Skip to content

Instantly share code, notes, and snippets.

View lampts's full-sized avatar
💭
in the flow

Pham Thanh Lam lampts

💭
in the flow
View GitHub Profile
@bwhite
bwhite / rank_metrics.py
Created September 15, 2012 03:23
Ranking Metrics
"""Information Retrieval metrics
Useful Resources:
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt
http://www.nii.ac.jp/TechReports/05-014E.pdf
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf
Learning to Rank for Information Retrieval (Tie-Yan Liu)
"""
import numpy as np
@mminer
mminer / cachedecorator.py
Created January 12, 2015 23:57
An example of a Python decorator to simplify caching a function's result.
"""An example of a cache decorator."""
import json
from functools import wraps
from redis import StrictRedis
redis = StrictRedis()
def cached(func):
@fchollet
fchollet / keras_intermediate.py
Created May 28, 2015 17:34
Defining a Theano function to output intermediate transformations in a Keras model
import theano
from keras.models import Sequential
from keras.layers.core import Dense, Activation
X_train, y_train = ... # load some training data
X_batch = ... # a batch of test data
# this is your initial model
model = Sequential()
model.add(Dense(20, 64))
@vasanthk
vasanthk / System Design.md
Last active November 14, 2024 11:31
System Design Cheatsheet

System Design Cheatsheet

Picking the right architecture = Picking the right battles + Managing trade-offs

Basic Steps

  1. Clarify and agree on the scope of the system
  • User cases (description of sequences of events that, taken together, lead to a system doing something useful)
    • Who is going to use it?
    • How are they going to use it?
@vadimkantorov
vadimkantorov / argparse_dict_argument.py
Last active December 29, 2023 22:05
A one-line example enabling Python's argparse to accept dictionary arguments
# Example:
# $ python argparse_dict_argument.py --env a=b --env aa=bb
# Namespace(env={'a': 'b', 'aa': 'bb'})
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', action = type('', (argparse.Action, ), dict(__call__ = lambda a, p, n, v, o: getattr(n, a.dest).update(dict([v.split('=')])))), default = {}) # anonymously subclassing argparse.Action
print(parser.parse_args())
from __future__ import print_function
import os
import numpy as np
from keras.layers import RepeatVector
from keras.layers.core import Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.models import load_model
@lampts
lampts / gensim2projector_tf.py
Last active December 7, 2020 22:37
how to convert/port gensim word2vec to tensorflow projector board.
# required tensorflow 0.12
# required gensim 0.13.3+ for new api model.wv.index2word or just use model.index2word
from gensim.models import Word2Vec
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
# loading your gensim
model = Word2Vec.load("YOUR-MODEL")
@gyglim
gyglim / tensorboard_logging.py
Last active August 23, 2023 21:29
Logging to tensorboard without tensorflow operations. Uses manually generated summaries instead of summary ops
"""Simple example on how to log scalars and images to tensorboard without tensor ops.
License: BSD License 2.0
"""
__author__ = "Michael Gygli"
import tensorflow as tf
from StringIO import StringIO
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from collections import Counter
import tensorflow as tf
from tffm import TFFMRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
# Loading datasets'
@m-root
m-root / vsa.py
Last active July 22, 2024 15:16
Volume Spread Analysis
import talib
import statsmodels.api as sm
import pandas as pd
def initialize(context):
context.security = symbol('AAPL')
#set_universe(universe.DollarVolumeUniverse(floor_percentile=98.0,ceiling_percentile=100.0))
def bar_data(OHLC_type, bars_nr):
bar_data_func = (history((bars_nr + 1), '1d', OHLC_type).iloc[0]).astype('float')