Last active
December 6, 2019 19:01
-
-
Save lambdabaa/cd9c773804e6a8b460aee761c69fe05d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import json\n", | |
"import numpy\n", | |
"from tensorflow import keras\n", | |
"\n", | |
"_MODEL_DIRECTORY = '.'\n", | |
"_BATCH_SIZE = 128\n", | |
"_EMBEDDING_SIZE = 256\n", | |
"_HIDDEN_LAYER_SIZE = 256\n", | |
"_PROJECTION_LAYER_SIZE = 256\n", | |
"_VALIDATION_SPLIT = 0.05\n", | |
"_LOOKBACK = 100\n", | |
"\n", | |
"def create_model(input_length, input_vocab_size, output_vocab_size):\n", | |
" model = keras.models.Sequential()\n", | |
" model.add(keras.layers.Embedding(input_vocab_size, _EMBEDDING_SIZE, input_length=input_length))\n", | |
" model.add(keras.layers.BatchNormalization())\n", | |
" model.add(keras.layers.GRU(_HIDDEN_LAYER_SIZE, unroll=True))\n", | |
" model.add(keras.layers.BatchNormalization())\n", | |
" model.add(keras.layers.Dense(_PROJECTION_LAYER_SIZE, activation='linear'))\n", | |
" model.add(keras.layers.Dropout(0.5))\n", | |
" model.add(keras.layers.Dense(output_vocab_size, activation='softmax'))\n", | |
" model.compile(optimizer=keras.optimizers.SGD(momentum=0.9, nesterov=True, clipnorm=1.0),\n", | |
" loss='categorical_crossentropy',\n", | |
" metrics=['accuracy', 'top_k_categorical_accuracy'])\n", | |
" return model\n", | |
" \n", | |
"class Sequence(keras.utils.Sequence):\n", | |
" def __init__(self, X, Y, vocab_size):\n", | |
" self._X = X\n", | |
" self._Y = Y\n", | |
" self._vocab_size = vocab_size\n", | |
" self.on_epoch_end()\n", | |
" \n", | |
" def on_epoch_end(self):\n", | |
" randomize = numpy.arange(len(self._X))\n", | |
" numpy.random.shuffle(randomize)\n", | |
" self._X = self._X[randomize]\n", | |
" self._Y = self._Y[randomize]\n", | |
" \n", | |
" def __getitem__(self, idx):\n", | |
" start = idx * _BATCH_SIZE\n", | |
" end = start + _BATCH_SIZE\n", | |
" X = []\n", | |
" for token_list in self._X[start:end]:\n", | |
" row = numpy.zeros(_LOOKBACK)\n", | |
" for idx, token in enumerate(token_list[-_LOOKBACK:]):\n", | |
" row[idx] = token\n", | |
" X.append(row)\n", | |
" return (\n", | |
" numpy.array(X),\n", | |
" keras.utils.to_categorical(\n", | |
" self._Y[start:end], num_classes=self._vocab_size))\n", | |
" \n", | |
" def __len__(self):\n", | |
" return int(numpy.floor(self._Y.size / _BATCH_SIZE))\n", | |
"\n", | |
"class RNN:\n", | |
" def __init__(self, vocabulary, word2idx, idx2word, lookback):\n", | |
" self._vocabulary = vocabulary\n", | |
" self._word2idx = word2idx\n", | |
" self._lookback = lookback\n", | |
" self._idx2word = idx2word\n", | |
" self._model = None\n", | |
"\n", | |
" def fit(self, X, Y):\n", | |
" split = int(len(Y) * _VALIDATION_SPLIT)\n", | |
" X_train = X[split:]\n", | |
" Y_train = Y[split:]\n", | |
" X_validate = X[:split]\n", | |
" Y_validate = Y[:split]\n", | |
" input_vocab_size = len(self._vocabulary)\n", | |
" output_vocab_size = len(self._idx2word) + 100\n", | |
" self._model = create_model(self._lookback, input_vocab_size, output_vocab_size)\n", | |
" self._model.summary()\n", | |
" generator = Sequence(X_train, Y_train, output_vocab_size)\n", | |
" validation_generator = Sequence(X_validate, Y_validate, output_vocab_size)\n", | |
" self._model.fit_generator(generator, validation_data=validation_generator, verbose=2, epochs=1)\n", | |
" \n", | |
" def predict(self, x):\n", | |
" return self._model.predict(x)\n", | |
" \n", | |
" def save(self, output_directory):\n", | |
" self._model.save('%s/model.h5' % output_directory)\n", | |
" print('Loading training data...')\n", | |
"\n", | |
"def main():\n", | |
" with open(_MODEL_DIRECTORY + '/x.json', 'r') as file:\n", | |
" inputs = numpy.array(json.load(file))\n", | |
" with open(_MODEL_DIRECTORY + '/y.json', 'r') as file:\n", | |
" outputs = numpy.array(json.load(file))\n", | |
" with open(_MODEL_DIRECTORY + '/word2idx.json', 'r') as file:\n", | |
" word2idx = json.load(file)\n", | |
" vocabulary = set(word2idx.keys())\n", | |
" with open(_MODEL_DIRECTORY + '/idx2word.json', 'r') as file:\n", | |
" idx2word = json.load(file)\n", | |
" model = RNN(vocabulary, word2idx, idx2word, _LOOKBACK)\n", | |
" model.fit(inputs, outputs)\n", | |
" print('Saving model to %s...' % _MODEL_DIRECTORY)\n", | |
" model.save(_MODEL_DIRECTORY)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%%capture cap\n", | |
"main()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"cap.stdout" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment