td>57.63</td>\n",
" <td>76.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Daman and Diu</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>71.20</td>\n",
" <td>78.18</td>\n",
" <td>87.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Delhi</td>\n",
" <td>NaN</td>\n",
" <td>61.95</td>\n",
" <td>65.08</td>\n",
" <td>71.94</td>\n",
" <td>75.29</td>\n",
" <td>81.67</td>\n",
" <td>86.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Goa</td>\n",
" <td>23.48</td>\n",
" <td>35.41</td>\n",
" <td>51.96</td>\n",
" <td>65.71</td>\n",
" <td>75.51</td>\n",
" <td>82.01</td>\n",
" <td>88.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Gujarat</td>\n",
" <td>21.82</td>\n",
" <td>31.47</td>\n",
" <td>36.95</td>\n",
" <td>44.92</td>\n",
" <td>61.29</td>\n",
" <td>69.14</td>\n",
" <td>78.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Haryana</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>25.71</td>\n",
" <td>37.13</td>\n",
" <td>55.85</td>\n",
" <td>67.91</td>\n",
" <td>75.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Himachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>63.86</td>\n",
" <td>76.48</td>\n",
" <td>82.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Jammu and Kashmir</td>\n",
" <td>NaN</td>\n",
" <td>12.95</td>\n",
" <td>21.71</td>\n",
" <td>30.64</td>\n",
" <td>NaN</td>\n",
" <td>55.52</td>\n",
" <td>67.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Jharkhand</td>\n",
" <td>12.93</td>\n",
" <td>21.14</td>\n",
" <td>23.87</td>\n",
" <td>35.03</td>\n",
" <td>41.39</td>\n",
" <td>53.56</td>\n",
" <td>66.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Karnataka</td>\n",
" <td>NaN</td>\n",
" <td>29.80</td>\n",
" <td>36.83</td>\n",
" <td>46.21</td>\n",
" <td>56.04</td>\n",
" <td>66.64</td>\n",
" <td>75.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Kerala</td>\n",
" <td>47.18</td>\n",
" <td>55.08</td>\n",
" <td>69.75</td>\n",
" <td>78.85</td>\n",
" <td>89.81</td>\n",
" <td>90.86</td>\n",
" <td>94.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Lakshadweep</td>\n",
" <td>15.23</td>\n",
" <td>27.15</td>\n",
" <td>51.76</td>\n",
" <td>68.42</td>\n",
" <td>81.78</td>\n",
" <td>86.66</td>\n",
" <td>91.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Madhya Pradesh</td>\n",
" <td>13.16</td>\n",
" <td>21.41</td>\n",
" <td>27.27</td>\n",
" <td>38.63</td>\n",
" <td>44.67</td>\n",
" <td>63.74</td>\n",
" <td>69.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Maharashtra</td>\n",
" <td>27.91</td>\n",
" <td>35.08</td>\n",
" <td>45.77</td>\n",
" <td>57.24</td>\n",
" <td>64.87</td>\n",
" <td>76.88</td>\n",
" <td>82.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Manipur</td>\n",
" <td>12.57</td>\n",
" <td>36.04</td>\n",
" <td>38.47</td>\n",
" <td>49.66</td>\n",
" <td>59.89</td>\n",
" <td>70.53</td>\n",
" <td>76.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Meghalaya</td>\n",
" <td>NaN</td>\n",
" <td>26.92</td>\n",
" <td>29.49</td>\n",
" <td>42.05</td>\n",
" <td>49.10</td>\n",
" <td>62.56</td>\n",
" <td>74.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Mizoram</td>\n",
" <td>31.14</td>\n",
" <td>44.01</td>\n",
" <td>53.80</td>\n",
" <td>59.88</td>\n",
" <td>82.26</td>\n",
" <td>88.80</td>\n",
" <td>91.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Nagaland</td>\n",
" <td>10.52</td>\n",
" <td>21.95</td>\n",
" <td>33.78</td>\n",
" <td>50.28</td>\n",
" <td>61.65</td>\n",
" <td>66.59</td>\n",
" <td>79.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>Odisha</td>\n",
" <td>15.80</td>\n",
" <td>21.66</td>\n",
" <td>26.18</td>\n",
" <td>33.62</td>\n",
" <td>49.09</td>\n",
" <td>63.08</td>\n",
" <td>72.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Puducherry</td>\n",
" <td>NaN</td>\n",
" <td>43.65</td>\n",
" <td>53.38</td>\n",
" <td>65.14</td>\n",
" <td>74.74</td>\n",
" <td>81.24</td>\n",
" <td>85.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>Punjab</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>34.12</td>\n",
" <td>43.37</td>\n",
" <td>58.51</td>\n",
" <td>69.65</td>\n",
" <td>75.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Rajasthan</td>\n",
" <td>8.50</td>\n",
" <td>18.12</td>\n",
" <td>22.57</td>\n",
" <td>30.11</td>\n",
" <td>38.55</td>\n",
" <td>60.41</td>\n",
" <td>66.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>Sikkim</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>17.74</td>\n",
" <td>34.05</td>\n",
" <td>56.94</td>\n",
" <td>68.81</td>\n",
" <td>81.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>Tamil Nadu</td>\n",
" <td>NaN</td>\n",
" <td>36.39</td>\n",
" <td>45.40</td>\n",
" <td>54.39</td>\n",
" <td>62.66</td>\n",
" <td>73.45</td>\n",
" <td>80.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>Tripura</td>\n",
" <td>NaN</td>\n",
" <td>20.24</td>\n",
" <td>30.98</td>\n",
" <td>50.10</td>\n",
" <td>60.44</td>\n",
" <td>73.19</td>\n",
" <td>87.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>Uttar Pradesh</td>\n",
" <td>12.02</td>\n",
" <td>20.87</td>\n",
" <td>23.99</td>\n",
" <td>32.65</td>\n",
" <td>40.71</td>\n",
" <td>56.27</td>\n",
" <td>67.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>Uttarakhand</td>\n",
" <td>18.93</td>\n",
" <td>18.05</td>\n",
" <td>33.26</td>\n",
" <td>46.06</td>\n",
" <td>57.75</td>\n",
" <td>71.62</td>\n",
" <td>78.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>West Bengal</td>\n",
" <td>24.61</td>\n",
" <td>34.46</td>\n",
" <td>38.86</td>\n",
" <td>48.65</td>\n",
" <td>57.70</td>\n",
" <td>68.64</td>\n",
" <td>76.3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State/ UTs 1951 1961 1971 1981 1991 2001 \\\n",
"0 Andaman and Nicobar Islands 30.30 40.07 51.15 63.19 73.02 81.30 \n",
"1 Andhra Pradesh NaN 21.19 24.57 35.66 44.08 60.47 \n",
"2 Arunachal Pradesh NaN 7.13 11.29 25.55 41.59 54.34 \n",
"3 Assam 18.53 32.95 33.94 NaN 52.89 63.25 \n",
"4 Bihar 13.49 21.95 23.17 32.32 37.49 47.00 \n",
"5 Chandigarh NaN NaN 70.43 74.80 77.81 81.94 \n",
"6 Chhattisgarh 9.41 18.14 24.08 32.63 42.91 64.66 \n",
"7 Dadra and Nagar Haveli NaN NaN 18.13 32.90 40.71 57.63 \n",
"8 Daman and Diu NaN NaN NaN NaN 71.20 78.18 \n",
"9 Delhi NaN 61.95 65.08 71.94 75.29 81.67 \n",
"10 Goa 23.48 35.41 51.96 65.71 75.51 82.01 \n",
"11 Gujarat 21.82 31.47 36.95 44.92 61.29 69.14 \n",
"12 Haryana NaN NaN 25.71 37.13 55.85 67.91 \n",
"13 Himachal Pradesh NaN NaN NaN NaN 63.86 76.48 \n",
"14 Jammu and Kashmir NaN 12.95 21.71 30.64 NaN 55.52 \n",
"15 Jharkhand 12.93 21.14 23.87 35.03 41.39 53.56 \n",
"16 Karnataka NaN 29.80 36.83 46.21 56.04 66.64 \n",
"17 Kerala 47.18 55.08 69.75 78.85 89.81 90.86 \n",
"18 Lakshadweep 15.23 27.15 51.76 68.42 81.78 86.66 \n",
"19 Madhya Pradesh 13.16 21.41 27.27 38.63 44.67 63.74 \n",
"20 Maharashtra 27.91 35.08 45.77 57.24 64.87 76.88 \n",
"21 Manipur 12.57 36.04 38.47 49.66 59.89 70.53 \n",
"22 Meghalaya NaN 26.92 29.49 42.05 49.10 62.56 \n",
"23 Mizoram 31.14 44.01 53.80 59.88 82.26 88.80 \n",
"24 Nagaland 10.52 21.95 33.78 50.28 61.65 66.59 \n",
"25 Odisha 15.80 21.66 26.18 33.62 49.09 63.08 \n",
"26 Puducherry NaN 43.65 53.38 65.14 74.74 81.24 \n",
"27 Punjab NaN NaN 34.12 43.37 58.51 69.65 \n",
"28 Rajasthan 8.50 18.12 22.57 30.11 38.55 60.41 \n",
"29 Sikkim NaN NaN 17.74 34.05 56.94 68.81 \n",
"30 Tamil Nadu NaN 36.39 45.40 54.39 62.66 73.45 \n",
"31 Tripura NaN 20.24 30.98 50.10 60.44 73.19 \n",
"32 Uttar Pradesh 12.02 20.87 23.99 32.65 40.71 56.27 \n",
"33 Uttarakhand 18.93 18.05 33.26 46.06 57.75 71.62 \n",
"34 West Bengal 24.61 34.46 38.86 48.65 57.70 68.64 \n",
"\n",
" 2011 \n",
"0 86.6 \n",
"1 67.0 \n",
"2 65.4 \n",
"3 72.2 \n",
"4 61.8 \n",
"5 86.0 \n",
"6 70.3 \n",
"7 76.2 \n",
"8 87.1 \n",
"9 86.2 \n",
"10 88.7 \n",
"11 78.0 \n",
"12 75.6 \n",
"13 82.8 \n",
"14 67.2 \n",
"15 66.4 \n",
"16 75.4 \n",
"17 94.0 \n",
"18 91.8 \n",
"19 69.3 \n",
"20 82.3 \n",
"21 76.9 \n",
"22 74.4 \n",
"23 91.3 \n",
"24 79.6 \n",
"25 72.9 \n",
"26 85.8 \n",
"27 75.8 \n",
"28 66.1 \n",
"29 81.4 \n",
"30 80.1 \n",
"31 87.2 \n",
"32 67.7 \n",
"33 78.8 \n",
"34 76.3 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Load the CSV file\n",
"pd.read_csv(\"litrate.csv\") "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### save CSV file in dataframe \n",
"df = pd.read_csv(\"litrate.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State/ UTs</th>\n",
" <th>1951</th>\n",
" <th>1961</th>\n",
" <th>1971</th>\n",
" <th>1981</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Andaman and Nicobar Islands</td>\n",
" <td>30.30</td>\n",
" <td>40.07</td>\n",
" <td>51.15</td>\n",
" <td>63.19</td>\n",
" <td>73.02</td>\n",
" <td>81.30</td>\n",
" <td>86.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Andhra Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>21.19</td>\n",
" <td>24.57</td>\n",
" <td>35.66</td>\n",
" <td>44.08</td>\n",
" <td>60.47</td>\n",
" <td>67.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arunachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>7.13</td>\n",
" <td>11.29</td>\n",
" <td>25.55</td>\n",
" <td>41.59</td>\n",
" <td>54.34</td>\n",
" <td>65.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>18.53</td>\n",
" <td>32.95</td>\n",
" <td>33.94</td>\n",
" <td>NaN</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>13.49</td>\n",
" <td>21.95</td>\n",
" <td>23.17</td>\n",
" <td>32.32</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Chandigarh</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>70.43</td>\n",
" <td>74.80</td>\n",
" <td>77.81</td>\n",
" <td>81.94</td>\n",
" <td>86.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Chhattisgarh</td>\n",
" <td>9.41</td>\n",
" <td>18.14</td>\n",
" <td>24.08</td>\n",
" <td>32.63</td>\n",
" <td>42.91</td>\n",
" <td>64.66</td>\n",
" <td>70.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Dadra and Nagar Haveli</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>18.13</td>\n",
" <td>32.90</td>\n",
" <td>40.71</td>\n",
" <td>57.63</td>\n",
" <td>76.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Daman and Diu</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>71.20</td>\n",
" <td>78.18</td>\n",
" <td>87.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Delhi</td>\n",
" <td>NaN</td>\n",
" <td>61.95</td>\n",
" <td>65.08</td>\n",
" <td>71.94</td>\n",
" <td>75.29</td>\n",
" <td>81.67</td>\n",
" <td>86.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Goa</td>\n",
" <td>23.48</td>\n",
" <td>35.41</td>\n",
" <td>51.96</td>\n",
" <td>65.71</td>\n",
" <td>75.51</td>\n",
" <td>82.01</td>\n",
" <td>88.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Gujarat</td>\n",
" <td>21.82</td>\n",
" <td>31.47</td>\n",
" <td>36.95</td>\n",
" <td>44.92</td>\n",
" <td>61.29</td>\n",
" <td>69.14</td>\n",
" <td>78.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Haryana</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>25.71</td>\n",
" <td>37.13</td>\n",
" <td>55.85</td>\n",
" <td>67.91</td>\n",
" <td>75.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Himachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>63.86</td>\n",
" <td>76.48</td>\n",
" <td>82.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Jammu and Kashmir</td>\n",
" <td>NaN</td>\n",
" <td>12.95</td>\n",
" <td>21.71</td>\n",
" <td>30.64</td>\n",
" <td>NaN</td>\n",
" <td>55.52</td>\n",
" <td>67.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Jharkhand</td>\n",
" <td>12.93</td>\n",
" <td>21.14</td>\n",
" <td>23.87</td>\n",
" <td>35.03</td>\n",
" <td>41.39</td>\n",
" <td>53.56</td>\n",
" <td>66.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Karnataka</td>\n",
" <td>NaN</td>\n",
" <td>29.80</td>\n",
" <td>36.83</td>\n",
" <td>46.21</td>\n",
" <td>56.04</td>\n",
" <td>66.64</td>\n",
" <td>75.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Kerala</td>\n",
" <td>47.18</td>\n",
" <td>55.08</td>\n",
" <td>69.75</td>\n",
" <td>78.85</td>\n",
" <td>89.81</td>\n",
" <td>90.86</td>\n",
" <td>94.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Lakshadweep</td>\n",
" <td>15.23</td>\n",
" <td>27.15</td>\n",
" <td>51.76</td>\n",
" <td>68.42</td>\n",
" <td>81.78</td>\n",
" <td>86.66</td>\n",
" <td>91.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Madhya Pradesh</td>\n",
" <td>13.16</td>\n",
" <td>21.41</td>\n",
" <td>27.27</td>\n",
" <td>38.63</td>\n",
" <td>44.67</td>\n",
" <td>63.74</td>\n",
" <td>69.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Maharashtra</td>\n",
" <td>27.91</td>\n",
" <td>35.08</td>\n",
" <td>45.77</td>\n",
" <td>57.24</td>\n",
" <td>64.87</td>\n",
" <td>76.88</td>\n",
" <td>82.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Manipur</td>\n",
" <td>12.57</td>\n",
" <td>36.04</td>\n",
" <td>38.47</td>\n",
" <td>49.66</td>\n",
" <td>59.89</td>\n",
" <td>70.53</td>\n",
" <td>76.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Meghalaya</td>\n",
" <td>NaN</td>\n",
" <td>26.92</td>\n",
" <td>29.49</td>\n",
" <td>42.05</td>\n",
" <td>49.10</td>\n",
" <td>62.56</td>\n",
" <td>74.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Mizoram</td>\n",
" <td>31.14</td>\n",
" <td>44.01</td>\n",
" <td>53.80</td>\n",
" <td>59.88</td>\n",
" <td>82.26</td>\n",
" <td>88.80</td>\n",
" <td>91.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Nagaland</td>\n",
" <td>10.52</td>\n",
" <td>21.95</td>\n",
" <td>33.78</td>\n",
" <td>50.28</td>\n",
" <td>61.65</td>\n",
" <td>66.59</td>\n",
" <td>79.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>Odisha</td>\n",
" <td>15.80</td>\n",
" <td>21.66</td>\n",
" <td>26.18</td>\n",
" <td>33.62</td>\n",
" <td>49.09</td>\n",
" <td>63.08</td>\n",
" <td>72.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Puducherry</td>\n",
" <td>NaN</td>\n",
" <td>43.65</td>\n",
" <td>53.38</td>\n",
" <td>65.14</td>\n",
" <td>74.74</td>\n",
" <td>81.24</td>\n",
" <td>85.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>Punjab</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>34.12</td>\n",
" <td>43.37</td>\n",
" <td>58.51</td>\n",
" <td>69.65</td>\n",
" <td>75.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Rajasthan</td>\n",
" <td>8.50</td>\n",
" <td>18.12</td>\n",
" <td>22.57</td>\n",
" <td>30.11</td>\n",
" <td>38.55</td>\n",
" <td>60.41</td>\n",
" <td>66.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>Sikkim</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>17.74</td>\n",
" <td>34.05</td>\n",
" <td>56.94</td>\n",
" <td>68.81</td>\n",
" <td>81.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>Tamil Nadu</td>\n",
" <td>NaN</td>\n",
" <td>36.39</td>\n",
" <td>45.40</td>\n",
" <td>54.39</td>\n",
" <td>62.66</td>\n",
" <td>73.45</td>\n",
" <td>80.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>Tripura</td>\n",
" <td>NaN</td>\n",
" <td>20.24</td>\n",
" <td>30.98</td>\n",
" <td>50.10</td>\n",
" <td>60.44</td>\n",
" <td>73.19</td>\n",
" <td>87.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>Uttar Pradesh</td>\n",
" <td>12.02</td>\n",
" <td>20.87</td>\n",
" <td>23.99</td>\n",
" <td>32.65</td>\n",
" <td>40.71</td>\n",
" <td>56.27</td>\n",
" <td>67.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>Uttarakhand</td>\n",
" <td>18.93</td>\n",
" <td>18.05</td>\n",
" <td>33.26</td>\n",
" <td>46.06</td>\n",
" <td>57.75</td>\n",
" <td>71.62</td>\n",
" <td>78.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>West Bengal</td>\n",
" <td>24.61</td>\n",
" <td>34.46</td>\n",
" <td>38.86</td>\n",
" <td>48.65</td>\n",
" <td>57.70</td>\n",
" <td>68.64</td>\n",
" <td>76.3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State/ UTs 1951 1961 1971 1981 1991 2001 \\\n",
"0 Andaman and Nicobar Islands 30.30 40.07 51.15 63.19 73.02 81.30 \n",
"1 Andhra Pradesh NaN 21.19 24.57 35.66 44.08 60.47 \n",
"2 Arunachal Pradesh NaN 7.13 11.29 25.55 41.59 54.34 \n",
"3 Assam 18.53 32.95 33.94 NaN 52.89 63.25 \n",
"4 Bihar 13.49 21.95 23.17 32.32 37.49 47.00 \n",
"5 Chandigarh NaN NaN 70.43 74.80 77.81 81.94 \n",
"6 Chhattisgarh 9.41 18.14 24.08 32.63 42.91 64.66 \n",
"7 Dadra and Nagar Haveli NaN NaN 18.13 32.90 40.71 57.63 \n",
"8 Daman and Diu NaN NaN NaN NaN 71.20 78.18 \n",
"9 Delhi NaN 61.95 65.08 71.94 75.29 81.67 \n",
"10 Goa 23.48 35.41 51.96 65.71 75.51 82.01 \n",
"11 Gujarat 21.82 31.47 36.95 44.92 61.29 69.14 \n",
"12 Haryana NaN NaN 25.71 37.13 55.85 67.91 \n",
"13 Himachal Pradesh NaN NaN NaN NaN 63.86 76.48 \n",
"14 Jammu and Kashmir NaN 12.95 21.71 30.64 NaN 55.52 \n",
"15 Jharkhand 12.93 21.14 23.87 35.03 41.39 53.56 \n",
"16 Karnataka NaN 29.80 36.83 46.21 56.04 66.64 \n",
"17 Kerala 47.18 55.08 69.75 78.85 89.81 90.86 \n",
"18 Lakshadweep 15.23 27.15 51.76 68.42 81.78 86.66 \n",
"19 Madhya Pradesh 13.16 21.41 27.27 38.63 44.67 63.74 \n",
"20 Maharashtra 27.91 35.08 45.77 57.24 64.87 76.88 \n",
"21 Manipur 12.57 36.04 38.47 49.66 59.89 70.53 \n",
"22 Meghalaya NaN 26.92 29.49 42.05 49.10 62.56 \n",
"23 Mizoram 31.14 44.01 53.80 59.88 82.26 88.80 \n",
"24 Nagaland 10.52 21.95 33.78 50.28 61.65 66.59 \n",
"25 Odisha 15.80 21.66 26.18 33.62 49.09 63.08 \n",
"26 Puducherry NaN 43.65 53.38 65.14 74.74 81.24 \n",
"27 Punjab NaN NaN 34.12 43.37 58.51 69.65 \n",
"28 Rajasthan 8.50 18.12 22.57 30.11 38.55 60.41 \n",
"29 Sikkim NaN NaN 17.74 34.05 56.94 68.81 \n",
"30 Tamil Nadu NaN 36.39 45.40 54.39 62.66 73.45 \n",
"31 Tripura NaN 20.24 30.98 50.10 60.44 73.19 \n",
"32 Uttar Pradesh 12.02 20.87 23.99 32.65 40.71 56.27 \n",
"33 Uttarakhand 18.93 18.05 33.26 46.06 57.75 71.62 \n",
"34 West Bengal 24.61 34.46 38.86 48.65 57.70 68.64 \n",
"\n",
" 2011 \n",
"0 86.6 \n",
"1 67.0 \n",
"2 65.4 \n",
"3 72.2 \n",
"4 61.8 \n",
"5 86.0 \n",
"6 70.3 \n",
"7 76.2 \n",
"8 87.1 \n",
"9 86.2 \n",
"10 88.7 \n",
"11 78.0 \n",
"12 75.6 \n",
"13 82.8 \n",
"14 67.2 \n",
"15 66.4 \n",
"16 75.4 \n",
"17 94.0 \n",
"18 91.8 \n",
"19 69.3 \n",
"20 82.3 \n",
"21 76.9 \n",
"22 74.4 \n",
"23 91.3 \n",
"24 79.6 \n",
"25 72.9 \n",
"26 85.8 \n",
"27 75.8 \n",
"28 66.1 \n",
"29 81.4 \n",
"30 80.1 \n",
"31 87.2 \n",
"32 67.7 \n",
"33 78.8 \n",
"34 76.3 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State/ UTs</th>\n",
" <th>1951</th>\n",
" <th>1961</th>\n",
" <th>1971</th>\n",
" <th>1981</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Andaman and Nicobar Islands</td>\n",
" <td>30.30</td>\n",
" <td>40.07</td>\n",
" <td>51.15</td>\n",
" <td>63.19</td>\n",
" <td>73.02</td>\n",
" <td>81.30</td>\n",
" <td>86.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Andhra Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>21.19</td>\n",
" <td>24.57</td>\n",
" <td>35.66</td>\n",
" <td>44.08</td>\n",
" <td>60.47</td>\n",
" <td>67.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arunachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>7.13</td>\n",
" <td>11.29</td>\n",
" <td>25.55</td>\n",
" <td>41.59</td>\n",
" <td>54.34</td>\n",
" <td>65.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>18.53</td>\n",
" <td>32.95</td>\n",
" <td>33.94</td>\n",
" <td>NaN</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>13.49</td>\n",
" <td>21.95</td>\n",
" <td>23.17</td>\n",
" <td>32.32</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State/ UTs 1951 1961 1971 1981 1991 2001 2011\n",
"0 Andaman and Nicobar Islands 30.30 40.07 51.15 63.19 73.02 81.30 86.6\n",
"1 Andhra Pradesh NaN 21.19 24.57 35.66 44.08 60.47 67.0\n",
"2 Arunachal Pradesh NaN 7.13 11.29 25.55 41.59 54.34 65.4\n",
"3 Assam 18.53 32.95 33.94 NaN 52.89 63.25 72.2\n",
"4 Bihar 13.49 21.95 23.17 32.32 37.49 47.00 61.8"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### List top 5 rows of the Dataset\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Identify the type of Dataframe\n",
"type(df)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(35, 8)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Investigate the number of rows and coloumns of the Dataframe\n",
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index([u'State/ UTs', u'1951', u'1961', u'1971', u'1981', u'1991', u'2001',\n",
" u'2011'],\n",
" dtype='object')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Titles of the coloumns\n",
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"State/ UTs object\n",
"1951 float64\n",
"1961 float64\n",
"1971 float64\n",
"1981 float64\n",
"1991 float64\n",
"2001 float64\n",
"2011 float64\n",
"dtype: object"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### List datatypes of the Dataframe\n",
"df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 73.02\n",
"1 44.08\n",
"2 41.59\n",
"3 52.89\n",
"4 37.49\n",
"5 77.81\n",
"6 42.91\n",
"7 40.71\n",
"8 71.20\n",
"9 75.29\n",
"10 75.51\n",
"11 61.29\n",
"12 55.85\n",
"13 63.86\n",
"14 NaN\n",
"15 41.39\n",
"16 56.04\n",
"17 89.81\n",
"18 81.78\n",
"19 44.67\n",
"20 64.87\n",
"21 59.89\n",
"22 49.10\n",
"23 82.26\n",
"24 61.65\n",
"25 49.09\n",
"26 74.74\n",
"27 58.51\n",
"28 38.55\n",
"29 56.94\n",
"30 62.66\n",
"31 60.44\n",
"32 40.71\n",
"33 57.75\n",
"34 57.70\n",
"Name: 1991, dtype: float64"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Content of coloumn name '1991'\n",
"df['1991']"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### Rename columns name from 'State/ UTs' to 'State'\n",
"df.rename(columns={'State/ UTs': 'State'}, inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State</th>\n",
" <th>1951</th>\n",
" <th>1961</th>\n",
" <th>1971</th>\n",
" <th>1981</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Andaman and Nicobar Islands</td>\n",
" <td>30.30</td>\n",
" <td>40.07</td>\n",
" <td>51.15</td>\n",
" <td>63.19</td>\n",
" <td>73.02</td>\n",
" <td>81.30</td>\n",
" <td>86.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Andhra Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>21.19</td>\n",
" <td>24.57</td>\n",
" <td>35.66</td>\n",
" <td>44.08</td>\n",
" <td>60.47</td>\n",
" <td>67.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arunachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>7.13</td>\n",
" <td>11.29</td>\n",
" <td>25.55</td>\n",
" <td>41.59</td>\n",
" <td>54.34</td>\n",
" <td>65.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>18.53</td>\n",
" <td>32.95</td>\n",
" <td>33.94</td>\n",
" <td>NaN</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>13.49</td>\n",
" <td>21.95</td>\n",
" <td>23.17</td>\n",
" <td>32.32</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Chandigarh</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>70.43</td>\n",
" <td>74.80</td>\n",
" <td>77.81</td>\n",
" <td>81.94</td>\n",
" <td>86.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Chhattisgarh</td>\n",
" <td>9.41</td>\n",
" <td>18.14</td>\n",
" <td>24.08</td>\n",
" <td>32.63</td>\n",
" <td>42.91</td>\n",
" <td>64.66</td>\n",
" <td>70.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Dadra and Nagar Haveli</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>18.13</td>\n",
" <td>32.90</td>\n",
" <td>40.71</td>\n",
" <td>57.63</td>\n",
" <td>76.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Daman and Diu</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>71.20</td>\n",
" <td>78.18</td>\n",
" <td>87.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Delhi</td>\n",
" <td>NaN</td>\n",
" <td>61.95</td>\n",
" <td>65.08</td>\n",
" <td>71.94</td>\n",
" <td>75.29</td>\n",
" <td>81.67</td>\n",
" <td>86.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Goa</td>\n",
" <td>23.48</td>\n",
" <td>35.41</td>\n",
" <td>51.96</td>\n",
" <td>65.71</td>\n",
" <td>75.51</td>\n",
" <td>82.01</td>\n",
" <td>88.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Gujarat</td>\n",
" <td>21.82</td>\n",
" <td>31.47</td>\n",
" <td>36.95</td>\n",
" <td>44.92</td>\n",
" <td>61.29</td>\n",
" <td>69.14</td>\n",
" <td>78.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Haryana</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>25.71</td>\n",
" <td>37.13</td>\n",
" <td>55.85</td>\n",
" <td>67.91</td>\n",
" <td>75.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Himachal Pradesh</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>63.86</td>\n",
" <td>76.48</td>\n",
" <td>82.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Jammu and Kashmir</td>\n",
" <td>NaN</td>\n",
" <td>12.95</td>\n",
" <td>21.71</td>\n",
" <td>30.64</td>\n",
" <td>NaN</td>\n",
" <td>55.52</td>\n",
" <td>67.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Jharkhand</td>\n",
" <td>12.93</td>\n",
" <td>21.14</td>\n",
" <td>23.87</td>\n",
" <td>35.03</td>\n",
" <td>41.39</td>\n",
" <td>53.56</td>\n",
" <td>66.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Karnataka</td>\n",
" <td>NaN</td>\n",
" <td>29.80</td>\n",
" <td>36.83</td>\n",
" <td>46.21</td>\n",
" <td>56.04</td>\n",
" <td>66.64</td>\n",
" <td>75.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Kerala</td>\n",
" <td>47.18</td>\n",
" <td>55.08</td>\n",
" <td>69.75</td>\n",
" <td>78.85</td>\n",
" <td>89.81</td>\n",
" <td>90.86</td>\n",
" <td>94.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Lakshadweep</td>\n",
" <td>15.23</td>\n",
" <td>27.15</td>\n",
" <td>51.76</td>\n",
" <td>68.42</td>\n",
" <td>81.78</td>\n",
" <td>86.66</td>\n",
" <td>91.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Madhya Pradesh</td>\n",
" <td>13.16</td>\n",
" <td>21.41</td>\n",
" <td>27.27</td>\n",
" <td>38.63</td>\n",
" <td>44.67</td>\n",
" <td>63.74</td>\n",
" <td>69.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Maharashtra</td>\n",
" <td>27.91</td>\n",
" <td>35.08</td>\n",
" <td>45.77</td>\n",
" <td>57.24</td>\n",
" <td>64.87</td>\n",
" <td>76.88</td>\n",
" <td>82.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Manipur</td>\n",
" <td>12.57</td>\n",
" <td>36.04</td>\n",
" <td>38.47</td>\n",
" <td>49.66</td>\n",
" <td>59.89</td>\n",
" <td>70.53</td>\n",
" <td>76.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Meghalaya</td>\n",
" <td>NaN</td>\n",
" <td>26.92</td>\n",
" <td>29.49</td>\n",
" <td>42.05</td>\n",
" <td>49.10</td>\n",
" <td>62.56</td>\n",
" <td>74.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Mizoram</td>\n",
" <td>31.14</td>\n",
" <td>44.01</td>\n",
" <td>53.80</td>\n",
" <td>59.88</td>\n",
" <td>82.26</td>\n",
" <td>88.80</td>\n",
" <td>91.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Nagaland</td>\n",
" <td>10.52</td>\n",
" <td>21.95</td>\n",
" <td>33.78</td>\n",
" <td>50.28</td>\n",
" <td>61.65</td>\n",
" <td>66.59</td>\n",
" <td>79.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>Odisha</td>\n",
" <td>15.80</td>\n",
" <td>21.66</td>\n",
" <td>26.18</td>\n",
" <td>33.62</td>\n",
" <td>49.09</td>\n",
" <td>63.08</td>\n",
" <td>72.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Puducherry</td>\n",
" <td>NaN</td>\n",
" <td>43.65</td>\n",
" <td>53.38</td>\n",
" <td>65.14</td>\n",
" <td>74.74</td>\n",
" <td>81.24</td>\n",
" <td>85.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>Punjab</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>34.12</td>\n",
" <td>43.37</td>\n",
" <td>58.51</td>\n",
" <td>69.65</td>\n",
" <td>75.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Rajasthan</td>\n",
" <td>8.50</td>\n",
" <td>18.12</td>\n",
" <td>22.57</td>\n",
" <td>30.11</td>\n",
" <td>38.55</td>\n",
" <td>60.41</td>\n",
" <td>66.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>Sikkim</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>17.74</td>\n",
" <td>34.05</td>\n",
" <td>56.94</td>\n",
" <td>68.81</td>\n",
" <td>81.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>Tamil Nadu</td>\n",
" <td>NaN</td>\n",
" <td>36.39</td>\n",
" <td>45.40</td>\n",
" <td>54.39</td>\n",
" <td>62.66</td>\n",
" <td>73.45</td>\n",
" <td>80.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>Tripura</td>\n",
" <td>NaN</td>\n",
" <td>20.24</td>\n",
" <td>30.98</td>\n",
" <td>50.10</td>\n",
" <td>60.44</td>\n",
" <td>73.19</td>\n",
" <td>87.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>Uttar Pradesh</td>\n",
" <td>12.02</td>\n",
" <td>20.87</td>\n",
" <td>23.99</td>\n",
" <td>32.65</td>\n",
" <td>40.71</td>\n",
" <td>56.27</td>\n",
" <td>67.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>Uttarakhand</td>\n",
" <td>18.93</td>\n",
" <td>18.05</td>\n",
" <td>33.26</td>\n",
" <td>46.06</td>\n",
" <td>57.75</td>\n",
" <td>71.62</td>\n",
" <td>78.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>West Bengal</td>\n",
" <td>24.61</td>\n",
" <td>34.46</td>\n",
" <td>38.86</td>\n",
" <td>48.65</td>\n",
" <td>57.70</td>\n",
" <td>68.64</td>\n",
" <td>76.3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State 1951 1961 1971 1981 1991 2001 \\\n",
"0 Andaman and Nicobar Islands 30.30 40.07 51.15 63.19 73.02 81.30 \n",
"1 Andhra Pradesh NaN 21.19 24.57 35.66 44.08 60.47 \n",
"2 Arunachal Pradesh NaN 7.13 11.29 25.55 41.59 54.34 \n",
"3 Assam 18.53 32.95 33.94 NaN 52.89 63.25 \n",
"4 Bihar 13.49 21.95 23.17 32.32 37.49 47.00 \n",
"5 Chandigarh NaN NaN 70.43 74.80 77.81 81.94 \n",
"6 Chhattisgarh 9.41 18.14 24.08 32.63 42.91 64.66 \n",
"7 Dadra and Nagar Haveli NaN NaN 18.13 32.90 40.71 57.63 \n",
"8 Daman and Diu NaN NaN NaN NaN 71.20 78.18 \n",
"9 Delhi NaN 61.95 65.08 71.94 75.29 81.67 \n",
"10 Goa 23.48 35.41 51.96 65.71 75.51 82.01 \n",
"11 Gujarat 21.82 31.47 36.95 44.92 61.29 69.14 \n",
"12 Haryana NaN NaN 25.71 37.13 55.85 67.91 \n",
"13 Himachal Pradesh NaN NaN NaN NaN 63.86 76.48 \n",
"14 Jammu and Kashmir NaN 12.95 21.71 30.64 NaN 55.52 \n",
"15 Jharkhand 12.93 21.14 23.87 35.03 41.39 53.56 \n",
"16 Karnataka NaN 29.80 36.83 46.21 56.04 66.64 \n",
"17 Kerala 47.18 55.08 69.75 78.85 89.81 90.86 \n",
"18 Lakshadweep 15.23 27.15 51.76 68.42 81.78 86.66 \n",
"19 Madhya Pradesh 13.16 21.41 27.27 38.63 44.67 63.74 \n",
"20 Maharashtra 27.91 35.08 45.77 57.24 64.87 76.88 \n",
"21 Manipur 12.57 36.04 38.47 49.66 59.89 70.53 \n",
"22 Meghalaya NaN 26.92 29.49 42.05 49.10 62.56 \n",
"23 Mizoram 31.14 44.01 53.80 59.88 82.26 88.80 \n",
"24 Nagaland 10.52 21.95 33.78 50.28 61.65 66.59 \n",
"25 Odisha 15.80 21.66 26.18 33.62 49.09 63.08 \n",
"26 Puducherry NaN 43.65 53.38 65.14 74.74 81.24 \n",
"27 Punjab NaN NaN 34.12 43.37 58.51 69.65 \n",
"28 Rajasthan 8.50 18.12 22.57 30.11 38.55 60.41 \n",
"29 Sikkim NaN NaN 17.74 34.05 56.94 68.81 \n",
"30 Tamil Nadu NaN 36.39 45.40 54.39 62.66 73.45 \n",
"31 Tripura NaN 20.24 30.98 50.10 60.44 73.19 \n",
"32 Uttar Pradesh 12.02 20.87 23.99 32.65 40.71 56.27 \n",
"33 Uttarakhand 18.93 18.05 33.26 46.06 57.75 71.62 \n",
"34 West Bengal 24.61 34.46 38.86 48.65 57.70 68.64 \n",
"\n",
" 2011 \n",
"0 86.6 \n",
"1 67.0 \n",
"2 65.4 \n",
"3 72.2 \n",
"4 61.8 \n",
"5 86.0 \n",
"6 70.3 \n",
"7 76.2 \n",
"8 87.1 \n",
"9 86.2 \n",
"10 88.7 \n",
"11 78.0 \n",
"12 75.6 \n",
"13 82.8 \n",
"14 67.2 \n",
"15 66.4 \n",
"16 75.4 \n",
"17 94.0 \n",
"18 91.8 \n",
"19 69.3 \n",
"20 82.3 \n",
"21 76.9 \n",
"22 74.4 \n",
"23 91.3 \n",
"24 79.6 \n",
"25 72.9 \n",
"26 85.8 \n",
"27 75.8 \n",
"28 66.1 \n",
"29 81.4 \n",
"30 80.1 \n",
"31 87.2 \n",
"32 67.7 \n",
"33 78.8 \n",
"34 76.3 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### List the Dataframe\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"### A new variable name 'subset' to store only ['State','1991', '2001', '2011'] coloumn.\n",
"subset = df[['State','1991', '2001', '2011']]\n"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Andaman and Nicobar Islands</td>\n",
" <td>73.02</td>\n",
" <td>81.30</td>\n",
" <td>86.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Andhra Pradesh</td>\n",
" <td>44.08</td>\n",
" <td>60.47</td>\n",
" <td>67.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Arunachal Pradesh</td>\n",
" <td>41.59</td>\n",
" <td>54.34</td>\n",
" <td>65.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Chandigarh</td>\n",
" <td>77.81</td>\n",
" <td>81.94</td>\n",
" <td>86.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Chhattisgarh</td>\n",
" <td>42.91</td>\n",
" <td>64.66</td>\n",
" <td>70.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Dadra and Nagar Haveli</td>\n",
" <td>40.71</td>\n",
" <td>57.63</td>\n",
" <td>76.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Daman and Diu</td>\n",
" <td>71.20</td>\n",
" <td>78.18</td>\n",
" <td>87.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Delhi</td>\n",
" <td>75.29</td>\n",
" <td>81.67</td>\n",
" <td>86.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Goa</td>\n",
" <td>75.51</td>\n",
" <td>82.01</td>\n",
" <td>88.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Gujarat</td>\n",
" <td>61.29</td>\n",
" <td>69.14</td>\n",
" <td>78.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Haryana</td>\n",
" <td>55.85</td>\n",
" <td>67.91</td>\n",
" <td>75.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Himachal Pradesh</td>\n",
" <td>63.86</td>\n",
" <td>76.48</td>\n",
" <td>82.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Jammu and Kashmir</td>\n",
" <td>NaN</td>\n",
" <td>55.52</td>\n",
" <td>67.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Jharkhand</td>\n",
" <td>41.39</td>\n",
" <td>53.56</td>\n",
" <td>66.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Karnataka</td>\n",
" <td>56.04</td>\n",
" <td>66.64</td>\n",
" <td>75.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Kerala</td>\n",
" <td>89.81</td>\n",
" <td>90.86</td>\n",
" <td>94.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Lakshadweep</td>\n",
" <td>81.78</td>\n",
" <td>86.66</td>\n",
" <td>91.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Madhya Pradesh</td>\n",
" <td>44.67</td>\n",
" <td>63.74</td>\n",
" <td>69.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Maharashtra</td>\n",
" <td>64.87</td>\n",
" <td>76.88</td>\n",
" <td>82.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Manipur</td>\n",
" <td>59.89</td>\n",
" <td>70.53</td>\n",
" <td>76.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>Meghalaya</td>\n",
" <td>49.10</td>\n",
" <td>62.56</td>\n",
" <td>74.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Mizoram</td>\n",
" <td>82.26</td>\n",
" <td>88.80</td>\n",
" <td>91.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Nagaland</td>\n",
" <td>61.65</td>\n",
" <td>66.59</td>\n",
" <td>79.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>Odisha</td>\n",
" <td>49.09</td>\n",
" <td>63.08</td>\n",
" <td>72.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Puducherry</td>\n",
" <td>74.74</td>\n",
" <td>81.24</td>\n",
" <td>85.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>Punjab</td>\n",
" <td>58.51</td>\n",
" <td>69.65</td>\n",
" <td>75.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Rajasthan</td>\n",
" <td>38.55</td>\n",
" <td>60.41</td>\n",
" <td>66.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>Sikkim</td>\n",
" <td>56.94</td>\n",
" <td>68.81</td>\n",
" <td>81.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>Tamil Nadu</td>\n",
" <td>62.66</td>\n",
" <td>73.45</td>\n",
" <td>80.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>Tripura</td>\n",
" <td>60.44</td>\n",
" <td>73.19</td>\n",
" <td>87.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>Uttar Pradesh</td>\n",
" <td>40.71</td>\n",
" <td>56.27</td>\n",
" <td>67.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>Uttarakhand</td>\n",
" <td>57.75</td>\n",
" <td>71.62</td>\n",
" <td>78.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>West Bengal</td>\n",
" <td>57.70</td>\n",
" <td>68.64</td>\n",
" <td>76.3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State 1991 2001 2011\n",
"0 Andaman and Nicobar Islands 73.02 81.30 86.6\n",
"1 Andhra Pradesh 44.08 60.47 67.0\n",
"2 Arunachal Pradesh 41.59 54.34 65.4\n",
"3 Assam 52.89 63.25 72.2\n",
"4 Bihar 37.49 47.00 61.8\n",
"5 Chandigarh 77.81 81.94 86.0\n",
"6 Chhattisgarh 42.91 64.66 70.3\n",
"7 Dadra and Nagar Haveli 40.71 57.63 76.2\n",
"8 Daman and Diu 71.20 78.18 87.1\n",
"9 Delhi 75.29 81.67 86.2\n",
"10 Goa 75.51 82.01 88.7\n",
"11 Gujarat 61.29 69.14 78.0\n",
"12 Haryana 55.85 67.91 75.6\n",
"13 Himachal Pradesh 63.86 76.48 82.8\n",
"14 Jammu and Kashmir NaN 55.52 67.2\n",
"15 Jharkhand 41.39 53.56 66.4\n",
"16 Karnataka 56.04 66.64 75.4\n",
"17 Kerala 89.81 90.86 94.0\n",
"18 Lakshadweep 81.78 86.66 91.8\n",
"19 Madhya Pradesh 44.67 63.74 69.3\n",
"20 Maharashtra 64.87 76.88 82.3\n",
"21 Manipur 59.89 70.53 76.9\n",
"22 Meghalaya 49.10 62.56 74.4\n",
"23 Mizoram 82.26 88.80 91.3\n",
"24 Nagaland 61.65 66.59 79.6\n",
"25 Odisha 49.09 63.08 72.9\n",
"26 Puducherry 74.74 81.24 85.8\n",
"27 Punjab 58.51 69.65 75.8\n",
"28 Rajasthan 38.55 60.41 66.1\n",
"29 Sikkim 56.94 68.81 81.4\n",
"30 Tamil Nadu 62.66 73.45 80.1\n",
"31 Tripura 60.44 73.19 87.2\n",
"32 Uttar Pradesh 40.71 56.27 67.7\n",
"33 Uttarakhand 57.75 71.62 78.8\n",
"34 West Bengal 57.70 68.64 76.3"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### The output of the variable.\n",
"subset"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"State Delhi\n",
"1991 75.29\n",
"2001 81.67\n",
"2011 86.2\n",
"Name: 9, dtype: object"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### Content of Row 10 in variable subset.\n",
"subset.loc[9]"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Gujarat</td>\n",
" <td>61.29</td>\n",
" <td>69.14</td>\n",
" <td>78.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State 1991 2001 2011\n",
"3 Assam 52.89 63.25 72.2\n",
"4 Bihar 37.49 47.00 61.8\n",
"11 Gujarat 61.29 69.14 78.0"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### This is what we needed, the dataframe with Assam, Bihar and Gujarat for year 1991, 2001 and 2011.\n",
"subset.loc[[3,4,11]]"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data = subset.loc[[3,4,11]]"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>State</th>\n",
" <th>1991</th>\n",
" <th>2001</th>\n",
" <th>2011</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Assam</td>\n",
" <td>52.89</td>\n",
" <td>63.25</td>\n",
" <td>72.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Bihar</td>\n",
" <td>37.49</td>\n",
" <td>47.00</td>\n",
" <td>61.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Gujarat</td>\n",
" <td>61.29</td>\n",
" <td>69.14</td>\n",
" <td>78.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" State 1991 2001 2011\n",
"3 Assam 52.89 63.25 72.2\n",
"4 Bihar 37.49 47.00 61.8\n",
"11 Gujarat 61.29 69.14 78.0"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment