Skip to content

Instantly share code, notes, and snippets.

@kureta
Created October 25, 2013 23:37
Show Gist options
  • Save kureta/7163458 to your computer and use it in GitHub Desktop.
Save kureta/7163458 to your computer and use it in GitHub Desktop.
multifractal curves test chamber
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Multifractal curves"
]
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"1. Import necessary modules and enable inline function plotting"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline\n",
"\n",
"from pylab import *\n",
"from numpy import interp\n",
"import random"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"2. Define a simple function to map intervals"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def remap (value, from1, to1, from2, to2):\n",
" return (value - from1) / (to1 - from1) * (to2 - from2) + from2"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"3. Define a function for creating initial curves (both time and price kinds)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def gene():\n",
" nodes = range(4,6)\n",
" tNodes = random.sample(nodes, 1)[0]\n",
" \n",
" tx = [random.random() for _ in range(tNodes)]\n",
" ty = [random.random() for _ in range(tNodes)]\n",
" tx.sort()\n",
" ty.sort()\n",
" tx[0] = 0.0\n",
" tx[-1] = 1.0\n",
" ty[0] = 0.0\n",
" ty[-1] = 1.0\n",
" \n",
" px = [random.random() for _ in range(tNodes)]\n",
" py = [random.random() for _ in range(tNodes)]\n",
" px.sort()\n",
" px[0] = 0.0\n",
" px[-1] = 1.0\n",
" \n",
" return [tx, ty], [px, py]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"4. Define a function for recursing initial curve"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def recurse(array, numRecursion):\n",
" tempArray = []\n",
" for n in array:\n",
" tempArray.append(n)\n",
" newArray = []\n",
" for m in range(len(tempArray)):\n",
" for k in range(numRecursion):\n",
" for i in range(len(tempArray[m]) - 1):\n",
" for j in range(len(tempArray[m])):\n",
" newArray.append(remap(tempArray[m][j], 0.0, 1.0, tempArray[m][i], tempArray[m][i+1]))\n",
" tempArray[m] = newArray\n",
" newArray = []\n",
" \n",
" return tempArray[0], tempArray[1]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"5. Create a one time and one price curve, and plot their graphs."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"time, price = gene()\n",
"\n",
"fig, axes = plt.subplots(1, 2, figsize=(20,5))\n",
"axis([0.0,1.0, 0.0,1.0])\n",
"# default grid appearance\n",
"axes[0].plot(time[0], time[1], lw=2)\n",
"axes[0].grid(True)\n",
"axes[0].set_autoscale_on(False)\n",
"\n",
"# custom grid appearance\n",
"axes[1].plot(price[0], price[1], lw=2)\n",
"axes[1].grid(True)\n",
"axes[1].set_autoscale_on(False)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAE4CAYAAAAq4iifAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm8TvX6//H3ZiNThpKwt2SmhCIUGU4yJCpkqgxlKiJ1\nGk9Hw1fSREjhkIo2RaZiV9ROhVQoTTJm2xVJCJn2vn9/XL9tH0fZg3vf63Ov9Xo+HveDtdzH/jhX\n9/qs+1qf6/rEhEKhkAAAAAAAABAYebweAAAAAAAAACKLhBAAAAAAAEDAkBACAAAAAAAIGBJCAAAA\nAAAAAUNCCAAAAAAAIGBICAEAAAAAAARMpgmhPn36qHTp0qpVq9bfvueOO+5QlSpVVLt2ba1Zsyas\nAwQAAAgi7sEAAEBuyjQh1Lt3byUmJv7tny9atEgbN27Uhg0bNGnSJA0cODCsAwQAAAgi7sEAAEBu\nyjQh1KRJE5UoUeJv/3zBggXq2bOnJKlBgwbas2ePduzYEb4RAgAABBD3YAAAIDeddg+hlJQUxcfH\nHz+Oi4vT9u3bT/evBQAAwClwDwYAAE5HWJpKh0KhE45jYmLC8dcCAADgFLgHAwAAORV7un9BuXLl\nlJycfPx4+/btKleu3F++76effjrdHwcAABxVqVIlbdy40ethBAb3YAAAQMr5PdhprxBq3769Xnnl\nFUnSypUrVbx4cZUuXfqk9/30008KhUK8HHoNHz7c8zHwIi7R8CImbr6IS+RfR4+GNHNmSA0bhiTZ\nK2/ekLp2DenTT0PatGnT6d5WIBu4B4veF9cvN1/Exb0XMXHvRUzcfOX0HizTFULdunXThx9+qF27\ndik+Pl6PPPKIjh49Kknq37+/2rZtq0WLFqly5coqXLiwXnrppRwNBJG3detWr4eAv0Bc3ENM3ERc\nImfPHmnyZGncOCl9QUqJElK/ftKgQVJcnLfj8yvuwfyL65ebiIt7iIl7iIm/ZJoQSkhIyPQvGT9+\nfFgGAwAA3LFhg/Tcc9K0adKBA3aualVp6FDp5pulwoU9HZ7vcQ8GAABy02n3EEL06tWrl9dDwF8g\nLu4hJm4iLrkjFJI++EAaM0Z66y07lqR//EO6806pTRspT1i2pACCi+uXm4iLe4iJe4iJv8SEQqFQ\n5m8Lww+KiVGEfhQAAMimw4elhARLBH35pZ0rUEDq0cNWBNWqlfnfwVzvJuICAIC/5XSu5xlfgCUl\nJXk9BPwF4uIeYuIm4hIeO3dKjzwilS8v9e5tyaBzzrFz27ZJU6ZkLRkEIOu4frmJuLiHmLiHmPgL\nJWMAAATQunW2GmjGDFsdJEkXXWRlYd262eogAAAA+BclYwAABERamrR4sTR6tLR0qZ2LiZHatbNE\nULNmdpxTzPVuIi4AAPhbTud6VggBAOBzBw5IL79sO4b98IOdK1zYSsTuuEOqUsXb8QEAACDy6CEU\nYNR/uom4uIeYuIm4ZC45Wbr3XikuTrr9dksGxcdLTz5pfzZuHMkgwAtcv9xEXNxDTNxDTPyFFUIA\nAPjMqlVWFvbGG1Jqqp1r2NDKwq6/Xopl9gcAAAg8eggBAOADx45Jc+daImjFCjuXN6/UqZNtG9+w\nYe6PgbneTcQFAAB/o4cQAAABtGeP9J//WPnXtm12rnhxqV8/KxMrX97b8QEAAMBN9BAKMOo/3URc\n3ENM3BT0uGzcaA2h4+Kkf/7TkkFVqkjjx1t/oFGjSAYBrgr69ctVxMU9xMQ9xMRfWCEEAECUCIWk\nDz+0srCFC+1Yklq0sP5AbdtKeXjUAwAAgCyghxAAAI47fFiaOVMaM0Zau9bO5c8v9eghDRki1a7t\n7fjSMde7ibgAAOBv9BACAMBnfv1VevFFacIE6Zdf7FypUtJtt0kDB0qlS3s7PgAAAEQvFpYHGPWf\nbiIu7iEmbvJzXL7+Wrr1Vik+Xvr3vy0ZVKuWNHWq9Qp6+GGSQUA08/P1K5oRF/cQE/cQE39hhRAA\nAA5IS5MSE60/0JIlGefbtbP+QM2bSzEx3o0PAAAA/kIPIQAAPHTggPTKK9Jzz0nr19u5QoWk3r1t\nF7GqVb0dX3Yw17uJuAAA4G/0EAIAIIqkpNgW8RMnSr//bufi4qTBg6W+faUSJbwdHwAAAPyNHkIB\nRv2nm4iLe4iJm6I1Lp99JnXvLlWoID3xhCWDGjSwXcQ2b5buuYdkEOB30Xr98jvi4h5i4h5i4i+s\nEAIAIJcdOybNm2f9gZYvt3N58kidO1t/oEaNvB0fAAAAgoceQgAA5JK9e6UpU6SxY6Uff7RzxYpZ\nSdigQdJ553k7vnBjrncTcQEAwN/oIQQAgCM2bbIk0NSp0v79dq5yZWnIEKlXL6lIEU+HBwAAANBD\nKMio/3QTcXEPMXGTa3EJhaQPP5Suu06qUsUSQvv323bx8+dL339vq4JIBgFw7foFQ1zcQ0zcQ0z8\nhRVCAACchiNHpFmzrD/QmjV2Ln9+qVs3aehQqU4db8cHAAAA/BV6CAEAkAO7dkkvvig9/7z0yy92\nrlQpaeBAe517rrfj8wJzvZuICwAA/kYPIQAAIuCbb6QxY6Tp06VDh+zchRfabmHdu0tnnOHt+AAA\nAICsoIdQgFH/6Sbi4h5i4qZIxiUtTUpMlFq1suTPf/5jyaC2baX33pO++krq04dkEICsYV5xE3Fx\nDzFxDzHxF1YIAQDwNw4elF591VYEff+9nStUSOrZ03YMq1bN2/EBAAAAOUUPIQAA/kdKivUGmjhR\n2r3bzpUrJw0eLPXtK5Us6e34XMVc7ybiAgCAv9FDCACA0/T557YaaNYs6dgxO1e/vvUH6tRJypfP\n2/EBAAAA4UIPoQCj/tNNxMU9xMRN4YpLaqr05ptSkyaW/Jkxw3oGdeokffKJ9OmntoU8ySAA4cK8\n4ibi4h5i4h5i4i+sEAIABNK+fdKUKdLYsdLWrXbuzDOtJGzQIKlCBS9HBwAAAOQueggBAAJl82ZL\nAk2dKv3xh52rWNGaRPfuLRUt6u34ohlzvZuICwAA/kYPIQAA/kYoJH30kfUHmj/fSsIkqWlT6w/U\nrp2UN6+3YwQAAAAiiR5CAUb9p5uIi3uIiZuyEpcjR6Tp06V69Sz5M3euJX5uvllavVpKSpI6dCAZ\nBCCymFfcRFzcQ0zcQ0z8hRVCAADf2bXLtox//nnp55/t3NlnSwMH2qtMGW/HBwAAAHiNHkIAAN/4\n9lvpueekV16RDh2ycxdcIA0dKvXoIRUs6O34/I653k3EBQAAf6OHEAAgkEIh6d13pdGjpXfeyTjf\npo31B7rySikmxrvxAQAAAC6ih1CAUf/pJuLiHmLipnfeSdKkSbYCqHVrSwYVLCgNGGArhRYtklq2\nJBkEwD3MK24iLu4hJu4hJv7CCiEAQFT56SdpwgRp3Dhp3z47V7asNGiQ1K+fdNZZ3o4PAAAAiAb0\nEAIARIXVq60sbNYs6ehRO1evnpWFde4s5cvn7fjAXO8q4gIAgL/RQwgA4DupqdKCBdKYMdKyZXYu\nTx6pY0dLBF12GSVhAAAAQE7QQyjAqP90E3FxDzGJvH37bLewqlWl66+3ZNCZZ0rDhkkbN0qzZ0tH\njyaRDAIQlZhX3ERc3ENM3ENM/IUVQgAAZ2zZYr2BpkzJ6A90/vnSkCFS796WFAIAAABw+ughBADw\nVCgkffKJ9QeaN09KS7PzV1xhZWHXXCPlzevtGJE1zPVuIi4AAPgbPYQAAFHlyBHpjTesP9Dnn9u5\nfPmkHj2koUOliy/2dnwAAACAn9FDKMCo/3QTcXEPMQmv336TRo60UrAbb7Rk0FlnSQ8+KG3dKr3y\nStaSQcQFQLTi+uUm4uIeYuIeYuIvmSaEEhMTVb16dVWpUkWjRo066c937dql1q1bq06dOrrwwgs1\nbdq03BgnACDKff+9NGCAFB8vPfCA9NNPUs2a0qRJUnKy9H//J5Ut6/UoAXdwDwYAAHLTKXsIpaam\nqlq1alqyZInKlSun+vXrKyEhQTVq1Dj+nocffliHDx/WyJEjtWvXLlWrVk07duxQbOyJ1WjUrwNA\n8IRC0nvvWVnY4sUZ51u3trKwq65i23g/Ya4PH+7BAABAVuV0rj/lCqFVq1apcuXKqlChgvLly6eu\nXbtq/vz5J7ynTJky2vf/t4LZt2+fzjrrrJNuRAAAwfLnn9J//iPVqiW1amXJoDPOkPr1k775xo5b\ntSIZBPwd7sEAAEBuO2VCKCUlRfHx8ceP4+LilJKScsJ7+vbtq2+++UZly5ZV7dq19dxzz+XOSBF2\n1H+6ibi4h5hk3c8/Sw89JJUvL/Xta8mfMmWkESOsLGziRCsTCwfiAj/jHszfuH65ibi4h5i4h5j4\nyykfI8Vk4dHt448/rjp16igpKUmbNm1Sy5Yt9eWXX6po0aJhGyQAwG1r1ti28TNnSkeP2rmLL7Zt\n42+4Qcqf39vxAdGGezAAAJDbTpkQKleunJKTk48fJycnKy4u7oT3LF++XA8++KAkqVKlSjr//PO1\nfv161atX76S/r1evXqpQoYIkqXjx4qpTp46aNWsmKSPTyHFkj9O5Mh6Om6lZs2ZOjYdjHT/nynhc\nOW7SpJkWLpQefjhJX34pSc0UEyM1bpykzp2lwYPt2JXxchz+46SkpOONjNPnd4QH92D+P07nyng4\n5h7MxeP0c66Mh2M7TufKeIJ4nBSme7BTNpU+duyYqlWrpqVLl6ps2bK69NJLT2poOGzYMBUrVkzD\nhw/Xjh07dMkll+irr75SyZIlT/xBNDQEAF/44w/ppZeksWOlTZvsXNGi0i23SIMHSxUrejs+eIe5\nPny4BwMAAFmVK02lY2NjNX78eLVq1Uo1a9ZUly5dVKNGDU2cOFETJ06UJD3wwAP6/PPPVbt2bV15\n5ZV68sknT7oRgZv+N8MLNxAX9xATs3WrdNddUlycNGSIJYPOP99KxbZvt18jmQwiLvAz7sH8jeuX\nm4iLe4iJe4iJv2S6FUWbNm3Upk2bE87179//+O/PPvtsLVy4MPwjAwB4LhSSli+3bePffFNKS7Pz\nTZrYtvEdOkh583o7RsCvuAcDAAC56ZQlY2H9QSxXBoCocfSoNHu2rfr57DM7FxsrdelijaIvucTb\n8cFNzPVuIi4AAPhbTuf6TFcIAQCCY/duadIkafx4KX2H65IlpQEDpNtvl8qW9XZ8AAAAAMLjlD2E\n4G/Uf7qJuLgnCDFZv1667TYpPl66/35LBlWvLr34opScLI0Y4V4yKAhxAeBPXL/cRFzcQ0zcQ0z8\nhRVCABBQoZC0dKmVhS1alHH+qqusLOyqq6Q8PDYAAAAAfIkeQgAQMIcOSTNmWKPor7+2c2ecId10\nk+0edsEF3o4P0Yu53k3EBQAAf6OHEADglH75RZowwcrAfv3VzpUpY72B+vWTSpXydnwAAAAAIodi\ngACj/tNNxMU90R6TtWulXr2k886THnvMkkF160qvvCJt3So9+GB0JoOiPS4Agovrl5uIi3uIiXuI\nib+wQggAfCgtTXrrLesPlD5vx8RI115r/YGaNLFjAAAAAMFEDyEA8JH9+6WXXpLGjpU2brRzRYpI\nt9wiDR4sVark7fjgb8z1biIuAAD4Gz2EACDAtm2Txo2TJk+W9u61c+edJ91xhyWDihXzdnwAAAAA\n3EIPoQCj/tNNxMU9LsdkxQrphhukihWlp5+2ZNDll0uzZ9sKoWHD/JsMcjkuAHAqXL/cRFzcQ0zc\nQ0z8hRVCABBljh6V5syxbeM//dTOxcZK3btLQ4dK9et7Oz4AAAAA7qOHEABEid9/lyZNksaPl7Zv\nt3MlS0r9+0u33SbFxXk7PoC53k3EBQAAf6OHEAD41A8/SM89J02bJh08aOeqVbPVQDffLBUq5Onw\nAAAAAEQheggFGPWfbiIu7vEiJqGQtHSp1K6dJX8mTLBkUMuW0qJF0rffSgMGBDsZxGcFQLTi+uUm\n4uIeYuIeYuIvrBACAIccOiS99pr1B1q3zs4VKCDddJM0ZIh04YXejg8AAACAP9BDCAAcsGOH9MIL\n9tq5086VLi3dfrutBCpVytvxAVnBXO8m4gIAgL/RQwgAotCXX9pqoNdek44csXN16kh33il16WKr\ngwAAAAAg3OghFGDUf7qJuLgn3DFJS5MWLpT+8Q9L/kybZlvJd+ggffCBtHq1NYsmGXRqfFYARCuu\nX24iLu4hJu4hJv7CCiEAiJD9+6WXX7YdwzZssHOFC0t9+kh33CFVruzt+AAAAAAEBz2EACCXJSdL\n48ZJkydLe/bYufLlLQl0yy1S8eLejg8IF+Z6NxEXAAD8jR5CAOCYlSutP9Ds2VJqqp277DLrD3Tt\ntVIsV2AAAAAAHqGHUIBR/+km4uKe7MTk2DHp9delRo3sNWuWne/aVfr0U+mTT6ROnUgGhQOfFQDR\niuuXm4iLe4iJe4iJv/CVBADCYM8eKwkbN85KxCSpRAmpXz9p0CApLs7b8QEAAADAf6OHEACchg0b\nrEn0tGnSgQN2rmpVaehQ2ymscGFPhwdEFHO9m4gLAAD+Rg8hAIiQUEhKSpJGj5beesuOJdtG/s47\npTZtpDwU5AIAAABwGF9ZAoz6TzcRF/ekx+TwYVsJVLeu1KKFtHChlD+/bRv/1VfSkiXS1VeTDIoU\nPisAohXXLzcRF/cQE/cQE39hhRAAZOL336VHHpEmTJB27rRzpUtLt90mDRggnXOOt+MDAAAAgOyi\nhxAA/I1162zb+BkzbHWQJF10kZWFdesmFSjg7fgA1zDXu4m4AADgb/QQAoAwSEuTFi+2/kBLl9q5\nmBjpmmssEdSsmR0DAAAAQDSj00WAUf/pJuLijQMHrCSsRg2pXTtLBhUubFvGv/JKkhYskJo3Jxnk\nEj4rAKIV1y83ERf3EBP3EBN/YYUQgEBLTpbGj5cmTZL27LFz5ctLgwdLt9wilShhO4oBAAAAgJ/Q\nQwhAIK1aZWVhb7whpabauYYNrSzs+uulWNLlQLYx17uJuAAA4G/0EAKATBw7Js2da4mgFSvsXN68\nUpcu0tChlhACAAAAgCCgh1CAUf/pJuISfnv2SE8/LVWqJN1wgyWDiheX7rlH2rxZmjnz1MkgYuIm\n4gIgWnH9chNxcQ8xcQ8x8RdWCAHwrY0bpbFjpalTrWm0JFWpIg0ZIvXsKRUp4u34AAAAAMAr9BAC\n4CuhkPThh1YWtnChHUtSixbWH6htWykPayOBXMFc7ybiAgCAv9FDCECgHT5spV9jxkhr19q5/Pml\nHj1sRVDt2t6ODwAAAABcwnPyAKP+003EJXt+/VV67DGpQgWpVy9LBpUqJQ0fLm3bZuVip5sMIiZu\nIi4AohXXLzcRF/cQE/cQE39hhRCAqPT117YaaPp0Wx0kSbVqWVlYt27SGWd4Oz4AAAAAcBk9hABE\njbQ0KTHREkHvvZdxvl07SwQ1by7FxHg3PiDomOvdRFwAAPA3eggB8K0DB6RXX7VE0Pr1dq5QIal3\nb+mOO6SqVb0dHwAAAABEG3oIBRj1n24iLhlSUqT775fi46WBAy0ZFBcnjRolbd8ujR8fmWQQMXET\ncQEQrbh+uYm4uIeYuIeY+AsrhAA457PPbNv4N96Qjh2zcw0aWFnY9ddL+fJ5Oz4AAAAAiHb0EALg\nhGPHpPnzLRH0ySd2Lm9eqWNHaehQqVEjb8cHIHPM9W4iLgAA+Bs9hABEpb17pSlTpLFjpR9/tHPF\nikl9+0qDB0vly3s7PgAAAADwI3oIBRj1n24KSlw2bZKGDLGeQHfdZcmgypWlceOsP9BTT7mTDApK\nTKINcQEQrbh+uYm4uIeYuIeY+EumCaHExERVr15dVapU0ahRo/7yPUlJSapbt64uvPBCNWvWLNxj\nBOAToZD04YfSdddJVarYqqD9+227+AULrGn0oEFSkSJejxQAvMc9GAAAyE2n7CGUmpqqatWqacmS\nJSpXrpzq16+vhIQE1ahR4/h79uzZo8svv1zvvPOO4uLitGvXLp199tkn/yDq14HAOnJEmjXL+gOt\nWWPn8ueXune3VUJ16ng7PgDhwVwfPtyDAQCArMqVHkKrVq1S5cqVVaFCBUlS165dNX/+/BNuRl57\n7TV17NhRcXFxkvSXNyIAgmnXLunFF6Xnn5d++cXOlSplW8gPHCide6634wMAV3EPBgAActspS8ZS\nUlIUHx9//DguLk4pKSknvGfDhg3avXu3mjdvrnr16unVV1/NnZEi7Kj/dJMf4vLNN9YUOj5eeugh\nSwZdeKE1j962TXrkkehKBvkhJn5EXOBn3IP5G9cvNxEX9xAT9xATfznlCqGYmJhM/4KjR49q9erV\nWrp0qQ4ePKhGjRqpYcOGqlKlyknv7dWr1/EnXcWLF1edOnWO17un/4fFceSO165d69R4OI7u47Q0\n6ciRZho9Wnr3XftzqZnatpVatEjSxRdLzZu7M97sHK9du9ap8XBsx+lcGU8Qj5OSkjRt2jRJOj6/\nIzy4B/P3MfdgHHOctWPuwdw75vrlxnFSmO7BTtlDaOXKlXr44YeVmJgoSRo5cqTy5Mmje++99/h7\nRo0apT///FMPP/ywJOnWW29V69at1alTpxN/EPXrgC8dPCi9+qo0Zoz0/fd2rlAhqWdP6w9UrZq3\n4wMQOcz14cM9GAAAyKqczvV5TvWH9erV04YNG7R161YdOXJEs2bNUvv27U94T4cOHfTxxx8rNTVV\nBw8e1KeffqqaNWtmeyAAoktKivTAA1YWNmCAJYPKlZOeeEJKTpYmTCAZBAA5xT0YAADIbadMCMXG\nxmr8+PFq1aqVatasqS5duqhGjRqaOHGiJk6cKEmqXr26WrdurYsuukgNGjRQ3759uRmJEulLzuAW\n1+Py+efSjTdKFSpII0dKu3dL9etLr70mbdki3XuvVLKk16MML9djElTEBX7GPZi/cf1yE3FxDzFx\nDzHxl1P2EJKkNm3aqE2bNiec69+//wnHd999t+6+++7wjgyAM1JTpfnzbdv4jz+2c3nySJ07S0OH\nSo0aSVlodwEAyAbuwQAAQG46ZQ+hsP4g6teBqLNvn+0MNnastHWrnTvzTNtBbPBg6bzzPB0eAMcw\n17uJuAAA4G85neszXSEEIHg2b5bGjbNk0B9/2LlKlaxJdK9eUtGing4PAAAAAHCaTtlDCP5G/aeb\nvIpLKCR99JF0/fVSlSq2a9gff0hNm0rz5knr19uqoCAmg/isuIm4AIhWXL/cRFzcQ0zcQ0z8hRVC\nQMAdOSK9/rolgL74ws7ly2eNo4cOlerW9XZ8AAAAAIDwo4cQEFBHj0rPPGP9gX7+2c6dfbY0cKC9\nypTxdnwAog9zvZuICwDgdKWkSA8+KB0+LF1yib3q1pWKF/d6ZJByPteTEAICauZMqVs3+/0FF9hq\noB49pIIFvR0XgOjFXO8m4gIAOB1ffildfbUlhf5XpUqWHLr44oxfS5aM/BiDLqdzPT2EAoz6TzdF\nKi779tmvXbpI69ZJt95KMujv8FlxE3EBEK24frmJuLiHmHhv8WKpcWNLBjVuLN11V5IGDJDq15cK\nFJA2bbL2E/fdJ7VsKZ11lnT++VKnTtLIkdK770q7dnn9r8DfoYcQEFBpafZr8eJSTIy3YwEAAADg\nlokTpdtvl1JTrbJg6lRp5UqpWTP786NHpW+/tT6kX3whrV4trV0rbd1qrzlzMv6u8uVPXEl0ySXS\nOed48I/CCSgZAwJqwgS7wA8caL8HgNPFXO8m4gIAyI60NFvx89RTdvyvf0mPPpq1h8jHjknffWfJ\nofRE0dq10sGDJ7+3XLmM5FB6sog+pjmT07meFUJAQKVfL/JQOAoAAABA0p9/SjffLM2eLcXG2iqh\nPn2y/r+PjZVq1bJXz552LjVVWr8+YxXRF19Ia9ZYGVpKirRgQcb/vkyZk1cSlS1LRUNu4atggFGT\n66ZIxSW9ZIyLa+b4rLiJuACIVly/3ERc3ENMIuvXX6UWLSwZdOaZ1j/of5NBOYlJ3rxSzZrSTTdJ\no0dLy5ZJe/dK338vzZghDRsmNW0qFS1qux+/9ZatSOrQQYqLsyRR27bSQw9J8+ZJ27ZlPNzG6WGF\nEBBQrBACAAAAINkKnrZtpc2brd/PokW2E3FuyZNHqlbNXt2727m0NGtS/d8riVavlnbssOTU4sUZ\n//uzzz55JdF55/GwO7voIQQE1Jgx0p132nbzo0d7PRoAfsBc7ybiAgA4lQ8/lK67Tvr9d6lePWnh\nQuncc70elQmFpC1bMvoRpSeJdu8++b0lS56YILr4YqlixWAkieghBCBbKBkDAAAAgm36dCsLO3pU\nat9eeu01qXBhr0eVISbGkjoVK0qdO9u5UEj68ccTVxJ98YVtb79kib3SFS9uiaH/ThRVqkSVRDr+\nbwgwanLdFKm4UDKWdXxW3ERcAEQrrl9uIi7uISa5JxSSHnvM+vocPSoNGSK9+WbmySAXYhITI1Wo\nIHXsKI0YISUmSjt3WpJo7lzbFa1NG9vWfs8e6f33paeflrp1k6pWlUqUkJo1k+66yxJg33+f8bA8\naFghBAQUK4QAAACA4DlyROrfX5o2zR4Ojx4t3XGH16M6PTEx1vuofHnp2mvtXCgk/fTTySuJfv7Z\nyuQ+/DDjf1+kiFS37okriapVs4bYfkYPISCgRo2S7rtPuuce+z0AnC7mejcRFwBAuj17bGXN++9L\nhQpJCQlWKhYkP/98YtPqL76Qtm8/+X2FCkl16pzYk6hGDSnWwWU19BACkC2UjAEAAADBsXWr7ST2\n3XfWNPqttyzRETRlykhXX22vdDt3nrySaNs2aflye6UrWFCqXfvElUQ1a0r58kX+3xEOfBUMMBfq\nP3GySMWFkrGs47PiJuICIFpx/XITcXEPMQmfVaukBg0sGXTBBdLKlTlLBvk1JuecY32HHnzQein9\n+KP066/SO+9Ijz8udeoknX++9Oef9v/dhAnSLbfYCqKiRaVLL5UGDpT+8x9LKh054vW/KGtYIQQE\nVHpCiBVCAAAAgH/Nmyd1727JjCuvlGbPlooV83pU7jv7bOmqq+yVbvduS/j890qiTZukzz6zV7r8\n+aVatU6rwPfjAAAgAElEQVRcSVSrllSgQOT/HadCDyEgoB57TPr3v6WHHpIefdTr0QDwA+Z6NxEX\nAAimUEgaM8Z20wqFbHv5F1+M3vImV+3ZI61Zc2LJ2Q8/nPy+2FjpwgtP7El00UVWhna66CEEIFso\nGQMAAAD86dgxaehQ6fnn7XjECOn++7n3zw3Fi0vNm9sr3b590tq1GauIvvhCWr/ezq1dK02ZYu/L\nm9dK+P57JVHt2tbQOhIoFgkwv9Z/RrtI9xCiZCxzfFbcRFwARCuuX24iLu4hJjmzf7903XWWDMqf\nX3rtNemBB8KTDCImWXPmmdIVV0h33ilNn269m/btkz76yFZt3XyzJYJCIemrr6Rp06TBg6XLLrOe\nRBdeKPXsKY0dK338scU0N7BCCAio9BWFPCUAAAAA/OGnn6R27ayEqWRJ6x/UpInXo4IkFSkiNW5s\nr3QHDlhC6L9XEn37rfTNN/Z65RV7X0yMVL36iSuJ6tSxxNPpoIcQEFD/+pctHX3sMfs9AJwu5no3\nERcACIZ162wr9eRkqXJl6e23papVvR4VsuvPPzOSROk9ib7+2soA/1tMjFSliiWHEhLoIQQgG9Kv\nF5SMAQAAANHt3Xdta/Q//rCyo/nzbZcsRJ+CBaUGDeyV7tAhSwr990qideusefVfNbDOKr4KBhj1\nn26KdA8hSsYyx2fFTcQFQLTi+uUm4uIeYpI1kydLbdtaMqhLF2np0txLBhETb5xxhlSvntS/vzRp\nkiWE9u+3XydNyvnfS0IICCiaSgMAAADRKy3Ndg7r109KTZXuu88aSJ9xhtcjQyTkz289hfr2zfnf\nQQ8hIKDuuUd66inpySelf/7T69EA8APmejcRFwDwn0OHpF69pFmzbOvyF144vcQAoltO53p6CAEB\nRckYAAAAEH127ZI6dJCWL7ctymfPlq66yutRIRpRLBJg1H+6KdI9hCgZyxyfFTcRFwDRiuuXm4iL\ne4jJyTZskBo1smRQfLz0ySeRTQYRE3/hqyAQUOwyBgAAAESPjz+WGjaUNm6U6taVVq6UatXyelSI\nZvQQAgJqyBBp7FhpzBj7PQCcLuZ6NxEXAIh+CQnWM+jIEenqq6WZM6UiRbweFVyR07metQFAQFEy\nBgAAALgtFJIef1zq3t2SQbffLs2bRzII4cFXwQCj/tNNkYpLegKZptKZ47PiJuICIFpx/XITcXFP\n0GNy9Kh0663Sgw/aPfvo0dK4cVKsh1tDBT0mfsMuY0BAsUIIAAAAcNPevVKnTtKSJVLBgtKMGdJ1\n13k9KvgNPYSAgBowQJo4UXrhBfs9AJwu5no3ERcAiC4//mh9gr75RjrnHGnhQunSS70eFVyW07me\nFUJAQFEyBgAAALjliy+kdu2kX36RatSQFi2SKlTwelTwK4pFAoz6TzdFKi6UjGUdnxU3ERcA0Yrr\nl5uIi3uCFpMFC6QrrrBkUIsW0vLl7iWDghYTv+OrIBBQ6SuESAgBAAAA3ho7Vrr2WungQalnT2nx\nYql4ca9HBb+jhxAQUH36SC+9JE2ZYr8HgNPFXO8m4gIA7kpNle66S3ruOTt+9FHpX/+irQOyhx5C\nALKFkjEAAADAOwcOSN27W6lY/vz2oPbGG70eFYKEr4IBRv2nmyIVF5pKZx2fFTcRFwDRiuuXm4iL\ne/wck19+kZo2tWRQiRLSu+9GRzLIzzEJIlYIAQHFCiEAAAAg8r75RmrbVtq2TapY0XYSq1bN61Eh\niOghBARUjx7Sa69J06fb7wHgdDHXu4m4AIA7liyROnaU9u2TGja0FUKlSnk9KkS7nM71rA0AAoqS\nMQAAACByXnpJatPGkkEdO0rvv08yCN4iIRRg1H+6KVJxoWQs6/isuIm4AIhWXL/cRFzc45eYhEK2\nc1ifPtKxY9I//ym9/rpUsKDXI8s+v8QEJtOvgomJiapevbqqVKmiUaNG/e37PvvsM8XGxurNN98M\n6wAB5A4SQgDgNu7BACD6HT5s7RlGjJDy5pVefFF68knuweGGU/YQSk1NVbVq1bRkyRKVK1dO9evX\nV0JCgmrUqHHS+1q2bKlChQqpd+/e6tix48k/iPp1wCmdO0uzZ9vTic6dvR4NAD9grg8f7sEAIPr9\n9pt03XXSRx9JRYrYfXebNl6PCn6UKz2EVq1apcqVK6tChQrKly+funbtqvnz55/0vnHjxqlTp04q\nRQEkEDVYIQQA7uIeDACi28aNUqNGlgwqV076+GOSQXDPKb8KpqSkKD4+/vhxXFycUlJSTnrP/Pnz\nNXDgQEmWmUJ0oP7TTZHuIcRHNnN8VtxEXOBn4b4HmzFDOno0d8aK7OP65Sbi4p5ojcny5ZYM2rBB\nql1bWrnSfvWDaI0J/lrsqf4wK8mdoUOH6oknnji+ROlUy5R69eqlChUqSJKKFy+uOnXqqFmzZpIy\n/sPiOHLHa9eudWo8HEf2+NdfJamZ8uRxYzwuH69du9ap8XBsx+lcGU8Qj5OSkjRt2jRJOj6/IzzC\nfQ924429NHBgBTVoILVoUVyNGnEP5uUx92Acc5y142i8B/vgA2nUqGY6fFi69NIkDR8uxcW5M77T\nPeb65cZxUpjuwU7ZQ2jlypV6+OGHlZiYKEkaOXKk8uTJo3vvvff4eypWrHj8BmTXrl0qVKiQJk+e\nrPbt25/4g6hfB5zSvr20cKE0f779HgBOF3N9+IT7HqxGjZC++86OixSRbr1VGjJEIo8HAOERClmz\n6Pvus+MBA6Rx46TYUy7BAMIjV3oI1atXTxs2bNDWrVt15MgRzZo166SbjM2bN2vLli3asmWLOnXq\npBdeeOGk9wBwDyVjAOCucN+Dff219PbbUosW0v790pgxUqVKUpcu0qpVkfgXAYB/HT0q9e+fkQx6\n6ilpwgSSQXDfKRNCsbGxGj9+vFq1aqWaNWuqS5cuqlGjhiZOnKiJEydGaozIJelLzuCWSMUlPYGc\n55RXAUh8VlxFXOBn4b4Hy5NHattWWrpUWrNGuvFGO/f661KDBlKTJtK8eVJqai78Y3ASrl9uIi7u\niYaY7NsntWsnTZ4snXGG7eJ7993+fegaDTFB1mWas2zTpo3a/E879P79+//le1966aXwjApArmOX\nMQBwW27dg9WpI736qjRypJUzTJxou998/LFUubI0dKjUq5dUuPDpjB4A/C85Wbr6amndOqlUKWnB\nAqlhQ69HBWTdKXsIhfUH0VcAcErr1tI770iLF9vvAeB0Mde7KbO47N8vTZ1qZWRbtti5kiWt/8Wg\nQVKZMhEaKABEkdWrbWXQzz9L1apJixZJFSt6PSoEVa70EALgX6wQAgBI1mT6jjukH36Q3njDnm7v\n3i09/rg1ne7d255+AwDM229LV1xhyaCmTW2beZJBiEZ8FQww6j/dFKm4kBDKOj4rbiIuQHjFxkqd\nOkkrVkiffCJdf701Sp02TbroIqlVK+nddzN60CHnuH65ibi4x8WYPP+87dB74ID1Y3vnHVtVGRQu\nxgQ5x1dBIKDSb+j92vAOAJBzl10mzZkjbdhgZWOFClkyqFUrqXZtSxIdPuz1KAEgclJTpWHD7JqY\nliYNHy698opUoIDXIwNyjh5CQEA1by4lJUnvv2+/B4DTxVzvpnDEZfduaz49bpyVSEjSuedKgwdb\nr6EgPR0HEDwHD9pqoLlzpXz5bEexnj29HhWQgR5CALIlvWSMFUIAgMyULCndf781nZ42TapVS/rl\nF+nBB6X4eHtivnGj16MEgPDbscMens6dKxUrZiViJIPgFySEAoz6TzdFKi7pCWR6CGWOz4qbiAsQ\neQUK2BehL7/MKCE7eNB6alStan2HPvmEPkOZ4frlJuLiHq9j8t131mh/1Sprsr9iBSvrvY4Jwouv\ngkBA0VQaAJBTMTFSy5ZSYqLtQNa7t5VRzJ0rNW4sNWpkO5YdO+b1SAEgZz74wPqpbd0qXXqptHKl\nVKOG16MCwoseQkBAXXaZPeX4+GPp8su9Hg0AP2Cud1Ok4vLLL9L48dILL1jPIcmeqA8dKvXpIxUt\nmutDAICwePll6dZbLal93XXS9OnWXB9wFT2EAGQLJWMAgHA691zp//5P2rbNSsgqV7Yn60OHWp+h\ne+6Rtm/3epQA8PdCIds9rFcvSwYNG2arHUkGwa/4Khhg1H+6KVJxoWQs6/isuIm4AG4qXFi67Tbp\n+++lefOkJk2kvXulp56Szj/fdupZs8brUXqL65ebiIt7IhmTw4etR9qjj9r98fjx0jPPSHnzRmwI\nUYHPib/wVRAIKHYZAwDkprx5pQ4dpGXLpE8/lbp0safvM2ZIF18stWghvf12xnwEAF7Zvdua5L/6\nqiW1FyyQbr/d61EBuY8eQkBA1asnffGF9Nln9nsAOF3M9W5yKS5bt0pjx0qTJ0v799u5GjWkO++U\nbrpJOuMMT4cHIIA2b5batpXWr5fKlLFEdd26Xo8KyB56CAHIFlYIAQAirUIF6dlnrZfQU09JcXG2\nrXO/flL58tIjj0i//ur1KAEExcqVtq38+vVSrVq2mpFkEIKEhFCAUf/ppkjFhabSWcdnxU3EBYhe\nxYpJd99tT+bTS8h+/VV6+GFLDPXvb1/Q/Irrl5uIi3tyMyZz5kjNm9u1p1Ur23k3Pj7Xfpxv8Dnx\nF74KAgFFU2kAgNfy5ZO6d5c+/1z64AOpXTvp0CFp0iSpenXpmmukpKSMhxgAcLpCIenpp6XOne16\n07evtHChdOaZXo8MiDx6CAEBVauW9PXX0pdfShdd5PVoAPgBc72boi0u338vjR4tvfKKfVmTbAXR\nXXfZF7h8+bwdH4DodeyYNHiw9OKLdjxqlPTPf9JCAdGPHkIAsoWSMQCAi6pXlyZOlLZtsxKyUqWk\n1aulHj2kSpXsyf7evV6PEkC0+eMPqX17SwYVKCDNmiXdcw/JIAQbXwUDjPpPN0UqLpSMZR2fFTcR\nF8DfSpWShg+Xfvwxo4QsOdme5sfHS8OG2Z9FI65fbiIu7glXTFJSpCZNpMWLpbPOkt5/X7rhhrD8\n1YHD58Rf+CoIBBS7jAEAokHBgtbj45tvpLfesiawf/xhZWWVKkldukirVnk9SgCu+vJLqUED+7VK\nFdtZ7LLLvB4V4AZ6CAEBVa2a9MMP1quhWjWvRwPAD5jr3eTHuKxebdvXz5plPUEkqXFj6zN0zTVS\n3rzejg+AGxYvtpVA+/fbCqG5c22FEOA39BACkC2UjAEAotXFF0vTp0tbtlgJWbFitmX0dddZadmE\nCdLBg16PEoCXXnzREsT799tuhu+9RzII+F98FQww6j/dFOkeQpSMZY7PipuIC4C4OOnJJ6230OjR\n0nnnSRs3Srffbn2G/vUv6ZdfvB7lybh+uYm4uCcnMUlLs2bRAwdKqal2HZg+3RpJ4/TxOfEXEkJA\nQLHLGADAL4oWlYYOtWTQ669bv5Ddu6URIyxJ1KeP9PXXXo8SQG77808rEXvqKSk2VpoyRXrsMR6A\nAn+HHkJAQFWoYLuzbN4snX++16MB4AfM9W4KYlxCIWn5cumZZ6R58zIegrRqZX2GrrySL4iA3+zc\nKXXoYE2jzzxTmjPHPutAENBDCEC20EMIAOBXMTHS5ZdLb75pGyjcfrtUqJD0zjvSVVdJdepIL78s\nHTni9UgBhMP330sNG1oyqHx5SwiTDAIyx1fBAKP+0025GZfUVGnpUunWW6Wff7ZzJIQyx2fFTcQF\nQFZUriyNH299hkaMkM49V/rqK6lXL1stO3KklZdFEtcvNxEX92QlJh9+aNvIb9ki1asnffqpdMEF\nuT+2oOJz4i98FQR8LhSSVqyQ7rhDKlfOnpZMmWLb9DZrJpUt6/UIAQDIfSVLSg88IG3dKr30knTh\nhfZw5IEHrAH14MHSpk1ejxJAdkyfLrVsKf3+u9S+vZSUZElfAFlDDyHAh0Ihad06KSFBmjnTbn7T\nVa4sdesmde0q1azp2RAB+BBzvZuIy18LhWwb6meekd59187FxNjW9XfdZSsOALgpFLJm0cOH2/GQ\nIfZZzpvX23EBXsnpXE9CCPCRjRstAZSQIH37bcb5cuWkLl0sEXTJJTTSBJA7mOvdRFwyt26d9Oyz\n0owZ0tGjdq5hQ0sMXXcdXzIBlxw5IvXrZ33A8uSRxoyxFX5AkNFUGtlG/aebshuXlBS7ia1fX6pS\nRXroIUsGnXWWNGCALZ3dts2emtSrRzIoJ/isuIm4AAiXWrWsjOzHH62ErEQJa07bubPNrWPHSvv3\nh+/ncf1yE3Fxz//GZM8eqXVrSwYVKiTNnUsyKNL4nPgLCSEgCv32mzRxovUAio+3J5iffy4VKSLd\ndJO0aJH1RXjhBalpUxpHAwCQFWXKWOPp5GRrRF2pkjWqHTLE5tv77rMHMQAib+tWK+X84APrE7Rs\nmfUNApBzlIwBUeKPP6T5860c7N13rSm0JBUoIF19tZWDXX21VLCgt+MEEFzM9W4iLjmXmiotWGCr\nbD/5xM7Fxtqce9ddUu3a3o4PCIpVq6RrrpF27rQdxN5+WzrvPK9HBbiDHkKADx06ZKt9EhKkt96y\nY8l6GbRsaY2hr71WKlbM23ECgMRc7yriEh6ffmqJoTlzpLQ0O/ePf1hiqHVrSrKB3DJ3rtSjh/Tn\nn7Zb7uzZ3PsC/4seQsg26j/dtHRpkt55R+rVSypdWurY0Sa+Q4ekJk2kCROsHGzxYqlnTybESOCz\n4ibiAiCSGjSQXn/dNnAYMsTKtJculdq2tS3sp0zJeHCTGa5fbiIubgmFpNtvT1LHjpYMuuUWe1DK\nva+3+Jz4CwkhwAFpadJHH0m3324JoPRmefv2SRdfLD31lDWGXrZMGjhQKlXK6xEDABBM559vuxol\nJ0ujRtlOnt9+K916q5WwPPaYtGuX16MEotuxY9YsesIESwyNGCFNnizly+f1yAB/oWQM8EgoJK1Z\nY+Vgs2bZjWW6atWsP0G3blLVqt6NEQCyg7neTcQldx05YiuHnnlGWrvWzp1xhq3ivfNOm9MBZN3+\n/dYW4e23pfz5pWnT7J4YwN+jhxAQJdavtyRQQoL0ww8Z58uXt8mvWzdrUkkvAgDRhrneTcQlMkIh\n2/3omWesrCXdNddYn6ErrmBuBzLz009Su3b20LRkSdtQpXFjr0cFuI8eQsg26j8jZ9s26cknpbp1\nperVpUcesWTQOedYmdjHH9u2tqNGSXv2JHHD6Bg+K24iLgBcEhMjtWhhqxq+/Vbq29d2Al24UGrW\nTKpf3x4GHT3K9ctVxMVb69ZZr641a6TKlaWVK6Vjx5K8Hhb+B58TfyEhBOSSnTul55+3pxrnnSfd\ne68tJS9WTOrd27aOT0mRxo+XLr9cysOnEQAAX6hRQ5o0yR4IDR8unX229MUXUvfuUqVKViq+d6/X\nowTc8e67dj+8fbt02WXSihVSlSpejwrwP0rGgDDau9e2xkxIsJ1HUlPtfMGCtmS8WzdrGH3GGd6O\nEwByA3O9m4iL9/78U3r1VenZZ610XJKKFrVVREOGWNk4EFSTJ9umKampUpcu1jOIe2Uge+ghBHjk\n4EHprbcsCbRokTWXlKTYWKlVK0sCtW9vN34A4GfM9W4iLu5IS7N7hWeekdKrLvLmlTp3tj5D9ep5\nOjwgotLSpAcesJYJknT//dL//R+r5oGcoIcQso36z5w7csR6BNx4o1S6tD3NmDfP+gI0b27LxHfs\nsERRjx7ZSwYRF/cQEzcRFwDRJk8ea5g7fHjS8RIySZo503oMNW0qLVhgX5QRecwrkXPokD00HTXK\nkqKTJ0uPP35yMoiYuIeY+Eus1wMAokVqqrRsmd20zZ4t7d6d8WeXXmqT2g03SGXLejdGAAAQHS6+\nWJoxQ3riCWnsWHuYtGyZvapWtS3rb75ZKlTI65EC4bVrl9Shg7R8uT00nT1buuoqr0cFBBMlY8Ap\nhELSZ59ZOdjrr9tWmOkuuMCSQF27WoNIAAg65no3EZfosG+fNGWK9Nxz0o8/2rmzzpJuu812JC1d\n2tvxAeHwww9S27bSpk1SfLytuK9Vy+tRAdGPHkJAGH3zjSWBZs60CSvd+edbEqhbN+nCC70bHwC4\niLneTcQluhw7Js2ZY32GPvvMzhUoYGXqw4ZJNWt6Oz4gpz76SLr2WltlX7eutVZgZT0QHrnaQygx\nMVHVq1dXlSpVNCq969d/mTFjhmrXrq2LLrpIl19+ub766qtsDwSRR/3nibZskUaOlC66yJI9I0ZY\nMujcc20HkJUr7XjEiNxNBhEX9xATNxEX+B33X/51qutXbKz1Jvz0Uysf69DBehdOmWKrk9u2tZ1M\nyfGFH/NK7nntNenKKy0Z1K6d/bedlWQQMXEPMfGXTHsIpaamatCgQVqyZInKlSun+vXrq3379qpR\no8bx91SsWFHLli1TsWLFlJiYqH79+mnlypW5OnAgHH7+2UrBEhLsxitdiRJSx462EqhpU2t2BwBA\npHD/hZgYqUkTe23YII0ebdtxL15sr9q1bcVQ165S/vxejxb4a6GQNYv+17/seNAgacwY7q0BV2Ra\nMrZixQo98sgjSkxMlCQ98cQTkqT77rvvL9//+++/q1atWtq+ffuJP4jlynDE77/bUuyEBNvyNX0n\nj8KF7Slct27W2I6bKwDIHub68AnX/ZdEXPzkt9+kF1+Uxo2z3UwlW2UxeLDUv7890AJccfSoNGCA\nNHWqJTiffdZW3cfEeD0ywH9yrWQsJSVF8fHxx4/j4uKUkpLyt++fMmWK2rZtm+2BALlp/35bqtq+\nvTVl7NtXev99W5bdoYP1Ctqxw3b7aNeOZBAAwFvcf+GvnHWW9OCD1nR66lQrIfvpJ+n++61B7x13\nSJs3ez1KQNqzR2rTxv47LVjQHsYOHUoyCHBNpgmhmGx8aj/44ANNnTr1L+vc4R6/138ePizNn29L\nqUuXlnr0kBYutO3jW7a0WvwdO6R586xWv3Bhr0ds/B6XaERM3ERc4Gfcf/nb6V6/ChSQeveW1q2T\nEhPtvubAAVs5VKWK1KmTtGJFeMYaJMwr4fHjj1Ljxtbr6pxzbEX+ddfl7O8iJu4hJv6SaQ+hcuXK\nKTk5+fhxcnKy4uLiTnrfV199pb59+yoxMVEl/ma9aq9evVShQgVJUvHixVWnTh01a9ZMUsZ/WBxH\n7njt2rVOjSccx02aNNMHH0jPPpukZcukAwfsz6UkXXCBNGBAM3XuLH33nb2/eHG3xs+xm8dr1651\najwc23E6V8YTxOOkpCRNmzZNko7P7wiPcN5/SdyDuXYcrnuwmBipQIEkPfCA9PTTzfTss9L06Uma\nM0eaM6eZGjWSWrVKUuPG0j/+4c6/n2P/Hk+cmKT775d+/72ZatSQ/v3vJB08KEk5+/u4B3Pv2I/f\nIaPxOClM92CZ9hA6duyYqlWrpqVLl6ps2bK69NJLlZCQcEJTw23btqlFixaaPn26GjZs+Nc/iPp1\n5JJQyJ6CJSRIb7yRUVMvWcPFbt1sBRDfVQAgdzHXh0+47r8k4hI0P/0kjR9vvYZ+/93OVaxo5Tq9\ne0tFing7PvjXggV2333woNSihZWJFS/u9aiAYMjpXJ9pQkiSFi9erKFDhyo1NVW33HKL7r//fk2c\nOFGS1L9/f916662aO3euypcvL0nKly+fVq1aFZYBAn8lFJK++sqSQDNn2tLUdJUr22TUrZv0X/fN\nAIBcxlwfXuG4/5KIS1Dt32+7ko0endFXqEQJaz49eHDWtvwGsmrsWEs6hkJSz57SpEn05AQiKVcT\nQuHAzYh7kpKSji8/ixYbN1oSKCFB+u67jPPlylmvoG7dpIsvju6GddEYF78jJm4iLu5hrncTcXFP\nJK9fqanWU/GZZ6Tly+1cvnx2zzRsmK2mhmFeyb7UVPvvaOxYO370UdtiPlz34sTEPcTETTmd6zPt\nIQR4bft2adYsWwn0+ecZ5886S+rc2W5oGjeW8uTxbowAAAAuyptXuv56e61caYmhN9+UXnnFXlde\nKd11l9SqVXQ/UEPkHTggde9upWL589uOYj16eD0qANnBCiE4adcuafZsWwn00Ue2/FSSiha1XQq6\ndrUbmHz5vB0nACADc72biAv+1+bN0nPP2Y6rBw7YuQsusJUePXrYLmbAqfzyi9SunfTFF1aKOHeu\n1LSp16MCgouSMUS9P/6wLeATEqT33pOOHbPzBQrYhNOtm9S2rVSwoLfjBAD8NeZ6NxEX/J3ff7de\nL2PHWjNqSSpdWho0SBowQDr7bG/HBzd9/bV09dXStm3WsHzRIqlaNa9HBQRbTud6imwCLH3bOi/9\n+aftQNCpk3TOOdLNN0uLF9uKoNatpZdflnbutNVCHTsGIxnkQlxwImLiJuICIFq5cv0qUUK6915p\nyxYrH6td23ZrfeghqXx5aeBA6YcfvB5l5LgSF5ctWSJdfrklgxo2tDLE3EwGERP3EBN/ISGEiDt6\nVEpMtB0ISpe2ZNCcOdKhQ9IVV0gTJkg//2yJoZtvls480+sRAwAA+Ff+/NJNN0lr1khLl9qK7D//\ntK3rq1eXOnSQli3LKOFHME2dKrVpI+3bZ/fv778vlSrl9agAnA5KxhARaWnSxx9bY+g33rAeQeku\nucTKwbp0keLivBsjAOD0MNe7ibggJ7791rasf/VV6fBhO1evnjWg7tRJimVrmsAIhWzV2IgRdnzP\nPdLIkWzoAriEHkJwTigkrV5tPYFmzbLdwtJVr25JoK5dpapVvRsjACB8mOvdRFxwOnbssNXbEyZk\nPNArX14aMkS69VZWcvvdoUNSnz52P583r/T881L//l6PCsD/oocQsi236j+//14aPtzqievVs+1N\nt2+XzjvP6tTXrLGnTv/+N8mgv0JdrnuIiZuIC4BoFU3Xr9KlpUcesZ4xL75o927bttlKofh46e67\npeRkr0cZHtEUl0j47TepZUtLBhUpIi1cGPlkEDFxDzHxFxJCCIsff5SefFKqW1eqUUN69FFpwwZr\nFG6zvNMAABY8SURBVD1okPTJJ7bF6RNPSHXqSDExXo8YAAAAWVWwoCUDvvtOWrDAthjft88e/J1/\nvtS9u21BDn/YuFFq1MhaPpQrZ7+2aeP1qACEGyVjyLEdO6wfUEKCtHx5xvlixaTrr7eSsObNqTEH\ngKBgrncTcUFu+fxz6dlnpddfl1JT7VzTprZ66Oqr6TETrZYvl9q3txVCdepIb71lSSEA7qKHECJi\nzx5p7lxLAi1das2iJXtq1L699QRq00YqUMDbcQIAIo+53k3EBblt2zZp7Fhp0iTpjz/sXLVq0p13\n2o6xBQt6Oz5k3axZthPw4cN2Tz9rllS0qNejApAZeggh27Ja/3nwoE0G115rdeR9+kjvvWeN5dq1\nk2bMkHbutB3Err2WZNDpoi7XPcTETcQFQLTy2/WrfHnp6aetZ+Qzz9jx+vXSgAH2++HD7V7RdX6L\nS3aEQtbaoWtXSwYNGGClgV4ng4IcE1cRE38hIYS/dOSILQ/t0cP6AHXtKs2fLx09amVgkyZJv/xi\nzeW6d7dGcwAAAAiuM8+Uhg2TNm2y1eT16tnOZI8+aomhvn2tBxHccvSo1K+fdP/91ufz6adtVzna\nPgD+R8kYjktNlZYtswl8zhxp9+6MP2vQwHoC3XCDVKaMd2MEALiLud5NxAVeCYWkjz6yVUMLF9qx\nJLVta32GmjdnoxGv7dsnde4svfuudMYZ0vTpUseOXo8KQHbRQwg5EgpJq1ZZEuj116Wff874swsv\ntCRQ165SxYrejREAEB2Y691EXOCCH36QRo+Wpk2TDh2yc3XqWGKoSxcpXz5PhxdIycnW/HvdOqlU\nKSsRa9jQ61EByAl6CCFbvv5auvHGJFWubBf+556zZFDFitIDD9jEsG6d/Z5kUGRRl+seYuIm4gIg\nWgXx+lW1qvTCC5aEePRRa0mwdq100022bf2TT9rmJV4KUlxWr7YKgHXrrAH4ypVuJoOCFJNoQUz8\nhYRQgGzeLD3+uFSrlr1mzLBzZcpIQ4dKn34qbdwojRhhq4MAAACAcDr7bOmhh6Qff5T+8x+pZk0p\nJUW6914pPt7uSbds8XqU/vbWW9IVV9jD4KZNbZt5HgADwUTJmM/9/LPtEJaQYKVh6UqUkDp1spKw\nK66wHcMAADgdzPVuIi5wWSgkJSZan6GlS+1cnjzS9ddbOZmLq1ai2fPPS3fcIaWl2eqsyZPZIRjw\nA3oI4bjdu60pdEKClJSU0cCvcGGpQwdLAl11lZQ/v6fDBAD4DHO9m4gLosXatdZnKCHBdr6SpMsu\ns8RQhw48wDwdqanSP/9p//9K0vDh9qKpN+AP9BAKuP37rQSsXTupdGnbOvKDD6xB37XX2iqhnTsz\n3pM/P/WfriIu7iEmbiIuAKIV16+/VqeO9PLLVjJ2331S8eJWztSxo/W5GT9eOnAg936+X+Ny8KDt\nJDZ6tH03mDZNevjh6EgG+TUm0YyY+AsJoSh2+LA0b57tzHDOOdKNN0pvv21LQFu2lKZOlXbskObO\nte3iCxXyesQAAADAqZUrJ40caQ2ox461ptObNkmDB1ufoQceOHFnXPy9HTukZs3s+0CxYtI770g9\ne3o9KgCuoGQsyhw7Zit/EhKkN9+U9u7N+LPLLrNysM6dbZUQAACRxFzvJuKCaJeaag9Bn3lGWrHC\nzuXLJ3XvLg0bJl10kbfjc9W339q28lu3ShUqSIsWSTVqeD0qALmBHkI+lpZmk19CgvTGG1b6la5O\nHUsCdekinXeed2MEAIC53k3EBX6yYoUlhubOtXtkyVbG33WX9ciMhjKoSHj/fWvMvXevdOml0oIF\nPDAG/IweQj4TClljvXvvtWWyjRvbrgA7d0pVqkj//rf03XfSmjXSPffkLBlE/aebiIt7iImbiAuA\naMX1K+caNZJmz5Y2bLASssKFpffek1q3tpVCL71kbRVywi9xefllqVUrSwZdd51VF0RrMsgvMfET\nYuIvJIQcs2GD9OijUs2aUt260pNPStu2SXFx0t13S59/Lq1fLz3yiFS9utejBQAAACKvYkXrL5Sc\nbP2GypaVvv5a6tPHyqNGjJB++83rUUZWKGQPjXv1sjYTw4ZZdQF9RAH8HUrGHJCcbLuAJSRIq1dn\nnD/7bOsH1K2bdPnlUh7SdwAAhzHXu4m4IAiOHJFmzrRysq++snMFC0r/r717j626vv84/iq2A0QB\nC8igLUPamhYLBVcDjOHo0ADFsU0Zabc4ROwYzIGO6IyaeFlixOyiATNxA3SKR9ASqdh22ZhcFLBE\nbhsgt5WmhclFqAUV7OX7++P9gwKWcsBzzvdzznk+kob022/LG9453+/7vPv9vD+TJ0v33y9lZPgb\nX7idOiXdc4/06qv2nmHOHGn6dL+jAhApzBCKMocP2+OugYC0Zk3L8auvtkc7i4qkUaNsYB4AANGA\ne72byAviiedJK1ZYY6iiwo4lJEg//KHNGRo+PPbmDB09au8fVq+2JXSLF9swaQDxgxlCUaC+Xvrb\n36SxY6Vevaxrv2aN1KGDNGGCVFJiW0O+/LKtgw53M4j1n24iL+4hJ24iLwCiFdev8ElIkG65RSov\nb1lClpRku5SNGCENHSotWWJLqs4XjXnZu9d2Gl692t5frFkTW82gaMxJrCMnsYWGUJh98YU9CXTH\nHdK110qTJrX8tmLsWGsQHTxo63tvv90ebQUAAADw9dxwgzR/vlRdLT36qNStm1RZabvzZmRIzz4r\nHT/ud5SXb906a3Dt3CkNGCB98IHNIAWAYLFkLAwaGqR//tOWg731VsuNJiHBfjNRVGRPBHXv7m+c\nAACEUjzd66MJeQHM55/bk/h/+pNt5CJJXbpIv/iFNGOGbeISLd58U7rzTunkSdtRbMkSqXNnv6MC\n4BdmCPmsuVl67z1rAr3xxrm7GuTlWRNo4sToutEAAHApYv1eH63IC3Cu5mbp7bdtztDpWZ6Jifbk\n0KxZbj9l43nS738vPfigfV5cLD3/PHNHgXjHDCEfeJ5tAz9rltSnj/S970kvvGDNoOxs2z5+1y5p\nwwbb9tG1ZhDrP91EXtxDTtxEXgBEK65f/mrXzoZMr17dsoTM86RFi1bqxhul/Hxp+XJrHLmksdFm\nkJ5uBs2eLc2bF9vNIF4r7iEnsSXR7wCi0Y4d9iRQICDt2dNy/FvfkgoL7WmggQNjbwcDAAAAIJbc\ndJNtV19dLT3wgM36XLnSPrKybMv6O+/0f87n8ePWuCovl9q3tzmkEyf6GxOA6MeSsSBVV9vNIhCQ\ntmxpOd6zp12Mi4psqBtNIABAvIr2e32sIi9A8D79VPrrX6XnnpNqauxYjx72ZM706bZJTKTV1kq3\n3WbvQbp1k0pLbWcxADiNGUJhcPCgDWgLBGyK/2ldutiuYUVF0siRtuYYAIB4F433+nhAXoBL19Bg\ng5v/8Afpww/tWPv20s9/bqMgsrIiE8fmzbaN/IED0vXXS++8YzukAcDZmCEUInV10oIF0q23Sr17\n244D69ZJV15py8HeessaRfPnS7fcEt3NINZ/uom8uIecuIm8AIhWXL/cdHZekpLsl78bNtjysR/8\nQDp1SvrLX2xW6G23Se++a7OHwqW83HYoPnDA/ly7Nv6aQbxW3ENOYgsNIUmffWbLwX70I1sCNmWK\nbRt/xRV28X/tNWsCBQI2gK59e78jBgAAABBuCQm2cUxpqfTRR9LUqVKHDvakzve/L33729KiRfZE\nUSi98IK9DzlxQvrpT6V//MOWiwFAKMXtkrEvv5T+/ndr8pSWWlNIsot+fr79RuD226XkZH/jBAAg\nWrh2r4chL0BoHT4s/fnPtt37oUN2LDXVVhYUF0tdu17+z25uln77W9taXpIefdR2LmZOKYC2MEMo\nCE1N0qpV1gQqKZGOHWv52tChtiRs4kSpVy//YgQAIFq5cK/HV5EXIDxOnpRefVX64x9tF2JJuuoq\n6Z57pJkzpb59L+3nffGF7WhWUmJjKV58UZo8OeRhA4hBzBC6AM+T1q+3i3JqqjRqlO0ccOyYNGCA\n9NRT0n//a3OCZs6Mr2YQ6z/dRF7cQ07cRF4ARCuuX2661Lx06GDNn//8p2UJ2YkT0rPPSunptk18\nZWVwP+vQIfv+khKpc2epooJmkMRrxUXkJLZE8Ujktv373/Yk0OuvS1VVLcf79bPlYEVF0g03+Bcf\nAAAAgOjXrp1UUGAfmzfbzmSvv267FS9ZIn33u9KsWTYT6Iorvvr9H31k31tVJfXpI5WV8T4FQGTE\n1JKxvXvt4hsISNu2tRzv3ds69IWF0k03sQYXAIBwYGmSm8gLEHm1tdKcOdK8edKnn9qxjAzpvvuk\nu+6SOnWyY6tW2cY2dXVSXp709tvSN7/pW9gAolTczhA6cEBavNiaQBs2tBxPTpYmTLAngUaMaL0b\nDwAAQofGg5vIC+CfEyekBQtsGdnpVQvJydIvf2njLGbOtB3Kxo+3nY1PN4oA4FLE1QyhTz6xIWv5\n+XYh/c1vrBnUqZP0s59Jy5dL//ufdeRHjqQZdCGs/3QTeXEPOXETeQEQrbh+uSkcebnqKtt9bNcu\n6Y03bCObo0dtjun06dYMmjlTWrqUZlBreK24h5zElqiZIXT8uG0PHwjYdvGNjXb8G9+Qxo2zJ4HG\njZOuvNLfOAEAAADgbImJtnphwgRp7VqbM7RihfS730m//rXf0QGIV04vGTt5UiovtybQ8uW2FaNk\nT/yMGmVNoB//WOrSJQwBAwCAS8LSJDeRFwAAYtvl3uude0KosVH617+sCbR0qVRf3/K14cOtCfST\nn0jXXutfjAAAAAAAANHsojOEKioqlJWVpczMTM2ePbvVc2bMmKHMzEzl5uZq06ZNlxxEc7P03nvS\nvfdKKSnS6NHSSy9ZM2jwYOmZZ6TqajvnV7+iGRQqrP90E3lxDzlxE3lBrItEDQZ/cP1yE3lxDzlx\nDzmJLW02hJqamnTvvfeqoqJC27dvVyAQ0I4dO845p6ysTHv27NHu3bv14osvatq0aUH9xZ4nbdok\nPfigdN11thPY889Lhw5J118vPfaYtGOHtHGj9MADUp8+l/+PROs2b97sdwhoBXlxDzlxE3lBLAtn\nDQb/cf1yE3lxDzlxDzmJLW0uGausrFRGRob69u0rSSosLNSyZcuUnZ195pzS0lJNmjRJkjRkyBDV\n1dXp4MGD6tmzZ6s/c9cuWw4WCEg7d7YcT02VCgttSdjgwVJCwtf8l+Gi6urq/A4BrSAv7iEnbiIv\niGXhqMHgDq5fbiIv7iEn7iEnsaXNhtD+/fuVlpZ25vPU1FR98MEHFz2ntra21WLkxhvtqaDTevSw\neUBFRdJ3viO1u+gCNgAAgNgX6hoMAADgfG02hBKCfEzn/GnWF/q+TZukzp1tZ7CiItspLNG5sdbx\nY9++fX6HgFaQF/eQEzeRF8SyUNdgcAvXLzeRF/eQE/eQk9jSZjsmJSVFNTU1Zz6vqalRampqm+fU\n1tYqJSXlKz8rPT1de/cmqL5eevll+4D/XiYRTiIv7iEnbiIvbklPT/c7hJgR6hqMRpF7uH65iby4\nh5y4h5y453JrsDYbQnl5edq9e7f27dun3r17a/HixQoEAuecM378eM2dO1eFhYVav369unbt2uqj\nynv27LmsAAEAAOINNRgAAAi3NhtCiYmJmjt3rkaPHq2mpiZNmTJF2dnZmjdvniRp6tSpKigoUFlZ\nmTIyMtSpUyctXLgwIoEDAADEKmowAAAQbgne+YvPAQAAAAAAENNCvq9XRUWFsrKylJmZqdmzZ7d6\nzowZM5SZmanc3FxtOnvbMYTFxXKyaNEi5ebmauDAgRo+fLi2bt3qQ5TxJZjXiSRt2LBBiYmJWrp0\naQSji1/B5GXlypUaPHiwcnJyNHLkyMgGGIculpMjR45ozJgxGjRokHJycvTSSy9FPsg4c/fdd6tn\nz54aMGDABc/hPh951F9uogZzDzWYm6jB3EMN5p6w1GBeCDU2Nnrp6eleVVWV9+WXX3q5ubne9u3b\nzznnnXfe8caOHet5nuetX7/eGzJkSChDwHmCycnatWu9uro6z/M8r7y8nJyEWTA5OX1efn6+N27c\nOO/NN9/0IdL4Ekxejh075vXv39+rqanxPM/zDh8+7EeocSOYnDz22GPeQw895Hme5SM5OdlraGjw\nI9y4sXr1am/jxo1eTk5Oq1/nPh951F9uogZzDzWYm6jB3EMN5qZw1GAhfUKosrJSGRkZ6tu3r5KS\nklRYWKhly5adc05paakmTZokSRoyZIjq6up08ODBUIaBswSTk2HDhqlLly6SLCe1tbV+hBo3gsmJ\nJM2ZM0cTJkxQjx49fIgy/gSTl9dee0133HHHmZ1+unfv7keocSOYnPTq1Uv19fWSpPr6enXr1k2J\niW2Ox8PXNGLECF1zzTUX/Dr3+cij/nITNZh7qMHcRA3mHmowN4WjBgtpQ2j//v1KS0s783lqaqr2\n799/0XO4+YVPMDk52/z581VQUBCJ0OJWsK+TZcuWadq0aZLEdsEREExedu/eraNHjyo/P195eXl6\n5ZVXIh1mXAkmJ8XFxdq2bZt69+6t3NxcPffcc5EOE+fhPh951F9uogZzDzWYm6jB3EMNFp0u514f\n0hZesBdM77w51lxow+dS/m/fffddLViwQO+//34YI0IwObnvvvv09NNPKyEhQZ7nfeU1g9ALJi8N\nDQ3auHGjVqxYoc8//1zDhg3T0KFDlZmZGYEI408wOXnqqac0aNAgrVy5Unv37tWtt96qLVu26Oqr\nr45AhLgQ7vORRf3lJmow91CDuYkazD3UYNHrUu/1IW0IpaSkqKam5sznNTU1Zx7ru9A5tbW1SklJ\nCWUYOEswOZGkrVu3qri4WBUVFW0+hoavL5icfPjhhyosLJRkA9vKy8uVlJSk8ePHRzTWeBJMXtLS\n0tS9e3d17NhRHTt21M0336wtW7ZQjIRJMDlZu3atHnnkEUlSenq6rrvuOu3cuVN5eXkRjRUtuM9H\nHvWXm6jB3EMN5iZqMPdQg0Wny7rXh2S60f9raGjw+vXr51VVVXmnTp266FDDdevWMTwvzILJSXV1\ntZeenu6tW7fOpyjjSzA5Odtdd93llZSURDDC+BRMXnbs2OGNGjXKa2xs9D777DMvJyfH27Ztm08R\nx75gcnL//fd7jz/+uOd5nvfxxx97KSkp3ieffOJHuHGlqqoqqIGG3Ocjg/rLTdRg7qEGcxM1mHuo\nwdwV6hospE8IJSYmau7cuRo9erSampo0ZcoUZWdna968eZKkqVOnqqCgQGVlZcrIyFCnTp20cOHC\nUIaA8wSTkyeffFLHjh07s1Y6KSlJlZWVfoYd04LJCSIvmLxkZWVpzJgxGjhwoNq1a6fi4mL179/f\n58hjVzA5efjhhzV58mTl5uaqublZzzzzjJKTk32OPLYVFRVp1apVOnLkiNLS0vTEE0+ooaFBEvd5\nv1B/uYkazD3UYG6iBnMPNZibwlGDJXgeC2MBAAAAAADiSUh3GQMAAAAAAID7aAgBAAAAAADEGRpC\nAAAAAAAAcYaGEAAAAAAAQJyhIQQAAAAAABBnaAgBAAAAAADEGRpCAAAAAAAAcYaGEAAAAAAAQJz5\nP8uQWhnz+1jdAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x107cbdd90>"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"6. Recurse each curve 3 times and plot resulting graphs"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"newt = recurse(time, 3)\n",
"newp = recurse(price, 3)\n",
"\n",
"fig, axes = plt.subplots(1, 2, figsize=(20,5))\n",
"axis([0.0,1.0, 0.0,1.0])\n",
"# default grid appearance\n",
"axes[0].plot(newt[0], newt[1], lw=2)\n",
"axes[0].grid(True)\n",
"axes[0].set_autoscale_on(False)\n",
"\n",
"# custom grid appearance\n",
"axes[1].plot(newp[0], newp[1], lw=2)\n",
"axes[1].grid(True)\n",
"axes[1].set_autoscale_on(False)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAE4CAYAAAAq4iifAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VNX9//F3QtgxCfsWFARkqQiooIhLcEO0YBGsSG0F\nN1xxo9Ki/aG2Lli1i4hiXVDRfKV1wYpGCzpuCIgYEcEKCAJBlrAkbLIk8/vj02EI2ZNZztz7ej4e\n85i5M3dmTvgw99z5zDmfkxQMBoMCAAAAAACAbyTHuwEAAAAAAACILRJCAAAAAAAAPkNCCAAAAAAA\nwGdICAEAAAAAAPgMCSEAAAAAAACfISEEAAAAAADgMxUmhK644gq1bNlSPXr0KHOfsWPHqnPnzurZ\ns6e+/PLLiDYQAADAjzgHAwAA0VRhQmj06NHKzs4u8/G3335bK1as0PLly/XUU0/puuuui2gDAQAA\n/IhzMAAAEE0VJoROO+00NW7cuMzH33zzTV1++eWSpJNOOknbt2/Xxo0bI9dCAAAAH+IcDAAARFON\nawjl5uaqXbt2B7czMjK0bt26mr4sAAAAysE5GAAAqImIFJUOBoPFtpOSkiLxsgAAACgH52AAAKC6\nUmr6Am3bttXatWsPbq9bt05t27Ytdb/169fX9O0AAICjOnbsqBUrVsS7Gb7BORgAAJCqfw5W4xFC\nQ4YM0QsvvCBJmjdvntLT09WyZcsS+61fv17BYJCLQ5eJEyfGvQ1ciEsiXIiJmxfiEp3Lli1BSeVf\nxo8P6qGHgpo2Lajt24MqKrLnrly5sqanFagCzsES98Lxy80LcXHvQkzcuxATNy/VPQercITQpZde\nqg8//FB5eXlq166d7rnnHu3fv1+SNGbMGJ1//vl6++231alTJzVs2FDPPfdctRqC2Fu9enW8m4BS\nEBf3EBM3EZfq27NH2rhRevllaft2KSdHWrZM2rdP2rQpvN9ll0n160tHHimdeKLUpInUo4fdh+jj\nHMy7OH65ibi4h5i4h5h4S4UJoaysrApfZPLkyRFpDAAAiLyffrLkzldfWcKnoKDsfZOTpZYtpbFj\npd/9LnZtREmcgwEAgGiqcQ0hJK5Ro0bFuwkoBXFxDzFxE3GpvIULpVdfDW/Xri21aiW1aCEdcYT0\ny19KjRpJ/ftLRx0l1aoVv7YCfsDxy03ExT3ExD3ExFuSgsFgsOLdIvBGSUmK0VsBAIBDvP++dNZZ\n0sknS7NmSY0bS9FYjIq+3k3EBQAAb6tuXx+RZeeRmAKBQLybgFIQF/cQEzcRl+KCQWnzZumJJ6T7\n75cGD5b69pW6dZOGDrV9Gja0OkCsTA7EF8cvNxEX9xAT9xATb2HKGAAACSgvz+r8fPedFYjeuFH6\nX73hUtWpI114YezaBwAAALcxZQwAAAdt2SJt3Srl50vr1klvv22rg23aZJecnJLPSU216WCtWlny\np25dacAAWyWscWMrGB1N9PVuIi4AAHhbdft6RggBAOCYxx+Xbryxcvted510xx1WILpBg+i2CwAA\nAN5BDSEfY/6nm4iLe4iJm7wcl3nz7LplS6l3bykzUxo40JaBnzVL+vxzafVqadcuacoUqX17kkFA\nIvHy8SuRERf3EBP3EBNvYYQQAACOKSy060cflUaOjG9bAAAA4E3UEAIAwDGXXCLNmCFlZUkjRsS7\nNZVHX+8m4gIAgLex7DwAAB4RGiFUq1Z82wEAAADvIiHkY8z/dBNxcQ8xcZOX4xJKCKUwsRvwJC8f\nvxIZcXEPMXEPMfEWTjUBAIiTYFBav17ats0KRW/aJP34o7RwoT3OCCEAAABECzWEAACIgdxcaeZM\nacMGaeNGu8ycWf5zFi2yVcYSBX29m4gLAADeVt2+nhFCAABE2O7d0vz5lvTZtEnavFn605/K3r9x\nY6lLF2nfPltVrE0b6Wc/k447LnZtBgAAgL+QEPKxQCCgzMzMeDcDhyEu7iEmbnIpLhMmSHPmSAUF\nUn6+TfsqyxVXSMcfL7VuLbVqJR1zjNSsWezaCiD+XDp+IYy4uIeYuIeYeAsJIQAAaiA/X3rggdIf\nGzxYatdOatFCat7cpn/16xfb9gEAAACloYYQAADl2LXLpn2FRv+8+qpNCQvVAdqwQVqzRkpPlz79\nVEpNldLSpEaNpKSkeLc+tujr3URcAADwNmoIAQBQDcGg9NNPluzZskVaskTas8cSQPPmSVlZlXud\nn/9c6t49um0FAAAAIiU53g1A/AQCgXg3AaUgLu4hJm6KRFyCQWnAAKlBA6vpc+yx0ogR0ujR0s03\nF08G9eghnXqqdP750iWXSK+9ZiOCVqyQduyQXnyxxs0B4BP0K24iLu4hJu4hJt7CCCEAgG/t2SN9\n+KHdbtHCpnoVFtoqX7162XaTJrbyV6tW8W0rAAAAEEnUEAIA+NaOHVbzp1Eju42aoa93E3EBAMDb\nqtvXM2UMAOBbhYV2nUxvCAAAAJ/hFNjHmP/pJuLiHmLipkjEJZQQqlWrxi8FAJVGv+Im4uIeYuIe\nYuItJIQAAL5VVGTXJIQAAADgN9QQAgD41saNViy6RQu7jZqhr3cTcQEAwNuoIQQAQBWFRghRQwgA\nAAB+wymwjzH/003ExT3ExE2RrCFEQghALNGvuIm4uIeYuIeYeAunwAAA36KGEAAAAPyKGkIAAN9a\nvVrq0EE66ii7jZqhr3cTcQEAwNuoIQQAQBVRQwgAAAB+xSmwjzH/003ExT3ExE3UEAKQqOhX3ERc\n3ENM3ENMvIVTYACAb1FDCAAAAH5FDSEAgO/s2SPl5krz5km//rXUtau0bFm8W5X46OvdRFwAAPC2\n6vb1KVFoCwAAcVVYKG3dKm3caJe1a6XHH5fq1JHmzi25f716sW8jAAAAEE9MGfMx5n+6ibi4h5i4\n6fC47N8v/fij9O67UkqK1KKF1KOHdPbZ0ujR0sKFJZNB/ftLF18sTZoUu3YDAP2Km4iLe4iJe4iJ\ntzBCCACQMPbskWbOlDZskL76Snr6aenNN6XatW1E0OG6dpVatpRat7YEUbdu0imn2O1WrWLffgAA\nAMAV1BACACSMP/9ZuuOO0h9LTpaaNpWaN7ck0IQJNjoIsUNf7ybiAgCAt1FDCADgKcGgtHSptG6d\n1QHatEl67TV77LTTpDPOkNLSpEaNpAEDpE6dWC0MAAAAqCxqCPkY8z/dRFzcQ0yia+9eafNm6a9/\nlc49V+rXT+re3Ub8HHusdN550uWXS7/9ra0KJklXXimddVZA48ZJ114rdelCMghA4qBfcRNxcQ8x\ncQ8x8RZGCAEAYiI3V/rjH63wc36+9OGHUt26lhAqT6tWNgKoZUu7HH20NHSo9OmnsWk3AAAA4EXU\nEAIAxMT990t33lny/pQUm/qVmmrFoZ96SmrWzLabNpUaNIh9W1E99PVuIi4AAHgbNYQAAE7bvduu\nR460KV9paVL79lKTJlJSUlybBgAAAPgONYR8jPmfbiIu7iEmkXHggF0fe6x05pnSCSfYCKDqJoOI\nC4BExfHLTcTFPcTEPcTEWxghBACIivx8qxe0caNdFi2y+1PoeQAAAIC4o4YQAKDGPv5YevFFqaDA\nEkHZ2WXvO3WqdM01sWsbYoe+3k3EBQAAb6OGEAAgarZtk558MrxC2MyZtuJXfr4lgfbsKfu5/fvb\nSmGtWtkKYSNHxq7dAAAAAErHCCEfCwQCyszMjHczcBji4h6/xmTLFmn7dkv4/OEP0qxZZe+bnCwV\nFUnPPGOJn9RUKSPDikZHi1/j4jL6ejcRF/dw/HITcXEPMXEPMXFT1EYIZWdn65ZbblFhYaGuuuoq\njR8/vtjjeXl5uuyyy7RhwwYdOHBA48aN06hRo6rcEABAbOzYYSN+8vKkTZts9a8tW6RHH7Ul3vPz\npZUrS39umzbSffdZwqd5c6ljR1strEEDVgoDIo1zMAAAEE3ljhAqLCxUly5dNHv2bLVt21Z9+vRR\nVlaWunXrdnCfu+++W3v37tUDDzygvLw8denSRRs3blTKYVVD+XUKAOLv6aetfk9lD8eNGlnSJzXV\nkkEPPSQdeWR024jERV8fOZyDAQCAyorKCKEFCxaoU6dOav+/Mf8jRozQzJkzi52MtG7dWosXL5Yk\nFRQUqGnTpiVORAAAbvjkE0sGNWliU7u2bZO6d7dkT6NGUq9eUmamjfpp0kSqXTveLQb8iXMwAAAQ\nbcnlPZibm6t27dod3M7IyFBubm6xfa6++mp98803atOmjXr27Km//e1v0WkpIi4QCMS7CSgFcXGP\nl2Jy4IBd/+1v0jffSOvXS7NnSy+8IE2ZYqOHjjnGCka7ngzyUlyAw3EO5m0cv9xEXNxDTNxDTLyl\n3IRQUiUKQtx///3q1auX1q9fr5ycHN1www3asWNHxBoIAIicUEKoVq34tgNA+TgHAwAA0VbuuOK2\nbdtq7dq1B7fXrl2rjIyMYvvMnTtXd955pySpY8eO6tChg/773//qxBNPLPF6o0aNOjj0OT09Xb16\n9TpYoTyUaWQ7ttshrrSH7UxlZmY61R62dfA+V9pTk+2iIkkKaNkySYp/e9hO7O1AIKBp06ZJ0sH+\nHZHBOZj3t0NcaQ/bnIO5uB26z5X2sG3bIa60x4/bgQidg5VbVPrAgQPq0qWL5syZozZt2qhv374l\nChredtttSktL08SJE7Vx40adcMIJWrx4sZo0aVL8jShoCABxN3y49Oqr0owZ0sUXx7s18Br6+sjh\nHAwAAFRWdfv65PIeTElJ0eTJkzVw4EB1795dl1xyibp166apU6dq6tSpkqQJEyZo4cKF6tmzp84+\n+2w99NBDJU5E4KbDM7xwA3Fxj5diEuonvLBEvJfiAhyOczBv4/jlJuLiHmLiHmLiLRUuRTFo0CAN\nGjSo2H1jxow5eLtZs2b697//HfmWAQAiLpQQSi735wAALuAcDAAARFO5U8Yi+kYMVwaAuPvFL6SZ\nM6XXXpOGDo13a+A19PVuIi4AAHhbVKaMAQC8hRFCAAAAACQSQr7G/E83ERf3eCkmtsoYNYQAIJ44\nfrmJuLiHmLiHmHgLCSEA8BFGCAEAAACQqCEEAL5y/vnSO+9Ib70lXXBBvFsDr6GvdxNxAQDA26gh\nBACoECOEAAAAAEgkhHyN+Z9uIi7u8VJMqCEEAPHH8ctNxMU9xMQ9xMRbSAgBgI+ERgh5ISEEAAAA\noPqoIQQAPnL22dKcOdJ770nnnBPv1sBr6OvdRFwAAPA2aggBACrECCEAAAAAEgkhX2P+p5uIi3u8\nFBMvFZX2UlwA+AvHLzcRF/cQE/cQE2/xwFcCAEBleamoNAAAAIDqo4YQAPjIGWdIH30kBQJ2G4gk\n+no3ERcAALyNGkIAgAoxQggAAACARELI15j/6Sbi4h4vxcRLRaW9FBcA/sLxy03ExT3ExD3ExFtI\nCAGAj3gpIQQAAACg+qghBAA+0r+/NHeu9MkndhuIJPp6NxEXAAC8jRpCAIAKUUMIAAAAgERCyNeY\n/+km4uIeL8WksNCua9WKbzsiwUtxAeAvHL/cRFzcQ0zcQ0y8hYQQAPiIlxJCAAAAAKqPGkIA4CO9\neklffSUtWiT17h3v1sBr6OvdRFwAAPA2aggBACrECCEAAAAAEgkhX2P+p5uIi3u8FBMvJYS8FBcA\n/sLxy03ExT3ExD3ExFtICAGAj3gpIQQAAACg+qghBAA+0rmztGKF9N13dhuIJPp6NxEXAAC8rbp9\nfUoU2gIAcMjevdKaNdL69dKOHXYfI4QAAAAAf2PKmI8x/9NNxMU9rsekqEjauFFavFj6z3+k6dOl\n00+XTj5ZysiQ6tWTjjlGysy0/SSpQYO4NjkiXI8LAJSF45ebiIt7iIl7iIm3MEIIABLQvn3S5s1S\nXp50xhlSfn7Fz+nfX2rTxpJFrVpFv40AAAAA3EUNIQBw2NtvS8uWWcKnoECaPFlKS5O2bi25b9eu\nluhp3dquW7aUfv5z279tWykpKfbth7/Q17uJuAAA4G3V7etJCAGAo5YskXr0KP2x5GSpefPwZcgQ\n6ZZbYts+4HD09W4iLgAAeFt1+3pqCPkY8z/dRFzcE6uYrF4tZWdLzz8vPfSQdN99dn+7dtLEidKj\nj0rPPCPNny/t3y9t2CB9/bX0/vv+TAbxWQGQqDh+uYm4uIeYuIeYeAs1hAAgRoJBac8em/61cKH0\n5z+Ht5cvL/t5/ftLd98ds2YCAAAA8AGmjAFAFBQVSRMm2Aie/Hzp008r/9xf/Upq0cJqALVqJQ0e\nLDVpEr22ApFCX+8m4gIAgLdRQwgAHJKTI/XuXfpjLVtKqalS7drS+PHSSSfZdlqaN5aDh3/R17uJ\nuAAA4G3UEEKVMf/TTcTFPdWJyZ49dt21q/Thh5Yg2rTJpo1t2CB99530zTfSb34jdeliK4ORDKoa\nPisAEhXHLzcRF/cQE/cQE2+hhhAARMGBA3bdrJl0+unxbQsAAAAAHI4pYwAQAbt2SWvWSBs32mXu\nXOnvf5cyM6UPPoh364DYoK93E3EBAMDbqtvXM0IIAKogGJRWrZIeeEDats0KRi9ebNPBStO4cWzb\nBwAAAACVQQ0hH2P+p5uIS/wFg9ITT0jXX28rfqWnB9S+vdS8uVS3rtSxo/T009Krr0qzZxdPBp16\nqjRsmHTjjdJ990mPPhq3P8Pz+KwASFQcv9xEXNxDTNxDTLyFEUIAIGn7dkvs5OfbdK9bbin+eH5+\n+HadOlJSkjR2rHT22bZCWJMmUufOdj8AAAAAuI4aQgA8befOcKJn9Wpp/36poECaOlXat89ur15d\n9vNfeMESPo0b24phaWk2SghASfT1biIuAAB4GzWEAOAwy5ZJJ5wQXgK+Mo4/3pI+6ek27evMM6PX\nPgAAAACIF2oI+RjzP91EXCLn66/DyaAePSzZ06uXNHq0dPPNVhh65UopL89GCwWD0hdfSO+/L732\nWjgZREzcRFwAJCqOX24iLu4hJu4hJt7CCCEAnlVYaNcjRkhZWfFtCwAAAAC4hBpCADxr+nTp17+2\nlcKmT493awDvo693E3EBAMDbqtvXM2UMgGcdOGDXtWrFtx0AAAAA4BoSQj7G/E83EZfICU0Zq2lC\niJi4ibgASFQcv9xEXNxDTNxDTLylwoRQdna2unbtqs6dO2vSpEml7hMIBNS7d28de+yxyszMjHQb\nAaBaIpUQAoB44BwMAABEU7k1hAoLC9WlSxfNnj1bbdu2VZ8+fZSVlaVu3bod3Gf79u3q37+/3n33\nXWVkZCgvL0/NmjUr+UbMXwcQY088IV1/vTRmjPTkk/FuDeB99PWRwzkYAACorKjUEFqwYIE6deqk\n9u3bq3bt2hoxYoRmzpxZbJ+XX35Zw4YNU0ZGhiSVeiICAPHACCEAiYpzMAAAEG3lJoRyc3PVrl27\ng9sZGRnKzc0tts/y5cu1detWDRgwQCeeeKJefPHF6LQUEcf8TzcRl+rbuVP67jvp44+lf/7TriVq\nCHkVcYGXcQ7mbRy/3ERc3ENM3ENMvCWlvAeTkpIqfIH9+/dr0aJFmjNnjnbv3q1+/frp5JNPVufO\nnUvsO2rUKLVv316SlJ6erl69eh2c7x76j8V27LZzcnKcag/bbFdle8UKacGCTOXnS6tWBbRwoRQM\n2uNS4H/Xtr1tW0CBQPXfLycnJ+5/L9slt0NcaY8ftwOBgKZNmyZJB/t3RAbnYN7e5hyMbbYrt805\nmHvbHL/c2A5E6Bys3BpC8+bN0913363s7GxJ0gMPPKDk5GSNHz/+4D6TJk3Snj17dPfdd0uSrrrq\nKp133nkaPnx48Tdi/jqAKtizR5oyRVqzRsrPl/79b6lZM7tdUGCPl6VfP6lVK7sceaR09dVS06ax\nazvgV/T1kcM5GAAAqKzq9vXljhA68cQTtXz5cq1evVpt2rTRK6+8oqysrGL7XHjhhbrxxhtVWFio\nvXv3av78+brtttuq3BAA2L5d2rLFEj5PPVWyEPTWreHbtWpZjaCHH5a6dZNSU6WWLaVSfhgHgITD\nORgAAIi2chNCKSkpmjx5sgYOHKjCwkJdeeWV6tatm6ZOnSpJGjNmjLp27arzzjtPxx13nJKTk3X1\n1Vere/fuMWk8aiYQCBwcfgZ3eDEuu3ZZMmfrVmndOmnvXkv6PPqoVKeOjfpZsaLs5z/7rCV8mjaV\nunSx2w0aSJWYURERXoyJFxAXeBnnYN7G8ctNxMU9xMQ9xMRbyk0ISdKgQYM0aNCgYveNGTOm2Pa4\nceM0bty4yLYMgCfMmiUNHSrt31/55/TsKaWl2RSxu++WevSIWvMAwFmcgwEAgGgqt4ZQRN+I+euA\nL911l3TffZbgadvWRge1aGFTu444QurYUbrgAhv107ixVLduvFsMoLro691EXAAA8Lao1BACgOrY\nts0u27dLq1fbfePHS7//fVybBQAAAAD4n+R4NwDxE1q2Dm5xOS67dkm5uVJOjvSf/0hvvCE9/bR0\n7LFS375W3ycpSWrSxEb+nHCC9NJL9tz69ePb9ppwOSZ+RlwAJCqOX24iLu4hJu4hJt7CCCEApQoG\npZ07pc2brQD0gw9Kr7xS+eenpUnt20vp6TZV7Je/jFpTAQAAAABVRA0hwKf27bMET26uJX6++UZK\nSZH+9S9bzWvLlrKf26WLrRjWs6ct9d6woXT88dIZZ1gtoGbNbPUwAP5CX+8m4gIAgLdVt68nIQT4\n1D//WfGonTp1LHF03HGW6OnQQXrsMRv9AwCHo693E3EBACB6PvpIGjVKeu01qVev+LShun09NYR8\njPmfbopVXLZutetevaR77pEefliaNMmWiV+xQvrpJ1sRLBiUvvpK+vhj6YUX/JkM4rPiJuICIFFx\n/HITcXEPMXGPn2KSny/l5dnlm2+kd9+VZs+WduyQ2rSx2qlJSTZLYtUqqXdv++6USKghBPhUUZFd\n9+sn/b//F9+2AAAAAEC0bNpkMx6Sk6WlSy2p8+OP0pAhUr16xfctLJQuuMASQFXVooXVYE0UTBkD\nfOrxx6Ubb5RuuEGaPDnerQHgBfT1biIuAACv+stfbKpWUZElcoqKwrdzcir3GgMGSM2bSzNmVO29\n+/SxS0aGNGFCycezs6WBA6v2mtVV3b6eEUKATxUW2nUyE0cBAAAA1FBeno28CeUltm6V1qyRdu+W\nvv9e+vWvrSZpTe3fL23bZte33Va912jb1hbXkaQPPih9n169pM8+s/eZPl265hqbIvb111Zao2/f\n8L633y61bh0uyyFJ553n/hQyEkI+FggElJmZGe9m4DCxiktoyhgJoYrxWXETcQGQqDh+uYm4uIeY\nuGPPHptetWRJQLVrZ+rAAZty1aOHVLu2tGhRxa8xcaJdjx0rXXyxrXQ8aJDdt3evTevKzZU2bpSO\nOMJG7hxu7VrpyCNL3p+VJR11lH23qVXLrhcutDa2by+lp1uCJikpvBrypk22wnKDBtaWm24Kv97w\n4bYIj2RTyq67LvxYz54l379OHWnJEruce254v3/+U2rSxB7/5hv721q2lEaPlurWrfjfLNpICAE+\nRUIIAAAAQGXk5FhB5cN9/XXJ+9q3t8TLzp1WT2fQIOmdd8KP//3vdjlUWcmRSy+1UTel1fNp2dIS\nLJIlcFIOy24cf3yZf44kq/dz/fXh7RtvLH//irRubZeRI6WXX7aFecpa1bllS2no0Jq9XySQEPIx\nsu1uilVcmDJWeXxW3ERcACQqjl9uIi7uISbuCE196t07U2+8Yd8lfvrJplPt22e327Yte0pYUZH0\nxRc2baxuXalRI7u8917575uVVfr9f/6zNG6ctSsYdOs7zc0324in0A/wW7faVLqtW6XVq+2+goK4\nNa8YEkKAT4UOULVqxbcdAAAAABJDvXqlT9mqSHKyFWD+9tvSHw8lnJKS7Przz22KVa1aVsfniSfC\n+65aZaOQQvuHnuOKvn1tKlppLr9ceuGF2LanPA7l0RBrgUAg3k1AKWIVl1BCyLUDqIv4rLiJuABI\nVBy/3ERc3ENM3JOfH4jK6x6e2OnTRxo1ykYUTZkSHgkUDIaTQX61c6e0YoUV6l692gp3VxcjhACf\nYoQQAAAAAMTevfdKjz9u38lCl6++ssfq1JGGDbP7Cgttal3DhpYI+vRTSwZFCgkhH2NOrptiFReK\nSlcenxU3ERcAiYrjl5uIi3uIiXvS0jLj3YSEFhrd9P33dinNvn1l1046VIcO4WTS2rXVaw8JIcCn\nQkWlmTIGAAAAANE3caI0ZIgV405OLn7ZtctqD51wQvg+yQpQ791riaKmTaXjjpN69JBq1w6/bnW/\n05EQ8rFAIEDW3UGxikuocBtTxirGZ8VNxAVAouL45Sbi4h5i4h6rIZQZ51YkruRkS/iUpX//2LVF\noqg04FsUlQYAAAAA/yIh5GNk290Uq7iERghRQ6hifFbcRFwAJCqOX24iLu4hJu6hhpC38FUQ8CmK\nSgMAAACAf/FV0McCgUC8m4BSxCouTBmrPD4rbiIuABIVxy83ERf3EBP3WA0heAUJIcCnmDIGAAAA\nAP6VFAyGvhZG+Y2SkhSjtwJQCb/9rfTww9KkSdIdd8S7NQC8gL7eTcQFAFBTc+faClj9+tltuKW6\nfT1jAwCfYoQQAAAAAPgXXwV9jDm5bqKGkHv4rLiJuABIVBy/3ERc3ENM3EMNIW8hIQT4FCOEAAAA\nAMC/qCEE+NTNN0t//7v0l79It9wS79YA8AL6ejcRFwBATVFDyG3UEAJQJYwQAgAAAAD/4qugjzEn\n102xriFEQqhifFbcRFwAJCqOX24iLu4hJu6hhpC38FUQ8CmKSgMAAACAf1FDCPCp666TnnxSmjLF\nbgNATdHXu4m4AABqihpCbqOGEIAqYYQQAAAAAPgXCSEfY06um2IVF4pKVx6fFTcRFwCJiuOXm4iL\ne4iJe6gh5C18FQR8ihFCAAAAAOBf1BACfGr0aGnaNOmZZ6Qrroh3awB4AX29m4gLAKCmqCHkNmoI\nAagSlp0HAAAAAP/iq6CPMSfXTbGuIcSUsYrxWXETcQGQqDh+uYm4uIeYuIcaQt5CQgjwKRJCAAAA\nAOBf1BAj/3hFAAAgAElEQVQCfOqyy6SXXpJeeEH69a/j3RoAXkBf7ybiAgCoKWoIuY0aQgCqhBFC\nAAAAAOBfJIR8jDm5bqKGkHv4rLiJuABIVBy/3ERc3ENM3EMNIW8hIQT4FAkhAAAAAPAvaggBPjVi\nhPTKK9LLL0uXXhrv1gDwAvp6NxEXAEBNUUPIbdQQAlAljBACAAAAAP8iIeRjzMl1EzWE3MNnxU3E\nBUCi4vjlJuLiHmLiHmoIeUuFCaHs7Gx17dpVnTt31qRJk8rc7/PPP1dKSopee+21iDYQQHSQEAIA\nt3EOBgAAoqncGkKFhYXq0qWLZs+erbZt26pPnz7KyspSt27dSux3zjnnqEGDBho9erSGDRtW8o2Y\nvw44Zfhw6dVXpRkzpIsvjndrAHgBfX3kcA4GAHAJNYTcFpUaQgsWLFCnTp3Uvn171a5dWyNGjNDM\nmTNL7PfYY49p+PDhat68eZUbACA+GCEEAO7iHAwAAERbuQmh3NxctWvX7uB2RkaGcnNzS+wzc+ZM\nXXfddZIsM4XEwJxcN1FDyD18VtxEXOBlnIN5G8cvNxEX9xAT91BDyFtSynuwMicWt9xyix588MGD\nQ5TKG6Y0atQotW/fXpKUnp6uXr16KTMzU1L4w8527LZzcnKcag/bsd3evFmSMpWU5EZ7XN7Oyclx\nqj1s23aIK+3x43YgENC0adMk6WD/jsjgHMzb25yDsc125bY5B3NrWwpo164cSW60x8/bgQidg5Vb\nQ2jevHm6++67lZ2dLUl64IEHlJycrPHjxx/c5+ijjz54ApKXl6cGDRroH//4h4YMGVL8jZi/Djhl\n6FDpjTesjtBFF8W7NQC8gL4+cjgHAwC4ZO5cagi5rLp9fbkjhE488UQtX75cq1evVps2bfTKK68o\nKyur2D7ff//9wdujR4/W4MGDS5yIAHAPU8YAwF2cgwEAgGhLLu/BlJQUTZ48WQMHDlT37t11ySWX\nqFu3bpo6daqmTp0aqzYiSkJDzuCWWMWFhFDl8VlxE3GBl3EO5m0cv9xEXNxDTNwR+u7w2WeBuLYD\nkVXuCCFJGjRokAYNGlTsvjFjxpS673PPPReZVgGIOhJCAOA2zsEAAK44bJAqPKLcGkIRfSPmrwNO\nGTxYeustaeZMiRkGACKBvt5NxAXx8uGH0pgxdq7RpUu8WwOgJi66SHr9dbtNl+Ke6vb15U4ZA+Bd\njBACAADRsnSplJkp/fe/0vDh8W4NAKA0JIR8jDm5bqKGkHv4rLiJuABIVF4+fm3eLHXuLP3sZ+H7\nliyJX3uqwstxSVTExEWBeDcAEVRhDSEA3kRCCAAARMK+fdJzz0mffy41aSKtWBHvFgEAKoMaQoBP\nDRokZWdLs2ZJ558f79YA8AL6ejcRF0RDQYF01102NWzOnIr3v+46acqU6LcLQHRQQ8ht1BACUCWM\nEAIAANX19tvSY4+VnQyaPl3KywtvP/FEbNoFAKg8EkI+xpxcN1FDyD18VtxEXAAkqkQ5fn33ndSv\nn50rzJxZ/LEXXwzf/sUvpMmTiz8+cqTUtGn02xhJiRIXPyEmLgrEuwGIIGoIAT5FQggAAP/aulXa\nu1dKTpa++UbatUtat86SO7/5jTR7dvH9f/ELqxHUsqVUu7aNEAoJTSO54Qbp66+l+vXD5xfXXis9\n+aR06qnS/PlS376cewCAK6ghBPjUOefYyd6770rnnhvv1gDwAvp6NxEXHO6VV6QRIyL3euX997r3\nXmnixPD2e+/ZOQiAxEINIbdRQwhAlTBCCAAAf8rJCd+uX9+ue/cuud/990t79pSdwGnTpuIvhqed\nVnx7/frKtxMAEF0khHyMObluooaQe/isuIm4AEhUrhy/7r9f2r3bzgkWLbJpYxdeGH7897+X6tWz\n6WGffGJTwg41dGjF7zFggFRUJB1zTGTbHg2uxAVhxMRFgXg3ABFEQgjwORJCAAC4r6hIWrhQOuGE\nkgWcI6VBA+n55+32oVPKUlKk/v3tfYNB6dZbbdTQI49U7nWTkqSTT458ewEANUNRaR/LzMyMdxNQ\niljFpajIrkkIVYzPipuIC4BEdejxKxiU3nhD+vnPbbROaqr1zTt2SJMmSVOnFl++XbLRPB06SBdc\nULX3XbjQlol/8MGy90lLq3ga2KOPVu19EwX9inuIiYsy490ARBAJIcCnDhyw6xSOAgAARN3evZbo\nqVOn+P1XXik991zx+wYMkD74oPzX+/nPpSOOkAoKKvf+RUXSWWcV3z/ZgbkCu3bZyCR+oAKA2HOg\nG0C8MCfXTbGKS2GhXZMQqhifFTcRFwCx9sMP0l//Kj30kNXfuf12u376aRvNc8wx0qBB0nnn2eW4\n4yzR0by5FW+uW9cKMT/4YODgKJz8/JLvU1oyaPBg6R//kJ54Inzfjh12vW9feOTv2rXSr34lzZxZ\n/PlFRcWTQQMHSsOGVf/forqefVYaNcpGKiUlSY0auZGYkuhXXERMIi8YlJYvl955Rzr+ePscJiWF\nfyyuWCCKrUOs8VUQ8KnQiaMrJ2EAALhu7FjpzTfL32f58pL3HTrl68cfrVjzvffayl6hVbf69ZOm\nT5emTZO++MJeZ/hwSzgdqqhIWrw4nBgqa2TNyy9L8+dLffva9u9/H34sHktGh36A+ugju4RqFQGI\nrH37pBkzpE2bpP37pf/7P6lFC+m998p/Xu3a9oMx3w38JSlYncXqq/NGSUmK0VsBqIQ+fayWwKEn\niwBQE/T1biIukXPGGZbMGDHCRrbs2iWlp9sXsH37pO++k3r1spW6Qr+4799v/WzdutLpp0vLlpX+\n2o88It12W+XasXmzjUbavr1y+9eqFR4ZLMUnIbRwofSnP5UcuRTCf1GgdB98IC1daseXvDw75qxZ\nI335pSWO69e3RHPTpnbM6dhR2rCheu/11FM2vXXkSKlJk+KPXXSR9PrrdpvPq3uq29czQgjwqdAI\noVq14tsOAAASzbXXWnKoqpYutS9b8+dbP1yrll0aNrTpZZXVvLmNLNq0yQpRr10r/etf0pIlVlto\nx47ihaMPTQZlZ1e93ZFw4olWPDskL08aN46RQkB5Nm+Wzj47fN5+uAYNyn/+lVdKzzxT8v4OHaTv\nv7eE9Z49Vkxekq65xq5vuomkj18wIMzHmJPrpljFhSljlcdnxU3EBUAiqltXKioKKDNTOu006ZRT\npJ49q15UuX596aijpG7dpHPPtV/2586VJkyQ7rnHClUf/gu/ZLWDXNCsmU1jcQn9inv8HpOCgvA5\n+6WXWi2x8eOlzp3Lf95550m5uVbfLBgsefn+e9uvdm1b2fBf/7KRRZUTqOZfAxcxQgjwKRJCAAB4\nU506Vrh51Cjr7/v0saXqSxspEE9dusS7BUBiOPpoqwsWcvgIwL17bcTdnDnS6NHS735XtdcfNswu\n2dlWGF+y64YNLWH0/ffShx/W/O+Ae6ghBPjUscdK33xjhSl79Ih3awB4AX29m+Idl6Ki8Co2ia5L\nF6vjEQhUb8oYilu82EZHSUxPAUqzcqXUqZMlhFaujP77LV0q/exnFe/H59U91BACUCXUEAIARMsP\nP9gv1nfeaVMRJGndOqlt2/i2q6a++86uZ80iIRRJ/DAFuKF7d2nBAqtRVquWFc7ftk3autVGCbk2\nyhA1R0LIxwKBgDIzM+PdDBwmVnFhyljl8VlxE3EBYmfvXltF68AB6zfy8uzLwbffSq1aSUOGWCHj\n5s3Lfo127exLRXp67NodKT/9VLy//OKLmr0exy83ERf3EJPY69On7MeGDJEOHAhIyoxRaxBtJIQA\nnyIhBAD+VVhoK1S1bl3xvn//u3TzzTV/z2BQatzY/akGd91lU8I+/dS2mzSxRBYA+N2QIXZ8hHdQ\nQwjwqY4d7dfd5cttbjIA1BR9vZuSkpLUoUNQ+/fbyJ6GDS3BEQrVAw9YbZwOHWxVmiOPtCk8+/bZ\nClhVHQ1z1122+lXfvjZiqEkTe/0ffrDH//Uvadkym5rwi1+49cPEnj0VL+Ms2ZeimTOj3x6vC9UQ\n6tHDbgMoLtY1hJC4qCEEoNJ27LATfcmtE3EAQHSsWhW+/dNPxR/7/e8r9xqXXhpe5WbfPlvJSrIa\nE5s2Sf/+ty1pXtrKUStXSin/O+scPjx8v2vFmQ89l54502po9O5tf2u/ftKKFfbYc8/Fp30AAEQS\nXwV9LMB4PydFIi7BoLRli60U8Kc/SddfbyfgSUnSEUfY8pHr1tm+KaSFK8RnxU3EBai8yZOl22+X\n3nzTkhrr10vz5klpaVKvXrZPWSNjTjpJ+tvfii95HEoGSTbiqEMHaezYspcRr1VLevhhGzHUt2/4\n/oqmYn38sfTqqxX/fZK0e7ctuRyJQWr169sooAsukNq0kZo1sxG1waBdmjSp2etz/Crf5s3S/v2l\nP7Z8uXT66bYSUpculqh7/fXIvC9xcQ8xcQ8x8Ra+CgIeUVQkXX21lJ1tv9QeOFD6fjt3SvXq2Uov\nZ5xhRT4BAN52ww0l72vdWtq+veT9330n5eRIH34onXWWdNFFkWnD7bfbRZKGDpXeeMOmaG3fHv7B\nIjRqdc0a6auvLCkj2T5paeHXKiiQFi2S3n3XRr0+/nj4sXPOkd57r+rt27kzPAIIsfX11/Z/QJLq\n1rUi5pKNOBs2zKYyZmXZ/5tJk0o+/y9/sccAAFVDDSEgQaxdayeq+fl2Ijx9uv1KuXGjJYDy8qxI\naEhqqp3st2plJ1lXXGEn0z17Wn2I0IkXAEQKfb2bXIxLKCF0uJSU0n/QOOUUW51s4EAbsXPxxeW/\nfrNm1jdWtq979VV7zUP/mRz7J/OkLVukjIyS0xgr4/bbpa5d7cewU04JFwEHvIQaQqgsaggBHrZ6\ntXUGhyZ8SpOWJvXvbye29erFpGkAAFTZ+edLs2db0mXXrvD9ZY1unTvXrt9+u+zX/OUvpRkz7HZe\nnnTTTTZV7lD79llB6549i9///vvFE0CnnFK5vwM107SpjQZbssRGOjdsaFPBdu2SMjPtdqNG0gsv\nFH/eqlVS+/YkgQCgpqgh5GPM/3RTIBBQUZHNn1+yxOohPPecJYPS06XBg6XLLrPh/xMn2pD5dets\nePX27dKsWSSDIo3PipuIC5C4rr7apnrt3Bmuy1NUZAmbnTttKlkwKC1YII0fbxfJahCF3H+/PSf0\n3FdekV56Kfz4449LLVrYL+uXXWajhurWtZpJV14Z3u+nn6QpU8LbW7ZIH30U3b+f41dY8+bSgAE2\nPfHkk23qYKtW0rff2g9czz8f/j+yfbud77RvH522EBf3EBP3EBNvYYQQEGd5edJjj0kbNth0sPnz\nbURQaU47zQqCAgDgNUlJUu3adgnp08cukvTgg3a9d68ljNLTiz9XkkaOtOLXs2bZ9ubNdjl0lTVJ\nevZZu1x0kfWth6ppwWhEz6F1pAAANUcNISAGZsyw0T75+dIHH9jJ7q5dtr1hQ9nP69pVatnSLq1a\nSddcY8OnAcBF9PVu8ltc1q2zkbVbt9qIkmnTwo/16SN9/nnZz50711atQmL49FPp1FOpIQTvooYQ\nKosaQoCjvv1WuuSSive79FKbDpaaar9O9u1ry/QCAIDKy8iQ/vCH8PZzz9l0o717bUr1Y49JY8eW\nfN4tt5AMAgD4CzWEfIz5n7GxbZtdt2tny6I+84zVOFi61JZR3bHDah+8/LIlhRo2DKhfP5JBLuGz\n4ibiAqCykpLC9fVuuskSRPn54eloknTnnbFrD8cvNxEX9xAT9xATb2GEEBBloRVTjjzSfn0EAADx\nl5pqRatXrrSaRM2axbtFAADEFjWEgCgIBm2VlI0bpXfflW68UTrjDImEOgAvo693E3GBV1FDCF5H\nDSFUFjWEgDjYtcuWuQ2tELZ8uTRzpi1ru2dP8X1ZCh4AAAAA4AoSQj4WCASUmZkZ72Y4b9486Ztv\nLOEzd67V+wmtEDZ/funP2bNHql/fVgdr3dout95aufcjLu4hJm4iLgASFccvNxEX9xAT9xATbyEh\nBJThwAHpq68qt+JIjx7SyJFWjyA1VRowQGrTxopYAgAAAADgGmoIwXeCQVv5a+tWW+Hr9deldeuk\nggIpJ8dup6TYKKBD3XyzlJZmiaJTT5XS0y3506KF1Lx5fP4WAHAJfb2biAu8ihpC8DpqCKGyqCEE\nlOPHH6ULLpBWrZK2b694/717bXRPaqolfu66S7rqqui3EwAAAN73wAPShAlSVpY0YkS8WxNZH38s\nPf209PjjUqNG8W4NgPIkx7sBiJ+Aj5a8+vhj6csvSyaDevaUTjvNfl2aMcNWBPvsM6sPdOCA7b96\ndWyTQX6KS6IgJm4iLgASFccvN8UyLhMm2HVla0wmim+/lU4/XXrhBelPf6r56/FZcQ8x8RZGCMEX\nDhyw63PPld56S6pdO77tAQAAALwym3PjRmnwYOnzz8P3LVgQv/YAqBwSQj7mp+rwhYV23by5+8kg\nP8UlURATNxEXAImK45ebiEvVBIPSnDnShg22Ku+hySBJ+uCDmr8HMXEPMfEWEkLwhVBCqFat+LYD\nAAAASFRbt0pTpliB42nTKt7/o49sChkAN1WqhlB2dra6du2qzp07a9KkSSUef+mll9SzZ08dd9xx\n6t+/vxYvXhzxhiLy/DT/M5ESQn6KS6IgJm4iLvA6zr+8i+OXm4hLxaZNk/7wh7KTQe+/X3zFtzPO\nqNn7ERP3EBNvqTAhVFhYqBtvvFHZ2dlaunSpsrKytGzZsmL7HH300froo4+0ePFi/eEPf9A111wT\ntQYD1ZFICSEAADj/AhAvP/4ojRkjde4srVtX/LFnngnfPu44afTo4o8PGCCdfHL02wggMiqcMrZg\nwQJ16tRJ7du3lySNGDFCM2fOVLdu3Q7u069fv4O3TzrpJK07/MgBJ/lp/mciJYT8FJdEQUzcRFzg\nZZx/eRvHLzdFKi7LltkKt0VFdg5aVBS+3Hmn1KlTRN6mRvbvt2TPtm22qm7PnpYEevXV4vu1ayft\n2yclJUlr1khLl4Yf++oru372Wen116VjjrHt5GSpbVspN1caP17atElq0aJ67fTjZyU/X9qyRTr6\n6Hi3pHR+jImXVZgQys3NVbt27Q5uZ2RkaP78+WXu/8wzz+j888+PTOuACEmkhBAAAJx/AdEVDFox\n5FatLNkRSX36SLt2lf3411+Hb8fy3HTaNOn666U9e6r2vDp1St53+L/Z0KHFt889V3ruOWnSJLv8\n8IN05JFVe1+/yMuT/vxnae1aKSsrfP+MGdLxx8evXfCHChNCSVU4Qn7wwQd69tln9emhE0fhrEAg\n4PkM765dtgzm6tW2nQgJIT/EJdEQEzcRF3gZ51/exvErstaske66SzpwwEa99Owp1a0rvfaaPda2\nbXh5908/lRo2lHbvDt83caL0619La9daXIJBG81z6HljMGiX5FIKbgSD0m9/Ky1ZYiNvQsmgkSOl\ntDR7Tq1adv3XvxZ/7rBhkf/3KMt771UuGXTlldLDD0uNG5f++DHHSP/9b/mv0bu3JYRCVq2qXkLI\na5+VYFD6zW+kd96xUUDl+eUvpdmzY9OuqvBaTPyuwoRQ27ZttXbt2oPba9euVUZGRon9Fi9erKuv\nvlrZ2dlqXMbRY9SoUQeHPqenp6tXr14H/zOFilOxHbvtnJwcp9pT3e0tW6QHHwyooEBq3jxTn34q\nffFFQPv3Sz/9ZPtLtn+9evFvL9uJt52Tk+NUe9i27RBX2uPH7UAgoGn/qywa6t8RGZE8/5I4B3Nt\n2yvnYPHebtRIkgJat0667z57XAropZckKby9alXxbUvYhLfvuUe6555MtWwp7dlj55RSpurWlfbu\nDSgjQ9qxI1P5+VKzZgGNGye1a2fbqakBXXZZ8dczmXrsMWnx4uLtv/BC237rrUw98oi0f39AgUDs\n/v2kgG69VZowIVNNm0offhjQihXS1VeHH7/sMik9PVMbNkj33hvQ9OlSQUH48cGDw39vWe93002Z\nuvBC6aijwv8e1Wmv187BZs2yf8/S/r+Utn322cW3491+jl/ubAcidA6WFAyGcuOlO3DggLp06aI5\nc+aoTZs26tu3r7KysorNYV+zZo3OPPNMTZ8+XSeXUUUsKSlJFbwVUKpgUPrwQxvlU1AgffCBVL++\nza8tKJA++aTs59ata0OBW7WyXyX++EepS5eYNR0AfIW+PnIidf4lERd4VzBo9WvWrpVSUqRvv7Wa\nN/v3W92bPXtsefSxY6WmTW2a086dUseOUkaGnVNecondFwlJSdK770rPP2+jax57rOx9x42THnnE\npgqNG1f+627aJN13n3TZZTYdrbpGjrQpSS+9ZLcPFQhYQejf/Mbaf7jdu6VGjaSuXaXFi+3fuzLO\nOMOWng8Ear7imBds3x4eefXmm9KQIXZ76lTp0HUBhgyR/v3v8PZxx4VrNgGlqW5fX+FHOSUlRZMn\nT9bAgQNVWFioK6+8Ut26ddPUqVMlSWPGjNG9996rbdu26brrrpMk1a5dWwsWLKhyY4DDFRVJr7xS\nstMqzQUXSCedZENzU1Ol88+XmjeP/LxwAACijfMvoGJJSTa9qbrOP1/ascNqCW3aZAmPRo0s+TFn\njp2H1q5tPyY2aiQNGiRt3Sr1719yKs/VV9t0sAYNpHPOqX6b8vOlF1+0pMwXX4SntUnS3/9ubW3Z\nsmqv+d130uefF69Pc7jMzOLvdbgGDezfA5GRliYNHlz2v/kTT0jdu9v/t9RU6dJLY9s++EeFI4Qi\n9kb8OuWcQCBwyPDR2MvPt5UNCgqkl1+2A15+vo0GKiqS9u61TvrQ/zY33mgHxaIi64xTU+2AmpFh\nv/x4QbzjgpKIiZuIi3vo691EXNzD8ctN1YnLqlW2eElVVw4LjRCSLNnSpo0lnMobVRQyYYKNGKqM\nbdtspPy+feH7ShshFC01HSHktc9KaIRQWprdTkRei4lXRG2EEBApX3whjRplv2zk5VX+eQ0bSs2a\nSU89ZSsWAAAAAC7o0KF6zzu0wPLu3dKKFaUng4491kaHvP++jVqSpPvvL5kQ2r9fmjJFOu+84uUR\ntmwpngw64QTp9NOr1+aamDNHSk+30ftt24bvJ1cNxBcjhBAz/+//WQ2fQ9WqZXORjzjChuJeeaWN\n+klPt/tTUys/RxkAEF/09W4iLoB7gkEbOZOfL61fb/WMFi60VdIuv9x+CD1UQYGNKqmMHTv0v4Lb\ntiLY8uXh94y1zEwb/V8Wvx2avDBCCG5ihBCcVlRkv35ItizonXdawWfq+wAAAMBvkpKKT6G69try\n909NlebNk8qpH3/QEUfY9TXXhJNB8XL11TZKacmS+LYDQOmS490AxE9o2bqaKiiw1R2WLJFuu806\ntEsvlZo0seGwjRvbKJ/QPOm0NKlePZJBZYlUXBA5xMRNxAVAouL45SbX43LSSbZq2ltvSe+8I916\nq3TqqVZ/6Prri0/FkoqPMnrttdi2NeRXv5K+/tpGAu3dK2VnV+35rsfEj4iJtzBCCFUSDEozZtgI\nnx07bEWG8mzbFr59xBHWUQ0cGN02AgAAAF509NF2kaxe0KEmTpQeeMBWOzvc0KHRb1tF6tSx7wHN\nm0ubN8e7NQAkagjhf775RsrNlXbtkn74QdqzR5o1y1Y92LJFWrTIRvbs2FH6kpNpafbrRMOGdn3J\nJTa0tWlTK2xHLSAA8D76ejcRF8B/fvzRzsml2K4qVhknnGDfLSRqCAGRQg0hVNt771Vu1E5+vl03\naGAHsTfflLp3l+rXZ/oXAAAA4IrWrS3Zkp9f+WLUsTJhgjR8uP1wDCC+qCHkY6H5n99/b9sZGdKF\nF9ovCMOGWfHnxx6T5s61ub+bNtmylbt22WoIJ55oySGSQZHFvFz3EBM3ERcAiYrjl5u8GBfXkkGS\nVLu2XZ9ySsX7ejEmks3GSFRejYlfMUIIB6eADR4sTZkS37YAAAAAQCx8+aU0fbp033226E20/fST\nXe/bF/33AiqDhJCPZWZmSpIKC227Vq34tQVhobjAHcTETcQFQKLi+OUm4uKeaMYkN1c6/ni73aCB\n9Mc/Ru2tDtqwIfrvEW18TryFKWM4mBBK5n8DAAAAAA/Lz5dGjLByGSHz58evPUA8kQLwsdD8z9CU\nMUYIuYF5ue4hJm4iLgASFccvNxEX90QyJsuWSdnZ0gMPSK+8Uvyx//wnYm/jeXxOvIUpY2CEEAAA\nAIC4CgbLXqxm2TJp4kRpxw777tKqlXTHHdKxx5b9ejt3Wn2glSulhx+u+P0XLQpPIYu0YFCaNk26\n4orovD5QXUnB6ixWX503SkpSjN4KVTRpkvS739lBddKkeLcGAJCo6OvdRFwAuOTNN21l45CjjpLq\n1JGWL7ftp56SjjxSWrNG6tTJVkS+6qqSrzNqlPTcc2W/z+TJ0k03lf341Kn23uedF74v0ofKoiJp\nyBBp1qySj3FYRiRVt69nhBB04IBdM2UMAAAAQDS1alV8+4cfim9fc03Zz73qKmn3bunll22lrp07\nbeTNrFk2Gqhp0/C+b7wRvt24sdSxo7RwYfH3Cc2UiJZVq0pPBgGuYJKQj4Xmf4YSQimkB53AvFz3\nEBM3ERcAiYrjl5uIS2z06SN99pn0179Kzz4rPf+89PXX0pNP2uO9e0unnx7aO3DweQsW2Oih0GMv\nvywdcYSNAsrOlpo1C4+6yc2V5swJv+fWrdLnn9uInccft/eX7Afx1FS7/dvfSrt2ReuvtvYeeWT0\nXj9W+Jx4CykAHMyMkxACAAAAEE1JSdLJJ9vlUMceK40ZU/y+Dz6w/fv0kRo2tPveeafs1w7VRK1T\np+z3vv764vddfLH0zDPSn/9sl7Vri69AFglHHy1deqldcnKk9PTIvj5QXYwQ8rHMzExJ4VXGKCrt\nhlBc4A5i4ibiAiBRcfxyE3Fxz4ABmcrMDCeDJGns2PDtQYPCtYcOtW9f+Hbou05ZOncuvl3a60VS\nrx80KGQAAA9cSURBVF5S+/bRfY9o4nPiLaQAwCpjAAAAABLCmWfa1LBgUHr77XDh6XHjSu47aVLZ\nK5eF3HGH9NFH0Wkr4DpSAD4Wmv8ZyppTVNoNzMt1DzFxE3EBkKg4frmJuLinsjHp0MGmewWDtjpZ\nyM03V/zcpCTptNMkBr5UDp8TbyEhBKaMAQAAAPCEdu3CI4jq1q3Za/3wgyWMSlv2/o47pNtuq9nr\nA/GWFKzOYvXVeaOkJMXorVBFt98uPfqo9PDDdhsAgOqgr3cTcQGAig0YIAUC0vvv221JuuEGacoU\nux06jAaD0nnnSe+9Z9ubNknNm5f+mitX2pS2o4+220C0VLevZ0wIqCEEAAAAAJK++krasMGWoA8l\ng0I++si+M4WSQZL0xRelv05RkXTXXXZ7+/botBWoKVIAPkYNITcxL9c9xMRNxAVAouL45Sbi4p54\nxOTWW6XWraVGjYrf/5//SGecUXL/118v/XWefFL6v/+z21u3RraN8cTnxFtICIEaQgAAAAB87dJL\nLRFUlnPPLf3+p54KTyc71A8/hG+fdVbN2gZECykAH8v8Xyl9EkJuyWSJA+cQEzcRFwCJiuOXm4iL\ne2IZk2uukdavt+TOihXSI49IL70ktWxZct+iImnixPD2p5+W3Ce03P2110pvvRWdNscDnxNvIQUA\nEkIAAAAA8D8dO9oKYiNH2kifV18NP3bKKZbsueWW8H0NG9r1okXSJ5/Y7QUL7Hr3bqlevdi0G6gq\nUgA+FggEtG+fFUyTSAi5gnm57iEmbiIuABIVxy83ERf3uBCTunWliy6S9u2T/vUvafZsuz89PbxP\nXp708cfSCSdIp50mFRRIH3xgj73wQuzbHE0uxASRkxLvBiC6duyQ5s6V8vPtMnu2tG6dtG2bXe/Y\nEd43hf8NAAAAAFBC7drSsGHF72vWzJJBh9cXWrUqdu0CaiIpWJ3F6qvzRklJitFb+UowKH37rbRx\noyV85s61kT4FBbb90kvlPz852ebFdu4sTZ8utWsXm3YDALyHvt5NxAUAomP48OLTyUKuucaKTYdw\nCEa0VbevJyGU4J54Qrr++or3O+cc6cgjpdRUqU4d6Ze/lDIypKZNWW4eABAZ9PVuIi4AEB3BoPTj\nj1LbtmXvs3NnuMYQEC0khDyoqMjq+8yYIW3YYKN+5syxomQ7d9oIoNWrw/tfcIGUlibt2SOdeabd\nTk2VevSQjj665OsHAgGqxDuIuLiHmLiJuLiHvt5NxMU9HL/cRFzck0gx+eQTacoUKSur+P1eO/wm\nUkz8pLp9PVVjHPHxx9If/yht3Sp98YVlkXfvrtwBpFEjSxT17Rv9dgIAAAAAijv1VKlBg5IJIcBl\njBByxMUXW9X6wzVsaAeWpk2lyy+3UT+1a1sF+9RU2w7dBwBAPNHXu4m4AEDsrFpVfHYGh1/EAiOE\nEtxPP9n1I49I558vNWlCfR8AAAAASCQdOsS7BUDlJce7AX4QDErbt0v/+If04IPS738v9e4tZWZK\nvXrZQePdd23fbt2krl2lFi2inwwKBALRfQNUC3FxDzFxE3EBkKg4frmJuLgnUWOyeLHN4Lj33ni3\nJPISNSYoHSOEIuz1123lr/x8acECm861Y4cViK5I8+bSccdFv40AAAAAgOjo0cO+A9atG++WAOWj\nhlAlbN4sbdtmK379+KNdz5ply7evWSOtXGmFnfPzbc5oaerXtyxx167SkCGWKKpfXzr+eLudnm7X\nTBEDACSqRO7rvYy4AADgbdQQipLnn5dGjar682bPllq3tjpATZtKKfxLAwAAAAAAR1BDqAKff27X\nLVpIPXtKp5xidX6uuEK6+WZbVvD116VPP5WWL5c2bpT275fOOkvq3l1q2dLdZBDzP91EXNxDTNxE\nXAAkKo5fbiIu7iEm7iEm3uJoqsIdBw7Y9T33SNdeG9+2AAAAAAAARAI1hCpw1VXSM8/YCmFXXRXv\n1gAA4K5E7eu9jrgAAOBt1e3rmTJWgdAIIVenfQEAAAAAAFQVCaEKFBbatRcTQsz/dBNxcQ8xcRNx\nAZCoOH65ibi4h5i4h5h4iwfTHFW3cqW0erUtG79ggSWB8vOl7dutWLTkzYQQAAAAAADwJ9/UEFq2\nTHrpJUvyzJ0rNWki7dhhCaDK+Owz6eSTo9tGAAASWbz7epSOuAAA4G3V7es9Me4lGJT27bMl3z/7\nLDy6Z9EiKTXVtmfMqPh1LrxQSkuTdu6Uzj3XbqelSR06SF27Rv/vAAAAAAAAiIUKawhlZ2era9eu\n6ty5syZNmlTqPmPHjlXnzp3Vs2dPffnllxFvZGnmzZM6dbKETe3aUr160lFHSSNGSGPGSOPHS6+8\nYquDHZoMuv12ado06fnnLXm0ZIm0fr0lld54w+5/9VV7jREjpEGDvJsMYv6nm4iLe4iJm4gLvM7V\nczDUHMcvNxEX9xAT9xATbyk3IVRYWKgbb7xR2dnZWrp0qbKysrRs2bJi+7z99ttasWKFli9frqee\nekrXXXddVBss2cpfr71mtX8KCqzmT6jGT5cudrn1VunOO6W77pKysqRZs6Tly6WHH5Yuv1z6zW9s\nCtjPfia1bh31JjspJycn3k1AKYiLe4iJm4gLvMzVczBEBscvNxEX9xAT9xATbyl3ytiCBQvUqVMn\ntW/fXpI0YsQIzZw5U926dTu4z5tvvqnLL79cknTSSSdp+/bt2rhxo1q2bFnlxixbZkmeXbts1M7W\nrdKcOVLdujbt68svpQYNpN27w8+55x7pd7+T6tSp8tv53vbt2+PdBJSCuLiHmLiJuMDLYn0Ohtji\n+OUm4uIeYuIeYuIt5SaEcnNz1a5du4PbGRkZmj9/foX7rFu3rtSTkTlzLJmzYoWUm2sje3btkj7/\nXNq82e6ryO7dUlKS1QZq21YaOpRkEAAA8JZIn4MBAAAcrtyEUFJSUqVe5PBq1mU97+yzK9eoiy+W\n/n979xMS5fbHcfxjjAsRyUzp5ihUo6AyOQZeTKJIIjQDN7WwVX9kkDZRu6hFfxZR7SI3LsoiKuJW\nYJC6iSxIxchQsAgTjVEoshShoEY7v4W/6y2v2XNr5pmTz/u1cpjD8MUPM+fD4ZlnUlNn/v7jj5l7\nA/35p5SWJmVlSenpM4dC+DXDw8OJHgHzIBf7kImdyAWLWaw7GOzC55edyMU+ZGIfMllcFjwQ8vv9\nikQis48jkYhycnIWXDMyMiK/3/+v1woEAhocdFZS/vrL0TLEwOXLlxM9AuZBLvYhEzuRi10CgUCi\nR1g0Yt3BOCiyD59fdiIX+5CJfcjEPj/bwRY8ECotLdXAwICGh4eVnZ2tGzdu6Pr169+sqampUUND\ng2pra9XV1aX09PR5L1V++fLlTw0IAADgNXQwAAAQbwseCPl8PjU0NKiyslLT09Oqq6tTYWGhGhsb\nJUn19fWqrq5WS0uL8vLylJqaqqamJlcGBwAAWKzoYAAAIN6SzNwvnwMAAAAAAGBRWxLrF2xra1NB\nQYHy8/N15syZedccOHBA+fn5CoVCevr0aaxHwBw/yuTq1asKhUIqLi7Whg0b1NfXl4ApvcXJ+0SS\nHj9+LJ/Pp9u3b7s4nXc5yaW9vV3r1q1TMBjU5s2b3R3Qg36UydjYmKqqqlRSUqJgMKhLly65P6TH\n7Nu3TytWrNDatWu/u4Z93n30LzvRwexDB7MTHcw+dDD7xKWDmRiampoygUDADA0Nmc+fP5tQKGSe\nPXv2zZq7d++abdu2GWOM6erqMmVlZbEcAXM4yaSjo8NMTEwYY4xpbW0lkzhzksnf6yoqKsz27dvN\nzZs3EzCptzjJZXx83BQVFZlIJGKMMebt27eJGNUznGRy7Ngxc/jwYWPMTB4ZGRkmGo0mYlzPePjw\noenp6THBYHDe59nn3Uf/shMdzD50MDvRwexDB7NTPDpYTK8Q6u7uVl5enlatWqXk5GTV1taqubn5\nmzV37tzR7t27JUllZWWamJjQmzdvYjkGvuIkk/Lyci1dulTSTCYjIyOJGNUznGQiSefPn9fOnTuV\nlZWVgCm9x0ku165d044dO2Z/6SczMzMRo3qGk0xWrlypyclJSdLk5KSWL18un2/B2+PhF23cuFHL\nli377vPs8+6jf9mJDmYfOpid6GD2oYPZKR4dLKYHQqOjo8rNzZ19nJOTo9HR0R+uYfOLHyeZfO3C\nhQuqrq52YzTPcvo+aW5u1v79+yWJnwt2gZNcBgYG9P79e1VUVKi0tFRXrlxxe0xPcZJJOBxWf3+/\nsrOzFQqFdO7cObfHxBzs8+6jf9mJDmYfOpid6GD2oYP9nn5mr4/pEZ7TD0wz5z7WfNDGz3/5396/\nf18XL17Uo0eP4jgRnGRy8OBBnT59WklJSTLG/Os9g9hzkks0GlVPT4/u3bunjx8/qry8XOvXr1d+\nfr4LE3qPk0xOnTqlkpIStbe3a3BwUFu3blVvb6/S0tJcmBDfwz7vLvqXnehg9qGD2YkOZh862O/r\nv+71MT0Q8vv9ikQis48jkcjsZX3fWzMyMiK/3x/LMfAVJ5lIUl9fn8LhsNra2ha8DA2/zkkmT548\nUW1traSZG7a1trYqOTlZNTU1rs7qJU5yyc3NVWZmplJSUpSSkqJNmzapt7eXMhInTjLp6OjQ0aNH\nJUmBQECrV6/WixcvVFpa6uqs+Af7vPvoX3aig9mHDmYnOph96GC/p5/a62Nyd6P/i0ajZs2aNWZo\naMh8+vTphzc17Ozs5OZ5ceYkk1evXplAIGA6OzsTNKW3OMnka3v27DG3bt1ycUJvcpLL8+fPzZYt\nW8zU1JT58OGDCQaDpr+/P0ETL35OMjl06JA5fvy4McaY169fG7/fb969e5eIcT1laGjI0Q0N2efd\nQf+yEx3MPnQwO9HB7EMHs1esO1hMrxDy+XxqaGhQZWWlpqenVVdXp8LCQjU2NkqS6uvrVV1drZaW\nFuXl5Sk1NVVNTU2xHAFzOMnk5MmTGh8fn/2udHJysrq7uxM59qLmJBO4z0kuBQUFqqqqUnFxsZYs\nWaJwOKyioqIET754OcnkyJEj2rt3r0KhkL58+aKzZ88qIyMjwZMvbrt27dKDBw80Njam3NxcnThx\nQtFoVBL7fKLQv+xEB7MPHcxOdDD70MHsFI8OlmQMX4wFAAAAAADwkpj+yhgAAAAAAADsx4EQAAAA\nAACAx3AgBAAAAAAA4DEcCAEAAAAAAHgMB0IAAAAAAAAew4EQAAAAAACAx3AgBAAAAAAA4DEcCAEA\nAAAAAHjM/wATLAcN/aUHHwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x10755e350>"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"7. Plot the baby"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"baby = []\n",
"baby.append(newt[1])\n",
"baby.append(newp[1])\n",
"\n",
"fig, axes = plt.subplots(1, 2, figsize=(20,5))\n",
"axis([0.0,1.0, 0.0,1.0])\n",
"# custom grid appearance\n",
"axes[1].plot(baby[0], baby[1], lw=2)\n",
"axes[1].grid(True)\n",
"axes[1].set_autoscale_on(False)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAE4CAYAAAAq4iifAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYXGWdJ/Bvh4TrIOHisOSigSSSZIEEDbdhwFZUIu5G\nHZghzo2biIwMg7ijrsxKdBUMzqOjxtmJF8RRzLirzsQdIbPK0nhBiAIRFxgMCJKEyxAgA3LNpfaP\nY6fTSae76FRXvV31+TxPPVWn6nTV2/l29Xn7l/f8qqtWq9UCAAAAQMcY0+oBAAAAANBcCkIAAAAA\nHUZBCAAAAKDDKAgBAAAAdBgFIQAAAIAOoyAEAAAA0GGGLAidffbZOfDAA3P44YfvcJ8LL7ww06dP\nz+zZs3Pbbbc1dIAAAJ3IHAwAGElDFoTOOuusLF++fIePX3PNNbnnnnuyatWqfO5zn8v555/f0AEC\nAHQiczAAYCQNWRA64YQTsu++++7w8W9/+9s544wzkiTHHHNM1q9fn0ceeaRxIwQA6EDmYADASNrp\nHkJr167N5MmTt2xPmjQpa9as2dmnBQBgEOZgAMDOaEhT6Vqt1m+7q6urEU8LAMAgzMEAgOEau7NP\nMHHixKxevXrL9po1azJx4sTt9ps2bVruvffenX05AKBQU6dOzT333NPqYXSMeudgEydOzIMPPtjM\noQEATTTcOdhOrxCaP39+/v7v/z5JctNNN2X8+PE58MADt9vv3nvvTa1Wcynocumll7Z8DC5yGQ0X\nmZR5kUt5F//x01z1zsEefPDBlv9suPS/+P1V5kUu5V1kUt5FJmVehjsHG3KF0Nve9rbccMMNWbdu\nXSZPnpwPfehD2bBhQ5LkvPPOyymnnJJrrrkm06ZNy1577ZUvfelLwxoIAAB9zMHa1/3339/qITAA\nuZRHJuWRSXsZsiC0dOnSIZ9k8eLFDRkMAAAVczAAYCQ1pKk0o1N3d3erh8AA5FIemZRJLsBodeaZ\nZ7Z6CAxALuWRSXlk0l66arVabejdGvBCXV1p0ksBAC3gWF8muQBAexvusd4KIQAAaKKenp5WD4EB\nyKU8MimPTNqLghAAAABAh3HKGADQEI71ZZILALQ3p4wBAAAAUBcFIQAAaCI9OMokl/LIpDwyaS8K\nQgAAAAAdRg8hAKAhHOvLJBcAaG96CAEAAABQFwUhAABoIj04yiSX8sikPDJpLwpCAAAAAB1GDyEA\noCEc68skFwBob3oIAQAAAFAXBSEAAGgiPTjKJJfyyKQ8MmkvCkIAAAAAHUYPIQCgIRzryyQXAGhv\neggBAAAAUBcFIQAAaCI9OMokl/LIpDwyaS8KQgAAAAAdRg8hAKAhHOvLJBcAaG96CAEAAABQFwUh\nAABoIj04yiSX8sikPDJpLwpCAAAAAB1GDyEAoCEc68skFwBob3oIAQAAAFAXBSEAAGgiPTjKJJfy\nyKQ8MmkvCkIAAAAAHUYPIQCgIRzryyQXAGhveggBAAAAUBcFIQAAaCI9OMokl/LIpDwyaS8KQgAA\nAAAdRg8hAKAhHOvLJBcAaG96CAEAAABQFwUhAABoIj04yiSX8sikPDJpLwpCAAAAAB1GDyEAoCEc\n68skFwBob3oIAQAAAFAXBSEAAGgiPTjKJJfyyKQ8MmkvCkIAAAAAHUYPIQCgIRzryyQXAGhveggB\nAAAAUBcFIQAAaCI9OMokl/LIpDwyaS8KQgAAAAAdRg8hAKAhHOvLJBcAaG96CAEAAABQFwUhAABo\nIj04yiSX8sikPDJpL0MWhJYvX54ZM2Zk+vTpWbRo0XaPr1u3LvPmzcucOXNy2GGH5aqrrhqJcQIA\ndBRzMABgJA3aQ2jTpk059NBD873vfS8TJ07MUUcdlaVLl2bmzJlb9lm4cGGef/75XH755Vm3bl0O\nPfTQPPLIIxk7dmz/F3L+OgC0Ncf6xjEHAwDqNSI9hFasWJFp06ZlypQpGTduXBYsWJBly5b12+eg\ngw7Kk08+mSR58skns//++283EQEAoH7mYADASBu0ILR27dpMnjx5y/akSZOydu3afvuce+65ueOO\nOzJhwoTMnj07n/rUp0ZmpAAAHcIcrL3pwVEmuZRHJuWRSXsZtCDU1dU15BNcdtllmTNnTh588MGs\nXLky73rXu/LUU081bIAAAJ3GHAwAGGmDriueOHFiVq9evWV79erVmTRpUr99brzxxlxyySVJkqlT\np+bggw/O3Xffnblz5273fAsXLtxyu7u7O93d3TsxdACglXp6evxP4Qhp9BzszDPPzJQpU5Ik48eP\nz5w5c7bMw3oztN3c7V6ljMd29bdJSeOxnS33lTIe29V2r1LG04nbPT09Wz5Movf4PhyDNpXeuHFj\nDj300Fx33XWZMGFCjj766O0aGl588cXZZ599cumll+aRRx7Jq171qtx+++3Zb7/9+r+QhoYA0NYc\n6xvHHAwAqNeINJUeO3ZsFi9enJNPPjmzZs3K6aefnpkzZ2bJkiVZsmRJkuQDH/hAfvrTn2b27Nl5\n3etelyuuuGK7iQgAAPUzB2tv2/4vO2WQS3lkUh6ZtJdBVwg19IX87xQAtDXH+jLJpTxbnwJDOeRS\nHpmURyZlGu6xXkEIAGgIx/oyyQUA2tuInDIGAAAAQPtREAIAgCbSg6NMcimPTMojk/aiIAQAAADQ\nYfQQAgAawrG+THIBgPamhxAAAAAAdVEQAgCAJtKDo0xyKY9MyiOT9qIgBAAAANBh9BACABrCsb5M\ncgGA9qaHEAAAAAB1URACAIAm0oOjTHIpj0zKI5P2oiAEAAAA0GH0EAIAGsKxvkxyAYD2pocQAAAA\nAHVREAIAgCbSg6NMcimPTMojk/aiIAQAAADQYfQQAgAawrG+THIBgPamhxAAAAAAdVEQAgCAJtKD\no0xyKY9MyiOT9qIgBAAAANBh9BACABrCsb5McgGA9qaHEAAAAAB1URACAIAm0oOjTHIpj0zKI5P2\noiAEAAAA0GH0EAIAGsKxvkxyAYD2pocQAAAAAHVREAIAgCbSg6NMcimPTMojk/aiIAQAAADQYfQQ\nAgAawrG+THIBgPamhxAAAAAAdVEQAgCAJtKDo0xyKY9MyiOT9qIgBAAAANBh9BACABrCsb5McgGA\n9qaHEAAAAAB1URACAIAm0oOjTHIpj0zKI5P2oiAEAAAA0GH0EAIAGsKxvkxyAYD2pocQAAAAAHVR\nEAIAgCbSg6NMcimPTMojk/aiIAQAAADQYfQQAgAawrG+THIBgPamhxAAAAAAdVEQAgCAJtKDo0xy\nKY9MyiOT9qIgBAAAANBh9BACABrCsb5McgGA9qaHEAAAAAB1URACAIAm0oOjTHIpj0zKI5P2MmRB\naPny5ZkxY0amT5+eRYsWDbhPT09PjjzyyBx22GHp7u5u9BgBADqOORgAMJIG7SG0adOmHHroofne\n976XiRMn5qijjsrSpUszc+bMLfusX78+xx9/fP7lX/4lkyZNyrp163LAAQds/0LOXweAtuZY3zjm\nYABAvUakh9CKFSsybdq0TJkyJePGjcuCBQuybNmyfvt87Wtfy6mnnppJkyYlyYATEQAA6mcOBgCM\ntEELQmvXrs3kyZO3bE+aNClr167tt8+qVavy+OOP5zWveU3mzp2br3zlKyMzUgCADmEO1t704CiT\nXMojk/LIpL2MHezBrq6uIZ9gw4YNufXWW3PdddflmWeeyXHHHZdjjz0206dP327fhQsXbrnd3d3t\nXHcAGMV6enpMDEdIo+dgZ555ZqZMmZIkGT9+fObMmbNlHtaboe3mba9cubKo8di2Xer2ypUrixqP\nbb+/Stnu6enJVVddlSRbju/DMWgPoZtuuikLFy7M8uXLkySXX355xowZk/e9731b9lm0aFGeffbZ\nLcWet7/97Zk3b15OO+20/i/k/HUAaGuO9Y1jDgYA1GtEegjNnTs3q1atyv33358XXnghX//61zN/\n/vx++7z5zW/OD3/4w2zatCnPPPNMbr755syaNetFDwQAgIo5GAAw0gYtCI0dOzaLFy/OySefnFmz\nZuX000/PzJkzs2TJkixZsiRJMmPGjMybNy9HHHFEjjnmmJx77rkmIwAAO8EcrL31LvunLHIpj0zK\nI5P2MugpYw19IcuVAaCtOdaXSS7l6enp2dITgnLIpTwyKY9MyjTcY72CEADQEI71ZZILALS3Eekh\nBAAAAED7URACAIAm0oOjTHIpj0zKI5P2oiAEAAAA0GH0EAIAGsKxvkxyAYD2pocQAAAAtKHNm5OP\nfzx5xzsSNX4aRUEIAACaSA+OMsmlPO2ayebNyZNPJr/+dfLss8nzzycbN1b312rJ//gfyRe/mPzZ\nnyVdXcneeye77JK8973J5z+fjBmTrFuXbNjQ/LG3ayadamyrBwAAAACj3QsvJI88knzlK8mrXpWc\nfHL/x59+OnnooeSEE5KHH67/eX/96+3ve+lLk8mTk7vvTvbYY+fGTefSQwgAaAjH+jLJBehUPT3J\nRz9arcKp1fpW4PReBtreddfkueeS/fevtn/5y+Skk6rn2/pX6R13JDNnVqt1kmrfq6/efgwnnlgV\nie6+e/vH9tyz+rpNm/quB/KP/5j86EfJKackr31t/8e6u5NnnqkKTJMmVUWpn/60euxv/ib5i794\nMf9ijFbDPdYrCAEADeFYXya5AK3y2GNVsWLMmOTmm5PLLkve9a7krLMa9xrPPVe9xi67VK+z9fWu\nuzbudRpp8uTk7W9PPvjB7R974YXkc59L/uAPkuuuSxYsqE4b29Zb3pIsWzb0a/n13xkUhACAlnKs\nL5NcytPT05Pu7u5WD4NtyGXn3X138ra3VQWagVbEbO3II5N585I/+ZNqdUzvap3elTL/7b8lr3xl\nTx55pDvvfW8yfXr/r3/kkWTlyuo56vHDH1aFld7LmDEDbz/4YLVyJ0l+8Ytkt936P8/WxZmHH07+\nw3/o//hxx1VjvfXWanVRV1fyzndWPX+S5Ac/SH73d+sb82B+/evkxhurgtjjj1erg3bfvSqCHXNM\n337//M9939/Wl63ve/bZ5MtfTt761qogddNNyX77bf+aXV3Jfff15OCDu7f8O3R1Vf8GZ52VjNWQ\npmUUhACAlnKsL5NcyqPwUCa57LzFi5M///Pt79977+Spp4bzjD1JupNUfXKmTKmKRb/4xfZ7vuQl\n/U+92ry5atScVKuTjj56OK8/On3uc8l5543Us/ekN5Otffe7yeteN1KvyVCGe6xXwwMAgCZSdCiT\nXBrn8MOTD3wgOeKIZNas/o/de2+1WubP/qxa5TLQipXHHkvWrEm2Ljw8+2xy113bv9ahhyaf/GTy\nxjcOPJZabeBTrtrZ7/1etcrn0Ue3X3219aX3vh/+sPq6SZOSo46qind7713l16uv1tDd7zS0b34z\nufPOapUSo4+CEAAAAA1z4olV75uBTJ1aXW65pb7n2ry5ag791FPVKVrvfGffY088kYwfP/jXd1ox\nKEkOOCC58srmvNYvf1kVhF54oTmvR2MpCAEAQBM5NalMcilPbyZbf7LWyJ0KRT22fZ+MG1ddt2NB\n6Mknq15VvbZeGbVhQ9UzaduC41Db9ewznK8ZLgUhAAAA4EXr/SS3j3yk6l3Ueypa72Wg7V13TZ5/\nvmpcXaslq1Ylb3hDX8Gl9/rOO5MZM6rCS++nx217Gej+JFm7tuohNXFidbrhc8/1v+69/dxz1f5b\nNxjv6qoalncCBSEAAGgiq1DKJJfyyKQ822YybVp1fd991WW4vvrVge8voTDT+z0m/VfmrFrV/9Pv\ntu3pPFCP56H2Ge7XrF69/dfVQ0EIAAAAeNHe857kpJOqlTa9zcF7LzvafuihZPfdq6+/995qlc/W\nH2O/9fXDDycvfen2DbF7P0luoPvvvDN52cuq7YceSubOrV5vjz2qS+/t3XdPdtuteq2tVzH1Xn7w\ng+Ttb09+67ea/+/6Yg33FDIFIQAAaCK9asokl503jE+9HpRMyrNtJmPGJK985Yt7jsMP77t94omN\nGddIeNWrWj2CkTem1QMAAACgfXTiJ3vBaKQgBAAATWTFQ5nkUh6ZlEcm7UVBCAAAAKDDKAgBAEAT\n9fT0tHoIDEAu5ZFJeWTSXhSEAAAAADqMghAAADSRHhxlkkt5ZFIembQXBSEAAAB2WqM/dh4YWQpC\nAADQRHpwlEkujdOoj52XSXlk0l4UhAAAAAA6jIIQAAA0kR4cZZJLeWRSHpm0FwUhAAAAgA6jIAQA\nAE2kB0eZ5FIemZRHJu1FQQgAAACgwygIAQBAE+nBUSa57LxGf+y8TMojk/aiIAQAAEDDNOpj54GR\npSAEAABNpAdHmeRSHpmURybtRUEIAAAAoMMoCAEAQBPpwVEmuZRHJuWRSXtREAIAAADoMApCAADQ\nRHpwlEku5ZFJeWTSXhSEAAAA2GmN/th5YGQpCAEAQBPpwVEmuTROoz52XiblkUl7URACAAAA6DAK\nQgAA0ER6cJRJLuWRSXlk0l4UhAAAAAA6jIIQAAA0kR4cZZJLeWRSHpm0FwUhAAAAgA6jIAQAAE2k\nB0eZ5FIemZRHJu1lyILQ8uXLM2PGjEyfPj2LFi3a4X4/+clPMnbs2HzrW99q6AABADqRORgw2tRq\nrR4B8GIMWhDatGlTLrjggixfvjx33nlnli5dmrvuumvA/d73vvdl3rx5qfktAACwU8zB2pseHGWS\nS+N0dTXmeWRSHpm0l0ELQitWrMi0adMyZcqUjBs3LgsWLMiyZcu22+8zn/lMTjvttLz0pS8dsYEC\nAHQKczAAYKQNWhBau3ZtJk+evGV70qRJWbt27Xb7LFu2LOeff36SpKtR5WAAgA5lDtbe9OAok1zK\nI5PyyKS9jB3swXomFhdddFE+9rGPpaurK7VabdDlygsXLtxyu7u723IzABjFenp6TAxHSKPnYGee\neWamTJmSJBk/fnzmzJmzZR7Wm6Ht5m2vXLmyqPHYtt2o7XvuqbaTxjzfypUri/r+bPv9Vcp2T09P\nrrrqqiTZcnwfjq7aILOHm266KQsXLszy5cuTJJdffnnGjBmT973vfVv2OeSQQ7ZMQNatW5c999wz\nn//85zN//vz+L/SbyQoA0J4c6xvHHAwYjT75yeTii5OLLqpuA80x3GP9oCuE5s6dm1WrVuX+++/P\nhAkT8vWvfz1Lly7tt88vf/nLLbfPOuus/Of//J+3m4gAAFA/czAAYKQN2kNo7NixWbx4cU4++eTM\nmjUrp59+embOnJklS5ZkyZIlzRojAEBHMQdrb73L/imLXHbeQw9V17/4RWOeTyblkUl7GfSUsYa+\nkOXKANDWHOvLJJfy9PT0bOkJQTnksvO2bn/WiF87MimPTMo03GO9ghAA0BCO9WVq91z+7u+Sf/iH\n5J//Ofmt32r1aKCzNbogBNRHQQgAaCnH+jK1ey69f4D+9V8n73lPa8cCnU5BCFpjuMf6QXsIAQBA\nqR58sO/2DTe0bhwvlh4cZZJLeWRSHpm0FwUhAABGpYkT+27/4R+2bhwAMBo5ZQwAaAjH+jK1Yy5P\nPz1wv6A2+zZh1HHKGLSGU8YAAOgI3/xmq0cAAKOfghAAAKPGW96SnHFGq0exc/TgKJNcyiOT8sik\nvSgIAQBQpGefTW6+OTn11GT58uSZZ5Jly/rvc+mlfbfvuae54wOA0UwPIQCgIRzryzRac/n1r5OX\nvzx5/PHB97vxxuR3fqdv+8knk733HtmxAQPTQwhaY7jH+rEjMBYAANgpa9YMXQy6887koIP637d+\nvYIQANTDKWMAABRn06bqetasaqXBrbcmF17Yf59dd03Gj69WBW37dSXTg6NMcimPTMojk/aiIAQA\nQEv9278lxx+f/Pznffdt3Fhd77JLdX3kkcnHP973+LnnJoccUt3ee+/k4IOr25s3j/x4AaAd6CEE\nADSEY32ZSs/l+eeT3Xfv267VqlPF9t+/2j7yyGp10FCmTUvuvTdZtaq6DTSfHkLQGsM91lshBABA\nQ9VqVaGnHpMn99/evDm5/PK+7a3/wBzMmN/Marc+ZWzjxtFxChkAtIKCEAAAL9qddyaf+ETy0Y8m\n++yTvOlNyfz5VQFnzJhq1U9XV/L5zyff+taOCzOPPtp/e+bM5K//um/7/e+vbzy9p5h94QvV63Z1\nJePGJWML/AgVPTjKNBpyWb8+ueOOZOHCvp/zyy5r9ahGzmjIpNPIpL0UeIgEAKB0Z52VrFjRt33N\nNQPv94539N1+9aurFUCbN1eriAbq9/OLX/Tf/v3fr288Dz9cXW9dTILR4N57q/dPbzF1l136X591\n1uBff8klyT/9U/LOdyZ/+qdlFkGBMukhBAA0hGN9mUYql732Sp55Jpk+vWrqfPTRybx5yWOPVff9\nn/+T/OpXyVe+Us8Yk1e9KvnpT/vf/4d/mFx9dX3j+dKXkrPPHvgxP5a0wpo1yZVXVqvWVq9OvvOd\n5Hd+p/pUvIMOSr72teSWW5LPfKZxr/nVryYnn5y88EL1/tywobp9zz3JG95QvVdHkh5C0BrDPdYr\nCAEADeFYX6aRyuUVr6gaOP/rvyaHHrrj/TZtSm6+OXnuuWq1Q+8qiK1vH3RQ8rKXJXffXZ0y1mvz\n5vp7CPV6/PHqNXfbrTqVLfGHKa3xe7+X/OM/1r//H/xBst9+1c/9pk3V9a9+lfzf/9t/v7Vrq/dM\nUr0HFy+uv6g00u8FBSFojeEe6y0oBABg2IYq2OyyS7Uqoh4zZry45x7IfvtV108++eK/tll6enrS\n3d3d6mGwjUbn8vjj/bf33LP6mX766f73f/CDyRFHJKee+uJf4xWvSD796eTNb65Oz3z00eSpp5ID\nD6xW8e26a1W0Ha28V8ojk/aiIAQAwIs2Uv/7//TT1R+y8+fv3PPstltjxgPD1fseuf76ZOu/nx97\nLPmrv0oeeKA6jawRTjqp6kU0kJtvTo49trp92ml9K/S2XbHXe7njjuprkuSUU6r+Ri9/+Y5fu7dw\nO5wCLtBaThkDABrCsb5M2+aycWNjms72/vH3i19UPYMaqVbb+T8uN2+uVif1Ph8026tfnXz/+0lP\nT3W7VR58sDolc0ef9DdSvO+geZwyBgDAoKZPr5rLfve7yete15jnXL268QUhKw1oB6UURCZMSG67\nrSre9n6639aXbe979tnk4ouTj30smTatKiS97GXJ/vtv/9y932OtVl3mz0/uvDOZPLm53yMwPApC\nAABtbuPG5Nprq2JQkrz+9cP7Y3XTpuqy66599917b/La1zZmnI1UclFJD44yjVQuJfwsHn54danX\nBRcM73Vuv7369LTTTx/e12/Le6U8MmkvY1o9AAAARta4cTvXk+eqq5JDDqlONdttt+oj4nuV8Mcu\nlKiUFULNtMsuyZ/8Sf+iMVAuPYQAgIZwrC9TV1dXku1zWbq0+lSjceOGfo5Zs5K77hr4sW9+s/p4\n7RL1FquG8/H1sLNOOCH54Q+rPkInnNDq0QDtbLhzMCuEAAA6xKJFfbff9rZk2bL6vu6FF6rrnp7k\nrLOSs8/ue+ytb23Y8ACAJlIQAgDoAI88krz3vcnll/fd92//1nd7w4bqseuvrz4Oe2sbN1bXL3tZ\ncuWVyRe/2NdEdjSsvHn66apR7o68+93J7NnJkUcmc+cmRx+dHHdccvzxyYknVh+9/fOfN248PT09\njXsyGqbRufT+Z/1oeI+UynulPDJpL5pKAwC0uQ98IPnt365uv//9ydq1yeLFyfPPJ//+78mPfpT8\n8R8nTzzR9zW9f8z+8pfJr35V3W7Ex9W3wt57V9dHH5286U3VJ6NNmZL81V/V/xyHHZZcccWIDA8A\nWkIPIQCgIRzryzRQLu95T/KJTwz+dU8+maxfX60K6rV2bfUR1qPF9Ol9n6w2lMmTk3/6p6rf0KZN\nfddLlyZ/+7fVKqKh/s1ga8cfn9x4Y9VH6PjjWz0aoJ0Ndw42Sv+fBwCA4Xr965O/+7vkmWd2vM9L\nXtJ/RcxBByUHHDDyY2ukW25JfvGLqjD0X/9rtcLp6aer0956HXts8g//kEyaVH1C0rZWrKiu1ToB\naDd6CAEAdJh586rCyOOPVytoarVkzZrt93vve/tu33ff6Pso6Ze8pOoJtM8+1SqfT3+6r//Rs89W\nlx//OHn5ywcuBiUj0/9FD44y6SFUHu+V8sikvSgIAQB0qH33TaZOrW5PnFj1E7r00oH33W235o2r\nGXbfvboMpfePeSuEAGg3CkIAACSpVtRcfHHymc/0v//cc1sznpI0siDU3d3duCejYRqdixVCO897\npTwyaS8KQgAAbPGSlyQXXFD11en1u7/buvG0mhVCALQrBSEAALZz+ul9t489tnXjaDU9hDrHSPUQ\nYvi8V8ojk/biU8YAABjQAw9UzaZf8YpWj6T1/HHPcDllDCiVghAAAAOaPLm6dLKROGVMD44yjVQP\nIYbPe6U8MmkvThkDAIAdsLqDneVnCCiVghAAAOzASKwQ0oOjTHoIlcd7pTwyaS8KQgAAMAR/3DNc\nVggBpVIQAgCAHdBDqHPoIVQe75XyyKS9KAgBAMAOdPrqjq6u4f8b1GrJxRcnn/1sY8c02nT6zxBQ\nLgUhAADYgU7uIfTEEzv39XfckXzyk8kFFzRmPCNttOTSSWRSHpm0FwUhAAAYQiee/rOz3/Phhzdm\nHKNV77+fFUJAqRSEAABgB/QQGp5t/71GQ0GtE3IZbWRSHpm0FwUhAADYAas7Xrw770zGbPNXxo9+\n1JqxtJIVQkDp6ioILV++PDNmzMj06dOzaNGi7R6/+uqrM3v27BxxxBE5/vjjc/vttzd8oAAAncT8\nqyyd2ENouM47b/v7Tjih+eN4sdo9l9FIJuWRSXsZO9QOmzZtygUXXJDvfe97mThxYo466qjMnz8/\nM2fO3LLPIYccku9///vZZ599snz58rzjHe/ITTfdNKIDBwBoV+Zf5RiJU8baVa2WzJ2b3Hprq0dS\nBiuEgNINWRBasWJFpk2blilTpiRJFixYkGXLlvWbkBx33HFbbh9zzDFZs2ZN40cKANAhzL/KUVoP\noccfT767/GQBAAATDUlEQVTzneTZZ6sxbd5cXfdeBtreddfq+9hzz2p7zJjk5S+vnm/r7+vXv672\n6T3da/36ocdzxx3JDTck73xncuKJOy4GveY1yaZNyS67DPtbH3H15vLww8nuuyfjx4/seNCvpkQy\naS9DFoTWrl2byZMnb9meNGlSbr755h3u/8UvfjGnnHJKY0YHANCBzL/KMdTqjscfT/bZp3mFjve9\nL/nCF5rzWoP5wQ/6ijxJ8q53bb/P//yfVe+gT30quf765Kyzkr//++aOc2ds3lzl/8MfJj/+cfKP\n/5hsvQjvhhuqItiOWCEElG7IglDXi/gNdv311+fKK6/MjzqxaxwAQIOYf5XnyiuT//2/k732qlbX\nPPFEsnXbpj/6o+Soo5L/9J+SqVMHfo7eFTI9PT07/F/2Z59N/vzPk4ceqvYdM6b/9de/3rfvO95R\nFRt6L2PGbL+9bl3y6KPJhAlVgeLaa5P/+B/7v+bWP24rVyazZ1f3PffcjptBf//7fcWgHfn9309W\nr+7b/slPBt+/1bbO5bLLkksuGXz/V7+66o104YXJaaeN/Pg60WDvFVpDJu1lyILQxIkTs3qr3+Sr\nV6/OpEmTttvv9ttvz7nnnpvly5dn3333HfC5Fi5cuOV2d3e3HyQAGMV6eno0lxwhjZx/JcmZZ565\n5fSz8ePHZ86cOVvmYb0Z2h54+4EHqu2kO48+mjz6aE/uv7/arlSPX311d66+Ornoop684hXJXnt1\nZ/Pm5KmnerJ5c3L//VvvvzJJdz72sWTNmp7Uasnhh3fnne/se75tn3/b7b/8y+5cccXIfv/PP5/s\nvnvPb1Y/9X9806Zq+4//uCdvfWuyfn13zjln+/G+8pU9Oe205Bvf6M5ee7U+z3q3L7mk+zffR9/3\nM2FC8uCD/b+/H/ygJ/fem/z7v3fngQeSxx7rycaNyeTJ3Xnooerrb7klOfLIsr6/0bK9cuXKosZj\nuycrV64sajydut3T05OrrroqSbYc34ejq1Yb/IzojRs35tBDD811112XCRMm5Oijj87SpUv7ncP+\nwAMP5LWvfW2++tWv5thjjx34hbq6MsRLAQCjmGN94zRq/pXIZWc9+2zy2c8m//qv1aqdsWOTs89O\nxo1LXnghmTMnufTSakXNl7/cuNc98shk4cJqFc7mzX3XDz+cPPhgsmjRyJ+K9MILyW67Vbc/+tHq\ndLXeU+M++MHkv//35EMfqm4nyd/8TfLud1e3P/nJ5KKLqtu33pq86lXVv9Vtt43smBvlla/sG+vu\nuydPPVVl32vVqupUsrPPHvq57rlnx6vGABphuMf6IVcIjR07NosXL87JJ5+cTZs25ZxzzsnMmTOz\nZMmSJMl5552XD3/4w3niiSdy/vnnJ0nGjRuXFStWvOjBAABg/lWSPfZI/st/GXyf3kLQFVck999f\nnao1ZkzfaVu9t2+5Jfnt365Oo7rqquo0rmuvTZ55pu+5zjmn+tj2V76y9Q2Yty44XXJJdZrcxz+e\n/PKXVTEo6T/Giy7qKwJtrXefzZtHbqyN1jvmm29Ojj56+8enT68uTz9dnTr4858n06Yl++5bFdHG\njasuM2YoBgHlGnKFUMNeyP9OAUBbc6wvk1zK07NND45arVptcvTRfStySrBhQ/UJZVur1ar7Nmyo\ntj/2sWrl0GB+/vPkiCOSww6rbpdq61yOOir56U+TFSuq27TGtu8VWk8mZRrusX7MCIwFAACoU1dX\n1Zy4pGJQMvAKpSVL+opBSfLGNw79PGN+8xfH//t/VeGrqys54IDq+oILGjPWRlNDBTqBFUIAQEM4\n1pdJLuyMwfoU3XFHMmvW0M9x993VqVM7UuKP59y51Sl+P/lJdRugZFYIAQAADVWrVb2D9thj+8cO\nOKC+55g+vbFjAqAxFIQAAKCJej86eLQYP776VK2TTup//2//dn1fP2ZMVVjasKFqpv344w0fYkNs\nnUuJq5Y60Wh7r3QCmbSXIT9lDAAA6GwTJybf/W5fP6DhGDs2OeOMxo2pGQY7ZQ5gtLNCCAAAmmi0\nfkJPV1fykY9Ut6+4Yueeq97VRc207Se/0Xqj9b3SzmTSXhSEAACAulxySdVT6C//cueep7egdPDB\nOz+mkWSFENDOFIQAAKCJRnsPjvHjd/459tyzun7lK3f+uRpl61w2bmzdOOgz2t8r7Ugm7UVBCAAA\naKqRWnmzfn3yrndVHxm/M37+8+r63nt3fkwApVIQAgCAJtKDo0+je/W85S3J3/5tMnfui//agXK5\n8cadHxPD571SHpm0FwUhAACgqUZqhdANN4zM8wK0IwUhAABoIj04+jRyhdC//dvOff1AuWgq3Vre\nK+WRSXsZ2+oBAAAAnaW30DJUQejJJ5OLLkrWrUt22SUZM2b766lTkyOOSE49tf/X1mr1F3Q2bkw+\n+9nkve9NfvCDF//9AIxGCkIAANBEenD0FYL+6Z/6ijaf/nR1/557Vs2hd/aj7ZcsSd75zqH3+5d/\nSebNS5LuJMnuu/c9ZoVQa3mvlEcm7UVBCAAAaKoJE7a/78ILd7z/7/5ucvHFyaZNyebNfdcXXFAV\njwby7/9e31gGOwNGQQhoZ3oIAQBAE+nBkRx7bHL99cm11yaXX15tv+Ut2+/3nvckN99cFW3e+tbk\ntNOSP/iD5G1vS/7oj7YvBn3gA323jzqqvrHsvXd1feSRPXnZy/o/du65dX9LjADvlfLIpL1YIQQA\nADRVV1fSe+bJvHnJ+9/f91itlnz3u8lrX5uMfZF/rSxcmHz848mGDclJJyX/639VRaTBbN5cXc+a\nlXz1q9XtZ56p+hZtWyACaCdWCAEAQBPpwTG4rq7kDW+orxj0p3/af3vcuGS33fq2b7tt6Ofo7Wd0\n8MHdW+7bc0/FoBJ4r5RHJu1FQQgAABiVrrpq+/seeqjv9qZNQz9H7woh/YKATqMgBAAATaQHR+N0\ndVWfVJYk111XXf/WbyWLFlW3e4s9g+ldIfTAAz0NHx87x3ulPDJpLwpCAADAqPXmN1dFnde+tu++\nMb/5K2frgtCHP1wVkF7ykqqhda96ikYA7UhBCAAAmkgPjpHXWxDa+pSxSy+trp96qn/xqHeF0NSp\n3U0ZG/XzXimPTNqLghAAANBWdtmlul6xIvn853fcH2jNmuQjH6luj/GXEdBh/NoDAIAm0oNj5PUW\nd268MXnHO3a83+TJfbfvu69nRMfEi+e9Uh6ZtBcFIQAAoK3Mmzf0Ptv2Dtq6OATQCbpqtd6zZkf4\nhbq60qSXAgBawLG+THKhk/3sZ8mXv5x8/OPJ2LH9H7v66urTyG6/PfnGN5JTT23NGAF21nCP9VYI\nAQAAbWn27OQTn6h6Cn3yk/0fW768KgYlyfTpzR8bQKspCAEAQBPpwdEaf/EXybJlfdtf+Urf7euv\nl0uJZFIembQXBSEAAKDtdXUl8+cP/Nj69c0dC0AJ9BACABrCsb5McoH+9t8/efzx/vf96EfJ7/xO\na8YDsLOGe6xXEAIAGsKxvkxygf5qtWS//fqvCvIWAUYzTaUBAGAU0IOjtbq6knvu2f5+uZRHJuWR\nSXtREAIAADrK/vu3egQAreeUMQCgIRzryyQXGFhXV99tbxFgNHPKGAAAQJ1mz271CABaS0EIAACa\nSA+OMnzhC9X1Bz9YXculPDIpj0zay9hWDwAAAKDZ5s5Nnnsu2W23Vo8EoDX0EAIAGsKxvkxyAYD2\npocQAAAAAHVREAIAgCbSg6NMcimPTMojk/aiIAQAAADQYfQQAgAawrG+THIBgPamhxAAAAAAdVEQ\nAgCAJtKDo0xyKY9MyiOT9qIgBAAAANBh9BACABrCsb5McgGA9qaHEAAAAAB1GbIgtHz58syYMSPT\np0/PokWLBtznwgsvzPTp0zN79uzcdtttDR8kAECnMQdrX3pwlEku5ZFJeWTSXgYtCG3atCkXXHBB\nli9fnjvvvDNLly7NXXfd1W+fa665Jvfcc09WrVqVz33uczn//PNHdMA0jjdzmeRSHpmUSS60M3Ow\n9rZy5cpWD4EByKU8MimPTNrLoAWhFStWZNq0aZkyZUrGjRuXBQsWZNmyZf32+fa3v50zzjgjSXLM\nMcdk/fr1eeSRR0ZuxDSMP6bKJJfyyKRMcqGdmYO1t/Xr17d6CAxALuWRSXlk0l4GLQitXbs2kydP\n3rI9adKkrF27dsh91qxZ0+BhAgB0DnMwAGCkDVoQ6urqqutJtu1mXe/XAQCwPXOw9nb//fe3eggM\nQC7lkUl5ZNJexg724MSJE7N69eot26tXr86kSZMG3WfNmjWZOHHids81depUk5QCfehDH2r1EBiA\nXMojkzLJpSxTp05t9RDahjlY+/vyl7/c6iEwALmURyblkUl5hjsHG7QgNHfu3KxatSr3339/JkyY\nkK9//etZunRpv33mz5+fxYsXZ8GCBbnpppsyfvz4HHjggds91z333DOsAQIAdBpzMABgpA1aEBo7\ndmwWL16ck08+OZs2bco555yTmTNnZsmSJUmS8847L6ecckquueaaTJs2LXvttVe+9KUvNWXgAADt\nyhwMABhpXbVtTz4HAAAAoK0N2lR6OJYvX54ZM2Zk+vTpWbRo0YD7XHjhhZk+fXpmz56d2267rdFD\nYBtDZXL11Vdn9uzZOeKII3L88cfn9ttvb8EoO0s975Mk+clPfpKxY8fmW9/6VhNH17nqyaWnpydH\nHnlkDjvssHR3dzd3gB1oqEzWrVuXefPmZc6cOTnssMNy1VVXNX+QHebss8/OgQcemMMPP3yH+zjO\nN5/5V5nMwcpjDlYmc7DymIOVZ0TmYLUG2rhxY23q1Km1++67r/bCCy/UZs+eXbvzzjv77fOd73yn\n9sY3vrFWq9VqN910U+2YY45p5BDYRj2Z3HjjjbX169fXarVa7dprr5XJCKsnk979XvOa19Te9KY3\n1b7xjW+0YKSdpZ5cnnjiidqsWbNqq1evrtVqtdqjjz7aiqF2jHoyufTSS2vvf//7a7Valcd+++1X\n27BhQyuG2zG+//3v12699dbaYYcdNuDjjvPNZ/5VJnOw8piDlckcrDzmYGUaiTlYQ1cIrVixItOm\nTcuUKVMybty4LFiwIMuWLeu3z7e//e2cccYZSZJjjjkm69evzyOPPNLIYbCVejI57rjjss8++ySp\nMlmzZk0rhtox6skkST7zmc/ktNNOy0tf+tIWjLLz1JPL1772tZx66qlbPunngAMOaMVQO0Y9mRx0\n0EF58sknkyRPPvlk9t9//4wdO2h7PHbSCSeckH333XeHjzvON5/5V5nMwcpjDlYmc7DymIOVaSTm\nYA0tCK1duzaTJ0/esj1p0qSsXbt2yH0c/EZOPZls7Ytf/GJOOeWUZgytY9X7Plm2bFnOP//8JPFx\nwU1QTy6rVq3K448/nte85jWZO3duvvKVrzR7mB2lnkzOPffc3HHHHZkwYUJmz56dT33qU80eJttw\nnG8+868ymYOVxxysTOZg5TEHG52Gc6xvaAmv3l+YtW36WPtFO3JezL/t9ddfnyuvvDI/+tGPRnBE\n1JPJRRddlI997GPp6upKrVbb7j1D49WTy4YNG3LrrbfmuuuuyzPPPJPjjjsuxx57bKZPn96EEXae\nejK57LLLMmfOnPT09OTee+/N61//+vzsZz/L3nvv3YQRsiOO881l/lUmc7DymIOVyRysPOZgo9eL\nPdY3tCA0ceLErF69esv26tWrtyzr29E+a9asycSJExs5DLZSTyZJcvvtt+fcc8/N8uXLB12Gxs6r\nJ5NbbrklCxYsSFI1bLv22mszbty4zJ8/v6lj7ST15DJ58uQccMAB2WOPPbLHHnvkxBNPzM9+9jOT\nkRFSTyY33nhjLrnkkiTJ1KlTc/DBB+fuu+/O3LlzmzpW+jjON5/5V5nMwcpjDlYmc7DymIONTsM6\n1jeku9FvbNiwoXbIIYfU7rvvvtrzzz8/ZFPDH//4x5rnjbB6MvnVr35Vmzp1au3HP/5xi0bZWerJ\nZGtnnnlm7Zvf/GYTR9iZ6snlrrvuqp100km1jRs31p5++unaYYcdVrvjjjtaNOL2V08m7373u2sL\nFy6s1Wq12sMPP1ybOHFi7bHHHmvFcDvKfffdV1dDQ8f55jD/KpM5WHnMwcpkDlYec7ByNXoO1tAV\nQmPHjs3ixYtz8sknZ9OmTTnnnHMyc+bMLFmyJEly3nnn5ZRTTsk111yTadOmZa+99sqXvvSlRg6B\nbdSTyYc//OE88cQTW86VHjduXFasWNHKYbe1ejKh+erJZcaMGZk3b16OOOKIjBkzJueee25mzZrV\n4pG3r3oy+cAHPpCzzjors2fPzubNm3PFFVdkv/32a/HI29vb3va23HDDDVm3bl0mT56cD33oQ9mw\nYUMSx/lWMf8qkzlYeczBymQOVh5zsDKNxBysq1ZzYiwAAABAJ2nop4wBAAAAUD4FIQAAAIAOoyAE\nAAAA0GEUhAAAAAA6jIIQAAAAQIdREAIAAADoMApCAAAAAB1GQQgAAACgw/x/bWW9kr8WDF0AAAAA\nSUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x1075337d0>"
]
}
],
"prompt_number": 12
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"TODO: There will be many initial price/time curves with a random probability (weight) for each pair.\n",
"A string of probabilities combined with a string of initial time/price curves will be the DNA of a single creature\n",
"TODO: Should create a class that combines time, prices, probability triplets\n",
"TODO: Write a population generator and a population recurser. Use OpenCL if iPython Notebook supports it\n",
"TODO: Find a fitness function already!"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment