Created
March 28, 2017 04:52
-
-
Save lbollar/f7bf60762817a6991038f4323c28f5aa to your computer and use it in GitHub Desktop.
Linear regression example using Pytorch.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"from torch.autograd import Variable\n", | |
"\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"0 202.09515380859375\n", | |
"10 171.15576171875\n", | |
"20 144.06959533691406\n", | |
"30 120.9667739868164\n", | |
"40 101.63298034667969\n", | |
"50 85.61366271972656\n", | |
"60 72.35327911376953\n", | |
"70 61.30906295776367\n", | |
"80 52.017799377441406\n", | |
"90 44.118812561035156\n", | |
"100 37.34712219238281\n", | |
"110 31.512853622436523\n", | |
"120 26.4785099029541\n", | |
"130 22.140188217163086\n", | |
"140 18.414417266845703\n", | |
"150 15.23002815246582\n", | |
"160 12.523662567138672\n", | |
"170 10.237588882446289\n", | |
"180 8.318814277648926\n", | |
"190 6.718794822692871\n", | |
"200 5.393377304077148\n", | |
"210 4.302750110626221\n", | |
"220 3.411351442337036\n", | |
"230 2.6877212524414062\n", | |
"240 2.1042821407318115\n", | |
"250 1.6370915174484253\n", | |
"260 1.2655516862869263\n", | |
"270 0.9721100926399231\n", | |
"280 0.7419456839561462\n", | |
"290 0.5626537799835205\n", | |
"300 0.42395275831222534\n", | |
"310 0.31739136576652527\n", | |
"320 0.23608431220054626\n", | |
"330 0.17447291314601898\n", | |
"340 0.12810657918453217\n", | |
"350 0.0934523195028305\n", | |
"360 0.06772942841053009\n", | |
"370 0.04876668006181717\n", | |
"380 0.03488374873995781\n", | |
"390 0.024789126589894295\n", | |
"400 0.017499692738056183\n", | |
"410 0.01227207574993372\n", | |
"420 0.008548851124942303\n", | |
"430 0.0059155626222491264\n", | |
"440 0.0040659294463694096\n", | |
"450 0.0027757221832871437\n", | |
"460 0.001882058335468173\n", | |
"470 0.0012674160534515977\n", | |
"480 0.00084764912026003\n", | |
"490 0.0005629826919175684\n" | |
] | |
} | |
], | |
"source": [ | |
"torch.manual_seed(42)\n", | |
"np.random.seed(42)\n", | |
"\n", | |
"N = 64\n", | |
"\n", | |
"alpha = 1.3\n", | |
"beta = np.array([[0.5], [1.9]])\n", | |
"\n", | |
"x_data = np.random.randn(N, 2)\n", | |
"y_data = x_data.dot(beta) + alpha\n", | |
"\n", | |
"x = Variable(torch.Tensor(x_data), requires_grad=False)\n", | |
"y = Variable(torch.Tensor(y_data), requires_grad=False)\n", | |
"\n", | |
"w_beta = Variable(torch.randn(2, 1), requires_grad=True)\n", | |
"w_alpha = Variable(torch.randn(1), requires_grad=True)\n", | |
"\n", | |
"learning_rate = 1e-2\n", | |
"optimizer = torch.optim.Adam([w_beta, w_alpha], lr=learning_rate)\n", | |
"\n", | |
"for t in range(500):\n", | |
" y_pred = x.mm(w_beta).add(w_alpha.expand(N))\n", | |
" \n", | |
" loss = (y_pred - y).pow(2).sum()\n", | |
" \n", | |
" if t % 10 == 0:\n", | |
" print(t, loss.data[0])\n", | |
" \n", | |
" optimizer.zero_grad() \n", | |
" \n", | |
" loss.backward()\n", | |
" \n", | |
" optimizer.step()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Optimized Beta: \n", | |
" 0.4973\n", | |
" 1.9002\n", | |
"[torch.FloatTensor of size 2x1]\n", | |
"\n", | |
"Optimized Alpha: \n", | |
" 1.2997\n", | |
"[torch.FloatTensor of size 1]\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"print(\"Optimized Beta: {0}\".format(w_beta.data))\n", | |
"print(\"Optimized Alpha: {0}\".format(w_alpha.data))" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment