Skip to content

Instantly share code, notes, and snippets.

@kshirsagarsiddharth
Created November 28, 2019 15:58
Show Gist options
  • Select an option

  • Save kshirsagarsiddharth/b236afa759e1886751b532c4a3ed7920 to your computer and use it in GitHub Desktop.

Select an option

Save kshirsagarsiddharth/b236afa759e1886751b532c4a3ed7920 to your computer and use it in GitHub Desktop.
Created on Cognitive Class Labs
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext sql"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Connected: pcc40744@BLUDB'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Enter your Db2 credentials in the connection string below\n",
"# Recall you created Service Credentials in Part III of the first lab of the course in Week 1\n",
"# i.e. from the uri field in the Service Credentials copy everything after db2:// (but remove the double quote at the end)\n",
"# for example, if your credentials are as in the screenshot above, you would write:\n",
"# %sql ibm_db_sa://my-username:[email protected]:50000/BLUDB\n",
"# Note the ibm_db_sa:// prefix instead of db2://\n",
"# This is because JupyterLab's ipython-sql extension uses sqlalchemy (a python SQL toolkit)\n",
"# which in turn uses IBM's sqlalchemy dialect: ibm_db_sa\n",
"%sql ibm_db_sa://pcc40744:tz8tg3vsgw0vj%[email protected]:50000/BLUDB"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * ibm_db_sa://pcc40744:***@dashdb-txn-sbox-yp-lon02-02.services.eu-gb.bluemix.net:50000/BLUDB\n",
"Done.\n"
]
},
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"CREATE TABLE INTERNATIONAL_STUDENT_TEST_SCORES(\n",
" COUNTRY VARCHAR(50),\n",
" FIRST_NAME VARCHAR(50),\n",
" LAST_NAME VARCHAR(50),\n",
" TEST_SCORES INT\n",
");"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * ibm_db_sa://pcc40744:***@dashdb-txn-sbox-yp-lon02-02.services.eu-gb.bluemix.net:50000/BLUDB\n",
"99 rows affected.\n"
]
},
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%sql\n",
"INSERT INTO INTERNATIONAL_STUDENT_TEST_SCORES (COUNTRY, FIRST_NAME, LAST_NAME, TEST_SCORES)\n",
"VALUES\n",
"('United States', 'Marshall', 'Bernadot', 54),\n",
"('Ghana', 'Celinda', 'Malkin', 51),\n",
"('Ukraine', 'Guillermo', 'Furze', 53),\n",
"('Greece', 'Aharon', 'Tunnow', 48),\n",
"('Russia', 'Bail', 'Goodwin', 46),\n",
"('Poland', 'Cole', 'Winteringham', 49),\n",
"('Sweden', 'Emlyn', 'Erricker', 55),\n",
"('Russia', 'Cathee', 'Sivewright', 49),\n",
"('China', 'Barny', 'Ingerson', 57),\n",
"('Uganda', 'Sharla', 'Papaccio', 55),\n",
"('China', 'Stella', 'Youens', 51),\n",
"('Poland', 'Julio', 'Buesden', 48),\n",
"('United States', 'Tiffie', 'Cosely', 58),\n",
"('Poland', 'Auroora', 'Stiffell', 45),\n",
"('China', 'Clarita', 'Huet', 52),\n",
"('Poland', 'Shannon', 'Goulden', 45),\n",
"('Philippines', 'Emylee', 'Privost', 50),\n",
"('France', 'Madelina', 'Burk', 49),\n",
"('China', 'Saunderson', 'Root', 58),\n",
"('Indonesia', 'Bo', 'Waring', 55),\n",
"('China', 'Hollis', 'Domotor', 45),\n",
"('Russia', 'Robbie', 'Collip', 46),\n",
"('Philippines', 'Davon', 'Donisi', 46),\n",
"('China', 'Cristabel', 'Radeliffe', 48),\n",
"('China', 'Wallis', 'Bartleet', 58),\n",
"('Moldova', 'Arleen', 'Stailey', 38),\n",
"('Ireland', 'Mendel', 'Grumble', 58),\n",
"('China', 'Sallyann', 'Exley', 51),\n",
"('Mexico', 'Kain', 'Swaite', 46),\n",
"('Indonesia', 'Alonso', 'Bulteel', 45),\n",
"('Armenia', 'Anatol', 'Tankus', 51),\n",
"('Indonesia', 'Coralyn', 'Dawkins', 48),\n",
"('China', 'Deanne', 'Edwinson', 45),\n",
"('China', 'Georgiana', 'Epple', 51),\n",
"('Portugal', 'Bartlet', 'Breese', 56),\n",
"('Azerbaijan', 'Idalina', 'Lukash', 50),\n",
"('France', 'Livvie', 'Flory', 54),\n",
"('Malaysia', 'Nonie', 'Borit', 48),\n",
"('Indonesia', 'Clio', 'Mugg', 47),\n",
"('Brazil', 'Westley', 'Measor', 48),\n",
"('Philippines', 'Katrinka', 'Sibbert', 51),\n",
"('Poland', 'Valentia', 'Mounch', 50),\n",
"('Norway', 'Sheilah', 'Hedditch', 53),\n",
"('Papua New Guinea', 'Itch', 'Jubb', 50),\n",
"('Latvia', 'Stesha', 'Garnson', 53),\n",
"('Canada', 'Cristionna', 'Wadmore', 46),\n",
"('China', 'Lianna', 'Gatward', 43),\n",
"('Guatemala', 'Tanney', 'Vials', 48),\n",
"('France', 'Alma', 'Zavittieri', 44),\n",
"('China', 'Alvira', 'Tamas', 50),\n",
"('United States', 'Shanon', 'Peres', 45),\n",
"('Sweden', 'Maisey', 'Lynas', 53),\n",
"('Indonesia', 'Kip', 'Hothersall', 46),\n",
"('China', 'Cash', 'Landis', 48),\n",
"('Panama', 'Kennith', 'Digance', 45),\n",
"('China', 'Ulberto', 'Riggeard', 48),\n",
"('Switzerland', 'Judy', 'Gilligan', 49),\n",
"('Philippines', 'Tod', 'Trevaskus', 52),\n",
"('Brazil', 'Herold', 'Heggs', 44),\n",
"('Latvia', 'Verney', 'Note', 50),\n",
"('Poland', 'Temp', 'Ribey', 50),\n",
"('China', 'Conroy', 'Egdal', 48),\n",
"('Japan', 'Gabie', 'Alessandone', 47),\n",
"('Ukraine', 'Devlen', 'Chaperlin', 54),\n",
"('France', 'Babbette', 'Turner', 51),\n",
"('Czech Republic', 'Virgil', 'Scotney', 52),\n",
"('Tajikistan', 'Zorina', 'Bedow', 49),\n",
"('China', 'Aidan', 'Rudeyeard', 50),\n",
"('Ireland', 'Saunder', 'MacLice', 48),\n",
"('France', 'Waly', 'Brunstan', 53),\n",
"('China', 'Gisele', 'Enns', 52),\n",
"('Peru', 'Mina', 'Winchester', 48),\n",
"('Japan', 'Torie', 'MacShirrie', 50),\n",
"('Russia', 'Benjamen', 'Kenford', 51),\n",
"('China', 'Etan', 'Burn', 53),\n",
"('Russia', 'Merralee', 'Chaperlin', 38),\n",
"('Indonesia', 'Lanny', 'Malam', 49),\n",
"('Canada', 'Wilhelm', 'Deeprose', 54),\n",
"('Czech Republic', 'Lari', 'Hillhouse', 48),\n",
"('China', 'Ossie', 'Woodley', 52),\n",
"('Macedonia', 'April', 'Tyer', 50),\n",
"('Vietnam', 'Madelon', 'Dansey', 53),\n",
"('Ukraine', 'Korella', 'McNamee', 52),\n",
"('Jamaica', 'Linnea', 'Cannam', 43),\n",
"('China', 'Mart', 'Coling', 52),\n",
"('Indonesia', 'Marna', 'Causbey', 47),\n",
"('China', 'Berni', 'Daintier', 55),\n",
"('Poland', 'Cynthia', 'Hassell', 49),\n",
"('Canada', 'Carma', 'Schule', 49),\n",
"('Indonesia', 'Malia', 'Blight', 48),\n",
"('China', 'Paulo', 'Seivertsen', 47),\n",
"('Niger', 'Kaylee', 'Hearley', 54),\n",
"('Japan', 'Maure', 'Jandak', 46),\n",
"('Argentina', 'Foss', 'Feavers', 45),\n",
"('Venezuela', 'Ron', 'Leggitt', 60),\n",
"('Russia', 'Flint', 'Gokes', 40),\n",
"('China', 'Linet', 'Conelly', 52),\n",
"('Philippines', 'Nikolas', 'Birtwell', 57),\n",
"('Australia', 'Eduard', 'Leipelt', 53)\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * ibm_db_sa://pcc40744:***@dashdb-txn-sbox-yp-lon02-02.services.eu-gb.bluemix.net:50000/BLUDB\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"<table>\n",
" <tr>\n",
" <th>country</th>\n",
" <th>first_name</th>\n",
" <th>last_name</th>\n",
" <th>test_scores</th>\n",
" </tr>\n",
" <tr>\n",
" <td>Canada</td>\n",
" <td>Cristionna</td>\n",
" <td>Wadmore</td>\n",
" <td>46</td>\n",
" </tr>\n",
" <tr>\n",
" <td>Canada</td>\n",
" <td>Wilhelm</td>\n",
" <td>Deeprose</td>\n",
" <td>54</td>\n",
" </tr>\n",
" <tr>\n",
" <td>Canada</td>\n",
" <td>Carma</td>\n",
" <td>Schule</td>\n",
" <td>49</td>\n",
" </tr>\n",
"</table>"
],
"text/plain": [
"[('Canada', 'Cristionna', 'Wadmore', 46),\n",
" ('Canada', 'Wilhelm', 'Deeprose', 54),\n",
" ('Canada', 'Carma', 'Schule', 49)]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"country = \"Canada\"\n",
"%sql select * from INTERNATIONAL_STUDENT_TEST_SCORES where country = :country"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * ibm_db_sa://pcc40744:***@dashdb-txn-sbox-yp-lon02-02.services.eu-gb.bluemix.net:50000/BLUDB\n",
"Done.\n"
]
},
{
"data": {
"text/html": [
"<table>\n",
" <tr>\n",
" <th>TEST SCORES</th>\n",
" <th>frequency</th>\n",
" </tr>\n",
" <tr>\n",
" <td>38</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <td>40</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <td>43</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <td>44</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <td>45</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <td>46</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <td>47</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <td>48</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <td>49</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <td>50</td>\n",
" <td>10</td>\n",
" </tr>\n",
" <tr>\n",
" <td>51</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <td>52</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <td>53</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <td>54</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <td>55</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <td>56</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <td>57</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <td>58</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <td>60</td>\n",
" <td>1</td>\n",
" </tr>\n",
"</table>"
],
"text/plain": [
"[(38, Decimal('2')),\n",
" (40, Decimal('1')),\n",
" (43, Decimal('2')),\n",
" (44, Decimal('2')),\n",
" (45, Decimal('8')),\n",
" (46, Decimal('7')),\n",
" (47, Decimal('4')),\n",
" (48, Decimal('14')),\n",
" (49, Decimal('8')),\n",
" (50, Decimal('10')),\n",
" (51, Decimal('8')),\n",
" (52, Decimal('8')),\n",
" (53, Decimal('8')),\n",
" (54, Decimal('5')),\n",
" (55, Decimal('4')),\n",
" (56, Decimal('1')),\n",
" (57, Decimal('2')),\n",
" (58, Decimal('4')),\n",
" (60, Decimal('1'))]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_score_distribution = %sql select TEST_SCORES as \"TEST SCORES\" ,count(*) as \"frequency\" from INTERNATIONAL_STUDENT_TEST_SCORES GROUP BY TEST_SCORES;\n",
"test_score_distribution"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAW3ElEQVR4nO3de7RkZXnn8e9P8AKKQeVwidi2ZgmJMobIGSbG0ajIpFVGMUCEiIso2o5RvETGwSGjGJczKibeYjStcokiRm4GQRE0oJMR0QYbuengaKsY5BKC96joM3/s3Voc6pyzq/pUVXfv72etWmdfn/epqref3rVr77dSVUiS+uNus05AkjRdFn5J6hkLvyT1jIVfknrGwi9JPbP9rBPoYpdddqnVq1fPOg1J2qpcfvnlt1bV3MLlW0XhX716NevXr591GpK0VUnyjWHLPdUjST1j4ZeknrHwS1LPWPglqWcs/JLUMxZ+SeqZiRX+JCcluTnJ1UPWHZukkuwyqfYlScNN8oj/FGDNwoVJHgQcCHxzgm1LkhYxscJfVZ8Bbhuy6i3AKwF/CECSZmCqd+4meRrw7aq6Msly264F1gKsWrVqCtlpS/Lkjxwz1n4fP/gdK5yJtO2Z2pe7SXYEjgde3WX7qlpXVfNVNT83d5ehJiRJY5rmVT2/ATwEuDLJRmBP4Ioku08xB0nqvamd6qmqq4BdN823xX++qm6dVg6SpMleznk6cCmwd5Ibkhw9qbYkSd1N7Ii/qo5YZv3qSbUtSVqcd+5KUs9Y+CWpZyz8ktQzFn5J6hkLvyT1jIVfknrGwi9JPWPhl6SesfBLUs9Y+CWpZyz8ktQzFn5J6hkLvyT1jIVfknrGwi9JPWPhl6SesfBLUs9Y+CWpZyz8ktQzFn5J6pmJFf4kJyW5OcnVA8tOTPLlJF9Kck6SnSfVviRpuEke8Z8CrFmw7CJgn6p6JPB/gVdNsH1J0hATK/xV9RngtgXLLqyqO9rZzwF7Tqp9SdJwszzH/1zg44utTLI2yfok62+55ZYppiVJ27aZFP4kxwN3AKcttk1Vrauq+aqan5ubm15ykrSN237aDSY5CjgIOKCqatrtS1LfTbXwJ1kD/Dfg96vqR9NsW5LUmOTlnKcDlwJ7J7khydHAXwM7ARcl2ZDk3ZNqX5I03MSO+KvqiCGL3zep9iRJ3XjnriT1jIVfknrGwi9JPWPhl6SesfBLUs9Y+CWpZyz8ktQzFn5J6hkLvyT1jIVfknrGwi9JPWPhl6SesfBLUs9Y+CWpZyz8ktQzFn5J6hkLvyT1jIVfknrGwi9JPWPhl6SesfBLUs9MrPAnOSnJzUmuHlh2/yQXJbm+/Xu/SbUvSRpukkf8pwBrFiw7DvhUVT0M+FQ7L0maookV/qr6DHDbgsVPB05tp08FDp5U+5Kk4bafcnu7VdWNAFV1Y5JdF9swyVpgLcCqVaumlJ50VwedddJY+513yHNXOBNpZWyxX+5W1bqqmq+q+bm5uVmnI0nbjGkX/puS7AHQ/r15yu1LUu9Nu/CfCxzVTh8F/MOU25ek3pvk5ZynA5cCeye5IcnRwBuAA5NcDxzYzkuSpmhiX+5W1RGLrDpgUm1Kkpa3xX65K0maDAu/JPWMhV+SesbCL0k9Y+GXpJ6x8EtSz1j4JalnLPyS1DMWfknqGQu/JPXMsoU/yf2nkYgkaTq6HPFfluSMJE9JkolnJEmaqC6Ffy9gHfBs4KtJ/meSvSabliRpUpYt/NW4qB1t83k04+h/Psmnkzx64hlKklbUssMyJ3kAcCTNEf9NwDE0P6iyL3AG8JBJJihJWlldxuO/FHg/cHBV3TCwfH2Sd08mLUnSpHQp/HtXVQ1bUVVvXOF8JEkT1uXL3QuT7LxpJsn9knxigjlJkiaoS+Gfq6rbN81U1b8Cu04uJUnSJHUp/D9PsmrTTJIHA0NP/UiStnxdzvEfD/xTkk+3848D1m5Oo0leTnNpaAFXAc+pqn/bnJiSpG66XMd/AfAo4O+BDwP7VdXY5/iTPBB4CTBfVfsA2wGHjxtPkjSaLkf8APcEbmu3f3gSquozm9nuDkl+BuwI/PNmxJIkjaDLDVxvBJ4JXAP8ol1cwFiFv6q+neTNwDeBHwMXVtWFQ9pdS3tKadWqVQtXa8CHTv6DsfY7/Dnb/sVZTz37L8fa7/w/fMUKZwIHnXHmWPudd9ihd5o/+MxPjhXnI4c+6ZfTh531pbFinHHII8faT1uWLkf8B9Ncy/+TlWgwyf2Ap9Pc8Xs7cEaSI6vqA4PbVdU6mjGCmJ+f98tkSVohXa7q+Rpw9xVs80nA16vqlqr6GXA28HsrGF+StIQuR/w/AjYk+RTwy6P+qnrJmG1+E/jdJDvSnOo5AFg/ZixJ0oi6FP5z28eKqKrLkpwJXAHcAXyR9pSOJGnyli38VXVqkh2AVVX1lZVotKpeA7xmJWJJkkbT5acX/zOwAbignd83yYp9ApAkTVeXL3dPAPanuQKHqtqAY/BL0larS+G/o6q+u2CZl1dK0laqy5e7Vyf5Y2C7JA+jGW7hs5NNS5I0KV2O+I8BHkFzKefpwPeAl00yKUnS5HS5qudHNCN0Hj/5dCRJk9ZlrJ6LGXJOv6qeOJGMJEkT1eUc/7ED0/cCDqG58UqStBXqcqrn8gWL/s/Aj7JIkrYyXU713H9g9m7AfsDuE8tIM/OO08Yb3vmYZ237wztL25Iup3oupznHH5pTPF8Hjp5kUpKkyelyqse7dCVpG9LlVM8fLrW+qs5euXQkSZPW5VTP0TQ/lPKP7fwTgEuA79KcArLwS9JWpEvhL+DhVXUjQJI9gHdW1XMmmpkkaSK6DNmwelPRb90E7DWhfCRJE9bliP+SJJ+gGaengMOBiyealSRpYrpc1fPiJM8AHtcuWldV50w2LUnSpHQ54ofm93G/X1WfTLJjkp2q6vuTTEySNBldfnrx+cCZwN+2ix4IfGSSSUmSJqfLl7svAh5DMw4/VXU9sOskk5IkTU6Xwv+Tqvrpppkk27OZP72YZOckZyb5cpLrkjx6c+JJkrrrco7/00n+O7BDkgOBPwU+upntvg24oKoOTXIPYMfNjCdJ6qjLEf9xwC3AVcALgI8Bfz5ug0nuS3OF0PsAquqnVXX7uPEkSaNZ8og/yXbAqVV1JPCeFWrzoTT/kZyc5LdpRv98aVX9cEHba4G1AKtWrVqhpiVJSx7xV9XPgbn2dMxK2R54FPCuqvod4Ic0nyoWtr2uquaran5ubm4Fm5ekfutyjn8jza9unUtTpAGoqr8as80bgBuq6rJ2/kyGFH5J0mQsesSf5P3t5DOB89ptdxp4jKWqvgN8K8ne7aIDgGvHjSdJGs1SR/z7JXkw8E3gHSvc7jHAae0ppK8BjvQpSVOyVOF/N3AB8BBg/cDy0FzH/9BxG62qDcD8uPtLksa36Kmeqnp7Vf0WcHJVPXTg8ZCqGrvoS5Jma9nr+KvqhdNIRJI0HV1u4JIkbUMs/JLUMxZ+SeoZC78k9YyFX5J6xsIvST1j4Zeknun6Y+uSdBevP+fGsfY7/hl7rHAmGoVH/JLUMxZ+SeoZC78k9YyFX5J6xsIvST1j4ZeknrHwS1LPWPglqWcs/JLUMxZ+SeqZmRX+JNsl+WKS82aVgyT10SyP+F8KXDfD9iWpl2ZS+JPsCTwVeO8s2pekPpvVEf9bgVcCv5hR+5LUW1MfljnJQcDNVXV5kscvsd1aYC3AqlWrppSdNtexZ64Ze983H3rBCmaircVHzrh17H0PPmyXFcxk5dz0lg1j7bfby/dd4UyGm8UR/2OApyXZCHwIeGKSDyzcqKrWVdV8Vc3Pzc1NO0dJ2mZNvfBX1auqas+qWg0cDvxjVR057Twkqa+8jl+SemamP71YVZcAl8wyB0nqG4/4JalnLPyS1DMWfknqGQu/JPWMhV+SesbCL0k9Y+GXpJ6x8EtSz1j4JalnLPyS1DMWfknqGQu/JPWMhV+SesbCL0k9Y+GXpJ6x8EtSz1j4JalnLPyS1DMWfknqGQu/JPWMhV+SembqhT/Jg5JcnOS6JNckeem0c5CkPtt+Bm3eAbyiqq5IshNweZKLquraGeQiSb0z9SP+qrqxqq5op78PXAc8cNp5SFJfzeKI/5eSrAZ+B7hsyLq1wFqAVatWAXDLuz4wVjtzLzxyzAwXd83fPG2s/R7xp+feaf5T733qWHEOeN75Y+0naWk3vPk7Y+2357G7r3AmkzOzL3eT3Ac4C3hZVX1v4fqqWldV81U1Pzc3N/0EJWkbNZPCn+TuNEX/tKo6exY5SFJfzeKqngDvA66rqr+advuS1HezOOJ/DPBs4IlJNrSPp8wgD0nqpal/uVtV/wRk2u1KkhreuStJPWPhl6SesfBLUs9Y+CWpZyz8ktQzFn5J6hkLvyT1jIVfknrGwi9JPTPTYZln4Tvveu1Y++3+wtescCaSVtLnT755rP32f86uK5zJyrn5HReNtd+uxxy45HqP+CWpZyz8ktQzFn5J6hkLvyT1jIVfknrGwi9JPWPhl6SesfBLUs9Y+CWpZyz8ktQzFn5J6pmZFP4ka5J8JclXkxw3ixwkqa+mXviTbAe8E3gy8HDgiCQPn3YektRXszji3x/4alV9rap+CnwIePoM8pCkXkpVTbfB5FBgTVU9r51/NvAfqurFC7ZbC6xtZ/cGvrJM6F2AWzczvZWIsaXFMZfJxtmSclmpOOYy2TjTzOXBVTW3cOEsxuPPkGV3+d+nqtYB6zoHTdZX1fxmJbYCMba0OOYy2ThbUi4rFcdcJhtnS8hlFqd6bgAeNDC/J/DPM8hDknppFoX/C8DDkjwkyT2Aw4FzZ5CHJPXS1E/1VNUdSV4MfALYDjipqq5ZgdCdTwtNOMaWFsdcJhtnS8plpeKYy2TjzDyXqX+5K0maLe/claSesfBLUs9sdYU/yb2SfD7JlUmuSfLadvm+ST6XZEOS9Un27xBruyRfTHJeO3//JBclub79e7+OOS2M87okX2pzuTDJr48TZ2D5sUkqyS5j5HJCkm+3uWxI8pRxc0lyTDvUxjVJ3jROnCR/P5DLxiQbxogx8nu9SJzfTnJpkquSfDTJfTvE2NhuvyHJ+nbZSP1mkRiHta/rL5J0ukRvkTgnJvly2//OSbLzmHFG6sPDYgysG6X/Dstl5D68WD6j9OFFchmn/w6LM1IfTrJzkjPb9/a6JI8etd/dSVVtVQ+a+wDu007fHbgM+F3gQuDJ7fKnAJd0iPVnwAeB89r5NwHHtdPHAW/smNPCOPcdWPcS4N3jxGmXPYjmi/BvALuMkcsJwLFjvM4L4zwB+CRwz3Z+13Gf08C6vwRePUYuI7/Xi8T5AvD77fRzgdd1iLFx4fswar9ZJMZv0dyoeAkw3/H5DIvzn4Dt2+k3dunDi8QZqQ8PizFm/x2Wy8h9eJE4I/XhxZ7TGP13WC4j9WHgVOB57fQ9gJ1H7XeDj63uiL8aP2hn794+qn1sOmL7NZa5NyDJnsBTgfcOLH46zQtM+/fg5fIZFqeqvjewyb0ZcoNax3wA3gK8cjNjjGSROC8E3lBVPwGoqps3J58kAf4IOH2MGCO910vE2Rv4TDt9EXDIcnEWMXK/Waiqrquq5e5O7xLnwqq6o539HM19MuPEGbkPL6Jz/52CkfvwYrr23yV07sPtJ9HHAe8DqKqfVtXtbEa/2+oKP/zyI/sG4Gbgoqq6DHgZcGKSbwFvBl61TJi30nTIXwws262qbgRo/+7aIZ1hcUjy+jaXZwGvHidOkqcB366qKzvsv2guwIvbj+0ndfw4OCzOXsBjk1yW5NNJ/v1m5APwWOCmqrp+jBijvteLxbkaeFo7fRh3vrFwMQVcmOTyNMOKwOj9ZliMcSwX57nAx8eNM2IfvkuMMfrvorkweh8eFmfUPrzU69u1/y4WZ5Q+/FDgFuDkNKcq35vk3oxXr9qMRvj4tKU9aD7uXAzsA7wdOKRd/kfAJ5fY7yDgb9rpx/Orj/63L9juX5dpf2icBdu8CnjtqHGAHWlOY/1adfvYudhz2o3mfom7Aa+nuW9i5OdEUyTfTnOqbX/g67SXA4/z2gDvAl4xZi6d3+tl4vwmzUfuy4HXAP/Soc/9evt3V+BKmiOxUfvNXWIMrLuE7qd6lopzPHDOUu9Rlzgj9OFhr0vn/rtMnJH68BJxRu3DS72+y/bfZXIZpV7NA3fQjGkG8DbgdaP2uztt23XDLfXR/oM9FvjupjexfWO/t8Q+/4tm6IiNwHeAHwEfoBkIbo92mz2AryzT9tA4C7Z5MHD1GHHOovlEs7F93AF8E9h9M3JZPWYuHwAuAB4/sN3/A+bGeW1obhy8CdhzzFw6v9cjvDZ7AZ8fse+d0Pa9kfrNsBgD85fQsfAvFgc4CrgU2HFz4ozSh4fE+B+j9N8Rclm2Dy/xPo3Uh5d4fTv132VyGaVe7Q5sHJh/LHD+ZvW7UROf9QOYA3Zup3cA/jfNEd11m95U4ADg8o7xHs+vjgBP5M5flrxphLwG4zxsYPkxwJnjxFmwfCMdjpiG5LLHwPKXAx8a8zn9F+Av2um9gG/R4Why2HMC1gCfHvF9H8xlrPd6SJxd2793A/4OeO4y+94b2Glg+rPtc+ncbxaLMbD+EjoU/iVyWQNcS/eCtliczn14uefUtf8ukctIfXiJOJ378FLPaZT+u0QuI/Vhmjq3dzt9Qtvnxq5Xsxidc3PtAZya5gdd7gZ8uKrOS3I78LYk2wP/xq+GdB7FG4APJzma5ujksDFzfEOSvWnOJ3+DpsPNypuS7EtznnEj8IIx45wEnJTkauCnwFHV9rgxHM74X4oBPJ/Nf6+h+RGgF7XTZwMnL7P9bsA5zfd6bA98sKouSPIFuvebxWI8A3gHzYHN+Uk2VNUfjBHnq8A9gYvadZ+rqqX632JxzhqhDw+NscT2o+by/hH78GJx7kH3PrzUcxql/y6Wyw8YrQ8fA5zWPoevAc+hrX/j1CuHbJCkntkqr+qRJI3Pwi9JPWPhl6SesfBLUs9Y+CWpZyz82iolecDAKInfyZ1Hb6yB6Q1Jjmv3Oai95f3KJNcmeUGS4we2+/nA9EsWtLdbkvMG9v3YwLq9knwsyVfTjJz44SS7tev+Y5rRZL/cPgaHRBgcdfLaJEcMrDslydcH8vnscnlIXXk5p7Z6SU4AflBVb27nf1BV91mwzd1prkffv6puSHJPYHUNDIw2bL+BdX8LXFtVb2vnH1lVX0pyL+Aq4M+q6qPtuifQjK1yK/B54OCquiLNsMSfoBnR8fzBvJM8jGboiAdU1c+SnEJzo9mZXfIY+8VTL3nEr77YieYGmn8BqKqf1GijYe5BM+wD7f6biu0fA5duKvrtuour6mrgRcApVXVFu/xWmoHijlsYvJrBvn4ELDcA2WJ5SJ1Z+LUt2mHBqZ5nVtVtwLnAN5KcnuRZSUbp/+8E3pfk4vb00KYfJtmH5kh9mEcMWbe+XX4nSR4FXF93Hir4xIHncNoyeUidbY1DNkjL+XFV7btwYVU9L8m/A55EM1DWgcCfdAlYVZ9I8lCacVaeDHwxyT7L7BaGj0M/uOzlSZ5PM/TumgXb/deFp3oWy6OqbunyPCTwiF89U1VXVdVbaIr+SD+8UlW3VdUHq+rZNL/e9TjgGmC/RXa5hmZI3UH70Qyitslbqmpv4JnA37XfGYyTh9SZhV+9kOQ+SR4/sGhfmi97u+7/xCQ7ttM7Ab9BMzDWB4HfS/LUgW3XtJ8s3gn8STvAGEkeQPNziHf5rdeqOpvmNNBRY+YhdeapHm2LdsidfwT7Apof8Hhle1XMj4Ef0vE0T2s/4K+T3EFzwPTeqvoCNJeJAm9N8lbgZ8CXgJdW1U1JjgTe0xbpAG8d/CJ4gb8APpjkPe38iUn+fGD9/kvlIXXl5ZyS1DOe6pGknrHwS1LPWPglqWcs/JLUMxZ+SeoZC78k9YyFX5J65v8D3fLjSMnZ91wAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"dataFrame = test_score_distribution.DataFrame()\n",
"%matplotlib inline\n",
"import seaborn\n",
"plot = seaborn.barplot(x = \"TEST SCORES\",y = \"frequency\",data = dataFrame )\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python",
"language": "python",
"name": "conda-env-python-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment