Created
February 23, 2017 16:52
-
-
Save kuchaale/9a55b868c68ffdb93d569cb5fd0c9a54 to your computer and use it in GitHub Desktop.
Testing the possibility of xarray dot product of two DataArrays along their shared dims.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2017-02-23T17:51:37.373000", | |
"end_time": "2017-02-23T17:51:37.388000" | |
}, | |
"collapsed": true, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import xarray as xr\nimport numpy as np\nimport xarray.ufuncs as xrf", | |
"execution_count": 172, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2017-02-23T17:51:39.039000", | |
"end_time": "2017-02-23T17:51:39.046000" | |
}, | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "da_vals = np.arange(6 * 5 * 4 * 3).reshape((6, 5, 4, 3))\nda = xr.DataArray(da_vals, dims=['x', 'y', 'z', 't'])\ndm_vals = np.arange(3)\ndm = xr.DataArray(dm_vals, dims=['t'])", | |
"execution_count": 173, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2017-02-23T17:13:35.176000", | |
"end_time": "2017-02-23T17:13:35.187000" | |
}, | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "np.cov(da_vals[1,0,:] , dm_vals)", | |
"execution_count": 139, | |
"outputs": [ | |
{ | |
"execution_count": 139, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([[ 1.66666667, 1.66666667],\n [ 1.66666667, 1.66666667]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2017-02-23T17:10:35.706000", | |
"end_time": "2017-02-23T17:10:35.718000" | |
}, | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "np.corrcoef(da_vals[0,0,:] , dm_vals)", | |
"execution_count": 123, | |
"outputs": [ | |
{ | |
"execution_count": 123, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([[ 1., 1.],\n [ 1., 1.]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2017-02-23T17:22:09.766000", | |
"end_time": "2017-02-23T17:22:09.773000" | |
}, | |
"collapsed": true, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "def normalize(da, dim):\n da_norm = da- da.mean(dim)\n da_norm = da_norm/da.std(dim)\n return da_norm", | |
"execution_count": 151, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2017-02-23T17:51:54.791000", | |
"end_time": "2017-02-23T17:51:54.824000" | |
}, | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "dim = 't'\ncor = normalize(da, dim).dot(normalize(dm, dim))/(da[dim].shape[0])#/(da.std(dim)*dm.std(dim))\ncor", | |
"execution_count": 174, | |
"outputs": [ | |
{ | |
"execution_count": 174, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "<xarray.DataArray (x: 6, y: 5, z: 4)>\narray([[[ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.]],\n\n [[ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.]],\n\n [[ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.]],\n\n [[ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.]],\n\n [[ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.]],\n\n [[ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.],\n [ 1., 1., 1., 1.]]])\nDimensions without coordinates: x, y, z" | |
}, | |
"metadata": {} | |
} | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "conda-root-py", | |
"display_name": "Python [conda root]", | |
"language": "python" | |
}, | |
"language_info": { | |
"mimetype": "text/x-python", | |
"nbconvert_exporter": "python", | |
"name": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12", | |
"file_extension": ".py", | |
"codemirror_mode": { | |
"version": 2, | |
"name": "ipython" | |
} | |
}, | |
"anaconda-cloud": {}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "Testing the possibility of xarray dot product of two DataArrays along their shared dims.", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment