I hereby claim:
- I am leandronsp on github.
- I am leandronsp (https://keybase.io/leandronsp) on keybase.
- I have a public key ASA_kf8rH9GamckaxDqEIr-gOTccZnOyelCAoXnSwh06mwo
To claim this, I am signing this object:
add = fn(a, b) -> | |
a + b | |
end | |
iex> add.(2, 3) | |
iex> 5 | |
iex> list = [1, 2, 3] | |
iex> lenght(list) | |
iex> 3 |
I hereby claim:
To claim this, I am signing this object:
#!/bin/sh | |
# | |
# Check for ruby style errors | |
red='\033[0;31m' | |
green='\033[0;32m' | |
yellow='\033[0;33m' | |
NC='\033[0m' | |
if git rev-parse --verify HEAD >/dev/null 2>&1 |
fdxrails() { | |
kill -9 $(lsof -i tcp:3001 | grep ruby | awk '{print $2}') | |
./bin/spring rails s -p 3001 | |
} |
{"lastUpload":"2020-05-11T22:05:56.409Z","extensionVersion":"v3.4.3"} |
#include <stdio.h> | |
#include <netinet/in.h> | |
#include <stdlib.h> | |
#include <sys/socket.h> | |
#include <unistd.h> | |
#define MAXBUFFER 3000 | |
#define PORT 4200 | |
int main () { |
This Gist solves the median using two approaches, Quicksort and Quickselect.
The Quicksort is the most common used approach, which takes O(nlogn) in average. However, it's possible to calculate the median kth element in an unordered list by using the Quickselect method, which takes O(n) in good cases.
require 'cgi' | |
require 'uri' | |
require 'socket' | |
require './lib/routes' | |
class Application | |
def initialize(port) | |
@socket = TCPServer.new(port) | |
end |
require 'test/unit' | |
def sort(list) | |
return [] if list.size == 0 | |
return list if list.size == 1 | |
pivot = list[0] | |
remaining = list[1..-1] | |
smaller, larger = partition(pivot, remaining) |