ここに本文が入る
# コメント
print("ほげほげ")
## コメント2
print("ふがふが")| # https://mail.python.org/pipermail/scipy-user/2011-May/029521.html | |
| import numpy as np | |
| def KLdivergence(x, y): | |
| """Compute the Kullback-Leibler divergence between two multivariate samples. | |
| Parameters | |
| ---------- | |
| x : 2D array (n,d) |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.utils.data import DataLoader | |
| import torchvision | |
| import torchmetrics | |
| import pytorch_lightning as pl | |
| class TenLayersModel(pl.LightningModule): | |
| def __init__(self): |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.utils.data import DataLoader | |
| import torchvision | |
| import torchmetrics | |
| import pytorch_lightning as pl | |
| import time | |
| class ResNet50(pl.LightningModule): |
| こしあん | |
| つぶあん | |
| しろあん | |
| ごまあん | |
| うぐいすあん | |
| 栗あん |
| import tensorflow as tf | |
| from tensorflow.keras import backend as K | |
| import tensorflow.keras.layers as layers | |
| # https://github.com/IShengFang/SpectralNormalizationKeras/blob/master/SpectralNormalizationKeras.py | |
| class ConvSN2D(layers.Conv2D): | |
| def build(self, input_shape): | |
| if self.data_format == 'channels_first': | |
| channel_axis = 1 | |
| else: |
| import torch | |
| import torchvision | |
| from models import TenLayersModel, ResNetLikeModel | |
| from torchvision import transforms | |
| from tqdm import tqdm | |
| import numpy as np | |
| import os | |
| import pickle | |
| def load_cifar(): |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, ch): | |
| super().__init__() | |
| self.conv1 = self.conv_bn_relu(ch) | |
| self.conv2 = self.conv_bn_relu(ch) | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| class Generator(nn.Module): | |
| def __init__(self, n_classes): | |
| super().__init__() | |
| self.linear = nn.Sequential( | |
| nn.Linear(100 + n_classes, 768), | |
| nn.ReLU(True) |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, ch): | |
| super().__init__() | |
| self.conv1 = self.conv_bn_relu(ch) | |
| self.conv2 = self.conv_bn_relu(ch) | |