Skip to content

Instantly share code, notes, and snippets.

View larsoner's full-sized avatar

Eric Larson larsoner

View GitHub Profile
# In fsaverage/mri ran:
#
# $ mri_aparc2aseg --s fsaverage --volmask --annot HCPMMP1
# $ mri_aparc2aseg --s fsaverage --volmask --annot HCPMMP1_combined
#
# Then this script can be used to create the lookup table for atlas_ids.
import os.path as op
import numpy as np
import mne
import os
import time
from datetime import datetime, timezone, timedelta
import mne
import numpy as np
import h5py
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os.path as op
import mne
from mne import compute_rank
from mne.beamformer import make_lcmv
data_path = mne.datasets.testing.data_path()
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
raw = mne.io.read_raw_fif(fname_raw).fix_mag_coil_types()
# -*- coding: utf-8 -*-
"""
============================
Plot a cortical parcellation
============================
In this example, we download the HCP-MMP1.0 parcellation [1]_ and show it
on ``fsaverage``.
We will also download the customized 448-label aparc parcellation from [2]_
# -*- coding: utf-8 -*-
"""Some utility functions."""
# Authors: Alexandre Gramfort <[email protected]>
#
# License: BSD (3-clause)
from collections.abc import Iterable
import time
import logging
import tempfile
@larsoner
larsoner / linalg.py
Created February 6, 2020 18:35
optimized_svd_algs
import numpy as np
###############################################################################
# Optimized SVD
def _check_transpose(x):
if x.shape[-2] < x.shape[-1]:
x = x.swapaxes(-2, -1)
transpose = True
def get_atlas_roi_mask(stc, roi, atlas='IXI', atlas_subject=None,
subjects_dir=None):
"""Get ROI mask for a given subject/atlas.
Parameters
----------
stc : instance of mne.SourceEstimate or mne.VectorSourceEstimate
The source estimate.
roi : str
The ROI to obtain a mask for.
atlas : str
"""
export MRI=/mnt/bakraid/larsoner/mri/Infants/Sources/BEM/AVG7-5Months3T_segmented_BEM4.nii.gz
mri_binarize --i $MRI --o inner_skull.mgz --min 1 --max 2
mri_binarize --i $MRI --o outer_skull.mgz --min 1 --max 3
mri_binarize --i $MRI --o outer_skin.mgz --min 1 --max 4
mri_tessellate inner_skull.mgz 1 lh.inner_skull_dense
mri_tessellate outer_skull.mgz 1 lh.outer_skull_dense
mri_tessellate outer_skin.mgz 1 lh.outer_skin_dense
mris_extract_main_component lh.inner_skull_dense lh.inner_skull_dense
mris_extract_main_component lh.outer_skull_dense lh.outer_skull_dense
import numpy as np
import matplotlib.pyplot as plt
rng = np.random.RandomState(0)
groups = ('TD', 'ASD')
conditions = ('space', 'both', 'pitch')
data = dict( # create some fake data that will plot trends nicely
TD=rng.rand(10, 3) + np.array([0, -0.5, 0.5]) + 1,
ASD=rng.rand(12, 3) + np.array([0, 0.5, 0.]) + 1,
)
import numpy as np
import matplotlib.pyplot as plt
import mne
data_path = mne.datasets.testing.data_path()
subjects_dir = data_path + '/subjects'
evoked = mne.read_evokeds(
data_path + '/MEG/sample/sample_audvis-ave.fif')[0]
evoked.apply_baseline((None, 0))