Created
March 10, 2024 06:28
-
-
Save ljmartin/2daa60f58abccaf4696a2fdda1ef6737 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "b987b468-44b1-4b69-99e7-9fbbad8b635c", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from rdkit import Chem\n", | |
"from rdkit.Chem import AllChem\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"from scipy.spatial.distance import cdist\n", | |
"\n", | |
"#for comparison to other algos\n", | |
"import mdtraj as md\n", | |
"import freesasa" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "559f78ad-e9a5-4a0a-977f-181a824df859", | |
"metadata": {}, | |
"source": [ | |
"# Goal: implement Shrake-Rupley algorithm in Numpy\n", | |
"conceptually, the solvent-exposed surface area (SASA) is:\n", | |
">the area of the surface swept out by the center of a probe sphere rolling over a molecule (atoms are spheres of varying radii).\n", | |
"\n", | |
"[- tom goddard @ chimera(x)](https://www.cgl.ucsf.edu/chimera/data/sasa-nov2013/sasa.html). \n", | |
"\n", | |
"shrake-rupley is an approximation to calculate this value. quoting the mdtraj library's [description of this algorithm](https://mdtraj.org/1.9.4/api/generated/mdtraj.shrake_rupley.html):\n", | |
"\n", | |
">This code implements the Shrake and Rupley algorithm, with the Golden Section Spiral algorithm to generate the sphere points. The basic idea is to great a mesh of points representing the surface of each atom (at a distance of the van der waals radius plus the probe radius from the nuclei), and then count the number of such mesh points that are on the molecular surface – i.e. not within the radius of another atom. Assuming that the points are evenly distributed, the number of points is directly proportional to the accessible surface area (its just 4*pi*r^2 time the fraction of the points that are accessible).\n", | |
"\n", | |
"from a practical sense, it's trivial to calculate with available libraries like freesasa or mdtraj. I figure it's simple enough to be done in numpy which might reduce the required dependencies for some applications. it may even be faster to use numpy directly. it's also just nice to practice implementing these things. so here's a numpy implementation of shrake-rupley." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "0df4c52e-e3bb-44ea-9103-8d30e8b8a1f9", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1hU1d4H8N8MMNwZbiIXBRUTbyBIYkKiBC95bBRTqdTQN9MxM/GIPY7nWE6mT+LRjPSgou+pSLMa72ieFCTQAkXwgoigKBbI/TbDgMAwe71/LBwRsRRmZg8zv8/jHzOb7azf9OSXtddae20OIQQQQgj1FJftAhBCqG/DGEUIoV7BGEUIoV7BGEUIoV7BGEUIoV7BGEUIoV4xZrsA9Lj0dODzwde34+3FiwAA48cDALS3Q0oK3LwJDg4QHAyDBrFVI0KoM+yN6pjvvoMzZx69PXoUjh4FAGhqgsBA2LYNOBzIywN/fzhyhK0aEUKdYW+0j9i6FRwc4NQp4HAAAMLCYO5cmDoVzMzYrgwhQ4e9Ud3T1ATV1R1/HjzoOPjbb/D22x0ZCgDh4cDjwc2bbNWIEFLB3qju+b//gxMnOl6XlcH//m/HCyenx05zdoayMvDz03J1CKEuMEZ1z4oVsHp1x+s1azpeuLpCZeVjp1VUwIABWi0MIdQdvKjvI4KC4MCBR29TU0GhgOHD2SsIIdQBe6N9xKpVEBwM06fDtGlQVgb//jfs3g2mpmyXhRDCGNU1c+cCn//obURExwsrK7hwAX76CfLywNkZMjNh6FAAgLo6sLdnoU6E0EMc3G+0D7t2DV57DUQiWL6c7VIQMlw4NtqX3bgBZWWwcuWjmX2EkNZhjPZlc+fC+vWgVMKbb3bcNooQ0jq8qO/7li6F3bvB2RkuXAAPD7arQcjgYIz2fQoFvPYaJCfDyJHw229ga8t2QQgZFoxRvSCTwcSJkJsLkyfD6dPA47FdEEIGBMdG9YKNDZw4AS4ukJbW9OGHbFeDkGHBGNUX7u5w4oR03Lhx33+/YcMGtqtByIDgRb1eOXXqVEREhFKp/Oabb+bPn892OQgZBOyN6pWpU6fGx8cTQhYtWnT27Fm2y0HIIGCM6huhUBgTE6NQKGbNmpWXl/cXZ8tkcO0a1NZqpTSE9BNe1OshhmEiIyOPHDliZ2f38ssvOzg4mJqa2traznF2HtPaCjY2MGMG2NnBwoXw66/g6wu3boGLC0gk0K8f27Uj1PdgjOqnBw8ehIaGZmZmdj54ddKkMenpAAAXL8Lx43DxIpw4AebmwDCwaBHIZHDoEDvlItSXYYzqraqqqrFjx96/f3/YsGErV66USqVv8HiDKyuhoQE++gjCwiA+HkJDO84uKQFPT2hqAhMTVqtGqO/BGNVnhYWFY8eObW5uTktLmzRp0mM/MzODgoLHntJsbg43bsCQIdqtEaE+D/cb1WdeXl6jR4/OysqKjo728vLaOniwu1QKtrbw8cdgYwNy+aNT29qgrQ1vJEWoB3CmXs+9/vrrAJCbm3vw4EHLlBRISIDNm4EQ8PGBX355dN4vv4CbG+4AjVAPYG9UzwUGBgKAp6fnpk2bjFtbQS4HqRQsLOCjj+DNN8HBAYKCID8f3n8f1q9nu1iE+iQcG9VzDx48sLW1VSqVDQ0NVlZWj/0sIwP27oXbt8HdHd56C6ZPZ6lGxBoGGC5ekvYaxqj+GzduXHZ2dmpqakhICNu1IDbVtteekp0qai1y57m/ZffW7dbb84rn3Rh5g+26+jz8RaT/JkyYAAAZGRlsF4LYVNBSMDJ/ZLIsuZ9xv/TG9Gl3prFdkf7AsVH9N2HChB07dnRZio8Mjei+6A27N3YM3AEA0A8alY132u6wXZSewN6o/qOzTBcuXMABHEOW3Zw9z36e6q21kTWLxegZjFH95+Hh4ebmVltbe+vWLbZrQewgQCrbK52MndguRD9hjBqEl156CQDwut4AESCXmi9xgONi7FKuKGe7HP2EMWoQ6CwTxqihudx8OfhW8ITCCbkPcgOtAr+u/ZrtivQTTjEZBDo8ipP1hqNSUfnPsn9+U/sNA4yLiUuFomKz2+ZJtybNuDNjkvWkMkXZA+bBIsdFbJepJ3DdqEFobW3l8/kKhaKuro7P57Ndzl8jhHA4HLar6JMURLGzeqe4XCxVSk04Jkv7Ld3gssHGyAYA5Iw8RZZyp/VOf5P+U2ymcIGbJk+baTuT7ZL7PIxRQxEYGJiZmXn69Onw8HC2a/kLFy5cEAqFX375Jd4v8LxSGlNWlKzIb8kHAAFfEDcgztPUk+2i9B+OjRqKvjI8yjDMihUrrl+/js+Sei63Wm8J7gj+5/b/5Lfke5l5/eT50wnPE5ih2oFjo4air8ToV199lZWVNWDAgDVr1rBdS9/QoGyIrYiNq4prJa22RrZrnNesdFrJ4/DYrsuA4EW9oSgrK3Nzc7Oxsamvr+dydfQqRCaTeXl5VVRUfP/992+99Rbb5eg6hmG+PfztP4b/o0JRYcQxWuyweIPrBkdjR7brMjg6+s8JqZ2rq6uTk5NMJktKSmK7lqdat25dRUVFUFDQm2++yXYtui4rKysoKOidN955ofyFSVaTcobn7HLfhRnKCuyNGpAXX3wxJyfHwcGhtLTUzMyM7XK6ys/P9/X1ZRgmJydnzJgxbJeju0pKSlavXv3jjz8SQjw8PD7f8fmsabPYLsqgYW/UgHzxxRfGxsa1tbXz5s1TKpVsl9NVTEyMQqF47733MEOf5sGDB5s3bx45cuQPP/xgbm4uEony8vIwQ9lHkCG5evWqvb09AERFRSmVSrbLeeTgwYMAYG9vX11dzXYtOiopKWnw4MH0n61AICguLma7ItQBY9TgXLhwgW6D/8EHH7BdS4fm5uZBgwYBwK5du9iuhX3r1q0rKirqfCQ/P1+12tfPz+/cuXNs1Ya6hTFqiM6ePUvHRsViMdu1EEKIWCwGAF9f3/b2drZrYVl8fDwADBgwoKWlhRBSW1sbHR1tZGQEAA4ODnFxcfifSAdhjBqoY8eOGRsbA8CWLVvYreSPP/6wsLDgcDhpaWnsVsK6rKwsU1NTAEhISDh06NCsWbNoJ93ExCQmJqahoYHtAlH3MEYN1759+7hcLofD2bt3L4tlzJw5EwDmzZvHYg26oKamxtXVFQAGDhzI43Usnre3tw8JCcnLy2O7OvRncMGTQYuPj//ggw+MjIwOHDjwxhtvaL+A1NTU0NBQCwuLmzdvuru7a78A1lVUVJw5c+bnn38+fPhwW1sbPWhiYmJqaiqXy0NCQs6ePYu7tOg6tnMcsWz9+vUAwOPxTp06peWmFQqFt7c3AGzatEnLTbOrvb09OztbLBb7+/t3jkgulztnzhyJRDJ//nwAGDp0KF7I9wkYo4h8+OGHAGBhYaHlKeBt27YBgKenJ51O0XvV1dVLliwJDw+nKyUoCwuL8ePHc7lcLpf73//+lxDy3XffAYCZmdnly5fZLhk9E4xRRBiGWbx4MQDw+fycnBztNFpZWWlrawsAJ0+e1E6LLGIYRiKR0OkjasiQIUKhMCkpqbS01MnJCQDWrVtHCLl+/bqFhQUAfPXVV2xXjZ4VxigihJD29nZ6G3u/fv1u3ryphRYXLlwIAOHh4Vpoi10XL16kz8ICAEtLy1WrVpWWlnY+ISEhYcqUKe3t7Y2NjSNGjACAd999l61qUQ9gjKIObW1tU6dOBYABAwZo+g6Z7OxsLpfL4/EKCgo02hC77t+/LxQK6X5aLi4uu3fvbmtr6/ZMhmEIIbNnzwYAHx+fpqYm7VaKegVjFD3S3NwcHBxMJzfKy8s11ArDMLR3JhKJNNQE65qbm2NjY62tren0XXR0tFQqJYSUl5fv2LHjyfMVCoVAIKDjKrdv39Z6vahXMEbRY6RSqb+/P+0T1dXVaaKJr776CgCcnZ1psuifLje/37lzhxDS1tYWFxdnY2MDAKdPn+58fmZm5qhRo+i00r59+1iqGvUcxijqqqqqio7QvfTSS42Njer9cJlM5uLiAgD79+9X7yfrgpycnIkTJ9IA9fPzS09Pp8cPHz48ZMgQejwiIkJ1y3xRURG9+4AOm9JZJtTnYIyibpSUlNDbEMPCwtS7GikmJgYAAgMD6Wig3qiuru725vf8/PwpU6bQoBw+fLhqcW5jY6NYLKY7G1hYWIhEIrX/xkJag3cxoe4VFRVNnDixoqJixowZBw8epDfgd9HQ0NDU1CSXy+VyeUNDA33R1NRUX1+vet3Q0NDY2EhPa2hoqKqqamlpuXTpkp+fn/a/lCa0tbXt2rVr3bp1MpnMxMRk6dKln376KZ/Pr62t/fTTT+Pj45VKpb29/bp165YtW2ZsbMwwzP79+1evXl1ZWcnhcGbPnr1161bDvINLf7Cd40h3XblyhS7tHD16tEAgCAkJ8ff3Hzp0qIuLC5086QErKysrKyu5XM72l1OPpKQk1dW6QCCgV+t0GJTP5wOAiYmJUChUbaKanJzs4+NDz3/ppZcyMjJYLR+pB/ZG0Z9JT0+fNm2aQqFoaWl58qc2NjaWlpZWVlY2NjZ8Pp++tra2trW1pa+trKxsbW3pC0tLSzs7u7lz5168eHH79u3Lly/X/tdRo5s3b65cufL06dMAMGLEiG3bttGL95SUlBUrVuTn5wNAWFhYXFwcnT4qLCz8+OOP6e7U7u7uGzZsiIqKwpvl9QTbOY502pkzZwDA09Pz+PHjKSkp2dnZhYWF9+/f7/G93keOHAGAwYMHKxQK9ZaqNTU1NaphUHt7e9UwaEFBAV14CwBeXl6qu7Nqa2tFIhHdtMnKykosFj948IDVb4DUDJ9Tj/7M2bNnAWDWrFnTp09XHWxra5PL5Xfv3pU/JJVKGxsb6WCoVCqVyWT0tUwmk0qldGD08OHDL774YkRExPDhwwsKCo4ePRoZGcneN+uJpqamzz77LD4+XiqVmpiYLFu2bP369ba2tnV1devXr9+5c2d7e7udnZ1IJFq5ciWPx1MoFF9//fXatWtramq4XG5UVNSWLVv69+/P9vdA6sZ2jiOd9uKLL0KndY6DBg0yMTHp2f9pycnJ9EN27twJAOPGjWPva/WEaqQYAAQCQWFhISHk2rVrM2fOpFuNGBsbC4XCqqoqen5ycvLIkSPp+WFhYdeuXWO1fKRBODaKnqqhocHR0dHIyKiurs7S0hIABg4cWFpaamJiohr0pGOgdnZ2qteqwVArKys+n29tbU1/5ObmRiO4paVl0KBBlZWV586dU62y1HEtLS0TJ068evWqsbHx7t27FyxYcOzYsaVLl1ZUVNATQkNDv/jiC7rvX35+/qpVq37++WcA8PLy2rBhQ5/rd6Pnw3aOI9116NAhAAgJCVEdaWhoUMsyUvrwpenTp/f+o7SDbqTi4eFBdxUpLCwMDAyk/4JsbGxWrVpFl8F2Xj1qb28fGxvb2trKdu1I4zBG0VMtXboUADZu3Kj2T66qqjI3N+dyuQUFRX99Ntu2bNkCAFZWVvTCfNu2bbRbbW1t/fnnn9PdRu7duxceHk777DweLyYmpr6+nu3CkZZgjKKneuGFFwAgMzNTEx/+z3/u9PVNFQo18dnqdObMGWNjYw6H8+OPP9IjqampdL6osrKyuLg4ISFBIBDQbZwAICws7MaNG+zWjLQMx0ZR9/744w8PDw8+n19TU9PtLUy9dPs2DB8OJiZw7x44O6v949WjuLg4ICCgpqZGLBZ/8skn9KBSqTx8+HBOTs7Jkyfp+lAA4HK5rq6uq1at+vvf/85auYgluOAJdS8lJQUAJk+erIkMBYAXXoDp0+HYMdi1C9av10QLvdXY2Dh9+vSampqIiIh169bV1dWdPXs2JSXl+PHjlZWV9BxLS8uQkJBp06ZNnz7dWWd/GyANwxhF3aMrRkNDQzXXxKpVcOwY/PvfsHo1WFpqrp2eYBhm3rx5eXl5np6eEyZMePXVV9PT0xUKBf3pkCFDBALBtGnTgoODVQ9DRgYLL+pRNwghbm5u5eXl+fn5dNM8DQkMhMxMiI+H99/XXCM9sWTJkj179nC5XIZh6BEejxccHCwQCAQCgaenJ7vlIZ2CMYq6kZeX5+3t7erqWlpaqtH7vg8dgshIGDIEbt0CIyPNtfMc6uvr16xZk5KScvfuXQBwdHQMCQkRCAQRERF0txGEusCLetQNOjAaFham6b0zXn8dhg6FoiI4fhwe7l/MpgMHDqxYsaKmpsbKymrx4sXvvvvuuHHjVLPwCHUL//9A3dDCwChlZAQrVgAAbN6s6ab+Qnl5+cyZM+fNm1dTUxMcHHzlypU9e/bQJ8izXBnSeXhRj7pqb293cHCQyWQlJSUDBgzQdHNNTTBjBrz7Lrz5JrCybxwhZN++fStXrqyrq+Pz+f/6178WL16MW9ihZ4e/aVFXFy9elMlkI0aM0EKGAoClJUyZAgUFjzL044/h+nUttAwAUFxcHB4evmDBgrq6OoFAkJeXJxQKMUPRc8EYRV3RgVEtXNGrZGbCpk2QktLxNjUVHq7L1CCGYfbs2ePj45OSkuLk5JSYmHjixAnt/OZAegZjFHWltYHRzoRCWLYMuttiXyOKiopeeeWVJUuWyOXyyMjIGzduzJ8/X0ttI72DMYoe09TUlJWVZWRkNGnSJG22+/LLMHYsxMZqvKH29vbNmzePHj06PT3dxcXl6NGjEonE0dFR4w0j/YULntBjzp0719raOn78eDs7Oy03vXUr+PrCvHkdb7/4AqytITQUBg9WWxO5ubkLFy7MycnhcDhRUVFxcXH29vZq+3RkqDBG0WPoFX1YWJj2m3Zzg3/8A1atAgBgGNi4EerqAABcXODllyEsDKZOhR4PXba0tMTGxm7atKmtrW3w4MF79+7V8qgF0mN4UY8ek5ycDFocGD13DuTyR2+jo+HePcjLA6USNmyAmTPB3h7Ky+HgQViyBNzdwccHVq6EEydAJnuOVjIyMsaOHbt+/fr29nahUJibm4sZitSJzV36kC65evXq7NmzHR0djY2Nly1bpuldhxmGxMURY2Pyxhtk1izyww8dx8+fJxwOefjcJqJUkuxssnkzCQ8nFhYEoOOPt/elCRMmrF27NjU19U8etNnU1CQSieh29KNGjbpw4YJGvxQyTBijiJw/f54+Yx0ATE1N6apJBweHzz//XC2PDHlSQwOJiCAAhMslYjG5fZvU1T366fXrRCrt5m+1tpK0NPLxxyQoiLzyymeqroC5uXlQUJBIJEpOTqZ70VPp6el052ljY2ORSKSh74IQxqhBO3/+vEAgoGFkZWUVHR1dVlZ26dKlV155hR4cOHBgQkICfQ67uuTnkxEjCADh88nRoz38kMbGxpMnT8bExIwZM6bzanlbW9uIiAixWDxixAh63N/fH5/KiTQKY9RAnT9/XpWV1tbWIpGotra28wnJycl+fn70hJEjR0okErW0u38/sbQkAMTPj9y5o5aPJNXV1RKJJDo62t/f/8lhq+LiYvU0g9BTYIwaFoZhkpKSAgICaMQ4OjqKxWI6DNrW1vaf//xnx44dqpOVSqVEIhkyZAg9OTAw8Ndff+1x0woFEYk6RjajokhTkxq+zpP+9re/AcCwYcNCQkLGjh0LAElJSRppCaGHMEYNhVKpTEpKUvXXnJycxGKxVColhLS2tiYmJg4dOhQAbGxs6jqPUxLS2tqakJDg5OQEABwOJzIy8tatW8/beklJSUiIAoCYmZG9e9X2pZ60ceNGAIiJiSGErF69GgA++eQTDbaHEMaoIaCdStUm9v3794+NjW1ubiaEtLS0JCQkqG4kHzVqVGJiokKhePJDGhsbxWKxubk5AJiYmAiFwvLy8mcsIC0tzdnZefz4z9zdiaanyk+dOgUAISEhhJDvv/8eACIiIjTbJDJ4GKP6rK2tLTExcdiwYTQlPTw84uLi6PKgxsbGuLg4FxcX+iMfH5/ExMS/nEoqLS0VCoX0IXeWlpYikUja7Zz6QwzDbNq0ia43mjJlSk2NZq7kO6moqKATTQzDFBQUAIC7u7umG0UGDmNUP3W+TgeAIUOGJCQk0G6mTCaLjY1V3QTp6+srkUgYhnn2D79582ZkZCSdB3d0dIyNje12LZFMJps1axYdChCJREqlUm1f70/R3w13795VKpXW1tYAUF1drZ2mkWHCGNU39Drdzc3tyet0+rx11c3yQUFBvZl+yczMDA4OVvVzExMTO2fxzZs36TCCjY3N0R4va+qRqVOnAsChQ4cIIUFBQQCQrFrNj5AGYIzqj/Ly8jlz5nR7nV5VVSUWi1VPZOtlgHaWnJzs7e1NP3bcuHGpqamEkO+++87S0pJ2de+oa1nTM/voo48AYO3atYSQ5cuX84yMvo6L03INyKBgjOoPHx+fJ6/TKyoqRCKRhYUF/VFYWFhmZqZ621UoFAkJCar4Vj18+J133qETWVqWdOTI2yNGHF+6lBAipetU58zRfhnIcGCM6ommpiYaXtu3b6dH7t27Fx0dbWZmRkcnBQJBVlaWRguIjY21srJydXXl8XhxLHYA794lAKR/f0IIuXKFAJDhw1krBhkAjFE9UV5eDgD9+vWjb7dv325iYgIARkZGc+bMuX79unbK2Lp1KwDMnTtXO811j2GInR0BIOXlpLWVmJoSLpc0NrJZEtJruFGenqitrQWAfv360bcBAQEMw0RGRubl5R04cGD06NGaa7qoqOjUqVP37t0DALlcDgCqG5/YweGAry8AwJUrwOPBqFHAMJCby2ZJSK9hjOoJGqOqh2GMHz++pKREIpEMHz5c001LJJLXXntt9+7dAFBZWQkA/fv313Sjf4HuBnDlStfXCGkAxqieqKmpAQAHBwfVEdWcj6Z1jk762tnZWTtNPxXGKNIijFE9QXujnWNUazpHJ72JSFdi9PLlrq8R0gCMUT1Be6OsPOGyc3TS1+xf1A8fDhYWUFwM9fUwZgwYGcGNG9DWxnJVSE9hjOoJFnujnaNTVy7qjYzA2xsIgdxcsLSEDz6A9etBoWC5KqSn8MmgeoL1GHV2dm5sbGxqarK0tKR3srNs0yYwNoaxY6G4GBYsAC8veHgPAkLqhb1RPcFWjLa0tEilUh6PZ2dnpytX9FRICJibg7c3zJ8PYjF4eoJYzHZNSD9hb1RPsDU2qopODoejK/NLVFsbzJoFYjEsXAgAUF4OAQHg5wczZrBdGdI32BvVE2z1RjtHp64MjFJ0av6ddzreurjAe+/B0aMsVoT0Fcaonuiy/F5rdHG1E1VcDIMHQ6eHhsLQoVBczF5BSG9hjOoDhmHq6+u5XK6tra2Wm36yN6orY6N8Pshkjx2RSuHhXqsIqRHGqD6oq6tjGMbOzo4+rkObOk8r6dYUk7c3FBZCRcWjI2fPwpgx7BWE9BbGqD5g/RamzjGqKxf1AwdCVBTMng0ZGVBYCBs2wG+/wfvvs10W0kM4U68PdGHRKOjaFBMAxMfD3r0QF9dxL1NmJuhObUiPYIzqAxbvBNXdKSYAMDKC996D995juw6k5/CiXh/oQm+UEFJVVQUATk5O2i8DIRZhjOoDtlY7Qaex0fr6+tbWVltbW3Nzc+2XgRCLMEbVoLm5md0CuvRGy8vLVY9m0qjON9Hr3BU9QtqCMdpbhJDXX3992rRp9+/fZ6uGLns2L1q0aNiwYXv27GEYRqPt1tfX29vb6+JqJ4S0CGO0t27dunXhwoWTJ0/6+Pjs27ePlRpohNEYlclkNTU1ZWVlS5YsmTBhQmZmpubadXd3r62tLSwsBB2cpkdIa9h+pp4+KCsrm/Fww4spU6b8/vvvWmu6qqpKJBLxeDwnJydvb++MjAxCCMMwEonEw8ODliQQCIqLizVdyZQpUwAgPDxc0w0hpGswRtVGIpHQSR4bG5u4uDilUqnR5iorK2NiYuh8DpfLpVt8crnchQsXlpWVkU4PjgcAc3NzkUgkk8k0UUleXt7bb79NI3v58uWaaAIhXYYxqk4VFRWzZ8+mgTJx4sTCwkJNtFJTUyMWi21sbACAw+EIBILLly/L5XKxWGxmZgYAlpaWYrH4wYMHhJDS0tKoqCgOhwMArq6uCQkJasz33NzcyMhILpcLACYmJgEBAW1tber6cIT6CoxR9ZNIJHTt5EQ/PxIXR9QXWzKZLDY2ls/n06QOCwvLzs7ufMLvv/8eFRVFfzpgwIDExESGYQghWVlZgYGB9Li/v//58+d7WUleXl5UVBS9hZ/H4wmFwtLS0l5+JkJ9FMaoRlRXV0e9/fbVYcMIAAkKIgUFvf1EqfRSXJxqA6epU6deunTpaef+8ssvvr6+9Mzx48erd8AUAxShLjBGNemnn8jAgQSAmJkRsZj07IJXLidxccTJibG3d7GyCgoKSktL+8u/pFQqExMT6bw5h8OJjIykE1+9GTDFAEWoWxijGtbQQIRCwuEQADJmDMnJeY6/29REtmwh/foRAAJAJk8uz8h4rsafHDBtbm4mzz9gev36dQxQhJ4GY1Qr0tPJ0KEEgJiYEJGItLb+xfmtrSQhgbi6dgTohAkkKanHjf/xxx/dDphmZGQEBATQ4wEBAQ0NDU/+XRqgdBLJ1NRUKBTev3+/x5UgpJcwRrWlsZEsW0a4XAJAfHxIdTUhhFy+TL78kmzcSJKSiEJByMMAdXPrCNDx43sToJ11HjANCAjoMmAaGhra5XwMUISeEcaodv36K/HyIqGhhGHItm3EzY3ExpKEBDJ5Mpk0ibS2kvnzOwLU35+cPKnexp82YCqXyztHJAYoQs8FY1TrmptJZSUpKyPm5kS1sFSpJP7+ZOdOkp1NRo8mEglhGA2133nA1MLCQjVgSgi5fv16ZGQkHTPFAEXoGXEIIT27ixT1ysmTsGEDXLz46MjWrZCbC99+q532S0pK1q5du3//fkKIq6vruHHjpFJpeno6IcTU1HTBggVisdjV1VU7xSDUp+HWJCypqIAu24M6OT32/DUNGzhw4Lfffpuamurr61tWVnb8+PG0tDRzc/Po6Oji4uKEhATMUISeET5EhCUDBkB5+WNHyspg4EAtVzF58uScnJyFCxdeuXKFx+MdOnRItT4fIfSM8KKeJbW14LtHcg8AAAB8SURBVOEBv/4KdPZcoQA/PxCJ4OHKJIRQX4G9UZY4OMD27fDqqyAUAp8PEgm88ALMm8d2WQih54a9UVbdvg3nz4NcDmPGQHAwcDhsF4QQem4Yowgh1Cs4U48QQr2CMYoQQr2CMYoQQr2CMYoQQr2CMYoQQr2CMYoQQr3y/6uJfOqBU7UrAAACK3pUWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjQAAHice79v7T0GIOBnQABJIJYG4gZGNoUCIM3MwsyWoAFmYNIVIJqRhRGbCLocO4RmZlOA8DkgNBMxerHJCSooAFmMcGPgrgUzmFiY0C3iUIBoZWLkZmBkYGTKYGJiTmBmyWBiYU1gZctgYmNPYOfIYOLgTODkUuDi1mDi4lHg4c1g4uVL4OPPYOIXSBAQBFJCDKzCCsIiDEyiDKJiDGLiGkxiEgqcjAkczAmCPAkizEA7WBmZmDk42VhY2dg5mNl4+fgFBHnEzRiBrmWAYAbJb9YJ9s/Y39nH+1ruP1kuZ3f4lKJ98Ymd+x7+nrs/4wK//X+/+/tsL57YP7veZP9p9vm7hfcZH+hoXb7/5Pbvthf+WB7YEaZ2QPCNkL3z4vv7N2wKONDcnWIfdotxf7OE5oHGr072p3iO7TORWbPf8+dcu1RmXXvTVpb9EbobbHNmMzrYnorb/+TvZrvuqfwOrAEMB9YezLGfs9PHIfjptb2fvkfZTnnf5OB6QdnukWG3/Z3TKxzymkPsF/3Is+c+utlhWdNi+6v6S/ftcZzhoHS6xf6Y9Kb9v5+lONjp77D7nTFjf+20xw5KtpwO8Z5S+2cytx6wlvY/8IrFzF63ZOUBrwD5Ay8yd9lZZ/Ec2MR02n5uWOz+a9HSB3ZLaDho9yjZrdv2dr//dDUH/6ML7GtZQw5YlGQ6fE3n3ScGAPYZr89chPzeAAACv3pUWHRNT0wgcmRraXQgMjAyMy4wOS40AAB4nH1VS25bMQzc+xS6gB/4FcllEgdFUcQG2rR3KNBl74+SMhwxm75nCXrCSCJnhvJp1PP98u333/Hx8OV0GgP+84uI8YsB4PQ2ajCeX798vY6X96fnx8zL7ef1/ccgHWS5Jt/P2Kf329tjBsfLgMNNA3Xg4RoT5zjDYcTOtpfSAqKKqeRgMmUMBeRJrg3ICTzjQSwkkUidaCaFFJ6oLRq5I3W6u64zQcGoRgDiyhuqBaXDwcVmLWJwm1wREYTOjZx3ZMAE1RppBEgh1biS/EDa/XgTQ8tM+KAJuazoCFpZPpBeyNwAipTacwohYSItM9LYyLgj2afjPU6RiYXMgFVaRgjjWjyaOvPaHW2q5xT4BGqnY2lEB5BiDs+lFpBVRqypR8sdadwSScIKVHEWjV5yBYlzox5LJT4w3ClqTwSJAhygLD0jLJXkgEATXQ6ISDkxwzSZfcvSSA8yKTUzSgZcOwazODbgXMC0hQPnRpT2oKU/E03uSFtnJ0VFSB7JJumpojVQrLPpKx9NCsMXM2GshcQAg85mSvRn2IEpIKWtD5Ska1k+aZ9OzfKQdJ4lU57TYzmEJ1RRHIaY2TVoaXTO7CNFxqJelokqlCngjVCiu0MxOLyy0tJ7lZLPZLTvyneoFKkV66SpEEsFt7TiRkqFWvVrmAFS5RJeFU2aw8ZpMn2rVBjJkyFOL5slfeUBdoiW/+v18umuuN8ez7frZd8e9dK+IyQb75tAqu1yr1d3SefHmLtuJZvt4pRsvitQssUuM8mGvZhwddiKhqpDasWBa4ZbEUh1KM3sUh1qc3V9pmmbfaU6tGZTqQ692REXJprtMPOjbi6sjrB5CJMvouYUrI64GYJWJ014XDPaBJbiYm8zF1t7yQrXGxEldJe1vh9/KDk+/QMbXD5he2EtPAAAAZd6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuNAAAeJwlUstt7DAQayVHL2AL8//AyGkL2CJ8fXgVpPhwlJtkihyS4/fn4ed55Dkefj3H+318f16fOb3+y75s/Hj/ez0Pf/0cly9pNz0vWVYtddLSMKq+L1vsEX1eukSDDFAyE+uNx01BMSzv3pCnNvt98UpLzs0KagYE3XS7LzyiFK2hhQnLKAa792BaUQxJXmoWw1MqWBtJjyoYwXMaiTkRWbmKjJmistpMqgwwWag9hilq4mMvONOGaBrjUxa3dp0Qr6AtWWFBO51JQhAuJXycsFdqjV55sg1C0g2yOE43wipL6akIln8GWYta7iEb4kMldAMaAhUAlY7KzhHt2NC0owNFeqnOJ+cMn7XQ2LRbFokzb79JkjpFOWYEIDH1aXfKGU6Lld6KqFVbjcl6GORqGH7bworSd8RuFMSYk9DCf4EKeranWPloqVoxADQ5tQn6/MsjEsp3LubZKYo1dDwIDEcJhiANKoa2pvleVLMljHlG7ACdugFuytfPL6mQkJJBMpPfAAAAAElFTkSuQmCC", | |
"text/plain": [ | |
"<rdkit.Chem.rdchem.Mol at 0x12b915d90>" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"mol = Chem.MolFromSmiles('Cc1c(c2cc(ccc2n1C(=O)c3ccc(cc3)Cl)OC)CC(=O)O') #indomethacin\n", | |
"molH = Chem.AddHs(mol)\n", | |
"AllChem.EmbedMolecule(molH)\n", | |
"mol = Chem.RemoveHs(molH)\n", | |
"mol\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "5cb96db7-447e-46c1-b074-dfca5fe0e1b6", | |
"metadata": {}, | |
"source": [ | |
"first let's get coordinates and radii for the atoms. \n", | |
"\n", | |
"radii are variable depending on chemical environment, so the choice of radii would probably affect the downstream results. for now, we can just use the vdw radii as given in rdkit's periodic table:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "0967ead0-0756-4fba-9af0-2e4526821bfb", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"ptable = Chem.GetPeriodicTable()\n", | |
"radii = np.array([ptable.GetRvdw(atom.GetAtomicNum()) for atom in mol.GetAtoms()])\n", | |
"xyz = mol.GetConformer(0).GetPositions()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "f16847dd-e344-42f3-bebe-18d5707e5623", | |
"metadata": {}, | |
"source": [ | |
"# shrake-rupley \n", | |
"this algorithm can be implemented in a few lines of numpy. beware that it doesn't scale well up to large proteins, but that's not my use-case. it works fine for a ligand and it's surrounding protein pocket. \n", | |
"\n", | |
"stepping through line-by-line:\n", | |
"\n", | |
"the shrake-rupley algorithm starts with sampling some points evenly on the surface of a sphere. I choose `n=150`. more points is more accurate, but beyond 150 is probably way too precise compared to any experimental property being modelled.\n", | |
"\n", | |
"these points surround the origin (0,0,0) and have radius=1:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "67f62040-6c18-4b89-b25a-bd87092b6b3d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAGdCAYAAACPaQ0IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hV1dWH333KbdMbM/Tee5OOWEDEBhol1sSoiZqiMU1TNSYxJiaWJLYvGqMmtmAXFCx0UOkgvQ5MYXq79ZT9/XGH0WHuAANzp8B5feZ5nHPPPXud4d6z9l57rd8SUkqJg4ODg4PDaYjS2gY4ODg4ODjEC8fJOTg4ODictjhOzsHBwcHhtMVxcg4ODg4Opy2Ok3NwcHBwOG1xnJyDg4ODw2mL4+QcHBwcHE5bHCfn4ODg4HDaorW2Aa2Bbdvk5+eTlJSEEKK1zXFwcHBwaCJSSqqrq+nUqROK0vh67Yx0cvn5+XTt2rW1zXBwcHBwOEUOHjxIly5dGn39jHRySUlJQPSPk5yc3MrWODg4ODg0laqqKrp27Vr3PG+MM9LJHQlRJicnO07OwcHBoR1zvC0nJ/HEwcHBweG0xXFyDg4ODg6nLY6Tc3BwcHA4bXGcnIODg4PDaYvj5BwcHBwcTlscJ+fg4ODgcNriODkHBwcHh9MWx8k5ODg4OJy2xNXJLV26lEsuuYROnTohhODNN9887nuWLFnC6NGj8Xg89OrViyeffLLBOfPmzWPQoEG43W4GDRrEG2+8EQfrHRwcAHaUlDB/504+2ruX6nC4tc1xcGgScVU88fv9DB8+nBtvvJErrrjiuOfv27ePWbNmccstt/Diiy+yYsUKbr/9drKysurev2rVKubOncv999/PnDlzeOONN7jqqqtYvnw548aNi+ftODi0CNWhMJXBEKleD4ked6vZsbesjPuWfMKGggJM20YIQZLLxbXDhnPr2LPQjiGK6+DQVhBSStkiAwnBG2+8wezZsxs952c/+xlvv/0227Ztqzt26623snHjRlatWgXA3LlzqaqqYsGCBXXnzJw5k7S0NF566aUTsqWqqoqUlBQqKysdWS+HNsPe4jL+ueJzPtm5D8Oy0FWVc/r15ObJY+mVmX7M91ZHQqws2o/fiNAtMY1RmV1QTqHDRl5VFdfOe41ivx+XquJSVWwpCZkmEvj6kKH88uxpJ319B4dT5USf421Ku3LVqlXMmDGj3rELLriAZ555BsMw0HWdVatW8cMf/rDBOY888kij1w2Hw4S/EmapqqpqVrsdHE6VHYXF3PrSW1QEgmiKgqYomJbFgi92snrfQZ64Zjb9szMbvM+ybZ7avornd62hxggjkahCoVdSBveOvoARGZ1Pyp7nNqyn2B8gweWqc5aqECS4XAQNg/9t/YJrhg6jV/qxna+DQ2vTpuINhYWFZGdn1zuWnZ2NaZqUlJQc85zCwsJGr/vAAw+QkpJS9+O02XE4Fb4oKeIXSxcx6T9PMfaFJ7hxwTwW7t/NyQZFpJQ88MESKgJBElwuPLqOrqp4dJ0El4vyQJAHP1gS872PfbGUJ7atIGBGSNB0kjQ3LkVld1UJty3/Hzsqippsj2FZvLtjO6oiYq4GPZqGadvM37Wzydd2cGhp2pSTg4aK0kceHF89HuucYylR33PPPVRWVtb9HDx4sBktdjiTWLh/N9e99xpv7NpKZThMyDT4NP8QP/z4PX63avFJObqdRaVsyT+MS9UafI6FELhUjU15hewqKqn3Wn6gihd2r0VFIUFzoQgFIQS6opKouag2wjy1fVWT7QmaJkHTRG3kO3XExrJgsMnXdnBoadqUk8vJyWmwIisqKkLTNDIyMo55ztGru6/idrvr2uo47XUcTpbigJ+fL11I2DRJ0HV8uo5X00l0uVCFwsvbN/HBvl1Nvu7Bsgos20ZXY38ddVXBsm1yyyrrHf8wbweGbeFRG+46CCHQFIUlBXuoioSaZI9P10nQdaxGHPYRR57pS2jSdR0cWoM25eQmTJjAokWL6h1buHAhY8aMQdf1Y54zceLEFrPT4czkrd3bCBgGPl1vsOLyaBpSwkvbNzX5ul5X9Hp2I07Fro1U+Fx6veMV4SAC0WgUQxUKlrSpbKKT0xSFSwcMxJYypk0h00RTFC7q169J13VwaA3i6uRqamrYsGEDGzZsAKIlAhs2bCA3NxeIhhFvuOGGuvNvvfVWDhw4wF133cW2bdt49tlneeaZZ/jxj39cd84dd9zBwoULefDBB9m+fTsPPvggH374IXfeeWc8b8XBga0lRdhSNpq1qCqCLcVFTQ5ZjunWmTSfl5Bhxnw9ZJikJ/gY3a1TveMdvEnIRhwRRJNSXIpKmtvbJHsAvjliJB0Tk/BHDEKmiS0lpm3jj0SwpOTaYcPpnpra5Os6OLQ0cXVya9asYeTIkYwcORKAu+66i5EjR/LrX/8agIKCgjqHB9CzZ0/mz5/P4sWLGTFiBPfffz+PPfZYvRq7iRMn8vLLL/Ovf/2LYcOG8dxzz/HKK684NXIOccelqnCMrHwpo47ueJ2Kj8ata3xr4mgQEIgYdU7LlpJAxAAB35owGpdWPyw5o0t/vJpO0DIaXNOWEkvaXNh1IIl602vtshMT+dfsOUzt3h2gztmler3cOWEiP5o4qcnXhGioc/HWPXz/ubeY/od/MuvBf/HHtxez53DpSV3PweF4tFidXFvCqZNzOBne2rWNu5cuxKdpqEcVQksp8RsGF/Xqz5/Pmdnka0sp+eeKNTy7ci0hw0SpDV96dI2bJo7mpkljYjrPF3at4aFNn2BJiUfVUITAsG0M26KDN5Hnp11Dl4RUiitq+GTDHqr8IbJSEpg2sg8pCZ4Tsi23soK9ZeW4NZWRHTvi0fTjv6mRe/zzu0uZ99lmpARFiOhKFPC6NB6YO5NJ/Xs0+t4PD+7mvzs2srmkEFVRmNKpB9cNGMmIrI4nZY9D++ZEn+OOk3OcnMMJEjQMLn3jRQ5VV9VzdEccnEtV+fesKxje4eQfuiU1fj7ctpsSf4DMBB/nD+xDZuKxEzze3L+ZJ7etIj9QiUSiCZVJ2T34yfBz6epL5Z/vrebljzcQMa2o87QlPo/OLReP58ppw0/a1sYIWQZl4Rp8mptUl6/u+MJNO/nlqwtRFQWP/uWqVEqJP2KQ5HHx+g+vJzWhfnhVSsmDa5fywvb1SClRhUASXa3qispvJ5zPZb0GNft9OLRtHCd3DBwn53Cy7C4v5baFb5NXU4VE1q1IvJrGvZPO45I+A1rFLtO22VpeiN+MKp50TkgB4Ln3P+ef732KIgQeV7REwbYloYiBEIK7rz2XWeMGNosNZeEaXty3jPfzNxK0IggEozN6cl3PKQxP684t/zePDQfySXQ3DJ9GQ7MRfjRrKl+fWN/xfnxwDz9Y8g4KAo92lHM0DTyqxtuX3kCXxJRmuQ+H9kG7VDxxcGgtTMtmze6DFFbUkOLzMK5fV3xuV4Pz+qRl8Nbl1/LBvt0szzuAYVkMzMxiTt9B5CQktYLlUTRFYVhG/cSUmmCYlz9ajxDgdX8ZYlQUgc/joiYY5t/vf84FY/s3CL82lbJwDT/4/F/kBkpRiJYv2FKyumQX68v285uhX2NbXlGjepfR0CVsy29YvP7yzk3YUuLT64dJhRAkaDp+0+DNPVv53vAJp3QPDqcnjpNzOONZsW0/D725hMKK6mi6PpDi8/Kt88dy1aRhDfbCfLqLOf0GMadf2w6Rfbb9INXBcExnDeBxaRSUVrMjt4hBPXJOaax/7VlMbqAUj6qjii8dmUtqBKwwf976DkIkcay4kYCYmaubSwsbzWg9UnqxpfTwKdnvcPriODmHdsfxFG6awme7DnLPCwuImCYeXUerLbyuCoR45J1l2FJy9ZQRzTLWEcJWhFWlW9jnL0ATCiNS+zEkpVez3dMRAqEISGjsskeSW/yhhtmZTcFvhllUsAlFiHoODqJOyKO6qDBq6NWlM1v3lcb897NsGwSc1buh5J6uKMcsyxDUZr46OMTAcXIO7QLTtnl32w5e3biZXSVluDWVc3v34tpRw+mf1VC4+GgKg5XMP7SZvTXFeFSdyR36MjGrN0++v4qwYZLocdU9eFVFIcHjwh+O8OyHn3Pp2EEkeGKvhprK5oo9/GXHfymPVEfHk/D6ocX0S+rGzwZeT7qr+faIO2emoKoKpmWjaw2dgGHZaKpC58xTG7M4VEnINtBFbEejCgWBQr/+Kew8UEEgYuBzfVlQb9k2QcOgc1oK5w7u3eD953TpzWu7Nsd2jjLaAmhypx6ndA8Opy+Ok3No85i2zT0LFrFwxy5sJJqiYIQt3vxiGx/s3MWfL5rJ1F49Gn3/G7nreXjrQkKWgaxd2bxzcCPdRCZ5eQZuvaFmJIBX16gOhlmxfT8zRpy6ukdu4DC/3/ZvgmYItxqVApNSYkqL7VUH+N0X/+JPw7+HpjTPqmR47050z05jb0EpmqrUu0dbSgzTYsLgHnTKPLWEDa/qRqFxxRYpJRJJ367p3H1pD/787lL8EaOeLm3H1GT+ct1FuPWGj6Rr+g/nnX3b8JsGPk2vC11a0iZgmnRMSOLC7o76ikNsHCfn0OZ5ffNWPtixK9rX7CsrEiklNRGDn7+/iAU33UBSjKy9T4v38uct72NJmwTVXfegN22LfWWlWKaXFE/sr4FSmyRR4W8eIeL5+SsImiG8X7FDCIEuNASCPf481pRvZ3zG4GYZT1EEP/n6NH7y5Dv4gxFUVUVVBJZtY1k2GckJ/ODyyac8TrY3hYEpndlUkYsu1QYThrBtogmFyVkD6NQ9jdG9uvDO2m3sKCjGpalM7Ned6UP6Nrpa7p+WxZ8mXcg9Kz/Ab0TqnKkiBJ0Sknj8nMtIcp1cc1nDsli1/yB5FZUkeTxM6dWdFO+J1Q86tA8cJ+fQppFS8vLGTUhkPQcHtdl1uk5VKMz87TuZO3xog/f/Z9+nmNKq5+AANEXF7YUaJGHTQIvxkLRsG4AOKYnNci/LSzYhRGxFFE1RiZgGn5V+0WxODmBY70787QeX8+/3P2fl1gO1QtAq08f045szx9IlK7VZxrmh11TuWf8SASuCV9VRalepEdvEkjazOo2kky8NgC7pKdw2fXyTrn9+tz4Mz+rIW3u3srW0CFVRmJDTjZnd++LTTy6UvGzPfn6/aDGFVTUASCQJLhc3jB3JtyeOPaWmsw5tB8fJObRpgobJgfIK9EYSCxQl+iDaUVzS4LWgGWFt6QE00XB1AeDyKShpFuFyBZ9ef79HSkkwYpKZ7GPigO6nfB9SSsK2gXIMXTCJJGxFTnmso+nXNYvf3zKLipog1YEwaUleEr0nt/JpjHGZfbl7yGwe2TafGjMUDV8i0YTChZ1GcNfAi055jCxvAjcPHtsM1sLnuYf48VsLCJkmXl2vK3kIGSZPrvgMW0pun+xIBZ4OOE7OoU2jqQogkNI+5nl6jH0sU9qARDTiWIQQaL0jqJs81IQiuDQVTVWixdKGia6p3HnJlAaakSeDEIIu3g7srcmL+bqUUTs7+zqc8liNkZroJTWx6WLNJ8qMjsOYmNmPxYe3UhAsx6e5mdJhAN0Sjp8Y1NI8ueIzgoZJkvvLhCOlttNDIGLwwufr+frIoaQn+I5zJYe2TptqtePgcDQuVWV8ty5YtoyZRm5aUec3sXvD1PNEzU0nbyqGtGJe25Y2IsnmhsuHM6ZPFyQQipiYtk2fjpn84bqZnD+8b7Pch5SSs7ThWKUq4aDZ4LWQHUFXNM7NHt0s47UWibqHi7uM4pa+53Ftz8lt0sHlV1axIa8QtxZ7he/RNQKGySe797WCdQ7NjbOSc2jz3DB6JKsOHMQfMUj4Suq5adsETYP+WZlM6tkwpCiE4GvdR/PXrYuI2CYupb4kVMCKkOLycsPws0gc4+FgSQWF5dUk+zz065TZbHVrn6zeyUtvfc7+vFLCViaWZuLuFyZlfBjhsTFtC0UofKPHLHI8Gc0ypkPjVIbCUQ3MRrJYFSFQBFSGmtaHz6Ft4jg5hzbPuG5d+OV5Z/PAJ8vw17aiEQIEgj4ZGTx22UWNykVd3n00a8sOsKRwJxHbRBNqtBkoNl7VxX3DZ5OoR7Ppumam0jUztVltf/399Tz5n2XR3m66RoLqJhgRhLcolBbqpM+uZnBWTy7rPJVxzZhw4tA42YkJaKqCYVu14fD6WLaNLaFjcuvJtDk0H46Tc2gXXD50MBO6d+PtrdvZXVKKR9eY0rMH03r3PKbaha6o/H7k5bx7aBNvHFjHvtpi8HM69mduj7Pol5wdN5tLymv45ysrsaUkwfdlokeS5sWybELlBjNLJvGd86bGzYZjEbKChO0wiVoiqjhzHgXpCT7O7t0zWnd5VBNcKSUBwyDd52Nan56taKVDc3HmfLId2j0dk5P4zvimZ9fpisqcbiOZ021kdB+Opjc2PRk+WrGDiGHi9TTsv6aqCgLBR0t3cPPXJqPGWFHEiwP+vSw6vIBtVZuxkXhVH+MzJnNeh5kkaMdu63O68L0p41l7KI9SfwBdqU04kpKwaaIpKj8+dzJe/eT65jm0LZzEE4czCkUoLeLgAAqKKwEaHU9TFapqQgRPUTuyKWyt2szfd/+FTZXrsZEoCPxmDR8dXsDfdv2JGrO6xWw5FfYeKuG9pV+wYPlW8mv/zk2he3oqz3z9cs7t2wsEhM1owtGADlk8dNlMLhrUPw5WO7QGzkrOIa4cqC5n3p7NrCvORxGCSTk9mNNrMB18zVNg3ZZJ8EaLlBsTlLalxKVpuF0t8zU07Agv5T5H2A7jUTx1Nmno2NKiIJTHB4XvckWXq1vEnpOhqLSaPz77IZt25WGa0cxaXVOZMqo3d91wDom+E6//65mRxsNzLqKwqobC6moS3S56Z6S32CTIoWVwnJxD3Hhn3zZ+89lCQpZZ22JFsqboEM9u/5zHplzKuOxurW1iXJkytg+vzV+HYVq4jtJklFJiWZLJE3qj6y2joL+5ciOVRiVuxdXgQa4IFYHgs7KVXNRxDh617UlbVflD/Ogvb3LocAW6ptRNIiKGxcef76K00s9ffjQbLYYY9bHISU4kJ7nxSVeNEebt3E28d2gLZeEAnXwpzO42nAs6D8SlOo/Qto4TrnSIC9vKi/hVrYNL0FwkudwkuTz4NBdV4TB3LHuH4qC/tc2MK/17ZTNhVC8MwyYcMevq/EzLJhA0SPC6uOqiUS1mT1G4EAWB0mi3AI2wFabCKD/mdUyr/v20FAuWbeXQ4Qo8bg1Xrai2EAK3S8Ojq2zamc/KjfubdczDwWpuWPZv/rzlQ7ZWFFIUqmZd6UF+vf5dvrv6VQJm8yvUODQvzjTEIS68vHMjkVoH99VVgyIECbqLqkiIN/du4ZbBp690khCCu2+dwaPuT/hk9U6CQYPa7jrkZCXz0+9Mp1e3rBazx6W4kMhGw6eS6HG3Ejvkt21HAW+8vY7P1u7FsiSdO6Vy8czhzJw+pMmrp5Phg1XbAVmvi7kkKpcWkREMS/LAglc5kDmQC7Kn0KEZag7vXf8e+6pL8Wr1m8EatsWakgP8Y9sSfjJ0+imP4xA/HCfnEBdWFO5vNIvxSLPOVYdzT2snB+D1uLj7tgu4/vJxfLp+HxHDolvndM4a1r1FHMNXGZw8nHfyX8eQBi5RX9Q42vLHoIevD6l6WoP3Lluxkz8/+j4Rw0JVBEIR7M8t5R9Pf8zaDQf4xU8uivv9VFYH6zpDQNTB1ZgBTPuIgoxCyG/zfsESVpSs4WcDvkPPhIZKOCfK7qpi1pQeQFfUBs1gdUXFsC3ePriZWwdMIUlve+FdhyhOuNIhLjTWW+wI4hj9x05HOmencvnMkXz9kjFMHNWrxR0cQLYnh1FpY7GlhWFH6sKNtrQJ2yFUoTEjZ1aDiUllVZBHHl9ExLDweXU8Hh23SyPB50LXVVZ/tof5CzfH3/6MZCz7y89MyApj2matvQIhwJMCHsVNlVHDP3a/iHUczdNjsbk8H8O2cTWijOJWNPxmhF1VRSc9hkP8cZycQ1wY06FLXWjsaGStYsnorM6Nvl9Kye6DxazavJ+t+wqx7TPHIcaTuV2vZ2Tq2NowX5iwFSJsh3ErHuZ2vZ4hKcMbvOeTpdvxByJ4PXoDB6jrKlLCuws2xn2PbtbkgQiie4JR+yNQK74trej/pvYPI4TApbgoCBbxReXOkx7veK12ZO3ojQmAO7QNnHClQ1z4et/hvH9gB4Habs5HHo5SSvxmBJ+mM6fXkJjv3bQ7n3+8tpydB4qw7agiRdecVG6ZPYEpI3u35G2cdrgUN9/s+R3yggfZWLGOsB0i05XFqLSzSNBiZxjuzy1B8GVbo6PRdIWCwkoiERO3O34F1NMnDGDhqh1s3pUPQmKLqJOxDYEEUvqG8XWO1hyqKBjAgUAew1IHnNR4ozK64lJUIraFO0YWZdg2SdG99E+Jn2qOw6njODmHuDAqqzM/HjmVh9YvxW9G6ma7EolH1fj9+Jl0SUxp8L7Nu/P5yaNvEwxFcOkabl3Bsm3255dx79Pv88ubZnDOmObpDHAm09nblc7eE9uvch2nxEFKiaIocVdtcbs0HvjBxfzzjVXMX7GVUDCa2ah6JGlDQmSNDvDVxZdEop+CXFnXhDTOzunLh/nbUYVAqw1bSimJWBb2YUFSZRJXrn4Bj0vnvOF9mD1xCJ3Sk0/pPh2aF8fJOZwUh8oqWbBpB4cra0jxeTh/cB8GdqrfC+2GAaMZltmRV3ZtZE3RIRShMLljD67uO5w+qbFbsDw5byXBUIQE71f6fNXKLgWCER5/bTlTRrTOntaZyphRPXlnwUZM02rwdz9S7zfhrJ4t8m+S4HNzx7XTuOGys/jpkkcpjZSTmq2iHLWANKSJKlSGpJyacskvh8+kOFTDxrJDYEUTXKQEtumohzWKlQCqIiivDvLCx+t4+9Ot/PmmixnaI+eErm/XOky3Grvtj8Op4zg5hyYhpeSpTz7j38vXYlh23W7EiyvWM31IX349+9x6TUZHZHZiRGanE7r2/vwytu0rrKuB+ipCCDxunaLyGhZv3k4w+yA7qnchkQxI6svkzAmkuVKb6S4dvsroEd3p07MDu/ZGEyyOODPblgRDBrquMueSkS1qU1qij2vGnsM/975CBBO3jE6KpJRY0sKUJmPThtHFd2LOpjFSXF6ennQNiwt28n7eVkpCNdiHFHYVl+PWNdx6/fZNlf4gv/z3Al79+fX1Xjuag1WVPLdpPe/u3kHINEj3+vjagMFcN2Q4KW4nU7M5EbKlKzrbAFVVVaSkpFBZWUlyshNaaAqvfraJP7+3FEUIPLXOSEpJxLQwbJsrxw7hZxdPO6lrr9mWy48efguPW6tXC/VVqvxBOk8rJaF/OZLoR1cg8KhuvtPrRoanxt7nczg1Skqrue8Pb7N7XxFIOPLQ8Hp07rj9fKZNObl9r1NBSsm8Q+/zdv6HWNLGJiq+rSAYkNyHH/b7Fgla83ZCl1JyzZ/+y/7D5SR6XA1et2ybYMTg3utmcMGo2KvIrSVFfHv+W5QFg7W96wSmbYOAfukZPHvRHNK9Tkfy43Giz3FnJedwwhiWxQvL1yOlxOv+8gsuhMCta9gRg7fXb+Oms8eSmdR0Nfu0JB+KIrBtSaztHcMyMTGx3SE8irteMkvICvHknme5b/A9dPDEv8DakiY7qj5lS+USKo0SkrR0hqRMZUDyBLSjY2enAZkZSTz8p6tZt+EAn63ZSyRi0aN7JudOHUBqaus8kIUQfK3rhUzIHMWy4s8pDpfiU72MTR/GkJR+KKL59wgr/SEOlVSiN7L/qCpRAfDtB4tiOjlbSu75ZBGlwQAJuqteBqdl2+wsLeWRz1fx26nnNbvtZyqOk3M4YXYWlnC4qqbRMIxb1/CHI6zec5CLRzR9Zt+rcwa9u2Sy80ARmtqwW0AgFEH1WmR0s+u9JoTAo3gI2WGWFK/gyq6zmzx2U4hYQf538E8cCHwBMjp+Segg+2o2sb58IVd2uwePevq1rNFUhbNG9+Ss0W2rz1pnbzZf73Zxi4ylKNF6PI4T/2rMwa4tyGNPeRkeVWtQoqAqCooQvLd7J3edNZFUT/OuQs9UWqRO7vHHH6dnz554PB5Gjx7NsmXLGj33m9/8Zp0m3Vd/Bg/+smvyc889F/OckNOuPq6EjKheYWP1Q0eORkwz5uvHQwjBt+dMjDrLYATTtGoTG2xqgmGksOkwthxVbzj+Eae3pWrbSY3dFD45/CIH/F+gCRdu1YdL8eJWE9AUF4cCO1lY+GzcbXBoHZJ9HgZ06YBhWTFfN2uPj+7bJebrO8tKsaVstJO9S1UJmQb7KyuaxV6HFnByr7zyCnfeeSe/+MUvWL9+PVOmTOHCCy8kNzc35vmPPvooBQUFdT8HDx4kPT2dK6+8st55ycnJ9c4rKCjA43E2bONJj8w0XJp6jC+4jaoo9MpKP+kxzhrcjd/eNosuHVKJmBY1wQihiElmSiKDzjdJG1hzzPdbMrZtzUXArGJz5VIUoTTopq0KDUWo7KhaTZVRGlc7HFqPr589AkVRCEaMegXwlm0TMkx65WQwrn/s8gyXqh5zESilRCCO2e3eoWnEPVz517/+lZtuuombb74ZgEceeYQPPviAJ554ggceeKDB+SkpKaSkfFk/9eabb1JeXs6NN95Y7zwhBDk5p5Y55dA0MhJ9nDeoD/M3bcey7XrJIUe6KvfLyWJ4t46nNM6EoT04a3A3Nu7Mp7i8hpRED6MHduXVvHl8VHQwpsDwkYdN/8Q+pzT28SgI7sGQYXQRe0KlCRcRO0B+cCfJ+oS42uLQOpw7vA+5xRU888Fn+MMGIJG1YeuuWak8eOOsRhOnJnXpFl2tWSZereHebdiy6JKcTL/02CU2Dk0nrk4uEomwdu1a7r777nrHZ8yYwcqVK0/oGs888wznn38+3bt3r3e8pqaG7t27Y1kWI0aM4P7772fkyNhpzOFwmHA4XPd7VVVVE+/E4Qg/mDGRrflF7C8pRwCaomBJiS0laQk+fjPnvGap91EVhVED6od8zs6axJLilYTscIPEk7AdRhMqU7MmNWmcsjI/Hy7awupVu4lETPr0zWbmhcMYMODEyh4czky+ef4YJg/qwbufbWNPQSk+t87UIb04d3gfvMdQfemUlMwlffrz+o6thC0Tl6LWZSgHTRMh4KbhoxsNZzo0nbg6uZKSEizLIju7vuxNdnY2hYWFx31/QUEBCxYs4L///W+94wMGDOC5555j6NChVFVV8eijjzJp0iQ2btxI374N1TAeeOAB7rvvvlO7GQcAMpMS+L9vXc5Lqzfy5tovqA6F8ek6M4f149qJI+ianhq3sbv4OnNt9yt58cCrhOxwPRUVVahc0+1rdG+C6vyOHQXcd+8bVFYEABAC9u0r5uOPtnL1tRO4+uqGK7GO3t7owo0lIygxVnOmjKAqOp288VdlsSybinI/ihCkpic4xcQtTJ9Omdw5e0qT3/eLSWdTbYT5aP9e/KZRuwqMThhvGTGWqwY6ZTDNSVzr5PLz8+ncuTMrV65kwoQvHxi///3veeGFF9i+ffsx3//AAw/wl7/8hfz8fFyuhjUpR7Btm1GjRjF16lQee+yxBq/HWsl17drVqZM7RWxbEjQM3JqGFmdJp6+yz3+AT4qWsbVqByAZmNSfaR0m0zvxxLP+gsEI37nlWUpLa/B6XXW6jFJKwuHog+eXv7qMceMbhj/fz3+a9RUfoglXvX25qLp/mEEpk7isyx2nfJ+NYZk2899cy/zX13K4oBIhoEv3DC676izOmTm0zTg7v1nG9soPORzagYJK54Rh9EuahlttvAv3mYKUkk1Fh3l/7y4qwyE6JiZxWd8BdEtJbW3T2g1tok4uMzMTVVUbrNqKiooarO6ORkrJs88+y/XXX39MBwegKApjx45l165dMV93u9243bEbQTo0naJQBRvL92NJm37Jnejlbtm90Z4J3enZs/vxTzwGy5buoLS0Bo9Hryc8LITA43Hh94d5++31MZ3cOdnXURrJJ9f/BSZhhFCQtS1dOvn6cUHHm07JtmNh25LH/vguSxZ+EdVm1KOJDPv3FPHYH98jd38J37zt3LiNf6LsrV7FR4V/xbCDdUX7e2pWsrb0FS7s/CuyPf1a2cLWRQjB8Owchmc7eQXxJq5OzuVyMXr0aBYtWsScOXPqji9atIjLLrvsmO9dsmQJu3fv5qabjv/AkFKyYcMGhg4deso2n+5UR8LkV1fj1TS6Jqc0adbvN8P8fee7LC7aQtiKqr1risqw1O78eMAccrwNm222VbZuzQNoVFRYVRW2fpGHZdkNznGrPr7e7Rdsr/6ULRVfKQZPncrA5AloyrEnZafCp8t2smTRF6i6gsv15dfX5dIIhwzefvUzJkztT//Bjbcxijdl4QN8WPgQhh3Gpfi+sndq4zfLmZ/3W67u8Tge1YmiOMSfuGdX3nXXXVx//fWMGTOGCRMm8PTTT5Obm8utt94KwD333ENeXh7PP/98vfc988wzjBs3jiFDGsan77vvPsaPH0/fvn2pqqriscceY8OGDfzjH/+I9+20W8qCAf7++ae8u2sHQdNAAH3TM/jOqLHM6H38/SNL2vx2y8usKduNhkKCGl0ZG9Jifdk+frLhOf42+tukutpHEfTxgvRCcMz+aKqiMzhlMoNTJjezZcdm0XsbkFLWc3BHcLk1goEIH83f1KpObnPFfMyjHByAEAouxUvArGBH1ScMTzv2RNfBoTmI+0bK3LlzeeSRR/jtb3/LiBEjWLp0KfPnz6/LliwoKGhQM1dZWcm8efMaXcVVVFTw7W9/m4EDBzJjxgzy8vJYunQpZ511Vrxvp11SEQryrbff4JUvNhM0DXRFQVUUtpUU8+MP3+e/WzYd9xprynazrmw3LqHiVvW6AnyXouFVdQqCZczPX9MCd9M8DBoUzZ607dido03TZtDgznFvH9NUDuwtbnT1feT4gb2t26n6gP8zqP18HI0QCiA56F/X8oY5nJG0iKzX7bffzu233x7zteeee67BsZSUFAKBQKPXe/jhh3n44Yeby7zTnn9tWMeuslK8en3hY11R8BsGf129nBm9+pDpa1yDcPHhzdhIdKXhR0YRClJKFhau55oeZ8flHpqbqWcP4IUXVlBe5o+ReGKiKIJLLm1ZZf0Twet1HbsDtwRfYuuKItjSPm63bEuenCqOg0NTaVvTVIdmx7AsXt++FSFoUKAqhMCn6wQNk/m7dxzzOuWRmmOG+FShUBFpfGLS1vB6XfziF5eSnOIlGIzg94cJBCIEAtFGnF+/egLjYySdtDaTzx0IRBNQjsayokr2E6aeWg+1UyXH078uEedojih6nOmJJw4thyPQfJpTFQlTFQk3WlyqiKjg7KHjFMhne1JRaotWY4WhLGmT7WnY6bstM3BQZ/7+j2+wcOFmVq+MFoP37ZfDBTOHMnhwbO3B1mb6JSNY8NZ6KspqcLt1VE2p0/eMhE06dUlnynmDWtXGwakXss+/GsMOoStfriqllBh2AFVxMTBleita6HAm4Ti505wEXUcVCqYdW9NRymiCd9JxSizOzxnOgvy1GNLEJeorOljSQgjBzI6jm8vsFiMjI5Grr45d+N0WychM4td/uoIHfvUaRQU1KBGFI9LYPftkc/fvrsDri19254nQNWEko9OvYm3Zq0QsP0KoRKWvbBShc3aH75LichRlTpadhSXMW7uFdQfyUIRgXO9uXD5qMD0y2092c0viOLnTHI+mc26PnszfvSvmKixiWahCML1n72NeZ0hKd87LGc6iwg2YVhi3ogECwzaxkAxI6szMTqPieCcOUtrsrnyF3Z5XmXl/GYc2plOyL51Udx+mjb+UUWMH1av5a03OyryObO9AtlS8R2FwKwKVbgmjGJp6Mdne+IVT/f4wK5bu4PDhShIS3EyY1I+OnVLjNt6pkusv4u28VSwr3kLEMuiakMWsTmdxfvYoNKWhSPOb677gwQVLMKwvw8F7isuYt3YLv509nfMGHvt7fCbidAY/AxRPthYX8Y235+GPRPDqOpoSDXGFLQvTspnZpy9/mX7hca9j2hb/PbCUtw6tpsoIIAGPqnNOh2F8p88FJOpO/6t4sqHkr+yreh0JqMINCGwZQWKT7h7E5I6Poiln7r/BR4u28PQTH+OvCSGUaGhdU1WmzxzKd24/D01rW8r+m8r3ct+WF/FbIRQEAoGFjQAmZAzi54OvrufothUUceOz/8O0bHwuvZ52qz9i4NU1Xrn1ajqnta9tg5OlTSieOLQNBmV14O8zL+GXnywiv6YaQbROTFMVZvcfyK+mTjuh62iKyg09z+GqbpPYWZ2PLW16JGS3m9q49kx5eDv7q99CoKJ9ZZ9LEV5saVIW3sr+6nfok3JVK1rZeny6ajePPfw+lmXj9eootRO5SMRkwbsbUBTBbd87/j6glJJ9/q2sK19CSTgfr5rI4JRxDEudgEtpvqzVsGXwx60v4zeD+FRPvQiLYZusKt3K23mruLzrl3WY89Z8gWHZJHzFwUE0gSzBpROIGLy5fivfPbd9hN5bCsfJnSGM69yF+VffwLLcA+ytKMOjaUzr3pMuyU2f9XlUF8NSezS/kQ6NcrDmA2xpoYmGZR6K0LBk+Ix1clJKXv7PSkzTIsH3ZXcKIQRut46UBgvf38yVc8eRmdX4jN+WFu/k/4t15UuQ2CAFEsnums2sKl3ADd1/Rooro1lsXl68hbJIDR7V3WALQVc0IpbJO3mrmd1lYl2X8TX7DyGgkfrD6Mp17f68ZrHvdMIpITiD0FWVc3v24uaRY7hu6IiTcnAOrYPfKADsxgvBUQmYx+/scTpSWFDJ3r1FuHQt5t/H7dYwIiaffbrnmNf5tHQRa8sXI1BwCS9u1YtH9eFS3BSH8nj14N+PXaPYBPbUFCCEQBWxH8G60CgOV1Jp+OuOnYgCXxvR5m5TOCs5B4d2gFtNAZRGSzgkFi7l9N9fjkUwGEbaEkWP7TCEECiKqKuBjIUlLVaVvo+UEl2tn52qCBVV0TkU3M2h4G66+o4tg3e4uIoPl20jr6ACj0dn4pjejBrarV5SkFar/NL4v6eM9mv8SpeLs3p25WBZZeNNg4VgbI8TbzV1puA4OQeHdkDnhHM5UD0fiYmgfgnHkcLrbokzW8O0VierQzIul4ZhWDGTSyzLxpaSTp0aT7EvjxRRaZQ1Kq6tomFhss+/7ZhO7o356/nnS8sxDKvOGb334WYG9+/Eb+66mJTkaGLQyPQ+/O/gMkxpoYv6j2EpJaZtMTS1B0lfSeb62pghvLNhG/6IUW9fTkqJPxwhwe3i0pEDG/9DnaE44UqHZsE0LT5atp2f3Ps/rv7O/3HLXS/w0uufUV7hP/6bHY5LB+8YsrxjsGQEyw5H6xulxJYGpgzi0zrQK3nO8S90GpKU5GXy1P5RZ3aUFqmUklDIICMjibHjGk+vPzJROJVo34rPdvPUi0sxDAuvRyfB58br0dE0hc3b83jg7wvqwp3DU3vRN6kzEdvElF/WsEopCdkRVKHUSzoB6JudyS8vORe3phKIGNSEI9SEwvgjBj6Xi99dPoNOqWfmav5YOCs5h1MmYpj87i/v8em6fUgJiiooLffzr5dX8t6Hm3ngF3Po2jm9tc1s1wihMi77d2woeYg8/yeY0g8IBApp7gGMyfo1Hi2ztc1sNa7/5hS+2HKIgvwKFEWgaSq2bWOaNm63zvfvvABdb7yEIN2dTZKWQpVRjqo2fCzaWAgE3RpZxUkpeeXtNViWjc/rqpf8omsqUsKGLQfZuecw/fvkoAiFXw25ll9vep59/gLCMoI8cr5Q+VavmUzIbKhcM2tYfwZ16sAb675g7f48FEUwvlc3Lhs58IwpHWgqTp3cGVAndwTblnEpFn7h1dW8+L/V6Lpa70Fi25JgyKB3jywef/CaNtOxur3jN/IpDq7BxiTV1Z809yDnbwuUldbw8n9XsvijrYTDJkIRjBjZnauunsCgE2g9tLT4bT48/CoqGpryZUjYljaGHaKjtwe39v5dzL91WYWfa7/7DAJitkGSMvpduOHKCVx3xbi646Ztsbp0G5+WbCdghenmy2J6x9F08p5aFqdl26w6fIDVh3OxpWRQWgemd+2HO4YDb684dXIOABRV1PDask0s+Gw7NcEwmSkJXDJ+EJdPHkqS99S7pUcMk3cXbQJBg5myoghcLpV9B0rYtDWP4W1UD7K9kaB3IkG/tLXNiEnJ4UpWf7SV6qoQmTnJTDxvMAlJLdMVIT0jkdu/P4Mbb55GRXkAn89FSmrjnTWOZlLmLPKD+9ha9TmWZYBQoDaMmerqwFVdv9/oZMIwLJAgGplEHmlNZRj1uy9oisrkrCFMzmrYN/NkyfNX8oPlb7Gjohii60NsKcnetJS/TLiYUVln1vfQcXKnMQcOl/ODx9+kuMqPABRFIb+siqfmr+bD9bt47PbZpCWemkJGfmElVdVBXI2EgjRVwYhYbN9V4Di50xjLsnnhb4uY/8pnGLWrKGlLnvvrB3zjzhnMuHxMi9ni9brwepuu36kKjau6fo9tVWtZV76YknABXjWBIakTGJk6lQQtqdH3ZqQlkJzspbzCHzMsGt0vlPToFt+Qcsg0uG3p6+ypKsWtamhCQQiBZdsUBWv47rI3eXXGdXRNTI2rHW0Jx8mdpkgp+f1LH1FcWYPX7aoXprRsmz35pfz9reX86tpTU4NX6jK8jnNeI10QHE4PXn7yY956YSWKIvAmRPekbNsmUBPm6QfeIyHJy6Tpg1vbzOOiCJXBKWcxOKVpDZg1TeWi84bw4rxPMc36WZ5SSkJhk8z0BCaNja+25KJDu9hTVYpH1et1HlEVhQThosoI8fLuDfxkxLS42tGWcJ487ZzKSJDX92/knztW8vr+jVRGggBsO1jEttzD6LrWYB9OVRRUVfDJxj2UVZ9aD7hOHVPJykgiYsRugmmYNooiGNaMq7hoinUYW8burODQslRXBHj3v6tRhMDzlaQLRVHwJrgwLYtXnv6k0S7spwtXXTqGYYO6EDEs/IEI4YhJMGQQDBn4vC5+9r2ZuPT4ris+ydsT1eyMMakUIqqP+f7BY/eOPN1wVnLtFCklL+5Zw5Pbl+M3wnWyPg9t/ohbB04mpciHadskxNgEB9A1lXDEZP/hMtKTTnzf4mg0VWHORSN58rklhMMmLpda95CzLBsjYjFiSBf69epw0mMcwbTD7Kh8lx1V71JjHEYRGt0SJjI49QoyPMcu0HWIH2tX7CQYjOD1NdzjFULgcmvk7S8hd3cRPfrltIKFLYPHrfP7n13Gex9t5t1FmyksrsLr0Zg6vh+XzxpJj67NIwl2LPxmNEuzMYQQBE0j7na0JRwn10753/4N/HXLxwD4NBeKiG4uBy2Dh7d8wqX68GO+/0h4UVdPXZn9spkjOJhXzoKPNhMIGrUXjzq6Pj2zuPsHF55y9p9ph/mo4NcUBNYDMqrXaEfYW/0Ruf4VTMv5FV0SmhZicmgeAjXhaDFDI0kXihLtZxj0h1vYspbH7da5fNYoLp81CtO0UFWlRTNf+6RksrxwX6NKKra06ZNyZpWaOE6uHRKxLZ7evgIpJYn6l7NnRQgSNBc1RphlkV24dY2wYeJx6Q2uETZMMpN9DOh66issRRF8/+ZzOGdyfxYt3sqhgnKSEj1MndCPyeP64G5kNdkUtla8QUFgPapwoR5RiBBfdptefvjPXNHj3+jKya9KHU6OnC7pCEGDvagjmIaFqqtkdz6zmnq2RmufOT0H8+LOtQRNA59eP/kmYkW3FK7qNazF7WpNHCfXDllXcpDisB+P2tB5QbTHW5kdYNrg/ny28RARw0TX1LqQZrh2/+zrZ49Ab6YvohCCoQM7M3Tg8euRmootLXZUvgPILx3cV8bV8BKyKthfs5S+yWemtFVrMnxcL7K7pFFwsAw1of7KxbYlpmkx8bxBpHc4c2pSW4s+KZn8YOhkHtm8jOpIGF1VEYBhWSBgVrcBXNhtQGub2aI4iSftkBozKuukNBIGUWud2YxpfTl7SC8sWxIIG1QHwgTCBiC4csowvj5tZMsafpKErEqCVhmqiO3UFaEgUKgI729ZwxwAUDWV235xKV6vi4A/TDhkYBoWoWCEUCBCRodkbrhjRmubecZw08Cz+OvESxmV1bm2d6SkR3I694w8lwfGzUI9wzKdnZVcO6SzLwVVRPc5XDEUDAzbQhUKPVLSufBbg9i4t4CPNuyi0h+iQ0oiM8f2p0+nk4vLVxuV5IcOIBB09fXGq8Y/PKgJFyBqldYbvi6lRCJRhIuKMj/FhRV4fW46d89oc0oglmnhrw7h9uq4PU2v5WqrDDurF/c++Q1e++dSNq7eg2la6C6NiecPZu63p51xocrWZnqXvkzv0peqSAjTtkl1exudFJ/uOLJe7VDWS0rJ9UueZ3N5AYmaq96DXEpJjRlhSFpHXjz7hmZ7yAdNP+8UvMSmik8xZLRliUfxclb6NC7IuaKeDFI8+CDvpxQE1qMLX4N7sqRBdbFC+Tuz2bj8MIZhoghB9z7ZXPWtqYyf1vrhGX9VkLf/vYxFr31GdUUARVUYe85AZn/rbPoMOb2K5CvKavBXhUjNTCQhsWXUThzOPE70Oe44uXbo5AC+KC/g1hWvUGWE0BUFVShY0sawbZJ0D09OmsuQtI7NMlbEDvN/ex4kN7gHBRVN6IDEkAYSm8HJo7iu+/frOhjHgzz/Gj4q+BW2tNCFByGivdVsTKpLJMvvH0GgxI2qqWiagm1LjIiJqqncfs/FnHfxiLjZdjxqKoP85lv/x95t0a7Nmq4ibYll2Xi8Ln762PWMnNSv1exzcGiPnOhz/MwKzrYzoq1UYs9BBqd15J9Trubcjn0BgWFbgOCcjn15ZsrVzebgANaXryI3uAdduHEpbhShoAgVt+JBQ2dr1Xp21WxptvFi0TlhDOOzfoCmuDFkkIjtx5BBbGmy/+0h+EvceHwu3B4dVVPRXRreBDeWZfHsIwvx14Tiat+x+N9TH7N3Wx5ujwtfogeXW8ftdeFNcBMKRPj7L14jEo5dTH8mYtp+Dvvnk1v5DPnVrxGxSlrbpHbBvvxSnn3nUx5+eTEvvr+GwrLq1japTeDsybVB1uQe4r9rNrF6Xy6WlAzu2IG5o4YxY0CfeqG6/inZPDz+CkpCNZSHA6S5fWR6EpvfnvKlIEFVGmZiaoqOaRmsK19B/6T4pib3S7mQLglnsaf6QyojB9EUD1mMYcHKT1BVs4F0mKhV4PBXh1j18TbOv7TlE21CwQgfvf45QhGoWkP73D4XZUVVfP7JVibNPLNSu2NRWPMOe8r/gmFXIFCQ2Owp/wtdkq+nR8ptiDhGC9orpmnx15eXsGDVtqiqjIiWqv7rvc+4fuYYvjFrbJvbm25JHCfXxpi34QseWLgEy47KYQlg3cF8NhwqYENeAT89b0qDD2ymJzEuzu0IFZGy4z5cyiOlcRv/q/i0DIamza37PT+3lEhkUaM1SYqioCiCosKKZrXDsMoJGbtBqCTog1CU2HtPJQUVBPxh9EbknFQ1at+hPUXNal97pDjwETtL78PGRBVehFCR0saWIXIr/4lApUfqra1tZpvj6bdW8e6KL9AUBa9brysVCkVM/vXep6Qkephz9pk7gXKmRW2I3LIKHvxwKZZt43PpeHUdj66T6I6GCF9Zu5mlu/e3uF1JegqSY+gOCkjWU1vMnq/iS/SgKKJRXUQpJbYtSUw6tW4LRzDtKvaX/oZN+dPZXnQj2w/fwMb888mvfBIpG4Yc3d4vxYqPZZ/LE9/EnbaOlJIDFU/WOrgEhIhOWoRQUBUfIDhU9QKGVdm6hrYxKqqDvLl0M4oQuF1avWatXreOtCX/XbgO0zxzdV4dJ9eGeHPTVgzTwufSG6zWPLqGLSWvbYjv3lcsRqdNAogpiGxKExCMTJ3QwlZFSU1PYNiYnhgRi1g5VJGQiaarzZJhadkBdhbdQrH/NWwZQREeFOHGtCvIq/wb+8vua2BDZk4KvQd1woiYMe0zwtHkmLHTBp6yfe0Zv7Ebv7EXRbhihtYU4cGUfspCK1rBurbL59tyCYaNRlWF3C6NovIaduSeeKRASsnWoiKW7z/AjuLimJ/b9oQTrmxDbDtcjN2I5hxEi7y3FrR8WGt02mQ+K1tKYeggqtRqsyvBkBFsLPokDmJA8rG1MuPJVd+ayhfrDxD0h+sST6QtCYcNbFty0RVj6dAx9ZTHKfHPwx/ZgiK8iK8or6hCw5YhSv1vkpV4BYnuEXWvCSG44tvn8Kc7XiToD+PxuVGUaDjJiJhRNZCZw+jS+9Tl1dozll0NSASxw85CKCDBtJ1kiq9yRL2osR23utBlI11CjmbFgQM8vHwlu0pLsWsFJwZkZfGTKZMZ06X51YxaghZZyT3++OP07NkTj8fD6NGjWbZsWaPnLl68uK6L7ld/tm/fXu+8efPmMWjQINxuN4MGDeKNN96I923EHbemcaz9YRuJqxX08Dyqj5t7/phByaNASEJ2gJAdQBUqY9KmcH33HzSQ22pJBgzrys/+eBVZOSmEwyYBf5hgIIyuq1x29Xhu/EHzqG0U17wOUM/BHUHgRmJT6n+nwWtnnTuYW341G4/PRSgQJuiP/ti25KxzB/G9+7/WLPa1ZzxaZ4RQsWVshXwpTQQCj9Y+H7TxokdOOqqiYFqxw+GGaaNrKl07pB73Wsv27+cH77zHtuJiNEXBp0d70n1x+DC3vfU2nx861MzWtwxxfzK98sor3HnnnTz++ONMmjSJp556igsvvJCtW7fSrVu3Rt+3Y8eOerUPWVlZdf+/atUq5s6dy/3338+cOXN44403uOqqq1i+fDnjxo2L6/3Ek0m9urN41z4s224gvSOlBAnT+vZsFduS9FS+0eMOSsKHORjYiyIUeiT0I0VvG0oWoyb04Yn/fZ91q3dTeKgcj8/F2Mn9SMtovoSciFVwjJWGAGkTNvNjvn7BVeMYd+4gls3fSGFuKd4EN+OnD6b34C5ndObbEdxaNumeSZQEFyOlXS/RSUqJJUN4tE6kedrv9zseDO6VQ6/OGew+VIymNtQNtWybKSP60CGt8a7mEG2k/OCSZYRNkyTXlyFjl6qiKwo1kQh/WrqMV6/+erv7vMa9GHzcuHGMGjWKJ554ou7YwIEDmT17Ng888ECD8xcvXsw555xDeXk5qampMa85d+5cqqqqWLBgQd2xmTNnkpaWxksvvXRcm9pqMXhNOMzXnnmJwqpqvLpe5+hsKQlEDHy6xgvfuIrememtbOmZyab8mYTNg6hKbMdp2dVkJMymV8YfWtiy04OAsZ8Nh28mYpUg0GpXzBa2NFCFh8FZfyHdO6m1zWxz7Mwt5q7H3qTKH0IRAlURmLaNlNAxI5lH77qcnPRjO7k1h/L41uuv41LUmO23IpaFadv8Z+6VDMnOjtetNIk2UQweiURYu3YtM2bUDxfNmDGDlStXHvO9I0eOpGPHjpx33nl88skn9V5btWpVg2tecMEFx71mWyfR7ebvV15Cp5RkgoZJTThMdThMIGKQ7HHzp9kXOg6uFclMuAwAKRuGhmwZARQyfBe2sFWnhmkVU179LEXl91JS+RChyKZWSzTw6T0Ykf0sHXwXoAgVWRu6TPOMY1iHxx0HdxRH/p36dcvi8Z98jYsnDcbt0pBAks/N3PNH8o+ffO24Dg7gcE0Nlh27oziApkQVlYpr/M15Cy1CXMOVJSUlWJZF9lGePzs7m8LCwpjv6dixI08//TSjR48mHA7zwgsvcN5557F48WKmTp0KQGFhYZOuGQ6HCYe/bNhYVVV1KrcVV/pkZfD6zdfy8c49rN5/EFtKBuZ04KLB/Un1OjqArUlW4lWU+N8gbOYh0BFEBZalDCGxSPZMJNkzsZWtPHEqav5DSeUfsWWQI6kL5dX/R4L3PHLSHkJphd58Pr0bg7IexLDKCVvF6EoKbq1trBzaAqZtsqp0NUuLl5MfKkAXOiPTRnBeh3P46XXn8sOvn40/FCHR42pSP7s0nxdVCCwp0WKEIy3bRhEKab7mKcVpSVokW+DoGG5jXWsB+vfvT//+/et+nzBhAgcPHuShhx6qc3JNveYDDzzAfffdd7LmtzgeXWPW4P7MGtz/+Cc7tBi6mkH/Ds+yr/Tn1IQ3YFMDSIRwk+G7iO5pv6ir72rr1AQ/oLjit7X7Xwl1WqAQoSa4kMP8go4ZD7eafbqahq62jf3etoJpm/xz37OsK98AgCoUgrbJipKVrClbw3d638KQlMGkJjbdEY3t3JnspEQKqqtJ1BuKvodMk57paQzLyWmu22kx4hquzMzMRFXVBiusoqKiBiuxYzF+/Hh27dpV93tOTk6TrnnPPfdQWVlZ93Pw4MEm3IWDw5e4tS4MyH6egTkv0yP9fnpm/JGhHefTK+OBRvfq2hpSSsqqnkRi1jk4oDaT2Q3o1AQXEDH2tq6hbZSIVUOe/1MO1qygxogdPYoHS4qXsa58A7rQ8KoeXIoLj+rGo7gJ22Ge3fccQSt4UtfWVZU7Jk5EUxRqjEjtnp7EtG1qIhF0VeXOSRPbZbueuK7kXC4Xo0ePZtGiRcyZM6fu+KJFi7jssstO+Drr16+nY8cvBYcnTJjAokWL+OEPf1h3bOHChUycGDtU5Ha7cbvdJ3EHDg6xSXANIsE1qLXNOClM6xBhYxsCd8zoR7QcogZ/aDEuvVcrWNg2saTBxtJn2V31LoYdACSK0Onim8iYrO/j1eK3Xy6lZHHxEgA0pf5jWwiBW3FTY/pZU7aWKVmTT2qMiwf0RyJ5ZPlKivz+ujq5TsnJ/HjKZM7r3fuU76M1iHu48q677uL6669nzJgxTJgwgaeffprc3FxuvTWqQXfPPfeQl5fH888/D8AjjzxCjx49GDx4MJFIhBdffJF58+Yxb968umvecccdTJ06lQcffJDLLruMt956iw8//JDly5fH+3YcHNo9tgwBksYCOdECYoGUrde5oa0hpWTV4Qc5UPMxoKIJDyCwpEGufwmVxgFmdH4Ul3r8JI+TIWgFKQmXojUSDleEgkBwMHBqtWyXDBjABX378unBg5QGAmQlJHBWly4xMy7bC3F3cnPnzqW0tJTf/va3FBQUMGTIEObPn0/37t0BKCgoIDc3t+78SCTCj3/8Y/Ly8vB6vQwePJj33nuPWbNm1Z0zceJEXn75ZX75y1/yq1/9it69e/PKK6+06xq5U+FY+5EODkejq50Qwoct/QgaamZGNTglLr19ztzjQXFoM7n+JSjCRbjCx/4NSZghheSOYbKHVFIZOcCuqncZnHZ1XMZXhYpANKohK6VEIpulebFLVZnSo8cpX6et4DRNbUN1ck2hNFzJ+4XLWVK0lhozQIY7hfM6jGNGzgR8WvvLgHJoWYorfkd5zXMI6kuURR+W1WhqR3rmfIwQrla0su3wWfHD7Ch9l43/7cOuTzKwIqJOSyupQ4SzbtlFn2EpXNL933Gz4ZGdf2Nr1TY8SsMwsyktTNvkB32/y+CU9hlGbyptok7OIT7kBYr4+ebHePPQx1QYVdjSojBYwn8OvMdvtjxBtRHfWpaa6hBbtxxix7Z8IhGn2Wd7JD35e7j1gUiC2LIGKcPYMoikBkUkkpP2Z8fBfYWAWcLn/+7B9g8ysS2B5rXRvTaqblN92MWShwZwaHcgrjZMzz4PVSiE7HC9WkZLWhi2QTdfVwYmn7oQ+emGI9DczpBS8o/dL1MWrsCjulC+In9kSZv9/jxePPAet/W5qtnH9vvDvPDMUj5euIVQyEAAKWkJXHr5aOZcdRaq6syZ2iq2bbNj7T6KDpaRkOxl6KR+dMl6kYrqf1HpfwXLrkARGgmeC0lLuhmPa3Brm9ymCBSmsm+pRKgSzf2lg1E0EKqNGVTZ9k5XOC9+NgxOGcTV3ebyysH/1Tm6Iyu6Lt7O3NbnO/WeBw5RHCfXzthTc5A9NQfRFa3BB1oVCopQWFGynmu6zyJFb76U9lDI4L67X2PbF3koqsDl1pBSUl5Ww7//uYTDhZXcfucMZ2+wDbL10908+YtXOLSrEMu0EIpCcnoiV90xk4tuvIP05O9h29UIxYsiHMGBWBxe2x1pVaB5LI7W/Bci6vwOrUvBXxMiITF+f8OpWVMYnDyYVaWryQ8W4FJdDEsZyrCUIQ2yLh2iOH+VFqTQX82qglwM22ZgehZDMrKb7BT2+/OxpI27doNZSup1LtAVjbBtcChwmJSU5nNyH76/iW1b83B5tHpKCpqmEg4bLJq/ifMuGMKAQY5KfFti14YD3P+NJwjUhHB7dNw+F7YlqSqr4Zl752FGTGbfej5qGy+8DvrDVJbW4EvykJyW0AoGpKEIFSFihecliiIQtkbQH4mrkwPIcKdzcadZxz/xJAhbBh8XbmNhwRbKwn46+VK5qPNwJmT1QW2nq0THybUAQdPg9599wjt7txMyTQSgKgpDM3P4w6QZ9Eo58foaVVGxDUHFZg9VW90Y1QqKS5LcP0LK0DAi0UIAutK8Kb8L528CiCkV5HJpBAMRPln0hePk2hj/fehdAjUhfEmeugmVqgl8SR6CNSFeeWQB5189kcSUlpfwOhFKCyt57YkPWfr2OiIhA6EojJjcjytvP59+wxvvYtLcdMhJRUFHlQJLhImWYAAIVOEC6cbjc5Gc2n6TvioiAX645r9sq4x20hAIdlQVsLhwO2dnD+D+EXPQ2+FqsX265naElJIfL53PvF1fYEmbJJeLRJcLTVHYWFzAtxbO47D/xBtB9nZ1o/y9DEpWeImUq0gbrKCgfIOHg/9LoqZIkqon0TOhS7PeR/HhKpRG9tyONGY8XFDZrGM6nBol+eVsXrET3aXFjBi4fS6CNWFWv7+xFaw7PsX55fz86n/wwUurCIcMFE1BIvn846385htPsnHFzhazZfL5g/B4XVgRHY+ahktJxqUk4VFT0UQi0oZpFw7D5T71FP7W4oEt77KtsgCPopOoeUjQ3CRqHnRFZfHhbTyze2lrm3hSOE4uzqw5nMfiQ/twqSpeTa9rAutSVXy6zuFADf/dceIPmXcX7MA87AZNorhtFB0UFwhdYgUE5R+nclHO1GafcSUle7AbacwI0VlfSmrbXA2cqVSV1WDbdqOTE0VREIqgsqRtdtt+8S8LKMorw5PgwuNzobs03B4dX5KbYCDCP375GqZhtYgtKWkJXH/buQhFEPBHsC0FbJ1IyCYUiJDdKZUrbmg/4txHc6CmlBVFu9CFgnZUFMilaCgI3shdR8CMtJKFJ4/j5OLMgv07sKVEj9HCQhECIeDNPVtP6Fr+YIQFy7biUjVcWrSlhpSyNp1YIjQJFW66VDd/Ee8504cA0Sy9ozEMC6EIJk9z0pfbEqlZySiqgmXGdgS2ZSNtSXpOSgtbdnwqSqtZvXAzqqagHPXdEULg8eoU51ewYfmOFrPpoivHcuevL6Nbjyws0yYSNlA1hbNnDuUPT9xAemZ81E5ago3luRjSwtXI5Nil6FQZQXZVt5xWZ3PR/gKs7YzycAj7GIokqlCoDIdPSLUkv6iCQMjApWtoqgtDWkRsA1mrMadrGpGIzZ7cEkYPat79ipkXj+DD9zdTVFiJ7lLR9OhsLxIxsQybYSO7M2pM63Qtd4hNenYKo6YN4tOFm3B5Gn6+QoEIiSlezpo+rJUsbJzivHIMw8Tljv2IUjUVMCk4UNKidk2dMYTJ5w/i4L4SQkGD7E6ppKa3QiJMMyM5MU2Q9igd4qzk4kzHhCSU2j2rWJi2TbYv8YSyLHVNRfBls0RdqCSoHhI1Lz7VgyZUpAQtDjpzaekJ/O7PcxkwuDOWJQn4IwT8EQSCqecO5Oe/nYOqOR+ntsY1P7mYpFQfgeoQkbCBbduYhoW/KoiiKFx396UkJLe9ZAmPL6rqYduxvzfSliAlHl/LC68rikL33h3oP6TzaeHgAIamdkETKhE79qo/Ypv4VDcdXamYx9i2aIs4K7k4c2mvgTy/bT0hy8Sr1d+UNmtDf1/rO+SErtW1Yxo5WcnkHa5Ej5HlGDEsNFVh7ND4ZJ117JzGnx67ll07CtmzqxBFURg+qjs5HVPjMp7DqdNjYGfue+n7/PM3/2Pnuv2EwmGEopDdNYOrf3QR53ytbeq9dundga59stm/vQBNVxtMAsMhA5dHZ8w5A1vJwtahuKSalSt3UVUdJDMjiSmT+5HYDCULvZI6MDajB6tL9qBJpV65QDhkETqgQbGPy5e8iEvXmDmiH9dMGUHXjNRTHjveONqVLaBd+fvPPuHFbRsA8GgaAojYFpYtGZiexb8vuJIk14nNSN/5ZDMPP/8JihB4arPmpJSYlk3EsJg6pg/3fi8+NTQO7ZvcHQUUHSzFl+Sh/+ietSG/tsuqDzbxlztfxLJsPAkuFCXa2DUSMrBMm0tvnMqN91za2ma2CJZl8+/nl/H2O+uJGBaKEl3l+nwuvvmNKVw8a8Qpj1EcquaOz//D3ppiQKIgsMIQXO9FCaq4VR1NUbBsiS1t0hJ8/O2my+jXKfOUxz4ZTvQ57ji5FnBytpQ898Vantu6jpJQIBpm0XRm9ujLT0ZPJc1z4uEiKSXPzlvFywvWYVl2Xc8nIQQjB3Xhvu/OIqEVQjgODvFg0auf8q8/vkOwJoRQBNKWaLrK9Lnj+dY9l9btDZ/uvPDiCl56ZTWqouB2a3Wh3FAogqIIfnTXhUw7+9RXtX4zzPt5m3k/fzNlkRqqNquUHTRIcLvRvpIAZEtJIByhX6csXvj+3FZROnKc3DForS4EEctia1kRhmXROzWddM/Jp9zvzytl4crtFBZXkZTgZuqYPowc2BVFabuyWrY0KQ+tI2gWoKspZHrGoyqOjJTDsampDLDy/U0U55WTkOxlwgVDye6a0dpmtRjV1SG+edP/EQ4ZeL31RbOllASCEbp0TuPJx29s1u9/SbWfOX96PrqSdjWs/zNMC8OyefI7cxjRo1OzjXuinOhz3NmTa0FcqsqIrI7HP/EE6NE5g29fOalZrtUSFAdWsK3sIYJmHhIbgcClptE75Ra6Jn3N0bx0aJTEFB8z5o5vbTNajbXr9hEIhPF5G0ZohBC4XBr5BRXs3VtEnz7ZzTZubnEFEcPC44rtJjRVIWSY7CsqbxUnd6I4Ts4h7pQGP2ND8U+xZBhVeBGogE3EKmd72UNIbLonz21tMx0c2iSBQDSLubFV2pHs7WCoeQu13bUJP7aUxAoKHwkButv43q6T8+0QV6SU7Kp4HEuG0UQiitBqVV9UNCURiWRPxf9h2vHtxeXg0F7p1CkVoQjMRor6TdNCVRVyspu3qL9fpyyyUxIJG7F7RoYNE69L56y+XZt13ObGcXItSE0oTHUw3GjN3OmI39hHVXg7qmjYzRhAFR4Mu5KS4Ir4jF8dZPOqXWxcvoOqspq4jOHgEE+GDulKp06phCNmg2eHbUczq8eM7klWVvPmF+iqyvVnj0IIQTBi1I0tpSRsmFi25JIxA8lMatu1gk64Ms5IKfl4yx7+u3wD2/OKAOiRlcZVE4dxyehBbTpRpDmI2BVIbBRid5kWQgUJEauieccNG7z8yPssfGklgeoQEnB7XUybPZrrf3YJCUltrwDawSEWqqrwg+9N597fvkkgEEHTlFq5NhvLtslIT+Tmm6bFZewrxg+htCbA84vX4g9HGyVLQFUEM0f2446L2n5egJNdGefsyn9+9Bn//OjzqH5lrVCuYdkIAbPHDubu2dNO66SLgHGI5flXEm1J0nDjXEoLS4YY2eHPdPCd3SxjWpbNQ997jtUfbEIoCi5PNDPMCBvYls3AMb249/nb6o47OLQHdu4q5OVXVrN27f7o80RXmTypH9d8fTw5OalxHftQaSXvb9jB4YoaUnwezh/WhwGdO8R1zOPhZFe2AbYeOsyzH69BCEh0f7mScevRePZbn3/B5AE9mDLw9NV89OldSHOPpCz0ORJXPYcupcSSQdxqFpne5lNw37BsO58u2ozu0tG/on2o+tyYhsW2NXtZ+vZazr/qzM3Yc2h/9Oubw69/OZvKqiA11SFSU30kJLRMTWyXjBRuPu+sFhmruXGcXBx5Z802LNvGF6PHlFvXqAlFePPzL05rJwfQL+17rDn8XQy7GhU3Ag1JdAWnCJ3+6XeiiOZbVS1+fQ3SlvUc3BE0XSUSgo9f+6zOyUlpEgp9TCD4FpaVj6rm4PNehsdzHqIZ7XJwaA5Skr2ktEG90TWFh/jv9k18WnAQgLNyunDNwOGMzWne3pZNxXFycWRnQQmSxrsLKEKwq6C0ha1qeVLcgxiT/Xd2lD9KRXgztgwiUEjSe9Mn7TayfdOadbzivLJjvi4UheL86Dm2HaC0/LuEw8sAiZQg2EQwtAi3awIZ6U+gKInNap+Dw+nGf7Zt4MHPlmLaNkrt8+6D/bv4MHcPPxkzmRsGj2o12xwnF0d8bv2YrSlsKfE2Umh5upHiHsxZOU9TE9lHyCpCV5JJdvVHiOZP8E3rcOx9Vtu2Sant/VVZ9SDh8FLAjRAujsxHpDQIR1ZSUfV70lMfaHYbHRxOF7aVFvHgZ0uxpE2CrtdN6qWUBEyDh9YsZ1R2Z4ZkNl+helNwSgjiyLRBvRBCYMVoNGrXer9zh/RpabNalURXTzK940hxD4yLgwOYcukoECJm12jLshHAOZePxbLKCARfB1SEqJ/9GQ1TagSD72BZxXGx80SxrXxCVX+m+vBUqgtHUlN8CRH/80g72Kp2nSpSWti2HynbV+sWh/r8b+cWTNvGp+n1olZCCHyajmnbvLZjc6vZ5zi5OHLBiH50TEsiGDHq9WCybJtA2CAtwctlYwe1qE22tCgNH6QkdADDDrXo2C3FWecPZfBZvYmEIoSDkbru6ZGQQTgQpmu/jky7fCwRYyNSBoDGNu/dSBkkElnXkubXwzJ24C+5ioj/GaRdjJQRbGMXoao/ECi7GWm3v9o/0zxIVcV9FBeOpbhwDCWHJ1JT9Rds6/QP3Z+OrC8qAIi5LXPk2Lqi/Ba16aucGbGyViLR4+bRGy/lJy+8x4HiCmwj2uhRIMhJTeKP184kJzWpRWyRUrKp4gPWlb1FpRGt1/OoCQxJmc64zCvRTyOhZE1Xuefpm3j61/NYuWADgeogUoLu0hg9bRC3/3EuCUlegqEjE49jlXBIJK2z0pDSJljxY6RdAvi+XPmKaLKMZawlXPM4nuSftop9J4Np7KS89AYsuwSBAqjYdin+micIBReQlvkfVLV1wlrtBUua7KtZR1F4H6rQ6e4bTo63d6vZoynKcTuLf7WDQUvjOLk40y0zhUsv7cFzaz6lsthAItBSbAYOyiIjs+Ucy7Kif7O2/C2QoCo6IAhaNXxe+joFwZ3M6forNCV2wXZ7JCHJyw8fvo7rfjyLrZ/vRUpJ3+Hd6dzry9oelz4MITxIGQZiZauFATcufVhLmV0PK/IZtrmb6H5h/YeEEBpSKhiBebgTv4tQ2rbqBEQnWpUVP6t1cAn17klKC8vaT3XlH0hNf7QVrWzbFAR38m7+w1QahxEIJJIV/JduvmHM6nQnPq3luqocYWqXHmwpOYyUDZPsjpRhT+vaq8XtOoITrowzT+z8iCf3fEwozU/yAEnaQBt3jsWK0h187/PnKQ3HP9x0OLSH9eXvIlBxqT5UoaMKDZfiRVVcHApsYWvlJ3G3ozXI6pzO2bPHMG3O2HoODkBVs/B6LgRMpKyvzxf93cTrmY6mdW5Wm6rKalj59hoWv7qKfVsONnqeZWwlqi/R2FzUhZTV2NaBZrUvXpjGZkxjKyKm01YBjXDoQyzrcOsY2MYpjxTw+sHfUxk5jC7cuBQvrlrB8/3+DbyV90dsGVvfMp5c0XcISS43NYZRl2sA0byDGsMg0eXiir6DW9yuIzgruTiS6y/h1QOfogqBR/1KMbiqoEuVgmA5rxxYze39zo+rHdsqF2NLC11puFpRhYZFhM0VixiWdkFc7WiLpKb8CtPcW7s/B9F5XzQ8qetDSU25t9nGMg2T5+9/nQ/+vYRgTQhkNLTaf2xvvvvwDXTpW78N0/Fr9CTRUGv7qOUzzR1IaSJEYzVeLiCIae5ptZClZVdh2X40NR0lhkJPa7KhfAFBqxqX4q1bMQkh0ISOkIL84A72+zfSK7Fl0/U7Jibx6LkX88NP3qMyHKpzdIoQJLvcPDxtFl2Smlc8uik4Ti6OLCzYgiltfGrDMKAiFASC9/I2cGvfc1HilGkIUBEpOGa9nhAKlUZB3MZvyyhKCpmZ/yEYeAd/cB6WVYCqZOPzXYHPeymKcvKNbY/mHz98no9fXomiKHgTPQghMCMmW1fv4ldz/sKf3v85WV3S685X3ROJfkUjxEyOkWEUrRuK1nqhoKbhrt3+POKcj8aGaKfBFrUKwB9ez+Gqp6gOrwApUZRE0hMuJzvpFjQ1rcXticW2qmW1HTxiCZ1rmHaEXdWrWtzJAYzv2JX3Lr+Bt3dv5/PDh5ASxuR05rLeA8nwNt936GRwnFwcKQlXI4iddQSgChW/GSZoGSRo8Zs1etRjJ7dIaeNqB3s68UIRXhISriIh4aq4jbFn4wGWvLYaTVdxeb58iOtuHVVXKSus4J2nFvGt+7/sq6dqvdE80zBDHyKlUreyi+5zhEAIXAk31ob62j4u90QU4UPKENDwwSdlCFXNQXe17B5oVXAJ+0vvwJJBFHQQCpZdSXH1s1QFl9Cnw/Poaut3Io/YwdpkndhIJOFWLCtJ9/j45pBRfHNI6xV+x6JF9uQef/xxevbsicfjYfTo0SxbtqzRc19//XWmT59OVlYWycnJTJgwgQ8++KDeOc8991zdjOarP6FQ20qJT3NFHUdjGtiWtHErOh41vuGmPknjo/V6smFfqCM1SgNTmkcc2SE2y9/8HMuy0WNIvCmKghCCj19Z1eCz4k35A6rrLCCClNVIuwrwAwJXws3ovq+3iP3Ngapm4vHNRWIhZahe6xYpAwghSEi8uUHNYjyxZYjcsl9gyRCqSERRPCjChaokoAgvYXMPhZX/aDF7jkWa3rHRPTdZm7Wdpue0sFVtn7g7uVdeeYU777yTX/ziF6xfv54pU6Zw4YUXkpubG/P8pUuXMn36dObPn8/atWs555xzuOSSS1i/fn2985KTkykoKKj34/G0rTT483MGowiFiN3Qudgympo+s9Mw1DiGKgF6Jo6mk3cAlh3BtL+sG7OkiWGHSNDSGJbavPtxh/YWsX7FLnZtOYQdoxj+TKOipBo4xqpeUwjWhIiEjHrHhZKML/1f+NKeQvdeiea5AFfCt0jInIcn+UftroNFUvJP8XpnAzYSP7ZdDdQACr7Eb+NN+EaL2lMZ/BjTLol2rD/qbxldIStUBN7GagP1iMPSpgPEnKwaMowiNAannNPSZrV54h6u/Otf/8pNN93EzTffDMAjjzzCBx98wBNPPMEDDzSUS3rkkUfq/f6HP/yBt956i3feeYeRI0fWHRdCkJPTtmctvZOyubDTMN7N24BtRnCrGgKBIS0M2yTdlcjcHuPibocqNC7t8nM+yH+MA/71GHYQhEAAGe5uzOp8F0l6ZrOMtfuLPP710AJ2bMzFsmwURdCxeybXff98xp/XehlWrU1Gx1SAmGnWAJYZlRqL1f5HCBXNMxXNMzXeZsYdIVykpD2EL/FGQsH3sO1yVDUHj/cyNK1Hi9sTNvcDotGQrxA6lgxiWIWoSuuqEw1NOZ9d1avJ9W/BEgaq0JASLGkghGBC5pWku08+EzgQivDxqp18snonVTUhunRMZeaUQYwd2r1d972Mq5OLRCKsXbuWu+++u97xGTNmsHLlyhO6hm3bVFdXk56eXu94TU0N3bt3x7IsRowYwf3331/PCX6VcDhMOByu+72qqqqJd3Ly/HjQRaToPl4/uIaAFY4WJSsKQ1O78rPBl9DJ2zKb2l41idldf0FJ6AC5gU3Y0qSDpzddfUOaTV5r77Z87v3Ov6ipCqK7NDwuHduWHNpbxEM/eYXv3385Z180olnGam9MvWIcrz/2PpFgBLev/v6rbdlIKZl+3eR2tzI7WXR9MLre+pMeRfiICnM3lphlIxC157UumuJiTpef81npG2yqWETQqgIEWZ7ujE2fzcDkk58EFZfV8LM/v8n+vDKoTVLbc7CEZZ/v4dzx/fjpLeejae1j7/do4urkSkpKsCyL7Oz66cDZ2dkUFhae0DX+8pe/4Pf7ueqqL5MCBgwYwHPPPcfQoUOpqqri0UcfZdKkSWzcuJG+ffs2uMYDDzzAfffdd2o3c5Loisrt/c/nul6TWFu6j4ht0jMxi37JHY//5jiQ6elOpqd7XK79wqMLqakK4kt01z0wFPVIKC7Cc395nwnnD8YVY1/qdKdb/05cdMu5vP3EIgLVQdzeaG89I2JimRYde3bg4lvOa20zzzhSPNMo4CGkDCNE/e2OaFg/gs81El1tne/r0eiKh0lZVzMu42tUmcWoqCTrHU5pciSl5A9PfsCBvDK8bg1V/XLSGzFMPlq1gx5dMrjmkjHNcQstTosknsSqgj+Rf5SXXnqJe++9l1deeYUOHb4s5B0/fjzXXXcdw4cPZ8qUKbz66qv069ePv/3tbzGvc88991BZWVn3c/Bg4wW4TaU6HKY0EKhXBBmLZN3LOTmDuKDTsGZ1cFVVQbZ8cYgdOwswYggStxSH88rZ/PledJcaY29D4PbpVJTUsG75zlaysPW58b4rueFXV5CSmUwkZBAKhBGKYMLFo/jdmz8mtUPr1RKdqbj1HqT5LkZiYtdLhrGxpR+BTk7ybW1uha0pOumuTqS4sk/Ztp37itiyMx9dV+s5OACXroGANz/cSMgwGrlC2yauK7nMzExUVW2waisqKmqwujuaV155hZtuuonXXnuN888/drG0oiiMHTuWXbt2xXzd7Xbjdjdviv4ne/fy73Xr2VRYiAQ6JiXx9WFDuXrYMHQ1/sv66uoQ//r3Mj5Zup1wOBqTT0tLYM6lo5hz2egWj6GXFVVhWxJXjEalQPTLI6CksOVCxW0NRVG44o4LueQ757FjzV4iYYOu/TrRoWvrp6efyXRJuxeJRUVgATYBkAKwUZUkOqf+nGTv6Z15vGVXPrYt8bjrOzgpIWxHiIgIeWVhrnv/t0zqN4CLO02hb1K3VrK26cTVyblcLkaPHs2iRYuYM2dO3fFFixZx2WWXNfq+l156iW9961u89NJLXHTRRccdR0rJhg0bGDp0aLPYfTxe3LCBh5Ytx5QSXVEQwMHKCv68bDlr8/J56MKZcXV0gUCYn/96Hrv3HEZVFNwuHSklZaU1PPOvpRQVVXHbd86N2/ixSE7zoSgC27JRtYYBAtuyQUJK+plbj3cEl8fF0MkDWtsMh1oUxUP3jD/TIfnbVAY/xLZrcGndSPNdiKocXwuyorSGj99cy8qFW/DXhOnWO4vzrxjL6Cn9UFpRmPhEkTFq86WEGjOAIc1aJSCBaVssL17PZ6VbuLP/NYzLaJnn7akS9+zKu+66i+uvv54xY8YwYcIEnn76aXJzc7n11luBaCgxLy+P559/Hog6uBtuuIFHH32U8ePH160CvV4vKSnRcM59993H+PHj6du3L1VVVTz22GNs2LCBf/wj/vUsuRUV/HXFSmwpSfxKg0A3GhHL4uO9e3l7+3auGBy/TfX5H2xmz57DeNx6vfCCpqmEwwbvvb+J6ecPoU/vDse4SvPSqXsmfYZ0Zvv6XLQYIctQ0CAh2cPoKf1azCYHh6bg1fvi1Rvu6R+L3N2H+e1tz1FaWIUEFEVQeLCUz5fs4JxLR3L7vXMahADbGoP6dEQRAsO0cenRyXnYjmBIEwFIS0H12SRmKKC6CVph/rHrVQan9CZRa/2EnOMR97/+3LlzeeSRR/jtb3/LiBEjWLp0KfPnz6d792jyQ0FBQb2auaeeegrTNPnud79Lx44d637uuOOOunMqKir49re/zcCBA5kxYwZ5eXksXbqUs846K963w1vbthOxLHy63uBB7lJVpJS8unlLXG1YuHALEmJ+eVwuDcuy+Xjx1rjacDRCCK77/gzcXp1ATRjTsKK1eJZNoCaMEIKv33YuvsS2Vcvo0PaQUvLF6l08dsdz/GjG7/nVFX9l/r8W469qW01iLdPizz96idLCKjwJLhKSPHgT3PgSPaiawsdvrWPBy6tb28zjMrB3NgN752AYFpZtI4GwFQFAWtFnXPLQMEKLfs89qgu/GWR58YbWM7oJCNmYHMdpTFVVFSkpKVRWVpKc3LTWFD98bz4Ld+8muZE9vqBh4FJVPrv9tuYwNSazr3wMy7RxN5KlWFMTYsrkfvzi7kviZkNjrF+xi/974B0KD5VjWzZCESSnJTD3O+dw4dfHtbkNfIe2hZSS5+77H28//VE0xM2XiWrZ3TO59+U76NSrbfSbW7t0B7///vPoLh1Nb7g9EagJ0bFbBn976842v5orLKniZ396k4OFFSAlYRmpfUWQ0DtChxkBvlpKGDBDXNBxAt/ufcUJXT9iWahCoDZj+PZEn+OOdmUT8bl0jvWctqXEo8c3RT45yUtJaWwFBiklQhEkJTWm9B5fRk7qy9/eupMv1uyjuKCCxGQvwyf0weM9fXrVOcSPj15eyVtPLkJR1ToRa4ju6R7eX8Ifb3yChz/+dZtwGjs25QIipoODaJPeorxyyoqqyKoVA2ir5GQm8/i9c1m4YjsfrtrOlqJ9qCkWqYNMfD0NvlpKK2s38TRxbPdh2jZvbtzKq+s2s7+0HEVRmNy7O9eOGc7Irp3ie0NfofU/Ke2MaT17IhCYMaSqpIz2x53RJ77KCOedMxApJbbdcBFumhaKEExtxb0vVVUYNq43580ezbhzBzkOzuGEkFLy9lMfIiV1dYRHUFQFl1cnd0cBG5a0bCi+MYQQIBvXpq13XjsgwedmzvTh/OPXc5l5ewdSLyzH1yvC0VoRlrQRAkamNZ48Zdo297z1Ab//YDE7i0qwJRiWxYfb9/Cdl95kwdaWKyVynFwTmdazJ/0zMwmZJoZl1X3ALdumJhIh0eXimuHxVVG/eNYIMjMSCYYiGIZZp0UZDhtEDIvRo3owbEjXuNrg4NDcVBRVkberEM3VSBlKreLG1lWxS4VamoGjeoCISrLFIhI26dg9k/QOx+4C0ha5tPPZ6IpG0ArXc+KmbRGxDXondmFYauNJOm9t2saHO/agKyqJbjceXcOr6yS4dCKWxf0LPqGkxt8St+I4uaaiqyr/uPQShmRnE7FtAoaBPxIhYJpkJSTw6MUX0esoCbLmJiMjkT/c/zX698uJJnYEwgRqC4vPO2cQ9/z0onatNefQspQVVrB7w36KD5W2qh0S2WinOfhyRdRW0giGjetF977ZREJG3f4hRO0LhwyEgEuum9guygiOZnBKb27vcyWe2mxKvxkiYIYwpEnvxC78bMA3jyks/9q6zSDBdZQUmBACn8tFIGLw3hc74n0bgLMnd1JkJybyn6uu5PNDh1iRm4tp2QzskMX03r3jvh93hK5d0nn4z1ezc1chu/cUoWkqI4d3o0OHpiXSOJy57P/iIC/89n+s+2gztmmjqIIhkwdw7S+uYMBZLS9GnJqVTMceWRzaXRizJZFlWiAl/ce0jSaxiqLw079ew/23PUfBwbJ6Sk6KIph19XjOv3x0K1t58pzdYTTDUvuytHgdBwOHcSk6o9MGMiKtH+oxehgalsXe0vJGk0wUIQDJnuKyOFleHye7sonZlQ4OpwN7Nx3gl5c8SHVZDapLQ9VUbMvCDJt4Et385rUfMaQVCtbn/2sxT9/9X1Rdq9eRwbZtQjVhOvXuwN+W3oumt535ub86xLL5G1mxcAuBmhDdenfgvMvHMHh0j3azH9ec2FIy+a9PETYtvI1M+mvCYb42cgi/nHnyrYGc7EoHB4dG+b+7/0NVWQ2+5K/0UdNVdLdOsCrI43f9m7+v/n2Lh9ouuGEquzfu5+OXVxGoNhFCYNsSISA9J4WfPXNrm3JwAAlJHmbOHcfMufFvm9UeUIRgSu+eLNy2K6ZOsWnZCCGY1Cs+QvFH07Y+LQ4ETD+flq1mQ8V6wnaYzp7OTMycTK+E3mfkrNCh+cndnse21bvQ3Q0FDYQQuLwu8nYWsHXVToZMatnVnKoqfO+vNzDholEsfGEZB7bn4Uv0MOmyMZz/9UmkZTsi1u2B684azuJde/FHDHwuvTZEGXVwIdOkX4cMJvd2nNwZR0Ewn3/s+RtlkWgCgEBwMJDLZ+Wfcm7W+czufLnj6BxOmaLcEizTwpMQO5Sk6iqhQJii3FKY1MLGUSu4Pn0YY6fHN0vZIX4M7ZTD7y+Zzm/mf4Q/HEEg6jKK+nXI4NGvXdwiQvbgOLk2g2mb/N++JymLlOFWPCi1mUtSSgwZ4aOiRXT2deas9PGtbGnzEDHzKfe/RlVwMWDidY0kPfEqfK4hrW3aaU9Cig9FUbBtGyVGUbVtSxRFkJDcOoICDqcH5w/ow+hunZn/xU52FpXg1lQm9erOpN7d0VowDO44uThzoLCcd1d+wZY9BWiawrhB3blw/EAyUuqr8W+t2sLh0GFciqvOwUFt+Ei4CVpBPi76iLFp7V8aqya0igOl38e2q+uSxkPGTir888hJ/SmZSd9obRNPa/qN7kWH7pkU7D2MmtxQTDscCJOSmcTwc1q/c7dD+ybN5+XascNb1QbHycWRd1du5a8vL8Ywvywa37Arn5c+XMfvv30RI/p2rjt3d81ugEZTczWhkR/Mw2/5SdQS4298nDCtMnJL78Syq1BEYl2sPlrQHqCg4k949IEkeuIvtn2momoq1/78ch659WmC1UE8CR4UNbqyC/vDCAFX/eRSPL7m7cHo4NAatL8qxXbC1v2F/PWlTzBMC59bJ9HrJtHrxuvWqawJ8cun51NRfbSqevteoZ0I5YG3sOwKFJFQbwUhhEAIH2BSWvNi6xl4hjBt7kRu/es3SEpLJOQPEawJEqoJ4Un08I17r+KSW2e0tokODs2Cs5KLE28s2Yxh2fiOymBThMDncVHpD/H+Z9v5+nkjAeiZ0AuQWNKKuZqzpEknb2cS1PbddDQQXoPErheSPYIQAikV/OFPW8GyM4+ZN57D2VdO4NP31lFaUE5yRhLjLx5FUlr7jRS0N6S0MGUAVXhQxMkJSZimhaoqbXYbI2BGsKRNouZuFRsdJxcnPt+WW7s6afiPqgiBLSXrdhyqc3JDU4aR6cqkJFKCorgRX3EChh1tezEt65w2+0F2aJ94Ez1Mmzuxtc044whbZeyvfImDNe9g2jUIodMpYTo9U64lUT9+an1NdYj33lzLwvmbqCirwetzc870wVxy+Rg65LSNMovlh/fywq7PWVtyEAl0TUjlql4jubLnCHSlZTIrwQlXxg1bymMHH49SL9cUjZt73UqynkLYDhO0goSsECEriC1tpmSezYSMVsjnbmZ87jEIFKSM3cUBbBLcTlGtw+lLyCxhdcF32FP5PBGrAgnYdpiD1W+xOv8WKsLH7rJQUe7nnjv/w3/+tYziw5XYUlJdFeSt/33OT773Arn7i1vmRo7Bq3vX84NV81hVtB9J9Fm4t7qUBzd9xN2fv4NhWy1mi+Pk4sTwPp2xa7sDHI2U0RTtob071jve1deVuwf8gks7zaartxtZ7ixGpI7ktt7fY27Xq2OG+Nobab7LUJVUbOmv97c5kngCGhmJ17WegQ4OcWZ7+d/wG7mowoumJKAKN6riRRUJROxKNpf87pgi1M89vZgDe4txe3R8CW7cbh2vz4XH66K8tIZH/vheq4pY5/kr+PPmj7GlJFFz4VF13KpGku7GJRQ+zN/Jewe/aDF7nHDlSbK3qpQPDu6gMhKioy+JWd0GkuX9ci9jztShLNu4h1DExOPS6imoB0IRfB4Xs8YPbHDdFD2FC3Iu5IKcC1vsXloSTU2nW8YjdSUEdm0DRgEINHJSf3raZVZKqxgZegs7shYQKK7RCM9lCDWztU1zaGHCVimH/Z8g0BCioUK/gpuayD7KwuvJ8Ixq8P6Kcj8rFm9H1ZQGjWMVRaC7NfbuLmLntgL6D2q5xqRf5e3cLUQskwTN1WB7xaVqhI0wr+7dwOzuLVPs7zi5JmLYFr9b+yFv7d+CKW0EAonksS3L+e7gSdzYfyxCCEb178K3L5vI02+tIhA2iOpuR/G4Xfzqxhlkpp6ZG/yJngn0zX47WgweWgLSaNZicH9VkH1bDoKAnoO7tmpRsx1eil35M5B+qA3R2pFl4H8WJeUhFPeEVrPNoeXxGwexZARVeGK+LtCwCVMT2RfTyR3KLSUSNnF5Yj+6NU0hEjbZv7eo1ZzcnqrS6HZNI/kDmqKwp7okpq5lPHCcXBP568alzNu3CU0odTMVW0qCpsEjm5aS7vYxu2f0QX3N9FEM7ZXDW8u2sHlvAaqiMHFoDy6ZNITuOWmtfCeti0vrRHbKHWSn3NFs1wwFwvz3T+/w4UsrCNaEAPAleZl+zSSu+eml9VTtWwJp5mJX/gTsAIgEOKLyIG2wq7Arf4TImIdQOx77Qu0YaVfUrmBtFG0gQuvS2ia1Kqpw106MbQSxki8kIFFF7BpFXdcQ4vg99TS95RI7jsajacd0XlJK3Mqxz2lOHCfXBIqDNby2dyOKUPBoXz4wFSFI0F1UR8I8vW01l3QfVNdLaWjvTgzt3TozqjMJ0zD5401PsWHxNhRV4PK4AEmgJsSbT37IwZ0F/Py52+q6S7cEdnAeyCCIRPjqF1ooQCLIGmTwDUTi7S1mU0shZRiz+uHav0Gg9qiO4p6ClvxrhJrVqva1Fkmuvni1HAJmfsySAVuGUYWHLG/sFX7vftmkZSRSWlKNFuOzHAmbuN0aI0b3aG7TT5izc/rwzoEtmLbdQL5LSoktJed37t9i9rT/TIYWZEXhfoKmgUeNPTfwaBqH/BXsqGz97KYzjdXzN7BhyTZcHg1Pgju6Z6GpeBPc6G6NtR9/wWcLN7WoTTKyLDoxjzVjjU7HscPLW9SmlkBKG7PiZ9iBF0GGgYTaH7DDn2CUfQtpV7aqja2FIjR6pdwACEw7ULcik1JiyTASiy6Jl+DWMmK+X9NU5tS29AmHjHrvj0RMLNPmnOlDyMhMapH7icW0jn3om5JFyDLqZVFa0qbGjODTXFzdu2EoNl44Tq4JhCwDaFyXREEgJQRNo+WMcgDgo1dWgQTN1XACotce++TV1S1rlDRjO7g6BNByqdQthYyswQ5/DLhA+KIrV6GA8ABepLUPK/C/1jaz1eiaNJt+ad9GERqW9GPafiwZAGw6J17IgIxjh/AvnjOaOVdFk7OCgQj+mjDBQATbkkyY2p+bv3teC9xFQ3IPl/P+59v5eN1uftX/AgakZhOxLWrMCH4zQsA0SHf7eGjcZfRNbrmVvBOubAI9k9JRhMCUNnoMVZKIbeFSVLolpra8cWc4RQdLOV6FxeHckpYxphahj0Ja+0HKhs6udgYuXC03o20prNB7gA3E2AMVKtgSO/gmJN7Uwpa1DYQQ9En9Fp0SL6Sg5gOC5mF0NZmOCeeR7Op33PcriuDGW8/lvJnDWPzhF5QUVZGU7GXyOQMZMKhTiwtGlFb5+ePLn/DZtlwipoUAXLrK1GG9uPmcCWyozMOwLQakduCCLgNJ0Fwtap/j5JrA2A7d6Jmczp7KUjS9voyOJW1M22ZGt371SgnaKlJKDudXEA4bdMhJwdvOxXhTs5LJ23O40dellKRmJbegRaD4voYVehsIgPR96eikjB4TOor38ha1qUWwi6LJNUojD1uhIW0npO/TOtI79Zsn/f5uPTK54eazm8+gk8AfivDDx99mT34pmqaQ6I06sIhh8dG63RRX+nnse7NbrHdcLBwn1wQUIbh/zExuXfY/qiJhNEVBFQLTtrGRdE1M5UfDp7W2mcdl2UdbmffCCnL3FSMleH0uzpk5lKtvmkpiUvvsIXb2FWfxxapdWKbVILnEMi0Egmlfa1klFaEPQUn6EXb1Q4Af5FeyK4WGknQPQuvboja1CEo2oMRewQJIC6F2aHGzHJqfBZ9tZ09+KR63VpdsB+B2aaiWxaY9BSzdtJfzRrbe59zZk2siwzM78cK513Bpj8HoiootJUkuN9f3G8ML515Njq/1NnxPhHde/Yy/3vcme3cdRlEUNF0lGIjw7v8+51c/+A/+6lBrm3hSTJ09lp5DuhAOGERqN+SllERCBuGAQZ8R3Zl4ccuHBhXftahpzyDcF4KSDkoGwnsxavpzKL6vtbg9LYHqvag2gzTS8EVpgQDFN6fF7XJoft7/fDsg6zm4I2iqCkgWrtnZ4nbVs6NVR2+n9EnJ5IFxs/j16OnUGGFSXF5crbgcP1FKi6t5/qlPkFKSkOhBYmLaQYTLRFiwe9ch/vfyx3zjllmtbWqT8SS4+c1L3+cfP36RdR9vJVAVddaaS2P8rBHc9qdrcHtbdi/gCMI1CvU03HtrDKGPQXGfjx36gGhijZtokk0EpIHQ+6B6r2hdIx3qMG2DkBXEo/rQlKa5hPLqIOKYXb4FpVX+UzPwFHGc3Cng1XS8WssWGJ8KSxZuJhI28PrcmDKIaQc4osMiVLAjknffXMIF1+SQk9D+Hsqpmcn84rnbydtzmO1r9iIEDBjTm069nNBYSyKEQEv9I2Z1R+zg/6JqL0jAheKZgZb8c4TSsvujDg0pDRezuGg+6ytWYUoDXbgYmTaBaR1mke46Mcm57LQkCsqqjnGGpGN66/5bO07uDOJwfgUgaldwR2ZXX+l1p0pC1SpLD/yWS/s/h0dNbQUrT53OvbPp3Du7tc04oxHChZ78E2Tid5DGBqQ0UPQBCLVza5vmABwO5fHUnj9RbVai1P4XlmFWlX7MF1XruLX33WS5c457nYvGD2Tj3nxMy6oNT35JxLQQQnDhWQPidRsnhLMndwbhS4hmUBp26Mj6rd7rUgoUFSy1ggPVi1rcPofTD6Eko7inonrOa9MOrqYywPsvLue537/JK4++z4Ht+a1tUlx5/dALVJuVuIUHl+JGU3Tcihu3cFNlVPDGoRdO6DrTR/VlZO9OhA2LYNjAsm0s2yYQNjAMi8lDezJuYLc4382xaREn9/jjj9OzZ088Hg+jR49m2bJlxzx/yZIljB49Go/HQ69evXjyyScbnDNv3jwGDRqE2+1m0KBBvPHGG/Eyvx6mZfPh1t18/7/vcNnfX+CGZ17jv59upDoUbpHxT4UJ0wagKALTMBsUtEsJ0hL0PKscRbMpCW1sFRsdHFqaT+Z9xrcn38dTv3qNt59dwsuPvs+PLnmIh773HKFAjOSZdk5B8CD7/bvQaKgfKYSCisZe/3aKQgXHvZZL13jw2xczZ9IQ3LpGKGISjpgkelxce/4ofvuNC2ImpbQkcQ9XvvLKK9x55508/vjjTJo0iaeeeooLL7yQrVu30q1bQw+/b98+Zs2axS233MKLL77IihUruP3228nKyuKKK6Kb1atWrWLu3Lncf//9zJkzhzfeeIOrrrqK5cuXM25c/NLEI6bFPa9/wOIde+uyow+WVbAlr5DX1mzmH9deSqfUtrvX0HdgJ8ZO6sOKJZuQUkHVJUKAbYEZVnH5LIZeVNTaZjo4tBhrF2/lH3e/jGVaeBLcKIqClBIjbLLivfWousoPH76+tc1sVorCBViY6CJ2uZAmNMIyRFG4gA6e44uHJ3hc/Piqadxy0Xh2HSpGKIL+XbJI9LaN2lsh49xdb9y4cYwaNYonnnii7tjAgQOZPXs2DzzwQIPzf/azn/H222+zbdu2umO33norGzduZNWqVQDMnTuXqqoqFixYUHfOzJkzSUtL46WXXjquTVVVVaSkpFBZWUly8ok7pScXf8rTSz/Hpam4vlKLZdk2wYjBiG6deOYbl7e44kBTCAUj/Pre37NtpYFtKVEJRSAxM8LZ3zlAzoAqDBlgRMZ36Z96VWub6+AQV35+5aNs/XwvviRPg+9tOBQBCY9+cDedT6PkpW1VG3h23yO4hDtmI2ZbWkSkwc29fkT/pFNvfRUvTvQ5Htd1ZCQSYe3atcyYMaPe8RkzZrBy5cqY71m1alWD8y+44ALWrFmDYRjHPKexa4bDYaqqqur9NJWwYfK/tVsQgnoODkBVFFyaxuZDhWzNb9srIY/XxY/vnc1lf9zI2Gv3MvqqPKbfuZcrH9pKzoBqDBnApSTTPWnG8S/m4NCOKTtcyc6NB9Ddsdu+uNw6lmXz2aLNrWBd/OiVMACfmoAhY4diI3aERC2RngnHlxhrD8TVyZWUlGBZFtnZ9TPdsrOzKSwsjPmewsLCmOebpklJSckxz2nsmg888AApKSl1P127dm3yvewrKaciGGrg4I6gqwq2lGw8FNuGtkQH70imDv4mgy8sYvDF++g0Kh9bqal1cElMzL633WZWOjicCJZVQnHRv7EtP5IqbLsKedRDXwiBIsRpty/nVj1MzboAiSRih+t3MrDDCCGYmnUhLqV16kqbmxYpITh6lnS8jrCxzj/6eFOuec8993DXXXfV/V5VVdVkRydE490HvrShSZdsVfqlXkmmZyh7q9+lJPQFitDo5JtAz6RZJOjHTx1uL0hpYkZWY1kFKEoqumsyQmmf0mUOzUMkspWi0ptQvCW4fZMJ+TU0LYiUIYTiQxFR7VnLsrFt+7QKVR7hnA4XE7QCLC/5kLAMIaRAItGExpSsCzg7a2azj2lLySf79/K/rVvYXlKCR9OY3qsPVw0eQpfklGYf7whxdXKZmZmoqtpghVVUVNRgJXaEnJycmOdrmkZGRsYxz2nsmm63G7f71DZBe2amk57gpaQmEFNs1LBsVEUwqlv7aZCa7hlAuqd1a1jiSST0CYGq32FZh2rlpBQUJR1v4vdw+65t03unDvFByjDFZbdh2UW4vQmMm1XK4ldysC0FRZVIO4BUNMBNOBAmNTOJcTOGtrbZzY4iFC7u9HUmZJzLhopPqTYrSdZSGZ46jgx387fBsaXkt0s+Zt62rUgkihDYUvLs+rXM27aFv114CaM6xufZGddwpcvlYvTo0SxaVL/matGiRUycODHmeyZMmNDg/IULFzJmzBh0XT/mOY1dszlwaSpXjR0GQMQ0671m2TYR02JUt04M6HhmdjxuaxjhFdSU/wDLygU8IJIBH7ZVTqDqd4QDL7a2iQ6tQCC4CNM6hMCLEAozv5lPp94BIiGVUEDFjAhCwSDBmhAur4vb//j1VpODawky3B04L/sSZne+jnOzL46LgwN4c/tW5m37Ak0RJLpc+HSdRJeLBJdORSjMjxYuIGjEpw9n3MOVd911F9dffz1jxoxhwoQJPP300+Tm5nLrrbcC0VBiXl4ezz//PBDNpPz73//OXXfdxS233MKqVat45pln6mVN3vH/7J13eBzV1YffO2WrumQV9957t8Hggo1tejEYQkkglCRACKSRhC+QhJCQnpCEFAgkEFrozYDBmOLeu9yLbPWurVPu98faMkIrW7a1Kva8z7M8eHbKmdXunHvPPed3vvlNzjnnHH75y19yySWX8Nprr7Fw4UI+/TSxXZZvmDSK3aUVvLtpO1Ezeri5swQE/XIy+ellMxvsHzTDvF24gvcKV1EaqSZZ9zEjZxQXdZ5Ihrv9lhp0dKSUBGt/iyQMJH9uxqaCSELadYRq/4TbezlC8belqQ6tTCS6GhAIEXv0+VNN7np0GwufzmPpW50I1SkIYTH2vEFcfvv5DBzTq20NPg2QUvLfjeuRgFtr6HKEEPh0jZJAgPd27+SSAYNa/PoJd3JXX3015eXl/OQnP6GwsJChQ4fy9ttv06NHDwAKCwvZv39//f69evXi7bff5lvf+hZ//vOf6dy5M3/84x/ra+QAJk+ezHPPPcePfvQj7r//fvr06cPzzz+f0Bo5AF1V+eklM5k7bACvr9vK/ooq0n1eZg3px6wh/fC5jupY1hhBfrjhCXbWHgRAFQpl4Sqe27+ID4rX8PDwr9LF1zx9OIcTwzJ3YhlbAHf8kKTwYssqopHFuL0dT4za4VRovHDuTzW55BsHuODWAuoqLVxei379/oDiDIBahIBhsKuyAq2JonBViZUybSguSoiTS3idXHvkZOvkToTf57/Eu4Wr8Kg66ue6iNvSJmRFGZTand+MvN1ZF0oARmQFNRXXA15EnA7uAFLW4k/5MR7/l1rXOIc2JRB8k7LKbx4OVzYe49uyFpc+grzsl9vAutOTkGEw+Ym/IQGPFn9eVReNcu3Q4fxgytRmn7e5z3FHoDkBVEfrWFyyAVUoDRwcxBZ8XYrG9poCdtQdpH9y1zay8vRFUXMRqEhMoLGTk9Ks38/hzMLnnYlW0xXTKgDpRxwuhpZSHg5vC1KSbmxbI1uRqGHy2bKdrN9UgGXb9O+Tw7QpA0nyt5xaiVfXGZGTx6pDB+N6HNO2ARjfJTHPQsfJJYD9wRIidhR3E3UmmlCJ2Aa7ag/VO7k1m/bz+nsbWL+lAASMHNyNS88fwYjBjhM8UVStO5prHEZ0CVK6GsyWpZQggyhqDrp7Shta6dAWCOGmU8ZfKCm/GcsuRdrycINXAIWUpFvweS9uUxtbi30HynngF69xqKg6tkHCex9u5t/PLuG+e+YyekSPFrvW9SNGsqboEEHDwKsdLb63bJuQYdIrPZ1zeyRm/dNxcglAFSoCEXugHiMaqSmxWcYLb67m8ec+w7YkihI74NOVO1m6eje3fulsLp8zqjXMPq3wpXyHmvIbkXYNEjexr7oFMowQOr6U+xDi1LPmbNtm06fb+Oy1ldRVBsjunsW0q8+i+6D2q7h/puNyDSEv+03qgv8jGHoXKUO49EEk+a/G7ZpwRiwhBIMR7n/oVYpLa/C4NVQ15uhtW1JTG+anv3qTP/7yGrp1yWiR683o1Ye7xk/i0ZXLCEQNZP3aqKBrSgp/nH1B3NKslsBxcgmgb3IX0lxJVEZq6x3Z54naBm5FZ2RaH7btKuKJ55cgJXi9ev0PTEpJOGLw9/9+yrCBXejXq+MXpB7cU8K6T7djGhY9B3Zm2MQ+KAlSKNf0oaRkPEmw9peY0TVIgggUFL0/vuR7cHlmnPI1grUhHvnKn1n34WZs28a2JYqq8OqfF3DZnXO4/v4r280DU0oJdjHIMKh5CNF24rmBmiBLXltFyYFyktP9TLxwDNndMlvVBlXNIjX5dlKTb2/V67YXPvpse8zBebQGXQIUReDz6QRDUd58dwNfu2lqi13zq6PHMqVHT17eupn8sjK8usb0Xn2Y07c/Sa7ElWk4Ti4BuBSNS7qcxZN7FhCxDFxKbHoupcSUFqa0mZkzik6eNP698H0sy8br0RspunjcOqGwwduLNvHNXtPb8I5OjUBtmL/86EWWL9yMZVogBALo0jubu381nz5DEhSLdw0jJfNpLHM3tlWIUNJQtcEt5nj+8q0nWbNwI7pbx+1y1/+NI6EoL/3uLbI6ZzD3q6fuTE+F6rIaPvzPE6xduATLqGPgqAgz5klyB1yM8H8VoSS1qj0Ln/mUx3/4LIHqIEIRSFvy1AMvMvumaXzlJ1eh6c4jqTVYsXoPSBm3DY4QAiFgyfKdLerkAAZkZnHf2ee26DmPh9M0NUFc0W0Kc/MmIJGErAh1ZoigHcGUFuMyB/C1fhcBsGVnTLkl3oP3yLbN24/f16m9Yts2v777PyxZsAEBeP1uvD4XukujYFcxP/nq4xQfKE+oDarWG919Fpo+pMUcXOHuYpa8tgpV19DdRwcoQgg8PjdSSl559J2YU28jti7fwTfG3skT93/Cmo8s1n/m5YU/p3HXnFQ+fv5/yMrbkXZdq9mz9M3V/PnuJwlUB/H43XiTPHiTPdi2zRuPvc+/H/xfq9lyphONGnGKKY4ihCAaNY+xR8fBcXIJQhUKd/S/lN+P/jqXdD2LszoNZU7eeB4afjMPDL0BrxoLF+maekzNSyklehOi0B2BTct3s37JDnSXhuvwbFUIgaareH1uairqeOvpz9razBNm7YebMA0Tl0eP+77L46L0QDn726jDdE15LQ/N/zXVZXV4/Db+FIk/ReJNkkRCCn/8Xja71m+H0HOtYo+UkucfeR3TsPAme1AOrwEJIXD73CiqwjtPLKKyuLpV7DnT6dMrG+Vw5CEeti3p2zu+TGI8CoLlbKk+QEm4/f39nNhAgumb3IW+yU0nIUwc1Yud+0rjCkwfUVOZOLrjqi4sfXcD0pZoemNHLZSYw1v8+lpuuq9jZbSZhsWxsopioUswIomRKjoeHz77KdWl1Xj8dn0yU8wu8CZJQnWCd/6Tyh3D/ge+m+pT6RNFwfZC9m09iMsTv62N2+siVBdm5bvrmXXDOQm1xQHOnz6EV95aSyhsNFoqiURNFCGY2wzNzrUVu3li94dsqynAlhJVKIzN6MMtfWfSK6n5TjKRODO5Nmb2tCEk+dwEQ1Fs++ioyrYlwVCU5CQ3s88d3IYWnhqBmhDSbrpDhKIqhOrC2IdrZToKvYZ1Q1EElhE/HGlEDbxJbrr0a5tavPUfbUJKm3h5PULEsubXfOIHuwxkMOH2HPkbH5nBNbLp8IAnHAgn3BYH6Nolg1tvPAdVUQiGDMIRg0jEJBCMYlk2c2cNY/L4Psc8x/Ky7dy3/mk2Ve1DEQKXogGSpWX53L36CXbVto+2Y46Ta2NyO6Xw429dQEqyl1DYoC4QoS4QIRQ2SE328sA9F9IpM7mtzTxpsrtmxBIMmgiLWKZFp85pCcuyTBRDJg+g28AuRMPRWK3V57BMC9uymTb/LPwpvjaxzzJtjjnTBCwTEDq0QqZldvcsdJeGGY0/KIitXUpyT4Ms4o7CxXNG8tMfXsqE0b1QFRUhBAP75fLdu2Zzxy3Tj7l+bdoWf8h/k4hl4NfcuBQNTVFwqzp+zU2NEeSxne+24t00jROubAeMGtKNf/3mBj74dBsbtx0EBMMGdua8KYNISfK0tXmnxNRLx/Da44uJhAw8voZpwkeSMs6bl1jN0USgKAr3/O1Wfnz5r6gqrUEoAkVV6md2fUf14rofXnGcsySOAeP6svaD9UgJQsTC3keQEmwbBo8Ngvs8hIi/rtiSpHVKYeKFY/j4f8uwrYYzOiklkWCUTl0zGT1jaMJtcTjK6BE9GD2iB6Zlg5RozVz/X1O5m+JwFR5Vb+QMhRDoisa6yj0cClbQ2dcytXYni+PkToLyUJCVhQcxLItBWZ3om37qNT6pyV4unzPqtCv87to7m8tvncaLf/2AYG0Y3a0hFIERNZG2pN/w7sy+ZlJbm3lS9BrWnV8t/D/e/ucHfPjsZwRrQ+T0yWLWDVOZfdM0fMlt15x15g3n8uqf3iFUZ+BNMusdnZQQCQlUVTLnuijCd12r2XTD/VewddkOSgvKUVQFTVexLRsjauHxufj67250SgjaCK2JMHJTFIersKWMWwcMoCkKYcugKFzV5k7OEWg+AYHmsGnyq+Wf8Or2rQSNKBLQFZUJnbvy4JQZdEl22ufEQ0rJwhdX8OrjH1F0oAKkxON3M/3yccy/cxb+5I49Wz2CbdvtKuz6ycvL+f1tjxENBxAilg4u7ZiDu+ZbUa76wf8hXONb1abSgnKee+R1Pnl5OdGwgaIojJg6mKu+fRGDxvdtVVvamnAwymcfbGH9it1YpkXfQZ2ZOncE6VlN1y5KaVMS3kqdUYxbTSbPNxK1FWbiX+Sj4k08uOl5fKoLJU7SkmGbmNLmsXG30zc5LyE2NPc57ji5Zjo5KSXfXPgW7+/ZhSYEbk1DAFHLwrBtuqWk8uwlV5Hhbb01GEta1BoVKEIlWUtvN+oaTWFZNgd3l2AaFrndM/F18FBsR2DPpv28888PWPXuSiwjwKBxycy5eTzDZ8xvEVmzkyVQE6SquBpfqo/07NQ2s6Ot2LuzmIe+9SylhVX1JURCxOpI7/rxpUya3rjlzKHgOpaV/IUq4wBSWoCCT8tkdOZ1DEid06r2B8wI13z2GwJmGJ/WcE1XSknAjNA7KYd/TvhGwp5LjpM7Bifj5FYWFvCVN19GVQRutWFIxZIxkdE7xk7k66MTv75kSZNlZe+wsuJ9ao0KQNDJ04XJWRcyLPWsdu/sHBzOZIKBCN+c/1dKC6twe131upHSloRCUdxujV/+66v07Hc0Bb8otIl3D/4Q0w6jChcKGhIbU4YRQmFSp28wKO3CVr2P5/d9yt93vgeAR9VRhBJ7FloGmlD4v6FXMSU7cZnhzX2Ot5/YSjvnrZ3bsaXEFScGrR6err+SvyXhdljS5H/7/8jC4mepjpYiUBAIikL7eKXgr3xU4qhGODi0Zz59bxOlhVV4PufgIFZG4fW5iERM3n5hRYNjVpc9iWmH0IUPVcSSPRSh4lL8SClZU/5vDDvUqvdxVfez+GrfmXhVN0ErSsCMELIM0l1+vjf4cs7uNIjacIS6cKRV7foizipvMykPBbDjFGwfQVUEleHEf8k2VS1lW+0qVKGhKUdj8Ro6UTvCp6WvMyhlHLnengm3xcHB4cRZu3QXUhK3ZvCIItCKj/P5+g9j0n/V0YOUhLeiClfc548m3IStag4EVtI7ufUK6YUQXNNjChd1HsfSsnyqjSCdPCmMT+/Huxt28KWXn2dPaQUAgzpnc+2kkcwY0qfVI02Ok2sm2f6kehmceH8k07bplpJ4sds1lR8ipWzg4I6gCxdRGWJd1cfMdpycg0O7xDCOrQkpxBFFnRghqxIpLZQm6hkVoYIUhK3KFrWzuSTpHmbmjQBi63EPv/ERr6zafDgxL+bINxwoYlPBu9xSOo5bprVuspMTrmwmF/UdiKoIolbjYlbLthEILu+feGWSssihuNlMcFRKqjR8MOF2ODg4nBx9BuYhBE3rRlo2fQcflQL0a5kIoSKJX0hvy1ghvU9t3XZF8fh0+15eXb0ZTVFIcrtw6xpuXSPJ7UIAjy9exdaDJa1qk+PkmsmI7Fwu6jsQw7YJGFEs28aWkpBpEDJN+mVkctWg42u9nSouxd3kj+MIHrXt6rMcHByOzfSLRuL26ISC0Ua/5UjYQCgKc64cW78tWc8jxzsUSxqN9o+17wrjUdPo6h/XKvYfi1dWbcaW4I5T7+jRNSzb5rU1ic9d+DyOk2smQggenDKDr40eT4rLTcgyCRoGqlCY26c/j8+9jBR34uWRhqROBiHjOjpLWiBgYErrhgM+T9DYy+6KX7GiYDbLDkxlU/HXKAt+cFzH7HDmYlsVWMZWbKvjtpQ6EXI6p3P7fReiaSqhQJRwKEokZBCsi2DbNhdePZ7x5w5ocMy4rK+gKz4MGTzs7GxsaWLIIIpQGZd1M5rSdo1wj7C9qAyliTW3I/0WdxSVtapNzprcCaCrKneOncRNI8awvqQI07IZkJlFjr/1Gk+OzZjB2spFBM0aNMWNKlSklFhYWDJKrrsHg1LaZkRXFVrO1rJ7MO0AsbaogsrwUqrCy8hNupw+GT9MuNq9Q8fBMvcQrv0DZvhDJAYCBdU1Bk/SnWjutp+VJJJpF4wgr1sGbz2/gjVLdmBZNoMHd2fuVeOYOG1Qo3X/Tp6BnN/lIZaV/pWKyC4MGUUIhRQ9j9GZN9AnpX00VfbqOvZxBrRed+sWrzt1ciegeNJeOBjcxUsH/kSlUYJAIJEIBF28fZjX/W5S9NaX0THtOlYdvBDDrkQVSQ1+pLaMIKVJ/8yfkp3UurU8Du0Ty9xDoPxL2HYZsbG2DlggowjFgy/tUXSP03Lni0gpqYjsps4swa0mk+0ZiCLaz1zlsQ+W88/FK/C5XI1mdJYdqyf+/oXncuX4U1/aae5zvP18OqchxZW17CmpwKVpDO2eg6uFdPm6+Prwjf6/ZkftOg6FdqMIhV7+oXT3DWizQvDSwILDDs7fyAZFuDFllEO1zzlOzgGAcM0j2FYZCP/nZvcaEhdS1hGqeQDN/W6riEd3JIQQZHr6kMmx2+C0FZeOHcz/Vm6kKhDC69JRD2dXmpZN2DTonJbC7OH9W9Umx8klgOKqOv7w+id8smUPhmkjBGQk+7j23FFcM2VkgyaWJ4sqNAamjGVgytjj79wK1EU3A6LJcKRAJ2DkY8soShvKSTm0PbZViBn5BITe6PsSW7fxYluHMCNL0D3ntpGVDidDbmoyv7/uQr733AKKq2sbDHh7ZqXz62suIMnTumuHjpNrYcprg3zjsVcoKKtCU1W8Lg0poaImyKNvfkZFbZA7Lzyrrc1scQTHa9FxpN2LIzkGIKUB2IhW6OXW3rCtg0hMIL52qRAaUoaxrYLWNcyhRRjaNZeXv3kdi7buYlNBMUIIRvfozNkDeqKrzWvl05I4Tq6Fef6TdRSUVTeYqgNoqotQ1OD5T9ZzyYQhdO+U1nZGJoBUzzgK6/6HlCbiC2sEUkokFumeSShnePjJiizDDD6FHVkGSBStL6rvGlTvpQjR+g+AtkCIFGKJ3RbEGRxJaQMSoXTcZsFnOm5dY/bwAcwePuD4OycYx8m1ILYteXPFVoSggYM7gkfXCEQNFqzJ59bzEy/kfOhQJR++v5mCAxV4vDrjJ/Zh/IQ+zW6MeCJk+qbh1boRMvej4qt/YEspsWUQgUrn5Gta/LodCTP4IkbNz0CaIFRAYJtbsWt+jB1djZ76szMi+1TR+qFqfbDMfKRs3HQTQgiRhOZuv6HKkLGPqFWKrmbg1Xo5oujtGMfJtSBhw6Q2HEFroqeYEAIklFbXJdyWV19exVNPfIxhWPVSZB+8v4k+fXP4vwcvJyOzZcseFOFicPYf2FxyB2HzYCw6CYBAERq90u4l3Xv6hWmbi20WYNQ8fNjB+WPaTUeQEazw66jus1G9c9vOyFZCCIEn+S4ClXeDDCDxxhQ9pA2EAYnbfxOK0v5a8NRG1rO38vfURtYhsRCoJLmH0CPtblI97WN93KEhp/+wsRVx6yoel45lx6/KiDkbSPMnVpFk6Wc7eOKfi7EsG5/PRVKSB7/fjculsXNHMQ8/9HpCirN9em9G5b1Av4wfk+mdRrpnEl1TvsyovBfpnHJmz+Ks0CtApLGDAxBuQGIGn28L09oE3TMTX+pDCCUNCCFlEAgihBtP0tdxJ329jS1sTE14DZuLb6UmsgohFFQRc861kfVsKfkaVaGlbW1iu8GwLbZWlrCpvJigEW1TW5yZXAuiKgpzRg/ghU83YEvZqE4kalooQjBrVGJTaF9+aSX2YQf3+TCKpqlICflbD7F5UwFDh3Vr8WtrShK5yZeTm3x5i5+7I2Ob+SBtaDKzVsU2t7WqTW2Ny3cpumcWRmQhtlWIUNLQ3eehtAMNxi8ipWRP5SNYMtigDlSgItCxZB17Kn/JSM/LZ0TIuSks2+ap/DX8Z9saSsMBAFJ0N1f2HcbXh07Eo7X+mnxC/xqVlZVcf/31pKamkpqayvXXX09VVVWT+xuGwfe+9z2GDRuG3++nc+fO3HDDDRw6dKjBflOnTq1vSXHkNX/+/ETeSrOZf85IMpN9BCMGUdM6vCYlCUUNDMvm/NED6Nc5K2HXr64OsiO/CF1X47fl0BSklKxdvTdhNjg0RggPx84stdu0U3dbIRQfLu/FeJJuw+27ul06OICAsY1AdBuKcDf6XcV6u3kIGXuojaxrGwPbAVJKHlz5Ab9e+zHFoTp0RcWlqFRHI/xzy0ru+Pj1uAL3iSahTu7aa69l3bp1LFiwgAULFrBu3Tquv/76JvcPBoOsWbOG+++/nzVr1vDyyy+zfft2Lr744kb73nLLLRQWFta//va3vyXyVppN54wUHr39Uvp1zSRoRqkIBqkMBrGEzSVnDea+edMSen3LtJE0HYoUQoAQGEbrf9nOZBT3uTEfJ+N87lICEsU9s7XNcmgmUbPo8Bpc/OCXQENiETlD9Dfjsbr0IC/v3oSmqCTpbnRFRVNU/LoLt6qxpGgfb+1r/WhFwsKVW7duZcGCBSxbtowJE2KZhP/4xz+YNGkS+fn5DBjQOLU0NTWV999/v8G2P/3pT4wfP579+/fTvXv3+u0+n4/c3NxEmX9K7LZK2N3vIFaWgQwqICSR9BALPOuYVtGLiZ16JezaqWk+MjOTKCmuweVq/Oe1LBtpS3r3yU6YDQ6NUT0zMev+ijT3AR44UmYhbSAAwofmu7YtTXQ4BpqSikA57OjizQ0sQEFT0lrZssRhWjaBYAS3W8PjOn6Y8dXdW7ClxBunFk5XVMKWyUu7NnJZ7yGJMLdJEjaTW7p0KampqfUODmDixImkpqayZMmSZp+nuroaIQRpaWkNtj/zzDNkZWUxZMgQvv3tb1NbW9vkOSKRCDU1NQ1eiWJ3bRn3r32DkBUlKUMnpZtGSlcdv89FrRHmu6tepjiUuOurqsLcC0eBoNFsTUpJOGyQkZnE5LNaV1rnTEcID670xxBabyAMsg7sWmIOLhVX2u9Q9L5tbaZDEyS7R+DWumLLcBMdQEK41GxSPR1fWLouGOGJ15Zx1ff+xRXfeYKL7/4HD/7tHfL3HrsP3P66KqSkyXIKVQj21VYlwOJjk7CZXFFREdnZjWcL2dnZFBUVNesc4XCY73//+1x77bUNBDi/9KUv0atXL3Jzc9m0aRP33Xcf69evbzQLPMLDDz/Mgw8+eHI3coK8tG8tYcvArzVM+lCEwK+5qDMivL5/A7cMODthNlxy2Ri2bCpg5YpdRKMmqhpbh7Ntic/v5jvfvxCX28k5am0UrTvurJexIx9hRZeBjKLoQ1A9cxFKxxMKP5MQQqVH2p1sL7sPSwZQ68seLCwZQqDSPe0bHV6yrjYQ5p7fvsqO/aUA6JqCZdksWrWTpRv38bOvz2Xs4O5xj81wHztr3JKStOPskwhOeCb3wAMPNEr6+OJr1apVQHyPfqRm63gYhsH8+fOxbZu//OUvDd675ZZbOO+88xg6dCjz58/nf//7HwsXLmTNmjVxz3XfffdRXV1d/zpw4MCJ3nazWVKyOyZeFecehRBIYGnpnoRdH0DXVX7wf5fwjbtm0advDpqukpzs5YKLRvLbP3yJYcNbPqvSoXkIoaN6ZuJKuR9X6k/RfPMdB9dByPLPpm/mT3GpmVgyhGnXYskgupJO74wfkZN0WVubeFIEzSClkXIiVoR/v7WSHftL8bg0/F4XLl3D49bxeXRC4SgP/2shUcOMe57zu/dHCDDtxuvOtrQRwMU9ByX4bhpzwsP5O+6447iZjD179mTDhg0UFxc3eq+0tJScnJxjHm8YBldddRV79uzhww8/PG47nNGjR6PrOjt27GD06NGN3ne73bhboaEpxP6YjeqgPocALGkn3A5NU5k9dwSz545I+LXaI+HoRmoCL2KYOxCKnyTPLJK8F6IovrY2zaEDk510IVm+mVSGPyVqleJSM0nznI2qtP4M5VTZGzjAW4feY131Jmxpo1kudnzcBYSCqjYWzva6dcqrAixZv4epY/s1Ot+Mrn0ZlpnLxvIidClxKbG1OcO2idomnf0pXN5naKvc2+c5YSeXlZVFVtbxU+AnTZpEdXU1K1asYPz4WKfq5cuXU11dzeTJk5s87oiD27FjB4sWLSIz8/gpxZs3b8YwDPLy8pp/IwliVGY3DgQq485Yj8TyR2c6M6lEIaWksvYPVNY+FhMBloCQBMMfUVn3D/IyHqf8oJe6qiCZeWlk5LQ/VQ2H1sWImqz4YDPLF24mGIjQtXc20y8bQ/d+8RPbFMVNpm9GK1vZsuTX7uR32x8jbIVRhYqCQl21RShsoCgCW+ooX6j3U1UFIQT7CivjntOlqvz13Ev5wbJ3+axwHwEzVgSuCMHQjBx+fdYFZHpaf5CZ0Kapc+bM4dChQ/Xp/bfeeis9evTgjTfeqN9n4MCBPPzww1x22WWYpskVV1zBmjVrePPNNxvM+DIyMnC5XOzatYtnnnmGuXPnkpWVxZYtW7j33nvxer2sXLkStRkq14lsmrq58hA3ffYfTGnjU4/q8kkpCZpRXKrGc+d+lR5Jrd/Y9EygNvg6xZXfBgQC7+c+f4v8FS7e++cQDmxNw7YlqqYwZvoQrvvORXRr4oHmcHpTUVzNT2/7F3u3HTpcySERikDTVK6+cyZX3tY+Om63JLa0uW/jzygOl+BRPPW/kWitwtanOyGFxK1r+LWGDklKSTBscPuVZzH//MYRs8+zo6qMFSUF2LbNsKxcRmTmtbi+Z7tomvrMM89w1113MWvWLAAuvvhiHn300Qb75OfnU11dDUBBQQGvv/46ACNHjmyw36JFi5g6dSoul4sPPviAP/zhD9TV1dGtWzcuuOACfvzjHzfLwSWaIemd+daQGfx28wcEzCjK4XU4pMSlaNw/Yq7j4BKElJKqun8BNopoqGC/6ZMM/v3DXhgRBZfHwqW7MA2L5QvWs23lbn72wjcdR3eGIaXkkW/+h73bDuH26KjaUVHxSCjKs394l9xumZx9moX8t9ZspyRciq40TI7Tk2y8nQwCxTpR1cT7BdWmqGGhqgqThvc87jX6pWXRLy1xohcnQkKdXEZGBk8//fQx9/n8RLJnz57H1VTs1q0bixcvbhH7EsX8XmMZkpbHi3vXsLp8PwLBpE69uLLnaAakHns90uHkse0KosY2BA0z3ExD8NKvumFEFdxJJqpioQgVVVORtqSqvJZ//+I1fvj4bW1keUNKDpTx8csrKTtYQUpmEmdfMpbuA7u0tVmnHZtX7mHHhgPoLq3ewcFhAWmfm2BtmFefWMxZc4afVl0GisKlSCTaF1o7CQE5YwLsWZCGHRVYmokidKSUGKaFadlMG9uPHnkda5Du5JEniGHpXRiWfmY+mEqLqln05jr25Bei6RqjJvVl8nmD8XgTm14tifUh+6J81talKVSXunB5rMbayIpA01XWfrSVssJKsvLSE2rjsZBS8sJv3uTF37+NETUPd8mW/O8P7zD96knc/siX0PSO/ZO1bZuNS7az7O11BOvC5HbPYtq8CeT26NTqtmxYugMpQdPjR4A0l8q+bYVUl9eRlnX69LbzqLHfYTx93dReETpPqaJwSSrhsIWhSKQERRGcPbI337mx44VvO/YvxqHd8dHb63ns528SCRnYto0Qgk/e3cgL/1zMj35/LV17Je5hpiqZaFp3DHM3gqPZtJWFLpCgakdcYEP1Bk1TiUYMSg+2rZN758mPePZXb8Qy2ZI89U4uGjZ4/5lP8aV4uenBq9rMvlMlUB3kl7f+k41Ltsca6dqx9a+X/vwe19x7AZd/Y1arzpgs0wbRdPGyEAJbyth+7YSamhDV1UFSU32kpJxcRuew1MG4FTeGHcWtNs46Tx5URc/+HibUnUdhaQ0+j86U0X0Y0CO7Q85oHSfn0GJsW3+AP//kdUzTwus/Gu+3LJviggp+dvd/+eMLX8flTowSuRAKaf7rKa3+CVJGECL2A/alWEjAsiWqotZvP4JtSxRFISm17dLATcPk5T8uQNoSb4qnfrsQArfXRTgQ4d2nPuaKO+eQ2kFnFX/41r/Z8Gk+ukdDOywgLqUkHIzyzCNvkNU5nXMvH99q9vQe0gVpx5yYqjUuGTaiJp26pJOW1bK9F0+GffvK+O/TS1ixfBeWZaMoggkT+3LNlybRs+eJDRxT9GSmZ0/hnaIPiNhRXEKvd+hRO4IiFK7sdz6TskYl6G5alzO3J4RDi/Pms8swDQvvF1r8qKqC2+uiuKCCpR9uTagNKf5rSfZegsTAlrXYMsDASYfw+E3MsIbyhcLrIzOlnoO70LVv2yWe7Fy/j7LCSlze+AMAl1cnFAizbvGWVrasZdi37RCrP9iM5lLRXdrRVjVC4PW7sS3Jy395PyF9Dpti/PTBZOWlEQlHG13XiMYKnudcM6nBel1bsGtnMd/79rN8+kk+tm3XdxL59JN8vv+d59ixo3kKUp/niq4XMiN7CgqCiB0hYkWI2GFciotrul3OpKyOL092BMfJJZCCqmo2HCriUHXitCrbC1JK1izZgaKKuCGNI8Wl65ftSqgdQqhkpz9Cbsaf8LmnoCmdSMvsxgU3dwO8hAM2th0LP1mWTagujO7SuOaeC9o0FBMNGWBLxLG6ygPRUNs2oDxZ1n60Bcuy0ZuQk9PdGgU7iig+UN5qNukujXt/ey1JqT5CgQihQIRwKEqwNoxhmIyfMYSLbpzSavbEQ0rJX/68kNraMD6fC7dbR9NU3G4dn89FbW2Yvz668IQHB5qicX3Pq3h42I+Y1+0SZufN4PoeV/HrEQ8yM3dqYm6mjXDClQlg3cFC/vTpMtYeLMSWNqpQGNutC3dNmciQ3JPLrqw16lhStpo9gQMoQmFIan/GZYzApbR+E8KmsCz7mI5CSjBbocWPEApJ3tkkeWfXb7v+Xhuv+z1e/utCwoFwLJVMStI6pfDVB69k7PTWVUb/Il365qC5NMyoiRonQcc0LFRVpWv/thc8OBmOJNI0uf6lgDTBCButatfAUT351Yt3suDZpXz69npCwVgx+PlXT+Sci0Y1mZTSWuzZU8qO7fH7QwohcLlUdu4sZveuEvr0PfFnSydPFnPzzmspc9sljpNrYVYdOMgdL79B0DBwqSq6qmHZNkv37mdjYRF/vfISRnQ+sbDY2srN/HXnfwhaofrcwY9Ll/OS+x3uGfBVuvra/sEnhKDPwM5sXbc/7vu2LRECeg9qG1sVReGqu2Yz5/oprHh/I3XVQTp1SWfs9KG4PG0/UMjMS2f87JF89toqbJeN8jlZJWlLjLBBr2HdGDiuTxtaefL0GNgZKSWWacUN/xkRk+Q0P9ndWr9pam73TL78vQv58vcubPVrH4/CQ1WYlo3fHT8zWdNUIpEohYVVJ+XkzgSccGULYkvJwx8sJhg1SHK5cGsamqLg1jSS3C7qolF++eHHJxRaOBAs5NGdTxG0QngUD37Vi0/14lbclETK+E3+3wlZ4QTeVfOZfeVYhIBopOFoXEpJOBTF63cztY0La5PT/cy4aiKX3DKdyXNHtQsHd4SvPDiPnJ6dCAcjhOrCRCMG4UCEUCBMckYSd/7+yx0yuw1g9LTB5HTPIhxsvP5lGhZSwoz5k3EnuMyko+HzuVBEbJAYj1jSFHidz61JHCfXgmw4VMTu8ko8uhY3tOBWNbaWlJJfWtbscy4s+oSIFcGreBrUtKhCwaO4KY1UsLx8bYvdw6lw9vlDmXX5WCzLJlgXW98IB6OEglFcbo27HriMtMy2z1Rrr3TqksEv3/wel359FklpvphKjldn5nVn88u3vkef4fFbnHQENF3jnj/dSHKan1BtbP0rcnj9Kxo2GDi2N/Pumn38E51hDBnalbR0P+EmwriRiEFamt/pLHIMnHBlC1JYU4tp23ibKNjVVIVI1ORQdS0Ds5uX9ru6aiMKStwRvCIUJLC+aitTsyediuktgqIo3Pr9uQwb15N3XlzJ7m2F6LrG2HP6c8HVE+g9sO3Dqu2d9JxUvvLAPK7/4WUEa0J4k73ocTq8d0QGjOnNL1//Nm8+voiPX11FNGyQ0yuLWdedxezrpuDxt06nkI6Ey6Vx9fyJ/O2vHxIKRXG79ZiAsi2JRAxAcNX8Cbja4Dti2TZL9h1g5YECpJQMzc1hWt/euNqBvOLnOT1+Pe2EZI8bRQgsKdHiOCXLtlGEINXb/B9zvN5MX8SwE7dYb0mT/XUr2FP3GWGrjlRXHv1TzqOTJ34Xa0VROGvmUM6a2fotNU4nNF0jJbNj1sMdiy59crjt5/O59aGrsUyrwyu4tAYXXjSKcNjguf8uJRSK1js5j0fn6msmcdHFxxZLTgT7q6r41mtvs6u8on6blJCXksyvL5rN0JNMsEsEzjesBRnXrQudknyU1AVI/kL/OiklYdOkS2oKIzo3f0bTw9eFZWsKOLQ1hXC5htAkKb2iZA4L4U4zEUAvf2JCFSGrmncP/oTi0DYkEpCIgGBz1VsMS7uEiZ1u7rBrRA5tixDCcXDNRAjBvKsmMGvWMD77bDuVFQHSM/ycdVZ/UtNav3VNIBrl6y+9wf6qajyain545mbaNodqarjj5Td59rqryEtpH4M051vWgrg1jdsnT+Ch9z+iLhLFq2uoioJl24QME1VRuOOsiWhN1EJ9Ecu2KV2cSfHKEMhYmjVRQfkmD1Xb3eTOLCO1u86UThMScj+LCn9LUWgrmuJGEbGvipQSS0bYUPkKKa48hqRdkJBrOzg4NCQ1zcfcC0a2tRm8s20H+6uq8R1+vh1BUxT8LheVoRAvb9zCN85KzHPpRHEST1qYK4YN5nvTp5DicRM0TOoiUYKGSZrXw4/Om8oFgwc0+1wLPtvK2jWluDQVxWUjNBtFlyi6xIoKij/M5OrcS8n2tHzadXlkDwXBNahCr3dwcHgErniQSDZUvoItE1/35uDg0H5YtHM3IBs4uCMcSY57b/vOVraqaZyZXAsjhGD+qOFcOHggH+/eQ0UwRJbfzzm9e+JzNT9dXUrJyx9uQEpI9viI2gYRO4olY0r6bpeCjOhE96ZBApLuDgbXIaWFqsRfP1QVF7VGMdXRg6S7O27W3+mGlCaRyMeEgq9iWUWoag5e3yW43VMRwvm5O5w6geixVXcUIQgeZ5/WxPnWJ4gkt4u5g5o/a/sikajJvsIKtMNFwS5Fb6RuErCibN9Xekp2NkVshtb0eptAIJHYODO59oJtB6mqvItIZDEQa5EiBITDC3C5zyY9/c8oSuuv4TicXvTLymTtwUKklHHX5G0p6ZvV+kX9TeGEK9spiiIOO5Jjo6mJ+RNmufuCEE06MUtGcSlJpOqdE3J9hxOntuZXRCIfAS6ESEZRkhEiGXARjXxCTc3DbWzhsTGsYmqCC6gJvoNhHmxrc9qUsBVgbeWHfFTyIsvK3qYqmpjB7Mlw6dDBqIpC2DQbvRcxTYSAK4e3rUze53Fmcu0Ul64xckAXVm7eH3fEZFoxkeExgxKTWdnFN5x0V3cqIntRFAUhjjpTW5ogJYNSZ6M1Ec50aF1sq4JQ6CVARYiG6hdCuJDSJBx6FSv5m6hqVtsY2QSWXUtx1U+oDb2DLWPqPQI3yd6Z5Kb9GFVtux5/bcHaykW8X/QfwlbwcC2s5MOSZxmdPoOZudehtnHYeUhuNjePH8M/lq+kNhKpr4uLWjYCuGjIQKb17d2mNn4eZybXjpk3cySqKghFjAZSSJZlE4ma9MjLYOKwHgm5thAK5+V9F7+WgWGHiFpBTDtM1Apg2RE6+0YwOnN+Qq7tcOJEjXVIGQSaGnR4kDKEEV3TmmYdFymjFJTdRnXwVaS0UEhCIQmwqQm9xf6ym7HtUFub2WpsrVnBW4f+ScQK4lI8sZfwIKXNyop3+aD42bY2EYCvTx7Pw3NnMTQ3ByljNXK9M9L5wYxzeXDW9EYdx9sSZybXjhk/tAd3XH0Of3nhU4JhA1tKBLHklq45afz8zgvQEtjrKsPdk8u6/54t1W+zo2YRUTtAip7LoNQ5DEiZgao4ennthvos12M9XOThV/uhNvQewehKFDwIcXTNWeCNzT6NjdSE3iTNP68NrWwdpJR8UvIytrRwK94GPfd04SZqh1ldsZDJmReRpKclzI4aI8RnJbuoNcJ09aUzPqsnmtLwOSOEYM7A/swe0I/qcARL2qR7ve3KuR3BcXLtnMumD2fckO6889kWdhWU43FpTBrRi3NH98GToA7bnydJz2J81g2Mz7oh4ddyOHl01zBis7gIEK/DeQRwo+vtS4mmOvgaQAMHdwQhNJBQHXz1jHByZZGDlEQOoB3u1P1FdOEmYofYUbeGUenTW/z6trR5fMdnPL17OQEzAsQSzPJ8qdw3dDaTsht3wBBCkOb1NNrennCcXAega04at1w+ua3NcGjHqGouHu9swqHXkNJsUC4gpQmYeDxzUbUubWdkHEyrGKRocgIqUGL7nAFEZQSJbLD+/XmO9OOL2onpOvL37Z/w+I7PEIBPdaEIgWlbHApW8Z3VL/GnCfMZldHxyoWcNTkHh9OE1NQfoevDgBBS1iJlAFvWAiE0fQgpqT9uaxMboal5IJoOoUpsdPXMEPZO07PQhBZL7IqDdTgkne5qeV3I8kgdT+9eHnNwmqs+7KgpKn7VRcgy+Mf2T1v8uq2B4+QcHE4TFCWdjMxnSE39Kbo+AkXNxqUPJyX1QTIz/4uqtp/apSOk+S8HQMrGIuNHtqX6Lm9Vm9oKv5bKgJRxWNLClnaD96SUGHaEVD2LPkkt35NxcdF2wpaBR40XNha4hMqaiv2UhGpa/NqJxglXtgMilknYNEnSXXGlchwcmoui+PD5r8Hnv6atTWkWSZ7p+N1nEYh8hpAG4nB2qCSCxMLnGkOyb24bW9l6zMi+hoLgdqqipShCQRUatrSxpIlL8XBB51sSUkJQbYRQhGgycUQVgqi0qTHCZHtTWvz6icRxcm3ItspS/rVlFQsLdmLYFuluL1f2GcaNg8aQ4nLqzxxOf4TQ6Zr5F0qqf0l18FVsGQRAEV5SvReSnXYfimj934JphykOLSdsVuLR0sn1TmxS4q4lSXVlcWOvH/Nxyctsrl6CKQ2EEPRLGsWUTpfR1dc/IdfN8aRgS4klbdQ4a4KmtNGFQpan4zU9FvKLvejPAGpqakhNTaW6upqUlLYZlawoPsDXP3qNgBlFEwqKEBiHe8cNTO/Ev2bMI9XdvrOWHBxaEtOqIBzdAEg8rqFoavMaC7c0e2reYlPF34hYVfXbPGo6wzK/Ro/k1uteHrFC1JlVeFQ/fi0xz6niqjreX7edQ5XVvFq0lkhGmKSUhtmdtpQErSizOg/m56MvS4gdJ0Nzn+POTK4NMGyL+5YuIGBGSdJc9V8ot6ph2jbbKkv5y8al3Dd2Whtb6uDQemhqBkneqW1qw77aBawt+xW2tNGEByFUbGkRtipZXfpLBCrdk2e2ii1u1YtbjVcOcupIKXnqw9U88cFKokZM9N20NcydHqrzTHwDbVQ1NvA2pU2G28/tA85NiC2JxlkAagMWH9xDYaAWr9q4HkZTFBQEr+7eQsBoP0reDg6nO7Y02VzxT2xpoSt+hIgVQCtCRRO+2PuV/2wy+7Ej8cqyzfzt3WWYpo3freN3u0jxuGOJJ4d0wjsVwpaJEIJzcvrxj0nX092f0dZmnxTOTK4N2FVdjkA02TxVV1UCZpTCQA1909qXzqCDw+lKaWgdIbMUVTReJhBCoOIhaBRRHt5EJ+/I1jewhTAsi38vWo2UEr/nqGqREIJktxsVBa3EzUPzZtEvoxO53tQ2tPbUcZxcG+BRNSSyyVYVUkoEAreWeEUThzOHov1lrFm8DSNq0r1/LsMn90dNUBeLjkjUrkFiI2goYWVGBeFaHd0jULxhonZ1G1nYMmwrKKWkqg6PHv/x73FpBMJRQiU2uV06toODBIcrKysruf7660lNTSU1NZXrr7+eqqqqYx7z5S9/ub6y/8hr4sSJDfaJRCLceeedZGVl4ff7ufjiiykoKEjgnbQs53TphaYoROzGbWyklERsiwHpWXT1t01STGFRFctX7Wbdxv1Eoh0/NHOmEw5G+P29z3DnrF/wjwde4smHX+enX/k735z9S3as39/W5rUbfFo2AhVJ7DsfrNJY+nQ3nrlzBM/dM4yn7xjFh38cStHOjj34DEeNJgfYcFR8Jmw0rl3siCR0JnfttddSUFDAggULALj11lu5/vrreeONN4553OzZs/nXv/5V/2+Xq6EQ8N13380bb7zBc889R2ZmJvfeey8XXnghq1evRlUTJ1jcUvRKyWBWt/68vW8bEcClqAghsKUkZBpoQnDLkPFNfgkTRWFxNX/5xyLWrN+HadkIAakpPuZdMobLLx6DorQP8VUpLUpDyymoe4eQWYJHy6KzfyY5vrNQ4mggniwVpTUUF1Ti9bno3i8HpQPWMEop+e3dT7Pyg02ouoo3yYMQAtOwOLi7hJ/e/Hd+8eJddO6V3damtjkZ7sGkuHpQHd1NqMrLmw8NpLrIg1AkiiqRNuxf1YlHtnzGDx7OY8TYXm1t8knRvVMamqZgWHbculzz8Pae2R1zDe6LJMzJbd26lQULFrBs2TImTJgAwD/+8Q8mTZpEfn4+AwY03TXb7XaTm5sb973q6moef/xx/vOf/3DeeecB8PTTT9OtWzcWLlzI+eef3/I3kwB+MuE8IpbJRwd3ETAtBDF9eI+qcc+oKZzfPTH1ME1RVl7Ld+9/kZLSGjRdxevRkVJSXR3kn//+hOqaEDffMKVVbYqHJaOsLfk/ioMfI48o6kegMLCITM9oxub8El3xn9I1ig9W8O/fvsvKRVsxDQshBF16ZXHV7dM5e87wZp/nSHVOaw9WPs+2NXtZ/dEWdJeG/jlBb01XUTUPtZUB3vjXx9z2kyvbzMb2ghAKI7LuYknhfXzyQg7VRR40j4WiHKmyEujCSzgY5dFfvsVfn/1aQruAJIqctGTOHtSLRRt3YauyweBVSknEtOjXOYthPeI/gzsaCRuaLl26lNTU1HoHBzBx4kRSU1NZsmTJMY/96KOPyM7Opn///txyyy2UlJTUv7d69WoMw2DWrFn12zp37szQoUObPG8kEqGmpqbBq63x6S7+eM5FPHv+NXx1yDiu7jeC74w+h3cvuZnrBoxqdXv+99pqSspq8XpduF0aiiJQVQWfz4WiCF5+cw2FRVWtbtcXya/4G0XBxQihoylJ9S9FuCgPr2Zz+W9P6fylh6r40Y3/YMmCjdi2jcuto2oK+3cW87vvv8C7L6w47jlqw8vZVXYn6w6OY93Bsewo/SpVoUW0RUnq0gXrsW2J5mo8nhVCoCgKH7+2Gtu24xx95pHtHcPIpIfYv7IzimrXOzgFHZeSgqrouD06JUU1rFm2q42tPXnuuvAs8tKTCUYNghGDqGkRihoEIlFSfG5+MG96mw7OWpKEzeSKiorIzm4cAsnOzqaoqKjJ4+bMmcO8efPo0aMHe/bs4f7772f69OmsXr0at9tNUVERLpeL9PSG3YJzcnKaPO/DDz/Mgw8+eGo3lACEEAzNzGVo5rFHTOV1Qd7fuIPS2gDpfi8zhvQlLy25xewwTYuFi7bEZH3ihCTdbo1QyGDRJ/lcO29CnDO0DoZdy/661wAF5QvdrxWhI6XFocBCBqTfhlc7ufDbC3/7kLKiajx+V314UkVB01VCgQhP/eYdzpo9jKSU+PVLJbXPUFD1CyQWoCKAmvASasLLyEu5lc6pd52UXSdLoDoEx1h/UVSFaNTEiJi4vU5/QACrsiuYHjyu2O9BCNEgGUXVFEQUDh6oSKgdUko2bD3Iux9voai0hvQUL1MnDWDS6F6nPIPMy0jhb9+4gmc+WsPbq7cRipq4NI3pw/tw/dTR9Mw5PUKVcBJO7oEHHjiuw1i5ciUQP0xzrAVPgKuvvrr+/4cOHcrYsWPp0aMHb731Fpdf3rRQ67HOe99993HPPffU/7umpoZu3bod8x7aA1JK/vPpWv6+aAVhw0QRAiklf3l/KVdPHMEdsya1iNZlKGQQihioahML0Yc/14rKulO+1qlQFdmKaQdQRXwHowgXlgxQGV6PN+nEC3aDdWE+fXsDiqI0Wn8TQuDxuQgFIix5dyOz5o1vdHzI2EFB9SNIbBThb6gaYYcoqvkHSe5xpHgmnbBtJ0t219jDqqnfh2laZOWl4fJ07GSKlsTjjQk0SFugaI0fkVLGMqM93sR9ZqZp8Zu/L+SDJfnY9pFmt4KPV+xkSP88fvrti0n2n5oiUnZqEt+65BzuuOAsaoJh/B43njgz/o7OCT8h77jjDrZu3XrM19ChQ8nNzaW4uHEfqNLSUnJymt8qIi8vjx49erBjxw4AcnNziUajVFZWNtivpKSkyfO63W5SUlIavDoCr67awqPvLyVqmPhcev3LsiVPf7aWJxavapHreL06Ll3DsuOH046E2VJTfS1yvZNFysbZqA2JPcQlJxd6q64IEI2aqHr8n4WiKAghKC2sivt+Wd3/kNJAEb5GDkUIDxKLsroXTsq2k2XqZWPRdI1IsLGwgGXGPs9Z8yedNqGplqBztwy69+pENGrFDTFHIya6S2Pc5H4Js+G5N1ax8LNtqIrA59Xx+9z4fS5cusqm/EJ++48PWuxauqaSmeI/LR0cnISTy8rKYuDAgcd8eTweJk2aRHV1NStWHF3DWL58OdXV1Uye3PwGoOXl5Rw4cIC8vFhPqTFjxqDrOu+//379PoWFhWzatOmEztveMSyLJz5ehW3b+NxH+zsJIfC6dATw3yXrqAtHGhx3ZJR5ImiayvRzBmLb8vCosSHRqImqKkw9q+lkodYg1T0AVXiwZXwlGJsoitBJcw85qfP7kz0oisC2mnb2UkqSmnD2gegmIP6MKbZNEIhuPCnbTpacbplcdecsJJJAbQgjamKaFuFghEgoSq9BnZl7w9mtalN7RwjBVTeejaYphILR+t+ElJJIxMCybGbMGU5WdmIGy5GoyWvvrQfA5dIafJ80TUXTFJau2c3BdrBG3hFIWOLJoEGDmD17NrfccgvLli1j2bJl3HLLLVx44YUNMisHDhzIK6+8AkBdXR3f/va3Wbp0KXv37uWjjz7ioosuIisri8suiwmDpqamcvPNN3PvvffywQcfsHbtWq677jqGDRtWn215OrCloITi6tqmCzZ1ndpQhOW7DgCwonwn9617hgs++jkXfPRzvr/2aZaX7Wj29a68dCwZaT5CYYOoERvB2rZNKGRgWpI5M4fRrWvbxundagad/TORWI2klaS0kNKgk3cSfr3rSZ0/Jd3PqLP6YRpm3IFCJGyg6SqTzovvRBWhc+zhhUSI1l/3uvLr5/GNn19N197ZWKaFeXj9bfZ1Z/Hgf76OPzkx+ogdmclTB3Lbt87H43URDkUJBaOEggYgOO+CEXz1m4nTr9y1r5Tq2jCuJmZWLl3FNC02bO04tcFtSULnp8888wx33XVXfSbkxRdfzKOPPtpgn/z8fKqrYwoCqqqyceNG/v3vf1NVVUVeXh7Tpk3j+eefJzn5aKLF7373OzRN46qrriIUCjFjxgyefPLJDlEj11yC0Si2BCVO2wsAIWJR+mDE4Nm9n/LPXQuxpUQ9POpbXr6DlRU7uanPDL7U8/ip/3k5qTz8wJX88bGFbNteSCAa063z+9xccsFIvnTVxOOeoyUoL6vlg3c2snVTAQIYNroH02YNJS09VhYwOPNO6ow9VEY2ERtgK3A4PJns6sOwzO+d0vXn3Tadjct3E6wL4/a60DQV25ZEwwa2bTP3mslkd0mPe2yq91xqI8uR0kZ84e92xGmmeVtfdFsIwYx5E5h2xTgKdpYQjRjk9cxqN86tPZRaxOP8S0Yz6dyBfLpoKyWFVfiTPEw6dwBdeyRWas+2ZSxZ6Dj7NbW84NAQp9VOO12fO1hRzRV/eAYBuOPM5gzLwrBsfjR/Cn8sfAUpJV6t4SwhZEYRQvDHsTcxOLX5iTa79pSw70AFbrfGyGHd8Ptap5/Xis928JufvU4oGEXaEgQIBMmpXr7/k8sYNqoHAJYdpiCwgILatwiZxbjVTLomz6Vr0hx05dT7XW1csYu//PgVigsqkDL2EPb43Fxw7USuvXMmahOZbYZVwZaiSzDtssPrcrH9pLSxZQBVJDEw9yU8WvdTtvF0YOPK3bz532VsWL4L25b0H96NC66ewITpg9qdw2tNAsEI1971BKGwgTdOQlDUsLBtm0d/Op9+PU++iH97RRmriw4hkYzMzmNwVscSBGjuc9xxcu3UyQF8899v8Nn2vQ3W5CD20A1Eo/TP7cSoqR7eLlyLT3U1ejDIw32gZueN5HtD2k8fqHgc3F/Ot255knAoitd/9F5sWxIORklK8fDok7eQkdU6TRst02L90l0UHSjH63czesoAUjOOX2QeiG5iV9kdGFYJcLSIWFVS6Z35G1I8p8+68anwzgsrePyRt7FMG0WNpelblo0QgktumMwN35x1Rju6P//7I159dz0uXW1QLmDbNqGwyYhBXfjN/SdXwF8aDPCDj99j2aECzMP1kZoiGJPbhV+cM4vcpJYrT0okTj+504B75k5he1EZpbUBVCFQFQVb2piWTbLXzQ8vmcZvC14C4od6jmzbWnOwxWyypc3uunw216wjYkfo5M5hTPpkUvRTE3J99811hMMNHRyAogi8Phd1tWE+WLCBede1jpNQNZXRU05cdcbvGsqQ3DepCL5NXWQ1YON3DSfDfzGa0vHFbluCA7tKeOJX72BbdqO/dyRs8Pp/ljBsXG9Gn5W47MX2zlfmTWb3vjI2bDtIJGrFEqIOhye75KbyndtObk0wZBjc+u6r5JeXoasKSXpsphi1LVYcKuCWd1/lvxddRbKr9buxJwrHybVjemSl8c+vXs4Ti1fz3qYdGKaJqihMH9KXm84dS9+cTPRD6lF5qzhIJC6lZf7MAbOOp/b+md112w+fOcZ7Ra9zSZf5TMw8+aaKq5bG1CPiOmtFICWsWb671ZzcqaAqSXRKuopOSVe1tSntkg9eX4tpWnh9jaMPbo9OsC7Cey+tOqOdnM/r4uffu5QPP9vGgsWxYnC/30Xn4R4Cfcp56MBT9K7IZVbeeIak9mz2ed/evZ388jI8mtag1Zdb1dCEza7KCt7YuY1rB49IwF21DY6Ta+d0yUjl/sumc8/cs6kOhknxuknyHB1lTc4aQH7NIWwpG4Q04WjLnsmdTj31X0rJ0/seY1ddPprQUUVMVDrWNSHMywVPk6ZnMDBl2Emd3zTtY4anhADDOF6dnENHYMemgmOr4CuCnZtbLvrQUXG7NOZMG8qcaUPZGyjixxv/xdpINTIqUaKC3XWHWFSyjsu7nsONvc5vVnj3rV35SGTcXpZHhCXe3JV/Wjm5jierfobid7vonJ7SwMEBzOk8mhTdS9CKYMujRdC2tAlYEZI1L3M7jz7l6x8I7mFn7TY0oaEpR2t3hBC4FQ+WtPiw5J2TPv/gYV2brPE7sm3w8JMrDXBoX7hcOseqtZBSoumnT6b0qWLYJj/b/B/KItV4VRdJmhef5sGnxp4F/ytYzMel65t1rspICHGMvE0hoDIcahG72wuOk+vgdPKk8LMR15DuSiJoGdQZYeqMMEErSrqexE9HzCfbc+prQVtq1iORqCK+0K8qVPYGdhIwa0/q/OdfPBJVVQiHjAaOTkpJKBhF1zVmXnD6jC47MhGzlKrIBuqiu09KdHrM2f1iraXiiEIfOd+EaYNO2c7TheXlWykMl+NR9QYlRUIIPKoLKSWvHvysWefqnpx2zPelhG7Jp9fasROuPA0YltaDpyffxcKijWyq2o9EMjS1O+flDidJPzV9uyOYMtZAselGiwKJxLRPrsnqoKFdueG2qfz7bx8RCkZRDq/DSSnRNJXb7p5FtwTXJzkcm6BxgJ2Vf6Is9Am2NBEI/K6+9Em7jU6+5q/HnnvhCF556lMqSmrxeHWUw93JY5m0Ebx+D7OuGJuo2+hwbK7eiyA2kIyHpqjsrjtEwAzj1479e7+0/yAW7ttJ1LJwfaGuOGrFlgMu7z+4ZQxvJzhO7jTBr3m4pOs4Luk6LiHnz/V0QSKxpR23QN2UJql6Okn6yacfX3b1BPoNyOPtV9ewad1+hICRY3txwWVj6D+486mY73CKBI0CVhfdQtgqRUE73AXCpjaaz4bS7zI488fkJc1t1rmSU3388I9f4ud3/5fyopoGxeBJqT7u+cU8uvR0BjRHabkqr3O69mRmz768t2cnhm3hVmMuIGKZSAlTu/diRo8+LXa99oDj5ByaxbDUMbyhvUidWYNb8TSY0VmHJbYmZp4bN5x5Igwd2Z2hI51i6fbG7qrHiFilaMLXQM1FoGPJANsrfkMn31Q0pXki3r0HdubRl+/is/c2sWn1XmzLpt/Qrpx7wXCS21gIvL0xKKUHrx9cgiVt1HgDTNuiX3KX+jW6Y6EqCr+aOpt+6St5dssGqiJhJJDq9nD1wGHcPmo8+mmkHAVOMXi7LgZvb2yr2chTe/9C1I6gEFPktw53BuiTNICv9r4bl3L61Nc4xIhaVXxacAFSmqhK43CYlBaWDDEk62fkJc1pAwtPb6K2ye0rf0NxuBKv6q7PopZSErVNLGzuGTCP6TknlmAWNg12VJYD0DctE6/esdotNfc57iSeODSbgSnD+Ebf7zE6fWIswxJBpqsTF3aex1d7f8txcKcpEasUWxqIJmbpMfkyhbBV2LqGnSG4FI0fDL6OdFcSITtCwAwTtCKxjGpsLu48mWnZo074vB5NZ1inXIZ1yu1wDu5EcMKVDidEV19PvtTjVixpYtomLsV9RssvnQnoSkqsJhKLeI8MKW3ARncUXRJG3+Qu/HHMN3m/aCVLyjYTtqL08udxft44Rqb1dX6Dx8Bxcg4nhSo0VNX5+pwJeLQc0tyjqAivQKGxSoktIyjCc0IZlg4nToYrmau7T+fq7tPb2pQOhROuPM3YVVHBoj27WXGwoD4l2MHhVOmddguq8GDKQH0vPyltTDuIxKZb8jW4VScj0qH94QzFTxN2lJfz0CeLWVt4CNO2UYSgk9/PrWPGcvWQYU44w+GUSPeMYXinR9hW8QvCZhG2jAASVXjplnItfdJua2sTHRzi4ji504A9lZXc/PorlAeDuFQVv8uFLSUlgQAPfbyYuqjBV0ePaWszHTo4Wb6zmex9hfLQEkLmITQliSzvFFxqWlub5uDQJI6TOw14bNVKyoNB/K6jfecUIUhyuQhEo/xt1UouGziITN/x649CEYMlm/dSWRskM9XPpME98bicr4lDDEXoZ/zamy1tDoYOELYidHJ3Is0Vv1N8IjEsizc2bOOlNZvYW16FR9eYOagv88cNp2dm69vTnnGeXh2c2kiEhbt3oSlKoy4EAF5dJ2gYvLdrJ9cMG37Mc7366Sb+/uYyqgOhmFKrlKQl+/jaxZO4cOLpJfXTntm/u4RtGwsQQjB4RHe69Mhsa5McDrOyYjnvFL5JWaQUiY0qNIakDuOyLleS5e7UKjZETYvvvvQOH+/cCxJUVRA2DJ5ftYG3N+Xz+6suYHT3Lq1iS0fAcXIdnMpwCNO24rbOgNiMTiAoDQaOeZ43lm7mNy8uxpYSj1tHVRQs26ayNsgjzy3CpanMGnvqLXscmqa8tJZHH3qdDSv3YpqxpCFNVxkzuS93/OAiUtIcJRDTjlARLUAA6a5uaIqr1a69uORDXip4ARsLXbhQhI4pTdZXrWV/YC939/8ume7ED0ieXbmej3fuxaWq6J/rGi6lpDYc4b5X3uP1r1+PW3ce7+BkV3Z40jweVEWpb2P/RWwpkUgyvE0/IA3T4vG3V2DZNn6Pq76vlKoo+D0uTMvmH28tx7TiX8Ph1AkGIjzwzWdYu2wXQhH4ktz4ktwIASs+3s5P73mWaMRoazPbDNOOsrzsGZ7a9VVe3HcvL+y7l3/vvoVV5S/Uy8olkoBZx+uHXkEi8ao+NEVDEQouxYVbcVNpVPJe0dsJt8OybV5YtREJDRwcxLQ/vS6dkto6Fm3fnXBbOgqOk+vgpLg9TOvZC9O247Y9CZsmblXj/D59mzzHmh0FlFUH8Loaqx4IIfC4NArLa9i0x1G0SBQfvbOBA7tLcHtduNyxfn1CCFxuHbdHY8eWgyxdtK2tzWwTbGnx7qFfsbLseUJ2DYrQUIRG0KxkWenTLCz8/eGC9OZTWxfmw8VbeePtdaxcvad+5twUaypXEbUjuOPMHBWhoKCwqnIFYSt8QnacKOWBICV1gUYdBI6gHl622FZUmlA7OhLOfPY04GvjxrO04ADV4TBuTUNXFGwpCZmxEe5No0bTye9v8viaYCTWWVyJX2agKApSmtQEIwmxv7U4VjfqtuajBRsBUNU4HZs1FYnB4vc2cu7sk+u83pHZXbuUPXUrUBUdVRwdiKmqhmlH2VH7CQNTptEj6fgZxLYtefbF5bz06iqCwSiI2PJzdqcU7rx9BmNH94p7XGW0EoFoIE79eVShYkqDOrMWj9oy7a3ioSsqAprs4yeljM3yTjOR5VPBmcmdBvTNyOTvF13C0OwcTNumNholZJqke7zcO+ksvj5u/DGPz0lPjoU8mwhHmpaNoijkpp98G522oiS8l3cO/Zk/5t/I7/Kv5ak932F95cJWCXGdCNWVAUQTgwyIzairyo+9rnq6sqV64eGGvY0jDZriAinZWr2wWed65vmlPP3sEsJhA6/Xhd/nxuXSKS6p4ae/eIMNmwriHpekJSGJ37kewMZGQcGrJnbdNM3nYXBeNkYTQg+mbSMQTOzVLaF2dCScmdxpwtDsHJ678io2lZRwoKYav64zvkvXZgmvDu2ZS4+cdHYXlqOpSoPZjpSSqGEyqHsO/bp2LEWL3XVrea3g1xh2BCEUBILi0B7eCz/GnsA6Lupy9ym3BmopcjqnUXywMvYPKTFlBEtGsKWFEAq2rdGpc9Oz8dOZaqPwuDPwKuP4ofSqqiAvvboaoQi8nqNhR01VUL0uAsEIzzy/lOFD5zU6dkTaaF4/9AqGjOISDYXIpZRY0mJY2mj8WmL/RkIIbpg4iu++XEwwGsWr6/WfjWnZRAyLEV1zGd3d6b94BGcmdxohhGBYTg5z+/Xn3J69mq0sriiCb115Dl6XTiAcJWqYWJZN1DAJhKP4PS7uvnJKuw31xSNiBXnr0B8x7AguxYtL8aArbtyqDwWd7bXLWFf5XlubWc95F44EwIyaROwaDPuIfJbEjNrYGPjGLaK2GQ/z0w2PmtLkDApiLUW96vFbZi1dsZNwxMDdxNqzS9fYvOUgJaU1jd7PdGdyTqep2NImYoWxpX3YuZmErRAexcP5uY3bDBmmxQerd/Dtv7zBjT9/lm//5Q3eX7Ud4zhrgMdi+sA+3DV9MqpQCEYMakIR6sJRIqbJoNxO/OqKOR3qt5po2scw1qHNGdO/K7/9+sX8/c1lbNxThGmYqIrC2AHduP3CiQzumdvWJp4Q22o+I2TWoCveRj94TdGxLIO1lQsYnd4+HgiTpw/mw7c3sHrZNqSwUXUAgWUoYEO38dWkDt7DZ8WPcH6X37YLm1uL/innUBTKj9uV3pYWAuiXcs5xz1NbG0YR4hhrzwLDtKmpDZPdqbHTvKTLFejCxUelHxCxwxBbpSPHm8s13a6nm69Hg/0D4Sjf/9tbrN1xsH7broNlLNuyj9f6duYXt11AkrfhrNCwLRYf2sVb+7dSEqojz5fMhT2GMCW3V33WM8ANE0cxtX8vXl+/lb3llfhcLqb278WUfj2d9bgv4Dg5h3pG9OnMn795OQdKq6ioCZKV6qdLVsdsn1IS2YsQotFD8Qiq0KiOlhCxg3jUtg8DarrKvQ/N5Se/WczORekYIRUEuPwW/WZUMOzyUtB0SsNbqIjsINPTv61NbjUGpkxnY+XbVEYPogkd5XCI2ZIGljTJcvekX/LZxz1Pp07J2FJi2XYDh3EEy7LRVIWsjKS4x6tC5aIulzI95zy21GwmYoXp5MmhX1L/uN+zP7/yGWu3H8SlN6xnMy2LdTsO8seXPuUH182o315nRPjmktdYXrIPCQhgXTm8W7Cdc/J689tJF+P+XOeP7hlp3DFt0nHv+0zHcXIOjahUg7xUtY5Ne4rQFZVpeX25rOdwcrwdJ/FEFXosjtUEklimpSraz6g3pB5k+LV7GXxZETUH/CAgvUcI3RO7ESl1TBmkPLL9jHJybtXPxd0e5P3C31IU2oZlx+oFhVDp5hvBzM7fQo/TsfyLTBzfh9QUL9U1IXzehi2DbCkxLZtzJvYn7ThF934tiXEZE465T0VNkPdW5KOqolE9m6aqmKrNB6u3c+tFE8lKjQ2yfrluEctL9uFWNXTl6DFRKza7+/3Gj/neSKfNzoniODmHBvxz21L+vPXTw1laMT+xtbKIZ3at5g8TL2d0Vte2NrFZ9PSPYHXFW1jSbJRcIqXElha9/COb9XBsLYQ4PHvzWWQPDDa9XztZSpdSsmtHMSXFNfiT3AwZ1hVNS8ygIUXP5vJuD1MS3kFRaBsIQWfvEDp5ejf7HF6Pi1tvOpff/ek9gsEILpeOoghM08I0bdLTfdzwpbNaxN4t+4oJR0287vjr4i5NIxiJsnlPEeeO7ENpqI63929FFUoDBwfgUlVMafHyno18bfBkUlzt5zvbEXCcnEM9nxTt4tEtnwKSJO3oSNeWkqpIiHuWv8Ibs24lWXcf+0SnQDhisGzdXiqqAqSleJkwshd+74lLN/X0DyfH05ui0C5QqHd0UkqidghFqIzLuKilzT8l0l29catphM3K+pDc57FkFEVo5HhHtIF1DcnfeojH/vQ+u3eWYFk2iiLIzErm2hvPYubsY2uknixCCHK8/cnxnvwsdsbUwXg9Lp5+bin79pdhmBJVVZg4vjc333gOXTu3jLhxLFHmGKGELywLrik7SNgy8evxv+tuVSNgRllfXsiUvPi1fA7xcZycQz3/3bUGG5skraETU4TAr+lUhIO8c2ALV/UelZDrv7N4M/98fgnVNSGI6UOTkuTmxismcsl5w08o2UIRKpd2/Q4vHXiY0sg+TDuKxEagoCkuZuR8hZ5J8Z2FlJJNmwpYs3YfpmHRu3c2kyf3xd3EqLyl0BQ3g1IvZW35v7BkpEEXbluaSEy6+88lxdW24rs78gv5v++9QCAQweVScbtd2JaktKSGR3/7LkbUYu7FifmOtASTJ/Zl0oQ+7N1XRiAYIbtTStxEk1NhcM8c3C6NqGniiZPNGTVM3LrG4J45AFjSBuQXfV89nyvqaVE7zwQS6uQqKyu56667eP311wG4+OKL+dOf/kRaWlqTxzT1IHvkkUf4zne+A8DUqVNZvHhxg/evvvpqnnvuuZYx/AxESsnqsgOoTYTCFKFgI1lXfvCUnJyUkg3VO3m/aDl7AofwqC4mZg7DtTuDPz/xKZYl8Xg0VEXBtm1qAxH+/J+P0TWVC6YNPaFrpehZ3NDrl+yqXc2uutWYMkqmqytD084lRY+vGF9RUcfPH36DbdsKD4/GBVJKMjL8fPc7FzB8eGKLbIekX0WtcYhdte9jyiBSHnnACXK8w5mU/a2EXr85PP2vTwgEIvh8R52wqgn8mptgMMJ//vUxU2cMxudP3Iz/VBFC0Ktn4roGZKb4mTG6H28v34Z5OKHlCKZlY1mS88b0pVNaLMlleEYeuqISsUw8WmOnGLEsPKrGwLTshNl8upJQJ3fttddSUFDAggULALj11lu5/vrreeONN5o8prCwYR3QO++8w80338wVV1zRYPstt9zCT37yk/p/e73eFrTcIRFIKXliz+u8XbgEW9oIEXMgu2oOUv1sJzBdJPnc9Q9ORVHweV0EglGeemk5M88eiOsEldVVodE/ZQL9U46dKABgmhYPPPgqO3cW43JpaFqsMN6ybCoqAvz0p6/xm99cQ/fuiVOaV4TGpOx76ZMyi901C6k1CvFoafRMmkpX/4S4YczWpLSkhg1r96NratwBqcejU1cTZsXSnUw9b0gbWNh+uOvKKRSUVrNhdyGRaH33KgCG9s7l7nlHyx66JqUxtXNfFh7cjmnbDbqKmLaNJW0u7DqYTt74mZ8OTZOwX8zWrVtZsGABy5YtY8KE2APmH//4B5MmTSI/P58BA+K3bcnNbViP9dprrzFt2jR69264wOzz+Rrt63DyCCEYm9WNT4viq5fbMiYXNCrz5BNPFpeu4a3Czw7LHx11ZqGDCkaNQFFNhGi8qO5xa1RUB1i3pYDxI3qe9PWPx4oVu9m1qxi3W2uQQKGqCj5fTBHjjTfW8o1vnJcwG+DI2tNwcryJWds6FSorAti2jd7EYENRFIQiqKw8MyXIPk+S183v77yED9fs5J3l2yipqqNTqp/ZEwYyY0y/Rq1w7h99HgfqqsivLgELFASWlAgRm+l9b+S0NrqTjk3CnNzSpUtJTU2td3AAEydOJDU1lSVLljTp5D5PcXExb731Fk899VSj95555hmefvppcnJymDNnDj/+8Y9JTu44Ke7tkWv7jGFJ8V6CZhSvqjdIPAmYBpkeH7O7DTqpc0spefPQp0gpcX8hHCMjCiCwFZuobeBSGr6vKALbltQGEisQvXz5LqQkboagOFxE/Mmn2xPu5Nozaek+lMO9BuOFtm3bRtqS9PS2rz1sD7h0jdkTBjJ7wsDj7pvp8fPvadfwxr7NvLp3E6XhALneZC7tNZQLuw/GGyeM6XB8EubkioqKyM5uHD/Ozs6mqKioWed46qmnSE5O5vLLL2+w/Utf+hK9evUiNzeXTZs2cd9997F+/Xref//9uOeJRCJEIkcfkDU1jWV7HODs3N7cMWQKf97yCQEzClBflJru9vK7iZeddGZl0IqwL1iIpjR2IFqyDUKCDaZtNXJypmWjqgo5WYkdxIQj5jHloxRFEIkY7bqbQaLJzkll6IhurFu9F11vHLIMhw2Skj2Mm9R0ayeHpvHrLub3HcX8vu03caejccJO7oEHHuDBBx885j4rV64E4ieRnMgD4oknnuBLX/oSHk/DENYtt9xS//9Dhw6lX79+jB07ljVr1jB69OhG53n44YePa7NDjK8OmMiETt15cc86NlUW4VJUpuX147Kew8g+hWJwUf/fxk5Ez7JxZVtEilSk1vB9KSXRqEnPrpkM7pt30tdvDl27ptevE8b7jpqmTc8enc5YB3eE6286h/yth+przTRNwbYlkbCBogi+9OWz8bfjpBOHM4sTdnJ33HEH8+fPP+Y+PXv2ZMOGDRQXFzd6r7S0lJycnONe55NPPiE/P5/nn3/+uPuOHj0aXdfZsWNHXCd33333cc8999T/u6amhm7dnFYUTTEsozPDMo6tYi6lZHNhCcv3HMCwLPrnZDGlb9O6eT7NQx9/F7bV7ms0UxMCUs8JUPZqMlYUotJEVWMhMSNq4fW4uPOGqU1qDrYU580Ywv/+t5Jw2MDj0Rs4M8OwEALmzG1/62StTf+BeTzw8Dz+9qf32bunlGjErK+Tm3/DZM6f2/Z1fA4ORzhhJ5eVlUVW1vFbrkyaNInq6mpWrFjB+PGxfmbLly+nurqayZMnH/f4xx9/nDFjxjBixPF/MJs3b8YwDPLy4o/03W43brczsmwpKoMhfvDae6zcV4At5eEmjpCXmszDl57P8C7xE4Iu6Hw227fvJ2xFcSufX/OzoVOU3vP8ZG/qwYZth4hGTRRFYcTgrtx05SSGDkh865C8vDRu+so5/PPxxQSDUTRNRYiYgwMYP743M8/wjMEjDB7ald8/9mV25BdRXFRNUrKbocO7o+vtRybNwQFAyGMtQpwic+bM4dChQ/ztb38DYiUEPXr0aFBCMHDgQB5++GEuu+yy+m01NTXk5eXxm9/8httvv73BOXft2sUzzzzD3LlzycrKYsuWLdx77714vV5WrlyJ2gwF7pqaGlJTU6muriYlpWWLQE93TNvmlqdfZl1BES5VRT/cf860bcKGQarXw79vnEf3jLRGx0op+e/+d3mlYNHh4teja34Z7lT+b/DN9PDnUVRaQ3lVgPQUH51zWl8geunSnbz8yiry84sASWZGEhdcOJJLLh7tPMQdHNoJzX2OJ7To5plnnuGuu+5i1qxZQKwY/NFHH22wT35+PtXV1Q22Pffcc0gpueaaaxqd0+Vy8cEHH/CHP/yBuro6unXrxgUXXMCPf/zjZjk4h1Nj6e79rD9YhFtTG4QmNUXB73JRHYrw/OoNfGdm49YnQgi+1GM2Y9IHsrB4RawYXHExMWsYUzuNJlmPZeTldkoht4UVKE6ESZP6MmlSX6qrQ1iWRWqqD1VtH3qRDg4OJ0ZCZ3LtFWcmd/L85K0PeWX9ZpKaCP8Go1FSvV4+vPvmVrbM4VSoipaxpWYNYTtEht6JwaljcClnbojfsC1KwtUoQpDjSW2yZVNT7CwvZ31REUIIRufl0TO9ZTQxHY7SLmZyDqcfgWiUYw2LFCEIRqNndJp9R8KSJm8XPsuKikVY0kSgIKWNvzCFiztfz7C04yvFnE4YtsVz+5by6oGVlEVqAUE3XwZX9ZjIRV1GH/c7XRoIcP/ChSwrKMC0Ymu5uqpyTs+ePDB9OumOMlOr4zg5hxOiW3oqyrHS7G2bnlnpjoPrILxd+CxLy99HQcUtYl3UbWkTsGp4oeBvuFUv/ZPPjIxS07Z4YMNLLC7ZCoBLUZHA3rpSfrXlTfYHyrljwKwmj6+LRrn1tdfYUVaGS1VJcsU6CkQsiw9376a4ro6nrrgCt+Y8dlsTZ6HB4YS4aPggNFUhZJiN3jMsCyEEV446MSFlh7ah2qhgZcVHKKi4lM9phgoFt/Bi2gaLSl5vYytbj0XFW1hcshVdUfFrbnRFw6Vo+HUPilB4cf8ytlQXNHn8m9u2sbO8HJ+u49Y0hBAIIfBoGh5NY3NJCe/t3NmKd+QAjpNzOEF6ZKRx+5RYCKsuEiFqmhiWRSASJWpajOvRlctGDG5jKx2aw5aa1ZjSQBeNe5gJIdCEiwPBXVRGy9rAutbnjYI1gMSlNJ5puRUNS0reOriuyePfys9HSomqNH6saoqClJK3tm9vQYsdmoMzb3Y4YW6aPIbOqck8uWwNu0orkNImM8nHFSOH8OVJY3CdIeEYW9psrclnfdUGInaUHE82kzInkO5Ka2vTmkXECiMQTYaWFSEwpSRih1rZshg79pXw6ocbWLZ+L5ZlM6h3LhdPH8bE4T0TEg7fFyhDaWLcL4RAItkXaNrhl4dCKMewSwhBecARrm5tzoynkUOLM3tIf84f3I/i2joMyyInJRnXGVTCUWvU8ped/2Bn3W4kR7pAC9489A5Xd7uSc7PPbhO7pJQcOFhJKGKQl51CSnLTiQ4ZrmwkEltaKKLx386SFrqik6pnJNLkemxpk1+7h/JIFTs2VfP8s1uJGtbhsB8s37CXlZv2Me/8Udw676wWd3R+zU15tO6Y+yRpjbtkHKFLSgoHvlAO9UW6prZ+3eeZjuPkHE4aIQS5KWde5wcpJX/b9QQ76nahCw1VqPWal2E7wn/3P0+6K43haa27Nrl46Xb++/Jy9hdUICW4XBrnTOzHV66ZTGZ64z5kg1JGkaSlUmdW48bbwGnY0saWFkNTJuNVE99RYFP1Dp7c8xKHwiVEaqHouVwwFXweHY96NJwajhq8+O5ahvfvwqSRvVrUhvPyhvLErsXYUjaakVnSRgDTcpoOxV86aBDLDsRk7r4obxe1LARwyaCT6+LhcPI4a3IODifIrsAettftQBMamqLVOwchBB7FjSUt3i1a2Ko2vfHeen7xx3fYs68MVVHQdRXDMHlv8Ra+/cD/qKhqHCbTFReXdL4RTeiE7RCGHcWSJlE7QtQOk+7KYmbuFXGu1rJsq9nNr7b9k4JQMRoaxo40pClAtwnZEcJ2tH5fj0vHtiWvLdpwyteVUrJpfxG/fO0jvvXUG+xYGcRXnUzAjGDaVv0+hm0StqL0Tsrh3JymndSsvn2Z3L07EcsiaBiYto1p2wSiUaKWxbTevZnSo8cp2+1wYjgzOYc2J2KZrC4+RNCI0iMljX7px9dGbUs2VW/BlhJXnLZBQghUobGrbjd1Zh1JWuI7OVfVBPnn059i2xKf11XvdDVVwbZtDhZV8cJrq7j9xnMbHTskdSw3qveyqOQ19gV3YEoTXdEZnno2M3Iua5VQ5fMH3iZiR/EqHoQQREo0kAJFgEQStiIxrVOOdIwXbNnZvHZdTWHZNo+8vpjXV23BsmV9SYxER09PIzKkmqgWyyAWQjAktRs/HXElHrXpnm66qvL7uXP58/LlvLx5M3XRmHNO8XiYN2QIX5swIW5SikNicZycQ5shpeSZrev5+4aVlIcC2FKiKSojs/P40cSpDMjo1KzzRA6XM3yx03KiMGzjmAkbAoHExrQbl1kkgsWfbScUMfC69UY2KYqCIgTvL97KTdeehSvOZ9QnaTB9kgZTbVQQtoKk6Bl4VV+r2F4ULmN77V50cXRGHIsvHVUckMRmU/XdKySnLLP2zKfreGXFZjRVwe8+em3DtIhUwqjSwUw4uxMKCqMyejA8rXuz1gC9us63zz6b28aNI7+sDCEEA7Oy8LsaZ7A6tA6Ok3NoM/6xYSV/WLMEKcGjaShCYNgWq4oKuGnBy/x77jz6pMWfSUgp+WjTbp77bB2bD8RaOg3umsNVZw1nxrC+CS1G7+rtjMTGlnZcuSdTmqS70kjWW2e9srisBuVw5/J4aKpCKBylpiZMVmbTM8tUPaPVkkyOUGPUIrFRxNEZkr+bQe0uF9KWCCWW1WgfdnpSSmwpmTD85MN+UdPkuc/WIQDPF5y+rqlYUrJpZyn/d9EsumScXKJIstvN2C5dTtpGh5bDmTs7tAmlwQCPrV+BQJDkcqEdnnG4VQ2/7qIiHOJv65c3efw/3l/BD55ZwLo9h5Ay1upn/d5D3P/fd/nrgqXH7PB9qoxOH0mynkzEjjS6jiljazlTO01BjZOxmAiS/G6klE3es2XbKIrA521/s4k0PQUFpb4rBUBy3yia38Y2Bfbhe1KIJfYEwwa6rnLZjJPvWbejsIyKumCTM3+3phI1LVbtarrw26Hj4Dg5hzbh3b07CJsmnjg1dYoQaIrg/X27qIlGGr2/fm8hTy5ahRCQ5HHj0TU8ukaSx40iBE9/vJa1ew4RNKO8WbCehza+yUMb3+SNA+sImtFG5ztR3Kqbm3vdiFtxE7YjRKwIUdsgZIUxbIOBKQOYmTv9lK/TXM4e3w9VVYge7nv3eaSUWJZkwuje+Hztz8llezIZnNIXU5r1Tlp1S7peUIvmt5FRgR1RiIRtgmEDt1vjOzedx4Bex2+83BSmLeP0p2+IEGDZZ5x2/WmJE650aBPKQ8FYiK2JsKImFEzboiocIsXVUA3/tRWbsWyJ3904CcCtawQiBk99upJdXfZSelhkFySvH1jLY9s/4pdj5jE07dRCSUNTB/O9QffwftEi1lSuw5IWyZEcugaHMNgeREVlmNzM1nEq3btmMGPKQN79aAsyYuB2xdaYTMsmEjHxenXmXzq2VWw5Ga7uPpedW/YRtMLoQkcVClqWRe7VRYR2+ulS2Y8MLY0BvXKYffYgcjJPrXNIr+x0fC6dsGGixVnbMywbVVEY0KV5a8IO7RvHyTm0CRleL/bh9ZV4js6UNppQSPM0LmbOP1iKgLjrbke2fbprN1pWAK/qQj28bmZJm7JILd9e9TxPn30LWZ5TWzPr7uvGzb1v4LKaK/j1fxexbOM+VpoHeZWDuHSVc0b24Z5rp5Lsa7qAuKW466szcOka7360mWDI4MhHk5udwj1fm0m/3ic/80k0fZK684NBt/Pvfa+yq24/hm2gCEHnlEzmXTKHs7JGt+j1Urwe5owcwP+Wb8K07AaOzrYlUdNiWLdcBnfJbtHrOrQNjpNzaBNm9+zP71Z9Rtg08ekNZ2RSSkxbcn7vPo1mcQAel1a/VhMPw7awFZsU1d3AgapCwae6qYwGeaNgPV/pe+qqJOGIwfcefYP8/aVoqkLS4XWvqGHxwaodFFfU8vtvXRY3q7El0XWVO786nfmXjWPF2r2EwwZdO6czZkSPuLOV9kbf5B48OOQuDoQKKY1UkqT56JvUo36A0tJ8/fxJ5BeWsWl/EWEDVEVgHw5j5qUl88C885xOGqcJjpNzaBM6+fx8dfg4/rx2KXXRKN767EqbiGWR5vZw+4j4vczOHdKbTfuL484CY7NDG6WTGVeqKra/ZHFxfos4ufdXbid/fylul9bAmbhdGqpls2l3ER+t2cWsCQNO+VrNoVNmMhecN6xVrtXSCCHo7utMd1/nUzqPlJKN5UVsq4i1vJmU140cX8NZe5LHzaM3XcIbq7bw+uqtHKqsIc3nZe6oAVw6fghZyYlXeXFoHRwn59BmfG3EePyazj82rKQiHEIi0YTCiE653D9pGn3TM+Med8GYQTz36XrKa4N4XVp9ga1l24SiBqpboOVZQPzsRoEgYhktcg/vLtsGyLizJU1VCEvJ+yvyW83JnensrCrnvs/eZUtFSX3GplvVuKT3YH4w7lw82tGogdelc9XkEVw1+eQzNR3aP46Tc2gzhBDcOHQ0Vw8cxsqigwSMKN1T0hiU0emYoaLMZB+//cqFfPffb1NcVXu4+DpGdmoSfScmsSS8LW5jVyklEsnA1LwWuYeKmsAxbRVCUF7tKM+3BoWBWm5e+BLFwQBuRcWrakhiijov7thIZSTEH8+90AlDnmE4Ts6hzfFoOlO69jyhYwZ2yebFb1/Hok27WL+3ECklI3p2ZtrQPmwPFLJ82XbCtoFXbZjhGLYNVKFwabdRLWJ7TkYyBSVVx94ns+WLwkNWlI+KN/Bx6WZqjRDdfFnM7jyG4amJaUPTEfjP1rWUBAP4Nb0+jC0Ar6YTsUw+PLCLtaWFjM4+tXCoQ8fCcXIOHRa3rjF71ABmj2oYChzu6sZX+p7NEzs/pc6MoB1OXjClhSIUvtLnLEZkdG8RG+ZMGszqbQWYpoWmNQyPGmasbm32xJZVni8JV3Hf+qfYFyg5vEWQX1PAh8XruaDzOO7of2FcJZZTIRQ1qKwNkuR1k9IK2aInw2u7tyAgbrauS1EJmAbv7M13nNwZhuPkHE5Lbul3Lv1Tcnl+7wo2VsaUK8ak92Rez3FMzWm59bFpY/ry1mebWbv9IIZl49Jjji5qWNi2ZMKQHpw1rGeLXU9Kyc82P8++YCmez5VHSCmJ2iZvHFpBD382l3Sd2CLXK68J8NT7q3hnVT5hI5baP35Ad248byxDe+a2yDVaAsu2qTOiTWZjChFTT6mMhFvZMoe2xnFyDqct5+YM4NycAZi2hQT0OF0DThVdU3n46xfy2MtLWLBsG+FILKHF59G5YPJgbrl0UqMZ3qmwuXo/22oKcAm1wQNdCIFb1QlYEV4uWMqFXcafcvp9WXWArz/6MgVl1SiKONzVQPLZ5j2s3lHAz788h4mD2kfrGFVRyPL4ORSoifu+PJyJm+dPfFcIh/aF4+QcTnu04zg3KSXrCot4fcs29ldVkebxcH7/fkzt06tZ3c59Hhf3XDuVmy+eQP7+WKH6wJ7ZCSkC31C993AWany7XEKlKFxJcbiKzt5TE1v++zvLKCirwuvWUT7XIsYlVQLhKL94YREv/uh6dFVlW3Ux7x7cQlU0RI4nmbldh9A9qXnXl1ISMS1cmtqkAk5zmNdvKH9YtwTLthu1tAlbJpqicHHvppueOpyeOE7O4YzGsm0eXvQx/9u4GfuIyLGA93fsYlhuDn+65EIyfI1VV+KRmuRl/OCWWetripi+4/EdwakKVNcGw3ywbkesVc8XHIYQAq9Lp6Sqjo837WaRtY0FBVuw6q8peXzHUm7oM547Bp3bZCJMXSTCc2s28tL6zZTVBdBVlfMH9eP6cSPpnXniDvragSN5Z992tleWodoCl6IiiTk4gC8PGkW/tPhlKQ6nL+1fCsHBIYE8s24DL2zYhCIEfl0n2e0m2eXGo2lsLCrm/ndbt8P38RiU0hUBDVT7P49hW2S5ksnxpJ3SdQora4kYFnoToVZVVRAC/rtpNW8e2IQQAp+m49dd+DQXtpQ8sWMZ/929Ku7xteEItz73Go9+vIzC6tqYMzJMXlm/hRuffon1BwtP2OYUl5snzruCS/sMRldVwpZJ1LbI9iXxvbHn8p0x55zwOR06Ps5MzuGMxbAsnl6zDqBRNwRNUdAVhSX797OjrJx+WSc/A9hdU0F+ZQmaojIuuytp7ubNDOMxMr03Pf3Z7K4rPixwfXScatgmCLioy4TjhmiPh8+tI0RMyzFeTf2Rvm4bag6iJiu41aOfnxACr6ZTZ0T4967lzOs1ulEX9cc+W8GWohI8uob2uZmilJKacJgfvPk+r91yXYP3mkOm18fDZ53Pt0dPYXd1BbqqMjgju1lhZ4fTE8fJOZyx7KmopKQugLuJB6BLVakzDFYcKDgpJ1dQV82DKxeyrHg/pm2BEPg1nXl9hvOtEVOO+eCtCob5YMtOiqprSfF6mD6oD13SU1CEwo+GzOe+9U9SHK4GJIpQ6sOs53QaypXdzjphW79Il8xU+nXOYuuBEnRNaRRyjBgmQoFoRhS/Gr/bgkfVKA3XsaWqkJEZXeu3B6JRXtu49XBLpTihUE3nYHUNS/fsZ0qfnidlf6bXR6a3dbqbO7RvHCfncMZiNWPdSjRzvy9SFgrwlQ9fpCBQjUtRSdLdSCRhy+Sp/NWUhgP8atLcuOtVL67cyJ8WLiEQMVCUWEPYv3y4lCvHDuObM8+iu78Tj479Gu8WrmFRyQYCZphuvk7MyRvDWZ0Gt4iosRCCL88cxw+feodgxMDr0lGUWOPSiGFhWZLhw3JZ6tnR5AqhEIf3P7wmdoSDVTUEowZ6E8LRmqogLNhRWn7STs7B4QiOk3M4Y+mZnkay201NOIweZ1Zl2DaKEAzNOfGWK8/uWMfBQPVh9Y3Yw1wg8GkuIpbJgv35XN9/NCOyGsqLLdi4nV+98zG2lPjcMeUOKSVhw+TZ5etxaSp3njeZdFcS83ucw/weiVtnOmdYb747bxp/fPVTAuEoihKrNdMUhYsmDmbO9H6sXLobQ9q44mR7GraFS9HomdRwFuzWNISIOe94xLqcx/ZzcDhVnG+RwxmLV9e5Ythgnli5BsOyGjg6W0qilsXgnE6M6nziOpev7NkMEFd5JKa+YfHWvq0NnJxtS/758Uos28bvdtXP8o5kMwajBs+v2MB1k0aR7j/5db391VVsLi1BVQSjc7uQ5Ws6rHfRhMFMHdabD9fv4lB5NUleN1OH96FbpzSklAxMzWFzVSGaUBqk/1vSxrRtpnceQI63oaxZt/RUemaks7OsHFecxJaIZaEqCmf1TmymqsOZgePkHM5obp8wni3FpSzbf4CwZaIKpb5XXV5yEr+YPeuEtSCllFSEg/VyYl/kiPpGWTjYYPvOknL2l1fh1rW41/ToGsFIlCU793HBiIEnZBNAaSDAg598yCf792HYMckxr6Zzcf+BfHfSFLx6407rAMk+D5dMGhL3Ph4cdQG3LXmW8kgARQhUoWBKG6SkR1IG3x46o9FxihDcNHEM97+1kGDUwHv4fqWUGJaNadnMGtiXnhnpJ3yPDg5fJKElBA899BCTJ0/G5/ORlpbWrGOklDzwwAN07twZr9fL1KlT2bx5c4N9IpEId955J1lZWfj9fi6++GIKCgoScAcOpzseXePRSy/kwVnTGZGXR6rHQ6+MdO6YPIH/XnPVST1ohRBkef2xh30cjqhvdPI27FkWjEab7JQOhzUZhSAQiZ6wTTWRCDe/+Qof7t0NQJLuwq+7MGyLF7Zs4p6F72DZ8e09Fn1TOvHUlBuY32sMSVqswW2Gy8fN/Sfzr7OvI9sbX5x67uD+3HnuJFRVIRA1qI1ECBgGpm1zdu8e/N/s6Sdsi4NDPBI6k4tGo8ybN49Jkybx+OOPN+uYRx55hN/+9rc8+eST9O/fn5/97GfMnDmT/Px8kpNjP5i7776bN954g+eee47MzEzuvfdeLrzwQlavXo3qpAo7nCAuVeWyIYO5bEjLqWFc3nsoj25cgiXtRokgEdtCFQoX9Wgo3NwlPRVdVTCsxoodAKZloQDdM9NO2J6Xtm1mV2UFPk2vP/cRhf6oZfHJ/r0sPXiAs7uduExXV38a3x8+i+8MO4+wZeJV9eMqlwgh+MqE0Zw/sC9vbs7nYFUNSR4XM/v3ZUSX3DO2k4JDy5NQJ/fggw8C8OSTTzZrfyklv//97/nhD3/I5ZdfDsBTTz1FTk4O//3vf7ntttuorq7m8ccf5z//+Q/nnXceAE8//TTdunVj4cKFnH/++Qm5FweHE+GafiN5a+829tRWoAkFl6rFEkgsE4nksl5DGZKR0+CYTsl+pvTvxQdbdmKrKopy9EF/JPmke2Ya43p1/eLljstr+VsB4jpPl6oStSze2pF/Uk7uCKpQ8GvxywmaonNqCrdOHnfS13RwOB7tSvFkz549FBUVMWvWrPptbrebc889lyVLlgCwevVqDMNosE/nzp0ZOnRo/T5fJBKJUFNT0+Dl4JBI0t1e/jV9HjO79kMIQcCMErIMkl1uvjZkIg+MPy/ubOWbM88iNzWZYDRKKGpgmBZhwyQQieJzu/jRRdPjOqrjURYKHnN2JZGUBJ3mrg6nH+0q8aSoqAiAnJyGI9ycnBz27dtXv4/L5SI9Pb3RPkeO/yIPP/xw/azSwaG1yPYl8YcpF3MwUM32qjJ0RWVUVmf8etOznS7pKfzzK1fw+CereHfjdiKmiaooTBvUh5vOHsPgLjlNHntsW/xUhkJx35NSIhDkOgr9DqchJ+zkHnjggeM6jJUrVzJ27NiTNuqLI1wp5XFj9Mfa57777uOee+6p/3dNTQ3dunU7afscHE6ELv5UuvhTm71/XloyP7poGt+adRZVwRBJHjep3lPraHDZwME8/NnHmLbdSGXkSD3gRf1OPGPTwaG9c8JO7o477mD+/PnH3Kdnz54nZUxubqwJY1FREXl5R+uHSkpK6md3ubm5RKNRKisrG8zmSkpKmDx5ctzzut1u3G73Sdnk4NBW+N0u/O4TW+NqissGDObV/K1sKytFVQTuw2uEEcvClpJZvfsyvsuJr/U5OLR3TtjJZWVlkZWVlQhb6NWrF7m5ubz//vuMGjUKiGVoLl68mF/+8pcAjBkzBl3Xef/997nqqqsAKCwsZNOmTTzyyCMJscvBoaOT5HLxzwsu5eElH/P+np0EDQNErJTgykFD+Ob4yafUy83Bob2S0DW5/fv3U1FRwf79+7Esi3Xr1gHQt29fkpJi8f+BAwfy8MMPc9lllyGE4O677+bnP/85/fr1o1+/fvz85z/H5/Nx7bXXApCamsrNN9/MvffeS2ZmJhkZGXz7299m2LBh9dmWDg4OjUn3enlkxvmUBM5ia1kpihCMyMkjxYlyOJzGJNTJ/d///R9PPfVU/b+PzM4WLVrE1KlTAcjPz6e6urp+n+9+97uEQiG+/vWvU1lZyYQJE3jvvffqa+QAfve736FpGldddRWhUIgZM2bw5JNPOjVyDg7NINufRLaTZOJwhiDkqbYQ7oDU1NSQmppKdXU1KSkpbW2Og4ODg8MJ0tzneLuqk3NwcHBwcGhJHCfn4ODg4HDa4jg5BwcHB4fTFsfJOTg4ODictjhOzsHBwcHhtMVxcg4ODg4Opy2Ok3NwcHBwOG1xnJyDg4ODw2lLu2q101ocqX93+so5ODg4dEyOPL+Pp2dyRjq52tpaAKfdjoODg0MHp7a2ltTUpltZnZGyXrZtc+jQIZKTk4/bp+6LHOlFd+DAAUcSrIVwPtOWxfk8Wxbn82x5WuIzlVJSW1tL586dUZSmV97OyJmcoih07XpqvbNSUlKcL3wL43ymLYvzebYszufZ8pzqZ3qsGdwRnMQTBwcHB4fTFsfJOTg4ODictjhO7gRxu938+Mc/xu00mmwxnM+0ZXE+z5bF+Txbntb8TM/IxBMHBwcHhzMDZybn4ODg4HDa4jg5BwcHB4fTFsfJOTg4ODictjhOzsHBwcHhtMVxcs3goYceYvLkyfh8PtLS0pp1jJSSBx54gM6dO+P1epk6dSqbN29OrKEdhMrKSq6//npSU1NJTU3l+uuvp6qq6pjHfPnLX0YI0eA1ceLE1jG4HfKXv/yFXr164fF4GDNmDJ988skx91+8eDFjxozB4/HQu3dvHnvssVaytGNwIp/nRx991Oi7KIRg27ZtrWhx++Xjjz/moosuonPnzgghePXVV497TCK/n46TawbRaJR58+bxta99rdnHPPLII/z2t7/l0UcfZeXKleTm5jJz5sx63cwzmWuvvZZ169axYMECFixYwLp167j++uuPe9zs2bMpLCysf7399tutYG374/nnn+fuu+/mhz/8IWvXrmXKlCnMmTOH/fv3x91/z549zJ07lylTprB27Vp+8IMfcNddd/HSSy+1suXtkxP9PI+Qn5/f4PvYr1+/VrK4fRMIBBgxYgSPPvpos/ZP+PdTOjSbf/3rXzI1NfW4+9m2LXNzc+UvfvGL+m3hcFimpqbKxx57LIEWtn+2bNkiAbls2bL6bUuXLpWA3LZtW5PH3XjjjfKSSy5pBQvbP+PHj5e33357g20DBw6U3//+9+Pu/93vflcOHDiwwbbbbrtNTpw4MWE2diRO9PNctGiRBGRlZWUrWNexAeQrr7xyzH0S/f10ZnIJYM+ePRQVFTFr1qz6bW63m3PPPZclS5a0oWVtz9KlS0lNTWXChAn12yZOnEhqaupxP5uPPvqI7Oxs+vfvzy233EJJSUmizW13RKNRVq9e3eC7BTBr1qwmP7+lS5c22v/8889n1apVGIaRMFs7AifzeR5h1KhR5OXlMWPGDBYtWpRIM09rEv39dJxcAigqKgIgJyenwfacnJz6985UioqKyM7ObrQ9Ozv7mJ/NnDlzeOaZZ/jwww/5zW9+w8qVK5k+fTqRSCSR5rY7ysrKsCzrhL5bRUVFcfc3TZOysrKE2doROJnPMy8vj7///e+89NJLvPzyywwYMIAZM2bw8ccft4bJpx2J/n6ekV0IAB544AEefPDBY+6zcuVKxo4de9LX+GIbHynlCbf26Sg09/OExp8LHP+zufrqq+v/f+jQoYwdO5YePXrw1ltvcfnll5+k1R2XE/1uxds/3vYzlRP5PAcMGMCAAQPq/z1p0iQOHDjAr3/9a84555yE2nm6ksjv5xnr5O644w7mz59/zH169ux5UufOzc0FYiOUvLy8+u0lJSWNRiynC839PDds2EBx8f+3d8curYNRFMAvaKKoRcQIKYJVHJwUqiJGRDdxEMRRiuRfUFy6iZtddBKn4uLgoHUQFzPULhZdMlQ6KKjV6SEdasDR84bHC/a1PKzYNqbnBxmSfG1uLh89aUnor5J9Ly8vFfUmGAxKKBSSu7u7imv9yTRNk6amppJvGf+bW7qulx3f3Nws3d3dVav1J/hKP8uZnJyUg4OD7y6vIVR7fjZsyGmaJpqmVeW9BwYGRNd1sSxLwuGwiPz57T+VSkksFqvKMevts/00DEMKhYJcX1/LxMSEiIhcXV1JoVCQqampTx8vn8/L8/Nz0UVEI1BVVcbGxsSyLFlaWnK3W5Yli4uLZV9jGIacnp4WbTs/P5fx8XFRFKWq9XrdV/pZjm3bDTcXv0vV5+e33L7ic7lcDrZtY3NzEx0dHbBtG7Ztw3Ecd8zQ0BASiYS7vrW1hc7OTiQSCWQyGSwvLyMYDOL19bUep+Ap8/PzGBkZQTqdRjqdxvDwMBYWForGfOyn4zhYX1/H5eUlHh4ekEwmYRgGent7G7Kfh4eHUBQF8Xgc2WwWq6uraG9vx+PjIwAgGo1iZWXFHX9/f4+2tjasra0hm80iHo9DURQcHR3V6xQ8pdJ+7uzs4OTkBLe3t7i5uUE0GoWI4Pj4uF6n4CmO47ifkSKC7e1t2LaNXC4HoPbzkyH3CaZpQkRKlmQy6Y4REezv77vr7+/v2NjYgK7raGlpwczMDDKZTO2L96B8Po9IJIJAIIBAIIBIJFJyO/bHfr69vWFubg49PT1QFAV9fX0wTRNPT0+1L94jdnd3EQqFoKoqRkdHkUql3H2maWJ2drZo/MXFBcLhMFRVRX9/P/b29mpcsbdV0s9YLIbBwUG0traiq6sL09PTODs7q0PV3vT3ppy3qQAAAF5JREFUEYt/F9M0AdR+fvKvdoiIyLf4CAEREfkWQ46IiHyLIUdERL7FkCMiIt9iyBERkW8x5IiIyLcYckRE5FsMOSIi8i2GHBER+RZDjoiIfIshR0REvsWQIyIi3/oNoreLpqYo/EoAAAAASUVORK5CYII=", | |
"text/plain": [ | |
"<Figure size 640x480 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def golden_spiral(num_pts=150, radius=1):\n", | |
" \"\"\"\n", | |
" Sample points evenly spread around a 3D unit sphere\n", | |
" See stackoverflow post:\n", | |
" https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere\n", | |
" \"\"\"\n", | |
" indices = np.arange(0, num_pts, dtype=float) + 0.5\n", | |
" phi = np.arccos(1 - 2*indices/num_pts)\n", | |
" theta = np.pi * (1 + 5**0.5) * indices\n", | |
" x, y, z = np.cos(theta) * np.sin(phi), np.sin(theta) * np.sin(phi), np.cos(phi);\n", | |
" points = np.vstack([x,y,z]).T\n", | |
" return points\n", | |
"\n", | |
"\n", | |
"n = 200\n", | |
"pts = golden_spiral(n) #150 points the surface of a sphere. \n", | |
"\n", | |
"#plot coordinates of points\n", | |
"plt.scatter(pts[:,0], pts[:,1], c=pts[:,2], alpha=0.9)\n", | |
"plt.gca().set_aspect('equal')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "16b4f2c5-be92-438f-b7fa-fcdd876aede6", | |
"metadata": {}, | |
"source": [ | |
"now we want to copy these golden spiral points so that we have `n_atoms` sets of points. we now have `n_atoms` spheres:\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "5b2fa72a-2c3e-49b5-902a-d8a5dae9df6c", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"sp = np.tile(pts, (xyz.shape[0],1)) #sp means Surface Points" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7046cc79-888b-4db5-a5fb-2e60b6bc5364", | |
"metadata": {}, | |
"source": [ | |
"all the surface points still have radius 1. for each point, we want it to have `atom_radius+probe_radius` with respect to it's parent atom. so we'll repeat the atom radii by the number of points, and just multiply the surface point coordinates by that radius. this works because they still surround (0,0,0):" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "80b31ac1-9829-404b-b251-b58961d1d30e", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"all_radii = np.repeat(radii, n)\n", | |
"sp = sp * ( np.repeat(radii+1.4+1e-5, n)[:,None]) #note the small buffer, 1e-5" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "80c8a43b-2f0e-47b4-a947-df1c5197acb4", | |
"metadata": {}, | |
"source": [ | |
"translate the surface points to lie around their parent atoms:\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "14d19537-21dd-4ee8-b049-ce8240906139", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"sp += np.repeat(xyz, n,axis=0)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e1155831-5d9f-4753-8db8-0e45bbedb532", | |
"metadata": {}, | |
"source": [ | |
"two steps happen at once here. \n", | |
"\n", | |
"1) calculate the distance between each surface point and every atom centre. then, if the distance is less than `probe_radius+that_atoms_radius`, we know that this surface point is not accessible to a solvent probe. this step is why the buffer of `1e-5` was added. the buffer doesn't affect the result much, but it does prevent an exposed surface point from accidentally being considered as buried simply because it lies too close to it's own parent atom. without the buffer, that can happen sometimes because of accidents in numerical precision.\n", | |
"2) having a mask for being 'inside' vs 'outside' of the accessible surface, we can calculate the fraction of exposed surface area by just dividing the number of exposed points by the total number of points" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "f29ba0a7-a1a0-4c7e-9579-fea1df785431", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"fraction_outside = ((cdist(sp, xyz)-(radii+1.4)).min(1)>0).reshape(-1, n).mean(1)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3b3ab21f-4f32-40ce-b43f-6d01b1fd3d60", | |
"metadata": {}, | |
"source": [ | |
"final step is to multiply the fraction of exposed surface area by the total surface area of the expanded vdw surface (`atom_radius+probe_radius`). the total surface area is standard geometry, i.e. `4*pi*radius**2`" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "069daca0-7293-4303-8f40-a8b189c77749", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"sasa = fraction_outside * (4*np.pi*(radii+1.4)**2)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "84136496-b7a3-4918-8368-58d66c62e139", | |
"metadata": {}, | |
"source": [ | |
"putting it all together:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "9ff7dc6c-5ab9-44fd-bb99-a617513c820c", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def calc_sasa(xyz, radii, n=150):\n", | |
" \"\"\"\n", | |
" xyz = (n_atoms,3) array of 3d atom coordinates\n", | |
" radii = (1,) array of atom radii\n", | |
" \"\"\"\n", | |
" pts = golden_spiral(n) #points sampling the surface of a sphere. \n", | |
" #genereate 'surface points', sp:\n", | |
" all_radii = np.repeat(radii, n) #the radii with which to place each surface point.\n", | |
" ap = np.tile(pts, (xyz.shape[0],1)) #generate a sphere of 'atom points', ap, on the vdw surface. \n", | |
" sp = ap * ( np.repeat(radii+1.4+1e-5, n)[:,None]) #extend their distance from (0,0,0) by the radius+1.4\n", | |
" sp = sp+np.repeat(xyz, n,axis=0) #now translate to the atom centres\n", | |
" fraction_outside = ((cdist(sp, xyz)-(radii+1.4)).min(1)>0).reshape(-1, n).mean(1)\n", | |
" sasa = fraction_outside * (4*np.pi*(radii+1.4)**2)\n", | |
" return sasa" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "d2d2b30b-ff54-479d-a946-d2552d5811f6", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"numpy_sasas = calc_sasa(xyz, radii)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "4cc5793f-f940-4557-bfb8-6ea9738e25c1", | |
"metadata": {}, | |
"source": [ | |
"# now, is it actually correct?\n", | |
"i'll just validate it by comparing to freesasa and mdtraj. the funny thing about calculating SASA is that people usually validate their algorithm by comparing against other algorithms, although there is an exact calculation possible (see the chimera article linked at the top)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"id": "7dd71bc3-8cff-44ce-8e4b-4ba5f072049d", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#mtradj, using same atom radii as before:\n", | |
"atomic_nums = list(set([atom.GetAtomicNum() for atom in mol.GetAtoms()]))\n", | |
"atomic_symbols = [ptable.GetElementSymbol(i) for i in atomic_nums]\n", | |
"atomic_radii = [ptable.GetRvdw(i)/10 for i in atomic_nums] #divide by ten because it expects nanometres\n", | |
"d = dict(zip(atomic_symbols, atomic_radii))\n", | |
"\n", | |
"Chem.MolToPDBFile(mol, 'temp.pdb')\n", | |
"mdtraj_sasas = md.shrake_rupley(md.load('temp.pdb'), \n", | |
" change_radii=d, \n", | |
" n_sphere_points=n)[0]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"id": "ee108705-980b-497c-99e6-d329791c681b", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#freesasa:\n", | |
"res = freesasa.calcCoord(xyz.flatten(), radii)\n", | |
"freesasa_sasas = np.array([res.atomArea(i) for i in range(mol.GetNumAtoms())])\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"id": "bccf424f-f6f8-4c8c-999e-8af6ec646214", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Text(0, 0.5, 'SASA (Ų)')" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGRklEQVR4nOzdd3gc5bX48e/MbF9tUe+2ZVsuYJtiiMGEGAiYErh0QssNIYUSSAhJIPxIMfcmQLg3QAI35MKlpRBII4HQqymOsSkGFzAukiWrr7S978z8/hhJWLipbFF5P8+jB0k7O3MsG+3Zd857jqTruo4gCIIgCMIkIhc6AEEQBEEQhGwTCY4gCIIgCJOOSHAEQRAEQZh0RIIjCIIgCMKkIxIcQRAEQRAmHZHgCIIgCIIw6YgERxAEQRCEScdU6AByTdM02tvbcblcSJJU6HAEQRAEQRgGXdcJh8PU1NQgyyNfj5n0CU57ezv19fWFDkMQBEEQhFFobW2lrq5uxM+b9AmOy+UCjB+Q2+0ucDSCIAiCIAxHKBSivr5+8HV8pCZ9gjNwW8rtdosERxAEQRAmmNGWl4giY0EQBEEQJh2R4AiCIAiCMOmIBEcQBEEQhEln0tfgDJeqqqTT6UKHIeyHxWIZ1XZBQRAEYWqZ8gmOrut0dnYSCAQKHYowDLIs09DQgMViKXQogiAIwjg25ROcgeSmoqICh8MhmgGOYwNNGzs6Opg2bZr4uxIEQRD2akonOKqqDiY3paWlhQ5HGIby8nLa29vJZDKYzeZChyMIgiCMU1O6mGGg5sbhcBQ4EmG4Bm5Nqapa4EgEQRCE8WxKJzgDxK2OiUP8XQmCIAjDIRIcQRAEQRAmHZHgCIIgCIIw6YgERxAEQRCESUckOIIgCELB6LpOWhNNVoXsEwmOIAiCUDAvtbzEQxseIpKKFDoUYZIRCc4Edcwxx/Ctb32L6667jpKSEqqqqlixYgUAzc3NSJLEunXrBo8PBAJIksSrr74KwKuvvookSTz33HMccsgh2O12jjvuOLq7u3nmmWeYP38+brebCy64gFgsNuS6V111FVdddRVer5fS0lJ++MMfous6AP/xH//BwoULd4t38eLF/PjHP87Zz0MQhImpPdJOWkvji/sKHYowyUzpRn97c9pdb9ATTub9uuUuK09e/dlhH//www9z7bXX8tZbb/Gvf/2LSy65hKOOOorGxsZhn2PFihXcfffdOBwOzjvvPM477zysViuPPPIIkUiEM888k7vuuovrr79+yHW/+tWv8tZbb/H222/zjW98g+nTp/P1r3+dSy+9lJtuuom1a9dy+OGHA/DBBx/w3nvv8ec//3n4PwxBEKaENTs66QxFObQsxAxPoaMRJhOR4OxBTzhJZyhR6DD2a9GiRfzkJz8BoLGxkbvvvpuXXnppRAnOT3/6U4466igAvvrVr3LDDTewbds2Zs6cCcA555zDK6+8MiTBqa+v54477kCSJObOncv69eu54447+PrXv05dXR0nnngiDz744GCC8+CDD7Js2bLBcwqCIAC09IV54cN2dB3+8u52jqhbVOiQhElEJDh7UO6yTojrLlo09JdBdXU13d3doz5HZWUlDodjSCJSWVnJmjVrhjzniCOOGNJw78gjj+QXv/gFqqqiKMrgSs7tt9+Ooij84Q9/4Be/+MWI4hIEYfLb1hOg/+42bcFgYYMRJh2R4OzBSG4TFdKnZzFJkoSmaciyUVo1UBcDn4yl2Nc5JEna6zlH4rTTTsNqtfL4449jtVpJJpOcffbZIzqHIAiTX28sPPh5MBnbx5GCMHIiwZmEysvLAejo6OCQQw4BGFJwPFarV6/e7evGxkYURQHAZDLx5S9/mQcffBCr1cr5558v5n0JgrCbnmiUCslPpeSnO1FX6HCESUYkOJOQ3W7niCOO4NZbb2XGjBn4fD5++MMfZu38ra2tXHvttVx22WW8++673HXXXbvdgvra177G/PnzAXjzzTezdm1BECaPvniEC5VXAHgtVVbgaITJRiQ4k9QDDzzApZdeymGHHcbcuXO57bbbWL58eVbO/e///u/E43E+85nPoCgKV199Nd/4xjeGHNPY2MjSpUvp7e1lyZIlWbmuIAiTiz8Wo7j/c7fWia7rYqCukDWSvmuhxiQUCoXweDwEg0HcbveQxxKJBE1NTTQ0NGCz2QoU4cRyzDHHcPDBB3PnnXfu8zhd15k3bx6XXXYZ1157bdauL/7OBGHy+NofH+XQrusAeFudzx1X/BOPw7yfZwlTxb5ev4dDrOAIWdfd3c3vfvc72tra+MpXvlLocARBGKcScf/g532SnZ5oXCQ4QtaIBEfIusrKSsrKyrj33nspLi7e/xMEQZiSEskgft2JSdLYpM2gKxRmdvnI36kLwp6IBEcYkYFRD/syye96CoKQJR0ZMx+oJw5+3RUJ7+NoQRgZMYtKEARBKIhoemjHeF9EDNwUskes4AiCIAh5p+s68UyCaqWXk+S3CWOnJ3pGocMSJhGR4AiCIAh5F0pkWCh/yHHKGlyaRpus0RMXKzhC9ohbVIIgCELe+aNJXHIIAK+mYieFXyQ4QhaJBEcQBEHIO180jpUkAF5Vw4xKNBYobFDCpCISnCns1VdfRZIkAoFATs7/0EMP4fV6c3JuQRAmtp5IGJuUREbH1T/QN53wFTgqYTIRCY4wKNsJyRe/+EU+/vjjrJ1PEITJwxeNYCeFTdOx97eW0NJ9BY5KmExEkbEwYqlUCovFst/j7HY7drs9DxEJgjDR+GJRbKSx6To2zUhw9HSwwFEJk4lYwZmgjjnmGK6++mquueYaiouLqays5N577yUajfKVr3wFl8vFrFmzeOaZZwaf8/TTTzNnzhzsdjvHHnsszc3Ng4+9+uqrfOUrXyEYDCJJEpIksWLFCgBmzJjBT3/6Uy655BI8Hg9f//rXAbj++uuZM2cODoeDmTNn8qMf/Yh0Oj14TnGLShCEvemLRbFLSay6TrtaSafuJaarpDJaoUMTJgmR4OxNKrr3j081p9r3sfHhHTsKDz/8MGVlZaxZs4arr76aK664gnPPPZelS5fy7rvvcuKJJ/KlL32JWCxGa2srZ511Fqeccgrr1q3ja1/7Gj/4wQ8Gz7V06VLuvPNO3G43HR0ddHR08L3vfW/w8f/6r/9iwYIFvPPOO/zoRz8CwOVy8dBDD7Fp0yZ++ctfct9993HHHXeM6s8iCMLUEohHiesWVM3Cz8zf5VH1OHZQQl80WejQhElC3KLam5tr9v5Y43K46M+ffP1fsyEd2/Ox0z8LX3nqk6/vXAix3t2PWzHypdmDDjqIH/7whwDccMMN3HrrrZSVlQ2usPz4xz/mnnvu4YMPPuCJJ55g5syZ3HHHHUiSxNy5c1m/fj0///nPAbBYLHg8HiRJoqqqardrHXfccUMSHmDw2mCs8nz3u9/lscce47rrrhvxn0UQhKklkIjxnHo8WqqGxRVzIbQeJI2eSIwqj7i1LYydSHAmsEWLFg1+rigKpaWlLFy4cPB7lZWVgDHd+8MPP+SII45AkqTBx4888shhX+uwww7b7Xt/+ctfuPPOO9m6dSuRSIRMJjOqkfaCIEw9oaTxplDXLcwqc/NeUAZJoyscZiGlBY5OmAwKmuDMmDGDHTt27Pb9K6+8kv/5n/9B13Vuuukm7r33Xvx+P0uWLOF//ud/OPDAA3Mf3P9r3/tjkjL06+9v3cexn7oLeM360cf0KWazeeilJGnI9waSGU3TxjwA0+l0Dvl69erVnH/++dx0002ceOKJeDweHn30UX7xi1+M6TqCIEwN4f4ER8HMseoqKuSn2SqXiYGbQtYUNMFZu3YtqqoOfr1hwwZOOOEEzj33XABuu+02br/9dh566CHmzJnDT3/6U0444QQ2b96My+XKbXAW5/6PyfWxWXTAAQfw97//fcj3Vq9ePeRri8Uy5O9jX958802mT5/OjTfeOPi9PSWrgiAIe1Kc2MrnlJcpM23FZT2dGsJ0Y8cXFQmOkB0FLTIuLy+nqqpq8OOf//wns2bNYtmyZei6zp133smNN97IWWedxYIFC3j44YeJxWI88sgjez1nMpkkFAoN+RDg8ssvZ9u2bVx77bVs3ryZRx55hIceemjIMTNmzCASifDSSy/h8/mIxfZSVwTMnj2blpYWHn30UbZt28avfvUrHn/88Rz/KQRBmCzMmT4qpCAN+LB6yrHpOnZS+KJiXIOQHeNmF1UqleL3v/89l156KZIk0dTURGdnJ8uXLx88xmq1smzZMlatWrXX89xyyy14PJ7Bj/r6+nyEP+5NmzaNv/71rzz55JMcdNBB/OY3v+Hmm28ecszSpUu5/PLL+eIXv0h5eTm33XbbXs93+umn853vfIerrrqKgw8+mFWrVg3urhIEQdiXVEZDwdg9qikebJ4KbJqGTUrhj49uV6kgfNq4KTL++9//TiAQ4JJLLgGgs7MT+KRQdkBlZeU+b4XccMMNXHvttYNfh0KhSZnkvPrqq7t9b9e+NgN2rb059dRTOfXUU4c8/pWvfGXI1/fccw/33HPPfs8Lxi3ETydB11xzzeDnyWSSoqKiPT5XEISpKxBLYZGMFhq6yYO7uAp7/wpOICZuUQnZMW4SnPvvv5+TTz6Zmpqh27N33fUDxgv2p7+3K6vVitVqzUmMwvC1trby9NNP56cgXBCECcUfS2GWjX5iiqUEd2kFNl1HRieR2EMbDUEYhXGR4OzYsYMXX3yRv/3tb4PfG+jF0tnZSXV19eD3u7u7d1vVEcafQw89lNra2t3qfARBEHoiEWyS0dDPZC+lyOlE14zxL5mEmEclZMe4qMF58MEHqaio4Atf+MLg9xoaGqiqquKFF14Y/F4qlWLlypUsXbq0EGEKI9DT08O6des4+OCDCx2KIAjjTHfEGLRp0nVMznIkSaKTGjp1L/HM3jc3CMJIFHwFR9M0HnzwQb785S9jMn0SjiRJXHPNNdx88800NjbS2NjIzTffjMPh4MILLyxgxIIgCMJY+KIR0pjQdAtKURkAvyr6AS2p15A1+35LEQRhOAqe4Lz44ou0tLRw6aWX7vbYddddRzwe58orrxxs9Pf888/nvgeOIAiCkDN9sRj/VI9Az7i4a8bnAShxFNGSApUUkWQGl828n7MIwr4VPMFZvnz5XrvsDky0HphqLQiCIEx8A1vBdd2M12HU3pTYnRAASU7TG0mKBEcYs4InOIIgCMLU4o/3N/PTzBT3JzinxZ5luvIsH+rT6AyHmVEmWkwIYyMSHEEQBCGvUtEuLlReokx2Umy/BgCPSaWcKDuJ0R0JA9X7PIcg7M+42EUlCIIgTB1a0keFFGQOnXidRt8yuagMu65hl1J0h0WzP2HsRIIzQem6zje+8Q1KSkqQJIl169YVOiRBEIRh0VIBANK6HYvJeBkyu8qxaTp2kvhiYh6VMHbiFtUE9eyzz/LQQw/x6quvMnPmTMrKygodkiAIwrDomRAooEqf1NnY3J8M3OyLiXlUwtiJBGeC2rZtG9XV1XttephKpbBYLHmOShAEYd90XUdSjQRHkz9p+eEorjQSHCnF9rhYwRHGTtyimoAuueQSrr76alpaWpAkiRkzZnDMMcdw1VVXce2111JWVsYJJ5wAwKZNmzjllFMoKiqisrKSL33pS/h8vsFz6brObbfdxsyZM7Hb7Rx00EH85S9/GXzc7/dz0UUXUV5ejt1up7GxkQcffHDw8euvv545c+bgcDiYOXMmP/rRj0in04OPv//++xx77LG4XC7cbjeLFy/m7bffBqC3t5cLLriAuro6HA4HCxcu5I9//GOuf3yCIBRQOJnBLBndinXFM/h9d0kldk3HSppQPFSo8IRJRKzgfIqu62S0TEGubZJNw+re+ctf/pJZs2Zx7733snbtWhRF4dxzz+Xhhx/miiuu4M0330TXdTo6Oli2bBlf//rXuf3224nH41x//fWcd955vPzyywD88Ic/5G9/+xv33HMPjY2NvPbaa1x88cWUl5ezbNkyfvSjH7Fp0yaeeeYZysrK2Lp1K/F4fDAWl8vFQw89RE1NDevXr+frX/86LpeL6667DoCLLrqIQw45hHvuuQdFUVi3bh1ms9HfIpFIsHjxYq6//nrcbjdPPfUUX/rSl5g5cyZLlizJwU9YEIRCC8bSWPoHbUoW7+D3PSUVBDQvnbqVeMJfoOiEyUQkOJ+S0TLct/6+glz76wu/jlnZf3Mrj8eDy+VCUZTBoaQAs2fP5rbbbhv8+sc//jGHHnooN9988+D3HnjgAerr6/n444+pra3l9ttv5+WXX+bII48EYObMmbzxxhv87//+L8uWLaOlpYVDDjmEww47DIAZM2YMieWHP/zh4OczZszgu9/9Lo899thggtPS0sL3v/995s2bB0BjY+Pg8bW1tXzve98b/Prqq6/m2Wef5c9//rNIcARhkuqNJkhJEMeCbP2kdtBiNnE915NUP6A0vY8TCMIwiQRnEhlIQga88847vPLKKxQV7d4wa9u2bQSDQRKJxODtrAGpVIpDDjkEgCuuuIKzzz6bd999l+XLl3PGGWcMqfv5y1/+wp133snWrVuJRCJkMhncbvfg49deey1f+9rX+N3vfsfxxx/Pueeey6xZswBQVZVbb72Vxx57jLa2NpLJJMlkEqfTmbWfiSAI40tPJMqb2gLe1BZw2YyhI3o8NgfdGkRT8b08WxCGTyQ4n2KSTXx94dcLdu2x+HRioGkap512Gj//+c93O7a6upoNGzYA8NRTT1FbWzvkcavV6E1x8skns2PHDp566ilefPFFPv/5z/PNb36T//7v/2b16tWcf/753HTTTZx44ol4PB4effRRfvGLXwyeZ8WKFVx44YU89dRTPPPMM/zkJz/h0Ucf5cwzz+QXv/gFd9xxB3feeScLFy7E6XRyzTXXkEqlxvRzEARh/OqJ9ve40U0UO21DHvPanHTHIJ6Jk1Y1zIooExVGTyQ4nyJJ0rBuE00Ehx56KH/961+ZMWPGkEntAw444ACsVistLS0sW7Zsr+cpLy/nkksu4ZJLLuHoo4/m+9//Pv/93//Nm2++yfTp07nxxhsHj92xY8duz58zZw5z5szhO9/5DhdccAEPPvggZ555Jq+//jqnn346F198MWAkZFu2bGH+/PlZ+NMLgjAe+SLGDildM1PsHPq79pLkX9mirOZtDiAQS1PushYiRGGSEOnxJPbNb36Tvr4+LrjgAtasWcP27dt5/vnnufTSS1FVFZfLxfe+9z2+853v8PDDD7Nt2zbee+89/ud//oeHH34YMOp4/vGPf7B161Y2btzIP//5z8EEZPbs2bS0tPDoo4+ybds2fvWrX/H4448PXj8ej3PVVVfx6quvsmPHDt58803Wrl075PkvvPACq1at4sMPP+Syyy6js7Mz/z8oQRDypi8e4xxlJV+VX6CS3iGPVcgpPFIMhxzFF4kVKEJo9kX50v1v8YvnNxcsBmHsRIIzidXU1PDmm2+iqionnngiCxYs4Nvf/jYejwdZNv7q//M//5Mf//jH3HLLLcyfP58TTzyRJ598koaGBgAsFgs33HADixYt4nOf+xyKovDoo48CcPrpp/Od73yHq666ioMPPphVq1bxox/9aPD6iqLQ29vLv//7vzNnzhzOO+88Tj75ZG666SYAfvSjH3HooYdy4okncswxx1BVVcUZZ5yR3x+SIAh5FYiFqJV6OVBqw+10DHlMsZUioWMjRUeocOMaHnizide3+Ljr5a00+UTTwYlK0nVdL3QQuRQKhfB4PASDwSHFr2BsU25qaqKhoQGbzbaXMwjjifg7E4SJ7fLfPsCivhU0plLMueQjpld4Bx9b9bub+LjnPt6VpnHUsvv44qEHFiTGK/7vRda0vo8/U81DXz6Bz80pL0gcU92+Xr+HQ9TgCIIgCHmTShi3pVTNgtc1dGOEUlSGrdvoZtwdKVw34/l9j7Gw+DnK1Qy+wBuASHAmInGLShAEQcgbNdkHGIM2Xdah77Etg/OokvTGCneLKpMxYgzJMpG+toLFIYyNSHAEQRCEvNHTAQAyOJDloZ3bbZ4KbLqOTSrcwM2MqqHoRiflpCST7GstSBzC2IkERxAEQcgf1ViZ2XWS+ICikmoiqouQ7sBfoIGbvkgKu/zJ6lEi3FKQOISxEzU4GPOnhIlB/F0JwsSVVjVSepo4FtRdBm0OcFfP5PrUVSim7cxLFmabeHc4gUWOMTCRMBMTrSsmqimd4AwMfYzFYtjt9gJHIwzHQJdjRVEKHIkgCCMViKV5hwbezVSzpPwkvvipx902EzIWAMKJAiU4oSRmZZfbY6mugsQhjN2UTnAURcHr9dLd3Q2Aw+EY1jRvoTA0TaOnpweHw7HHzsyCIIxvgVgKSTLWRoodrt0elyQJt9VBGAinCpPg9ASC6HKGgQoORe3d9xOEcWvKv0oMTOMeSHKE8U2WZaZNmyYSUUGYgHzROPQnOKWOPQ/VvU5/lCbTdl5LH4Wu63n/f90XiLBen8vBbAHASpBoMoPTOuVfLiecKf83JkkS1dXVVFRUkE6nCx2OsB8Wi2WwC7MgCBNLdyTC8fI7eIhxQPpo4ODdjqkiQi8xrISJpdS8JxatcZ1X9YWszszFISWI6tNZHk7SIBKcCUf8jfVTFEXUdQiCIORQbzRCleSnjgAlFnWPx0hmLwBWOU5vJJn3BKczHAAggYWEbkGTJbpDCRrK9rziJIxf4q2wIAiCkBe+WBS7lMSq61jdZXs8RrKWAGCVEgXpZhwNt+MggYSxY1OSk3SHk3mPQxg7sYIjCIIg5EVfNEwtKWyajt1TscdjFHs55pCOgySdkTBQmdcYD488xeftq/goM5se2UaxFCfkOxOoyWscwtiJFRxBEAQhL2LRPhR0rLpOUcme5ztJztLBbsY9kfyOa1A1HUUzuhhraTcHydtZoGwj5dua1ziE7BAJjiAIgpAXyZgPAFlT8Lh2b/QHYHKVYdM17CTx5fkWVW80ia2/i7HZUkZCswEQF92MJySR4AiCIAh5oSaNnjJp3Y7XYd7jMVZvLRHVTRQ7vbH8JjjdoSQW2bim21VDRnMAkIm15zUOITtEgiMIgiDkRSIdIYaFpO7EZt7zrlWlYSk/S3+FZ9TP4E/kd+BmTziJWYkDUFJcR0o35mXpSdEnbSISRcaCIAhCXmzMVLBGP5Vi0yLO28sxJU4Lumas7vjzPFG8KxhDlhOAhLtkGjtbvADIal9e4xCyQ6zgCIIgCDmn6zrxjLE64rLtvadMscMCmjGPKpTMb4IT6u0kIYMOlJU1IJlLATBrAVIZLa+xCGNX8ASnra2Niy++mNLSUhwOBwcffDDvvPPO4OO6rrNixQpqamqw2+0cc8wxbNy4sYARC4IgCCMVTamoGMNyvfsYbmwzK9xi+i2Xmp7FlMhv7UtnNMparZEN2gzqistQbMZWdqsSxRcRvXAmmoImOH6/n6OOOgqz2cwzzzzDpk2b+MUvfoHX6x085rbbbuP222/n7rvvZu3atVRVVXHCCScQDud3+6AgCIIwev5oiqOUdZylvM7n1HX7PLZeCuImBml/foLrtz0Gr2uLeDFzBNUeJynvQfxWPZ7btdNEs78JqKA1OD//+c+pr6/nwQcfHPzejBkzBj/XdZ0777yTG2+8kbPOOguAhx9+mMrKSh555BEuu+yyfIcsCIIgjII/mqJE7mOa1EOFvO9bT6rkAuJIWsjoTSPnZ+BmdzRkfKJbKSuyUOKppK/FjS5DdyiRlxiE7CnoCs4TTzzBYYcdxrnnnktFRQWHHHII99133+DjTU1NdHZ2snz58sHvWa1Wli1bxqpVq/Z4zmQySSgUGvIhCIIgFJYvGsMiGasgZvu+uxPritEjxyJFCcRSOY9tQDrahoMEbpMdkyJT4/YCIMkpusMiwZloCprgbN++nXvuuYfGxkaee+45Lr/8cr71rW/x29/+FoDOzk4AKiuH/s9QWVk5+Nin3XLLLXg8nsGP+vr63P4hBEEQhP3qiUawk0JGx+LccxfjQeb+eVRynN5ofhILTdNZlnqWb5ie5gz5bQBq3B4Wyds4VllLonNTXuIQsqegCY6maRx66KHcfPPNHHLIIVx22WV8/etf55577hlynCQNXZ7UdX237w244YYbCAaDgx+tra05i18QBEEYnt5oFJtkzKGy7WXQ5gDZVoKEjo0UnXmqt/THUoNdjGWLkWDVeFwsopWD5CZUv9jcMtEUNMGprq7mgAMOGPK9+fPn09JitMWuqqoC2G21pru7e7dVnQFWqxW32z3kQxAEQSis3lgEGymsuo7Ns+8VHNlRhlXXsZOkO5yfMoPucBKrYnQxttqM+CrcVtL93YzTUdHNeKIpaIJz1FFHsXnz5iHf+/jjj5k+fToADQ0NVFVV8cILLww+nkqlWLlyJUuXLs1rrIIgCMLohaN+zKjYdB27d8+TxAe5a4mqRSSw0h3JTy+c7nASsxQDwFZkTA4vdVpIakbPHk10M55wCrqL6jvf+Q5Lly7l5ptv5rzzzmPNmjXce++93HvvvYBxa+qaa67h5ptvprGxkcbGRm6++WYcDgcXXnhhIUMXBEEQRiAa8xHDgqJpeDwl+zw2NOcsfvlRN7I5wIx4fuZRdYUSKEocDXB7jdpNkyKjSV4A5IzoZjzRFDTBOfzww3n88ce54YYb+I//+A8aGhq48847ueiiiwaPue6664jH41x55ZX4/X6WLFnC888/j8vlKmDkgiAIwkh0pC28kDkVLVXN207LPo8tdVpAN47pjeYnwfH7+9BkFZAoLp05+H29v5uxogXQNB05T1vWhbEr+CyqU089lVNPPXWvj0uSxIoVK1ixYkX+ghIEQRCyKpQ0bv9IugW3bc+TxAcU7zKPKpCngZvhvmYcSGR0heqymsHvm6wVkASLHMEfS1FaZM1LPMLYFTzBEQRBECa/SMqYQ+W02Pe7ClJiSvGfyu9oMaVYE5+fj/DYGU8S1mZj1STO8jgGv29x1kASzEqM7nBSJDgTiEhwBEEQhJyblXqfY03rsOtB4PJ9Hutxe5indxLARibRm5f4tsZNfKwtQs+4ucP1SRJjLpnDb3uOJ6oWc3c4yfzqvIQjZIFIcARBEIScyqgaRZqPesmHS9p/sa6sKGSwAzpqMj/zqHpjRg8ch8mB1aQMfr/SU0Gf7gZZF+MaJpiCTxMXBEEQJrdAPI1VNm5RYfYO6zkZjI0keiaQm6B2oes6eqIdJ3GKrY4hj9V4vMYnkkaHGP0zoYgVHEEQBCGnArEU5v4ERzHve4v4AE12ASHMRIinVOwWZb/PGa1gPM1p8osUm7YQIT7ksWq3g4W0Uib70DvXAAfmLA4hu0SCIwiCIORUXzSFaWDQpqN0eE8yeYE2LHIMfyyF3WLPWXzd4STW/gnnJtvQJoQVLhsH6u1UyW1IgQ05i2Gier81wH89t5kFtR5OWVjFojpvoUMaJG5RCYIgCDnVE4li7U9wrI79dDHuJ1mKAbBJCbrDsZzFBtAdSmLpT3BszqFVxBVuKymtCAA12ZXTOCaid1v8vLHVx29WbuP9ncFChzOESHAEQRCEnPJFI9hIY9J1rO49zxH8NNVZR1B3ksZEZ47nUQ10MQZwe2qHPGYzK6Qlj/FFOj87uiaS9W2fJDULaz0FjGR34haVIAiCkFO+aBQdMOtgde17kviArXOv4IFVMpKc4JRIbieKdwfCSFIKAO8uXYwH6IpRNyRrgZzGMRFt6E9wTLLEvKrxNWFAJDiCIAhCTvXFIvxZPRE94+ThijnDek6J0wKaGeQEvmhuE5xgoAW3BLoOFeXTd3tctlVAGixShEgyQ5FVvHQCxFIZtnYbozQaK13YzLkrBB8NcYtKEARByCl/3Khv0XUrXufwOgEXOy3oujGuoTeW23lUsWALYMRX5d19FcLsMEY3mJSY6IWziw87Qmi68fnCWndhg9kDkeAIgiAIORVI9BcJa2aKnfueQzWgOr2TH8h/4YvKK/TFcjuPqjWu847WyIeZ2VS4d0/AHG5jurgiJ+kJ5mf450Swfuf4rb8BcYtKEARByDFH9GPOVl5DkSspdlw3rOe4ixzMoYuYZGdrPLdJxccpKz3aQqxS1R5vs3hL6nm4+QRiuoOfhTM5jWUiWd/2SfH3ApHgCIIgCFONKdlNveTDA8Ou0/CUVmHXdUxoxBKBnMWm6zr+eAQs4LUV7fGYGk8xft24ddUeFis4Aza0BVHIYCteS7dqI5E5CpvJVuiwBolbVIIgCEJuZYxbGarsHPZT7E43imYkQ5nk/udXjVY4maFI66KIOGV2xx6PqXI70TULAO3h/MzGGu/iKZUt3WEWmtZzufX3tLx5KxbFUuiwhhArOIIgCELO6LqOpIbBBKo8gm3EkkRGdwBp9HTukoruUJIzzC/hNbWiZvZcAF3hsrJAb6dSbqWosxo4MmfxTBSb+guM51g2oqBRKVuQpfG1ZjK+ohEEQRAmlVhKxSz1FxmbRrbTJiMZCZGUCaINbNfJsu5wAotixGd17rkJYYXLxly6WCQ3URTZmJM4JpqB/jdrlRo6iw+jetaJBY5odyLBEQRBEHLGH0thkQYGbRaP6LmayShctUgxQol01mMDYwVH6Y/P4a7b4zFuu4mkZiRnekp0M4ZPOhjvNFnQZxxF1fwzCxzR7kSCIwiCIORMIJbGJBtzqBTb8CaJD0iZq/HrRWRkjd5IMhfh0RWMYpKN3jYlpTP2eIwkSegmY0iopIkaHOhfwZETKKYEFS4blXtZ/SokkeAIgiAIOdMbTaBKGhoSZvvIXgRfn/VDHlaXs1mvozOcm27GPn8HiqQhoVNWvvuYhgGStRwAkxQhldFyEstEkUirbOmOsMj8LotsXVSaneOuwBhEkbEgCIKQQz3RKP/QliJpOt+rWz6i55YWWUE3gZShK0cJTjS4g2JA0UyUl+59hcnkqIEImOUoPZEktV57TuKZCDZ1hFA1nWNtr2FN76C6vQoWFjqq3YkVHEEQBCFneqNG3xhdN1NctOc+M3tT4rQObs/uydE8qmSkDQBVtVHh2vsYCbvL6GYsyUl6grntrDzeGQXGOl6z8bOrmvbZwga0F2IFRxAEQcgZX6R/DpVmptgxvDENA2bF3uNq+Z9sVxz4YmfkIDrYkTLhpxGX7sW5jyGa7uJ6tA6JuCzh72qB6cObij4Zrd8ZZKbcSsKURpfNVM84ptAh7ZFIcARBEISciUS6OVt5DYtux2v/3oie67bIzKKHICX05Wjg5kdJBynzQspts/d5XK2nmDsyJxDDyrVpO8fmJJqJYX1bkAWW99GRKHLVUWQfWfF4vohbVIIgCELOpKJd1Es+FrCT4mFOEh/gLK7ApuvYpVROBm5GkxniqtEDp8S+7yaElR47fq2UFGbaw6F9HjuZDRQYT7d8DEBtxYICR7R3IsERBEEQckZN+ADI6FaKHSPbaVNUUo1d17GRJJSDgZvd4SSlSg9FxKlw7HuMRIXLBpqRoHVFAlmPZaL4sL/AuMy8E4DquiMKHNHeiVtUgiAIQs5kkkbfmJRmx20fWQ2Op7QSm6YjA8kczKPqDiU43fQKxaYubJkq4Jy9HlvhsjJf76BG/pjKHgsw/jr35sOGtiDV9JAyxdElhcpxWn8DIsERBEEQckhPB0EBDQeKLI3ouYrZiqYbqz5qMvsdhLvCScz9Yxocrtp9HlvitDCTXubITeixke0Gm0zWtwXpNFm4VzuJc2Y7KHXXFzqkvRK3qARBEISckdSBSeKjSwpU3bh1JPVPJM+mzmAUpb/Lsqdk+j6PNSkyqtzfzVgNZD2WiWJ9WwjJFCSEkzlzP48kjSxpzSeR4AiCIAg5kVE1ZL2/D47iGdU5IqZK+vQiUlqSZEbNZnh0BXqxk0JGp6Rsxn6PH+hmrBDO2fDP8SyRVtnSFUY2ByhxWpjm2feqV6GJW1SCIAhCTgTjaZAyaEjI5tElOL+v+g/e7Pk7SCb80TRVHiVr8UWCLZQCVg1Ky2v2e7zJXg1xMMkx+mIpyopGtitsovuoM4xH87Pc9gQRUy3VjqpCh7RPIsERBEEQcsIfS/OMfijPZuazvO6UUZ2jzFkEPYCUoScco8pjy1p8yXArAKpmp3IY57W66iD+STfjqZbgrG8LcqhpPfVKG8lUnHJnRaFD2idxi0oQBEHIiUAshSSnAfA6RreCU+Z0AkadR7YHbmYSXQComoOifXQxHuD2TkMDkjL0de/MaiwTwYadQRotmwDwemZhlke2Ky7fxAqOIAiCkBO90QRIGQBK99NnZm8Oj76KJr/EVsrpzvI8qm0pKzFLI2VKzbCKZas9JfToNpxSgr6e7cCirMYz3q1vC3K+pYkIMHPaZwodzn4VdAVnxYoVSJI05KOq6pN7erqus2LFCmpqarDb7RxzzDFs3LixgBELgiAIw9UTifAFZTVfkN+iTh5dcuJRUjTovRRLYXzR7DX7S6RVtmRcvKEtZKPr+GE9p9Jt47H0cn6dOY1NjO/6k2xLZlTau7owm42+RvWzxv+wioLfojrwwAPp6OgY/Fi/fv3gY7fddhu33347d999N2vXrqWqqooTTjiBcJaXKQVBEITs642GaZA6WSC1jnjQ5gCLu9wY10AyqwlOdygJcgqAMqd7WM+pcFsJ9o9r6IpOrXENmzvDLJI24FdkooqLqvLxO6JhQMFvUZlMpiGrNgN0XefOO+/kxhtv5KyzzgLg4YcfprKykkceeYTLLrtsj+dLJpMkk8nBr0OhqfWPUBAEYbwIRXyUomHTdZze0RWk2jz986hI0Z7FgZvd4QSlSjdpklQN8/ZZhcuGrlmRAN8US3DWtwWZZzHuoJjt03CYHQWOaP8KvoKzZcsWampqaGho4Pzzz2f79u0ANDU10dnZyfLlywePtVqtLFu2jFWrVu31fLfccgsej2fwo75+/HZZFARBmMzikW4ATJqM2zW8VZJPKyquxK5p2KUk/nj2Bm52hZKcZl7J10zPcFhm87CeU+6yMkfr5vPyuzT0PZe1WCaCDW1BNFMYFYnKioMKHc6wFDTBWbJkCb/97W957rnnuO++++js7GTp0qX09vbS2dkJQGVl5ZDnVFZWDj62JzfccAPBYHDwo7W1Nad/BkEQBGHP0rFdBm2OcJL4AHdpFTZdx0qGcCJ7qyadoSim/i7G7uJpw3qOzazQYAqzUG6mKvVh1mKZCNa3BXlIPpLfqP/G3EP3PrNrPCnoLaqTTz558POFCxdy5JFHMmvWLB5++GGOOMKYUPrpynZd1/dZ7W61WrFap1ZvAkEQhPEo0z8/Kq3ZRzxJfIDDXYJFMz7P5jyq9mAADwkUdIpLZwz7eZLZ6GYs66H9vh5NFsmMyubOALI3iMthZ2bZ7EKHNCwFv0W1K6fTycKFC9myZctgXc6nV2u6u7t3W9URBEEQxh8tbey4yWh27JbRdSCWZIUQpfTpRcRT2dtgEgi0YULDoekUVw5/5IBsMzoeK1KMSDKTtXjGs487I2hSACSNarcHj3V0PY3ybVwlOMlkkg8//JDq6moaGhqoqqrihRdeGHw8lUqxcuVKli5dWsAoBUEQhOFIZ2KoSKjS6HrgDPiZ62f8Vl1OW8aCrmdnBlQi0l++oJmp8A7/BdvaPz3b6GYcy0os4936tiA/tP8PFyovsdiWmTCrVgVNcL73ve+xcuVKmpqaeOuttzjnnHMIhUJ8+ctfRpIkrrnmGm6++WYef/xxNmzYwCWXXILD4eDCCy8sZNiCIAjCfui6zsuZOdyVOZO/Or40pnOV9O9y0kgRztKqSSZm3B3IaA7c9uFXaxR56vu7GUv0TpFuxht39lJsbqNCCjK/Ylahwxm2gtbg7Ny5kwsuuACfz0d5eTlHHHEEq1evZvp0Y2z9ddddRzwe58orr8Tv97NkyRKef/55XC5XIcMWBEEQ9iOeVsnoKWTAaR/bLY0SexH4QZLT9IaTuG1jHxGgp7rBCjquEa1IVHm8hHUbDilBr28bcOCYYxnv4jveps+sE8fKoQcuK3Q4w1bQBOfRRx/d5+OSJLFixQpWrFiRn4AEQRCErPDH0kj9Yxq89rH1TPlC7BkqlJfYpE+nOxqlobxoTOdLZlS2ZorImOdQZx1ZwWyl205As4GSINjXMqY4JoJURsMdXEOiWKZPLmead/9T18eLgjf6EwRBECYffzTF502rcShharQDxnSuCilCDQHaKKMzFALGttGkJ5ykRfayU1vAkvKRrUhUuKz8R+pEUuY4p1rm8sUxRTL+fdwVZrr5I+KAYp2JIo+uWLwQxlWRsSAIgjA5BGJpauQuZkvtVJpSYzqX5CzDpus4pCQ9WRjX0B1OIvWPaagc5piGAeUuKyGthBQmeiKTv5vx+p1+Ss3GSpWn4rACRzMyYgVHEARByDpfNIalP4mwF1WP6VwmVzl2XcMmJfFlYaJ4dyhBqdxDGp2aopHd7hoY1wDgi03+uYjd29ZRZs6QwkLj7M8VOpwREQmOIAiCkHW+SAQbSSR07O6x3VKyusqxaTp2OUVfbOzjGjpCUU41vUGJFKZRPQ5YMuznuu0mGqU+GuR3KQ21A5eMOZ7x7KPuPszSdHRN5uKZcwsdzoiIBEcQBEHIOn/EjxN1TIM2B9i9Fdh1HbuUYmcWBm62B4M4pQQmXcddOn1Ez5UkiQZrmoVyM1ImOOZYxrNURuPloIzu/Ayl9hLKnGMr7s43UYMjCIIgZF0sbPSZsWjg8paM6Vyu/nlUdpIEE2NfwekJdmMljVPX8FbUjfj5ks245aZIMZIZdczxjFcfd4XJyEY36pnekf+cCk0kOIIgCELWpWLGJHFVt+J12sZ0LndJJWnNRkh3EMnCwM142OhibNZkykrLR/x8c5HxYi9LCXyh+JjjGa8+bmqhytyEhM6CyhmFDmfExC0qQRAEIesSCb8xpkGzjnrQ5gCz3cW39B+RVDdQmhrbjiyA9GAXY/uoppy7PNPQgpCSJXq6WqgtGds2+PEqs/lJLrY9zna9iiXTvlPocEZMrOAIgiAIWbdBq+GuzJn8V/piPPaxdx722o36j0hq7POf9GQXABouZHnkc5Uq3F5SupEY9XRvH3M841bvW+hIBNUSDqufOA3+BogERxAEQci6cH8iYjK5UEaRRHya12Z0Q06oCdKqNurzpFUNWe0DQJdHN0Ki0mMjo9kBCPp3jDqW8SytajjVjwBImObgto9tFa4QRIIjCIIgZF0kmQDAZbVn5Xz/nnyci5SXmKNsxx8b/W0qXyTJDopZq82h3bl4VOeocNlIq0bCFQ23jzqW8Wz79i1ophAaYCv9TKHDGRVRgyMIgiBklarpLNbWUGxuxiRl551/vR6gRwpSJIfxRRJUuEZXuNwdSrJDLqZFW4C38qRRnaPcZeXP6eWk5T6Oth3Kl0d1lvGtZ+OrdJlM9OgeDqidX+hwRmVMKzjJZDJbcQiCIAiTRDCepkbuZLbUznQpkJVzyrYSo2kgKbrCo+8g3BVKDI5pqC7yjuocFS4rYc1LGlNWOiuPR7G210hJEp1aBYdPG1mvoPFiRAnOc889xyWXXMKsWbMwm804HA5cLhfLli3jZz/7Ge3tk3OpThAEQRg+fyyFWTZuUSm20qycU3aUYenvhTOWBKcjFKFU9uEiRp1rdI3rSousSP1Fxn3xyZngEPkAgO50PQvrvIWNZZSGleD8/e9/Z+7cuXz5y19GlmW+//3v87e//Y3nnnuO+++/n2XLlvHiiy8yc+ZMLr/8cnp6enIdtyAIgjBOBWIpTP0JjilbCU7/wE27lBrTqkl7KMiZyptcrjzDbK1tVOdQZIl51jifl9/liNjTo45lvEqrGr/Wj2aNNpeY7SDctrHvgiuEYdXg3Hzzzfz3f/83X/jCF5Dl3XOi8847D4C2tjZ++ctf8tvf/pbvfve72Y1UEARBmBD6IikUyShhsDvHNodqgNldjkPTsSlJfNHRdzPuCvUxmyQOXcNdXjvq89RaZRbSjKza0DR9VNvNx6stXRE2Sh4k7UA+VzVxe/wMK8FZs2bNsE5WW1vLbbfdNqaABEEQhInNF41hlYw6F4crOwmOzVPeP64hRc8YpniHQ+3I6DhUnZLK0Sc4irMeoiDJCfoiccrcjlGfa7x5p6UDSYkDEotrJ2b9DYyhyFgUGAuCIAh70hsOYCWNgo7DW52VczqLq8hoVpKY8SdG3+wvHTNqRTXdRqnLOfp4PPXogCpBZ2fLqM8zHqU23MMMqRNTxsZBdWWFDmfUhp3g3HrrrVRXV/PEE08AcOyxx+YsKEEQBGHiikR70JCwaTpOz8hnPe2Ja9oirklew5/UYwiOIcHREsaMrIxeNKYGhBVuL+n+QmNf99ZRn2fcSUaY1fsYZyirKEpbWFA7umaI48Gw++A8+OCDvP3221x99dV4vd4chiQIgiBMZB1phWcyZ2LJWHm0KDuN/oqsJpT+njqh5OhqcFRNR8r0ghl02T2meCo9NrpVOxZTEn/f5OlmrLa8RbdJJoQDi3PuhC0whhEkODU1NdTW1vL73/+eM844g97e3lzGJQiCIExQgXgEgITuoNiZnUZ/kiThtjoJAeHk6FZweiNJHLIxjVw2lYwpngqXlTbNAQSIhke3G2s86tz0Mr2KTJteyoLKiVt/AyO4RVVeXk46ncbhcHDXXXfR1dWVy7gEQRCECSoQjxufaGaKHdlbAfiu/hgXKS/hTbeg6/qIn98dTrJdKmWtNocez5IxxVLuspLQjD46iZhvTOcaT3pa30BHojtTzSF1VYUOZ0yGvYLzpz/9afDzuXPnEggEdjums7OTqqqJ/QMRBEEQxqY6+h6zlNXE5ZnYzUrWztug9eCXgtilINGUSpF1ZNOGukIJdkjF7NBczKkd3ZiGARUuG4+nj0M1zWOR7XC+NqazjROZJLHoVrAq7EzNnND1N5CFYZuZTIa//e1vnHrqqUybNi0bMQmCIAgTmDu9k9lSO/OVbiQpi/1hzF4ALHIMf3TkAzfbgxGQMgDUebxjCqXcZSXSP65h0nQzbn+PHkUnhpWO9EwW1EzRBOf999/nmmuuoaamhq9+9at4vV4ee+yxbMYmCIIgTESa8YKvya6snla2FANgkxJ0hUdeh9MeDFIuBXDrSWqKRjesc4DNrOA0Gb1vAonImM41XqR2rKZbUWjTS6lx1uDJ4u3FQtjn+l4ymeShhx6ipKSEc889l76+Pv7whz/wwAMPsGnTJpYvX05fXx/r1q1jwYIF+YpZEARBGKfiKRUzRvIhmbK7AiDZypBjRrO/7nAIGFmPls5IgHOV16ggSa30DWD0jf4AZts1qnkHd0pC16/P7mpVAbxddxr/t2Y9iiZzcPXYfjbjwT4TnIsuughZlqmsrORnP/sZmzdv5uCDD+ZrX/sa559/PqWlpZjN5j2ObxAEQRCmHn8shVU2iowHVlyyRXaWYY/o2KUkXZGR3xbyh7ppJINT1ymuqB9zPGX2IhYkdyBLEI4ncTvGtipUaG+1bsevu9DSZRN2wOau9png/Otf/+Kf//wns2fPpri4mOuvv54f/OAHuFzZXXYUBEEQJgd/LIWS5UniA5SiMmydOjYphS868ttCqehO4zyqQmnJ2LaJAzg89ejdoEnQ1dWKu6FxzOcspA1dzQDoaS8LJ3iBMeynBudrX/saF198MSeddBKXX345zzzzDFVVVXzxi1/kn//8J+l0Ol9xCoIgCBNAIJbG1D9o0+KoyOq5rZ4qVM1KBoXe2MgTHLW/i7GqOzEpY7/zUOHxkNGMPj9dnRO7m7H+3h+o7/gdM6ROtLSXBbVja4Q4HuxzBeemm27iggsuoKioiLq6OsAoLn7wwQe59NJL0XUdTdPYtGkTBxwwcSeOCoIgCNnRG00M7lRyuLKb4DD3JH785nZkqZNjRpjgaJqOlPGBCdQxdjEeUOGyEdbsmOXUhO9mHPzon1RozZRTRMxdideRnQaNhbTfFHbevHmDyQ3AQQcdxJ133klbWxu/+c1vOOWUU7jggguoq6vjW9/6Vk6DFQRBEMa33miU+9WT+XXm31DKsrv5pMRpQdeMnT2BxMjGNfTFUtglo4sxSnZqg8pdVtKasZMqEmrNyjkLQtdpa1sLQFd6Gotqx377bjwY9Rqd2Wzm7LPP5sknn6S1tZVvfetbvPjii9mMTRAEQZhgeqNG4pHSbZRkuV6z2GEB3UhwQiMcuNkdSmKVjVUfxZqdAaAVLitx1fgzxqMTuLu/bws9aoQMMq3p2RO+wd+ArGx/qqqq4rrrrmPTpk3ZOJ0gCIIwQfXGjARHz/KYBgCLIvEfpj9ykfLi4FTw4eoKxdkmlbFGm0O49MisxFPhthLTjQQnmfRn5ZwF0bKKDpNCp15COl06KQqMYZgJzq233kosNrxs+a233uKpp54aVTC33HILkiRxzTXXDH5P13VWrFhBTU0NdrudY445ho0bN47q/IIgCEJuycGPOU35FydK67JfxyFJzNU7KJdC6JmRJRQdwQg7KGOVtoDM9BOzEk65y8bTqc/xP5l/45+2Y7NyzkJINL+OX1HYqZcZBcYTvIPxgGElOJs2bWLatGlcccUVPPPMM/T09Aw+lslk+OCDD/j1r3/N0qVLOf/883G7R17AtXbtWu69914WLVo05Pu33XYbt99+O3fffTdr166lqqqKE044gXB4krTGFgRBmESk2E5mSR0cQFvWV3AANMlYMZHVEBlVG/bz2kL9CZFuptpTlJVY3DYTGdkY1xCcwN2MO3auBqArU0ud15O1CfCFNqwE57e//S0vv/wymqZx0UUXUVVVhcViweVyYbVaOeSQQ3jggQe45JJL+Oijjzj66KNHFEQkEuGiiy7ivvvuo7j4k+IvXde58847ufHGGznrrLNYsGABDz/8MLFYjEceeWRkf1JBEAQh57RkHwBpzYbHnv0ER1eMN9BWKUogPvxWJZ3hEJWSH4+WosI5siGdeyNJEiV2I+EKpSZogpMM02J1G/U3qdmT5vYUjGCa+KJFi/jf//1ffvOb3/DBBx/Q3NxMPB6nrKyMgw8+mLKykbXM3tU3v/lNvvCFL3D88cfz05/+dPD7TU1NdHZ2snz58sHvWa1Wli1bxqpVq7jssst2O1cymSSZTA5+HQqFRh2XIAiCMDJ6OmhsxZYcWek1sxuzF2jFKsfoiyQpK7IO62k94T7OV16hXs9QZf5u1sKpt5s5OPUOLj1JIvVjbJYJtvphdfHC7K/xt3XrSKTLJ02BMYwgwRkgSRIHHXQQBx10UFYCePTRR3n33XdZu3btbo91dnYCUFlZOeT7lZWV7Nix554Dt9xyCzfddFNWYhMEQRBGSA2BKfuDNgeYrKWQBpuUpDMcYU7V8Eoi4tEOJMCm6pSWV2ctnhJXOQv8xutRR+cOGqZNrG7GGS3D1r52MihomcnRwXhAQYdItba28u1vf5vf//732Gx7n+Hx6QFmuq7vdajZDTfcQDAYHPxobZ3AvQkEQRAmEFXTUXSjPlJSctQJ116KRdexk6R7BPOotLjxhlnTHVgs2bt1Vu51ow50M+7alrXz5osvtJPOUAxds4DqEAlOtrzzzjt0d3ezePFiTCYTJpOJlStX8qtf/QqTyTS4cjOwkjOgu7t7t1WdAVarFbfbPeRDEARByL1QPI2lf9CmZPbm5BpSUSUZzYKKTHd0eCUIuq5D2geAKmV3ZanCZSWj2QHw9zVn9dw5F+mh/X+P5HORZ5DTbmq9jklTYAwFTnA+//nPs379etatWzf4cdhhh3HRRRexbt06Zs6cSVVVFS+88MLgc1KpFCtXrmTp0qUFjFwQBEH4NH8shdI/h0qxZneS+IDeBV/hF+mLeV1bRG9keIW9gVgaqxQ0vshSF+MBu3YzDgXas3runGtZRacMJj1DOlMyqVZvYBQ1ONnkcrlYsGBoK2+n00lpaeng96+55hpuvvlmGhsbaWxs5Oabb8bhcHDhhRcWImRBEARhL/yxNA9pn8eSiXB62bKcXMMY12BBAnrjwxvX0B1OYpf7b52ZszvhvMJlY7PqoogOYtGOrJ471/TmVXSaFNr0MmOCeJ1IcHajaRpPPfUU999/P3//+9+zccpB1113HfF4nCuvvBK/38+SJUt4/vnncWW5BbggCIIwNoFYCknOkMaEx5ndRGJAidMC/fOo/PHhreB0heJYZKNZrdmx5/KG0Sp3WYlpxutROuHL6rlzLdDyBglJpl0tR8+4JtUOKhhjgrNlyxYeeOABHn74Yfx+PyeeOPbukK+++uqQryVJYsWKFaxYsWLM5xYEQRByp2+XSeJlRY6cXKOUMD+Q/0yrkmBdfOGwntMWDLONSuKawvTKz2Y1ngq3lYjmBSCZmUANaBNBOvxbwG6jLT0TkMUtqng8zp/+9Cfuv/9+Vq9ejaqq3HHHHVx66aUUFWWnO6QgCIIw8fSFejlN+RcJ3UqZPTfFqi5XEYdKO0hJNhLJwLCe0xby06xX0azV88WGY7IaT6nTysuZI3g5U0RFUS1XZ/XsOdS6hg5FJoiTYLqGWq/dWB2bRIZdZLxmzRq+8Y1vUFVVxd13383ZZ59Na2srsixz/PHHi+RGEARhiouHOpgldXAQzZTk6DVBsjiRdQUAtb9r8v50howCY12zUuEeXmPA4VJkCYe9lAwKoeQE6ma8w6i/2an1z5+qnXw7joe9grN06VKuvvpq1qxZw9y5c3MZkyAIgjABxSOdWABNt1LszG4iMUiSUHECKcgEhvWU7kiQaqmXhGaioij7qxTlDjehFEQzMTKqlpsOzlkWqzyAVk8jzYFy9Ixn0t2eghEkOMcddxz3338/3d3dfOlLX+LEE0/ca7M9QRAEYepJx40i24xmwZuDQZsDjF42vZj1CPGUit2i7PP4SKSbLyormaukKLevyHo8lUUuGgLvUCQl6Oxuoa56RtavkW2d9Yt578Nj+bgnA7p50hUYwwhuUT3//PNs3LiRuXPncsUVV1BdXc23v/1tYPdOw4IgCMLUk0n2AqDqNoodOaznMBkvxlY5Sm80uZ+DIZPoAkDSLNgc2b91Vul2ciDtzJC66Oz4OOvnz4WOaAfd4QRaxgswKVdwRrSOVl9fz49//GOampr43e9+R3d3NyaTidNPP53/9//+H++++26u4hQEQRDGOS0VACCtO3DsZ1VlLCSz0azPKsfxheP7PFbXdfRUDwAquWkvUuG2kulv9tfb25yTa2RVIkh713p6w3H0tIcaj43SYQ4tnUhGfaPwhBNO4I9//CPt7e1cffXVPPPMMxx++OHZjE0QBEGYQKSMUcyrSs6cruxL9griugWQ6NzPPKpQIoOVAAC6kptVinKXlbTa3804uDMn18gm/ePn8a/8Gafqr6Fl3JPy9hRkYVRDcXExV199Ne+9994eJ4ILgiAIU4TWv4tIye2u2vULfsBv0mfxnjabnv0kOD3hxGAXYznLXYwHVLisxDXjzxyPdOXkGtkU79tCRpII6U5Q7ZPy9hSMsdFfIpHgscceIxqNsnz5cg499NBsxSUIgiBMIIm0yh/Vo7BmGpjnyu1rQYnTAroFSNET3ffW7K5gAqtiHGOyVeQknnKXjZjmoRRIxrtzco1sCvmNqecx1Q3ILJhkIxoGDDvB+f73v08qleKXv/wlYAy9PPLII9m4cSMOh4PrrruOF154gSOPPDJnwQqCIAjjkz+Wgv4xDXZ7bgZtDjDmUZmRFPBF972CszMUxC4lALA5a3MST4XLSlg1koRMOpCTa2RTKNgKQEQ1/p4m6wrOsG9RPfPMM3z+858f/PoPf/gDO3bsYMuWLfj9fs4991x++tOf5iRIQRAEYXzzR9NIUhqAYrszp9eqTjbxbflJTlNW0befgZvtwSBbtFreVeeTqVuSk3jKXVZCagkASW3fRc/jQTDcBkBALaPaY6NsEhYYwwhWcFpaWjjggAMGv37++ec555xzmD59OgDf/va3OeWUU7IfoSAIgjDuBWIpvmB6nZSsMk05JqfX8thNLKKVpOTinf0kOB3hINv1GrZl5vKNGbm5w2AzK2wwLebtTIoim5drcnKVLMkkCcd7wWLBp1axuH5yrt7ACFZwZFlG1/XBr1evXs0RRxwx+LXX68Xv92c3OkEQBGFCCMTTzFJaWCDvoMyauy3iAK7iSmy6jo0Uwf1MFO+K7DKmwZW7lQqv0xjXEElFUTU1Z9cZs0ArIVkmjUJALWV+9eQb0TBg2AnOvHnzePLJJwHYuHEjLS0tHHvssYOP79ixg8rK7I6hFwRBECaG3nAQpX+SeJG7JqfXsnkqsOk6MpDezzyqvmiAGslHmR6nwpW75oOVLhcgkdG0/RY+F5TFwYflS3lfm4muOphRmpup7+PBiIqML7jgAp566ik2btzIKaecQkNDw+DjTz/9NJ/5zGdyEqQgCIIwvkWDHcYnOri9OX6zq5jRNGM1Rkvv+86BGuvgPOU1DpJTOCy5qxOtdNk5PvgBRUqQzpZ1VB24LGfXGgu1qJL3bAtZp/nRNTvTSiZvgjPsFZyzzz6bp59+mkWLFvGd73yHxx57bMjjDoeDb37zm1kPcLzqDiV4ZXM3D73ZRGtfrNDhCIIgFFQs3Gl8opspceX+RVOVjL4zkhpE1fS9HqcnjW3bGVyQw+aD5S4r8+hihtSNr3NLzq4zVpF0hGA8BboMmmVSJzgj6oNz/PHHc/zxx+/xsZ/85CesW7cuGzFNCH9f18bNT38EgNdhoX4S/yMRBEHYn2S0GxugahaKczhoc4Auu4EYNilCKJ6m2Ln77adIMoNloIuxnNti2gqXjZDqwGQKEQy05vRaYxFqfxs15kfSvFhNCuU5rEsqtDF3Mg4Gg/z6179m8eLFLF68OBsxTQjTSj7ZBrmjV6zgCIIwtWXixqDNtG7DY8/hoM1+mrmUKFaQ0/giex642R1KYJdDAEjmkpzGU+G2EteMWVexaGdOrzUWoed/yFmpfzJX62FaiWNSD8sedYLz8ssvc/HFF1NdXc1dd93FySefzNtvv53N2Ma16bsUZu3o2/c2RUEQhMlOTRm1MBnNhjcPKzjPzfk592W+wMd6LT3RPf8O7golsCrGYyZrbroYDyh3WYn1JzjJeE9OrzVquk4wYtRK9anlk/r2FIzwFtXOnTt56KGHeOCBB4hGo5x33nmk02n++te/DumRMxXs+g+jRazgCIIwxb3EQfRldJxUcZ0y5psD+1Va5ABdAUmlKxwGqnY7ZmcgiIM4EjqWotzu7Kpw2Qj3dwZO76fwuWDifsJqAhQLPrWS4yd5gjPsf4WnnHIKBxxwAJs2beKuu+6ivb2du+66K5exjWtOq2nw3mWzSHAEYdhCiTS/W72DTe2hQociZFEoFSeNCdma2zENA0qcFnTdWCna28DN9lAAh5TApuuY3bsnQNlkdDM2/uxqZpz+2/Y3EVJkIthIqW6xgjPg+eef51vf+hZXXHEFjY2NuYxpwphe4qAnnMQXSRJNZnBaxzS7VBCmhNuf/5iHVjVT4rSw6gfHYTPntimckHuaphNLx5Gs4Lbm50VzdvQdvia/wHbZRU/0zD0e0xkO8qE2nahWxqF1h+c0HrfNRJhyAJKkc3qtUfM3E5ZlgroTXZ3cW8RhBCs4r7/+OuFwmMMOO4wlS5Zw991309MzTu8z5sm0XepwWsRWcUEYlrXNRmO2vmhKFOhPEqFEmhOUf3GC/A7z5fxM0/YqKQ6gnUrJT29sLzU4kSBb9VpeTC+laMYhOY1HkiR6nQu5O3M6D3MCmq7l9HqjkerbRkKSCeI0euBM4iZ/MIIE58gjj+S+++6jo6ODyy67jEcffZTa2lo0TeOFF14gHN73RNfJJpVJsiRwCz/w3EQZfeIXtSAMg67rNPs+eTESPaQmB38szWylmQPlHdQq+Rk2afdWYNeMcQ2BvYxr8EWNW0W5HtMwoNRVTAYTiYxKX3z8vSaG+rYCEFVdoJuoLxYJzhAOh4NLL72UN954g/Xr1/Pd736XW2+9lYqKCv7t3/4tFzGOS5Is05HZhGbvZJbSyo5esZNKEPanJ5wkmlJBSgI6rX6R4EwGgVgKs2Rs1bbYyvJyTVdxFTZdxy4lCST2/O8oGPdTI/mol+MU5aGEoNJlQ+/vsLwzMP4KjUMNy3hPmsfOzDTKXVbslsl9e3hMpe5z587ltttuY+fOnfzxj3/MVkwTglk2Y7eVAlBt2skO8U504gl3wi8PghdvKnQkU0aTL4pkCmIpfQ2l6CNa+/Lzbl/IrUAsjSL3JzjO3G7HHuAqMRIcKxkiiT0X9ZoTbZynvMbPuT8v/V7KXVaOZz1nKm/Q1/Rmzq83Uj3l81mZPoAmtWHS199AFhr9ASiKwhlnnMETTzyRjdNNGCX9A+UqlA6xVXwiev+P4G+GN26HRLDQ0UwJTb4ostl4ZyubA2IFZ5Loi8RAMgprnTnerTRAtnsw95e5qHsYuBlPqZh149+aKudnYnaFy0qj3sN0qZtgz/gb19DUZ9TNToUCYxhBgvPWW2/xzDPPDPneb3/7WxoaGqioqOAb3/gGyeSeu0lOVqXFMwAoNnWLZn8TUWSXYsiPnipcHFNIky8KipHUSHKcFvH/zaQQDnZD/wKJy5OfBAdZRqP/RXoPfWe6wwkccv8bF1NuuxgPqHDZSPQ3+4uGx1k343gAX/NqXMTQNduUGC807ARnxYoVfPDBB4Nfr1+/nq9+9ascf/zx/OAHP+DJJ5/klltuyUmQ45W3ZBYALqWPNn+cVGb8Vc0L+9D94Sefr/9L4eKYQpp8USpNbVykvMRFpudoCwTQ9b0PShQmhljI6I6b0U2Uurx5u25K8hDFiqbHSKTVIY91huJYZSOBli3leYmn3G0lphqrRYnx1s24/V1KNt/L6coqsYLzaevWrePzn//84NePPvooS5Ys4b777uPaa6/lV7/6FX/6059yEuR45SmbB4BFCSPpKm0BUU8woZx9Pz0n/YyEJMH2VyHaW+iIJr0mX5S4rFIuBSmVQiQzAQKxcdozRBi2RNRYDdU0yx6HXubKvTV3cF/mC7RJXvyx1JDHdgaCOKSE0cXYmZ9VpQqXlbDmBSCVGl9FxnpfE2FFJohDJDif5vf7qaysHPx65cqVnHTSSYNfH3744bS2jt8JqrngKWlElRQ6ZRtlBMVOqgnmxbY+TnlnBz+r/je0y14HZ2mhQ5rUVE1nhz/IMea1gPHLp8LUMenqcILxNOf95l+cdOdrdIUShQ4nLzZIdUb/l8wXKHbkL8EpKTJuByGl6QkP/Vm3BQM4pQQOTcfkqc5LPOUuK8H+bsaaOr66Gcf6tqIiEdadoNlEgrOryspKmpqaAEilUrz77rsceeSRg4+Hw2HM5twPWBtPPLZiNs/8Cndrp9IluUSzvwnm4TXvEYyneSxUwrO9+fulPFW1B+Kk9TDTpa7B71UoHZNuJ9WDbzaxprmPjzrD/PXdnYUOJy+C8RgZFMKaOy+DNgdUOIsGP+/+1LiGznAQJwkcuobVm9s5VANKnVYCmrFNXtPH1xvekN94/Y6pHiwmU176AhXasBOck046iR/84Ae8/vrr3HDDDTgcDo4++ujBxz/44ANmzZqVkyDHK7NipsxtvOuXlBjNPpHgTBhbXqCx+xHqJWNp/Y/vrypwQJNfc2+UMqUTC5/UShSbeibVCk4yo/L71S2DX2/t3nMDuslmoA+NgiUv/WYGHBZ5hQvk1zhc3rxbgtMdCbJea+D1zGKsdQfnJR5FltBsRjKVREVVM3m57nAEQ8a/y5BaQn2xHVnO/bb5Qht2gvPTn/4URVFYtmwZ9913H/fddx8Wyyfveh944AGWL1+ekyDHs+leI1uXFLEjZCJRP36OA/Q1g6sJHR0rSTx2Cbz1v4UNbBJr8kWpMrUBYO1vY+9W+iZVN+N/vt9BbyTOnea7uc/8C5q7x9dtilw5IL6KE+R3+IypNS/9ZgaUEmAOXZRJQXoiQ5NJXyzEZr2ep9Kfo3jagrzFpLlmcFfmTP5PPYVwevz82w6FjUJwv1oxJW5PwQgSnPLycl5//XX8fj9+v58zzxw63OzPf/4zP/nJT0Z08XvuuYdFixbhdrtxu90ceeSRQ7ai67rOihUrqKmpwW63c8wxx7Bx48YRXSPX6jMBzlLe4CrLI2JcwwSSaFuPX1bo1d2gy3ikXtq3Pgnv/a7QoU1a23uilJmMrbP1aeOdrV0J0uqfHLeodF3ngTebOEd5jTOUVZygvIPk2zwldolVZ7ZzoLyDRjm/hbVmVzl2TcdOkt7o0BWcgVEJZsmO256/VaUKt5OM6kDXoT0YyNt19ynuJ6wa/5/5MpUiwdkbj8eDouze3rmkpGTIis5w1NXVceutt/L222/z9ttvc9xxx3H66acPJjG33XYbt99+O3fffTdr166lqqqKE044YVzNvSq2OJkmdVNnaqGlL4amTf5fZpNBonczaUmiV/eiJurZotWy0WKDzvXQs7nQ4U1Kzb1RXCYfADVF9fThxifZaPWPn/+fx2Jts5+N7SHKCQx+ryrVgi+S2vuTJoFEWsUsGavXkik/DfUG2DyVxrgGUvTGh66gx+J91Eg+Gq3JvK4qlRdZYWBcQ3Cc7KSSTayfcRartPkkNfeU6IEDWepkPFqnnXYap5xyCnPmzGHOnDn87Gc/o6ioiNWrV6PrOnfeeSc33ngjZ511FgsWLODhhx8mFovxyCOPFDLsITxl8wEwKVGkTJzu8NRqdjghRXoIq2F0oC9TiZaoJYGF15RaIpIkeuLkyHZfBIcSAKDmkC/zlOV0VmoH0RbqmxRvDB54wyji/LV6Bu9LRguJRnkn23smdx1OIJbGLBs7mCRrcV6v7SyuwK7r2KQUgcQnCU4ireLRjDENK9L35jWmCreVY9nImcobRLe9mNdr75XVxQbzLNZo86fMFnEocIKzK1VVefTRR4lGoxx55JE0NTXR2dk5pK7HarWybNkyVq3ae0FoMpkkFAoN+cglj2caadlKUJGZIXXRLLaKj3/dm+hTFIK6k5Tq5eyD56Kli/lIr2OzxQIb/gJT4LZCPqUyGm3BAGlJQkXBU7mAUocXgLQepScysd8YtPbFeH6TcfutwmUlNuskVGC21M62nsn9OyEQT2GWjNsfZlt+Wy24S6qwaRp2kkMmiveEkzhkY2VQU/KbdFW4rMykj+lSN3H/trxee28yWgZfrH+yumpnWqlIcPJi/fr1FBUVYbVaufzyy3n88cc54IAD6Ow0flns2ntn4OuBx/bklltuwePxDH7U19fnNH631U3K4iEuyUyXd4qZVBNBz0f0KTK9uJE1F9cc3wjJGrbrNay32tH7tkP7u4WOclJp9cfQpChPqkfycullKDOOptLpBUCRoxO+0Pi3/2rmGuVPHCA1c+GSGlZ74vzB7WKG1DbpV3D80TSm/kGbVkd+OgYPsHmMFRwTGonkJ/PkOkNxbP0JjpKnLsYDyl02ov3djOOx7v0cnR+RplcxR1qx6iroZuqLRYKTF3PnzmXdunWsXr2aK664gi9/+cts2rRp8PFP3zvVdX2f91NvuOEGgsHg4Eeumw9aFStWm7GTqlrZKWZSTQCabwt9ilFgXOMqp67YwdLpB5LWbbwn1dBhUmD9Xwsd5qTS7Isi9c+gqnGXgaywPPAMV5ie4EjzOxN6q3g0mWHn2if4lunvPG75CXOqPybjdrFVKmGVNIPtvsn9OyEQTSJLRp2RvSg/k8QHWRxoupUoNtK7JDg7A4HBLsayo3IfJ8i+cpeVsOoFxk8349Abv+DY+IvM03soK7LizONW/kIq+J/SYrEwe/ZsAA477DDWrl3LL3/5S66//noAOjs7qa7+pAtld3f3bqs6u7JarVit+W1g5HXXEAlsosLcySaxgjPuNR/+Y279MIKmw2FlRgv3cw+dwZtPVrJZrmeVM8Y5ZbMLHOXk0uSLIinGC/10r/GOusxsppcMHqV3Qjf7e/ztJr6nPQQyPFt+Cu3pDhzuEh7meGLMo36Sr+CEQgEysg5IFOWpod6ubnDfQVPiTSRVHnwD3B4KGE3+NB2TK0/DP/tVuKwENeO2WCYzPtoEBEJGw8lgpnTKFBjDOFjB+TRd10kmkzQ0NFBVVcULL7ww+FgqlWLlypUsXbq0gBHurrKsgTgWwpIktopPAO93dBLBRkx3Mq/SeMd5wgGVOPRpbNdr+LG+nL4Dzi9wlJNLky/K58yruVh5kcMD/wKgpKQBAKfJP2FvUWmaTmjlr5kld9Cpu2k65Eh0dBRZwes0I5mM22/JjLr/k01QnUmduzJn8H+Zkyl25/d2EIDXbnQz1qQUobjRfqAjbIxpcOoaFm9+xjQMKHdZ6VONWiRVGwfJrZomEjN2L/aqU2eLOBQ4wfl//+//8frrr9Pc3Mz69eu58cYbefXVV7nooouQJIlrrrmGm2++mccff5wNGzZwySWX4HA4uPDCCwsZ9m5KGk/kEdOZ3MdxYh7VBLCxy2g2p6tFNFYas2xsZoXTDpyPrjrJaGl+/85bhQxx0mnyRSlWuimTQkzv7+RfVW3sQLTKYVr8E/P/m1UffMjFyT8C8Ovy07A4dewmO0uql1DssGBSghTpkUn9xqc3FiWDQkR3Ueqw5f36ZQ7j/2FJStPXP3CzKxzCSQKnpmMvqc1rPDazQtJsJFUyCdJqgdsEBHcSkiGDTEAtm1IJTkFvUXV1dfGlL32Jjo4OPB4PixYt4tlnn+WEE04A4LrrriMej3PllVfi9/tZsmQJzz//PC6Xq5Bh78Zj8+J1mAmGY4QiGQKxFN48DpwTRqBlNY0f/pSDZAfvZY6mseKTf0vnHFbPY+trUJxbeO7DVXzL2wvz/w1M4u9yrLb7wsy0Gcv1ldVGV9mK6gOR0HHJEVr9gQJGN3qZF27CLcV5XZpBfK6xInV07dEUWYqYp27lDNubeOML2d7zOeZUjoPfW4kQWF2Qxb4wfTFjlULXTXmdJD7g5OgzeJSVbNRm0B2O0lDmxBcL06U1Ek7P5sj6/HUxHiAX1aKgk0AhFu3G467LewyDAjsIyTJB3YmmOabULaqCJjj333//Ph+XJIkVK1awYsWK/AQ0Sh6LB4/djKQYdQQ7emMiwRmvdr6NJ7WJWtN03lOLmFnuHHzokHov04pm06Zv5ajo7+l7vJMSSxHMPamAAU988ZRKV8SPxx7GrOs4yo2VG6V0FkWaji4nCUY6SKsaZmXc3TXfq+aNb/G5yHNoEtzu/RyfL3PQ4GlglncWaS2NxeEi6Yfp8k7eGg9bxZvfhIdOgc9eC8ePrOv8vngD73CC/DZ+rSavgzYH1Gk9TJN8tEuldIXDQAV98RAd+jQ+0mbz39X5n5HodXu4s+9CVCXJqWkNT94j2IW/2UhwcMIU6oED47AGZyLyWD0cmHiPr5if4DT5NdELZxzTuzfRJ8v06W6qXWXYzJ905ZYkiXMXz0JLldGkV/GRxQLr/1zAaCeH5t4oRUovTpJ4NA2prNF4wF6MVTfeCFQq7XQEEgWMcuTu+8jCjzOXcKvpaMoaqrCZrBxdezSSJGFRLJSWGis6xUoX28fDTKo1/XPW3rgdYn1ZO21RfDsHyi3Mox2vPf9v7CRnWf+4htTgPKpgwvhvic2V1y7GAypcVtKaHTB2dBVSom8bKUkiqDvRVZtIcISRsZlseGUVrxSlztwqeuGMY/GODQQVGZ/uYVbp7rsrzjykFi1Zy2a9ns1WM5nNT0NKJKxj0eyLUm0y2jXYJQfYPmnnn7TPZrtehaYkJ9RWcX80xV/e6+T3+lE84pzPATVujqw5kiJL0eAxDTXzUZFImFRCXc2FC3ZAcpeC1+2vZO20ejoAgIoTiyn/LykmZ5kxrkFK0RMNk8poqOk+aiUfc2yFSZor3LbBcQ3toUBBYhgQnnMiq82Hs02dgUWxUOnOf51UoYgEJ0uKXcY91jKlgx0TdEfIpKdphPxb0ZHo04qZW777jo9qj52l0+bSoVbRgYsWUrD5mT2cTBiu7b4o5YoxydhuH7qjZee8b/OEupSdsmvi7KRKx/nT6i0kMyom14ccUOOkwVvPASUHDDms0l1BSHLRq8iY+rYUfuhmd39/sTN+AwvOztppZc1oqKfLzv0cmRsWdzk2XcdGkt54BF8kSa3SzrnKa3w38puCxFThsvI5PuJM5Q30bU8VJIYBQXcV76Sm06pOo67YjiLnf0WrUESCkyVVFcZ93mKTT6zgjFfBFkJ6igwy/kzVXos+z108DS1Zw2a9zrhNtUE0/RuLZl+UpJKhR3fjKWkc8thATxxJjk+YFRx15X/zhdfPZLF9JYqlj8XTSzmm7pjdboWU2kqJmbz0KQo16R2FHboZ7SUd7mCV3UZvQ/babGiajjKwFVopTKWJ3VuBTdNwkMIfi9IZimGX+4d/mssKElO5y0q9HmK61E06tL0gMQxoDfaSVjV01T6lCoxBJDhZU14+BwCHEqCld3JMR550uo0RDX69iIzqprGyaI+HnXhgFQ6tns16PTvMJqJbX4T4+OhIOhE1+aK8L9fwB/V4yk/8zyGPzS4zXoDMSoid/gnQ7M/fDKt+RYnUTcK5k4ayIpbP/Cxem3e3Q0tsJaStJfQpMrOl9sKObPB9zEarhXWeCl7sMIYZE+4a82nDyQwWyUhMZYt3zOcbjaLiyv6Bm0kCiSitgQAOKY6EjuLIc2flfuUuKyHVSPiSyQL+7khG8G34OzWSb0oN2RwgEpwscZc2oiGRUFQIdxJPTd7GXhNWtIcuxUYvbvRMEbPK95zg2MwKpy5spDc1jW7dw8cmjB0owqg09QaQ5CROq4ka19B31HMznVxhepKLzM/Q0jcB3hg8/0MULcV9tka2UMkxs2ZyUPlBezzUa/OiuWt5n2m8xczCDt2cfiS+c+6DhefQG/fR+td/h9vnw863x3TaQCw1OElcsZZkI9IRKyqpxKQZQ1xD8QhtwcBgDxypKL9djAdUuGwENePnkc4E93N0DvVuxfbhQ3xBeUskOMLoeeylxBUXQVmmQe6kZaLUE0wh+iEX8yPlS7yiHkKls3Sf81jOWVyHmqzhZe0Q/rPsq+jzvpDHSCePYDxNX8J4B1tqd2FRhu6y8ZTU49JTuKUY7YHxMZhwr7avhA+f5GOThUdNCykrsvHVQ09Dlvb8a9Qsm/FUHcwz6mf4h3RIwYdudqRifByxEU5meE+Ngq7C6nvGdE5/LI3Sn+BY7PmdJD7A5K7iCv6T+zMnE0rF6QwHcUgJnJqGKc9djAdUuHftZlzAxNbfTEiRCekOdE3cohJGyWP1ELOWs00qBVTR0XgcagtGSGhRkpiZvYcdVLs6dFox04oa6NAq2BhKsK6jOT9BTjLNvihlSiffNP2Di2JPgKYNPcBdg1MDBR052UIiPU5XPtUMPPsDkhL8yraQXt3N6XOPonw/07MHdupJSqSgQzfTWpq/f/AxT6/v4E9rd9JceSA9igyb/g6h9lGf1x9Lcad6Ov+XORm1+MDsBTwSkoTHbhQ4R1NxusJBYwVH17EXFybBcVlNRCTj9piix0lnClN/pfc1Ee7vgSNWcIRRsyk2AtNO41H1WFZLM8UKzji0bqcxcE7XrMyt2Pe7TUmSOOfQGWjJSnQdfv/uKtDG6YvvONbcG6XK1IYZlQotBfKnfuXICrJs1CpUKu3sHK+Fxu88CN2beN5WzErmYVfcfHPp8v0+bWZxJRZFosK8E1/36BOJMdFU/H84l4qeNzBrMsFQGe/5rbxXdxBoGVj7f6M+dSCWIiPrRLDjLfJmL+YR8tqMBCehJeiMBHGSxKFpFJUWpoOwJElIRfWYdR0TKtFoZ0HiiPq3oSER0otAs1JfYi9IHIUiEpwskSSJOo/xoikpMdHsb7zp3UbZixdxvPwOuurca4Hxrs48tA4tWUOxFMax7S5SD52Sh0Anl+09UcpMxi93h2PPM4HMZmMVpFTpHr9TxdveYadJ4WHzIpJYOGvucoqs1v0+rdReymmmt7jO+iCHBF8uzNDNviZ8rW8wT9tGOuNFjU3nnR19fFS9iKAswdsPQnp0P/feSAIkY8BlmXP//0/lykXJf3COspIZcgstfj9r9Lk8kzkaT+28gsXkdruRNRMxLPj9OwsSQ8jfBEBU9VDitOGy5b/TdCGJBCeLZhQbBZSyEp3Uw/UmpO5NqMk2yqUgeqaI2RX7nwtU67VzxPRZpDIeKvV2tnW+A32F3fI50TT3RnErxiTjgenhn2Z31gDgNvWO263ikVPu5HLHWWzQGpBS9Vz+2cOG9bwSWwlpi7FVfKa0szAtJLo24FMUenUXqupGV13EY8WsiZTwQUk9xPvggz+N6tTpvi0sV95mifwhZc7C9MEBaFTbqJN6cckhwqkIm7QZvGg5DdldWbCYKlxWbkv9O/dmTqWVwiR/gbCRWIUyZVOu/gZEgpNVtTYrXza9wK9tt9LWOw5aswuf6P6QPkU2dlCpRcyuGN4vnHMX1xNKzKJVrxA9cUZhuy+C3RQAoLpmzzUa3mKjh5RT8Y/bZn+/evNZPtaKUDU7J8383LC7wXqtXnCUkZIk6uQ2thWi0LhrIz5Fwad70DNGYq/Gp/Nea4j36w4lLknw3u9GdWo12MwBUgsL2Emps3AdcuX+HVw2KYlkMlbPB6aMF0qFy4raP66hIN2M1QzhqFG436uWT7n6GxAJTlZ5XbW4iBFXNORAC2lV2/+ThPzo3kSfrNCruym1leCxD2+p9sQDq7BptXys1dNhMtH3wZ+g0B1pJwhd12nu7cMthZHQKa1auMfjKuoX06xX0iQVj68mmboOb/6Krp5NPLn5XwBkIvP46mcb9/PETyiygsc7A4BSc2dBtorrXRvpVRR8eNAzRXxmRgl6uoRU0smqeC0bP3sVXDy6xD0d7wEgo1spLuCAYdlehkU35lE55CC1ko951sLONqtw29D7xzV0RQqzVXz9wqt4STsYv1rOtClWfwMiwckqj9VLVHETlGWm0U57YJzWE0xBkc5NRGWZXt3N7LLhL1s7LCa+sLCBrckFZJDZHNkBXRtzGOnk0RtNkcz04ZaiuDUNpXzuHo+rW3QK/9COZq3eSEsge0Mgx+zDJ1Bf+BEv/vFMgtEYWrKKxdVzWFTnHdFp6qr6RziYonR05r/QONizgbQk0asVI+tObv/iQdjNJmMVpyPOG+56MpbR3V5Sk8bfl6pZ8ToLV98hDc6jSlIv9XCu8hqX+ce2BX6syl1WlupbOFN5Hev2f+Q/AMXEZrmC9dpMdNUpVnCEsfFYPaQsXqKyxHSpXdThjBeZFIFgMwB9mQrmVoysIdk5i+uJJmbSrFfyscWCJiaMD0uzL4pD8bNdr0ZXKqFoz4ml1WzG3T+kcmeoN58h7l06Ds/9kHVWK2sss8lodjKRuXzlqD3XEe3LnOoGQtjpVRQyXR/lINh9SIbxhY2kypepZna5m7piB5d+1tghmMlYWbmljc3+zcaKVSY5otMPDNpMa3Zc++grlWsmVxk2XcNOEqeUQEZHsu97C3+ulbusVOhxpks9EGkuSAwdYSMB1TWbqMERxsZusqPYS9GRqDG1iaGb40XfNgKyThITAbV82PU3Aw6fUUxt0TS2ZhqIyjJNG/8qblMNw3ZflLAi8U/1SLbMvxGkvQ/5K7V7sZIik+4lGE/nMcq9WHUX/vBO3vKU8WKkgUx0DjVuNyceOPKi1eqickKSmz5FxhbYmt+hm8E2umxuItiIZMo5oMaY5P6No2fhtllQY9PZ1BFi5buPot+7DJ7/0YhOL/V36dXkot1mceWTzV2BTeu/RdXfxVh3FqYHzoAKl5WAaryZSqXzX5OZ3vIi9sB7eKXIlOyBAyLBySpJkvD2TxUvVbpoEVvFx4dEiG32Gnp0D7rqonGECY7RE2caWxKHskMv5x8lRxn9Q4R9avJFkRQjyZ9Vuu+ZQBfH/s4Vpn+y2LS+8IXGwZ3or9/Oqw47mxyHkUxVoSWr+PLSGZiUkf/KLLYV02WbydMsYG2yLr9DNyvm8exBP+F3mePRM24OqDYSHI/DzGXLZqElatA1M2+1ttPk2wjv/R7igWGfXtaMF25dKWxBr6PYGNegA86BLsaewu2gAmNcg3+wm3Ek79PkI+89xCHRVczWuzBJFqo9ogZHGKOKMmNHiMfkE7eoxotpS/iN+9/5i7oMPeOkcS9TxPflrENrSSSm87h6NI9FvETVAk6GniCafVGsSgCAeRX77hzttBjvdL0mX+Gb/b3wYzbKKm0l03mlr5JMZB52s4nzD582qtN5rB4i3gW8qR/ARqk67yMbtvd1ksSCnnExvz/BAfjKUTMoK3Kgxuv4V5+LtSXTIB01kpxhSGZUTPQP2jQVZpL4AOesI/hm6ns8ph6LkwQOXcfqrSloTKVOC336Lt2M8/w7IxhsASCqFlNX7ECRC7fCVigiwcmyutoD6MbLO1I9rb4JMDxwCtB1nc6I0YvFaymhxDny3R71JQ6WTJ+GnvHgjyV5avO72Q5z0tnuC3Om5SWuND3BvPCH+zzW4a4HwKX0FbbZ345/Ed74N/5lt7HZdQTx0CzQ7Jy9uBaPY3RFtLIkU+s2emRJpmheRzbE0jHawwFAQs84mV/9SXLvsJj45rGzURP1gMxLSiOdigJr/ndYXbuDsTT3aKfwf5mTaXUvydmfYTicVjMmydimbtyi0igqK0wX4wGyLKE5q7EMdjMe+/T2kQiG2wAIqKVTsv4GRIKTdcWeOp6xnMS9+udp9ifzviwp7K4zFCSajgMSs8v2fatkX85ZXI+aqMFGivfW3oc+xknMk5mm6ezw+/BIYZx6Gpenfp/Hl5QZW69tSqigKzh6+VxWLjqVVO2hvNVRhpYwXiQvWTry4uJdzSyppIg4B5vfZ0enLxuh7p+u0/PA5zks/DIOVaLKXURp0dDuyxcumUaNy4OaqOaNUCVvF5VAoAU2P73f0/tjadL9YxocjsIM2hwgSRJuq/Eibtyi0nGVFXYFB4xuxopmFF+H/c35u3AiSCRtrBT2qhVTsv4GRIKTdR6rB4/DjKTEiKdVesIj25UgZFk6QeqeRZyvvIxZNdFY4R31qU5eUIVNr+Gz0ibqQ6/SvvrX2YtzkukMJTDr3ThJ4tE0pLLZ+zy+rm4BADYlwg5/4VY+tyR9tDQsZbv3s/R0zQYkls0ZeWH6p80tr+YC08tcaf0jyY59r2ZlTaiN3r5tTKOTRKZksMB4V1aTwjXHz0GLTyODwvOWRgKyDKt/s9/T+2MpJMkoCC+2F66L8YBv6X/jHGUlH2rTeIbjMZVML3RIVLhspFUHMSx0+fM4j8q/g7AsE8NCTC0WCY6QHR6rB4/NjKzEcRIVO6kKzfcxAT2OR4qRzBSPuMB4V06riZMPnMb2hNGw7sPmlyFd2GZi41WzL0qNyWgTb5WcYN133VNl/UKsukYRcTr6OvIR4m7imThvtL0BwObmcnTV+LfylaNmjPncs0ur8OOiT1Ew9W4e8/mGpWsjPkXGr7tIZ4oHC4w/7axDa2korkRLlfNGfBrv2uyw4w3oXL/P0wcjMf7NvJKj5Q8otSq5+BOMyAFqE3VSL816Fa8VnQu2wtYFgbGT6r/SX+LezKm0WPK4q8vfTEiWCelTc4r4AJHgZJnD5GBOZhvfNP2dH1gfpDmP99uFPej+kL7+OTy6WjSqAuNdnbO4jo8ThxPGTrOikv742SwFOrls90UpU4xExWrdd4ExgFxUhk0zIQF6JM9bqQHUNG898XUSO1aRTFjZsN245TKr3MnnGsfeT6XEVkLM5MWvyHhj2/MzdLN/BpUPN1qmaEiB8a5Misy1y+egxqYTwc6fnIcRPfdBqDhgn6ePBnuZKzexWN5KibPwyQSKEYOdFOVFhd3VNaDCZUVTjdqgznAgb9fV+5oIyTJBnKDZRQ2OkB2SJFHqLMOERqmpixaxglNY3Zvo6+9grGeKxrSCA7CkoYQqZy07MtNJSRIfrhvejpOpptkXxWs22vh73MPYfSRJdJoX8L7WQFhP5XcrNUDPR+xofhWaVvJxcx0Dvxq/clQDchZ2n7gtbnRrGRoS1Up+hm6mOzcQVOTBGVR7ukU14JQF1cwrN4roX47P5MGgDeR9r8rEg51kJIkEZspc3ixHP3KKpRiA2fJO5hd4TMOAcpcVXTOSi/ZwT96umzjwDF5yHMd72mx01ca0UpHgCFlSUTYTAI/iY4dYwSkofWAFBzdOk4dyl3X/T9oHWZY4Z3E9m2PGNOmtnWsgIQarflqTL4pT8QNQUTV/WM/ZXHMhr2iH0C3b8z5VPN7+LlFZRnWU89IGI7ly20ycdWhtVs4vSRLOIqMmpMTUkZehm709G9GR8KulOMwOpu/jXbwsS1x34jzUmBHjH9atIpFO7bOhZTxi1JQkdUtBJ4kPUGxlHJJIcH5yO+f3FHZMw4Byl405mSBnKm/g2v4Q6jB2p2VD2Grn43QFHWo1XocNt61wYzQKSSQ4OVBfZyztqkqSvt48FpYJuwn2fEhakujTvDSWV2al2+rZh9ayLXEofr2ITgUCG/6ShUgnl+2+ADskL81UUdtwxLCeU+82bgtJSjzvzf587e8AENPLSGWMX4sXLJmGw5K98QNl5fMAsJkCNHX5s3bePcok8QV3ANCTrmN+tXu/K1HHzC3nkOo56KqDUCzAc499G35z9F7HNyT7J1WrupUS59jeOGSD5CzlyESSIxJJdOfod0tmU4XbSlp1MYdOnIlWfJH8zCLrjQWIJNNTuv4GRIKTE2XuKiI4CMoySt+2QoczdSUjBPp/ofRmKmks3/sS/UhML3XymWm1tCdnoyHxr+Y1WTnvZJFRNVqDvbynNfKm9SRssz8/rOfNKCnHSpoSpZud/vz2wvH1bAJgi99oOKjIEv9+5IysXmNm9TySmAmYZCJtOZ5JFeul1TuTMHb8maq9FhjvSpIkrjtxPmp8Gioy7d0voXWthw1/2+PxmYQxNyyjWSkeZY+gbGqY9smt0Nr6sW3rz5YKl5Vteh3OtAVFV+lsfi33F9VUut+8m7m0oGjWKVt/AyLByQmPxUNUcRFSZMpTreNjts5UlAyzufxwOvRiomoZjZVjq7/Z1TmL63gzdjz3ZU7ht2oDmq5l7dwT3U5/HE02bs1WFg1/sOlB6e1cYXqSM8wv5XfMia7jC2wHoClm9L056cAqar3ZbW1/YFUtq7QDeICj+SBoy+q5d+Ou4fnpX+b+zMnGiIZ91N/sasnMUpbWL0TVbLzBLLaZzbD613u8VaWnjFWotGbD6xh588xscxZ/UsxuLyl8Dxyg/5a4hC9t9IHq3Lkq9xcNtaN/9CdOUN5BFSs4QrYNTBUPyTLTpfa8FBQKe+Cu5h8V5/OYeix6pmjMvUx2dcqiapL6LOJ6ERs6u9ke2JG1c090Tb1RnEovdpLUuobfAG7atAVI6BTJUVr8eWqGBxBooUdLoiLTmjbq57KxNfzTql1lbLfMY51Uy7pecrpTTNM1dgSMzrmauvcdVHty3YkHoiXqWa81sNbmQO/8AFr+tfuBaSPBUXFiMY2Dl5IFZ0Pd4cbne5lcn29Wk4LHbqYpNReAzp4Nud8h6G8mpBhbxDXVKRIcIbuKzEVknHVs1mvZRBU7+kShcaG0Bo06AV0d3QyqvSmymjhpQS1qoppkWuXxd1/K2rknuqaeKIeb3+My01N8oefPw36ep2oWDhVMaEQCTTmMcKh010aCikyv7iKV8bKw1sPi6cVZv47T7KTU4QB0IulQTneKBeK9dIVjoJuQNQdzR/Bvf1Gdl+NmLCah23ldmkGbSTFWcT7lEY7h/zIn85b5qGyGPnqyApH+cQhF+29NkC9Vbhvvpw5GRicSbCUc78vtBf3NhGWJIA5Rg1PoACYjSZKwVB/B0+oRPCstFEM3C0SL9dIZMeoE7LKHGk92bwucs7gOOVHBOcprFK3/D+K9W7N6/omquTeKWzF+7qXu4e9CkhQzYKyyKfHtqFp+euH01h/Kx41f47nMUaBbOeGA7BSjf5okSdQVFVMr+TjW/GZOh2723Ps5Too/RbGqMbPchd0yskZ81524EC1Zw3v6bN6zWtE/egr8n6xS6rpOIJUmgh3ZWpbt8EdH1yE8kOCMjyJjgANr3WzVp2HPmJG0DB3Nr+T0etpADxzdia6JBEfIgene/uF6Spwd+awnEAYFf3MUF2T+QhlhZpWVZ/1F68iZpZQXVePNSOjA+2vuy+r5J6rtvgh2k3H7orpm383iPk1WjJqdErmTjmB+Co19cR8dUWO3EcDCutw1rZvjsHKu8hqXWv9CU3cwNxeJ9NCb6KOEEOFM+bAKjD+tsdLFyY1H0Kd7eMNUQ68ErLl38PFwMoNG/3Z66zh5AdVUo3uxpIybW1QAn5lRAkh0phsI2mvpSuR2BSfi34aOREgvQsFGdZbf2E0kIsHJkYbSciR0SpUu2n053hIq7C4ewB/vwUaacKac2RXZ72wqyxJnHVpHc/wgADZue0EMVwWaevtwSREkdKpqF43ouSar0c7eY/Llbap4T6yHrnACPWP8G1lYm7sEp67mQNIohEzQt/Pj3FykeyO9JpmA7iSRKR12gfGnXXfCIUjpSt7V5nCP9TACc84dfCwQTXOa6TWOlj+gzlTA6e+7Ukxw0Z/gG6+Aefy8qB/eYCTt/xu/iFesx9HhyG3X52B/PWBULabW68CkTN2X+an7J8+xmqJSLjK9zArbbyjufa/Q4Uw9PR/RqyiEsRPPlNCYgwQH4OzFdayKH4OkSyQzPrp3vpWT60wUibSKL9KFW4ri1jRM/b1fhsvuMrb6FimB/DT7i/Xhe+UmZofXomecVHtslBXlrqfLgVW1+PUi+hQFtSs3W8X1TmNEQy9GB+ORFBjvqr7EwWlzl7JDr+R3ygLuWJ8ZfMwfS3Go8iGL5a2Um8ZRUl9zCFQfVOgohphZ5qTUaUFLe+kIxPHFe0mquRvCHAobM+CCaumUvj0FBU5wbrnlFg4//HBcLhcVFRWcccYZbN48dBCdruusWLGCmpoa7HY7xxxzDBs3bixQxMPntrpJKkUEZRlPbAeJdH46WAr9uj8cHNGgqWMf0bA3DWVOZk2bTTxpbEtds+bBnFxnomjpi1GltCIDTs084loIZ81n+EBrYD1VeemFo3a8T59/GzP1nWgZT05XbwDmlFXhl9yEZQlTIDdDN6Nd64lLMr26Bz3jHNUtqgHXHf8ZFK0U0Hl0w5uDtw390SSKbLxI28dJU73xSpIkDptRDLqVRNJKr7+PLl/u+iBtOmIFj6tH0aVWT+keOFDgBGflypV885vfZPXq1bzwwgtkMhmWL19ONPpJzcptt93G7bffzt13383atWupqqrihBNOIBwOFzDy/TO2insIKTIzpI68d2ad8gaHbLrRM86s9sD5tHMW17ElcQgALe1rp/RtqiZflErFaK6omMtghHVPVXOP52XtEDZJNbT05n4Ehr9tLSoSfr0YNHvOExynxYmqlKEj4UjnZuhmT4/xBtCfKafc5RjTeJIKt40z5i8FoNz8ATse/BJseZFoqI9U/1+twzV+diyNV4fPMG5Tnau9R9kH99L5/u9ydq2taTM79ErSqkus4BTy4s8++yyXXHIJBx54IAcddBAPPvggLS0tvPOO0TZd13XuvPNObrzxRs466ywWLFjAww8/TCwW45FHHtnjOZPJJKFQaMhHIRSZi8BWioZEldIudlLlWaZ7IwFFphc3FslNXXHu/kf/wqJq1mWWoqAjqT58vty8M58ImnxRuhUr72mz0Cs/O+Lnzyzzgm50xd0RyH0vnN6uDwAIp8sBKacFxgMsdqPpW7GpM/s9sjQVX6AZgJ50/ZhWbwZ8/9jPYpXczFWascZXEn/tl8QCXSRkiRQKJZ7hN3Ocqj7TX4cTThvJYEdn7soW2kJGEfNU3yIO46wGJxg0dhWUlBj/GJqamujs7GT58uWDx1itVpYtW8aqVXvuCHnLLbfg8XgGP+rr63Mf+B7IkozLZezKKFW62CFWcPIq4NuMjkSfWszM0lKULEyE3hu3zcyiufP4KLmI57XFvLqzOWfXGu+afVHaZCcrtYNwLP7GiJ/vtJrwKlbKpCCB4M4cRDhUT59R6NudMbaz53oFB8BVPAeAIlMv27qz/AYsGWZb+cF06l66M7WjLjDeVUmRlTPmH8X7+izWWW1YWl/D0fUWGhIJrJQ5c7c6OlkcUO3GaVH4MLUQgK5AE9peZnyNydYXcXe8QI3km/JbxGEcJTi6rnPttdfy2c9+lgULFgDQ2WkMqqysHLrlr7KycvCxT7vhhhsIBoODH62trbkNfB/KymcD4DAFaOsJFCyOKUfN0DTjeHboFfRmqpmTxQZ/e3PcvAr+ET+NTdp0XtqxPefXG6+2+cJIilGncWBV9ajOcYX+LBcrL1Gbei8nt3AGpRODww9bUzOp9dopzWGB8YCaqgN5STuEW/V/y34vHLuXl4uP51H1OLSMOysrOADfPXYZaaWcD6RatljMHNhstERI6RbKnFP7RXQ4TIrModOL2ZZpRNXMZLQMvuZXs36d9EdPUxd7mxlSp1jBYRwlOFdddRUffPABf/zjH3d77NP9S3Rd32tPE6vVitvtHvJRKNOqZpFCIaJIRLun7ote3ikmVlX/G4+rnyWhFjO7PPfvMI+ZW4GWMnofbexqIZ4ZJ1tn86y5r4cKqQ+vWaKqyDuqc0hm4+dYrPTQlsNCY717Ez5ZIo6FnkwdC2rz87tifpUxBqFJcbPNl8jquVNqip0h49beWHZQfZrXbuPsA5fynjabdVYrTj4ZtFniLPwcqong8Bkl6CiDt6k6m17N+jVCfuN1JqK5cVvteMbBENRCGhcJztVXX80TTzzBK6+8Ql1d3eD3q6r6/yF8arWmu7t7t1Wd8Wiat4xNzOSv+mE0B8Uwxnza2tsBgJ4pymmB8YBKt40DqyopUTVqouvZsPGZnF9zvIkkMyTi7VyovML3Mn9CSo2uwaXFYfwOcCl9tOYwwQkFW4iZ7PRqHnS1iEV13pxda1eLaow/nyQn2NKT3R5Zvb6P8IUT6JoNm8lGQ5kza+f+9tHHEjLX8ZFcwscWC+9ps3g6c9S4GLQ5EQwUGrf1zzvr6Hg769cIhloACKslTCud2qs3UOAER9d1rrrqKv72t7/x8ssv09AwdMR9Q0MDVVVVvPDCC4PfS6VSrFy5kqVLl+Y73BHzWr1ssB3Gk9IhvBt05q31/JTXu43OgHFrUledOWnytyfHzq3gbHUjy+T1bFg3/BlMk0WzL0qtyaibseAE6+gSS5fXeAFwKIGc7j7srVnEGxUX8o/UCYDMgjzU3wB47Q5qLRIHys3U9z2V1V133Y9dxEXpv1KXiTOvyp3V2jOPzcFZC47gPW02G6wWZsvtRHUPbpspa9eYzA6u92JWJDan+ksw/NvQM1mcR6ZphMPGYoBfLZ/yt6egwAnON7/5TX7/+9/zyCOP4HK56OzspLOzk3jceNcmSRLXXHMNN998M48//jgbNmzgkksuweFwcOGFFxYy9GHxWD147GYkOUZa1WgPTM3bFvmW/seVHNv3AI3STky6i+l5eidz7LwKNicOBiAQ3IiqTa3eR02+KOX9W8Qt1tH3RimtMJoDmpUILX05nNcU76E7nCSZMd5Z56PAeMAiS4wT5Hc5Vno5e0M3EyF6Ez2YUenLVGelwPjTrjzyWLpss2jTi3lfm0mRyZKTuV2Tkd2isKDWw7bUXN7XZtI3aznhVBaLzMMdhCXVaHuglk/5HjhQ4ATnnnvuIRgMcswxx1BdXT348dhjjw0ec91113HNNddw5ZVXcthhh9HW1sbzzz+Py5Wfd+Vj4bK48NotOKQY85SPaRE7qXJP1+nt36Yd1EpoKC3GnKdW5QfXe/lIORKLpmPVAuxsy/4S9HjW5IviMRn1H07X9FGfp3baIiR0nFKM1t6ebIW3m+5YDz3hJFrGTa3XntdaEoe7EYAik4/t3Vnq6dX9Ib7+7t3hTGXWCox3VWL3cPqCz/Coehxva3OxWgtX4zgRfWZGCTpmXk4to8XcQGcyi3Op/M2EZJmw7kBVHWIFh3Fwi2pPH5dccsngMZIksWLFCjo6OkgkEqxcuXJwl9V4J0sys0wJvmF6mltsd9Eshm7mXrgTfyaCBvRmqnI2omFPFFli8dxZpNPG6sXb7/wlb9ceD5p9URwm4xd22QhHNOyqurYBuyojA7FAjuY19W6j57nrOZ7V6BkXi/LQ/2ZXZZUL0ICkKU17e0tWzql2radP6e/enSnKWoHxp33tsOOo8doBWFgzTiaJTxADdTha2kN7IEFndM+7gUelP8EJ4hQ7qPqNiyLjyaysdBYAFiVMR3fuG5dNed2b8CsKAb2IVMbLrByNaNib4+ZV0JIwJmjv7Fid12sX2jZfAKdsrEbUTxv9PCCLWWEDh/C6toCmSG5u68ba3iGRCuMlip4pylv9zYC5VdMJ6k76FJlIa3ZGz/g716Eh4de8SLqdeVW5Se7LnWVcffQRXPCZaVx+9IE5ucZkddiM4v/f3n3Hx1WeiR7/nTO9adRGzaqWbbkbV7AptsEYHEJo2TibhMCm7JIANyybTSN3IdkEstxNbrIXWFIggQSykISSUAImgI0xxoAt417Vu0bSaEZlZs457/1jJGG5ympT/H4/H32wZuac8+pwNHrmPc/7PACIaBr9nfU0f/gk6NFx2beYewPPZf4dm4z5sgbOABngTLDinBJ6sRFQTYRbDsV7OKmvbT9+NVbBWOiuCetBdSqXTPdRGVmGgkAJ1xMItUzq8eOpprOFdCWE0zBIyx/bH749aev4wJhBQzS2Omu8+Zti1dKDWiZgnvQZnPkFU+ggjT5FJdo+PgFOe+teALqiuZRluXHZJi7592Pla/m72WuZnT1rwo6RitKdVipyPQgtnZX9r+M/+CKRcbqV3YdBfdSGX3hRDfvQLNu5TAY4E6wsM5su4abbpKJ2Hon3cFJf695jelBNzhLxY2W4rDinLMIZtQOCD/ZtOOM2qaCzJ0JvtIu3jTnUW+ZD+uhzcADy3bFPuoqpb0JWUrW17QagS4uVophbMLkBTlG6h34j9jPSMw4ffISgrasKgFatkFkTkGB8LIfZwdzsuVjUc7vOymgsLctAGA46tBwECi1Hxuc9ojvSTaA3ijBsFKS7Jy33MJHJMzDBMh0Z9JjSCKgqrmD1Od2IcTL0t+6jZ6CLuGK4x7UOyEitnpnDr3s/y8Pa1bzSMY7LQBNYlb8H3RSm0phGVe6nwDS22YOSNA9ZSoBiU82EdBVvGyiI1hwtpijTQcYkF6tTFAXFGmsPYTPqxl6xWY+wJ/dCDokCmqIlE5JgLI2PwTyc1mgxAE3143Mr2//q3Sww9mLXFXl7aoAMcCaY1+olYk0noKpMEQ3jtyRUOin/vE/yoZhKq55HaaYXm9k06WNYVZFDdXgOGiYqm6qI6Kn//7yqrQfFFJtpKcnwjXl/S4x6bjT9jSusb43/DE6ojfZoNwKoiZZP6vLwY0W8i/mTfhE/Fh8bc9NNYbKy2T6HF/ULiGoZMsBJYIMBzpFI7PZec/s+0Md4GzbSQ//+Z1mh7gWZYDxEBjgTzGP1IOyZaIpCgdpEbYdcSTWR9uecz+v6eXRqeUyb5PybQXMK0shxZSB0F3WdIQ53VMVlHJOp2t9DgbmWHKWTGelj/+OaUxDL4bGpPVT7u8a8v2NFG7fTrap0CTc9mo95U9LHdf8jle+bQZ3IodsER8bYkyoYDdIcDAIqQndNSA0caXwUpDuYku6gKjKDfiy0oGE0jrG7eGcN3SaVfiz0GhmyBs4AGeBMMJNqwu4t5QNjOo+Ji6kZ4yc16fT2tjYAIHR33AIcRVFYXZHDRVoj69nAjjf/Ky7jmExH2kJcZHmPz5jeYEn3B2Pe35SS2dgMgRUdv398+7j5o910WXz4jWwQ1rjN4FT4Yvk/qrmHw61jC3DaazbT192J0FxkuezkeCa+aag0esvKMjF0Dy2Gj6ii4D/62th2OLhEXLgQul3O4AyQAc4k8GWV85Yxj1fVuVTLAGfitOyhtf4DLGgIzTXpCcbHWj3TR07EhE/ppqn1AwyR2r3IjrZ34FGCKAiKSheOeX+5mV6EEVsFEg2Mby2ctpyZ/NW6lj+HrwAmt4LxseblFVCktLPCtANRPbZE09ZXv8tnxYvMMvzMLkiT1YUTXOw2lUp7pAiA5rp3xrbDYTVwZJG/QTLAmQSlGbFiWIraS60s9jdhxOafUVb3CAvVwwjdPalF/o534bRs3tfOxyoEtmgzLSm8gk4IQVOgkTSllzTDwJYz+iJ/g0yqgk567JvemnFNzm/paaMtFEZobooznXHruDwtx8tso4Vl6kFcHZtGv6NoPx19sYJxjRGZYJwMlpXFVtDtjJzHZvcVNK34pzHtT++oIqQqsRkcWQNniAxwJkF5Vg52IpSbjxBplbVwJkpf+z76ldgKKnQX5b74zeB47BZyS+dhj7gwYbBjx7NxG8tEaw2GyTBqUQCHYQH36PtQDWOOJSu7lVY6e8enGBq6xr7mKjRdIDQP8ya5/s2xHFYTupoPgDlaO/ogbqD2Ux9W/HqBzL9JAuU+N5kuK/5oMbt60mjq9Y9pf6HOowgUgsKNx+IkPU5Be6KRAc4k8LkyuNiyjy/ZnmFp50vxHk5qMnT8HYcB6NBzKMxw47BO/gqqY106M4fG8AwADldtjOtYJlJVew855ljuk8mcDeN0e8TkKATAbeoYt5VUeuN2zFu/zw2mTRiaJ263pwaZXLHO6Q61HX/P6Fbb9TfvJKiqtIs0hOaZsBYN0vhRFIUlJRmIaBrhqEFNl59gZPQ9yboDNQAE9QyKMl3yFuUAGeBMgnRb+tBS8VytjmD/OH0alT7SWU0HGhoqHdH8uN6eGrSqIoed4aUoCKI9hwmGx7FzcAKpau8h09wKgN1ZOG77FTkXsNmYw1ZlKnWd4xPgdNa/i0CgGiYwHMyPc4Djzor11VPMIaoaRlf12t9UCUBIz8RqsjE1DrWfpLMXy8Mxk6UZcOhVmv/6jVHv6/Da/+Ix/XLqtWJ5e+oYMsCZBINLxaOKQr7aIldSTYTWfXSYTHQID4buidsKqmOV+1w0py0lQ1NwiD72H3w13kOaENXtPbhNsSn29Mzycduvt/hC3jcqqFbTxy13rb1lJwAhzQcozIlzgFOSN50ebHSqJvzVu0e1j9a2WKuHrmguM/M8mGUF26SwtCxWD8eh2cgO7KHp8F9HXQ/naCBIp/DQr6dRnCUDnEHyN2ESmFUzTk+sammmqZVa/9iWhEon0bqPDlWlfaAHVSIEOIqicNHMQur6Z7FXFPNWQ028hzQhjrQFeU8pYZMxD9/Mj43bfqf5sgEFMKjq7BiXfba1H4j9NzqF0iwnXkd8cxXm5OUREB6iikLXwEzM2WrtrAZiVZllgnHymFOQhsNioiYygzAWmkUEmj8c1b5qumIfMIThkDVwjiEDnEmSlTkVHYU+s4G/cXzrekggBrqIdwz2oEqAAAdg1cwcHur7Aq/qS3i7I0R0nDoHJ5KjHW00kclOMZviWavHbb8lmS6yjAhTlSY62sdhFZqh0xasBaBeK5v0DuInMy0njV4ttqKmbzTL4Q2D9/PX8L4xnXqtVCYYJxGLSWVRSTq6lkG9yMJvUolUjWI13ZHXyTzyOyqUOlnF+DgywJkkJRk+uoSbgKoSaRnfuh4ShJbczLu2xdQY+QjdmRAzOADLp2ZhUz0I3cFRf5C6YF28hzSudEPQEGgHINOePq63RzJdVm5UNvMJ0zs4uivHvD/RfpgODKKYqI+WTnoH8ZPJS7OzzVjOo/qVPGJceNbbaxjsIJfNxjz6tGyZYJxklpZmgmGnVcuPNd6sGcVihNp3Sev9kEKlDSEDnGFkgDNJpmXl0kUswFE6UrcmSrz4M0vYGi2nVS8g3+vEY0+MZZJ2i4kV5T5EJAtnpJ2tu1Kru3hjVx9epZHpSj2z7GNsGHkcRVEQahYA5kg9hjG2WjjdDduIKAodhhdD9yTEDI6iKNg95XQLJy29HWfddLOzv5PWYB8ICxg2ZubFP7leGrllA32p6qOx1XTNzZVgnN01EOk4Sr8SK/KHiLWBkGJkgDNJCryZHFTKeJyL2dA39kJo0nBHO1sIR3WEFr8WDaeyusLHjfp2Pmt6nYZ9f0ipjvJV7T1UmA9wlWkbn+gZ/yRqxRprZ+BS/bQE+8e0r3arnWpzKY1aMaAmRIADUJI+UDfIFDrrpputB17GFqrHqtkoyXIlTGAvjcx5xemYVYW6yAwiWGgW/Wedh9PdFet1FzS8FKR5sJrln/VB8kxMEq/VS5ezlG1KKVuDmWf9SU06jZY9NOx6nnQlFGvRkABLxI+1qiKHXeGFWITA3FdDe8/olgMnoqr2HtLNbQA43MXjvn+LqwQAl6mT+s6+Me2rOb2Qv0QW83rkYsqyXaQlSDAwIzufRepBrra+RsORs/vj1vzug1ynbGK23i4TjJOQ02pmzhQvejSWh9PkzMYItZ3VPgLdsdve3VomRZly9uZYMsCZJGm2tNiKDSWKIDrmN2vpGHufx3bwMZYoB+LaZPNUijKdBLMXkxlVsYkwe/e9HO8hjZuq9h5c5k4AMrNmjPv+PRnTALCagmMu9re7uR7dGKhgnCCzNwCzcnKpoJFpagMdte+OfENdo6unCYglTcsAJzktK81A6C5e0lawf9qNdBQtGvnGkV6C/bEVhh26T+bfHEcGOJPEolrwOdPIUzr4mOUNals74z2klGG07KXTpOInDUNzx7XJ5qmsnJVPezhWI2bXgdSph3OkvQuHGitgWFi0YNz3n10QK4RnU3upaR/D70w4RFXdhygkXoBTnuOmf2AlVahj74i3E/7DdKqCCKbYEnG5giopDTbejESzaOzqoynUNPKNu2oJqir9WOjVM2SAcxwZ4EyigrRMrjNt5mv2J+lskD2pxkt3+z50FDqMdDDsTItjD6pTWV2Rw57+WJftYNc+eqOpUeyxpqOFDCWE0zDIKZk/7vsvmDIDs6FgQuBv3Tfq/fRWvUlx9WP8vekNhOaOaw+q403NdhPQYn23tL7qEW/X3fgeEUWh0/Bi6G65gipJLR1INBZaOg1dfTSHGiE6wnyz7vpYF3HhlDVwTkIGOJOoON1Hl3ARUFXCzefWUvH6zl521E7ArFW0n46Be9B+LZ9st4MMl3X8jzNGS0oz2Gk+H5+m49U6qGp8P95DGrOIZhANHcGMgdsAJb1k3I9RlO1mk7aMl/RlHAqNvoZQe+N7APTrXsDMnASa7XBYTUQtsXNn0ptHnITe3hyrytyrZZLutJHvtU/YGKWJk+GyMj3HjRH1UhqqpOmFW+H9R0a28bQ1/E/h1/iLvkIuET8JGeBMovKsHLrwEFBV1M5zZ6l4Y1cfV/3XZq57aAuPbK4a3537D+FXoR8L3ZovYQr8Hc9iUpkzoxwtEvukvn3nn+M8orGr7egl19QIgKpmgMk87sfw2C3sUpdxUBRS3TP6VVQtLbE2CF3RXKb6Em+1kdkbW1mpmgL4gyOb3WtqibVo6NTymJ2fJhssJrGlZZmIqBdNmAjpEUIjbM4rhKC5r4cQDhngnIQMcCZRaYaPAB4CJhVXqDrew5k0j22ppltvxOQ8wo9f3UdL99iW+w4z0KLBL9IwdE9C5t8MWlWRw3N91/BH/WJei6SjGaPrO5Moqtt7qFLT+It+AQ25103YcXzOWH5KR18XUd0Y1T5a/bFO8y1acULl3wzy5cwliomQCeqOjKwnVftAB2nZoiH5LRtovNmkxVYiNjVuG1E9nD6tj0B/P6DgMrvITMDZ63iSAc4kSrd7iVi9BFQVX7gOfYyFy5JBb0TjyfcOY/HswuQ8Stiyn/94ef/4HWCgyaZfpCG0xOhBdSqrKny8G11KnV7IYX/w7JIJE1BVew+9JsERUYC1bN2EHWeqy0KZ0sRM8z4au0ax+jAcpCsS69VTHZmWkAHO9JwcgoYHDZXahj0j2mZz7sd4zVhIdXSaTDBOcktKY0F8Q2QqUcVCs94HLWcOdLv+cjtLwu/iNTSKMt1yFu84MsCZRF6rF8OeSVhRyVebaB7PmYwE9aftDfQqR0GJfRoxOWp5bs8Oto9TPo625Iu85buS3aI0IZeIHyvHY2felHSMSDZtwTCVSZ6HdbQ9hGKK3U6ZmZM3YcdZamrjGtM7rDRvo67j7AOcSFMlAVUliINOLT8hA5xpOR7+FF7Hg9q1bNYLzvj63mgvByIOdhtlhHSfTDBOcoUZTgq8dnQtkwaRRZPZDNVvn34jIQgefJm5SjWqbpW3p05CBjiTyGKyYHfH3rxspiD1Tc1xHtHEMgzBo28fxOSIJQEvLYyVIzd79vJvf9425tL7AF02Owf1XFqNHDBsCVfk73irK3yURqOsVHeyd9tvkrqq8ZH2DuabDjJNaWRu1sSdd68vlp9iMYWo9QfPent/QyzBOKino2BlTgIGOFN9Lrr1bAwUqjpbz/h6f7+ftlAYoTuxqlbKE3DloHR2lpZlYkTTqTOy8ZtUomdqvBlqoRsNA+iUNXBOSgY4k8znLeBvxkJu079ETVdqVzPedKiN2tB+UDRK0nN45IZbyHHmghLlQOht/vBBzZiP0dnfSUcogtBcpDutZLsT+x70qpk5TI/2sEQ9DJ2VdIaTtx5SY2cDq9VKPqu8TZZl4gK1nClzURFYFI2Gluqz3r7RW8S7YhaHIhVMzXbhto1/MvRY5aXZsSmxwKuh+8wBTvOHf6Cg7wAZmmB6rluW508Bg403G7UCBArNDVvBOE3OWWc1QVUlKJzouoviLBngHE/+Vkyy4vRsdhllbFeLONqV3EmmZ/Krtw8Pzd58ZsEq7BYr37v070FYUMzd/GjjXwj2j37pL/4jNG/5f2RH6jF0F9NzEv8e9ILCdPbal5If1fHoAQ7VvBPvIY1KX0TH3HcUBbAbFnBlT9ixinKzQY8tgQ75z74WzodRB+/os3g/uoT5henjPLrxoSgKFWlOrjC9xyeiTxCOnv73onn3n1ij7mCm0SkTjFPEsrJYPZym6FRaLfk0z70WtNOkMXRWx2rg4EIYTlkD5yRkgDPJpmbGlgkrpl5qO3riPJqJc7g1yJa6SlAjpNvS+Nyi8wG4rHsDH8uaBUAPR/jhq2+O/iC1Wwnt/QOL1YMDTTYT+/YUgElVWFxRSm8kdqty5+4X4jyi0an295BrbgBAMWXDBAaWU9IdhPXY/9tI99Gz3n5PSyzIFlpidBA/lSmZJcxQ6kk3tVNbdZpEfMMg0Btbnl8XLZMJxilims9NutOCFs3kGe0imqZfBtbTBC2DAY5wySXipyADnElWnuXDrfRznnkXU5o2xHs4E+aRzUcwOWK3oK6fcT4Wkwl2/RFe+jo/bv13pkdidUieO/gqOxsaRneQtn10mFTahTfhE4yPtXpmDgf6zwOgrXUnfVry9SWrau8hwxy7lWJzTJnQY9ktJqJkAaBE6s9qW727kVDz+7jow9A8zE+gCsbHm5aTS6/hRqBQc/TUPaminUcJKhoaKnWyB1XKUFWFJSWZCM1Lf1Rnb2sthjj1LSq9o4oeVaEbFxh2pqTLRpvHkwHOJMtyZFBmDXCV9U0+EXw6qZNMT6WrN8Jze7ehqGEyFPiXyttgw79B8QWQfx6m/g6eif6Gebofgyh3bXhyVDVhoi176VZVOkhDaO6ELfJ3vEumZ/OOvoQsXccTbqLWn3yrqarae/CYYkuvPd6pE348YYmt0rIabfRFRp671nnwZeZ3beAadRuKsCd0MBDrSZUOQPtplgh3NLyHQKHX8KAZTmYm8M8knZ1lZRkIzQ3CTF1bKx27nz5lHk6oz49Aodtwk+tJw24xTfJoE1/cA5xNmzZx9dVXU1BQgKIoPPfcc8OeF0Jwzz33UFBQgMPhYNWqVezZM7I6EYnIa/MiHBn0KSp5ShMdoXC8hzTuntxWjWaJVSz+mrMZS18H1G2DtCnwDy9BxVXYRITf9P+F5RziYHsDD287+w7bne0HECh06JkgrAld5O9Y6U4r7sJ5uCIOzOh8uPvFeA/prB1tC2I3x5ps5uTPnfDjdWReyMv6Ul5lDvWdI+/j1dy4HYBQ1Mc0nwdXAiYYD5rqcxHUcgDoDZ660nlbU2XsNVoWhRlOvI7Eqsosjd6SgcabaB5mVP+O5r/cDq0n/3vXeMX9PKh9gsP6NIozXZM70CQR9wCnp6eHBQsW8MADD5z0+fvvv5+f/OQnPPDAA7z33nvk5eVx+eWXEwye/XLRRGA1WbG58hGAMIVpaKyL95DGlaYbPPbeOyimPtxC54b212NPrPpWLE/D6oL1v4ULbsUjBN/v38oa9QN+t30j+9rPYiajP0BHXwsA7VoBbpuZvLTk6cWzelYudeFZdONgZ2sV+giqliaSI/420pUgZiEoLls44cdz5pzHAVFEu2qn7iwCnMaBdgbtWkFC1r851tRsN23RWG6WFjl1EciGgaajndG8hJ6Rks7e3AIvdouKHs2gmSyazSao3nzS1x5uayOKmajulvk3pxD3AGfdunX84Ac/4Prrrz/hOSEEP/3pT7nrrru4/vrrmTt3Lo899hi9vb08+eSTcRjt+MhJ89EtnARUla660XdITkQv726iwzgAwC22Jmx6GIqXQ9nKj16kmuDKexHr/g+FmsGNkQOk9dXz0y3PEQgHRnag1v10mEwEcdCrZTEtCVZQHWt1RQ4/67+JRyOfYFs4h+be5KqJVNvZxh/1i3mDS3EWzJrw45VnxmY2UCNUtY/wGhGCrlDsA0RDtCyhOoifjMNqImyfPvBdB+IUtyb8gWoAmqIlMsE4xVjNKguLMjCi6dTogwX/Th7gVHW2A8gE49OIe4BzOlVVVTQ3N7N27dqhx2w2GytXrmTLli0n3SYcDtPd3T3sK9EUpmXThZuAKfW6iv/8nXdQTL24hMaNgYFCVSu/edJVNsr5/0jd2kfYFLqGo5GZbDnazB/3vzCyfJy2ffhVFb/wIAaWiCeTWfke0tMyMKLZ1Hf0ctB/9quD4iXQF6UrGsAvvHS5l4Bl4pMbS7PTKBEdLFCP0NJ8YETbiEA9ASLoKNRGpyb8DA6APWseGiqtip3m9hNncQxh8FpOrJ/ZgehsOYOTgpaWxRKNGwwfQVWlp/btE/Nwqt7CV/kjlqr7ZYBzGgkd4DQ3xz7V5ubmDns8Nzd36Lnj3XfffXi93qGvoqKiCR/n2SrPyqFTuFOuq3hlbScHunYCcKNSj0MPQ9EFMHXVKbcpXXE9HefdjhacRzhiZsOunWzZ9fiZD3beZ3l35pfZbMyLJRgnSf7NIEVRWD3ThxH2YRgGbx889aqZRFPd3oNiipU4mJI2cfVvjlWU4eQT7GC1uhPNXzmibbobthFVFAKGh6iRnhSzHaU5eTwU+Tse19dS6T/xw1kgHKCh16DeyCOoZ8oWDSloWWkmCDPNWhGaYqYpGoLWvcNf1LoXc98RcpUuhOGQNXBOIaEDnEHH33oQQpzydsS3v/1tAoHA0FddXeLluEzPzqETD91qanUVf3DzOyjmWF7Gl8Lvxx5cdfLZm2P965UVeCxu1OB0ZrS9wq6NP+DQB7887TZhDKrC5oEl4ondZPNUVlXkcJFezz+ZXkA59PTIb8/FWVV7D/PNe1ikHuQ8++Qscc/32ukz0gHQe0ZWAbupPtaioVfPYlpOGk5r4iYYD5rqc6FpsaBlf+uJMzjtfe20BcMI3Y3HbqUwQy4NTjULi9MxqQpaNJMWJfvkeTjH1MBBzuCcUkIHOHl5saWhx8/WtLa2njCrM8hms5GWljbsK9HkujNpNk/hF+JSfqjdGO/hjIvmQB+b6rYBYBHTsd7yNqz5HkxdfcZts902vrZmOmo0k/w+F4qh8cam79P11n/CKZbRd/R14O+JIAw7CEvC96A6mYumZdNAIeV6H95IC1VtZ+4enAiq2nuosBzkEnU3C/Wxt9sYCbNJRVNjRTKJjqwL+07vAl7Wl7Ajch7zpqRP3ODGUbnPjdBjwfqRjhNnqes++C3nRSsp1nqYnZ+WVHln0si4bGbmFqQhtHSqtCyazCaoGR7ghDuOElZiVYztqivhW9TES0IHOGVlZeTl5bFhw0cF8SKRCBs3bmTFihVxHNnYpFnTMDkzOKJks6vXRU84+Vs2PPz2ewhTFwiV9fMuxJ5VAhfdMeIKt59fXkqeL4v/7P4GVZEKNEXh1W3/l+gL/wz6ceent4OOl79OQfdOhObCblGTssiVy2Ymv2wO5rAXFZE0y8WPtHXhVGO3TwoK5k3ege2xgoJ2pYNA75lbfOwI9HNAFHMgOot5UxLvg87JTPW5qND9rDe9wYzah094vq3qTZaoByk3upPilps0OktKY403D4sp7C26guiau4c93z2QaB7SvRRnykD3VOIe4IRCISorK6msrARiicWVlZXU1taiKAp33HEH9957L88++yy7d+/m5ptvxul08pnPfCa+Ax8Du9lOpiNWt0BR+6jtGPmy10TUH9V5bv9bAKRFMvjCirNfVWM1q/zvj89Gx8Ifum7hfRbTZjKxZe/v4fefhvAxZQFa9+I/+hrT9UMI3cO0HDeqmpy/4KsqfFSF5wBQU/8eET0S5xGd2VF/C+lKCIcwKCif+CXig+yeMgAcpu4RLRU/3BGb6RFaGvMStAfV8WJNN93kK51YjONmqoSguzf2WF1UVjBOZYONNzv1bPYrpbRYj/kAJwSBQKyid0DPkvk3pxH3AOf9999n4cKFLFwYe6O88847WbhwIf/2b/8GwDe+8Q3uuOMOvvrVr7JkyRIaGhp49dVX8XiS75bEsfI8mZQoLXzO+mf8R7bHezhj8vh7O+g12nAR4VX9AfJe+ofhAckIra7I4dKZOWDYecN/HQezL2ePw8XBmjfh+ds+emHrPjpNJvwiDaG5kvL21KBLZ+awRVtCuq7j7KmhLjA5t3xGSwhBX+AwZgw8OtiySift2J6smQCY1B5q2k+/OrKnqZI0/7vk0Ymiu5MmGFAUBTUjNismlDCBzo9aU/R21RAVYYSAqug0OYOTwpaWZgAgouk0dPXR3HPM7cqeNkIiggA69ByZf3MacQ9wVq1ahRDihK/f/OY3QOwX/p577qGpqYn+/n42btzI3LkTXzl1ohWmZTFPreI662tQ83a8hzNqQgh+V/kmAFdGa8g0+iHUCtbRJf1+96pZWEwKIprFX2vOIzRrPRtzSui8+M6PXtQa60HlF2lJ1YPqZMqyXbSkLyIvquAQ/ew/+ka8h3Ra7aEIXjEYhGXEahpNEl/BLBBgUgyazlBeoXn/iyzRdrCKg8zITcdhTZ4y9lN8BRgD3dMPHdo69Hh7fezfuu5GU5MzsV4amSy3jXKfCyPqJdTdRX3lb+Htn8We7Gmj3eoliBNNd1GcmXy35ydL3AOcc1Vpho8uEauFo3YmTw2U47289wDNvfW4CPPP0cGVU98edXfpqT43/3Bh7FZEOFjKO025RJd8gVcD+4kasbyL3sMb6FNU/MKL0JL7jV5RFC6aOYWW8DQA9hx4/bQN9uKt2t9Dljn2aVK15U3qsYuy0/lr9BL+R1/FgeDp89ZqG2LlCgJabkJ3ED+Zcp+bfi32Cb5h4OcAaG6uBKBnoLClzZw8QZt09paVZSK0dDz00L7vGcTmn8bq4eTO4Zlp3+Rx7XKE4aA4S87gnIoMcOJkenYuncRq4biD1fEezqj98v2/AbA2WkOO0Q9TlsC0y8a0z9svnUa22wao7NhfTEtA4O/3s7l+Mxx8hY5QrPt4p+4DTElX5O94q2fm8LfwKt7XZ/Oh5qO1tzXeQzqlqrYevANNNp2ekkk9dlGmg73aTJpFJjXB09+i8nceBqA1UpTQHcRPJtaTKrZirNN/aOjx+ubBFg0F8vbUOWBpaSZCc9NiZNOnWvCHu6BtPwAtoU40TLLI3xnIACdOCr2ZhNQ0AqpKdiTxavWMxM7GOva2H8JJmDuGZm++NerZm0Eeu4VvXFkR+8awsXlnAULAvo59HNj/LB0mEzoq7VoBVpOa9L/g55dl8rbpAjb1r2J3t42qrup4D+mUjraHeEWZwxP6paizJjfR3+e2YSb2/7op2HHqF2oReqOxMvbV0fKkm8GZ6nPRpsV6UvX2fZSD0xaKzZw1aiVJk1Mkjd7SgcabmpZBuymbloG2DUII2ntjNbOE7qAwI7nf/yaSDHDiJN2ejnBk0KOqZBmtRPonp2DaeHrwndcQAtZoNeQbYZiyGKatGZd9f3JRIQsGPnkfabLR2RGrSL2pdBGHL/gnXjCWE9G8TPW5MJuS+zK2W0xcOC0LI5JNb1jjnbr98R7SKR1u8xNVoE1kMK18yaQeW1EUZjkM5qtHKO19B3GKGknh5g8JqdCPhVYj+YKBqdlu6qMlBISTOqwIIYjqUf6WsY5HtCvZHjlPzuCcAwozHOSl2RHRdI5GB+rhVL9Fz5++wIW9r5BLFznuNOwWeavyVJL7L0MSs5vsOByZhDETNCm01ibuH7WTaQi0s6V2NyqCz0QG2k2sHPvszSBVVfi3q+cMff/0ZgvpllyihsZeaxZVRm7SJxgfa1VFDvaIi3KlkcaDGwhGzn4V2mSo7moDQDGcFGdM/rlfaOvmUnUnC02VtIXCJ31Nc20sGTekpTPdl5V0fwAcVhPt7mX8Wl/HC/p59EZ78ff7aQuF6TYy6BXepAvapLOnKApLyzIxol5qjWyazWaoeZtA7RYKRSsmw0JJZmq8/00UGeDEiaIo5Loz6RRuuk0qXXV7z7xRAnlw62tEdB0t4uO5OU/Adb+A6ZeP6zEWl2Rw3cJYcbfuPp3dh0pwmp34Q7FaMUJzJ/US8WOtnpnDLJr4R7GZKZ3vUtOVeInnhiGIBg5wqbqDy6y1cZk5c6THum1bTUHqOk4+61lV+wEAQS0n6fJvBpX70hC6g7BmcKSjmdaeNtpCYYTmocBrJ90pK9eeC5aVZiA0Ly0iky6TlZ6+DkL9sRy4Lt0na+CcgQxw4qjQm83rxkJu0m9nh21ZvIczYl393Ww4vAMAvbeMGy+qgAXrx2325ljfWjcT58AS3/95t4Uy5wV09kZBWBC6M2VmcKakO+j1LSQrYsYmIuw7tOHMG02ypu5+8pRq5qtVrNb3xWUMGbmxWT1VjVLXfPLctde9q/gffRXvRJclRQfxkyn3uRFa7Nre3VRL7bZfc7nYwnlGs7w9dQ5ZWpYJwoKupeE3x/pSdasqEcwE9Yykzz+caDLAiaOSdB+tIoNG1UVV55lLzyeKx7a/SaAvTK4muLi0jOm5EzeLkptm59bVsSXUhoCHX+vC2recaNdiQE26LuKnc8msPOojseTqg0e3ENUT65qobu8h09wCgNleEJcxTMnJRzdisxdtTbtO+pr9nX6aRSaN0dKkqWB8vKk+F+vEbv7R/CLah4/Q1rSd6UojBXq/vD11DpmR48HrsGBo6byqLaZx9bdkk82zIAOcOJqWHVsKqpj6qO3oifNoRqY32suf923DQZhHo0/z3923QbBlQo/5xYvKhn6R3znqZ+PeCEL3YFIVSrNcE3rsyXRpRQ7vRhbjMQxMgSNUtlXGe0jDHG3vwWOOrV5yeafGZQxFmU6iA80oe45ZQj1IMzTqArFl9qqRxsy85LyFWe5zY9LtOAkT7Kkj2B/7HauLlMkZnHOIqiosKclARL20RW0cbquKBTg4YzVwZIBzWjLAiaPyzBwcqsZF5m18vP7/xns4I/Ln/Vuo6wxxiVHNNL0XpzsN3DkTeky7xcR3r/qov1VYixXCK81yYjWnziW8qCSDHdbFzOuPkKZ18m7Va2xt2nrK1UKT7WhbELsptjzVlzvnDK+eGEUZTnr1dAAiPbUnPN+8/2Xm929lOi1M9/mSLsF40FSfi0YtVmcoEm3ErPdgEYLD+nRmyRmcc0os0TgdgPrOOjpNsRkcWQPnzFLnr0MSSrd78dgtLLN8yFXRFzF6u+I9pNPq1/p5etcWHIT5aqQSBVDGceXU6Vw+O5eLpmUPeyxVEowHWUwq86aXY/QXsbyvD/3DP7C98V021W9KiOrGR/xteJUQZiGYUjp5TTaP5XVa6CM28ykiTSc8f2TvKyxQjrJAb2H+lPRJHt34yUuz06yUoyKwidhqMVV3IGxeimTdk3PK0tIMMOwIw0akL0C/ohLBglVx4fPY4j28hCYDnDhymB14nF56sBNUVTrq4pO4OVKb6z5gX3MnF4kqZmq96HkLYMYVk3JsRVG4++rZmI7pGp5K+TeDVs/M4XvRz1PUbyfPmIFisrLHv4fXal5DN/S4jq29owoHEdINg+zis+8YP16OOC7hKX0l/6MtQtOHB37tA5VeO7QC5iXpCiqIXe9p2cXYdfPQYz3RbGble1DVif9AISWOeVPSsZlNiGg6b2uz2Cpm874+i6IML8okfLhMZjLAiSNFUchxZdApXARMKp0JHOBE9AhPVm7GYvRzS3gnCmAah6rFZ2N6rocbL/ioPUCyVagdiZUzfOxWprMufB/frfl7Au2zUBWVw227ePnIX4b6cU02TTegJ1bvSDFcqLb45T7ZMqbTJLIIKYKmQP+w5/r6Y5V/G6IlSbuCatBUn4ewlj70vV8rkAnG5yCrWeW8onSMaDr1YQdb9ZlouoeSzNTJP5woMsCJs4K0TDqFh4CqEmk5fYfkeNrR8iHb69u4UFQxR+sl4psLFesmfRzfvHImX7yojFtXl3P5rNxJP/5E83ls3Hn5DNrIIIqZh1/robO5AvPuZ6l960e8sPu3hPWTF7ibSPWdfRxQMvhv7WreyPqnST/+sUrTY7cqFVMfNR2hocdFj58+Ysn6dcYMZuYn9y3MqT4Xgahv6PumSIlMMD5HDTbeHCQMh6yBMwIywImzknQfXbjpVlXUjsPxHs5JRY0oT+/aTG9Y4+L+ACpgvew7kzp7M8hhNfG/Pz6bf71iZspO1d+6ehr/cvmMoe/fePMAVzTVYA000PTWf/D8lh/RG+2d1DFVtfegmHoIY8Hrmzupxz5eWVYWc5UaLlY/pLH+o1nP5qotRBWFoOGiILs06bttl/vc1OhTqRU+XtMX8Ub0QmbnJ/eslDQ6g403EbFrWugOSmQX8TOSAU6cTcvy0SncBEwqs/wbINQW7yGdYG/7XrbVNCN0B9/p+Tb7rvgfqPhYvIeV0m6/bDrfvHImAAdFEZ8Lfo8LjXwckR7aP3iEZ1/6CsH+rkkZS6AvyqNvV6GYYkFVefbErpo7k+IsJ5eIgyxWDxFo2jH0+KEjWwDo1TNZUJgRr+GNm6k+Fy/2X8GfopfxYf8yDNWeknln0pktKslAVVQMLRbgyhVUIyMDnDibnp1LE1nUKh4a1XxwfzQlzd++D2/+COo/ACM+q2h0Q+eFA1to6e5H7ytl7pQMZl5wZVxmb841X1lVPrQ8vk7kcm3btym3rcZjGASq3uDZp66h0z+xs377m7v5xANvsbl6P2vM77DatJO1efFtE1CU4aRfj73R9wY+amnR2B77d1c0LyXys6Zmu0FYiXZcjBacT7nPlbTL3qWxcdvMzCnwoodmoPeVYPTnywBnBGSAE2fZrgzMNjf/T6zjC8a3PnpCi8C7v4A374NfXQr/OR2e+UfY9Ufo7Zi08R3oPMCWqgZKRBeufi9fuLBMZu5Poi9dPJW7r54NQBgrn6/9NJas20nHRKizimdf+CJtvRMz6/d8ZQPX/eJ5GvWNOLzvM0ut5RJxkOL0+CY3TslwENJjMzRaf8PQ4885LuHn2lVsjFyY1EvEBzmsJqakO4i9TSsywfgct7Q0E6F70HtmAGYKZbmAM5IBTpw5zU4yHHYMFA5Enfzghb08X9nAkdYAxhU/hFlXg9UDve3w4VPwpy/C/ymHv9wx4WMzhMHr1Vupa+vg+9HX2GL/Zz4+JXTmDaVx9Q8XlvHv136U9/KtfXNpzf8xPvcU+qddxvNHnqcx1Dhux4tqOt947lW+9dcHKXX9hXW2DXzV/CKLwn1c26eDt2jcjjUaTquZsBpLMFejsarFQghquprpw0aPyGdGXmrcypnq+yiYlAnG57alpR/dds3x2HBY5WzemZjP/BJpIimKQo47g9rOIJh6+dXmqqHnHJZcZuZ/hfkz7+QSRxXz+raR3bQRtW0fpE35aCd9nfDX78D0NVB+KTjGln8ghKC9r539Hft5+2gdSznCkkiQLtcMPDkVY9q3NDo3XlCCRVX49rO7EAJ+usPG3y97gGU5dTT1NPKXI3/hCt1K6axrR/3/3xAGHzTu466X/4w18D7/ZN+BS0SZE45wXjiM0zMFVt8BavzfWIW9GAAznfRHdQLhEB19QUChIrsg6ROMB03P8fDWoXYA5hQk/203afSWlmUO/TuVWtRMJBngJIDLK6Zy2N9Me6iPY4vy90V1dtR2saO2i8ewA5dgUleyPLuPqQ0ZlGyuYk5BGvMDr+Pc+STsfBIUFQqXQt58yCqHzHIoXALOzFMdHohVKa4L1lEbrKWuu45erZeobnCooY2fhfdgAayXfVvm3sTRp5cVYzap/OsfdyIE/H5bM7pRzMqFFmrq3uLlyt9z2eafMOOTj0PByCsNG5EeDn34O17qaOG3B7sJ9WvkiHSWR0OUk0nWeTeizLkOpiwGNTEmfa0ZM6ATzKYQDZ291O94lGvVzVRHpzJ1yumv9WTy+eUlbD3qZ6rPxfKpWfEejhRH2W4bd6yZzp8rG7n10mnxHk5SkAFOApiZk8vNK0opcs7AbcxjT2OAPY3d7GnsprZj+HJg3RBsbrWzubUPPtwLwHSlgy+4rmWlWklBpBrq3o19DTi46ud0Fl8OgLvlPbKqX6TPU0KzK5sai5UGJUJHxI84JrwyKxb8ATcfC7awQg/SaCun4LxrJ/xcSKf3ycWFmFWFO5+uxBDw9PtN6EYBV0wv57A9jb/1dxH57ceYe+m/w5IvnjogjfSiH3qFA7t/z47m9wkIjaOimJC2HL2vnLBaTtq6G8letDIhg1pv9ixEJ6Aa1NYfwV//LiVKK0LPZX4SVzA+Xmm2i5e+dnG8hyEliDvWzOCONTPO/EIJkAFOQvDaYm/IfcLP3Pwe5pVk4LYUYTPZCIY19g4EO3saA+xt7OZQawjd+CgYOSQK+XboU8CnmEIby017KVcaKVWaKVVauO2Vbo6IraBE+Xv7H1njeI06s5negU/jVhScwomme3ij7zJqIrMQ0XRy6OZN20YUBbSL/zVhPr2f665dOAWTqnDHU5XohuBP2xvRjSVcs+Y/2PfOj9nkP0T/377D4pp3UK7+GdgG8lGEgH1/Rtv9LAeq/8Z2syA48P80bDhw9hQQ6b2IpSU+HvzMInLS7HH8KU+v2JfFw3svJ6BY+KceA2cotoKqNVqY9BWMJUkaHzLASQAZtljORHtfOy9XvTz0uFk147a48Vg9lBW7mD/Ng9viw6KW0NIJ1W06+5t62dMYYF9TkL6oTgM+/qivHNiDQDEHUe3tWKzvoVgCbFWgRZlLuhIiywgxVwswTeujSAuQZjSyJfwPCBGbCv8X8x9wKmFqLWUUr1g/2adFOo2rFxRgVhVu//0ONEPwXGUjmpHPZ1f/kB3b/5ttVW8SOfICyx/Zg/J3j4NvBlGhse/Nf2dHfzM9VhXD5qVKK2J3x0IO9C0DLNy8opTvfGxWwndpL8pw0qgVoVi6qO5opUJvBRUa9OnMyE3uCsaSJI0PGeAkgDxXHufnn09bbxvBaJBQJESf1odmaHSFu+gKd518QxuUTbMzb5Ybp9lFT5+F5i5Bc0AnEG0jqDWjicFePQqQjl0txm3Kx2HOBzWbvUBdpJ2McB0Z/XWsyb6AVWrsk/v0qgyMVhNpV/9Qzt4koHXz8nlIVbj1ye1EdcELHzahG3l8cc0dbEsroHLf84R7m1jhymJfayWVrZX0liyA/lK6nbN4amcJnV05gAm7ReW+6+dx3cLCeP9YI1KU6UAYDhS6aGvdTYlqoKHiyF6Q8MGZJEmTQxFCiDO/LHl1d3fj9XoJBAKkpSXPMkvN0OiJ9hCMBAlFQwQjwWHfhyKhETVetKgWCj2FFHuKKU4rxmM9i0+3hgF6BCyJe6tCgtf3t3DLb7cTGeisvXZ2Lrdd6eDt6pcRB15CLVyCkVEKgNviprYxl1+/EUE3YoFAYYaDn9+4OKlW6UR1g3X3fpdi17vMMDpJM7fTrWfQPfV33HvdvHgPT5KkcTDWv99yBidBmVUzXpt3KD/neEIIIkYkFvBEQrHg55jZnyx7FsVpxeS78jGNdlmvqoIqg5tEd+nMXH550xL+8fH3CWsGr+5tQTNy+NePX8NGmxtDGHhtXmZlLOBXf+vnpV0tDJbAumSGj//69HmkO+NbnfhsWUwqs2z9zFIPDVXzCkV9zJf5N5IkDZABTpJSFAWbyYbNYSPbkR3v4UhxtnKGj0dvXsoXH3uP/qjB6/tb0QzBvZ+8jqjoxYhk89Xf7eBAS3Bom9tWT+OfL5+BKUmbliquMhiYxOzHQrs2JSVaNEiSND7kzWpJShEXTsvm1zcvwzlQ4XTTwTa+9XQ1e2vsXPvglqHgxm0z84sbF/P1KyqSNrgBcGbOHPr3I9o6NukrZYKxJElDZIAjSSlkeXkWj31hGa6BIGfz4XZufXI7wX4NgGk5bp6/7ULWzsmL5zDHRV52CVFhASBN6aE8q0gmGEuSNES+G0hSillamsnjXzwfj234HeiPzcvjuVsvpNyXGn2airOcRPTYz5IpwsyfkhvnEUmSlEhkgCNJKWhxSQa/+9L5+Dw2rCaVb62byYOfWYTbljppd4UZTmaLWLPNvxPvM78wPb4DkiQpoaTOu50kScMsKEpn8zdXE9EMPHZLvIcz7ooyHfwycjkLLW+yMXwR/zolPd5DkiQpgcgAR5JSmM1sSpnO2sfL9djZ2Hc972nz6NVm8Ivc1Lj1JknS+EiaW1QPPfQQZWVl2O12Fi9ezFtvvRXvIUmSFEeqqrByRiFdfbO5cnYxFlPSvJ1JkjQJkmIG56mnnuKOO+7goYce4sILL+TnP/8569atY+/evRQXF8d7eJIkxcmDn1nE7sYAc5OoCrMkSZMjKVo1nH/++SxatIj//u//Hnps1qxZXHvttdx3332n3TZZWzVIkiRJ0rlsrH+/E35ONxKJ8MEHH7B27dphj69du5YtW7ac8PpwOEx3d/ewL0mSJEmSzi0JH+C0t7ej6zq5ucNrXOTm5tLc3HzC6++77z68Xu/QV1FR0WQNVZIkSZKkBJHwAc4gRRleUl4IccJjAN/+9rcJBAJDX3V1dZM1REmSJEmSEkTCJxlnZ2djMplOmK1pbW09YVYHwGazYbPZJmt4kiRJkiQloISfwbFarSxevJgNGzYMe3zDhg2sWLEiTqOSJEmSJCmRJfwMDsCdd97JjTfeyJIlS1i+fDm/+MUvqK2t5ZZbbon30CRJkiRJSkBJEeCsX78ev9/P97//fZqampg7dy4vvfQSJSUl8R6aJEmSJEkJKCnq4IyFrIMjSZIkSckn5evgSJIkSZIknS0Z4EiSJEmSlHJkgCNJkiRJUsqRAY4kSZIkSSlHBjiSJEmSJKWcpFgmPhaDi8Rk001JkiRJSh6Df7dHu9g75QOcYDAIIJtuSpIkSVISCgaDeL3es94u5evgGIZBY2MjHo/npM05x6K7u5uioiLq6upkjZ1JJM97fMjzHh/yvMeHPO/xcex593g8BINBCgoKUNWzz6hJ+RkcVVUpLCyc0GOkpaXJX4A4kOc9PuR5jw953uNDnvf4GDzvo5m5GSSTjCVJkiRJSjkywJEkSZIkKeXIAGcMbDYbd999NzabLd5DOafI8x4f8rzHhzzv8SHPe3yM53lP+SRjSZIkSZLOPXIGR5IkSZKklCMDHEmSJEmSUo4McCRJkiRJSjkywJEkSZIkKeXIAGeUHnroIcrKyrDb7SxevJi33nor3kNKeffccw+Kogz7ysvLi/ewUs6mTZu4+uqrKSgoQFEUnnvuuWHPCyG45557KCgowOFwsGrVKvbs2ROfwaaQM533m2+++YTr/4ILLojPYFPEfffdx9KlS/F4POTk5HDttddy4MCBYa+R1/v4G8l5H4/rXQY4o/DUU09xxx13cNddd7Fjxw4uvvhi1q1bR21tbbyHlvLmzJlDU1PT0NeuXbviPaSU09PTw4IFC3jggQdO+vz999/PT37yEx544AHee+898vLyuPzyy4f6vkmjc6bzDnDllVcOu/5feumlSRxh6tm4cSO33norW7duZcOGDWiaxtq1a+np6Rl6jbzex99IzjuMw/UupLO2bNkyccsttwx7bObMmeJb3/pWnEZ0brj77rvFggUL4j2Mcwognn322aHvDcMQeXl54kc/+tHQY/39/cLr9YqHH344DiNMTcefdyGEuOmmm8Q111wTl/GcK1pbWwUgNm7cKISQ1/tkOf68CzE+17ucwTlLkUiEDz74gLVr1w57fO3atWzZsiVOozp3HDp0iIKCAsrKyvj0pz/N0aNH4z2kc0pVVRXNzc3Drn+bzcbKlSvl9T8J3nzzTXJycpgxYwZf/vKXaW1tjfeQUkogEAAgMzMTkNf7ZDn+vA8a6/UuA5yz1N7ejq7r5ObmDns8NzeX5ubmOI3q3HD++efz+OOP88orr/DLX/6S5uZmVqxYgd/vj/fQzhmD17i8/iffunXreOKJJ3j99df58Y9/zHvvvcell15KOByO99BSghCCO++8k4suuoi5c+cC8nqfDCc77zA+13vKdxOfKIqiDPteCHHCY9L4Wrdu3dC/582bx/LlyykvL+exxx7jzjvvjOPIzj3y+p9869evH/r33LlzWbJkCSUlJbz44otcf/31cRxZarjtttv48MMP2bx58wnPyet94pzqvI/H9S5ncM5SdnY2JpPphOi9tbX1hChfmlgul4t58+Zx6NCheA/lnDG4ak1e//GXn59PSUmJvP7Hwe23386f//xn3njjDQoLC4cel9f7xDrVeT+Z0VzvMsA5S1arlcWLF7Nhw4Zhj2/YsIEVK1bEaVTnpnA4zL59+8jPz4/3UM4ZZWVl5OXlDbv+I5EIGzdulNf/JPP7/dTV1cnrfwyEENx2220888wzvP7665SVlQ17Xl7vE+NM5/1kRnO9y1tUo3DnnXdy4403smTJEpYvX84vfvELamtrueWWW+I9tJT29a9/nauvvpri4mJaW1v5wQ9+QHd3NzfddFO8h5ZSQqEQhw8fHvq+qqqKyspKMjMzKS4u5o477uDee+9l+vTpTJ8+nXvvvRen08lnPvOZOI46+Z3uvGdmZnLPPfdwww03kJ+fT3V1Nd/5znfIzs7muuuui+Ook9utt97Kk08+yfPPP4/H4xmaqfF6vTgcDhRFkdf7BDjTeQ+FQuNzvY9pDdY57MEHHxQlJSXCarWKRYsWDVveJk2M9evXi/z8fGGxWERBQYG4/vrrxZ49e+I9rJTzxhtvCOCEr5tuukkIEVs6e/fdd4u8vDxhs9nEJZdcInbt2hXfQaeA05333t5esXbtWuHz+YTFYhHFxcXipptuErW1tfEedlI72fkGxK9//euh18jrffyd6byP1/WuDBxMkiRJkiQpZcgcHEmSJEmSUo4McCRJkiRJSjkywJEkSZIkKeXIAEeSJEmSpJQjAxxJkiRJklKODHAkSZIkSUo5MsCRJEmSJCnlyABHkiRJkqSUIwMcSZJSxs0338y111475v0oisJzzz035v1IkhQ/MsCRJOmsbNmyBZPJxJVXXnnCc/fccw/nnXfe5A9qwM9+9jN+85vfxO34kiQlDhngSJJ0Vh599FFuv/12Nm/eTG1tbbyHM4zX6yU9PT3ew5AkKQHIAEeSpBHr6enh6aef5itf+Qof//jHh82W/OY3v+F73/seO3fuRFEUFEUZer62tpZrrrkGt9tNWloan/rUp2hpaRnadnDm59FHH6W4uBi3281XvvIVdF3n/vvvJy8vj5ycHH74wx+ednzH36JatWoV/+t//S++8Y1vkJmZSV5eHvfcc8+wbQ4dOsQll1yC3W5n9uzZbNiw4YT9NjQ0sH79ejIyMsjKyuKaa66huroagP379+N0OnnyySeHXv/MM89gt9vZtWvXyE6sJEnjTgY4kiSN2FNPPUVFRQUVFRV87nOf49e//jWD/XrXr1/Pv/zLvzBnzhyamppoampi/fr1CCG49tpr6ejoYOPGjWzYsIEjR46wfv36Yfs+cuQIL7/8Mn/961/5/e9/z6OPPspVV11FfX09Gzdu5D/+4z/47ne/y9atW89qzI899hgul4t3332X+++/n+9///tDQYxhGFx//fWYTCa2bt3Kww8/zDe/+c1h2/f29rJ69WrcbjebNm1i8+bNuN1urrzySiKRCDNnzuQ///M/+epXv0pNTQ2NjY18+ctf5kc/+hHz5s0bw9mWJGlMxrkLuiRJKWzFihXipz/9qRBCiGg0KrKzs8WGDRuGnr/77rvFggULhm3z6quvCpPJJGpra4ce27NnjwDEtm3bhrZzOp2iu7t76DVXXHGFKC0tFbquDz1WUVEh7rvvvlOO76abbhLXXHPN0PcrV64UF1100bDXLF26VHzzm98UQgjxyiuvCJPJJOrq6oaef/nllwUgnn32WSGEEI888oioqKgQhmEMvSYcDguHwyFeeeWVoceuuuoqcfHFF4vLLrtMXH755cNeL0nS5DPHO8CSJCk5HDhwgG3btvHMM88AYDabWb9+PY8++ihr1qw55Xb79u2jqKiIoqKiocdmz55Neno6+/btY+nSpQCUlpbi8XiGXpObm4vJZEJV1WGPtba2ntW458+fP+z7/Pz8oX3s27eP4uJiCgsLh55fvnz5sNd/8MEHHD58eNjYAPr7+zly5MjQ948++igzZsxAVVV2796NoihnNU5JksaXDHAkSRqRRx55BE3TmDJlytBjQggsFgudnZ1kZGScdDshxEn/2B//uMViGfa8oignfcwwjLMa9+n2IQZurx3//LEMw2Dx4sU88cQTJ7zW5/MN/Xvnzp309PSgqirNzc0UFBSc1TglSRpfMsCRJOmMNE3j8ccf58c//jFr164d9twNN9zAE088wW233YbVakXX9WHPz549m9raWurq6oZmcfbu3UsgEGDWrFmT9jOczODYGhsbhwKSd955Z9hrFi1axFNPPUVOTg5paWkn3U9HRwc333wzd911F83NzXz2s59l+/btOByOCf8ZJEk6OZlkLEnSGb3wwgt0dnbyxS9+kblz5w77+uQnP8kjjzwCxG4zVVVVUVlZSXt7O+FwmDVr1jB//vyhP/rbtm3j85//PCtXrmTJkiVx/bnWrFlDRUUFn//859m5cydvvfUWd91117DXfPaznyU7O5trrrmGt956i6qqKjZu3MjXvvY16uvrAbjlllsoKiriu9/9Lj/5yU8QQvD1r389Hj+SJEkDZIAjSdIZPfLII6xZswav13vCczfccAOVlZVs376dG264gSuvvJLVq1fj8/n4/e9/P1QVOCMjg0suuYQ1a9YwdepUnnrqqTj8JMOpqsqzzz5LOBxm2bJlfOlLXzphKbrT6WTTpk0UFxdz/fXXM2vWLL7whS/Q19dHWloajz/+OC+99BK//e1vMZvNOJ1OnnjiCX71q1/x0ksvxeknkyRJESe7CS1JkiRJkpTE5AyOJEmSJEkpRwY4kiRJkiSlHBngSJIkSZKUcmSAI0mSJElSypEBjiRJkiRJKUcGOJIkSZIkpRwZ4EiSJEmSlHJkgCNJkiRJUsqRAY4kSZIkSSlHBjiSJEmSJKUcGeBIkiRJkpRy/j+OWdkdc7uyTwAAAABJRU5ErkJggg==", | |
"text/plain": [ | |
"<Figure size 640x480 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.plot(numpy_sasas, linewidth=2, label=\"numpy\")\n", | |
"plt.plot(mdtraj_sasas*100, linestyle='--', label='mdtraj') # *100 to convert back to sqaure angstrom!\n", | |
"plt.plot(freesasa_sasas,alpha=0.5, label='freesasa')\n", | |
"plt.legend()\n", | |
"plt.xlabel('Atom index')\n", | |
"plt.ylabel('SASA (Ų)')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "9b4f95a2-3703-45cb-a5a7-4145ea88decc", | |
"metadata": {}, | |
"source": [ | |
"# pretty close!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "f98cdba9-bc53-4b9a-aee4-8e461a442874", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.11.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment