Skip to content

Instantly share code, notes, and snippets.

@kwinkunks
Last active September 29, 2021 15:02
Show Gist options
  • Save kwinkunks/ee4ca6a440b9b6f50c82dc0b36a9a4be to your computer and use it in GitHub Desktop.
Save kwinkunks/ee4ca6a440b9b6f50c82dc0b36a9a4be to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "ceramic-principle",
"metadata": {},
"source": [
"# Moving sand proportion with `striplog`\n",
"\n",
"We'd like to calculate the proportion of sand in a moving window. The data here represent beds of sandstone. Each one has a top, base, and an ID number. There are lots of gaps; the assumption is that there's shale in the gaps."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "surgical-soviet",
"metadata": {},
"outputs": [],
"source": [
"text = \"\"\"top,base,number\n",
"24.22,24.17,20\n",
"24.02,23.38,19\n",
"22.97,22.91,18\n",
"22.67,22.62,17\n",
"21.23,21.17,16\n",
"19.85,19.8,15\n",
"17.9,17.5,14\n",
"17.17,15.5,13\n",
"15.18,14.96,12\n",
"14.65,13.93,11\n",
"13.4,13.05,10\n",
"11.94,11.87,9\n",
"10.17,10.11,8\n",
"7.54,7.49,7\n",
"6,5.95,6\n",
"5.3,5.25,5\n",
"4.91,3.04,4\n",
"2.92,2.6,3\n",
"2.22,2.17,2\n",
"1.9,1.75,1\"\"\""
]
},
{
"cell_type": "markdown",
"id": "clear-fortune",
"metadata": {},
"source": [
"You need the latest and greatest `striplog`, install like so:\n",
"\n",
" python -m pip install --upgrade https://github.com/agile-geoscience/striplog/archive/develop.zip"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "united-carrier",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'0.8.9'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import striplog\n",
"\n",
"striplog.__version__"
]
},
{
"cell_type": "markdown",
"id": "obvious-graham",
"metadata": {},
"source": [
"## Make a striplog"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "stunning-catering",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGIAAAFCCAYAAAAKfgiMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAGAUlEQVR4nO3dsWtddRiH8e8rugkhpbQEUdpBRHFosIODuJSCS9DFuYOQxUHBweJfUBz8AwIKFUSQKtQuQmkcHEQoLlZK6SZCaSktUUfxdcgZOuRy07T59UnyfKAk9zbNufD0/M497zlNq7ujJ++pJ/0CtMkQEIaAMASEISAMAfH0yI2dOnWqL1y4MHKTOIuLi7XV8zXyPKKqrnb3yWEb3ENcmiCGLE1VtZJk5fjx46/dv3//QJ/Kz1qahuwR3X2pu1cXFhZGbG5PcmmCMASEISAMAWEICENAGALCEQeEewSEISAMAWEICKevg3lhCM6lCcIQEENvHjhx4oTHCI8RbC5NEIaAMASEISAMAWEICENADB36JfFWvxk8oYNwaYIwBIQhIAwBYQgIQ0AYAsIQEIaA8Jr1YF6zhnNpgnD6CuHSBOHSBGEICENAGALCEBCGgDAEhCEg5oaoquer6sequl5Vv1fVB9Pzh6rqclXdnD4u7v7L3b+2s0f8m+Sj7n45yetJ3q+qV5KcTXKlu19McmV6rB2aG6K7b3X3r9Pnfye5nuS5JG8nOT992fkk7+zSazwQHuoYUVXHkiwn+SXJ0e6+lWzGSnLksb+6A2Tb09eqejbJt0k+7O6/qra8vrHVn1tNsjo9PPzQr/CA2NYeUVXPZDPCV9393fT07apamn5/Kcmdrf5sd69198lp6nr3MbzmfWnuHlGbf/U/T3K9uz974Le+T3Imybnp48V538tLpY9wqbSq3kjyU5Lfkvw3Pf1JNo8T3yR5IckfSd7t7ntzvpfXI2bwwhCEZ9YQhoAwBIQhIAwBYQgIQ0AYAsIQEN77CuGIA8KlCcIQEIaAMASEISAMAWEICENAGALCEBCGgHDoB+HQD8KfTjPYrFsuPUZAGALCEBCGgPBdE4R7BIQhIAwBYQgIz6wH88wabkiIqlqpqrWNjY0Rm9uThoTo7kvdvbqw4BR8FpcmCENAGALCEBCGgDAEhCEgDAFhCAhDQBgCwhAQTl8hnL5CuDRBGALCEBCGgPCWSwj3CAhDQBgCwhAQ3nI5mLdcwjn0g/A8AsKlCcIQEIaA8O3rYL59hTMEhCEgDAFhCAhDQBgCwhAQTl8hnL5CuDRBGALCEBCGgDAEhCEgvDA0mBeG4AwBYQgIQ0A4a4LwP3uCcI+A8BgBYQgIQ0AYAsIQEIaAMASEISAMAWEICENAOPSDGDr0W15e7vX19WHbI5p1zdrpK4THCAhDQBgCwhAQhoAwBIQhIAwBYQgIQ0AYAsLpK4RDPwiXJghDQBgCwhAQhoAwBIQhIAwBMTdEVX1RVXeq6toDzx2qqstVdXP6uLi7L3P/m3tmXVVvJvknyZfd/er03KdJ7nX3uao6m2Sxuz+etzHva5p9X1O6e+6vJMeSXHvg8Y0kS9PnS0lubPP7XN3O1x3EXzs9Rhzt7ltTyFtJjuzw+2iy69PXqlpNsjo9PLzb29urdrpH3K6qpSSZPt6Z9YXdvdbdJ6ep690dbm/f22mI75OcmT4/k+Ti43k5B9d23r5+neTnJC9V1Z9V9V6Sc0lOV9XNJKenx3oEXhiC8MwawhAQhoAwBIQhIAwBYQgIQ0B4yyWEZ9YQLk0QhoAwBIQhIAwBYQgIQ0AYAsIQEIaAMASEISCcvkI4fYVwaYIwBIQhIAwB4f9nPZg/GxzOpQnCEBCGgDAEhCEgDAHh9BXC8wgIlyYIQ0AYAsIQEIaAMASEISAMAWEICENAGALCEBBOXyGcvkK4NEEYAsIQEIaAMASEISAMAeFt+YN5Wz6cSxOEISAc+kF4jIDwXdNgs941eYyAMASEISAMAWEICENAGALCEBCGgDAEhCEghoSoqpWqWtvY2BixuT1pSIjuvtTdqwsLTsFncWmCMASEISAMAWEICENAGALCEBCGgDAEhCEgvNMPwntfIYbuEcvLy72+vj5se0TecglnCAhDQPiuCcI9AsIQEIaAMASE/4ZuMH/yAJxLE4RDPwiXJggP1oM5fYUbvTT90N1vDdvgHjI0hGZzaYIwBIQhIAwBYQiI/wFcSBgy/Q9OoAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 108x324 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from striplog import Striplog, Component\n",
"\n",
"s = Striplog.from_csv(text=text)\n",
"\n",
"s.plot(aspect=3)"
]
},
{
"cell_type": "markdown",
"id": "fewer-soviet",
"metadata": {},
"source": [
"This is not a nice plot... it would normally be easy to make a nicer one, but there's something weird going on with the 'elevation' mode of striplog here. It's bug, I'll fix it asap."
]
},
{
"cell_type": "markdown",
"id": "changed-generic",
"metadata": {},
"source": [
"## Make a sand flag log"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "alternate-contractor",
"metadata": {},
"outputs": [],
"source": [
"start, stop, step = 0, 25, 0.01\n",
"\n",
"L = s.to_log(start=start, stop=stop, step=step)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "chemical-teddy",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7fd670987a30>]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh+ElEQVR4nO3de5RdVX0H8O+PmTzASSCQIQmZhAQNYHyAcRosimK7lIQ+UlfLKrSrgi0rspS2rtWHtPbhqrpaa7EuK5qmimir0HZJ2xSDiI+igmASFwl5kDgJIRlCzEAgEPOcmV//uOfeOefes8/Z59x97jl3z/fDCnPvOfvus89jfnPu3b+7t6gqiIio+51RdgOIiMgNBnQiIk8woBMReYIBnYjIEwzoRESe6C1rw7Nnz9ZFixaVtXkioq60adOm51S1P25daQF90aJF2LhxY1mbJyLqSiLytGkdP3IhIvIEAzoRkScY0ImIPMGATkTkCQZ0IiJPpAZ0EblTRA6JyFbDehGRT4vIkIhsEZFl7ptJRERpbO7Q7wKwImH9SgBLgn+rAXyu/WYREVFWqXnoqvo9EVmUUGQVgC9rbRzeR0XkHBGZp6rPumpkJ3xt0zCefv5nmD61BzdduQhnTe3FA9sOYujQUdx05SK8YlrtUG195gi+ue1g5LVXXHQeHt//Ik6eHiukbZfOm4lrXzcPAPD80ZP46mP7cPUl5+N1A2fHlv/W9p/iqed+hpvevAhTevJ/qqaq+NIje3Fe3zT8ymUX5K4nr5OjY7jr4b2Ye/Z0rLp8vrN6f/CT57Bh72H8xhsHsODcs6xfd+ilE7j7R/sxNj7eWBa+XsI2PX0YD+0cSaxPRBptGB0bx12P7MVLx08DAF41ZwZ+NTjmOw++jK9vOWDdThvTpvTgxisXoW9aL06cHsMXH96L46dGI2XmnD0dv33FhU63CwAnTo/hrkf24jUXzMRVS2K/H5Nq6NBRrNt8AL/0unm4ZO6M3G1Z/8SzOHjkBG66chFeOHYKX31sH5ZdOAtvftXsRpknho/gwe0HzZWI4Fcvm4cNe19A7xmC6wYX5G5Pu1x8sWg+gP2h58PBspaALiKrUbuLx8KFCx1s2o1To+P4o//c3Hj+6rkz8fZLz8d7/3UTAODiOTPwjqVzAAB3fHcI9289CJFaWVUA3xlqvLa+3BVVYOb03kZAv3/rQdz+4C48svt53L36TbGvufnLtS9sXXHRuXj9wDm5t73v8DF8+H+3A0ApAX3z/iP42/ufBACnAf1j63dgx7MvYXR8HH9yzaXWr1u3+QD+8Vu7ANTOc30qgUvmzMAvvnpOpOwnH9yFh4eeT7weVIFxVfzROy/Bkwdfxke/vqOxblrvGY2A/vnv78F/bhp2dm3V2/3K/j6seO1cbNh7GB//xpON/QqXWfGauTivb5qbDQc27D2Mv7v/SUztPQO7ProyVx1ffPgpfOWxfTjw4nH8w3WX5W7L+77yYwDA2y7pxw93P4/bH9yFBeeeie//6S80yvzTd36Cb27/qfH4qwJ7Ro7ivi21kPcrl12A6VN6crepHS4Cetxuxs6aoaprAawFgMHBwcrMrDEeXL3Xvm4u1j9xEGPj0aaFn4+NKy6dOwPf+MBbAQC/dsfDeHz/iwCAb3zgKlw6d6bTtn3kvu349w0Tfy/rbT05mv5uoHk/smr39e0qavvjQb1j4ykFm9Tbs/1vrsFZU3ux9Zkj+OV/+kFsO8fGFcsXn4v/eO/PG+u7+EP3N15bP69fuHEQm55+Af/y/T0TdaliYNaZ+MEHfyG2nqx2HnwZ13zqe41t1ttw7/uuxLKFswAA//bo0/iL/96KsQImwKlv79RoxhMQUm/7uKNrZHxcJ363TkfbNa6K11wwE1//g6tiX7v8Y9/C6awXU0FcZLkMAwi/xxgA4Pb9IRERpXIR0NcBeHeQ7fImAEe67fNzIiIfpH7kIiJ3A7gawGwRGQbw1wCmAICqrgGwHsC1AIYAHAPwnqIaS0REZjZZLjekrFcA73fWIiIiyoXfFI3R2s2iCeuKp6GOqSx9VO22texeay2oBfV6s9ZvKh233PY81Ys1l488L+hE1LeRWH0B23ZRpVXbs9QH8zmzOZfhMgX0I1tjQA+R2IQdIqJkZd/81DGgh1nGcwklpIZzU4v4g8A/MdVTP89peeGp5y6mgEh8vS6/32CqSyzKTFZJx6NKx4oBnYjIEwzoRESeYEAnIvIEAzriMgzUuL6MHuxIwkOGBrTb1jJ762sNKKjaRmpJztdZLLet2pSt0YEkl4ksn4QNFLJtB5U2jpuji1TVXJfNFiIxosQuUgb0kAr1bRBRVyn77qeGAT1ELLurxfS4gL8IVepBp5r6OUnLasqTBSPBf3HLXTHVFMne4u1NRNLxqNKxYkAnIvIEAzoRkScY0ImIPMGATlSiMjMiyD8M6Gj9pUpKISujNzuaEpXple1uuc3XV3PrObMWE4JvG3mL9eItqbJqXOfKRMqkuf4iNu3ij9jEAGtuaNLZtTgIZac21zGgh1Snr5omLdM4K7w4K60q77MY0ENsf2kiA3JFUr3cs02lpM5LT0vMl9ZY9Cnn4FzZcXAuIiLqKAZ0IiJPMKATlakqH76SFxjQkTL9F8rvwQ73v2eagq7LB+cqavv1rIWs2SPZBudqLx+pM4NzBT8TB+dyv3UX53VicK7266rXYzy/Vq8vd5rKOgb0kAr1bdAkZRxnpaOtoKyq8kaLAT3EenCuyLRz8ctd4S9y9TQG50rLcsmZBVP8OTds13BdU/LxqNKxYkAnIvIEAzoRkScY0ImIPMGATlSiqnSmkR8Y0DHxSyUtS+rPyk1Jyjs4V3cPzdWcrumuNTbpennqiyzLOV9pvWO+OVW2iCEgJtI309vldrsO6mj62XZ9aq7Lpr3R88U5RavBdiyXUMHo7xnTXCaD+vlvewo681xwOVplzzyWi+m6pqQDIiKl3/zUMaATEXmCAZ2IyBMM6EREnrAK6CKyQkR2isiQiNwWs/5sEflfEdksIttE5D3um0rknzI70Mg/qQFdRHoA3AFgJYClAG4QkaVNxd4PYLuqXgbgagC3i8hUx20tTOv0X83rzWU7ITJQU4bt+zQ4l9O2aOSH/csMjYgfnCur2iviut7UsNyVpLYWcQm4qHNicC43LVSo+fxatad7BudaDmBIVfeo6ikA9wBY1VRGAcyQWm5VH4DDAEadtrQD0rIWiIiqzCagzwewP/R8OFgW9hkArwZwAMATAP5QVcebKxKR1SKyUUQ2joyM5GxycXJNQVdwqhf/yFSP9eBcaWmNGZe7YpMtyesuqluOhk1AN70LDLsGwOMALgBwOYDPiMjMlheprlXVQVUd7O/vz9hUIiJKYhPQhwEsCD0fQO1OPOw9AO7VmiEATwG41E0TiYjIhk1A3wBgiYgsDjo6rwewrqnMPgC/CAAiMgfAJQD2uGwokY/K7ngmv/SmFVDVURG5FcADAHoA3Kmq20TklmD9GgAfAXCXiDyB2kc0H1TV5wpst1NJ0381Py/l9y/nRtvNAChi+rFs249/7KrevOOttNbXusLF9HaqWvtaeUFR3yZTpIhtu6izfsxdjuViXpe+lbKnqaxLDegAoKrrAaxvWrYm9PgAgHe6bVrndUvHB/nLPL5LR5tBGZV981PHb4qGWGe5GJ4U8TvHQZKqR5p+GsulDs6VPhVcEaxGbuR1F5F0yKr0O8qATkTkCQZ0IiJPMKATlagan7ySLxjQiYg8wYCO0PRfaJ3+q/ZcW8p2UnQqtiyva3O7pQ/OVdAUdPWp1zIeoSxTlGUe+Cv4Gf7KfSOtEMX0Udqk/hUyBZ3LShy2r519jby2xN8bBvQQ697qUEGJLHb/a1ehDnQK1M9zu6fbnKFY8BR0puUFZ2x1s6TjIVL+zU8dAzoRkScY0ImIPMGATlSiqrxVJz8woBMReYIBHWjplU7Kfijjhioy8E+GFnT9FHSGx67qdTc4l33ZtLrDHZMaelBEh/vE4FzOq7bablt1NH46moJOzXXZtDeSiVZimgsDekiVxmQgou5R9s1PHQN6hF1Ej6YqZn11NvwjUz3xSasx5dLnqDO8LmuLsjHVH51OkRdeWNLxqNJ0fQzoRESeYEDvUhV5h0dtqso42uQHBnQiIk8woKP1Lql1LJfw487fUUWyPRrjzti8zt0UdGXsNyLH3WG1eaf0M2ZBxExBl7XuoA6JWabQYsZyCafRpJZxuuX2a6gfG0ftU2hk7JzmdemvD7fNTZvyYEAPYT8QEeVSkU/OGNBDcozN1ZQZ4LY9zfVTNdTPc84kltT1RZ9x0zXFwblq4vY9bXCuqmBAJyLyBAN6l6rIOzxqU1W+kEJ+YEAnIvIEA3qXqtDHduRSSd8eJT8woKN1YKQ8aUtFikzFlumF7W43/nGnFDXgUWPqtYw7lal41roTlhV17G3qL+Ladzo4l6u0Rc02xWBre3L+jjrGgB5im1FiHsulgCnoeGdWOY0p6FLL2dWT9XXtMo7lIullJquk4yGoTl8IAzoRkScY0ImIPMGATkTkCQZ0ogoxfouTeU1kwSqgi8gKEdkpIkMicpuhzNUi8riIbBORh9w2s1gtWS1NPRzlZ3vk234R07Z1UlHH3TQIU+rrUuqzKWusO66OgqeImxj8K6lMAdt1UUfjHDqagg7mfbXLcgmXL6+HtDetgIj0ALgDwDsADAPYICLrVHV7qMw5AD4LYIWq7hOR8wtqb6HYs09EeZQZxMNs7tCXAxhS1T2qegrAPQBWNZX5LQD3quo+AFDVQ26b2Rn2g3PFD8hVzOBcVFVp07TlTWssa/q3ogea62ZJH3lVabo+m4A+H8D+0PPhYFnYxQBmicj/icgmEXl3XEUislpENorIxpGRkXwtJiKiWDYBPe7PT/P7i14AbwTwSwCuAfCXInJxy4tU16rqoKoO9vf3Z24skW+q8lad/JD6GTpqd+QLQs8HAByIKfOcqv4MwM9E5HsALgOwy0kriSYJm29xEpnY3KFvALBERBaLyFQA1wNY11TmfwBcJSK9InIWgCsA7HDb1OKk3SVFsi1KyPfIu/12b/5Kn3qvsOyOnPUbXhB3TrLWHVtHfcyZgq45u7FcCthuJcdy0dDxbt5Wxino3DQpl9Q7dFUdFZFbATwAoAfAnaq6TURuCdavUdUdIvINAFsAjAP4vKpuLbLhRahS5wYRdY+qfHJm85ELVHU9gPVNy9Y0Pf8EgE+4a1p1RQbnKjoPhX9kKiXLNG3tZsEUxWpwrkmcXxW75ymDc1UFvylKROQJBnSiElXknTp5ggGdiMgTDOhEFVKlz2Op+zCgY+Jtb2MKOo1fH7eu07INztVeY8ueVqvo4571+GQbnCtz3qKx3sKuOYsBropIV3WRhmkzsJhtHfV63A3O1Uaj2sSAHmI9BZ1h/BaO5eI/0/SDaWVj15c2BZ1piN7OtaHbJB6OCs1Bx4BOROQJBnSiElXkxo48wYBOROQJBnSiCjF/rs4PtSkdAzrislqap6BTY9lOyZNt4HZwrvbqyrf9cBaCuwY0MiSyJqJkyILIPjhXvnXtaAxGNUkH57K9vm02ER2cq7zP0RjQQ3gTRER5VKUvhAE9xHoKOtPM7AX8ReAfmWqJTD+YcsXkTWssemAs43Z5rRklHZsqHTYG9C5VkRsCalOZb8/JPwzoRESeYEDvUlV6m0fuGMcq72wzqEsxoCMuq6V5vblsp0yM65FhCrp2txl5XMIUdOHHDjevTT/tX2eagi5mmYMMmqLHcmnUb1HG6XadVpK/tqbfevP4MFZjuUTmiSwNA3oIO4WIKA9muVSQdZZKZEAuiVvszGSeCqyKsg1glS8LpvjBuYxrQmUm73UXt+dJv4dVOlYM6F2qIjcE1Kaq3NmRHxjQiYg8wYDeparzJo9c4pd+qB0M6EREnmBABxofSNdvglo+1yx5kKpwEzJNQddmY8selEwLygTLmw5oHpyrdYWLlEjNnWBpu83gZ+KBKGAKOgcXk83AYlnaoZpwfi2OQVHXalYM6GHZk1wKn7aLb7WrJcv5yJsFU/QpN49F1Lk2dJu0sVyq0rfNgE5E5AkGdKISVeXOjvzAgE5UIWV92Yj8wIBOROQJBnS0vu1tfa7GdZ1iHDgo6TXtbrPN17cvnIXgcAq6nNkjptLxg3NlrLvEwbnaLVMGm4HFUutoemy6KuyOU/nTVAIM6BEcN4WIuplVQBeRFSKyU0SGROS2hHI/JyJjIvIb7prYOdZjc4nhcQF/EPgnplokMoBVWtmU9RUbnKvoFNxuETs4V1LaYoWOVWpAF5EeAHcAWAlgKYAbRGSpodzHATzgupFEvqrqRxrUnWzu0JcDGFLVPap6CsA9AFbFlPt9AF8DcMhh+4gmGdOXjSp0G0iVZRPQ5wPYH3o+HCxrEJH5AN4FYE1SRSKyWkQ2isjGkZGRrG0lIqIENgE97tag+Y3ipwB8UFXHkipS1bWqOqiqg/39/ZZNLF7LlHNNC7S5O7wEecZyabetkfEpOJaLubyDxsVmyrir3rDN9PFQiti2i2spz5SMSe0Ij+WSlvWWWleJ+WG9FmWGASwIPR8AcKCpzCCAe4KZO2YDuFZERlX1v100slP4ppaI8igziIfZBPQNAJaIyGIAzwC4HsBvhQuo6uL6YxG5C8B93RbMgQxZLuFMhxyvz6JKPegE4/SDsUVzZsEU/Xm5ecz18HU9eS+8zFPQQbonoKvqqIjcilr2Sg+AO1V1m4jcEqxP/NyciJJUIxCQH2zu0KGq6wGsb1oWG8hV9ab2m0VERFnxm6JEFcLBuagdDOhERJ5gQEdrD3VS2lJZnR8TKVX222+/reFByTq/35Hj7nDzuVJAYT4GsdPHZU6JjKtDjetcsLmmiti0i2upkXLpqB2qaj6/Fgeh7BTfOgb0kMncs09E+VWla5sBPSTf4FzxKYyupKXGUWeZ5pONL5ue1hh3N1f4KefgXJl5MzgXERF1BwZ0ogoxf9mIKB0DOhGRJxjQEfM5ZstgXQllO8RmIKWW13g0OJfLXqc8GUNJbYidPs7B9HbFD84V/EwcnMv91t0OzuWmHRqus7mcVV3lT1MJMKBH8G0tEeXBLJcqsuyujk47B8OTYlXlAppsTNMPppWNXQ8p5Z2PKfvGeF1PMt287wzoRESeYEAnqhDj9w6qlOxMlcWATkTkCQZ0xPVqa1Ovdfk92KYeeJvX5N6m4XGnRI+700noav93k+QSn6GStblxmTIOMjmSt2kxBV0RY7k4nLLPVfNUzXVatTeSEVZeDxcDegjf1BJRHlVJUmBAD8k1BZ3EL3fF1KYyR3SbzKLTD7Y5BZ3Ev/Moevwe48f0huuaks9JlcZbYkAnIvIEAzpRhXAsF2oHAzoRkScY0ImIPMGAjtY0I1XzwFRlpiQFDbAv6nBTZex3UYOD5UkBrb3ONEVZzLKsdcfmLeary36b6fUXMwWdgzoaKZ35a4sOzjXxS99cZebBuTgFXTV00xR0THLxQ9n3B+RGVU4jA3pIninoUHCqVzf9kZkMMg3OlZbWmHG5K8btljXSXBdIOhpVOlIM6EQVwqFcqB0M6EREnmBAJyLyBAM64nu1TQNTddfgXO21tuxptYo67jZTr8W+zjQFXUzrsh77pGnsisowsskUKWYKOid5Lg5qiM5BZ7zaLdpblc5tBvQQfkxJRHkU8YcvDwb0kDwdT0VP22VsU1VuCSYZMTxOLRy3WiQ2DBTdAWozmBQ7YaOSjkeVjpVVQBeRFSKyU0SGROS2mPW/LSJbgn+PiMhl7ptK5D/jfJ8dbgd1p9SALiI9AO4AsBLAUgA3iMjSpmJPAXibqr4ewEcArHXdUCIiSmZzh74cwJCq7lHVUwDuAbAqXEBVH1HVF4KnjwIYcNtMIiJKYxPQ5wPYH3o+HCwz+T0A98etEJHVIrJRRDaOjIzYt5KIiFLZBPS4j+9ie+RE5O2oBfQPxq1X1bWqOqiqg/39/fat7JB6Z1FtcK74kaHK6oucSGHL8pp2txl6XMJ+Rwc8cteAel1ZMxOMc4q6GJwrYU7Rokwch6QyBWzXRR0O5luNDs5lrtNucK74x53Wa1FmGMCC0PMBAAeaC4nI6wF8HsBKVX3eTfOqKZwlIIblzrZlWM4cl3JIhrQmm6sh7pe/CmO5sBM2KnEsF6lO0pnNHfoGAEtEZLGITAVwPYB14QIishDAvQB+R1V3uW8m0eRgHsuFIZbSpd6hq+qoiNwK4AEAPQDuVNVtInJLsH4NgL8CcB6AzwYX3qiqDhbXbCIiambzkQtUdT2A9U3L1oQe3wzgZrdNIyKiLPhNUSIiTzCgI65XO5r/UK3BuTJMQddmY7UKO17A5rXlgeXrjINz2S5MqDthWVEdbnmPg7sNt19FO2OoNGdxNTLJmstlPpfl/bIwoId0U79TVXrVqT1VGdSJ2lP6XMMBBvQQ2+neoqmK8ctd6aY/MpNBdHCulCnmUk5eWRktNttlVk1U0vGo0jSRDOhEXaA6IYOqjAGdiMgTDOhERJ5gQEdrx1RtLJfo8/gnnWOb8aAOU1PCx6WMzruixsfIM51frbwpzSVmCrqsdcfVkXPMGfttIrX+YsZycTB9XP3YtDWWS/T6Nk3JZ9PeCoQIAAzoEd3UD8TsCE/wNHqhIkkuDOhhtvE8mtkisctdqVIPOiFykaSd77QzZ842ydSizGxmReJVF5U2OFdVMKATVUhZQZ78wIBOROQJBnQiIk8woBMReYIBHRM91PXPKRVNKXuR9KZyNE8XZhwoymWqX8nTahWVNjmR8pZxCroMg3PZ1q1NP2PXFTw4V1L9RWRTudgfF8emdXCu1uW224heq+VhQA9pfyyXAqagY2dYpWTJBEnPgknPNimERccrr7uopOMhYNoiEcUwB3lGWErHgE5E5AkGdCIiTzCgExF5ggEdMb3SqtFskeiqUjT36ttkXDhMciml576oKfCSMkty1RdTkW3dSYNMpZ3rdjVnTsWXKWC7LurIMSWjqY5aPebjbZflEi7PKegqgT37RJQHs1y6WHSqrvCKzreFOivLNG150hpFTCvS22bLOF5MwQPNdbekvMXqHCwGdCIiTzCgExF5ggGdiMgTDOiIm3KqeX14XUlT0Fn26kfGnWmzqdFxYUqegs5pxa31W73M8IL46eNyNiqypNgp6BrbSRzLpbPbs67DRV1N13fjeKfEg7TKOJZLRaR1clVJRTrVqU08j35glksFWU9BF3lc8BR0XfRHZjKIDsaWVjZ7FoyIYXlawzIw1VX0QHPdLG1wrqpgQCci8gQDOhGRJ6wCuoisEJGdIjIkIrfFrBcR+XSwfouILHPfVCIiSpIa0EWkB8AdAFYCWArgBhFZ2lRsJYAlwb/VAD7nuJ1ERJSi16LMcgBDqroHAETkHgCrAGwPlVkF4Mtay/d5VETOEZF5qvqs6wY/tGsEH71ve3rBDE6NjQOY6Pj49LeH8KVH9jbWf/b/duPuH+0DADx9+BjmzJjudPs23vXZh9EjgpGjJwEAuw8dxTs++VBLuXBn+0fu245PfWtX7m0eOzXWeHzdmh+i54zOdv+8dOJ04/H1ax9Fr6PtHz01CgD47pOHYo+hyaGXT8Z2jn3mu7vxlcf2RZYdePE43njhrNQ6v7Oj1oajJ0db1v3mP9f2ef8Lx3DZwDnW7bS15qHd+PcN+/Hi8dPGMrd+9cc4c0qP0+2Gt5fl+Ic98+JxAMDm4Rdz1zEWSk3583ufwLHTtev95ZOjkTqfPnwMA7POTKzrhWOnGo9/964NmNqTfK/8mz+3ADdfdVGeZieyCejzAewPPR8GcIVFmfkAIgFdRFajdgePhQsXZm0rAKBvWi+WzOnL9dokyxbOworXzsXwC8fx7JHaxbL0grNx9MRpnDl14oJeMqcP73rDQOP5dYMDUCgGZp2FGdNsDmc2b7+kH5v3X4DR8fHG9g8eOYG5Z5v/qLyqvw8jR09izsxpbW9/YNaZmDG9F1N7y+luOX5qDH3Tp2As2H8XLp47A2dO6cGxU61BNMmSOX24fME5jefnnDUFN79lMQ4E10tz2V9fNtCyPOzmqy7CI7ufazy/+sypWDz7FThrSi9WXX4BTo9NnPOVr52Xqa1J+qb14r1vvQj7XzjWWHb+jOno75u4Xi5fcA5+fdkAjp/OdoxsPXvkBOYlXMNplszpw6lRxdTe9v7Iv7K/D0eOn8bsvqkAgJOnxzF9Sk8k9z/tXN545YV4cPt0vHxiFGeI4BXT0v8Azu5r/3czjqR9YURErgNwjareHDz/HQDLVfX3Q2W+DuBvVfUHwfNvA/hTVd1kqndwcFA3btzoYBeIiCYPEdmkqoNx62xuu4YBLAg9HwBwIEcZIiIqkE1A3wBgiYgsFpGpAK4HsK6pzDoA7w6yXd4E4EgRn58TEZFZ6oe+qjoqIrcCeABAD4A7VXWbiNwSrF8DYD2AawEMATgG4D3FNZmIiOJY9eKp6nrUgnZ42ZrQYwXwfrdNIyKiLPhNUSIiTzCgExF5ggGdiMgTDOhERJ5I/WJRYRsWGQHwdM6XzwbwXGopv3CfJwfu8+TQzj5fqKr9cStKC+jtEJGNpm9K+Yr7PDlwnyeHovaZH7kQEXmCAZ2IyBPdGtDXlt2AEnCfJwfu8+RQyD535WfoRETUqlvv0ImIqAkDOhGRJ7ouoKdNWN3NRGSviDwhIo+LyMZg2bki8qCI/CT4OStU/s+C47BTRK4pr+X2ROROETkkIltDyzLvo4i8MThWQ8EE5Z2dH8+SYX8/LCLPBOf5cRG5NrSuq/cXAERkgYh8V0R2iMg2EfnDYLnP59m0z50916raNf9QG753N4CLAEwFsBnA0rLb5XD/9gKY3bTs7wHcFjy+DcDHg8dLg/2fBmBxcFx6yt4Hi318K4BlALa2s48AfgTg5wEIgPsBrCx73zLs74cB/HFM2a7f36Ct8wAsCx7PALAr2Defz7Npnzt6rrvtDr0xYbWqngJQn7DaZ6sAfCl4/CUAvxZafo+qnlTVp1Abi35555uXjap+D8DhpsWZ9lFE5gGYqao/1NpvwJdDr6kUw/6adP3+AoCqPquqPw4evwxgB2pzDPt8nk37bFLIPndbQDdNRu0LBfBNEdkUTKgNAHM0mP0p+Hl+sNynY5F1H+cHj5uXd5NbRWRL8JFM/aMH7/ZXRBYBeAOAxzBJznPTPgMdPNfdFtDjPkvyKe/yzaq6DMBKAO8XkbcmlPX9WADmfez2ff8cgFcCuBzAswBuD5Z7tb8i0gfgawA+oKovJRWNWdaV+x2zzx09190W0L2ejFpVDwQ/DwH4L9Q+Qvlp8DYMwc9DQXGfjkXWfRwOHjcv7wqq+lNVHVPVcQD/gomPyrzZXxGZglpg+4qq3hss9vo8x+1zp891twV0mwmru5KIvEJEZtQfA3gngK2o7d+NQbEbAfxP8HgdgOtFZJqILAawBLXOlG6UaR+Dt+svi8ibggyAd4deU3n1oBZ4F2rnGfBkf4M2fgHADlX9ZGiVt+fZtM8dP9dl9w7n6E2+FrUe5N0APlR2exzu10Wo9XpvBrCtvm8AzgPwbQA/CX6eG3rNh4LjsBMV7f2P2c+7UXvreRq1u5Hfy7OPAAaDX47dAD6D4FvPVftn2N9/BfAEgC3BL/Y8X/Y3aOtbUPuYYAuAx4N/13p+nk373NFzza/+ExF5ots+ciEiIgMGdCIiTzCgExF5ggGdiMgTDOhERJ5gQCci8gQDOhGRJ/4fVifAEiyeY0MAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.plot(L)"
]
},
{
"cell_type": "markdown",
"id": "backed-customer",
"metadata": {},
"source": [
"## Convolve with running window\n",
"\n",
"Convolution with a boxcar filter computes the mean in a window."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "joined-martial",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(-5.0, 105.0)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu50lEQVR4nO3de5RbV33o8e/WY2akeUlje8Yzkonj2MSThISAk0ADaZqQllcJ997CCn3c0MJ116VQ2tsWQstapO1ty+pte6Fd7W3TSyFtaXmVkFCgJKSXEihNSJwExx4ntmPHljye8XikeemMRo99/5COPLZnPHqcl45+n7W87NFIOvtY5/y0zz6//dtKa40QQgh/CbjdACGEENaT4C6EED4kwV0IIXxIgrsQQviQBHchhPChkNsNANi8ebPevn1706/P5/N0d3db1yCP67T9BdnnTiH73JinnnpqRmu9Za3feSK4b9++nSeffLLp109MTDA+Pm5hi7yt0/YXZJ87hexzY5RSL633OxmWEUIIH5LgLoQQPiTBXQghfEiCuxBC+JAEdyGE8KENg7tS6m+UUtNKqedWPTaklHpEKXW4+nd81e8+opQ6opR6Xin1E3Y1XAghxPrq6bl/BnjjBY/dAzyqtd4FPFr9GaXUVcBdwNXV1/yFUipoWWuFEELUZcPgrrX+DjB7wcN3AvdX/30/8PZVj39Oa53XWh8DjgA3WtNUIYQQ9Wp2EtOI1noSQGs9qZQarj6eAP5j1fNS1ccuopTaC+wFGBsbY2JiosmmwNGjR5t+bTvqtP0F2edOIftsHatnqKo1HltzNRCt9X3AfQB79uzRrc5K67RZbZ22vyD73Clkn63RbLbMlFJqFKD693T18RSwbdXzksCp5psnhBCiGc0G94eAu6v/vht4cNXjdymlupVSlwO7gCdaa6IQQohGbTgso5T6R+BWYLNSKgV8DPg48AWl1HuAE8A7ALTWB5RSXwAOAkXgl7TWJZvaLoQQYh0bBnet9bvW+dXt6zz/94Dfa6VRQgghWiMzVIUQwockuAshhA9JcBdCCB+S4C6EED7kiWX2OsWprMEnv3WYQqlce+yyTb188A27XGyVEMKPJLg76F+eO83nnzxJMh5BKTg5awCwP53lQ2/czctH+l1uoRDCLyS4OyidNYiEgzz2oR9DKcXBU/P8yuef5tFD01wx3MdH3tR5066FEPaQMXcHpTK5aq+9UoLnqrEBHv7VH+WyoSjpjOFy64QQfiLB3UHprEEiHrno8UQ8QjorwV0IYR0J7g5KZQySawT3ZCxKSnruQggLSXB3yGK+SDZXIBGLXvS7RDzCmYU8ywUpwyOEsIYEd4eYY+pr9tyrj52SoRkhhEUkuDsknc0BrD3mHotUnyPBXQhhDQnuDkldquc+FD3vOUII0SoJ7g5JZQy6QgE293Zf9LuR/m6CAUUqk3OhZUIIP5Lg7pB0xiAZixAIXLzMbCgYYHSwR3LdhRCWkeDukFQmt+Z4uykRi8iwjBDCMhLcHZLOrp3jbkrGo3JDVQhhGQnuDjBWSswsrpCMX5zjbkrEI5yeX2alWF73OUIIUS8J7g4we+RmyuNakvEIWsPpuWWnmiWE8DEJ7g4ws2AuOSxTDfySMSOEsIIEdwfUeu6XuqFa/V1Kxt2FEBaQ4O6AVMYgHFQM9/es+5zRwcoCHpIxI4SwggR3B6QzBqODEYJr5LibukIBRvp7ZFhGCGEJWYnJAeYiHRtJxiMykUk05X984Rl+cHy27ufHIl38/XtvYjAStrFVwk0S3B2QzhrcsmvLhs9LxCM8eTzjQIuEn5TKmq8+e4qdw/2Mb914Hd6ZpRW+88IZJibnec2OTQ60ULhBgrvN8sUSU/P5S+a4m5LxCA8+c4o/+MaErKcq6ja9sEyhpPnZ17yMn7npsg2ff2xmiR/7o2/L/R2fkzF3m01mK3nrl8qUMf2XVyUBePjAlK1tEv5iDuVdah7FaqODPee9TviTBHebXarU74V2bOlj7y07SGcNymVtd9OET5w7xja+OgToCQcZ7u+Wm/c+J8HdZuYJVG+vKhmPsFIsM7OYt7NZwkfqmQF9IVmU3f8kuNssnTUIBlTtUngj5gkqk5lEvVKZHJv7uoh0Bet+TTIui7L7XUvBXSn1q0qpA0qp55RS/6iU6lFKDSmlHlFKHa7+Hbeqse0olTHYOtBDKFjff7V5aS0nnqhXKmM01GuHSidics6gJMN/vtV0cFdKJYBfBvZora8BgsBdwD3Ao1rrXcCj1Z87Vjpj1HUz1WQ+V252iXqlM0bd4+2mZDxCoaSZXpBCdX7V6rBMCIgopUJAFDgF3AncX/39/cDbW9xGW0tlcrWiYPXo6w4Ri4blZpeoi9aadLaxDgRIJ6ITNJ3nrrVOK6X+CDgBGMDDWuuHlVIjWuvJ6nMmlVLDa71eKbUX2AswNjbGxMREs03h6NGjTb/WTsWy5vT8Mt2lpYb2b1OP4vnUmXVf49X9tZPs89pmjSL5YplQfq6hY2wluwLA4weO0GtsPPHJKfI5W6fp4F4dS78TuBzIAl9USv1sva/XWt8H3AewZ88ePT7e2qSdVl9vh5OzOcr6GNfvehnj49vqft3OJ5c4embpkvvkxf21m+zzxZ4+kQFO8OrdlzM+PlL3+162UoQHUxAdYnx8Z4uttJZ8ztZoZVjmDcAxrfUZrXUB+DLwI8CUUmoUoPr3dOvNbE/mTdGGL5ljUdIZA63lZpe4tEZz3E3RrhCbertk+M/HWgnuJ4DXKKWiSikF3A5MAA8Bd1efczfwYGtNbF/1LNKxlmQ8glEoMbu0YkezhI/Us1bAepJxWZTdz1oZc39cKfUlYB9QBJ6mMszSB3xBKfUeKl8A77Cioe0onTVQqlKrvRG1hTsyBpv6uu1omvCJVCZHLBqmr7vxUzkRj3BocsGGVgkvaKlwmNb6Y8DHLng4T6UX39G01jx/eoGR/h66Qo1dIJk9/XTW4LptMRtaJ/wi3USOuykZj/LoxDRaayoX38JPZIaqTf73tw7zjedOs22omctlcyKTjIeKS0tljIaH/UyJWIR8scwZKXXhSxLcbVLJYoB733Z1w68djITp7w5JDrK4pFqOe6yxm6mmpOS6+5oEd5ukswZvumYrV48NNvX6hNzsEhvI5ArkVkrN99xX3dsR/iPB3QZa6+qU8OZOOqguuSfFw8QlpBsoJ72WWpE6Ce6+JMHdBjOLK+SL5aZvdMG5qn2S6y7WUysn3WRw7+8JMxgJk87KvR0/kuBug3P57c2NhUKlV7WYLzJvFK1qlvCZZicwrSa57v4lwd0G5nBKsolMGZN5qX1SMmbEOtJZg/7uEIORcNPvkYhF5IaqT0lwt0GqwTUt15JYlesuxFpSmVzTQzImGf7zLwnuNkhlcpV0xp7me1SyaIfYSCs57qZEtdRFJlewqFXCKyS426CVWYOmeDRMJByUS2axrmYW6bhQspYOKcN/fiPB3QZW9KiUUtWbXXLSiYvNGQUW8sWWOxEykcm/JLhbrNmVcdYiK9SL9TRbcfRCyZgM//mVBHeLnZs12NrlMkiamlhfusm1Ai40EAlVSl1IJ8J3WqoKKS6WtiBTxpSMRyuX38uFlm7OivZSLJWZmFzgyJlllnszaz7nB8dngdZy3KEy/JeQ4T9fkuBuMasul+HcF0Q6a7B7qwT3TvG5H5zko195rvrTqXWfNxgJE4+2flzIFaI/SXC3mHl5u82iYRmoXA3s3jrQ8vuJ9nBkepHeriAffv0Wtr1s/bV3t8WjltRhT8QiPP7ibMvvI7xFgrvFUhmDvu4QA5HW/2ulal9nSmUMtg1FuSEZZfzKYdu3l4xHWcgXmTMKLc12Fd4iN1QtZqZBWtGj2tLXTXcoIDe7OkylRnvrw3r1Skiuuy9JcLdYKpOz7MRUSpGIyc2uTpPK5Cy5Z1MvyXX3JwnuFktnW5/AtJos2tFZKtlRRUvmSdRL6rr7kwR3C9lxYibjUrWvk6QtKOPbqKHeLiLhoAR3n5HgbiE7TsxkPMrZpRVyK1LXvROY91ecHHM3c91l0Q5/keBuIStz3E3mSX5Kbqp2BDuOoXpIrrv/SHC3kB29rnOLdsiJ1wnSGYOecICh3i5Ht5uISR0jv5HgbqFUxiASDlp6YiYkk6GjpKplfK1IpW1EMh4lmyuwmJfhP7+Q4G6BE2dzfOXpNPtOZEhYlONuGu7vIRxUcsncIVJZ61JpGyHpkP4jM1Qt8JsP7Oe7R2YAeMu1o5a+dzCgGJNL5o6Rzhhcl4w5vt3VE5mu3Nrv+PaF9SS4W+DYzBJvGB/ht94ybkuvSyYydYalfJFMruBojrup1nOXToRvyLBMi4qlMqfnl7lyax+Xb+6lK2T9f6nkuncGM7A6meNu2tzbTVcoIMN/PiLBvUWn55cplbWtJ2QiFmV6Ic9yoWTbNoT7zKszN8bcAwFFMiadCD9pKbgrpWJKqS8ppQ4ppSaUUq9VSg0ppR5RSh2u/h23qrFeZOXiHOsxL5kn55Zt24Zwn3ksbXNhWAaQRTt8ptWe+yeBf9Fa7wauAyaAe4BHtda7gEerP/tWqjYr1b4TUqr2dYZUxqArGGBzX7cr20/Kmr2+0nRwV0oNALcAnwLQWq9orbPAncD91afdD7y9tSZ6m3kyjDnQc5dLZn9LVRdWDwSczXE3JWIRZhZXMFZk+M8PWsmW2QGcAT6tlLoOeAr4IDCitZ4E0FpPKqXWXG1AKbUX2AswNjbGxMRE0w05evRo069t1XPHzhCPBDl25AXbtlEqawIKnjl8kuv6l1zdX7d0wj4fOTVLLByonQtO77MyFgB4bN9zbBt0doasqRM+5wvZtc+tBPcQ8CrgA1rrx5VSn6SBIRit9X3AfQB79uzR4+PjLTQFWn19s5a+N8dlm4O2b3908DT5UG9tO27tr5vaeZ+11nz+ByfJGgXGYhHedt3YRc85+09prr9883n76eQ+L0Zm4bEzdMVHHVkBaj3t/Dk3y459biW4p4CU1vrx6s9fohLcp5RSo9Ve+ygw3WojvSyVMXhFYtD27cjNrvZ26PQC93x5f+3n1+3cfF6ZiuVCiZnFvOMFw1aTXHd/aXrMXWt9GjiplLqy+tDtwEHgIeDu6mN3Aw+21EIPK5c1p6rjpHaTXPf2dmK28sX8vluvAC6+OW7emHdjApNpuL+HUEBKXfhFq9kyHwA+q5T6IfBK4PeBjwN3KKUOA3dUf/al6YU8hZK9Oe6mZCzC6fllCqWy7dsS1jO/mG/eufm8n2u/d3ECk8ksdSHB3R9aKj+gtX4G2LPGr25v5X3bhbm4QdKBSSfJeJSyhtOS696WUhmDaFeQa8YGaz+f/3v3JjCtVrlClOE/P5AZqi1wIsfddK6uu5x47chcOH0wGqa/O3TRuHY6YxAKKEYGelxqYUVCeu6+IcG9BU6Ok56byCQnXjtKr7o3s9bN8VTGYDTWQ9ClHHdTMl4pdZEvSq57u5Pg3oJUxmCot4tol/3FNUcHIyglE5naVWURjkpwX2tJu3TWIBlzb7zdZH4BncrK8F+7k+DeAvNS2wldoQAj/T3Sc29DC8sF5owCiWrwTsajpDMGWuvac1KZnKuZMiaZDe0fUs+9BemswZUjzi1skKytUO/O7EFRvweeTvHsyTkA5pcLAOf13BfyReaNIoPRMPliiekFd3PcTWZnReZUtD8J7k3SWpPOGNy+27mZfIl4hKdeygAxx7YpGqe15qMPPEehrOmp1vcfHeyprbBUC6DZHIPRQSazy2jtfqYMVNoZDCiZyOQDEtybNLO4Qr5YdvSETMYjfO2Hk5TKeuMnC9dkcwWWVkp89C3jvPf1Oy76vZnLnsoYXD026Ikcd1MoGGDrgAz/+YGMuTfJvGx18oRMxKIUy5qzOclk8LJzKbJrHxuJC8a1zx1L7vfcodI+GXNvfxLcm2T2tpy8CWae/NNLBce2KRpXm9y2zrERj4aJdgVrXwKpjEFAwdZBd3PcTUlZs9cXJLg3yY1aIOa2phaLjm1TNG6jyW1KKRKxSO1LIJ0x2DrQQzjojdMxGZdSF37gjaOpDaUzBgM9IQZ6wo5t0xzf/7Pvz5DNrTi2XdGYVMagtyvIYGT9Y2N1rnslB9798XZTIh6RUhc+IMG9SalMzvETsicc5NWXxcmXNI8dnnF026J+ZrBWav3ZpolVS9qlHaosWq/VN3xF+5Lg3iS3Tsj7f+HG2vaFN9VzbCTjUbK5AnO5ApNzhmdupsK54SQZd29vEtyboLU+bzq5k/q6Q/R3B+TE87DKVd2ljw1ziO3Jl2YpeyTH3VQrdSEdiLYmwb0J2VyB3ErJtRNyuDckqWoeNWcUWFgubnhsmMH/8WOz1Z+9M+YupS78QYJ7EzbKY7bbSF9ITjyPStd5bJjDNo+/eLb6fO/03EGWdfQDCe5N2CiP2W7DvZV64KsLTwlvqHf+w5a+brpDAZ5NVerPjMa8keNuSq664SvakwT3Jji5SMdaRvrC5FZKZHIymclr6p1tqpSqfQGMDHTTHQra3rZGJGIRJrPLUuqijUlwb0I9ecx2Gu4LVdshl81ek84Y9IQDbOrduHLnXTds47ptMX76xsscaFljkvFKqYupecl1b1dSOKwJ9eQx22mkGtzTGYNrq5UGhTekMgaJWKSuY2PvLVew95YrHGhV41av/DXmoUweUT/puTehnlQ3Ow33mj13GRP1mnTWW7NNm1VbtCMrV4ftSoJ7E9yeUdjXFVhzkWXhPq+sqNSqWs35WTnG2pUE9waZecxu9tzNm3Ey5u4tS/kimVzBc2mNzegJB9nc1y0diDYmwb1BZh5zwuXFjNdaZFm4q5YG6ZMx6oQcY21NgnuDvLKwQiImCyp4Tb0TmNqF5Lq3NwnuDXJjkY61JONRFvJF5gzJdfcKr3zxWyVZXZGpLLnubUmCe4NSDeQx2ykhlfs8J5Ux6AoG2NLX7XZTLJGMRVgplZlZzLvdFNEECe4NSjeQx2ynWqqaDM14RiprMBbrIRBw99iwijm8dFKOsbYkwb1Bqazzi3SsRRZU8B6vrajUqtpC3jLu3pZkhmqDvDIrNB4NEwkH5cTzkHTG4Pbdw243wzK1XHcZ+uOZk1l+44vPXrSu7Ot3beF3336NS626NOm5N8BLecxKqWo6pJx4XrBcKDGzmPfEsWGV3u4Q8WhYhv6A7x2Z4fD0ItcmY1y3rfInFAzwlWfSbjdtXS333JVSQeBJIK21fqtSagj4PLAdOA68U2udaXU7XuC1PGbJQ/YOr2RRWS0Zj8oxRmXIbVNvF3/6rutrj/3Vvx3lD75xiDmj4FoRwUuxouf+QWBi1c/3AI9qrXcBj1Z/9oVzqW7eGFeVPGTvcHsBF7skYnJ1CGvXkzI/a69e2bQU3JVSSeAtwP9d9fCdwP3Vf98PvL2VbXiJ23XcL5SIVRZZXswX3W5Kx0t77NiwitmB6PSFYdaqJ5X0+A3nVodlPgF8COhf9diI1noSQGs9qZRa8w6TUmovsBdgbGyMiYmJtZ5Wl6NHjzb92kb88MhZQgGYSb3IrIupkOb+qtwiAI89dYDtcXfz7u3m1GfcrGePzBJUMJs+xtykNceGF/Y5tDLPcqHMfzx9gFjE/gVFvLDPF9Jak5rNcf1w6Lw4lVsuAfDUoWMk1WzT72/XPjcd3JVSbwWmtdZPKaVubfT1Wuv7gPsA9uzZo8fHx5ttCgCtvr4exr59bBsqcvVVV9m+rY2Mj49j9GbgO9N0xbcyPj7idpNs58Rn3KzlZ59mLJ7nmqutPTbc3ueUnoInzhLdkmR8W8yRbbq9z6v9xhef5eGDU6yUNNdekWR8fHvtd1prIl9O8el9GT733DzhYIC/+JlXccP2oYa3Y8c+tzIsczPwNqXUceBzwG1Kqb8HppRSowDVv6dbbqVHpLKGZ26mgvcvCzuJuUiH35xLh+zMY+zRQ9OMxSK893WX8+ZXjJ73O6UUv3Pn1dx1wzbedt0YZxbyPHGs+R681ZoO7lrrj2itk1rr7cBdwL9qrX8WeAi4u/q0u4EHW26lR6RdXqTjQpt7u+kKBTr2xPOStM8mMJkSHbxoR26lyOzSCm+9dpSPvvUqtvRfXFbiHXu28dt3XsPv3HkNm3q7PHUu2pHn/nHgDqXUYeCO6s9tr5LHvOKp3lkgoEhKdUjXrRTLTC0se+rYsMpgJEx/T8hTQcspjd4k99oaC5bMUNVafxv4dvXfZ4HbrXhfL6llygx56wT22gHViSbnDLT2X6aMKRmPdmQHotH01mQ8wqHTC3Y2qSEyQ7VO5yYweevSW3Ld3WcGAb9NYDJ16sIwqWyDPffqVbRX0kYluNfJq7W6E7EIM4srGCslt5vSscxe7TYfjrlDNWh1YK57KpNrqIRzMh4lXyxzZiFPuaxrf9z6f5PCYXVKZwxCAcXIQI/bTTlPbZZcNsfO4f4Nni3skMrkCCjYOuitY8MqyXiExerCMLGov+dTrJbONFbCeVt1yPbG33/0vMc39Xbx7d+4lf4eZ0sUSHCvUypjMBrrIeixWt3J+LlUNQnu7khlDbYO9BAO+vNCePUx1knBvdESzjfv3MxvvXmc3Kqr6JfOLvHlp9Mcm1lyvJqsBPc6pT2W425KxDs7D9kLUpmLp6b7yeq1A65JDLrcGuekswa3XVl/CefuUJD/dsuO8x47eGqeLz+dJuVCqXB/djVsUCkc5L0x1eH+HsJBJTdVXeTXHHeT2anppGNsuVDizELrJZzdXA5Tgnsd8sUS0wt5T/bcgwHF6GBnZjN4QbFU5vS8P3PcTbFomN6uYEel3J6yqISzOU/AjVRSCe51mMwuezqPubJKfeeceF5yen6ZUll79tiwglKKRLyzJstZWcLZrZr4Etzr4PWFGCo1tzvnxPMSv+e4mzpt0Q4rz3kzldRpEtzrYF6OejWPORmPMr2QJ1+UXHen+XWRjgt12qIdqUyukvq8Rj2ZRpmTwJzOd5fgXodUxvB0HrPZuziVXXa5JZ3HHKoYi3nz2LBKMh5hfrnI/HLB7aY4Ip0x2DrYQ8iC9FZznsC84eyiOhLc65DOeDuPuVb6t4Mum70ilckx3N9Nd8j+hSzclOiwY6yS427NUJv5PicdvvLxZrTymEYnMzjtXM3tzrls9op01rog4GVeXy/UapX6/Nac8+b7OD3uLsG9Dmutn+glo4OVmbOdlIfsFZUJTN794rdK0sV8baeZJZyt7rk7fUNagvsGCqUyk3Pe7p2FggG2DvR0VDaDF5TK2vPHhlU29XbREw50RAfC6hLOsWiYaFfQ8aseCe4bOD23TFnj+UkqUtfdedMLyxRK2vPHhhWUUh2Tcpu2OL1VKVXNmJExd88wVkp8/8WzgPdT3WRFJuc1ulJPu0vEox3Rcze/wKxMfXYj110Kh13Cr3/xWb62fxKAyzZ5PLjHI5yeX6ZQKns2q8dvUh0W3JPxCM+l59xuhu1SWetTn5PxKPtOZC17v3pIFLiEF6YWePVlcb7wi69l25C3g3siHqGsK8NIwhleXZ3LLolYhNmlFXIrzuZrOy2VyVme+pyMR5gzCiw4OE9Agvs6tNakMgav3BbjxsuH3G7OhsxhI6dzaTtZKpNjU28XkS5/57ibOmU+RdqGEs61eQIODs1IcF9HJlfAKJTa5mZZp5x4XmLlRJd2UEvp8/m4ux3zWmo18WcluLvOq2umrmd0MIJSsmiHk+zo4XnZ6kU7/MquEs5u1MSX4L4Oq9Oh7NYVCjDS39MR2QxeoLWuzk7tjPF2gC193XQFA76+OrSrhPPmvi66QwFH0yEluK+jHav9Sa67c84s5skXy20zbGeFQEAxFuvx9TFmV6euVhNfeu7uS2cN+rtDDEacXbG8FUmHD55O1mk57ianA5TT7OzUOV0TX4L7OlKZXNsMyZgSsQiT2WWKpbLbTfG9dryys0Iy5u9FO8wvrlEbynsnHJ5oKMF9He2YCZGMRymWNVMLebeb4nteX53LLsl4hDMLeZYL/lwYxizh3BO2Pr01GY9w1sF5AhLc19GOK9p3Ws1tN6UyOWLRMH3dnTXJ+9zCMP48xuysAJt0+P+us47MOs0ZBRbyxba7Wba6LGs7TLzyuieOzTK7dPFVUDIeraRBttnxYYXV6ZA7tvS53BrrpTIG1yZjtrz3uUU7DHYO99uyjdUkuK+h3XLcTbVcWum5tyydNXjnX31/zd/1hAOMxSLsGvZfcNuIGzMtnVIua05lDd50zagt719btMOh87Pp4K6U2gb8LbAVKAP3aa0/qZQaAj4PbAeOA+/UWmdab6pz2vVmWU84yOa+bl/f8HLKSzNLAPzhT13LKxKDtce/eeA0n/jWYV48s8StLx92q3muGenvJhRQvkyHnF7IUyhZn+NuGu7vJhxUjp2frfTci8Cvaa33KaX6gaeUUo8A7wYe1Vp/XCl1D3AP8OHWm+qcdpvAtJrfU9WcYp6Ar92x6byicWdW3axutys7K4SCAbYO9vCDYxm+8nQaAKXgR1++hVi0y+XWtcbuK/bKPAHn5qI0Hdy11pPAZPXfC0qpCSAB3AncWn3a/cC3abPgnsoYRLuCxKPtk+NuSsYjHOiAsqx2S2Vya5Z9Xf2F345f/lbYvXWAb01M8cTx2dpj77v1Cj70xt0utqp1ZqfIzi9tJ+eiWDLmrpTaDlwPPA6MVAM/WutJpdSa165Kqb3AXoCxsTEmJiaa3v7Ro0ebfu1aDp2cYnMkwKFDhyx9X6tcan8jpRypTI4DBw8SUMrBVtnL6s94IwdemmZTNMiRF54/7/F88dwcgkL2NBMT9o04Or3P9frAqyPctXtb7eePPjLJ/mOnmZjQLb+3m/u87/nKZ7kwdYKJs/YkEvapFQ6eyZ0X7+za55aDu1KqD/gn4Fe01vOqzoCitb4PuA9gz549enx8vKV2tPr61eYemeGKrb2WvqfV1mvbddnjfOnAHJuTOxgZsH4ihpuc/DwWvpNl+5bwOts8DsDrr7+aQZuv7rx8DJruf85gfrloWVvd2ueVif1s6l3i+ldcbds2rj4V4puHX+DynS8/L5fejn1u6etJKRWmEtg/q7X+cvXhKaXUaPX3o8B0a010np25rnbrhMp9TrjUPIebLh9ic18XAxFJNoPqUIMPbrCmMjnb76M4mevedHBXlS76p4AJrfWfrPrVQ8Dd1X/fDTzYfPOct5gvks0V2i5TxpRYlesummOWfV3vRP+799zEYx+6jXqvUv0uEYsws7jS9rNWnejUOVn6t5We+83AzwG3KaWeqf55M/Bx4A6l1GHgjurPbaOWKdOmE1TcqBvtN2bZ1/WOga5QoGNWX6qHH64WtdaOzEpPDjn3f9VKtsx3gfW6Lrc3+75ua9cJTKbe7hDxaLitTzS3tes8B7esnti0s00nds0srjhSwnmkv5tgQDkykUlqy1zADwWhnC4t6jftPM/BDUkfDAU61akLBQOMDjpTE1+C+wVSGYPuUIAtfd1uN6VpldKi7Xuiuc38YhyL+SvbyC7D/T2EHOqN2sXJTl0i5kyuuwT3C5gFodr5Zpk5UULr1vOOO5FZ9rU7JOPq9QjWZl62b3BPOXivzakrawnuF2jHRToulIhHWC6UObu04nZT2lJlbdT2Pgac5lRv1C7pjMFgJEx/j/2z0hPxCFPzy6wU7V1UR4L7BVJtWMf9Qn7IXnBTKmOQaPNjwGnJNl+/14kcd1MyHqGs4fTcsq3bkeC+irFS4uzSStv32qT0b/NKZc3knPTcG5WIR5heyJMvtmeue8rB+vzJmDM3oCW4r5LOtncapEkmMjVvemGZQmn9HHextmQ8itYwmbW3N2oHrXV1KM6Zq7XalbXNw1gS3Fdx8qaKnSpjh6G2HgN1Szpjf2VAP2rnyXOZXIHcSsmxz3zrYA9K2T9sKsF9FT9NXpFc9+akJLg3pZ1z3Z2e19AVCrB1oMf2YVMJ7qukswbhoGK4v31z3E2VXHcJ7o2q5TvH2v8L3klbB3sIONAbtYMbs9KduAHdsWXttNb8xbePnreyznePzDAWixAItG+OuykZj/D9ozNords6Z99pqUyOTb1dUjumQeFggNHB9uxQ1BbpcPALPRGL8ORL9q4+2rHB/eiZJf7XN58nEg4SDp4Lfv/5VUkXW2WdZDzC0kqJOaPQ9sufOamSCitDMs1ItOlEplTGoL875GgJ52Q8yld/OEmxZF+ue8cGd/OS6G/fcyM3bB9yuTXWOzcGakhwb0A6Y7B7tN/tZrSlZDzC48dmN36ix1TmNTg7Kz0Rj1Aqa6ZWjRxYrYODu79vnJ2byJTjmsSgy61pD+WyJpU1eMNVI243pS0l4hEmnzEolMqEg967nbfvRIYvPnkSgL7uEL/+E1fSHQo6OoHJVOt8zeYYsGkbHRvc01mDUEAx3O/P4lCJ2Lmeu6jPzFKeFQfKvvrV6pmX24a8d0P6U989xjefO01/T4hMrsBtu0d47RWbSGcNbrrc2av31amjAzYdbt77enVIOmMwFosQ9MHN07XEomF6u4IS3Bvg96s5u3m97EUqY/CaHZt44H03A5XAOmcUWFguOp7+POZA56tjg7sbl2JOUkqRiLd3MSenpX00z8ENXp/IlK6e86MxcxJRzrXa/T3hIFv6u23NLuqYYZliqcz//NoEs9VKic+fXuDNrxh1uVX2kolMjUm5dKL7xeqg6TXLhRIzi5W6Ud2hICP9PaQyhqsrryXjEVLZHGDPPbGOCe4vTC3ymX8/zshAN9GuECODPb6/cZaIRXjyePtlL7TqU989xr4TGRTwC6+7nFe9LF7X69LZHLFomL7ujjktLNUdCjJsc2+0WRd+cSfilZz8c5PWnA/uiViE/ek5JLi3yPyG/uv/uodrkzF3G+OQZDzC/HKR+eUCAw7UqfYCrTV//PDzdIcCLOaL9HaF6g7uTlYG9CuvXi3WJipVh9yS8Qj7TmRIZQwi4SBDvc6nCyfjUb554DRlmxbV6Zjg7uY3tFtqCxdnDAZGOyO4m0Wgfu3Hr+Srz55qaPw3lTG4Ykuvja3zv0QswjMnsy2/z+eeOMG/Hppe83cBpfjFH93B9Rt8aWdzK9z70AFyKyUmq7XTzfM/EYvwzz+c5Ov7Jx3PcTcl4hEKJc1szp4yyR0T3N38hnaL2Uv5zQf2s6m63+FggA+/cTfbN/dy8NQ8n/jWCxf1HK5/WZxf+rGdjrfXCqurOibiEQ6emq/rdVpr0hmDW3ZtsbN5vpeMR/j6/klKZd1SJtpf/ttRMrkCo4MXpyofmV5kS3/3hsH9+0fP8pVnTrFjSy9dwQB3XDXC1oHK+90+Psx3Dp+hWNK87ZVjTbezFeY4//RS0Zb375jgnnZhFprbrhzp5/W7NjO7tMLk3DJaw8HJeV59WZz3vn4HX/3hKb41McX46LlpFNMLeR47PMP7br2iLf+vzOG3RCxCMh7hkQNTlMt6w3pBs0srGAXnyr76VSIeoVjW/M5XD/Dbd17T1HuUy5pT2WV+/nXb+cibxi/6/Zs/+VhdN23N4aEH/vvNDEbPv3J99WVD/PMHXt9U+6xiLtoxtSjBvSWprL9TH9cS6Qryd++5qfaz1ppX3Ptw7aBPV5cU/NovnzvIP/O9Y9z71YPMLK6wpQ2rY5rDMNviUZKxCCulMjOLeYYHLj1ZrTZs12HHiNVuvmIzAP/wxAnufdvVTXUQzizmWSmV101JTcYjHD+7tOH7pLPO14xpRKLWcy/Y8v4dk+eelptlKKWqpUYrgWytXP/VZQvaUSpj0Fc9oc19OVnHDT6ZwGSN7Zt7ufcnr6JQ0swsNrdAey09cZ3zNVE9hvUGNyLNxe69egUa7QqxqbdLeu6tWMoXyeQKMjmF81epT2cvHmOu3YTNGhuOaXqRWdXRnMQF8FsP7Ce+QfG0qfnKDTcny776lXmepbNGU1d/G33RJuNRcislsrkC8UvcQ2uHCp8379xMH/Z0pDoiuMsl9znJeIQnjs+SL5aYms9f9IV3bv1V+9PZ9qfm+INvTFAsb5wKlsvliH4nu+HzDp6a5zU7KnVCLt/cy1uuHeXMfJ7SBtvY3NfNTTuGPHsJ305Wr+H7ym2xhl+/0WQyM2Df/ekn6AmvX3f/6JlFXrNjU8Pbd9Kfvut6JiYmbHnvjjiS3ZyF5jWJeISF5SLv+Mvv135ebaAnzEBPiE9/7xjfOjjV8vZ+7rWXcecrE2v+7uGDp/mPF89yYx1FmwKq8mcj1yQG+KlXV2ryh4MB/vynX9VQe0XrzGPqD//leT7zveMNvTZn5Di7DEO9XUS71g5PN2wf4vbdwyytXHo444btQ7zlWn/PQr+UDgnuMp5qum33CP9+9CyFUpnbdw9z886LezZ7b9nB91882/K29qfm+NJTqXWDeypjMDoY4XN7X7vhe01MTDA+fnHmhPCegZ4w7/6R7RyeXmj4tcWVADuHo/xI9cbsWoZ6u/jUu29opYkdoSOCezpj0BUKsLm3/bI/rLZzuI/P/PyNl3zO+2/bxftv29Xytt732ac4NLn+CW7e8BL+c+/brm7qdfIlbp2OyJZJZQySPlkbtZ0k41HS2fWzGtJtcMNLiHZlW3BXSr1RKfW8UuqIUuoeu7ZTj1TWkB6iCxKxCPlimTOLFy8ltlIsc3p+ed10NyFEa2wJ7kqpIPDnwJuAq4B3KaWusmNb9Uj7vHa7VyUvkXlzem6Zspba6ULYxa4x9xuBI1rrFwGUUp8D7gQOWrmRQ6fn+cA/PE0+n6f7G2sXGQKYWVzp+AlMbjCvlt7/2X30XlBGd7lYOu85Qghr2RXcE8DJVT+ngJtWP0EptRfYCzA2NtZUruep+QIjEc1SaYXeyPqTGRKX93JlNGdbPqnTjh496nYT6lIqa37yygEyyyXgwnH3AFdt6idqTDExcWbD92qXfbaS7HNnsGuf7Qrua925PO/s1lrfB9wHsGfPHt3MHfJx4PabOvMOe7vs7581lzSxpnbZZyvJPncGO/bZrhuqKWDbqp+TwCmbtiWEEOICdgX3HwC7lFKXK6W6gLuAh2zalhBCiAvYMiyjtS4qpd4PfBMIAn+jtT5gx7aEEEJczLYZqlrrrwNft+v9hRBCrK8jZqgKIUSnkeAuhBA+JMFdCCF8SIK7EEL4kNpoHUJHGqHUGeClFt5iMzBjUXPaQaftL8g+dwrZ58ZcprXestYvPBHcW6WUelJrvcftdjil0/YXZJ87heyzdWRYRgghfEiCuxBC+JBfgvt9bjfAYZ22vyD73Clkny3iizF3IYQQ5/NLz10IIcQqEtyFEMKH2jq4e2kRbqcopY4rpfYrpZ5RSj3pdnvsoJT6G6XUtFLquVWPDSmlHlFKHa7+HXezjVZbZ5/vVUqlq5/1M0qpN7vZRisppbYppf6fUmpCKXVAKfXB6uO+/Zwvsc+2fM5tO+ZeXYT7BeAOKouD/AB4l9ba0nVavUYpdRzYo7X27UQPpdQtwCLwt1rra6qP/SEwq7X+ePWLPK61/rCb7bTSOvt8L7Cotf4jN9tmB6XUKDCqtd6nlOoHngLeDrwbn37Ol9jnd2LD59zOPffaItxa6xXAXIRbtDmt9XeA2QsevhO4v/rv+6mcFL6xzj77ltZ6Umu9r/rvBWCCytrLvv2cL7HPtmjn4L7WIty2/Ud5iAYeVko9VV1kvFOMaK0noXKSAMMut8cp71dK/bA6bOObIYrVlFLbgeuBx+mQz/mCfQYbPud2Du4bLsLtUzdrrV8FvAn4perlvPCn/wNcAbwSmAT+2NXW2EAp1Qf8E/ArWut5t9vjhDX22ZbPuZ2De0cuwq21PlX9exp4gMrwVCeYqo5ZmmOX0y63x3Za6ymtdUlrXQb+Gp991kqpMJUg91mt9ZerD/v6c15rn+36nNs5uHfcItxKqd7qjRiUUr3AjwPPXfpVvvEQcHf133cDD7rYFkeYQa7qP+Gjz1oppYBPARNa6z9Z9Svffs7r7bNdn3PbZssAVFOGPsG5Rbh/z90W2UsptYNKbx0q69/+gx/3WSn1j8CtVEqhTgEfA74CfAF4GXACeIfW2jc3INfZ51upXKpr4Djwi+Z4dLtTSr0OeAzYD5SrD/8mlTFoX37Ol9jnd2HD59zWwV0IIcTa2nlYRgghxDokuAshhA9JcBdCCB+S4C6EED4kwV0IIXxIgrsQQviQBHchhPCh/w/iqNjfdh1S3AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"\n",
"# Define a window length in m.\n",
"window_length = 2\n",
"\n",
"# Compute the number of samples in the window.\n",
"N = int(window_length / step)\n",
"\n",
"# Make the boxcar filter: divide by N to get the mean,\n",
"# and multiply by 100 to get percentage not proportion.\n",
"boxcar = 100 * np.ones(N) / N\n",
"\n",
"# Make a linear 'space' (range of numbers) representing\n",
"# depth. (We only really need this for the plot.)\n",
"z = np.linspace(start, stop, L.size)\n",
"\n",
"# Convolve the log with the boxcar. This computes the\n",
"# running mean. (Convolution does a running weighted sum\n",
"# in the window; the weights are the boxcar array.)\n",
"prop = np.convolve(L, boxcar, mode='same')\n",
"\n",
"plt.plot(z, prop)\n",
"plt.grid(c='k', alpha=0.2)\n",
"plt.ylim(-5, 105)"
]
},
{
"cell_type": "markdown",
"id": "satellite-mining",
"metadata": {},
"source": [
"## Plot everything together"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "indirect-reducing",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, '% sand, 2 m')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATkAAAHiCAYAAACTGLsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3C0lEQVR4nO3dd3xUVf7/8ddnJgFCC6EICgoo1i+rUeIqNlAUK4tlbYuNVdR17b2ga1/b2nUV1y62xbWwu1ZUFAs/QaPYC0VXsSABEYEAOb8/zp1kwJRJMpl75+b9fDxC7r1zZ+aTHPKeW88x5xwiInGVCLsAEZGWpJATkVhTyIlIrCnkRCTWFHIiEmsKORGJtVYbcmZ2m5mdn+G695jZpS1dU1SZ2ctmdlQWXudCM3ugma8xysyeq+fxoWb2v0a8XlZ+ttbEzGab2c5h15GpvA05M9vOzF43s4VmNt/MXjOzLc3sCDOb0tDznXPHOucuyUWtURL8B11iZj+nfa0Vdl2Zcs6Nd84NT82bmTOzAWHWlE1mdr2ZVZjZG2bWO235KDO7IczaGsvM2prZnWY2x8wWmdk7ZrZ7ruvIy5Azs87Av4GbgK5Ab+AiYFmGz0+2XHV5YYRzrmPa1zdhFyRgZr8FBgG9gCnAOcHyYuB04ILwqmuSAuArYAhQDJwPPGpm/XJZRF6GHLABgHPuIefcSufcEufcc8By4DZgcLCFsgCqdzf/bmb/NbPFwI7pu6CpXRwzO9fM5gVbO6PqenMzG2NmnwdbkE+lbwmZ2XAz+yTYwrzVzCZHfXfIzErM7N9m9kOwFfFvM+tTx7prmtl7ZnZ6ML91sEW9wMzeNbOhaev2D37+RWb2PNC9nhomm9l+wfR2wRbaHsH8zmZWHkxXb6mb2SvB098N2vvAtNc7zcy+N7O5ZjY6w99DwszGBlse35vZfUHApB4/LHjsRzM7vwV22/oDU5xzy4BJwLrB8suAq51zCxuofw8z+zD4fX+d1kb1tq/5XfZLgr2hRWb2nJl1T3v80LSf+7xMfxjn3GLn3IXOudnOuSrn3L+BWfggr63+I4Iargv+P800s22C5V8FbXJ4pu+fkq8h9ymw0szuNbPdzawEwDn3EXAs8EawhdIl7Tl/wP9n6YT/lFxdL/wfYW/gcGCcmW24+kpmthPwV+AAYE1gDvBw8Fh3YAL+E7gb8AmwTbN/2paXAO4G+gLrAEuAm1dfKfgEngzc7Jy7xvzu1H+AS/Fb1KcDj5lZj+ApDwLT8b/XS/C/17pMBoYG0zsAM/FbAKn5yas/wTm3QzC5WdDejwTzvfBbDr2BI4FbUv9HGnBE8LUjPmA6EvwezGwT4FZgFL7dU6+fTR8A25tZETAM+MDMyoANnXMPZvD8O4FjnHOdgIHAi8HyTNr3D8BoYA2gDb4tUz/334FDgbXw/69r/QBsiJn1xG+gfFDPalsB7wXv8yD+b2tLYABwCHCzmXVs1Bs75/LyC9gYuAf4H7ACeAroif9POmW1de8B7qtl2aXB9NDgNTqkPf4ocH4t694JXJW2Xkf8FmQ/4DB8wKYeM/zm+lFh/77SapoN/AwsCL6eqGWdUqAibf5l4NrguQenLT8LuH+15z6LD7N1avmdPgg8UEddw4D3gulngKOAN4P5ycC+wfQq7Qs4YEDa/FD8H3FB2rLvga3reN+XU+2D33o6Lu2xDYO2LcDvKj6U9lh7oBLYOcvtcwrwLvAI/sPhteD/+onAK8B4oEsdz/0SOAbo3MB71Na+Y9PmjwOeCaYvAB5Oe6xDU35uoBB4Abi9nnWOAD5Lm/9N0L4905b9CJQ25r3zdUsO59xHzrkjnHN98J9aawHX1/OUrxp4yQrn3OK0+TnBa65ureCxVB0/43/xvYPHvkp7zOFDOGr2ds51Cb72NrP2ZnZ7sEvyE/6PqYuteuxyFPA1fks1pS+wf7BrscD84YHt8Fs6a1H777QubwAbBJ/2pcB9wNrB1vFvg5oy9aNzbkXa/C/4D6OGrNK2wXQB/sNz9bb9Bd/uWeWcu845t5lz7kDgQOBV/JbY0fgPgo+As+t4+n7AHsCcYPd/MECG7ftt2nT672v1n3sxjfy5zSwB3I8Px+MbWP27tOklwXuuvqxRW3J5G3LpnHMf47e2BuKTv9bVGniZEjPrkDa/DlDbAflv8H/cAATP6YYPgLmkbcqbmdHETfscOw2/1bKVc64zfvcQ/JZoyoXAPODBtD+Or/Bbcl3Svjo4567A/y5q+53WKgiN6cBJwPvOuUrgdeBU4Avn3Lxm/5QNW6Vtqdka/Y5ft20Rvt1bRBD2xwAX4/9fv+ecWw68BWxa23Occ28550bidzmfwO+NQGbtW5e5wNppdbWnET938DdwJ/6DYr/gZ8ipvAw5M9soOLDcJ5hfGzgYeBP/H7KPmbVpwktfZGZtzGx7YC/gn7Ws8yAw2sxKzawtcDkw1Tk3G3986jdmtreZFQB/xh8firpO+E/IBWbWFfhLLessB/bH767cH3w6PwCMMLNdzSxpZu3Mn8Tp45ybA0yj5ne6HTCigTom4z/pU8ffXl5tvjbfUXOAvrkeAk4xf8KkI75tHwm2Cifgf9Ztgv9bF5FZSDTVtcBfgvCfBWwZ1DQUf7xyFcHveJSZFQdB8hOwMng4k/atywRgL/Mng9rgQ7c6N4L2rm8D4u/43e0RzrkljXjfrMnLkAMW4Q9QTjV/tvRN4H38J9aL+AOb35pZYz79vwUq8J/m44Fjgy3EVTjnJuFPhT+G/5RbDzgoeGwePgiuwm/Sb4L/Q8/o0pYQXQ8U4bfU3sQfE/uVYOtqX/yWwl34rdeRwLnAD/gtuzOo+X/1B3w7zcf/Yd3XQB2T8X+Qr9QxX5sLgXuD3eUDGnj9htyF3616BR8sS4ETAJxzHwTTD+PbfRH+WF/W29bMdsQfd3s8eO//h/8A/Qp/UuSKOp56KDA72CU9Fn+gHjJs39oEP/ef8R/uc/F/I+mHYNbGH2qo7efoi98aLcX/Paauy6zzyoWWYMHBvFbN/GUPDwTH97L5ugn8f4hRzrmXsvnaEq5gq2oBsL5zblbI5YTGzP4B/NM592zYtdSlIOwC4sbMdgWm4ncPzsDv0rwZalGSFWY2An8G1oBrgBn4M86tlnMu0teAQv7urkbZYOAL/K7BCPyZzFCORUjWjcQfzvgGWB84yGlXKPK0uyoisaYtORGJNYWciMRaTk88DBs2zE2YMKHhFaVeJSUlzbo+q3v37q5fv34ALFmyhMKqTylIrqj/SaFo6Mes7/E6HrMGHq/vsURHKKy5JG/69OnznHM9al85M+ltkVPz58OsWdC1K/Tvn/v3z7L62iKnIffiiy9OLykpKcvle8qv9evXj2nTpgEwY8YMXnj2nyxf7i/38neDWs108AfvXNp0VtapP8CSySRjx45twk+XO2ZW321qGUlvi5waPx4OOQR2281P57n62kKXkAhLlxdRWdnau9iTuFLICRv3fo+k/RzMWc1Nvi5tGqPmRHyG66RNQ+O2ABOJBCx6qno5lr71V8d0ves0Zt061kkUQ9uNiJVWcHVFTkIuuIhyRP/+/QdVVFTE/7fawpp6TC7VDgMGrNpb+PYbv0C3Trm4/72Rvs6kC7UcKhoCfV/OykvV1RY50ya4tfuRRyCRgPPOg403DqeWFpaTs6vOuYnOuaOLi4sbXllajNohOkJviz33hDFjfMCNHw8DB8IrjenNKn/oEhKR1qh9exg3Dj7/HLbeGqqq4MMPw66qRSjkRFqzvn1hs83CrqJFKeREJNYUciLiVVSEXUGLUMiJtHapkx/nnusvDv6gvsG08o+ukxNp7caO9WdZb74Znn0Wli+HSZPCriprtCUn0tp16gR//StMnOjnf/kl3HqyTCEnIl7btmFX0CIUciISawo5EYm1nJ54KC8vV1dLEfTSB7uRxA90X+eN81nuaqmhG/wTiSSjRh1SvTxrN9k3dR3M9ycneUdnV4XP5m5CZWVl2GWsIplMQoedwy5DYkC7qyICy5b5y0diSFtyIq3da6/BgQfC11/7+Zjdy6otOZHWbvx4H3CbbAITJsCtt4ZdUVZpS06ktauq8t9POAH22y/cWlqAtuREWrPXXoMpU8KuokVpS05oV7iEJEuDuSyO8VDvOquPvyA54xxMngwXXwwvveSXderkO8+MIY3xkIeyPcbDYUP+HokxHpwD59LC7+OLaqYtg+vYMlmnOdfPFW0DvR9t+g+YJpQxHpyDF16ASy6BV1/1y4qL4cQT4eST/RisMZSTkHPOTQQmmtkWuhg4PKl2KCsrG5O+fOrn21OYWBSs1JJbb2nrNHAxsVmCkSP3rn5OTsOsrnUS2QuButqiRTgHTz/tt9ymTvXLSkrglFP8cbguXVq8hDBpd1V4d/aWkbwYeGTxoWGXkd+cg6ee8ltu06f7Zd27w2mnwXHHQefO4daXIwo5kbipqoJ//cuH23vv+WU9e8IZZ8Cxx0KHDuHWl2MKOZG4WLkSHn0ULr20ZuSttdaCs87yww8WFYVbX0gUckLvrnMw5ztKzMbN97Wv4x/L9PhdMpmEpTOyeMKhEevWtY61gWQXImfFCnjwQbjsMvj0U79s7bXhnHNg9Gho1y7c+kKW05ArLS3V2dUsaOrZ1brsucVjoZ5dXfWsKrhUsMweF62QKxqctbOrWVFZCfffD5dfDjNn+mX9+/twO/xwaNMm3PoiQl0tCfdO/hPLly/zMy10dhVo1PVxyWSSsWPHNubHaD2WLYO774YrroA5c/yyAQPgvPNg1CgoLAy3vojR7qqwbHkRlZXJsMuQhixZAv/4B1x5Zc3N9Btt5AeiOfBAKNCfc230WxGJusWL4fbb4eqr4dtv/bKBA+H88/29pkl9QNVHIScSVVVVcMMNfiStH37wy0pL4YILYORIP4ygNEghJxJV06fDqaf66S239OG2555pJ0YkEwo5kahKjX+69dbw+usKtybS9q5I1C1cCBUVYVeRtxRyIlHVs6ffevvoI+jb11//FrPR7XNBIScSVRtt5Du13HVX+Plnf13cTTeFXVXeUciJRNngwfDMM3DmmX5+0aJw68lDCjmRfNCpU9gV5C2FnEjUrVwJX34ZdhV5KychZ2YjzGwcUJyL95Papdph4cKFYZfS6mXcFg8/7IcKvOMOP9+zZ8sXFzM5CTnn3ETn3NGA/rpClGqH4mJ91oQto7YoL4eDD/bdJ/XvD+PG+R59pVF0MbBIVKW28rbYAt58U72LNJGOyYlEXceOCrhmUMiJSKwp5ESiaOlSeO65sKuIBR2TE4mayZP9CYe5c/38ZpuFW0+e05acSNTcf78PuIED4fHH4frrw64or2lLTiRqqqr891NOgb33DrWUONCWnIjEmkJORGJNIScisaaQE5FYU8iJSKzp7Kqwce93KUgsBlYd5d4BuLTp1PLGrlPL+q763S14PJgOphKWhEVPVS+vGcTFql/rV9OZrJOatiaskyiGthsh+SWnIVdaWjqooqLCNbym1KekpCSrwzZtv/EkunWal82XzI6vH8zSC2Up8Iq2h7X/m6WaJFdyGnLl5eXTS0pKynL5ntKwh1/7IytXLAWaucXWiHUa2pJLJgo466yzq5c3eotNw/dJQLurwk9LulBZWRl2GauoSiYh0T7sMiQGdOJBRGJN3Z+3Iur+PDrUFrmj7s9bEXV/Hh1qi9zR7qpIVE2YAJ99FnYVeU8hJxI1w4ZBMglPPw0bbQQ33BB2RXlNIScSNaNGwSefwAEH+G6X/vWvsCvKawo5kShabz0NP5glCjkRiTWFnIjEmkJORGJNIScisaaQE5FYU8iJSKwp5EQk1hRyIhJrCjmRKJo7F+69N+wqYkGdZopEzUUXwV//CsuW+flddw23njzX4Jacma1tZi+Z2Udm9oGZnRQs72pmz5vZZ8H3kpYvVyTmVq70IbdsGey7L7z9Npx7bthV5bVMdldXAKc55zYGtgb+bGabAGcDk5xz6wOTgnkRaS7nIJGAxx6DzTcPu5q812DIOefmOufeDqYXAR8BvYGRQOqgwb3A3i1Uo4hIkzXqxIOZ9QM2B6YCPZ1zc8EHIbBG1qsTEWmmjEPOzDoCjwEnO+d+asTzjjazaWY2DejehBolC9Lb4Ycffgi7nFZNbZFbGYWcmRXiA268cy7Vg993ZrZm8PiawPe1Pdc5N845V+acKwMiOIJx65DeDj169Ai7nFZNbZFbDV5CYmYG3Al85Jy7Nu2hp4DDgSuC70829FqlpaWDKioqXEPrSf1KSkqyOnLyrps9QYe2CwBwWGpkaD8dcC5tOgvrVC+rY3BqLAHffhU8K8MR7lt6ncL+0GU0kl8yuU5uW+BQYIaZlQfLzsWH26NmdiTwJbB/Qy9UXl4+vaSkpKyJtUoLWb6yDZUr2gCND7D0Ue9xadMYLm0d/zyqQ8ylL68l6CxhYB3IXog1Zt061km0Q/JPgyHnnJsCaf/bVzUsu+VIGF58fw8qKyvDLmMVyWSSrUaMDbsMiQHd1iUisaaQE5FYU8iJSKwp5EQk1hRyIhJrCjkRiTWFnIjEmkJORGJNIScisaaQE5FYU8iJSKwp5EQk1hRyIhJrCjkRibWchJyZjTCzcUBxLt5Papdqh4ULF4ZdSquntsidnIScc26ic+5oQC0aolQ7FBfrsyZs9baFGVRVwd57w/vv57y2uNHuqkiUJJN+cOnCQnjySRg+POyK8p5CTiRqzj8fPvnET8+dC6efDt9+G25NeUwhJxJF/fvDoYf66b/9zc+ffDJ8/XWoZeUjhZxIVN13H0yb5o/NLV0KN9wA664Lf/4zfPll2NXlDYWcSJQNGgSPPw7vvgv77w/Ll8Ott8KAAXD00TBrVtgVRp5CTiQfbLopPPqoP9v6hz/AypVwxx2w/vowejR89lnYFUaWQk4kn2yyCYwfDx99BIcf7pfdcw9stBEccgjMnh1mdZGkkBPJRxts4MPt00/hqKMgkfDhN3p02JVFjkJOJJ+tu67fbX32WT+vOyh+RSEnEgdduoRdQWQp5EQk1hRyIhJrCjkRiTWFnEgcFBb67+XlcOCBMGNGqOVEiUJOJA422QROOsmH3aOP+ouH990X3nkn7MpCp5ATiYNkEq6/Hr74Ak48Edq187eDbbEFjBgB/+//hV1haBRyInHSp4+/kX/WLDjtNGjfHv79b9hqK9htN3jttbArzDl1f96KqMvt6GjxtujVC665xofdWWdBx47+guHttoNhw2Dy5JZ53whS9+etiLo/j46ctcUaa8AVV/h7WseOhc6d4cUXYehQ2GEHeOEFcK5lawhZQS7frLS0dFBFRUW8f6M5UFJSYtl8vdE73kTXDvMAcNS8tHNp0xg4srOOn6h3HQP44h6oXsf82AepaeqYrnOdxqxbxzptt4BeN5GXunWDSy7xu7A33uiP3736KuyyC2y9NVxwgd+dNWvwpfJNTkNOoqkwuZw2hcvDLuPXlleEXcFqCsMuoPm6dPGBdvLJvl+6v/0N3nwT9tgDysp81+sjRsQq7HTiQaQ16twZzj7b78Zecw307Ol7IR45EjbfHB57zI8YFgMKOZHWrEMHvws7c6bfhV1rLd8L8e9/76+1e/hh30FnHlPIiYi/1OSkk/x1drfcAmuvDR98AAcfDP/3f3D//bBiRdhVNolCTkRqtGsHxx0Hn38O48b5UcI++QQOO8z3PnzXXX6ciTyikBORX2vTBsaM8QF3991+4JwvvoAjj/S9Et9+OyxbFnaVGVHIiazC8H8WCSCJvwChACgEi8HZ1cYqLIQjjvBjSjzwgN+amz0bjj3WB9/NN/vhEiMsp5eQlJeXTy8pKSnL5XtKw/75xuGsXLnEzzij5kJGS7tONG15NtYJrotzwTJIXZPqpxOJJKeffkb1c2q9js3qub6t0etIvQoKYNQoOOggf+b1kkv8yGEnnACXXw5nnAHHHOOP7UWMrpMTKhZ3o7KyMuwyVpFMJiFZEnYZsrpkEg44wJ99ffJJuPhi373Tqaf6OytOPx3+9Cd/G1lEaHdVRBovkYB99oG334aJE2HLLeH77+HMM6FfP79199NPYVcJKOREpDnMYK+9YOpUeOYZ2GYb+PFHOO886NsXLroIKsK9c0UhJyLNZwa77gpTpsCkSTBkCCxYABde6Lfsxo714RcChZyQsJXVX2YrMavCrAqowp8aUJ8KkiEz2GknePll353Tzjv73dbLLvNbdmed5Xdrc0i9kOShbPdCctSwG+jWaV7G6zvXtJ5FMlonvReTz64PHmlKryMtcDa26Lew5t1IhnbYAZ5/Ht54w5+NffppuOoquOkmfwnKGWfAmmu2eBk6uyqNZgZm6Z9VLfS5lbqsJSqSPcKuID8NHgz//S+89RZceik89RRcd53vBWXMGL9116dPi729dldFJDe23NJfdvLOO7Dffv6OiZtvhvXW81t2s2e3yNsq5EQkt0pLYcIEP2ziQQf5e2Fvvx3WX9/fNvbFF1l9u5yO8aCxBcKldogOtQUwcCA89BB8+CEccojvv+6uu2DDDWH0aFi8OCtvk9MxHjS2QLjUDtGhtkiz0Ua+K6dPPvHhZgb33OMvRckC7a6KSDQMGOC35EaM8PNZ6tJJISci0ZLlDhMUciISawo5EYk1hZyIxJpCTkRiTSEnIrGmkBORWFPIiUisKeREJNYUciISawo5EYk1hZyIxJpCTkRiTSEnIrGmkBORWFPIiUisqfvzVkTtEB1qi1r88gtcf70fsxWy1q+cuj9vRdQO0aG2SPPzz3D11dC/P5xyCsyfD4MGwXbbZeXlNe6qiITjp5/8kITXXgs//uiXbbklXHAB7Lln1rbkFHIiklsVFXDjjX7XdMECv2ybbXy4DR+e9e7PFXIikhs//gjXXQc33eS34gCGDPHhtuOOWQ+3FIWciLSsxYvh4ovhlltqxlLdeWc4/3zYYYcWf3uFnIi0rJtvhquu8tO77+7DbfDgnL29Qk5EWtaiRf77WWfBFVfk/O11MbCI5EbHjqG8rbbkhEVLO5OwFdXzDktN1EwDzlnLrONWWx+ABH369AmmLfiqZ9qytA6WdgB8teVtByL5J6chV15ePr2kpKQsl+8pDXtoylFUVlaGXcYqkskkY8eODbsMiQHtropIrCnkRCTWFHIiEmsKORGJNZ1dFfr1+BwjuBLdWepkJ2A4lzadmszGOsEZVhcsA4J1/HQikYQlU6ufk9HZz5Y+65oogoKeSH7JaciVlpYOqqiocA2vKfUpKSnJ6k1+wzd7im6d5mXzJbNjzriwK1hV0RDo+3LYVUgjaXdVRGJNIScisabuz1sRtUN0qC1yJyfH5JxzE4GJZraF7ngIT6odysrKxqQvf/69EZgLTjxk+wRDsA7UfZKhthMRiUSCIw4fndlJhoxORDRi3brWsSKypa62iJUlS+COO+Cuu/x8IpwdR51dFWZ9v34kb+ui/TZhlyFNsXgx3HabH7fhu+/8sk03hQMOCKUchZyIZMeiRXDrrXDNNTAvOFu/xRa+/7jf/U5bciKSpxYu9F2aX3edH2kLYKutfLjtsUeLdWueKYWciDTN/Plwww3+K3UCZdtt/ZgNu+wSerilKOSEwuQyKFgWzGXvxEPNQXuJlXnz/DCCN99c0+vv0KE+3IYOjUy4peiOhzyU7TseRu94S4vf8ZAKP1d9FrWhDjUNPvlrzXRYt3Klv2/R1rDWg5n+yPHz3Xf+eNutt/rR7sFvsZ1/Pmy/fbi11UNbcpITVp0tqc+4DD7r3PK06ayX1HgF64RdQTi++cYPRHP77bB0qV+2xx4+3LbeOtzaMqCQE5G6vfSSH2FrWXA4Y+RIH26DBoVbVyMo5ESkblOm+IDbemt/7dtmm4VdUaPp3lURqVvqOMN338GMGbBiRf3rR5BCTkTqtvfe0K8fzJoFhx4KG20Ed98Ny5c39MzIUMiJSN0GDoRPP/X3nw4YAF98AX/8I2ywAYwbV3OsLsIUciJSv8JCGD0aPvoI7r/fb83Nng3HHOOD75Zbas66RpBCTkQyU1AAhxwC778PDz/st/L+9z84/njYeOOaux4iRiEnIo2TTMKBB8K778Jjj0HXrn7L7osvwq6sVgo5EWmaRAL23Rf69g27knrpOjkRaZrvvoO//Q0+/NDPh9SVUkMUciLSOMuWwXnn+XtYlyzxy/be2x+XiyCN8dCKqB2iI6/b4t//9ltwS5b4zjDfegsefxzatg27slppjIdWpK5xBf7z9u9xVUGvEi05oPQq69Q/1kMikeTYY/9U/fxm9R6StXUKyZa8HuMhdbnIAQfAI4+EW0sGtLsqfD1/nWiO8dA2mrs/EijIj/iI5pFCEZEsUciJSKwp5EQkc87BV1+FXUWjKOREpGHOwTPPwHbbwTnn+GU9eoRbU4by48ihiITDOX/JyCWX+EtFwN/GdeqpcMop4daWIYWciPxaVRU88QRceim8845f1qMHnH46/OlP0KlTqOU1hkJORGqsXAkTJvhwe/99v6xXLzjzTDj6aOjQIdz6mkAhJyK+W/NHHvHh9vHHflmfPnDWWXDkkVBUFG59zaBxV/NQtsddPWjbOyluP9/P1DkOaiZjpTZiHbfa+qutAwmY80wwnePxVetap+1A6HERsbJ8OYwfD5ddBp9/7pf17etPLhxxRGRv1WoMbckJnYsW0rVjRdhl/NqSL8OuYFUrfwy7guyprIR774XLL/d9wQGstx6ce64fy6Ewe7ewhU0hJ9KaLF3qx2u44oqa69023ND3KnLwwXlzq1ZjxO8nEpFf++UXuOMOuOoq+OYbv+z//g/GjoX99/e9/caUQk4kzn7+2Q8KffXV8P33ftlmm8H558M++0S2o8tsUsiJxNFPP/lRtK69FubN88vKyny4jRiRdqIl/hRyInGyYAHceCNcfz1UBCeTtt4aLrgAdtutVYVbSk5Drry8fLo6zYyep9/ZGyPoNDPrnWPWsY5L6yizlg40E4kkRx01pvo5kbiEJBHhyyl+/NEH2403+q04gB128Ftuw4a1ynBLyUnImdkIYARQnIv3k9ql2mHAgAGrLP/qx3Wj2Wlmu83DLqPF1NUWTTJjhr9xPhVuw4b5cBsypPmvHQM5OeronJvonDsayMMO7eMj1Q7FxfqsCVtW2+Ljj2sCDuDCCxVwaeJ/akUk7vbZx9+x0LWrn99rr3DriRiFnEi+KyjwdyrMnOnnFy0Kt56IUciJxEXHjmFXEEkKORGJNYWciMSaQk5EYk0hJyKxppATkVhTyInExfLlYVcQSQo5kXy3bBn8/e++80vI6/EYWoJ6IRHJV0uW+I4wr7yypiPMjTf2fcdJNYWcSL5ZvLimI8zvvvPLNt3U9/K7336toiPMxlDIieSLRYvg1lvhmmtqOsLcYgvf48jvfqdwq4NCTiTqFi6Em26C666D+cHQkVtt5cNtjz1adV9xmVDIiUTV/Plwww3+a2HQS9l22/lefnfeWeGWIYWcSNSsXAmXXOLHZ0j1KLLjjj7chgxRuDWSQk4kat59Fy66yE8PH+53S7fbLtya8pi6P29FstrltjRLvW2xbJn//tvfwrPP5rSuOMpJyDnnJgITzWxaLt5Papdqh7KysjHpy3fY+DmKCn332XUNLJPJ4DMZrRNMNzTgjSUS8ENl9fLQBq9JX6egD3QaSTbU1Rar0NnSrMjp7mppaemgiooK1/CaUp+SkpKsHpTZqPf7dOs0L5svmR0/Tm7Gk1cPrtWWNSUsi7bPWshJ7mhIQuGhKUeyYsXSYC7LQw8G60DjtgCTiSRnn30OjQ8lkVXpxIOwaGkxlZXRut/RkYREu7DLkBjQTr+IxJpCTkRiTSEnIrGmkBORWFPIiUisKeREJNYUciISawo5EYk1hZyIxJpCTkRiTSEnElULFtR0milNppATiZpu3fz3jz+Gfv18L8FLl9b7FKmbQk4kajbYACZN8r0Bz5/vuz2/9tqwq8pbCjmRKNppJ3jlFTjzTD9fURFuPXlMIScSVWbQvXvYVeS9nIScmY0ws3FojIdQpdphYWp4OwlNg22xYgXcey/cdpufV1foTZaT35xzbqJz7mhAf10hSrVDcbE+a8JWb1tMnQobbghHHAEzZ0L//nDwwTmvMS708SASNf/4hw+3AQP81tynn0JpadhV5S11fy4SNStX+u/nnAOHHRZuLTGgLTkRiTWFnIjEmkJORGJNIScisaaQE5FYU8iJSKwp5EQk1hRyIhJrCjkRiTWFnIjEmkJORGKtwXtXzewuYC/ge+fcwGBZV+ARoB8wGzjAOade/fLUgF4fk2AxAM4BmJ8GcGnTqeVNWSdYr3oaC9YJpldbJ5lIwuKXql8Ds5pp6piud53guzXwGvW9XqIDFPZF8ksmN+jfA9wM3Je27GxgknPuCjM7O5g/q6EXKi0tHVRRUeEaWk/qV1JSYg2vlbmdBv6Xbp3mZfMls+Oru8OuYFVFQ6Dvy2FXIY3UYMg5514xs36rLR4JDA2m7wVeJoOQKy8vn15SUlLWuBKlpT029RCqVi4J5urfwvrVdCbrN2ELMJlMcvLJp1Dn1lajt8gaWLdR60g+aWpXSz2dc3MBnHNzzWyNLNYkOfbjojWorKwMu4xVJJNJKOgVdhkSAy1+4sHMjjazaWY2DVCH9SFJb4cffvgh7HJaNbVFbjU15L4zszUBgu/f17Wic26cc67MOVcGRPDAT+uQ3g49evQIu5xWTW2RW00NuaeAw4Ppw4Ens1OOiEh2NRhyZvYQ8AawoZn9z8yOBK4AdjGzz4BdgnkRkcjJ5OxqXcMEDctyLSIiWac7HkQk1hRyIhJrCjkRiTWFnIjEmkJORGJNIScisaaQE5FYU8iJSKwp5EQk1hRyIhJrCjmRKHn7bZg2LewqYqWpnWaKSDbNnw9HHAETJ/r5oiLYfPNQS4oLbcmJRMF//uMDrqgITjsNZs5UyGWJtuREomDFCv/9wAPhmmvCrSVmcrIlZ2YjzGwcUJyL95Papdph4cKFYZfS6qktcicnIeecm+icOxpQi4Yo1Q7FxfqsCZvaInd0TE5EYk0hJyKxppATkVhTyIlIrCnkRCTWFHIiEmsKOZEomTULFiwIu4pYUciJREHfvv775Ml++sYbw60nRhRyIlGw007w8suw447w009wxhlhVxQbCjmRqBgyBJ5/3k+n7mWVZlPIiUisKeREJNYUciISawo5EYk1hZyIxJpCTkRiTSEnIrGmkBORWNMYD62IxhWIDrVF7miMh1ZE4wpEh9oid7S7KiKxppATkVhTyIlIrCnkRCTWFHIiEmsKORGJtYKwC5Dwbdp3GoWJnwFwDsD8NIBLm04tz8I6/vFgOjXpaqYTloSFDwarWPVr+e91TFsLr5PsCu02R/JLTkOutLR0UEVFhWt4TalPSUmJNbxW5jZdZzrF7edXz7vUH7ZLmwacsyavs8p8bev9ah2D+TOzF1yNWbeuddpuqpDLQzkNufLy8uklJSVluXxPadgDrx5DZWVl2GWsIplMMnbs2LDLkBjQMTkRiTWFnIjEmkJORGJNIScisaaQE5FYU8iJSKwp5EQk1hRyIlFUVQX33APLl4ddSd5T9+etiLrcjo462yKRgMGD/fTo0bDxxvDll7kvMEbU/Xkroi63o6POtjCDV16B++6D3r3hiy/8vDSZdldFoqagAA49FIYODbuSWFDIiUisKeREJNYUciISawo5EYk1hZyIxJq6PxeJGudg4kR47bWwK4kFhZxI1Oy2Gzz3nJ/u1avm4mBpEu2uikTJypU1AXf99f5i4PXWC7WkfKctOZEoSiTgpJPCriIWtCUnEkXO+Zv0pdkUciJRYgaFhT7kNtsM/vlP0gaplSZQyIlESSIBd90FffrA++/DAQfUHKOTJlHIiUTNIYfA55/Dzjv7+R9+CLeePKeQE4mitm2hZ8+wq4gFhZyIxJpCTkRiTdfJCTsN/C9FbYJOmx04rPox59KmU8sdEEw7AJc2nVrewDo1JwyN6klXM22WgO8XVK9DdU2rTVsdy2ubtmauU7gOdD4QyS85CTkzGwGM6N+//6CKigqdD2+mkpISa3itX0u1w4ABA1ZZ3qZgGW0LllXPp4dZJoGXWSg2sN5qoWeWgJULaVRA1Rt6qy1rSuBV/Uy21NUWtXr1Vdh7b+jYMWvv35rkJOSccxOBiWa2RUlJSVku3lN+LdUOZWVlY9KXP1O+D5WVlSFVVbtkMsnmu48Nu4wWU1dbrGLgQP993Dh47DE45RQ4/njQGB2NomNyIlF11lnwzDOwzTbw448wdiz06wcXXggVFWFXlzcUciJRZQa77gpTpsCkSX5gmwUL4KKLoG9fOO88mDcv7CojTyEnEnVmsNNO8NJLMHmyv0h40SK4/HK/ZXfmmfDdd2FXGVkKOZF8ssMO8Pzz8PrrsPvusHgxXH019O8Pp54Kc+eGXWHkKORE8tHgwfDf/8Jbb8HvfgdLlsB11/mwO+EE+OqrsCuMDIWcSD4rK4Mnn4R33oH99oNly+Dmm31Hm8ceC7Nnh11h6BRyInFQWgoTJsCMGXDQQbBiBdx+O6y/Phx5pL/hv5VSyInEycCB8NBD8OGHcOihvuPNu+6CDTf08x9/HHaFOaeQE4mjjTaC++6DTz6BP/7R91P3wAOwySZw8MG+r7pWQiEnEmcDBsCdd8Jnn8Exx0BBATz8MPzmN/D730N5edgVtjiFnFDU5mc6tFvkv9r+TPvqr8UUtUl9/UK71FfhEtpWfy2lTUHqaxmFqa9kJQXVX8spSC4nmVhOMrGCZGIFicQKEraShK3EbCVmVZhVAVX4G1l1i3NW9esHt93mR/86/njfX91jj8Hmm8PIkTBtWtgVthhzOew/fvPNN3cvvvhizt4vrpp6g35KWVmZmxb8p54xYwZrLd2Jbp2ifuV8c3siofk3+RdtC33+VVOR2XTnXLPuxU5vi5z65hu45hoffEuW+GW77w7nn5+X47zW1xY57WqpvLx8um7Qj56J0/eHKv8fvaldJzW8jn+soS6WUtPJZJI/HXtcFrtSCr5n8np1rWMx6plsrbXg2mv9/bF/+xvceis8/bT/2nlnH3Y77BB2lVkRo1aTpppbsXYkeyGh7YZhlxF/PXvCVVf5W8Ouuw5uugleeMF/DRkCF1wAO+6YFvz5R8fkRAS6d4fLLoM5c+Avf4EuXfx9ssOGwXbbwbPP5u3QiAo5EalRUuK7cpo9Gy69FLp29ffJ7rYbbLWV353NMwo5Efm14mLfldPs2XDlldCjh79Pdo894O23w66uUXIScmY2wszGAerSNESpdli4cGHYpbR6edMWnTr543WzZkHnzn7ZYYfBBx+EW1cj5PQSEjOb1txT7tJ8q19CMu+TM2hb8FPwaAZnQJuwDjTurKwlEuw8bGcyO3Oa5bOrdb1eQS/osEvNT5jPl5A0xR13wJ//DMuX+9/Nfvv53oo32yzsyqJzCUlpaakGssmC5l4nt7pN+06P5nVyPzwbdgWrKhqySsi1OmPG+J6Kr7wS/vEP3yHAhAn+YuLzz4dBg8KusFY6JicimVtnHbjlFpg5E046Cdq18109lZXBnnvCm2+GXeGvKOREpPF694brr/fH6k4/Hdq39514Dh4Mw4f7cSkiQiEnIk3Xq5fvfn32bDjnHD827PPPw/bb+4uIX3op9OvrFHIi0nw9eviBdebM8XdJFBfDyy/7AXh22AGeey60sFPIiUj2dO3qh0ycPRsuucRfXDxlij9hMXgw/Oc/OQ87hZyIZF+XLv7ykjlz4Ior/G1jU6fCXnv5kxRPPOF7Lc4BhZyItJxOnXxPJ7Nn+95Oevb0d0zss48fl+Kf/2zxsFPIiUjL69DBjws7axbceKM/OztjBhxwgB+X4sEHYeXKFnlrhZyI5E5RkR8X9osv4O9/99fdffQRjBrlx5+4914/0lgWKeREJPfatvXjwn72mb97Yt114dNP4Ygj/MhiWRx7QiEnIuFp08aPC/vJJ34rDvzdFH/5S9beQiEnIuErKPC9m9x4o59/6infDfvkyc1+aYWciETHmDH+Zv/OnWHSJBg61HfD/sILTb6+TiEnItHRrh1cfLG/vu6ii/zFxK+8ArvsAttu63smbmTYKeREJHq6dPG3h82e7W8X69YN3njD90z829/6LtkzpJATkejq3Nnf+D97tu8IYI01/EDYJ52U8UvktPvzyHf1HHNqh+hQWzRSx46+S6dng45Uv/8+46fmJOSccxOdc0cXF2uIhzCpHaJDbdFE7dr5719+6bfuMqDdVRHJHxtsUDP97bcZPUUhJyL5I5Hw47825iktVIqISCQo5EQk1hRyIhJrOR13VUSkyZzzl5DMmtWop2lLTkSizTmYONGfcNh9d3+NXK9eMGBARk9XyIlINFVVweOPw6BB8LvfwVtv+VHBrrzS9z3XvXtGL6PdVRGJlpUr4bHH/Ghf77/vl/XqBWeeCUcf7btSbwSFnIhEw4oV8MgjcOml8PHHflnv3nD22b5jzaKiJr2sQk5EwrV8OYwf73sb+ewzv6xvX39j/hFH+K7Sm0EhJyLhqKz0XZ7/9a81Z0zXXRfOOw8OPRQKC7PyNgo5EQnHkCHw5pt+eoMN/GDUBx/su0LPIoWciOTet9/C1Kl+evx4OPBASCZb5K10CYmI5M7XX/sOL/v399e/dekCBx3UYgEHCjkRyYU5c+C44/wxtxtvhKVLYZ994NVXfc8iLUi7q9JozoFzVjOPpSZqpmniOq5mun379sEjFnzVMm11LK9t2pq5Tpv+SCPNnOlPLNxzj79ExAwOOMAff/vNb3JSQk5Drry8fHpJSUlZLt9TGvaPSSdRWVkJpDLG/2H7QZHS/+BzJ5lMMnbs2Jy+p2TRp5/6S0IeeMBf3JtIwKhR/szpxhvntJSchJyZjQBGAOrrOUSpdhiw2j1/ZlUkElXAqsHmLPVPdMIvLupqi7y3dCkceyzcf7+/LSuZ9Ne6nXsurL9+KCWZa+KArU2x+eabuxdffDFn7xdXJSUlzUqWsrIyN23aNABmzJjBWkt3olunec2uq8m7sW619YPpdm2D/vybsovaErux7baCte6rrtHMpjvnmrVnkt4WsTBlCmy/vb8MZPRof7fCuuu2+NvW1xY6JidZYwZm6R+azfwArVrWvOdnW3LNsCuIvhUr/Pdtt4Vx48KtJaCzqyKSPUuWhF3BryjkRKT5Ute/7buvn29kTyEtSburItJ0c+b4/t3uvNPfiwr++rerrgq3rjQKORFpvAhc/5YpXScnvDunjLbJRUBwqqCBy0aysU71KQmXNo2ROtlviSTDdxlevTwSZ1eTPWn1InT9W6a0JSdM/WyH6ouBoyKZTDL8wJPDLkNSPvwQLrsMHn44Mte/ZUohJyJ1e+8931PvhAl+M7yw0PfSm6Pr37JBISciv/b2236MhSee8PNt2sBRR8FZZ8E664RaWmMp5ESkxtSpPtz+8x8/364dHHMMnHGGH28hDynkRMTfjnXJJfDcc36+fXvfNdJpp/mRsvKYQk6ktXIOJk+Giy+Gl17yyzp2hOOPh1NP9WOcxoBCThi+6VO0b7sAyPDm+WasU335SEO9m1gCvp1b/Zys9QnXmHVWvxSlsB8UH0becw5eeMGH25QpfllxMZx4Ipx8MnTtGmp52ZbTkCstLR1UUVGRu25PYqq5vZCsrmvHeXRuP796viU6xKxeL8NANDNY9h7ZC7HGrFvHOm4lec05ePppH26p8RVKSuCUU+CEE3xX5DGki4GFh1//YySvk1OnmVlSVQVPPeUvBZk+3S/r3t0fbzvuOOjcOdz6Wph2V0XibP58GD68Jtx69vRnSo89NlI30bckhZxInE2b5gOupAQuvBDGjIGiorCryqmcdLVkZiPMbBzq/jxUqXZYuHBh2KW0ejlri2++8d+33NKfWGhlAQc52pJzzk0EJppZjPp5zj+pdigrKxuTvnyd7jMx94tfByJxg34ikYSlb1cvb9aN+Nm6WT/RDpLdyIa62iJr3njDX/f29NN+vlt26s5HOruah7J9dnW30ieyMsZD1s2+LewKVlU0BPq+HHYV9XvlFR9uL7zg5zt08CcXzj473LpCpGNyIvnOOX8x78UX+4t7ATp18peFnHKKP5PaiinkBOeMqqrUrmX2LwBu0vV1Bp07dSZ7u6n1rJvphcFtNyRSnPO3YV18Mbz+ul9WXOwv6D3xxNhd1NtUOR2S0Myecc7tlrM3lFqZ2Q/AnLRF3YEI7q9GUvrvqq9zrln3PuVZW0S5tjrbIqchJ9FkZtOaO35oa9HSv6sot0WUa6uPRusSkVhTyIlIrCnkBCAaQ53nh5b+XUW5LaJcW510TE5EYk1bciISawq5Vs7MdjOzT8zsczNrvZfFN8DM7jKz783s/RZ6/ci1g5nNNrMZZlaeuiXTzLqa2fNm9lnwvSTsOhuikGvFzCwJ3ALsDmwCHGxmm4RbVWTdA7TINZ4Rb4cdnXOlaZeOnA1Mcs6tD0wK5iNNIde6/Rb43Dk30zlXCTwMjAy5pkhyzr0CzG9wxabJp3YYCdwbTN8L7B1eKZlRyLVuvYGv0ub/FyyT3IpqOzjgOTObbmZHB8t6OufmAgTf1witugzp3tXWrbbeTHS6Pfei2g7bOue+MbM1gOfN7OOwC2oKbcm1bv8D1k6b7wN8E1ItrVkk28E5903w/Xvgcfxu9XdmtiZA8P378CrMjEKudXsLWN/M+ptZG+Ag4KmQa2qNItcOZtbBzDqlpoHhwPtBXYcHqx0OPBlOhZnT7mor5pxbYWbHA88CSeAu59wHIZcVSWb2EDAU6G5m/wP+4py7MxuvHdF26Ak8br67qgLgQefcM2b2FvComR0JfAnsH2KNGdEdDyISa9pdFZFYU8iJSKwp5EQk1hRyIhJrCjkRiTWFnIjEmkJORGJNIScisfb/ATb5fPY6ZFnfAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 360x576 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(5, 8), ncols=3, sharey=True)\n",
"\n",
"s.plot(ax=ax[0])\n",
"ax[0].set_title('Striplog')\n",
"\n",
"# Fake a striplog.\n",
"ax[1].fill_betweenx(z, 0.5, 0, color='grey')\n",
"ax[1].fill_betweenx(z, L, 0, color='gold', lw=0)\n",
"ax[1].set_title('Faked with log')\n",
"\n",
"ax[2].plot(prop, z, 'r', lw=2)\n",
"ax[2].set_title(f'% sand, {window_length} m')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "parallel-bones",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "welly",
"language": "python",
"name": "welly"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment