Created
June 26, 2017 14:29
-
-
Save koreyou/dbb07498d0a634b229a0f29754368e8c to your computer and use it in GitHub Desktop.
Demostration of how we can use chainer's reporing mechanism to monitor variables' metrics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Chainer Reporting Demo\n", | |
"\n", | |
"This snippets demostrate how we can use [chainer](https://chainer.org/)'s reporing mechanism to monitor variables' metrics.\n", | |
"Codes were taken from [\"the official example\"](https://github.com/chainer/chainer/blob/master/examples/mnist/train_mnist.py) with some modifications.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from __future__ import print_function\n", | |
"\n", | |
"import argparse\n", | |
"\n", | |
"import chainer\n", | |
"import chainer.functions as F\n", | |
"import chainer.links as L\n", | |
"from chainer import training\n", | |
"from chainer.training import extensions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# Network definition\n", | |
"class MLP(chainer.Chain):\n", | |
"\n", | |
" def __init__(self, n_units, n_out):\n", | |
" super(MLP, self).__init__()\n", | |
" with self.init_scope():\n", | |
" # the size of the inputs to each layer will be inferred\n", | |
" self.l1 = L.Linear(None, n_units) # n_in -> n_units\n", | |
" self.l2 = L.Linear(None, n_units) # n_units -> n_units\n", | |
" self.l3 = L.Linear(None, n_out) # n_units -> n_out\n", | |
"\n", | |
" def __call__(self, x):\n", | |
" h1 = F.relu(self.l1(x))\n", | |
" h2 = F.relu(self.l2(h1))\n", | |
" return self.l3(h2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"class DummyParser(object):\n", | |
" def __init__(self, **args):\n", | |
" self.__dict__ = dict(**args)\n", | |
"\n", | |
"\n", | |
"args = DummyParser(\n", | |
" batchsize=100,\n", | |
" epoch=3, # Default was 20; this is for testing\n", | |
" frequency=-1,\n", | |
" gpu=-1,\n", | |
" out='result',\n", | |
" resume='',\n", | |
" unit=200 # Default was1000; this is for testing\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# First experiment with original example implementation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"epoch main/loss validation/main/loss main/accuracy validation/main/accuracy elapsed_time\n", | |
"\u001b[J total [##................................................] 5.56%\n", | |
"this epoch [########..........................................] 16.67%\n", | |
" 100 iter, 0 epoch / 3 epochs\n", | |
" inf iters/sec. Estimated time to finish: 0:00:00.\n", | |
"\u001b[4A\u001b[J total [#####.............................................] 11.11%\n", | |
"this epoch [################..................................] 33.33%\n", | |
" 200 iter, 0 epoch / 3 epochs\n", | |
" 104.22 iters/sec. Estimated time to finish: 0:00:15.352177.\n", | |
"\u001b[4A\u001b[J total [########..........................................] 16.67%\n", | |
"this epoch [#########################.........................] 50.00%\n", | |
" 300 iter, 0 epoch / 3 epochs\n", | |
" 84.481 iters/sec. Estimated time to finish: 0:00:17.755546.\n", | |
"\u001b[4A\u001b[J total [###########.......................................] 22.22%\n", | |
"this epoch [#################################.................] 66.67%\n", | |
" 400 iter, 0 epoch / 3 epochs\n", | |
" 83.855 iters/sec. Estimated time to finish: 0:00:16.695458.\n", | |
"\u001b[4A\u001b[J total [#############.....................................] 27.78%\n", | |
"this epoch [#########################################.........] 83.33%\n", | |
" 500 iter, 0 epoch / 3 epochs\n", | |
" 82.813 iters/sec. Estimated time to finish: 0:00:15.697926.\n", | |
"\u001b[4A\u001b[J1 0.278771 0.135821 0.92135 0.9598 6.9406 \n", | |
"\u001b[J total [################..................................] 33.33%\n", | |
"this epoch [..................................................] 0.00%\n", | |
" 600 iter, 1 epoch / 3 epochs\n", | |
" 76.09 iters/sec. Estimated time to finish: 0:00:15.770887.\n", | |
"\u001b[4A\u001b[J total [###################...............................] 38.89%\n", | |
"this epoch [########..........................................] 16.67%\n", | |
" 700 iter, 1 epoch / 3 epochs\n", | |
" 81.07 iters/sec. Estimated time to finish: 0:00:13.568603.\n", | |
"\u001b[4A\u001b[J total [######################............................] 44.44%\n", | |
"this epoch [################..................................] 33.33%\n", | |
" 800 iter, 1 epoch / 3 epochs\n", | |
" 80.339 iters/sec. Estimated time to finish: 0:00:12.447324.\n", | |
"\u001b[4A\u001b[J total [#########################.........................] 50.00%\n", | |
"this epoch [#########################.........................] 50.00%\n", | |
" 900 iter, 1 epoch / 3 epochs\n", | |
" 83.275 iters/sec. Estimated time to finish: 0:00:10.807516.\n", | |
"\u001b[4A\u001b[J total [###########################.......................] 55.56%\n", | |
"this epoch [#################################.................] 66.67%\n", | |
" 1000 iter, 1 epoch / 3 epochs\n", | |
" 82.692 iters/sec. Estimated time to finish: 0:00:09.674441.\n", | |
"\u001b[4A\u001b[J total [##############################....................] 61.11%\n", | |
"this epoch [#########################################.........] 83.33%\n", | |
" 1100 iter, 1 epoch / 3 epochs\n", | |
" 82.393 iters/sec. Estimated time to finish: 0:00:08.495911.\n", | |
"\u001b[4A\u001b[J2 0.104873 0.0970318 0.968783 0.969 14.3603 \n", | |
"\u001b[J total [#################################.................] 66.67%\n", | |
"this epoch [..................................................] 0.00%\n", | |
" 1200 iter, 2 epoch / 3 epochs\n", | |
" 78.769 iters/sec. Estimated time to finish: 0:00:07.617201.\n", | |
"\u001b[4A\u001b[J total [####################################..............] 72.22%\n", | |
"this epoch [########..........................................] 16.67%\n", | |
" 1300 iter, 2 epoch / 3 epochs\n", | |
" 79.376 iters/sec. Estimated time to finish: 0:00:06.299094.\n", | |
"\u001b[4A\u001b[J total [######################################............] 77.78%\n", | |
"this epoch [################..................................] 33.33%\n", | |
" 1400 iter, 2 epoch / 3 epochs\n", | |
" 78.333 iters/sec. Estimated time to finish: 0:00:05.106387.\n", | |
"\u001b[4A\u001b[J total [#########################################.........] 83.33%\n", | |
"this epoch [#########################.........................] 50.00%\n", | |
" 1500 iter, 2 epoch / 3 epochs\n", | |
" 77.904 iters/sec. Estimated time to finish: 0:00:03.850887.\n", | |
"\u001b[4A\u001b[J total [############################################......] 88.89%\n", | |
"this epoch [#################################.................] 66.67%\n", | |
" 1600 iter, 2 epoch / 3 epochs\n", | |
" 77.804 iters/sec. Estimated time to finish: 0:00:02.570575.\n", | |
"\u001b[4A\u001b[J total [###############################################...] 94.44%\n", | |
"this epoch [#########################################.........] 83.33%\n", | |
" 1700 iter, 2 epoch / 3 epochs\n", | |
" 79.165 iters/sec. Estimated time to finish: 0:00:01.263185.\n", | |
"\u001b[4A\u001b[J3 0.0700185 0.102149 0.978267 0.9693 22.7789 \n", | |
"\u001b[J total [##################################################] 100.00%\n", | |
"this epoch [..................................................] 0.00%\n", | |
" 1800 iter, 3 epoch / 3 epochs\n", | |
" 75.759 iters/sec. Estimated time to finish: 0:00:00.\n", | |
"\u001b[4A\u001b[J" | |
] | |
} | |
], | |
"source": [ | |
"def test_original():\n", | |
" # Set up a neural network to train\n", | |
" # Classifier reports softmax cross entropy loss and accuracy at every\n", | |
" # iteration, which will be used by the PrintReport extension below.\n", | |
" model = L.Classifier(MLP(args.unit, 10))\n", | |
" if args.gpu >= 0:\n", | |
" # Make a specified GPU current\n", | |
" chainer.cuda.get_device_from_id(args.gpu).use()\n", | |
" model.to_gpu() # Copy the model to the GPU\n", | |
"\n", | |
" # Setup an optimizer\n", | |
" optimizer = chainer.optimizers.Adam()\n", | |
" optimizer.setup(model)\n", | |
"\n", | |
" # Load the MNIST dataset\n", | |
" train, test = chainer.datasets.get_mnist()\n", | |
"\n", | |
" train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n", | |
" test_iter = chainer.iterators.SerialIterator(test, args.batchsize,\n", | |
" repeat=False, shuffle=False)\n", | |
"\n", | |
" # Set up a trainer\n", | |
" updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n", | |
" trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)\n", | |
"\n", | |
" # Evaluate the model with the test dataset for each epoch\n", | |
" trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n", | |
"\n", | |
" # Dump a computational graph from 'loss' variable at the first iteration\n", | |
" # The \"main\" refers to the target link of the \"main\" optimizer.\n", | |
" trainer.extend(extensions.dump_graph('main/loss'))\n", | |
"\n", | |
" # Take a snapshot for each specified epoch\n", | |
" frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)\n", | |
" trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))\n", | |
"\n", | |
" # Write a log of evaluation statistics for each epoch\n", | |
" trainer.extend(extensions.LogReport())\n", | |
"\n", | |
" # Save two plot images to the result dir\n", | |
" if extensions.PlotReport.available():\n", | |
" trainer.extend(\n", | |
" extensions.PlotReport(['main/loss', 'validation/main/loss'],\n", | |
" 'epoch', file_name='loss.png'))\n", | |
" trainer.extend(\n", | |
" extensions.PlotReport(\n", | |
" ['main/accuracy', 'validation/main/accuracy'],\n", | |
" 'epoch', file_name='accuracy.png'))\n", | |
"\n", | |
" # Print selected entries of the log to stdout\n", | |
" # Here \"main\" refers to the target link of the \"main\" optimizer again, and\n", | |
" # \"validation\" refers to the default name of the Evaluator extension.\n", | |
" # Entries other than 'epoch' are reported by the Classifier link, called by\n", | |
" # either the updater or the evaluator.\n", | |
" trainer.extend(extensions.PrintReport(\n", | |
" ['epoch', 'main/loss', 'validation/main/loss',\n", | |
" 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))\n", | |
"\n", | |
" # Print a progress bar to stdout\n", | |
" trainer.extend(extensions.ProgressBar())\n", | |
"\n", | |
" if args.resume:\n", | |
" # Resume from a snapshot\n", | |
" chainer.serializers.load_npz(args.resume, trainer)\n", | |
"\n", | |
" # Run the training\n", | |
" trainer.run()\n", | |
"\n", | |
"\n", | |
"test_original()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[{u'elapsed_time': 6.940603971481323,\n", | |
" u'epoch': 1,\n", | |
" u'iteration': 600,\n", | |
" u'main/accuracy': 0.9213500021273892,\n", | |
" u'main/loss': 0.2787705701092879,\n", | |
" u'validation/main/accuracy': 0.9598000049591064,\n", | |
" u'validation/main/loss': 0.13582063710317016},\n", | |
" {u'elapsed_time': 14.360282897949219,\n", | |
" u'epoch': 2,\n", | |
" u'iteration': 1200,\n", | |
" u'main/accuracy': 0.9687833403547604,\n", | |
" u'main/loss': 0.10487318117947628,\n", | |
" u'validation/main/accuracy': 0.9690000033378601,\n", | |
" u'validation/main/loss': 0.0970317642763257},\n", | |
" {u'elapsed_time': 22.778912782669067,\n", | |
" u'epoch': 3,\n", | |
" u'iteration': 1800,\n", | |
" u'main/accuracy': 0.9782666764656702,\n", | |
" u'main/loss': 0.07001853270921857,\n", | |
" u'validation/main/accuracy': 0.9693000078201294,\n", | |
" u'validation/main/loss': 0.10214902652136516}]" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import json\n", | |
"with open(\"result/log\") as fin:\n", | |
" result = json.load(fin)\n", | |
"\n", | |
"result" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Little Modification to Report Parameter Metrics\n", | |
"\n", | |
"This time I added `trainer.extend(extensions.ParameterStatistics(model))` to report parameter metrics (e.g. average, min, max, ...).\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"epoch main/loss validation/main/loss main/accuracy validation/main/accuracy elapsed_time\n", | |
"\u001b[J total [##................................................] 5.56%\n", | |
"this epoch [########..........................................] 16.67%\n", | |
" 100 iter, 0 epoch / 3 epochs\n", | |
" inf iters/sec. Estimated time to finish: 0:00:00.\n", | |
"\u001b[4A\u001b[J total [#####.............................................] 11.11%\n", | |
"this epoch [################..................................] 33.33%\n", | |
" 200 iter, 0 epoch / 3 epochs\n", | |
" 36.245 iters/sec. Estimated time to finish: 0:00:44.144241.\n", | |
"\u001b[4A\u001b[J total [########..........................................] 16.67%\n", | |
"this epoch [#########################.........................] 50.00%\n", | |
" 300 iter, 0 epoch / 3 epochs\n", | |
" 35.457 iters/sec. Estimated time to finish: 0:00:42.304253.\n", | |
"\u001b[4A\u001b[J total [###########.......................................] 22.22%\n", | |
"this epoch [#################################.................] 66.67%\n", | |
" 400 iter, 0 epoch / 3 epochs\n", | |
" 34.925 iters/sec. Estimated time to finish: 0:00:40.085701.\n", | |
"\u001b[4A\u001b[J total [#############.....................................] 27.78%\n", | |
"this epoch [#########################################.........] 83.33%\n", | |
" 500 iter, 0 epoch / 3 epochs\n", | |
" 36.517 iters/sec. Estimated time to finish: 0:00:35.600201.\n", | |
"\u001b[4A\u001b[J1 0.284049 0.135925 0.9185 0.9596 16.9108 \n", | |
"\u001b[J total [################..................................] 33.33%\n", | |
"this epoch [..................................................] 0.00%\n", | |
" 600 iter, 1 epoch / 3 epochs\n", | |
" 35.603 iters/sec. Estimated time to finish: 0:00:33.705008.\n", | |
"\u001b[4A\u001b[J total [###################...............................] 38.89%\n", | |
"this epoch [########..........................................] 16.67%\n", | |
" 700 iter, 1 epoch / 3 epochs\n", | |
" 36.07 iters/sec. Estimated time to finish: 0:00:30.496527.\n", | |
"\u001b[4A\u001b[J total [######################............................] 44.44%\n", | |
"this epoch [################..................................] 33.33%\n", | |
" 800 iter, 1 epoch / 3 epochs\n", | |
" 35.845 iters/sec. Estimated time to finish: 0:00:27.898093.\n", | |
"\u001b[4A\u001b[J total [#########################.........................] 50.00%\n", | |
"this epoch [#########################.........................] 50.00%\n", | |
" 900 iter, 1 epoch / 3 epochs\n", | |
" 36.036 iters/sec. Estimated time to finish: 0:00:24.975288.\n", | |
"\u001b[4A\u001b[J total [###########################.......................] 55.56%\n", | |
"this epoch [#################################.................] 66.67%\n", | |
" 1000 iter, 1 epoch / 3 epochs\n", | |
" 35.513 iters/sec. Estimated time to finish: 0:00:22.527099.\n", | |
"\u001b[4A\u001b[J total [##############################....................] 61.11%\n", | |
"this epoch [#########################################.........] 83.33%\n", | |
" 1100 iter, 1 epoch / 3 epochs\n", | |
" 36.083 iters/sec. Estimated time to finish: 0:00:19.399488.\n", | |
"\u001b[4A\u001b[J2 0.112587 0.0972494 0.96555 0.97 34.4807 \n", | |
"\u001b[J total [#################################.................] 66.67%\n", | |
"this epoch [..................................................] 0.00%\n", | |
" 1200 iter, 2 epoch / 3 epochs\n", | |
" 34.733 iters/sec. Estimated time to finish: 0:00:17.274399.\n", | |
"\u001b[4A\u001b[J total [####################################..............] 72.22%\n", | |
"this epoch [########..........................................] 16.67%\n", | |
" 1300 iter, 2 epoch / 3 epochs\n", | |
" 35.052 iters/sec. Estimated time to finish: 0:00:14.264700.\n", | |
"\u001b[4A\u001b[J total [######################################............] 77.78%\n", | |
"this epoch [################..................................] 33.33%\n", | |
" 1400 iter, 2 epoch / 3 epochs\n", | |
" 35.583 iters/sec. Estimated time to finish: 0:00:11.241423.\n", | |
"\u001b[4A\u001b[J total [#########################################.........] 83.33%\n", | |
"this epoch [#########################.........................] 50.00%\n", | |
" 1500 iter, 2 epoch / 3 epochs\n", | |
" 35.862 iters/sec. Estimated time to finish: 0:00:08.365285.\n", | |
"\u001b[4A\u001b[J total [############################################......] 88.89%\n", | |
"this epoch [#################################.................] 66.67%\n", | |
" 1600 iter, 2 epoch / 3 epochs\n", | |
" 35.639 iters/sec. Estimated time to finish: 0:00:05.611860.\n", | |
"\u001b[4A\u001b[J total [###############################################...] 94.44%\n", | |
"this epoch [#########################################.........] 83.33%\n", | |
" 1700 iter, 2 epoch / 3 epochs\n", | |
" 36.06 iters/sec. Estimated time to finish: 0:00:02.773170.\n", | |
"\u001b[4A\u001b[J3 0.0734751 0.079766 0.976883 0.9748 50.3524 \n", | |
"\u001b[J total [##################################################] 100.00%\n", | |
"this epoch [..................................................] 0.00%\n", | |
" 1800 iter, 3 epoch / 3 epochs\n", | |
" 35.806 iters/sec. Estimated time to finish: 0:00:00.\n", | |
"\u001b[4A\u001b[J" | |
] | |
} | |
], | |
"source": [ | |
"def test_parameter_reporting():\n", | |
" # Set up a neural network to train\n", | |
" # Classifier reports softmax cross entropy loss and accuracy at every\n", | |
" # iteration, which will be used by the PrintReport extension below.\n", | |
" model = L.Classifier(MLP(args.unit, 10))\n", | |
" if args.gpu >= 0:\n", | |
" # Make a specified GPU current\n", | |
" chainer.cuda.get_device_from_id(args.gpu).use()\n", | |
" model.to_gpu() # Copy the model to the GPU\n", | |
"\n", | |
" # Setup an optimizer\n", | |
" optimizer = chainer.optimizers.Adam()\n", | |
" optimizer.setup(model)\n", | |
"\n", | |
" # Load the MNIST dataset\n", | |
" train, test = chainer.datasets.get_mnist()\n", | |
"\n", | |
" train_iter = chainer.iterators.SerialIterator(train, args.batchsize)\n", | |
" test_iter = chainer.iterators.SerialIterator(test, args.batchsize,\n", | |
" repeat=False, shuffle=False)\n", | |
"\n", | |
" # Set up a trainer\n", | |
" updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)\n", | |
" trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)\n", | |
"\n", | |
" # Evaluate the model with the test dataset for each epoch\n", | |
" trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))\n", | |
"\n", | |
" # Dump a computational graph from 'loss' variable at the first iteration\n", | |
" # The \"main\" refers to the target link of the \"main\" optimizer.\n", | |
" trainer.extend(extensions.dump_graph('main/loss'))\n", | |
"\n", | |
" # Take a snapshot for each specified epoch\n", | |
" frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)\n", | |
" trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))\n", | |
"\n", | |
" ##### THIS IS WHERE I ADDED THE CODE #####\n", | |
" trainer.extend(extensions.ParameterStatistics(model))\n", | |
" \n", | |
" # Write a log of evaluation statistics for each epoch\n", | |
" trainer.extend(extensions.LogReport())\n", | |
"\n", | |
" # Save two plot images to the result dir\n", | |
" if extensions.PlotReport.available():\n", | |
" trainer.extend(\n", | |
" extensions.PlotReport(['main/loss', 'validation/main/loss'],\n", | |
" 'epoch', file_name='loss.png'))\n", | |
" trainer.extend(\n", | |
" extensions.PlotReport(\n", | |
" ['main/accuracy', 'validation/main/accuracy'],\n", | |
" 'epoch', file_name='accuracy.png'))\n", | |
"\n", | |
" # Print selected entries of the log to stdout\n", | |
" # Here \"main\" refers to the target link of the \"main\" optimizer again, and\n", | |
" # \"validation\" refers to the default name of the Evaluator extension.\n", | |
" # Entries other than 'epoch' are reported by the Classifier link, called by\n", | |
" # either the updater or the evaluator.\n", | |
" trainer.extend(extensions.PrintReport(\n", | |
" ['epoch', 'main/loss', 'validation/main/loss',\n", | |
" 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))\n", | |
"\n", | |
" # Print a progress bar to stdout\n", | |
" trainer.extend(extensions.ProgressBar())\n", | |
"\n", | |
" if args.resume:\n", | |
" # Resume from a snapshot\n", | |
" chainer.serializers.load_npz(args.resume, trainer)\n", | |
"\n", | |
" # Run the training\n", | |
" trainer.run()\n", | |
"\n", | |
"\n", | |
"test_parameter_reporting()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[{u'None/predictor/l1/W/data/max': 0.18769985591371854,\n", | |
" u'None/predictor/l1/W/data/mean': 0.0006860141372822189,\n", | |
" u'None/predictor/l1/W/data/min': -0.21658104345202445,\n", | |
" u'None/predictor/l1/W/data/percentile/0': -0.1320047355272498,\n", | |
" u'None/predictor/l1/W/data/percentile/1': -0.08497818301255008,\n", | |
" u'None/predictor/l1/W/data/percentile/2': -0.04122352957670082,\n", | |
" u'None/predictor/l1/W/data/percentile/3': 0.0008963784146650747,\n", | |
" u'None/predictor/l1/W/data/percentile/4': 0.0428067545834066,\n", | |
" u'None/predictor/l1/W/data/percentile/5': 0.08460525170120099,\n", | |
" u'None/predictor/l1/W/data/percentile/6': 0.1288499908778201,\n", | |
" u'None/predictor/l1/W/data/std': 0.04230530080075065,\n", | |
" u'None/predictor/l1/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l1/W/grad/max': 0.013363681441017737,\n", | |
" u'None/predictor/l1/W/grad/mean': -2.5457882616741755e-06,\n", | |
" u'None/predictor/l1/W/grad/min': -0.013039940825353065,\n", | |
" u'None/predictor/l1/W/grad/percentile/0': -0.007410150919836411,\n", | |
" u'None/predictor/l1/W/grad/percentile/1': -0.0032792949646553034,\n", | |
" u'None/predictor/l1/W/grad/percentile/2': -0.00044474147839619377,\n", | |
" u'None/predictor/l1/W/grad/percentile/3': 0.0,\n", | |
" u'None/predictor/l1/W/grad/percentile/4': 0.00041870361433874256,\n", | |
" u'None/predictor/l1/W/grad/percentile/5': 0.003310361570617339,\n", | |
" u'None/predictor/l1/W/grad/percentile/6': 0.007486925448873247,\n", | |
" u'None/predictor/l1/W/grad/std': 0.001357260803342797,\n", | |
" u'None/predictor/l1/W/grad/zeros': 64320.0,\n", | |
" u'None/predictor/l1/b/data/max': 0.0548983522199948,\n", | |
" u'None/predictor/l1/b/data/mean': 0.012055125747569945,\n", | |
" u'None/predictor/l1/b/data/min': -0.029791952808154748,\n", | |
" u'None/predictor/l1/b/data/percentile/0': -0.028762824200974896,\n", | |
" u'None/predictor/l1/b/data/percentile/1': -0.016089606840499066,\n", | |
" u'None/predictor/l1/b/data/percentile/2': -0.005493110008535476,\n", | |
" u'None/predictor/l1/b/data/percentile/3': 0.012852825987016937,\n", | |
" u'None/predictor/l1/b/data/percentile/4': 0.027909995105618788,\n", | |
" u'None/predictor/l1/b/data/percentile/5': 0.03809976473372724,\n", | |
" u'None/predictor/l1/b/data/percentile/6': 0.053035637028444944,\n", | |
" u'None/predictor/l1/b/data/std': 0.0152910965756746,\n", | |
" u'None/predictor/l1/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l1/b/grad/max': 0.013211307424741487,\n", | |
" u'None/predictor/l1/b/grad/mean': -7.848533850525049e-05,\n", | |
" u'None/predictor/l1/b/grad/min': -0.013068354073135804,\n", | |
" u'None/predictor/l1/b/grad/percentile/0': -0.012563953940001484,\n", | |
" u'None/predictor/l1/b/grad/percentile/1': -0.008738801820065204,\n", | |
" u'None/predictor/l1/b/grad/percentile/2': -0.004217391109127184,\n", | |
" u'None/predictor/l1/b/grad/percentile/3': -9.326697650503609e-05,\n", | |
" u'None/predictor/l1/b/grad/percentile/4': 0.004075311267449891,\n", | |
" u'None/predictor/l1/b/grad/percentile/5': 0.008706802054390925,\n", | |
" u'None/predictor/l1/b/grad/percentile/6': 0.012666157135854028,\n", | |
" u'None/predictor/l1/b/grad/std': 0.004354175603560482,\n", | |
" u'None/predictor/l1/b/grad/zeros': 7.0,\n", | |
" u'None/predictor/l2/W/data/max': 0.3254947525759538,\n", | |
" u'None/predictor/l2/W/data/mean': 0.003950303411500803,\n", | |
" u'None/predictor/l2/W/data/min': -0.32085575138529143,\n", | |
" u'None/predictor/l2/W/data/percentile/0': -0.23240646572480841,\n", | |
" u'None/predictor/l2/W/data/percentile/1': -0.14860894085486717,\n", | |
" u'None/predictor/l2/W/data/percentile/2': -0.07275652346237013,\n", | |
" u'None/predictor/l2/W/data/percentile/3': 0.0038656487325230654,\n", | |
" u'None/predictor/l2/W/data/percentile/4': 0.08040970983579382,\n", | |
" u'None/predictor/l2/W/data/percentile/5': 0.15971063587005932,\n", | |
" u'None/predictor/l2/W/data/percentile/6': 0.24027507231731624,\n", | |
" u'None/predictor/l2/W/data/std': 0.07691252761830886,\n", | |
" u'None/predictor/l2/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l2/W/grad/max': 0.015284300476778298,\n", | |
" u'None/predictor/l2/W/grad/mean': -1.8781126353412483e-05,\n", | |
" u'None/predictor/l2/W/grad/min': -0.015172957402343552,\n", | |
" u'None/predictor/l2/W/grad/percentile/0': -0.00934184331272488,\n", | |
" u'None/predictor/l2/W/grad/percentile/1': -0.004634502316668396,\n", | |
" u'None/predictor/l2/W/grad/percentile/2': -0.001432369026768807,\n", | |
" u'None/predictor/l2/W/grad/percentile/3': -4.3381341113664836e-07,\n", | |
" u'None/predictor/l2/W/grad/percentile/4': 0.0013815956475082766,\n", | |
" u'None/predictor/l2/W/grad/percentile/5': 0.004639800911789835,\n", | |
" u'None/predictor/l2/W/grad/percentile/6': 0.009400696555757971,\n", | |
" u'None/predictor/l2/W/grad/std': 0.002028256375051569,\n", | |
" u'None/predictor/l2/W/grad/zeros': 5744.0,\n", | |
" u'None/predictor/l2/b/data/max': 0.04791020446437566,\n", | |
" u'None/predictor/l2/b/data/mean': 0.010086397930419934,\n", | |
" u'None/predictor/l2/b/data/min': -0.032200952287918576,\n", | |
" u'None/predictor/l2/b/data/percentile/0': -0.03167514712518647,\n", | |
" u'None/predictor/l2/b/data/percentile/1': -0.019231082678096045,\n", | |
" u'None/predictor/l2/b/data/percentile/2': -0.007152004249883097,\n", | |
" u'None/predictor/l2/b/data/percentile/3': 0.011697621105352786,\n", | |
" u'None/predictor/l2/b/data/percentile/4': 0.025173387602675477,\n", | |
" u'None/predictor/l2/b/data/percentile/5': 0.037360551587680896,\n", | |
" u'None/predictor/l2/b/data/percentile/6': 0.04640533133965915,\n", | |
" u'None/predictor/l2/b/data/std': 0.015411058925868323,\n", | |
" u'None/predictor/l2/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l2/b/grad/max': 0.007923950732608015,\n", | |
" u'None/predictor/l2/b/grad/mean': -8.564058850538459e-05,\n", | |
" u'None/predictor/l2/b/grad/min': -0.008049897506910687,\n", | |
" u'None/predictor/l2/b/grad/percentile/0': -0.0077712604418969725,\n", | |
" u'None/predictor/l2/b/grad/percentile/1': -0.005579872188582551,\n", | |
" u'None/predictor/l2/b/grad/percentile/2': -0.0026059530557865306,\n", | |
" u'None/predictor/l2/b/grad/percentile/3': -3.509546817892062e-05,\n", | |
" u'None/predictor/l2/b/grad/percentile/4': 0.0024047468276375064,\n", | |
" u'None/predictor/l2/b/grad/percentile/5': 0.005453195185978501,\n", | |
" u'None/predictor/l2/b/grad/percentile/6': 0.007656289307926475,\n", | |
" u'None/predictor/l2/b/grad/std': 0.0026661352358253983,\n", | |
" u'None/predictor/l2/b/grad/zeros': 20.0,\n", | |
" u'None/predictor/l3/W/data/max': 0.24597564838826658,\n", | |
" u'None/predictor/l3/W/data/mean': -0.006622560692982613,\n", | |
" u'None/predictor/l3/W/data/min': -0.32619385354220864,\n", | |
" u'None/predictor/l3/W/data/percentile/0': -0.2306768275239463,\n", | |
" u'None/predictor/l3/W/data/percentile/1': -0.17660742681579786,\n", | |
" u'None/predictor/l3/W/data/percentile/2': -0.09317452937077603,\n", | |
" u'None/predictor/l3/W/data/percentile/3': -0.005512705517830909,\n", | |
" u'None/predictor/l3/W/data/percentile/4': 0.07775105796712511,\n", | |
" u'None/predictor/l3/W/data/percentile/5': 0.15502845389973113,\n", | |
" u'None/predictor/l3/W/data/percentile/6': 0.21997718072928502,\n", | |
" u'None/predictor/l3/W/data/std': 0.08410330789784591,\n", | |
" u'None/predictor/l3/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l3/W/grad/max': 0.0734366792657723,\n", | |
" u'None/predictor/l3/W/grad/mean': 4.1129688657196943e-10,\n", | |
" u'None/predictor/l3/W/grad/min': -0.07636503320497771,\n", | |
" u'None/predictor/l3/W/grad/percentile/0': -0.06427242998719027,\n", | |
" u'None/predictor/l3/W/grad/percentile/1': -0.036685596814023974,\n", | |
" u'None/predictor/l3/W/grad/percentile/2': -0.00975563835099175,\n", | |
" u'None/predictor/l3/W/grad/percentile/3': 9.153801069754393e-05,\n", | |
" u'None/predictor/l3/W/grad/percentile/4': 0.009530000375109747,\n", | |
" u'None/predictor/l3/W/grad/percentile/5': 0.03502504599237309,\n", | |
" u'None/predictor/l3/W/grad/percentile/6': 0.06173668931481425,\n", | |
" u'None/predictor/l3/W/grad/std': 0.01510179663853099,\n", | |
" u'None/predictor/l3/W/grad/zeros': 205.0,\n", | |
" u'None/predictor/l3/b/data/max': 0.02937242121338689,\n", | |
" u'None/predictor/l3/b/data/mean': 0.0006898459542465693,\n", | |
" u'None/predictor/l3/b/data/min': -0.03381775257643312,\n", | |
" u'None/predictor/l3/b/data/percentile/0': -0.033618681625444825,\n", | |
" u'None/predictor/l3/b/data/percentile/1': -0.03032635435910036,\n", | |
" u'None/predictor/l3/b/data/percentile/2': -0.010998366487167227,\n", | |
" u'None/predictor/l3/b/data/percentile/3': -0.0001515522909911245,\n", | |
" u'None/predictor/l3/b/data/percentile/4': 0.015128768134392312,\n", | |
" u'None/predictor/l3/b/data/percentile/5': 0.026865516303920516,\n", | |
" u'None/predictor/l3/b/data/percentile/6': 0.029229483652759437,\n", | |
" u'None/predictor/l3/b/data/std': 0.01670785871508997,\n", | |
" u'None/predictor/l3/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l3/b/grad/max': 0.020958167066176734,\n", | |
" u'None/predictor/l3/b/grad/mean': 3.363035551400227e-10,\n", | |
" u'None/predictor/l3/b/grad/min': -0.021081253852850448,\n", | |
" u'None/predictor/l3/b/grad/percentile/0': -0.02098587781309286,\n", | |
" u'None/predictor/l3/b/grad/percentile/1': -0.019408504847871797,\n", | |
" u'None/predictor/l3/b/grad/percentile/2': -0.01083751097976544,\n", | |
" u'None/predictor/l3/b/grad/percentile/3': -1.5249256520064592e-05,\n", | |
" u'None/predictor/l3/b/grad/percentile/4': 0.010781639548587657,\n", | |
" u'None/predictor/l3/b/grad/percentile/5': 0.01927716390611354,\n", | |
" u'None/predictor/l3/b/grad/percentile/6': 0.020862320394769613,\n", | |
" u'None/predictor/l3/b/grad/std': 0.012271623574585343,\n", | |
" u'None/predictor/l3/b/grad/zeros': 0.0,\n", | |
" u'elapsed_time': 16.910752058029175,\n", | |
" u'epoch': 1,\n", | |
" u'iteration': 600,\n", | |
" u'main/accuracy': 0.9185000030696392,\n", | |
" u'main/loss': 0.28404941281303764,\n", | |
" u'validation/main/accuracy': 0.9596000021696091,\n", | |
" u'validation/main/loss': 0.13592462537344546},\n", | |
" {u'None/predictor/l1/W/data/max': 0.2295598153024912,\n", | |
" u'None/predictor/l1/W/data/mean': -0.0010978691087802873,\n", | |
" u'None/predictor/l1/W/data/min': -0.3337414373457432,\n", | |
" u'None/predictor/l1/W/data/percentile/0': -0.1715770532056913,\n", | |
" u'None/predictor/l1/W/data/percentile/1': -0.10327599270020436,\n", | |
" u'None/predictor/l1/W/data/percentile/2': -0.049214466670726716,\n", | |
" u'None/predictor/l1/W/data/percentile/3': -0.0005298784545751308,\n", | |
" u'None/predictor/l1/W/data/percentile/4': 0.04737412391026749,\n", | |
" u'None/predictor/l1/W/data/percentile/5': 0.09677141055891911,\n", | |
" u'None/predictor/l1/W/data/percentile/6': 0.15023443747842113,\n", | |
" u'None/predictor/l1/W/data/std': 0.049587591936190924,\n", | |
" u'None/predictor/l1/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l1/W/grad/max': 0.01430551103898324,\n", | |
" u'None/predictor/l1/W/grad/mean': 1.9707583105225503e-06,\n", | |
" u'None/predictor/l1/W/grad/min': -0.013791593328739206,\n", | |
" u'None/predictor/l1/W/grad/percentile/0': -0.007352665172329152,\n", | |
" u'None/predictor/l1/W/grad/percentile/1': -0.0026086697971421536,\n", | |
" u'None/predictor/l1/W/grad/percentile/2': -0.00021726978253297155,\n", | |
" u'None/predictor/l1/W/grad/percentile/3': 0.0,\n", | |
" u'None/predictor/l1/W/grad/percentile/4': 0.00016954874927197587,\n", | |
" u'None/predictor/l1/W/grad/percentile/5': 0.00274226690423861,\n", | |
" u'None/predictor/l1/W/grad/percentile/6': 0.007588650849498316,\n", | |
" u'None/predictor/l1/W/grad/std': 0.0011635373037764414,\n", | |
" u'None/predictor/l1/W/grad/zeros': 67089.0,\n", | |
" u'None/predictor/l1/b/data/max': 0.08538756048927705,\n", | |
" u'None/predictor/l1/b/data/mean': 0.013272578072113295,\n", | |
" u'None/predictor/l1/b/data/min': -0.047418129605551564,\n", | |
" u'None/predictor/l1/b/data/percentile/0': -0.043574936308885356,\n", | |
" u'None/predictor/l1/b/data/percentile/1': -0.023837999054799473,\n", | |
" u'None/predictor/l1/b/data/percentile/2': -0.008634803174209161,\n", | |
" u'None/predictor/l1/b/data/percentile/3': 0.012941058898965518,\n", | |
" u'None/predictor/l1/b/data/percentile/4': 0.03444813090563782,\n", | |
" u'None/predictor/l1/b/data/percentile/5': 0.05307643705038971,\n", | |
" u'None/predictor/l1/b/data/percentile/6': 0.08173325167713376,\n", | |
" u'None/predictor/l1/b/data/std': 0.021116428058594466,\n", | |
" u'None/predictor/l1/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l1/b/grad/max': 0.013569926251657307,\n", | |
" u'None/predictor/l1/b/grad/mean': -9.288730958392222e-06,\n", | |
" u'None/predictor/l1/b/grad/min': -0.01307839693656812,\n", | |
" u'None/predictor/l1/b/grad/percentile/0': -0.01237880468803853,\n", | |
" u'None/predictor/l1/b/grad/percentile/1': -0.007426289065470298,\n", | |
" u'None/predictor/l1/b/grad/percentile/2': -0.0031788241997480304,\n", | |
" u'None/predictor/l1/b/grad/percentile/3': -5.736688619763915e-05,\n", | |
" u'None/predictor/l1/b/grad/percentile/4': 0.003198311038519045,\n", | |
" u'None/predictor/l1/b/grad/percentile/5': 0.007663695951051998,\n", | |
" u'None/predictor/l1/b/grad/percentile/6': 0.012872878613070614,\n", | |
" u'None/predictor/l1/b/grad/std': 0.003696984149767862,\n", | |
" u'None/predictor/l1/b/grad/zeros': 6.0,\n", | |
" u'None/predictor/l2/W/data/max': 0.38595819850762686,\n", | |
" u'None/predictor/l2/W/data/mean': 0.004569140146486461,\n", | |
" u'None/predictor/l2/W/data/min': -0.39474050198992094,\n", | |
" u'None/predictor/l2/W/data/percentile/0': -0.2631317454326082,\n", | |
" u'None/predictor/l2/W/data/percentile/1': -0.16407296296592544,\n", | |
" u'None/predictor/l2/W/data/percentile/2': -0.07859283381623271,\n", | |
" u'None/predictor/l2/W/data/percentile/3': 0.00472891669603996,\n", | |
" u'None/predictor/l2/W/data/percentile/4': 0.08707444573851172,\n", | |
" u'None/predictor/l2/W/data/percentile/5': 0.17526727512900028,\n", | |
" u'None/predictor/l2/W/data/percentile/6': 0.28157698171670975,\n", | |
" u'None/predictor/l2/W/data/std': 0.08440262224525213,\n", | |
" u'None/predictor/l2/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l2/W/grad/max': 0.011583656925940886,\n", | |
" u'None/predictor/l2/W/grad/mean': -2.105507710060313e-06,\n", | |
" u'None/predictor/l2/W/grad/min': -0.01143122955535849,\n", | |
" u'None/predictor/l2/W/grad/percentile/0': -0.006480507606540278,\n", | |
" u'None/predictor/l2/W/grad/percentile/1': -0.0029765916828615184,\n", | |
" u'None/predictor/l2/W/grad/percentile/2': -0.0008427810466160833,\n", | |
" u'None/predictor/l2/W/grad/percentile/3': -1.6187956525482346e-07,\n", | |
" u'None/predictor/l2/W/grad/percentile/4': 0.0008328083104854974,\n", | |
" u'None/predictor/l2/W/grad/percentile/5': 0.0030833940541642947,\n", | |
" u'None/predictor/l2/W/grad/percentile/6': 0.0066814565342781995,\n", | |
" u'None/predictor/l2/W/grad/std': 0.0013231629846510865,\n", | |
" u'None/predictor/l2/W/grad/zeros': 4243.0,\n", | |
" u'None/predictor/l2/b/data/max': 0.05736853959038854,\n", | |
" u'None/predictor/l2/b/data/mean': 0.014847257463261486,\n", | |
" u'None/predictor/l2/b/data/min': -0.04029602174957593,\n", | |
" u'None/predictor/l2/b/data/percentile/0': -0.038776279838063095,\n", | |
" u'None/predictor/l2/b/data/percentile/1': -0.019918942003246426,\n", | |
" u'None/predictor/l2/b/data/percentile/2': -0.004548643746025865,\n", | |
" u'None/predictor/l2/b/data/percentile/3': 0.01614985933760181,\n", | |
" u'None/predictor/l2/b/data/percentile/4': 0.033526092198897815,\n", | |
" u'None/predictor/l2/b/data/percentile/5': 0.04903571015953027,\n", | |
" u'None/predictor/l2/b/data/percentile/6': 0.05653972272616058,\n", | |
" u'None/predictor/l2/b/data/std': 0.018573332748686274,\n", | |
" u'None/predictor/l2/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l2/b/grad/max': 0.005730223531524341,\n", | |
" u'None/predictor/l2/b/grad/mean': -1.6921611055451535e-05,\n", | |
" u'None/predictor/l2/b/grad/min': -0.005733378459893477,\n", | |
" u'None/predictor/l2/b/grad/percentile/0': -0.005532953142384715,\n", | |
" u'None/predictor/l2/b/grad/percentile/1': -0.003881969137598451,\n", | |
" u'None/predictor/l2/b/grad/percentile/2': -0.0018137920477178915,\n", | |
" u'None/predictor/l2/b/grad/percentile/3': -1.8478656669386102e-05,\n", | |
" u'None/predictor/l2/b/grad/percentile/4': 0.0017994521200937993,\n", | |
" u'None/predictor/l2/b/grad/percentile/5': 0.003973955448431132,\n", | |
" u'None/predictor/l2/b/grad/percentile/6': 0.005549185480232125,\n", | |
" u'None/predictor/l2/b/grad/std': 0.0019191197817660093,\n", | |
" u'None/predictor/l2/b/grad/zeros': 13.0,\n", | |
" u'None/predictor/l3/W/data/max': 0.2618614660203457,\n", | |
" u'None/predictor/l3/W/data/mean': -0.010291073985087374,\n", | |
" u'None/predictor/l3/W/data/min': -0.445046594440937,\n", | |
" u'None/predictor/l3/W/data/percentile/0': -0.2895010172459134,\n", | |
" u'None/predictor/l3/W/data/percentile/1': -0.21029580955842156,\n", | |
" u'None/predictor/l3/W/data/percentile/2': -0.11003875367748367,\n", | |
" u'None/predictor/l3/W/data/percentile/3': -0.008205772105914852,\n", | |
" u'None/predictor/l3/W/data/percentile/4': 0.086189404697402,\n", | |
" u'None/predictor/l3/W/data/percentile/5': 0.17154898492981963,\n", | |
" u'None/predictor/l3/W/data/percentile/6': 0.2427794595418794,\n", | |
" u'None/predictor/l3/W/data/std': 0.09699305151899655,\n", | |
" u'None/predictor/l3/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l3/W/grad/max': 0.047409058484093596,\n", | |
" u'None/predictor/l3/W/grad/mean': 1.141019166601397e-09,\n", | |
" u'None/predictor/l3/W/grad/min': -0.0504266367907015,\n", | |
" u'None/predictor/l3/W/grad/percentile/0': -0.04303241542093122,\n", | |
" u'None/predictor/l3/W/grad/percentile/1': -0.023907562216809845,\n", | |
" u'None/predictor/l3/W/grad/percentile/2': -0.005392467489394444,\n", | |
" u'None/predictor/l3/W/grad/percentile/3': 0.00013196134112376448,\n", | |
" u'None/predictor/l3/W/grad/percentile/4': 0.005287904573399991,\n", | |
" u'None/predictor/l3/W/grad/percentile/5': 0.022380537163379257,\n", | |
" u'None/predictor/l3/W/grad/percentile/6': 0.04061083738548267,\n", | |
" u'None/predictor/l3/W/grad/std': 0.009535577121035506,\n", | |
" u'None/predictor/l3/W/grad/zeros': 135.0,\n", | |
" u'None/predictor/l3/b/data/max': 0.026389154453451434,\n", | |
" u'None/predictor/l3/b/data/mean': -0.0002436420226024912,\n", | |
" u'None/predictor/l3/b/data/min': -0.029270565885429582,\n", | |
" u'None/predictor/l3/b/data/percentile/0': -0.029142855942780484,\n", | |
" u'None/predictor/l3/b/data/percentile/1': -0.027030729968198917,\n", | |
" u'None/predictor/l3/b/data/percentile/2': -0.013837539287600236,\n", | |
" u'None/predictor/l3/b/data/percentile/3': -0.0006820206931130694,\n", | |
" u'None/predictor/l3/b/data/percentile/4': 0.015336115136258799,\n", | |
" u'None/predictor/l3/b/data/percentile/5': 0.02557801643028732,\n", | |
" u'None/predictor/l3/b/data/percentile/6': 0.02634290535563945,\n", | |
" u'None/predictor/l3/b/data/std': 0.015980343559446435,\n", | |
" u'None/predictor/l3/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l3/b/grad/max': 0.013331305620376953,\n", | |
" u'None/predictor/l3/b/grad/mean': 1.002950659222008e-09,\n", | |
" u'None/predictor/l3/b/grad/min': -0.013989534929278307,\n", | |
" u'None/predictor/l3/b/grad/percentile/0': -0.013920330119702479,\n", | |
" u'None/predictor/l3/b/grad/percentile/1': -0.012775789038256071,\n", | |
" u'None/predictor/l3/b/grad/percentile/2': -0.006642490836205779,\n", | |
" u'None/predictor/l3/b/grad/percentile/3': 0.00030572686263478016,\n", | |
" u'None/predictor/l3/b/grad/percentile/4': 0.0064399208388081575,\n", | |
" u'None/predictor/l3/b/grad/percentile/5': 0.012200348811597216,\n", | |
" u'None/predictor/l3/b/grad/percentile/6': 0.013266821240928988,\n", | |
" u'None/predictor/l3/b/grad/std': 0.007767713066617337,\n", | |
" u'None/predictor/l3/b/grad/zeros': 0.0,\n", | |
" u'elapsed_time': 34.48065805435181,\n", | |
" u'epoch': 2,\n", | |
" u'iteration': 1200,\n", | |
" u'main/accuracy': 0.9655500056346258,\n", | |
" u'main/loss': 0.11258724196814,\n", | |
" u'validation/main/accuracy': 0.9700000059604644,\n", | |
" u'validation/main/loss': 0.09724940008949488},\n", | |
" {u'None/predictor/l1/W/data/max': 0.27185197348395984,\n", | |
" u'None/predictor/l1/W/data/mean': -0.0018086677351190398,\n", | |
" u'None/predictor/l1/W/data/min': -0.3958187406758467,\n", | |
" u'None/predictor/l1/W/data/percentile/0': -0.20385727424958108,\n", | |
" u'None/predictor/l1/W/data/percentile/1': -0.11698534017020969,\n", | |
" u'None/predictor/l1/W/data/percentile/2': -0.05451850489750008,\n", | |
" u'None/predictor/l1/W/data/percentile/3': -0.0009897575474557621,\n", | |
" u'None/predictor/l1/W/data/percentile/4': 0.05137862113049197,\n", | |
" u'None/predictor/l1/W/data/percentile/5': 0.10710877471574153,\n", | |
" u'None/predictor/l1/W/data/percentile/6': 0.16940773534787262,\n", | |
" u'None/predictor/l1/W/data/std': 0.0551770847166578,\n", | |
" u'None/predictor/l1/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l1/W/grad/max': 0.013656101867284937,\n", | |
" u'None/predictor/l1/W/grad/mean': 9.098795635746152e-07,\n", | |
" u'None/predictor/l1/W/grad/min': -0.013285819670224252,\n", | |
" u'None/predictor/l1/W/grad/percentile/0': -0.007165272038014878,\n", | |
" u'None/predictor/l1/W/grad/percentile/1': -0.0022454656175137882,\n", | |
" u'None/predictor/l1/W/grad/percentile/2': -0.00012885856785527783,\n", | |
" u'None/predictor/l1/W/grad/percentile/3': 0.0,\n", | |
" u'None/predictor/l1/W/grad/percentile/4': 8.493975607754234e-05,\n", | |
" u'None/predictor/l1/W/grad/percentile/5': 0.0023623810969903517,\n", | |
" u'None/predictor/l1/W/grad/percentile/6': 0.007440176921659513,\n", | |
" u'None/predictor/l1/W/grad/std': 0.0010541691524849738,\n", | |
" u'None/predictor/l1/W/grad/zeros': 68023.0,\n", | |
" u'None/predictor/l1/b/data/max': 0.09409072152028482,\n", | |
" u'None/predictor/l1/b/data/mean': 0.014366240447076658,\n", | |
" u'None/predictor/l1/b/data/min': -0.05377215398475528,\n", | |
" u'None/predictor/l1/b/data/percentile/0': -0.04946540089750718,\n", | |
" u'None/predictor/l1/b/data/percentile/1': -0.0262206041258089,\n", | |
" u'None/predictor/l1/b/data/percentile/2': -0.010352576444571432,\n", | |
" u'None/predictor/l1/b/data/percentile/3': 0.013620692878806342,\n", | |
" u'None/predictor/l1/b/data/percentile/4': 0.03883927839730615,\n", | |
" u'None/predictor/l1/b/data/percentile/5': 0.06370427280726525,\n", | |
" u'None/predictor/l1/b/data/percentile/6': 0.09198039733007803,\n", | |
" u'None/predictor/l1/b/data/std': 0.02443187476756672,\n", | |
" u'None/predictor/l1/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l1/b/grad/max': 0.012916438297446197,\n", | |
" u'None/predictor/l1/b/grad/mean': -6.758792552924812e-06,\n", | |
" u'None/predictor/l1/b/grad/min': -0.012597657297543871,\n", | |
" u'None/predictor/l1/b/grad/percentile/0': -0.011882684694883723,\n", | |
" u'None/predictor/l1/b/grad/percentile/1': -0.006773838302144701,\n", | |
" u'None/predictor/l1/b/grad/percentile/2': -0.002665127662558216,\n", | |
" u'None/predictor/l1/b/grad/percentile/3': -6.465573986620398e-05,\n", | |
" u'None/predictor/l1/b/grad/percentile/4': 0.0026809942840123457,\n", | |
" u'None/predictor/l1/b/grad/percentile/5': 0.007103103777146238,\n", | |
" u'None/predictor/l1/b/grad/percentile/6': 0.012212283092132662,\n", | |
" u'None/predictor/l1/b/grad/std': 0.0033267931569328844,\n", | |
" u'None/predictor/l1/b/grad/zeros': 6.0,\n", | |
" u'None/predictor/l2/W/data/max': 0.42594017311930654,\n", | |
" u'None/predictor/l2/W/data/mean': 0.004585100904417535,\n", | |
" u'None/predictor/l2/W/data/min': -0.4193602364261945,\n", | |
" u'None/predictor/l2/W/data/percentile/0': -0.2870031386104177,\n", | |
" u'None/predictor/l2/W/data/percentile/1': -0.17638268876893315,\n", | |
" u'None/predictor/l2/W/data/percentile/2': -0.08273029080755269,\n", | |
" u'None/predictor/l2/W/data/percentile/3': 0.004919045708763102,\n", | |
" u'None/predictor/l2/W/data/percentile/4': 0.09155897223883613,\n", | |
" u'None/predictor/l2/W/data/percentile/5': 0.18563907284932304,\n", | |
" u'None/predictor/l2/W/data/percentile/6': 0.3057549727208191,\n", | |
" u'None/predictor/l2/W/data/std': 0.08973173742492993,\n", | |
" u'None/predictor/l2/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l2/W/grad/max': 0.010738343312016998,\n", | |
" u'None/predictor/l2/W/grad/mean': -1.1086801492895167e-06,\n", | |
" u'None/predictor/l2/W/grad/min': -0.010554489806527272,\n", | |
" u'None/predictor/l2/W/grad/percentile/0': -0.00569238985479338,\n", | |
" u'None/predictor/l2/W/grad/percentile/1': -0.0024711209500458595,\n", | |
" u'None/predictor/l2/W/grad/percentile/2': -0.0006279451677817872,\n", | |
" u'None/predictor/l2/W/grad/percentile/3': -1.1413112943836623e-07,\n", | |
" u'None/predictor/l2/W/grad/percentile/4': 0.0006171325545753931,\n", | |
" u'None/predictor/l2/W/grad/percentile/5': 0.002569888059629768,\n", | |
" u'None/predictor/l2/W/grad/percentile/6': 0.0059066941723352456,\n", | |
" u'None/predictor/l2/W/grad/std': 0.0010985501808075545,\n", | |
" u'None/predictor/l2/W/grad/zeros': 3916.0,\n", | |
" u'None/predictor/l2/b/data/max': 0.07187967089936137,\n", | |
" u'None/predictor/l2/b/data/mean': 0.01782079283768932,\n", | |
" u'None/predictor/l2/b/data/min': -0.043728755054374534,\n", | |
" u'None/predictor/l2/b/data/percentile/0': -0.04198552798283009,\n", | |
" u'None/predictor/l2/b/data/percentile/1': -0.021558611168259138,\n", | |
" u'None/predictor/l2/b/data/percentile/2': -0.006673424679421003,\n", | |
" u'None/predictor/l2/b/data/percentile/3': 0.018262709815365572,\n", | |
" u'None/predictor/l2/b/data/percentile/4': 0.04141569238068903,\n", | |
" u'None/predictor/l2/b/data/percentile/5': 0.06002165412134422,\n", | |
" u'None/predictor/l2/b/data/percentile/6': 0.07119944974335653,\n", | |
" u'None/predictor/l2/b/data/std': 0.02276027821935713,\n", | |
" u'None/predictor/l2/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l2/b/grad/max': 0.0049160390564550955,\n", | |
" u'None/predictor/l2/b/grad/mean': -9.985572270139186e-06,\n", | |
" u'None/predictor/l2/b/grad/min': -0.004835934512666427,\n", | |
" u'None/predictor/l2/b/grad/percentile/0': -0.004664398826965725,\n", | |
" u'None/predictor/l2/b/grad/percentile/1': -0.003293416322356983,\n", | |
" u'None/predictor/l2/b/grad/percentile/2': -0.0015120295459652303,\n", | |
" u'None/predictor/l2/b/grad/percentile/3': -1.5014628050688102e-05,\n", | |
" u'None/predictor/l2/b/grad/percentile/4': 0.0015077708413442064,\n", | |
" u'None/predictor/l2/b/grad/percentile/5': 0.0033866817279028477,\n", | |
" u'None/predictor/l2/b/grad/percentile/6': 0.004757825256751487,\n", | |
" u'None/predictor/l2/b/grad/std': 0.0016174230916900947,\n", | |
" u'None/predictor/l2/b/grad/zeros': 11.0,\n", | |
" u'None/predictor/l3/W/data/max': 0.30353682513038316,\n", | |
" u'None/predictor/l3/W/data/mean': -0.012781197633594275,\n", | |
" u'None/predictor/l3/W/data/min': -0.48483591253558794,\n", | |
" u'None/predictor/l3/W/data/percentile/0': -0.34600310326281686,\n", | |
" u'None/predictor/l3/W/data/percentile/1': -0.23641301063910153,\n", | |
" u'None/predictor/l3/W/data/percentile/2': -0.12205532338128369,\n", | |
" u'None/predictor/l3/W/data/percentile/3': -0.00738427418245313,\n", | |
" u'None/predictor/l3/W/data/percentile/4': 0.09309118541500833,\n", | |
" u'None/predictor/l3/W/data/percentile/5': 0.1800933897688586,\n", | |
" u'None/predictor/l3/W/data/percentile/6': 0.25322595016557464,\n", | |
" u'None/predictor/l3/W/data/std': 0.10624750250329575,\n", | |
" u'None/predictor/l3/W/data/zeros': 0.0,\n", | |
" u'None/predictor/l3/W/grad/max': 0.03892977581902717,\n", | |
" u'None/predictor/l3/W/grad/mean': 2.3498230971360362e-09,\n", | |
" u'None/predictor/l3/W/grad/min': -0.0421846509918881,\n", | |
" u'None/predictor/l3/W/grad/percentile/0': -0.03579130570738624,\n", | |
" u'None/predictor/l3/W/grad/percentile/1': -0.0190631178547456,\n", | |
" u'None/predictor/l3/W/grad/percentile/2': -0.0036464376532477265,\n", | |
" u'None/predictor/l3/W/grad/percentile/3': 9.100759447644958e-05,\n", | |
" u'None/predictor/l3/W/grad/percentile/4': 0.0036814866487753072,\n", | |
" u'None/predictor/l3/W/grad/percentile/5': 0.01758430899790021,\n", | |
" u'None/predictor/l3/W/grad/percentile/6': 0.03288057050147398,\n", | |
" u'None/predictor/l3/W/grad/std': 0.0074729266262147575,\n", | |
" u'None/predictor/l3/W/grad/zeros': 119.0,\n", | |
" u'None/predictor/l3/b/data/max': 0.02353643614798784,\n", | |
" u'None/predictor/l3/b/data/mean': -0.0014332280014059506,\n", | |
" u'None/predictor/l3/b/data/min': -0.036389247166613736,\n", | |
" u'None/predictor/l3/b/data/percentile/0': -0.036124117515093375,\n", | |
" u'None/predictor/l3/b/data/percentile/1': -0.031739280970717466,\n", | |
" u'None/predictor/l3/b/data/percentile/2': -0.011910545684384266,\n", | |
" u'None/predictor/l3/b/data/percentile/3': -0.0017472865573942423,\n", | |
" u'None/predictor/l3/b/data/percentile/4': 0.013693675600731977,\n", | |
" u'None/predictor/l3/b/data/percentile/5': 0.02219700478505716,\n", | |
" u'None/predictor/l3/b/data/percentile/6': 0.023460065061504942,\n", | |
" u'None/predictor/l3/b/data/std': 0.016169575022843975,\n", | |
" u'None/predictor/l3/b/data/zeros': 0.0,\n", | |
" u'None/predictor/l3/b/grad/max': 0.010434650448538984,\n", | |
" u'None/predictor/l3/b/grad/mean': 2.182454817514258e-09,\n", | |
" u'None/predictor/l3/b/grad/min': -0.010983652017118099,\n", | |
" u'None/predictor/l3/b/grad/percentile/0': -0.010925223681504266,\n", | |
" u'None/predictor/l3/b/grad/percentile/1': -0.009958908900198573,\n", | |
" u'None/predictor/l3/b/grad/percentile/2': -0.004830245970443916,\n", | |
" u'None/predictor/l3/b/grad/percentile/3': 0.00018675856216331018,\n", | |
" u'None/predictor/l3/b/grad/percentile/4': 0.004771847658956327,\n", | |
" u'None/predictor/l3/b/grad/percentile/5': 0.009501020630374713,\n", | |
" u'None/predictor/l3/b/grad/percentile/6': 0.010381417169433128,\n", | |
" u'None/predictor/l3/b/grad/std': 0.005975008951014995,\n", | |
" u'None/predictor/l3/b/grad/zeros': 0.0,\n", | |
" u'elapsed_time': 50.35235905647278,\n", | |
" u'epoch': 3,\n", | |
" u'iteration': 1800,\n", | |
" u'main/accuracy': 0.9768833428621292,\n", | |
" u'main/loss': 0.0734751478745602,\n", | |
" u'validation/main/accuracy': 0.9748000061511993,\n", | |
" u'validation/main/loss': 0.07976596570777474}]" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import json\n", | |
"with open(\"result/log\") as fin:\n", | |
" result = json.load(fin)\n", | |
"\n", | |
"result" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment