Skip to content

Instantly share code, notes, and snippets.

@AndrewShang
AndrewShang / gist:8a14e78f5eb03a0fb91248540041cc7d
Created April 12, 2016 02:26
The Data set of Neural Responding Machine for Short-Text Conversation
This
@danijar
danijar / blog_tensorflow_scope_decorator.py
Last active January 17, 2023 01:58
TensorFlow Scope Decorator
# Working example for my blog post at:
# https://danijar.github.io/structuring-your-tensorflow-models
import functools
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def doublewrap(function):
"""
A decorator decorator, allowing to use the decorator to be used without
# pylint: disable=C0111,too-many-arguments,too-many-instance-attributes,too-many-locals,redefined-outer-name,fixme
# pylint: disable=superfluous-parens, no-member, invalid-name
import sys
sys.path.insert(0, "../../python")
import mxnet as mx
import numpy as np
import cv2, random
from io import BytesIO
from captcha.image import ImageCaptcha
@danijar
danijar / blog_tensorflow_variable_sequence_classification.py
Last active December 31, 2021 10:04
TensorFlow Variable-Length Sequence Classification
# Working example for my blog post at:
# http://danijar.com/variable-sequence-lengths-in-tensorflow/
import functools
import sets
import tensorflow as tf
from tensorflow.models.rnn import rnn_cell
from tensorflow.models.rnn import rnn
def lazy_property(function):
@monikkinom
monikkinom / rnn-lstm.py
Last active September 3, 2019 04:44
Tensorflow RNN-LSTM implementation to count number of set bits in a binary string
#Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/
import numpy as np
import random
from random import shuffle
import tensorflow as tf
# from tensorflow.models.rnn import rnn_cell
# from tensorflow.models.rnn import rnn
NUM_EXAMPLES = 10000
@j314erre
j314erre / text_cnn.py
Created July 13, 2016 00:00
load pre-trained word2vec into cnn-text-classification-tf
import tensorflow as tf
import numpy as np
class TextCNN(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
def __init__(
@korakot
korakot / projector.md
Last active December 29, 2023 13:15
Load data to Embedding Projector

Tensorboard Embedding Projector can load external data from gist.

Call them with your own config like this http://projector.tensorflow.org/?config=https://gist.githubusercontent.com/korakot/c480edd1fcf7e02c49ccddbf5ac43fb9/raw/21bcc93899e0a3db334e4d04b7f6ef7d6c2b09c8/config.json

  • tensorPath: numerical data without column name, in bytes or tsv format
  • metadataPath: labels or field columns. If it's just 1 column, assume it to be label and don't need the first line.

More details from announcment, how-to,

@lampts
lampts / gensim2projector_tf.py
Last active December 7, 2020 22:37
how to convert/port gensim word2vec to tensorflow projector board.
# required tensorflow 0.12
# required gensim 0.13.3+ for new api model.wv.index2word or just use model.index2word
from gensim.models import Word2Vec
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
# loading your gensim
model = Word2Vec.load("YOUR-MODEL")
@jihunchoi
jihunchoi / masked_cross_entropy.py
Last active January 22, 2024 19:20
PyTorch workaround for masking cross entropy loss
def _sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.range(0, max_len - 1).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_range_expand = Variable(seq_range_expand)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = (sequence_length.unsqueeze(1)
from graphviz import Digraph
from torch.autograd import Variable
import torch
def make_dot(var, params=None):
if params is not None:
assert isinstance(params.values()[0], Variable)
param_map = {id(v): k for k, v in params.items()}