Skip to content

Instantly share code, notes, and snippets.

@kpym
Last active March 20, 2019 08:38
Show Gist options
  • Save kpym/41d4723d06bec948638602fd7f6922c0 to your computer and use it in GitHub Desktop.
Save kpym/41d4723d06bec948638602fd7f6922c0 to your computer and use it in GitHub Desktop.
whittakerw-for-tikz.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "whittakerw-for-tikz.ipynb",
"version": "0.3.2",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/kpym/41d4723d06bec948638602fd7f6922c0/whittakerw-for-tikz.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"metadata": {
"id": "H7b5gscx_v28",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"from mpmath import whitw # the Whittaker W function"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "JPbpHFVoAOHt",
"colab_type": "code",
"colab": {}
},
"cell_type": "code",
"source": [
"# generate data points\n",
"x = range(-100,0,1)\n",
"y = [whitw(1, x_i,10) for x_i in x]"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "4hxmTXG2__MQ",
"colab_type": "code",
"outputId": "b4d9c04d-c859-42e3-a941-bbc3970b3e90",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
}
},
"cell_type": "code",
"source": [
"# output tuples ready to be plot by tikz\n",
"print(\"\\\\addplot coordinates {\"+\" \".join(\"(%.1f,%.2E)\" % xy for xy in list(zip(x,y)))+\"};\") # or '{'+str(list(zip(x,y))).strip('[]')+'}'"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"\\addplot coordinates {(-100.0,1.31E+118) (-99.0,3.28E+116) (-98.0,8.29E+114) (-97.0,2.12E+113) (-96.0,5.45E+111) (-95.0,1.42E+110) (-94.0,3.73E+108) (-93.0,9.93E+106) (-92.0,2.67E+105) (-91.0,7.25E+103) (-90.0,1.99E+102) (-89.0,5.53E+100) (-88.0,1.55E+99) (-87.0,4.41E+97) (-86.0,1.27E+96) (-85.0,3.68E+94) (-84.0,1.08E+93) (-83.0,3.22E+91) (-82.0,9.70E+89) (-81.0,2.96E+88) (-80.0,9.12E+86) (-79.0,2.85E+85) (-78.0,9.02E+83) (-77.0,2.89E+82) (-76.0,9.38E+80) (-75.0,3.08E+79) (-74.0,1.03E+78) (-73.0,3.47E+76) (-72.0,1.19E+75) (-71.0,4.12E+73) (-70.0,1.45E+72) (-69.0,5.18E+70) (-68.0,1.88E+69) (-67.0,6.90E+67) (-66.0,2.57E+66) (-65.0,9.74E+64) (-64.0,3.74E+63) (-63.0,1.46E+62) (-62.0,5.80E+60) (-61.0,2.34E+59) (-60.0,9.57E+57) (-59.0,3.99E+56) (-58.0,1.69E+55) (-57.0,7.27E+53) (-56.0,3.19E+52) (-55.0,1.42E+51) (-54.0,6.46E+49) (-53.0,2.99E+48) (-52.0,1.41E+47) (-51.0,6.77E+45) (-50.0,3.32E+44) (-49.0,1.66E+43) (-48.0,8.45E+41) (-47.0,4.39E+40) (-46.0,2.34E+39) (-45.0,1.27E+38) (-44.0,7.04E+36) (-43.0,4.00E+35) (-42.0,2.32E+34) (-41.0,1.38E+33) (-40.0,8.40E+31) (-39.0,5.24E+30) (-38.0,3.36E+29) (-37.0,2.21E+28) (-36.0,1.49E+27) (-35.0,1.03E+26) (-34.0,7.36E+24) (-33.0,5.40E+23) (-32.0,4.08E+22) (-31.0,3.18E+21) (-30.0,2.56E+20) (-29.0,2.13E+19) (-28.0,1.83E+18) (-27.0,1.63E+17) (-26.0,1.51E+16) (-25.0,1.44E+15) (-24.0,1.44E+14) (-23.0,1.49E+13) (-22.0,1.62E+12) (-21.0,1.83E+11) (-20.0,2.17E+10) (-19.0,2.69E+09) (-18.0,3.52E+08) (-17.0,4.85E+07) (-16.0,7.08E+06) (-15.0,1.10E+06) (-14.0,1.81E+05) (-13.0,3.19E+04) (-12.0,6.04E+03) (-11.0,1.24E+03) (-10.0,2.75E+02) (-9.0,6.69E+01) (-8.0,1.80E+01) (-7.0,5.36E+00) (-6.0,1.80E+00) (-5.0,6.90E-01) (-4.0,3.05E-01) (-3.0,1.58E-01) (-2.0,9.76E-02) (-1.0,7.26E-02)};\n"
],
"name": "stdout"
}
]
},
{
"metadata": {
"id": "m-1TgtzJB8H-",
"colab_type": "code",
"outputId": "2cfa29ff-de64-4c37-8190-259a37f1594e",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 358
}
},
"cell_type": "code",
"source": [
"# check the result before to plot it\n",
"import matplotlib.pyplot as plt\n",
"_ = plt.plot(x, y, 'o')"
],
"execution_count": 4,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFVCAYAAADYEVdtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGipJREFUeJzt3XtwVPXdx/HPJhuQkJXu0l3kJmLU\nh8dYbFN6iQGiGFpBpi0jkFARHFBKsbUo7bQGSyiQFKbCTCk4tRCtFcp1Mo4zOKYXQ7WwEGWmoYnD\ng2ANEJhkF0IgpBVpzvOHw46RbDaX3+aXy/v1F+ec3bM/vrPwZs/uBpfjOI4AAECXS7C9AAAA+ioi\nDACAJUQYAABLiDAAAJYQYQAALCHCAABYYi3Cx44dU3Z2trZu3drq7err67VgwQI9+eSTzfaXlZUp\nIyNDpaWlkX0lJSXKycnRnDlztHTpUl25ciUuawcAwAQrEW5sbNSqVauUkZER87b5+fn68pe/3Gzf\nyZMn9dJLLyk9Pb3Z/tWrV2vLli3aunWrkpOT9ec//9nougEAMMlKhPv166fNmzcrEAhE9h0/flxz\n587VvHnztHjxYl28eFHSJ2H9bIT9fr82btwoj8fTbP/nPve5yP0uXrwor9cb598JAAAdZyXCbrdb\nN9xwQ7N9q1at0sqVK/Xyyy8rMzNT27ZtkySlpKRcd/8BAwYoMTHxuv3PPvuspk+frvvvv19NTU26\n55574vMbAADAALftBVxz5MgR/fznP5ckXblyRV/4whfadf+mpiatXr1ae/bs0ciRI7VkyRL99a9/\n1f333x+P5QIA0GndJsIDBgzQH/7wB7lcrg7d//z585Kkm2++WZKUkZGhiooKIgwA6La6zVeUxowZ\no7feekuStHfvXgWDwXbd3+v1qr6+PhLjf/7znxo1apTxdQIAYIrLxv+iVFFRobVr16q6ulput1tD\nhgzRkiVLtG7dOiUkJKh///5at26dPB6PHn30UV28eFE1NTW6/fbbtXjxYn300UcqKirSBx98IJ/P\nJ7/frxdffFF/+ctf9Lvf/U79+vXTiBEjtGrVKiUlJXX1bw8AgDaxEmEAANCNLkcDANDXEGEAACzp\n8k9Hh0KXjJ7P601WXV2j0XP2RczRDOZoBnM0gzmaYWKOfr+nxf09/pWw2339D+1A+zFHM5ijGczR\nDOZoRjzn2OMjDABAT0WEAQCwhAgDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQYQAALOk2/59wex16\nr0Z7gx/qzLlGDRucrAczbtHX7hxie1kAALRZj4zwofdq9MJrlZHt06HLkW1CDADoKXrk5ei9wQ+j\n7K/q0nUAANAZPTLCZ8It/yDts+cud/FKAADouB4Z4WGfT25x/9DBA7t4JQAAdFyPjPCDGbdE2T+q\naxcCAEAn9MgPZl378NXeYJXOnrusoYMH6sGMUXwoCwDQo/TICEufhPhrdw6R3+9RKHTJ9nIAAGi3\nHnk5GgCA3oAIAwBgCREGAMASIgwAgCVEGAAAS4gwAACWEGEAACwhwgAAWEKEAQCwhAgDAGAJEQYA\nwBIiDACAJUQYAABLiDAAAJYQYQAALGlThI8dO6bs7Gxt3br1umMHDx7UrFmzlJubq2eeeUZNTU3G\nFwkAQG8UM8KNjY1atWqVMjIyWjy+fPlybdiwQTt27NDly5f19ttvG18kAAC9UcwI9+vXT5s3b1Yg\nEGjxeHFxsW666SZJks/nU11dndkVAgDQS8WMsNvt1g033BD1eEpKiiSptrZW+/fvV1ZWlrnVAQDQ\ni7lNnOTcuXNatGiR8vPz5fV6W72t15sstzvRxMNG+P0eo+frq5ijGczRDOZoBnM0I15z7HSEGxoa\n9Pjjj2vJkiUaP358zNvX1TV29iGb8fs9CoUuGT1nX8QczWCOZjBHM5ijGSbmGC3inf6K0po1azRv\n3jxNnDixs6cCAKBPiflKuKKiQmvXrlV1dbXcbrdKSko0adIkjRgxQuPHj9err76qqqoq7dmzR5I0\nbdo05eTkxH3hAAD0dDEjfNddd+mVV16JeryiosLoggAA6Cv4iVkAAFhChAEAsIQIAwBgCREGAMAS\nIgwAgCVEGAAAS4gwAACWEGEAACwhwgAAWEKEAQCwhAgDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQ\nYQAALCHCAABYQoQBALCECAMAYAkRBgDAEiIMAIAlRBgAAEuIMAAAlhBhAAAsIcIAAFhChAEAsIQI\nAwBgCREGAMASIgwAgCVEGAAAS4gwAACWEGEAACwhwgAAWNKmCB87dkzZ2dnaunXrdccOHDigGTNm\nKCcnR5s2bTK+QAAAequYEW5sbNSqVauUkZHR4vHVq1frN7/5jbZv3679+/fr+PHjxhcJAEBvFDPC\n/fr10+bNmxUIBK47durUKQ0aNEhDhw5VQkKCsrKyFAwG47JQAAB6G3fMG7jdcrtbvlkoFJLP54ts\n+3w+nTp1qtXzeb3JcrsT27nM1vn9HqPn66uYoxnM0QzmaAZzNCNec4wZYdPq6hqNns/v9ygUumT0\nnH0RczSDOZrBHM1gjmaYmGO0iHfq09GBQEDhcDiyXVNT0+JlawAAcL1ORXjEiBFqaGjQ6dOndfXq\nVZWWliozM9PU2gAA6NViXo6uqKjQ2rVrVV1dLbfbrZKSEk2aNEkjRozQ5MmTtWLFCi1dulSSNHXq\nVI0ePTruiwYAoDdwOY7jdOUDmn5/gvc8zGCOZjBHM5ijGczRjG77njAAAOg4IgwAgCVEGAAAS4gw\nAACWEGEAACwhwgAAWEKEAQCwhAgDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQYQAALCHCAABYQoQB\nALCECAMAYAkRBgDAEiIMAIAlRBgAAEuIMAAAlhBhAAAsIcIAAFhChAEAsIQIAwBgCREGAMASIgwA\ngCVEGAAAS4gwAACWEGEAACwhwgAAWEKEAQCwhAgDAGCJuy03KiwsVHl5uVwul/Ly8jR27NjIsW3b\ntum1115TQkKC7rrrLi1btixuiwUAoDeJ+Uq4rKxMVVVV2rlzpwoKClRQUBA51tDQoKKiIm3btk3b\nt2/XiRMn9I9//COuCwYAoLeIGeFgMKjs7GxJUmpqqurr69XQ0CBJSkpKUlJSkhobG3X16lX9+9//\n1qBBg+K7YgAAeomYEQ6Hw/J6vZFtn8+nUCgkSerfv7+eeOIJZWdn67777tPdd9+t0aNHx2+1AAD0\nIm16T/jTHMeJ/LqhoUEvvPCC3njjDaWkpGjevHk6evSoxowZE/X+Xm+y3O7Ejq02Cr/fY/R8fRVz\nNIM5msEczWCOZsRrjjEjHAgEFA6HI9u1tbXy+/2SpBMnTmjkyJHy+XySpHHjxqmioqLVCNfVNXZ2\nzc34/R6FQpeMnrMvYo5mMEczmKMZzNEME3OMFvGYl6MzMzNVUlIiSaqsrFQgEFBKSookafjw4Tpx\n4oT+85//SJIqKip0yy23dGqhAAD0FTFfCaenpystLU25ublyuVzKz89XcXGxPB6PJk+erAULFmju\n3LlKTEzUl770JY0bN64r1g0AQI/ncj79Jm8XMH1phMstZjBHM5ijGczRDOZohtXL0QAAID6IMAAA\nlhBhAAAsIcIAAFhChAEAsIQIAwBgCREGAMASIgwAgCVEGAAAS4gwAACWEGEAACwhwgAAWEKEAQCw\nhAgDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQYQAALCHCAABYQoQBALCECAMAYAkRBgDAEiIMAIAl\nRBgAAEuIMAAAlhBhAAAsIcIAAFhChAEAsIQIAwBgCREGAMASIgwAgCXuttyosLBQ5eXlcrlcysvL\n09ixYyPHzp49q6effloff/yx7rzzTq1cuTJuiwUAoDeJ+Uq4rKxMVVVV2rlzpwoKClRQUNDs+Jo1\nazR//nzt2bNHiYmJOnPmTNwWCwBAbxIzwsFgUNnZ2ZKk1NRU1dfXq6GhQZLU1NSkw4cPa9KkSZKk\n/Px8DRs2LI7LBQCg94gZ4XA4LK/XG9n2+XwKhUKSpPPnz2vgwIH65S9/qdmzZ2vdunXxWykAAL1M\nm94T/jTHcZr9uqamRnPnztXw4cO1cOFC7du3T/fee2/U+3u9yXK7Ezu02Gj8fo/R8/VVzNEM5mgG\nczSDOZoRrznGjHAgEFA4HI5s19bWyu/3S5K8Xq+GDRumm2++WZKUkZGh999/v9UI19U1dnLJzfn9\nHoVCl4yesy9ijmYwRzOYoxnM0QwTc4wW8ZiXozMzM1VSUiJJqqysVCAQUEpKiiTJ7XZr5MiR+vDD\nDyPHR48e3amFAgDQV8R8JZyenq60tDTl5ubK5XIpPz9fxcXF8ng8mjx5svLy8vSzn/1MjuPojjvu\niHxICwAAtM7lfPpN3i5g+tIIl1vMYI5mMEczmKMZzNEMq5ejAQBAfBBhAAAsIcIAAFhChAEAsIQI\nAwBgCREGAMASIgwAgCVEGAAAS4gwAACWEGEAACwhwgAAWEKEAQCwhAgDAGAJEQYAwBIiDACAJUQY\nAABLiDAAAJYQYQAALCHCAABYQoQBALCECAMAYAkRBgDAEiIMAIAlRBgAAEuIMAAAlhBhAAAsIcIA\nAFhChAEAsIQIAwBgCREGAMASIgwAgCVEGAAAS4gwAACWtCnChYWFysnJUW5uro4cOdLibdatW6dH\nHnnE6OIAAOjNYka4rKxMVVVV2rlzpwoKClRQUHDdbY4fP6533nknLgsEAKC3ihnhYDCo7OxsSVJq\naqrq6+vV0NDQ7DZr1qzRU089FZ8VAgDQS7lj3SAcDistLS2y7fP5FAqFlJKSIkkqLi7WV7/6VQ0f\nPrxND+j1JsvtTuzgclvm93uMnq+vYo5mMEczmKMZzNGMeM0xZoQ/y3GcyK8vXLig4uJivfTSS6qp\nqWnT/evqGtv7kK3y+z0KhS4ZPWdfxBzNYI5mMEczmKMZJuYYLeIxL0cHAgGFw+HIdm1trfx+vyTp\n4MGDOn/+vB5++GH94Ac/UGVlpQoLCzu1UAAA+oqYEc7MzFRJSYkkqbKyUoFAIHIp+oEHHtDrr7+u\nXbt2aePGjUpLS1NeXl58VwwAQC8R83J0enq60tLSlJubK5fLpfz8fBUXF8vj8Wjy5MldsUYAAHol\nl/PpN3m7gOn3J3jPwwzmaAZzNIM5msEczbD6njAAAIgPIgwAgCVEGAAAS4gwAACWEGEAACwhwgAA\nWEKEAQCwhAgDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQYQAALCHCAABYQoQBALCECAMAYAkRBgDA\nEiIMAIAlRBgAAEuIMAAAlhBhAAAsIcIAAFhChAEAsIQIAwBgCREGAMASIgwAgCVEGAAAS4gwAACW\nEGEAACwhwgAAWEKEAQCwhAgDAGCJuy03KiwsVHl5uVwul/Ly8jR27NjIsYMHD2r9+vVKSEjQ6NGj\nVVBQoIQE2g4AQCwxa1lWVqaqqirt3LlTBQUFKigoaHZ8+fLl2rBhg3bs2KHLly/r7bffjttiAQDo\nTWJGOBgMKjs7W5KUmpqq+vp6NTQ0RI4XFxfrpptukiT5fD7V1dXFaakAAPQuMSMcDofl9Xoj2z6f\nT6FQKLKdkpIiSaqtrdX+/fuVlZUVh2UCAND7tOk94U9zHOe6fefOndOiRYuUn5/fLNgt8XqT5XYn\ntvdhW+X3e4yer69ijmYwRzOYoxnM0Yx4zTFmhAOBgMLhcGS7trZWfr8/st3Q0KDHH39cS5Ys0fjx\n42M+YF1dYweX2jK/36NQ6JLRc/ZFzNEM5mgGczSDOZphYo7RIh7zcnRmZqZKSkokSZWVlQoEApFL\n0JK0Zs0azZs3TxMnTuzUAgEA6GtivhJOT09XWlqacnNz5XK5lJ+fr+LiYnk8Ho0fP16vvvqqqqqq\ntGfPHknStGnTlJOTE/eFAwDQ07XpPeEf//jHzbbHjBkT+XVFRYXZFQEA0EfwUzUAALCECAMAYAkR\nBgDAEiIMAIAlRBgAAEuIMAAAlhBhAAAsIcIAAFhChAEAsIQIAwBgCREGAMASIgwAgCVEGAAAS4gw\nAACWEGEAACwhwgAAWEKEAQCwhAgDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQYQAALCHCAABYQoQB\nALCECAMAYInb9gJMOvRejfYGP9SZcKOGfT5ZD2bcoq/dOcT2sgAAaFGvifCh92r0wmuVke3TocuR\nbUIMAOiOes3l6L3BD6Psr+rSdQAA0Fa9JsJnwo0t7j977nIXrwQAgLbpNREe9vnkFvcPHTywi1cC\nAEDb9JoIP5hxS5T9o7p2IQAAtFGv+WDWtQ9f7Q1W6ey5yxo6eKAezBjFh7IAAN2Wy3EcJ9aNCgsL\nVV5eLpfLpby8PI0dOzZy7MCBA1q/fr0SExM1ceJEPfHEE62eKxS61PlVf4rf74l6zs9+Zel/bvbq\n/07WWdu+9mq9O60psn2uUcMGd/M1Mkfm2J3WyBx7/Ryvfc21tc60p1UtiRnhsrIyFRUV6YUXXtCJ\nEyeUl5ennTt3Ro5PnTpVRUVFGjJkiObMmaOVK1fqtttui3q+rorwZ7+yBABAe33vW2malnVb3CIc\n8z3hYDCo7OxsSVJqaqrq6+vV0NAgSTp16pQGDRqkoUOHKiEhQVlZWQoGg51aqCnRvrIEAEBbxftr\nrjHfEw6Hw0pLS4ts+3w+hUIhpaSkKBQKyefzNTt26tSpVs/n9SbL7U7sxJKv19K/MM6ca/krSwAA\ntNW1r7lGeyXbWe3+YFYb3kJuVV2d2ThGuxw9bHCyTof4jjAAoOOufc3V2uXoQCCgcDgc2a6trZXf\n72/xWE1NjQKBQKcWakq0rywBANBW8f6aa+KKFStWtHaDpKQk/fGPf9R3vvMdVVZW6vDhw/rud78r\nSbrxxhv1+9//XllZWUpOTtavfvUrPfbYY/J6vVHP19h4xehvYODA/i2ec4Q/RTf5klVz/t+6/J+P\nNfzzKfrK/wb08dUma9uzs2/XuP8JdKs1sUbWyBpZY3fY7o5rnJ19u75255ConWlvq1rSpq8oPffc\nc3r33XflcrmUn5+v9957Tx6PR5MnT9Y777yj5557TpL0jW98QwsWLGj1XF35FSW0HXM0gzmawRzN\nYI5mWP2KkmlEuHtijmYwRzOYoxnM0Yx4RrjX/NhKAAB6GiIMAIAlRBgAAEuIMAAAlhBhAAAsIcIA\nAFhChAEAsIQIAwBgSZf/sA4AAPAJXgkDAGAJEQYAwBIiDACAJUQYAABLiDAAAJYQYQAALOlxES4r\nK1NGRoZKS0sj+44eParc3Fzl5uYqPz8/sn/Lli2aMWOGZs6cqb/97W82ltut1dTUaMGCBXrkkUf0\n8MMPq6KiQpJ04MABzZgxQzk5Odq0aZPlVfYMRUVF+va3v62HHnpIR44ckRT9eYnWhcNhfeUrX9Gh\nQ4ckMcf2unr1qn76059q9uzZmjVrlt59911JzLGjCgsLlZOTo9zc3MifbaOcHqSqqspZtGiRs3jx\nYufNN9+M7J8zZ45TXl7uOI7jPP30086+ffuckydPOtOnT3c++ugj59y5c843v/lN5+rVq7aW3i2t\nWbPG2b59u+M4jnP48GFn/vz5juM4zpQpU5wzZ844//3vf53Zs2c777//vs1ldnvHjh1zpk+f7nz8\n8cdORUWF8+tf/9pxnJafl4jtJz/5iTN9+nTn4MGDjuMwx/bas2ePk5+f7zjOJ8/Nhx56yHEc5tgR\nhw4dchYuXOg4juMcP37cmTVrlvHH6FGvhP1+vzZu3CiPxxPZd+XKFVVXV2vs2LGSpPvuu0/BYFCH\nDh3ShAkT1K9fP/l8Pg0fPlzHjx+3tfRuyev16sKFC5Kkixcvyuv16tSpUxo0aJCGDh2qhIQEZWVl\nKRgMWl5p91ZaWqopU6bI7XYrLS1NTz75ZNTnJVoXDAY1cOBA3XHHHZKi//lGdN/61rf0zDPPSJJ8\nPp8uXLjAHDsoGAwqOztbkpSamqr6+no1NDQYfYweFeEBAwYoMTGx2b66ujrdeOONke3BgwcrFAop\nHA7L5/NF9vt8PoVCoS5ba0/w6KOP6vXXX9cDDzygZ599Vj/60Y8UCoWYWztVV1fr7NmzWrBggebN\nm6ejR49GfV4iuitXrmjTpk166qmnIvuYY/slJSWpf//+kqSXX35Z06ZNY44dFA6H5fV6I9vx+PvQ\nbfRsBu3evVu7d+9utu+HP/yhJkyY0Or9nCg/hTPa/r6ipXlOnDhRU6ZM0fe//32VlpZq7dq1mj9/\nvqUV9gwtzTEcDmvChAnasmWLDh8+rGXLlun5559vdpu+/vz7rGjPx5kzZzaLxWcxx+Za+3ty27Zt\nqqys1G9/+1udP3++2W2YY8fEY27dNsIzZ87UzJkzY97u2uWWa2pqahQIBBQIBPSvf/3ruv19VUvz\nfOyxx7RkyRJJUmZmpn7xi18oEAgoHA5HbtPX5/ZZLc1xw4YNuvXWW+VyuTRu3DhVV1dHfV7iEy3N\nMTc3V01NTdq2bZtOnjypI0eOaP369cyxFdH+nty9e7fefPNNPf/880pKSuL52EGf/fuwtrZWfr/f\n6GP0qMvRLUlKStKtt94a+QTgn/70J02YMEFf//rXtW/fPl25ckU1NTWqra3VbbfdZnm13cuoUaNU\nXl4uSTpy5IhGjRqlESNGqKGhQadPn9bVq1dVWlqqzMxMyyvt3iZOnKi///3vkqQTJ05o6NChUZ+X\niG7Hjh3atWuXdu3apXvvvVf5+fkaM2YMc2ynU6dOaceOHdq4cWPksjTPx47JzMxUSUmJJKmyslKB\nQEApKSlGH6PbvhJuyb59+1RUVKQPPvhAlZWVeuWVV/Tiiy8qLy9Py5cvV1NTk+6++27dc889kqRZ\ns2Zpzpw5crlcWrFihRISevy/OYz63ve+p2XLlumNN96QJC1btkyStGLFCi1dulSSNHXqVI0ePdra\nGnuCL37xi3rrrbeUk5MjSVq+fLkkRX1eon2YY/vs3r1bFy5c0MKFCyP7ioqKmGMHpKenKy0tTbm5\nuXK5XHH5ahf/lSEAAJbw0hAAAEuIMAAAlhBhAAAsIcIAAFhChAEAsIQIAwBgCREGAMASIgwAgCX/\nD49HW29dHgX0AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 576x396 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
}
]
}
% https://tex.stackexchange.com/a/480433
\documentclass[tikz,border=7pt]{standalone}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}
\begin{semilogyaxis}
% data generated with iPython : https://colab.research.google.com/gist/kpym/41d4723d06bec948638602fd7f6922c0/whittakerw-for-tikz.ipynb
\addplot coordinates {(-100.0,1.31E+118) (-99.0,3.28E+116) (-98.0,8.29E+114) (-97.0,2.12E+113) (-96.0,5.45E+111) (-95.0,1.42E+110) (-94.0,3.73E+108) (-93.0,9.93E+106) (-92.0,2.67E+105) (-91.0,7.25E+103) (-90.0,1.99E+102) (-89.0,5.53E+100) (-88.0,1.55E+99) (-87.0,4.41E+97) (-86.0,1.27E+96) (-85.0,3.68E+94) (-84.0,1.08E+93) (-83.0,3.22E+91) (-82.0,9.70E+89) (-81.0,2.96E+88) (-80.0,9.12E+86) (-79.0,2.85E+85) (-78.0,9.02E+83) (-77.0,2.89E+82) (-76.0,9.38E+80) (-75.0,3.08E+79) (-74.0,1.03E+78) (-73.0,3.47E+76) (-72.0,1.19E+75) (-71.0,4.12E+73) (-70.0,1.45E+72) (-69.0,5.18E+70) (-68.0,1.88E+69) (-67.0,6.90E+67) (-66.0,2.57E+66) (-65.0,9.74E+64) (-64.0,3.74E+63) (-63.0,1.46E+62) (-62.0,5.80E+60) (-61.0,2.34E+59) (-60.0,9.57E+57) (-59.0,3.99E+56) (-58.0,1.69E+55) (-57.0,7.27E+53) (-56.0,3.19E+52) (-55.0,1.42E+51) (-54.0,6.46E+49) (-53.0,2.99E+48) (-52.0,1.41E+47) (-51.0,6.77E+45) (-50.0,3.32E+44) (-49.0,1.66E+43) (-48.0,8.45E+41) (-47.0,4.39E+40) (-46.0,2.34E+39) (-45.0,1.27E+38) (-44.0,7.04E+36) (-43.0,4.00E+35) (-42.0,2.32E+34) (-41.0,1.38E+33) (-40.0,8.40E+31) (-39.0,5.24E+30) (-38.0,3.36E+29) (-37.0,2.21E+28) (-36.0,1.49E+27) (-35.0,1.03E+26) (-34.0,7.36E+24) (-33.0,5.40E+23) (-32.0,4.08E+22) (-31.0,3.18E+21) (-30.0,2.56E+20) (-29.0,2.13E+19) (-28.0,1.83E+18) (-27.0,1.63E+17) (-26.0,1.51E+16) (-25.0,1.44E+15) (-24.0,1.44E+14) (-23.0,1.49E+13) (-22.0,1.62E+12) (-21.0,1.83E+11) (-20.0,2.17E+10) (-19.0,2.69E+09) (-18.0,3.52E+08) (-17.0,4.85E+07) (-16.0,7.08E+06) (-15.0,1.10E+06) (-14.0,1.81E+05) (-13.0,3.19E+04) (-12.0,6.04E+03) (-11.0,1.24E+03) (-10.0,2.75E+02) (-9.0,6.69E+01) (-8.0,1.80E+01) (-7.0,5.36E+00) (-6.0,1.80E+00) (-5.0,6.90E-01) (-4.0,3.05E-01) (-3.0,1.58E-01) (-2.0,9.76E-02) (-1.0,7.26E-02)};
\end{semilogyaxis}
\end{tikzpicture}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment