Created
January 6, 2020 11:40
-
-
Save kshirsagarsiddharth/7f3af8458cdcf1c51d4009bd659e9156 to your computer and use it in GitHub Desktop.
Created on Cognitive Class Labs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import numpy as np" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-01-02'], dtype='datetime64[ns]', freq=None)" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "date = ['01.02.2019']\n", | |
| "pd.to_datetime(date)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-01-02 13:30:00'], dtype='datetime64[ns]', freq=None)" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "date = ['01.02.2019 1:30:00 PM']\n", | |
| "pd.to_datetime(date)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "2019-08-02 00:00:00\n", | |
| "2019-02-08 00:00:00\n", | |
| "2010-02-08 00:00:00\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(pd.to_datetime('8-2-2019'))\n", | |
| "print(pd.to_datetime('8-2-2019',dayfirst = True))\n", | |
| "print(pd.to_datetime('10-2-8',yearfirst=True))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Timestamp('2019-01-01 14:00:00+0000', tz='UTC')" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "date = '2019-01-01T15:00:00+0100'\n", | |
| "pd.to_datetime(date,utc=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df = pd.DataFrame({'year': [2015, 2016],'month': [2, 3],'day': [4, 5]})" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0 2015-02-04\n", | |
| "1 2016-03-05\n", | |
| "dtype: datetime64[ns]" | |
| ] | |
| }, | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.to_datetime(df)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| " s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0 3/11/2000\n", | |
| "1 3/12/2000\n", | |
| "2 3/13/2000\n", | |
| "3 3/11/2000\n", | |
| "4 3/12/2000\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s.head()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "3.19 ms ± 27.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%timeit pd.to_datetime(s,infer_datetime_format=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "3.2 ms ± 16.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%timeit pd.to_datetime(s,infer_datetime_format = False)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)" | |
| ] | |
| }, | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.to_datetime([1,2,3],unit='D',origin = pd.Timestamp('1960-01-01'))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-02-02', '2019-02-03', '2019-02-04', '2019-02-05',\n", | |
| " '2019-02-06', '2019-02-07', '2019-02-08'],\n", | |
| " dtype='datetime64[ns]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 16, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start='2/2/2019',end='2/08/2019')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-02-02', '2019-02-03', '2019-02-04', '2019-02-05',\n", | |
| " '2019-02-06', '2019-02-07', '2019-02-08', '2019-02-09'],\n", | |
| " dtype='datetime64[ns]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start='2/2/2019',periods=8)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-06-20 00:00:00', '2019-06-01 08:00:00',\n", | |
| " '2019-05-13 16:00:00', '2019-04-25 00:00:00'],\n", | |
| " dtype='datetime64[ns]', freq=None)" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start='2019-06-20',end = '2019-04-25',periods=4)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31',\n", | |
| " '2019-06-30', '2019-07-31'],\n", | |
| " dtype='datetime64[ns]', freq='M')" | |
| ] | |
| }, | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start='2/2/2019',periods=6,freq='M')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-02-28', '2019-05-31', '2019-08-31', '2019-11-30',\n", | |
| " '2020-02-29', '2020-05-31'],\n", | |
| " dtype='datetime64[ns]', freq='3M')" | |
| ] | |
| }, | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start = '2/2/2019',periods=6,freq='3M')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-02-28', '2019-05-31', '2019-08-31', '2019-11-30',\n", | |
| " '2020-02-29', '2020-05-31'],\n", | |
| " dtype='datetime64[ns]', freq='3M')" | |
| ] | |
| }, | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start='2/2/2019',periods=6,freq=pd.offsets.MonthEnd(3))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2019-02-02 00:00:00+09:00', '2019-02-03 00:00:00+09:00',\n", | |
| " '2019-02-04 00:00:00+09:00', '2019-02-05 00:00:00+09:00',\n", | |
| " '2019-02-06 00:00:00+09:00', '2019-02-07 00:00:00+09:00'],\n", | |
| " dtype='datetime64[ns, Asia/Tokyo]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start='2/2/2019',periods=6,tz='Asia/Tokyo')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2018-02-02', '2018-02-03', '2018-02-04', '2018-02-05'], dtype='datetime64[ns]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start = '2018-02-02',end='2018-02-05',closed=None)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2018-02-02', '2018-02-03', '2018-02-04'], dtype='datetime64[ns]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start = '2018-02-02',end='2018-02-05',closed='left')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2018-02-03', '2018-02-04', '2018-02-05'], dtype='datetime64[ns]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.date_range(start = '2018-02-02',end='2018-02-05',closed='right')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 0\n", | |
| "2019-01-01 00:01:00 1\n", | |
| "2019-01-01 00:02:00 2\n", | |
| "2019-01-01 00:03:00 3\n", | |
| "2019-01-01 00:04:00 4\n", | |
| "2019-01-01 00:05:00 5\n", | |
| "2019-01-01 00:06:00 6\n", | |
| "2019-01-01 00:07:00 7\n", | |
| "Freq: T, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "index = pd.date_range('1/1/2019', periods=8, freq='T')\n", | |
| "series = pd.Series(range(8), index=index)\n", | |
| "series" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 3\n", | |
| "2019-01-01 00:03:00 12\n", | |
| "2019-01-01 00:06:00 13\n", | |
| "Freq: 3T, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('3T').sum()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 29, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:03:00 3\n", | |
| "2019-01-01 00:06:00 12\n", | |
| "2019-01-01 00:09:00 13\n", | |
| "Freq: 3T, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 29, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('3T',label='right').sum()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 30, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 0\n", | |
| "2019-01-01 00:03:00 6\n", | |
| "2019-01-01 00:06:00 15\n", | |
| "2019-01-01 00:09:00 7\n", | |
| "Freq: 3T, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 30, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('3T',label='right',closed='right').sum()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 32, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 0.0\n", | |
| "2019-01-01 00:00:30 NaN\n", | |
| "2019-01-01 00:01:00 1.0\n", | |
| "2019-01-01 00:01:30 NaN\n", | |
| "2019-01-01 00:02:00 2.0\n", | |
| "2019-01-01 00:02:30 NaN\n", | |
| "2019-01-01 00:03:00 3.0\n", | |
| "2019-01-01 00:03:30 NaN\n", | |
| "2019-01-01 00:04:00 4.0\n", | |
| "2019-01-01 00:04:30 NaN\n", | |
| "2019-01-01 00:05:00 5.0\n", | |
| "2019-01-01 00:05:30 NaN\n", | |
| "2019-01-01 00:06:00 6.0\n", | |
| "2019-01-01 00:06:30 NaN\n", | |
| "2019-01-01 00:07:00 7.0\n", | |
| "Freq: 30S, dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 32, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('30S').asfreq()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 33, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 0\n", | |
| "2019-01-01 00:00:30 1\n", | |
| "2019-01-01 00:01:00 1\n", | |
| "2019-01-01 00:01:30 2\n", | |
| "2019-01-01 00:02:00 2\n", | |
| "2019-01-01 00:02:30 3\n", | |
| "2019-01-01 00:03:00 3\n", | |
| "2019-01-01 00:03:30 4\n", | |
| "2019-01-01 00:04:00 4\n", | |
| "2019-01-01 00:04:30 5\n", | |
| "2019-01-01 00:05:00 5\n", | |
| "2019-01-01 00:05:30 6\n", | |
| "2019-01-01 00:06:00 6\n", | |
| "2019-01-01 00:06:30 7\n", | |
| "2019-01-01 00:07:00 7\n", | |
| "Freq: 30S, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 33, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('30S').bfill()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 34, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 0\n", | |
| "2019-01-01 00:00:30 0\n", | |
| "2019-01-01 00:01:00 1\n", | |
| "2019-01-01 00:01:30 1\n", | |
| "2019-01-01 00:02:00 2\n", | |
| "2019-01-01 00:02:30 2\n", | |
| "2019-01-01 00:03:00 3\n", | |
| "2019-01-01 00:03:30 3\n", | |
| "2019-01-01 00:04:00 4\n", | |
| "2019-01-01 00:04:30 4\n", | |
| "2019-01-01 00:05:00 5\n", | |
| "2019-01-01 00:05:30 5\n", | |
| "2019-01-01 00:06:00 6\n", | |
| "2019-01-01 00:06:30 6\n", | |
| "2019-01-01 00:07:00 7\n", | |
| "Freq: 30S, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 34, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('30S').ffill()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 35, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def custom_resampler(array_like):\n", | |
| " return np.sum(array_like) + 5" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-01-01 00:00:00 8\n", | |
| "2019-01-01 00:03:00 17\n", | |
| "2019-01-01 00:06:00 18\n", | |
| "Freq: 3T, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "series.resample('3T').apply(custom_resampler)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 37, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2018 1\n", | |
| "2019 2\n", | |
| "Freq: A-DEC, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 37, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s = pd.Series([1, 2], index=pd.period_range('2018-01-01',\n", | |
| " freq='A',\n", | |
| " periods=2))\n", | |
| "s" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2018Q1 1.0\n", | |
| "2018Q2 NaN\n", | |
| "2018Q3 NaN\n", | |
| "2018Q4 NaN\n", | |
| "2019Q1 2.0\n", | |
| "2019Q2 NaN\n", | |
| "2019Q3 NaN\n", | |
| "2019Q4 NaN\n", | |
| "Freq: Q-DEC, dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s.resample('Q').asfreq()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 39, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019Q1 2\n", | |
| "2019Q2 3\n", | |
| "2019Q3 4\n", | |
| "2019Q4 5\n", | |
| "Freq: Q-DEC, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 39, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "q = pd.Series([2, 3, 4, 5], index=pd.period_range('2019-01-01',\n", | |
| " freq='Q',\n", | |
| " periods=4))\n", | |
| "q" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 41, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "2019-03 2.0\n", | |
| "2019-04 NaN\n", | |
| "2019-05 NaN\n", | |
| "2019-06 3.0\n", | |
| "2019-07 NaN\n", | |
| "2019-08 NaN\n", | |
| "2019-09 4.0\n", | |
| "2019-10 NaN\n", | |
| "2019-11 NaN\n", | |
| "2019-12 5.0\n", | |
| "Freq: M, dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 41, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "q.resample('M',convention='end').asfreq()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>price</th>\n", | |
| " <th>volume</th>\n", | |
| " <th>week_starting</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>8</td>\n", | |
| " <td>40</td>\n", | |
| " <td>2019-01-06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>9</td>\n", | |
| " <td>50</td>\n", | |
| " <td>2019-01-13</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>7</td>\n", | |
| " <td>30</td>\n", | |
| " <td>2019-01-20</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>11</td>\n", | |
| " <td>80</td>\n", | |
| " <td>2019-01-27</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>12</td>\n", | |
| " <td>40</td>\n", | |
| " <td>2019-02-03</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>16</td>\n", | |
| " <td>80</td>\n", | |
| " <td>2019-02-10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>15</td>\n", | |
| " <td>30</td>\n", | |
| " <td>2019-02-17</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>17</td>\n", | |
| " <td>40</td>\n", | |
| " <td>2019-02-24</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " price volume week_starting\n", | |
| "0 8 40 2019-01-06\n", | |
| "1 9 50 2019-01-13\n", | |
| "2 7 30 2019-01-20\n", | |
| "3 11 80 2019-01-27\n", | |
| "4 12 40 2019-02-03\n", | |
| "5 16 80 2019-02-10\n", | |
| "6 15 30 2019-02-17\n", | |
| "7 17 40 2019-02-24" | |
| ] | |
| }, | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "d = dict({'price': [8, 9, 7, 11, 12, 16, 15, 17],\n", | |
| " 'volume': [40, 50, 30, 80, 40, 80, 30, 40]})\n", | |
| "df = pd.DataFrame(d)\n", | |
| "df['week_starting'] = pd.date_range('01/01/2019',\n", | |
| " periods=8,\n", | |
| " freq='W')\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 44, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>price</th>\n", | |
| " <th>volume</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>week_starting</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-31</th>\n", | |
| " <td>8.75</td>\n", | |
| " <td>50.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-02-28</th>\n", | |
| " <td>15.00</td>\n", | |
| " <td>47.5</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " price volume\n", | |
| "week_starting \n", | |
| "2019-01-31 8.75 50.0\n", | |
| "2019-02-28 15.00 47.5" | |
| ] | |
| }, | |
| "execution_count": 44, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.resample('M',on='week_starting').mean()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 45, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th>price</th>\n", | |
| " <th>volume</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th rowspan=\"2\" valign=\"top\">2019-01-01</th>\n", | |
| " <th>morning</th>\n", | |
| " <td>8</td>\n", | |
| " <td>40</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>afternoon</th>\n", | |
| " <td>9</td>\n", | |
| " <td>50</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th rowspan=\"2\" valign=\"top\">2019-01-02</th>\n", | |
| " <th>morning</th>\n", | |
| " <td>7</td>\n", | |
| " <td>30</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>afternoon</th>\n", | |
| " <td>11</td>\n", | |
| " <td>80</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th rowspan=\"2\" valign=\"top\">2019-01-03</th>\n", | |
| " <th>morning</th>\n", | |
| " <td>12</td>\n", | |
| " <td>40</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>afternoon</th>\n", | |
| " <td>16</td>\n", | |
| " <td>80</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th rowspan=\"2\" valign=\"top\">2019-01-04</th>\n", | |
| " <th>morning</th>\n", | |
| " <td>15</td>\n", | |
| " <td>30</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>afternoon</th>\n", | |
| " <td>17</td>\n", | |
| " <td>40</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " price volume\n", | |
| "2019-01-01 morning 8 40\n", | |
| " afternoon 9 50\n", | |
| "2019-01-02 morning 7 30\n", | |
| " afternoon 11 80\n", | |
| "2019-01-03 morning 12 40\n", | |
| " afternoon 16 80\n", | |
| "2019-01-04 morning 15 30\n", | |
| " afternoon 17 40" | |
| ] | |
| }, | |
| "execution_count": 45, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "days = pd.date_range('1/1/2019', periods=4, freq='D')\n", | |
| "d2 = dict({'price': [8, 9, 7, 11, 12, 16, 15, 17],\n", | |
| " 'volume': [40, 50, 30, 80, 40, 80, 30, 40]})\n", | |
| "df2 = pd.DataFrame(d2,\n", | |
| " index=pd.MultiIndex.from_product([days,\n", | |
| " ['morning',\n", | |
| " 'afternoon']]\n", | |
| " ))\n", | |
| "df2" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 47, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>price</th>\n", | |
| " <th>volume</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01</th>\n", | |
| " <td>17</td>\n", | |
| " <td>90</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-02</th>\n", | |
| " <td>18</td>\n", | |
| " <td>110</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-03</th>\n", | |
| " <td>28</td>\n", | |
| " <td>120</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-04</th>\n", | |
| " <td>32</td>\n", | |
| " <td>70</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " price volume\n", | |
| "2019-01-01 17 90\n", | |
| "2019-01-02 18 110\n", | |
| "2019-01-03 28 120\n", | |
| "2019-01-04 32 70" | |
| ] | |
| }, | |
| "execution_count": 47, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df2.resample('D',level=0).sum()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 49, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>price</th>\n", | |
| " <th>volume</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01</th>\n", | |
| " <td>8.5</td>\n", | |
| " <td>45.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-02</th>\n", | |
| " <td>9.0</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-03</th>\n", | |
| " <td>14.0</td>\n", | |
| " <td>60.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-04</th>\n", | |
| " <td>16.0</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " price volume\n", | |
| "2019-01-01 8.5 45.0\n", | |
| "2019-01-02 9.0 55.0\n", | |
| "2019-01-03 14.0 60.0\n", | |
| "2019-01-04 16.0 35.0" | |
| ] | |
| }, | |
| "execution_count": 49, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df2.resample('D',level=0).mean()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 50, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>s</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:00</th>\n", | |
| " <td>0.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:00</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:00</th>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:03:00</th>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " s\n", | |
| "2019-01-01 00:00:00 0.0\n", | |
| "2019-01-01 00:01:00 NaN\n", | |
| "2019-01-01 00:02:00 4.0\n", | |
| "2019-01-01 00:03:00 5.0" | |
| ] | |
| }, | |
| "execution_count": 50, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "index = pd.date_range('1/1/2019', periods=4, freq='T')\n", | |
| "series = pd.Series([0.0, None, 4.0, 5.0], index=index)\n", | |
| "df = pd.DataFrame({'s':series})\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 52, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>s</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:00</th>\n", | |
| " <td>0.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:30</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:00</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:30</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:00</th>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:30</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:03:00</th>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " s\n", | |
| "2019-01-01 00:00:00 0.0\n", | |
| "2019-01-01 00:00:30 NaN\n", | |
| "2019-01-01 00:01:00 NaN\n", | |
| "2019-01-01 00:01:30 NaN\n", | |
| "2019-01-01 00:02:00 4.0\n", | |
| "2019-01-01 00:02:30 NaN\n", | |
| "2019-01-01 00:03:00 5.0" | |
| ] | |
| }, | |
| "execution_count": 52, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.asfreq('30S')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 53, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>s</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:00</th>\n", | |
| " <td>0.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:30</th>\n", | |
| " <td>0.7</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:00</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:30</th>\n", | |
| " <td>0.7</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:00</th>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:30</th>\n", | |
| " <td>0.7</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:03:00</th>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " s\n", | |
| "2019-01-01 00:00:00 0.0\n", | |
| "2019-01-01 00:00:30 0.7\n", | |
| "2019-01-01 00:01:00 NaN\n", | |
| "2019-01-01 00:01:30 0.7\n", | |
| "2019-01-01 00:02:00 4.0\n", | |
| "2019-01-01 00:02:30 0.7\n", | |
| "2019-01-01 00:03:00 5.0" | |
| ] | |
| }, | |
| "execution_count": 53, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.asfreq(freq='30S',fill_value=0.7)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 54, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>s</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:00</th>\n", | |
| " <td>0.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:00:30</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:00</th>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:01:30</th>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:00</th>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:02:30</th>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-01-01 00:03:00</th>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " s\n", | |
| "2019-01-01 00:00:00 0.0\n", | |
| "2019-01-01 00:00:30 NaN\n", | |
| "2019-01-01 00:01:00 NaN\n", | |
| "2019-01-01 00:01:30 4.0\n", | |
| "2019-01-01 00:02:00 4.0\n", | |
| "2019-01-01 00:02:30 5.0\n", | |
| "2019-01-01 00:03:00 5.0" | |
| ] | |
| }, | |
| "execution_count": 54, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.asfreq(freq='30S',method='bfill')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python", | |
| "language": "python", | |
| "name": "conda-env-python-py" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.7" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment