Skip to content

Instantly share code, notes, and snippets.

@lkluft
Created March 1, 2018 16:32
Show Gist options
  • Save lkluft/22a179ed597cf6dc8df5cc5a4e73d208 to your computer and use it in GitHub Desktop.
Save lkluft/22a179ed597cf6dc8df5cc5a4e73d208 to your computer and use it in GitHub Desktop.
Plot (logarithmic) data on adjusted colorbar.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "%matplotlib inline\nimport matplotlib as mpl\nimport matplotlib.pyplot as plt\n\n\nM = np.exp(np.linspace(-2, 4, 400).reshape(20, 20))\n\nfig, ax = plt.subplots()\nsm = ax.imshow(M)\ncb = fig.colorbar(sm)\nax.set_title('Linear')\n\nfig, ax = plt.subplots()\nsm = ax.imshow(np.log(M))\ncb = fig.colorbar(sm)\nax.set_title('Log')\n\nfig, ax = plt.subplots()\nsm = ax.imshow(M, norm=mpl.colors.SymLogNorm(vmin=0, linthresh=1))\ncb = fig.colorbar(sm, format=mpl.ticker.ScalarFormatter())\ncb.set_ticks([0, 1, 5, 10])\nax.set_title('Improved log')",
"execution_count": 1,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 1,
"data": {
"text/plain": "Text(0.5,1,'Improved log')"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x11b66fda0>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAEHCAYAAAAQ46u9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGO5JREFUeJzt3X+QZWV95/H3p5vuaaaZYZYwqTUGJAWEKgIRZVBgBEYRYV3NxlKhEi1WUmbc0spauDEhPzDGMsYqkhDN7iIjZRINUiO42QCLBJXMDOlBqEFTpGALhcWEoG6GGQQGhvnR95s/zmk9c+d23+fee073eZrPyzrlvec553mecy/9nec893nOo4jAzCwnY0tdATOzQTlwmVl2HLjMLDsOXGaWHQcuM8uOA5eZZceBy5B0nqRHlroeZqnkcVwvLZK+C7w3Ir621HUxG5ZbXLZkJB2x1HWwPDlwGZI2SPqXyvvvSvp1SQ9KekbSZklTlfS3SPoHST+UtF3Sz1fSrpL0mKTnJD0s6W2VtPdImpF0raTdwEcX6xpteXHgsvlcClwC/Azw88B7ACS9Gvgc8D7gJ4DrgVslrSjPeww4Dzga+H3gryS9rJLva4H/B/wk8AeNX4UtSw5cNp9PR8T3ImI3cBtwRrn/V4HrI+K+iJiNiL8E9gFnA0TEzeV5nYjYDHwHeE0l3+9FxJ9FxMGI2LuI12PLiAOXzecHldcvAEeVr18B/LfyNvGHkn4IHAf8FICkyyu3kT8ETgOOreT1xCLU3ZY5d47aoJ4A/iAiDrvNk/QK4LPAhcC9ETEr6R8AVQ7zz9g2Mre4XpomJE3NbQz2D9hngf8i6bUqTEv6j5JWAdMUgWkngKQrKFpcZrVyi+ul6Y6u9zOpJ0bEDkm/Cvx34GRgL/D3wLaIeFjSHwP3Ah3g84PkbZbKA1DNLDu+VTSz7DhwmVl2HLjMLDsOXGaWnVb8qjipFTHF9FJXw2zZepHn2R/71P/I+V38+unYtXs26dgHHtz3txFxySjlLaQVgWuKaV6rC5e6GmbL1n3x9ZHz2LV7lvv/9vikY8df9p1j+x81vFYELjNrvwA6dJa6GsAIgUvSNRQTa/8ZuCIi9pf7j6AYXX0S8M2I+GAdFTWzpRUEByLtVrFpQ3XOS3oV8LKIOA94GHhHJfmtwJNl2kpJ545eTTNrg07i/5o27K+K5wB3la/vBM5NTDOzTAXBbKRtTRv2VnEN8L3y9TPAMV1pz86T9iOSNgIbAaZYOWQ1zGwxdVrycI9hA9fTwOry9Rpgd2Laj0TEJmATwGod045Pw8zmFcBsSwLXsLeK3wDeVL6+mEOfALBQmpllrEMkbU0bKnBFxLeA70u6BzgV+LKk68vk24CfLtP2RsS99VTVzJZSAAcikramDT0cIiI+3LXrfeX+g5QLK5jZ8hFEa24VPQDVzNIEzLYjbjlwmVmaYuR8OzhwmVkiMctI87Rr48BlZkmKznkHLjPLSDGOqx2Byw8SNLNknVDSthBJJ0jaKWlLua2VdJmk7ZLulnRcv3q4xWVmSWpucW2NiHcASJoAPgScB5wFXE05HXA+bnGZWZJAzDKWtCVYL+keSZ8AfhZ4KCL2R8QMcHq/k93iMrNk/W4DK46VtKPyflM5Pxng+xTP63uB4tl9/4kfP5gBYLxf5g5cZpYkEPujb0yZ81RErOuZT8Q+YB+ApC8DvwI8Vzmk79MKfatoZkmKAahjSdtCJK2qvD0fuB04VdKkpPXAg/3q4haXmSWrqXP+dZI+TnGr+DhFZ/yLwNby/y/vl4EDl5kliRCzMfpNWkR8BfhK1+7N5ZbEgcvMknVaMgDVgcvMkhSd8+0IGe2ohZm13lznfBs4cJlZsllPsjaznMyNnG8DBy4zS9ap4VfFOgwVuCSdCfwpxQMR/z/wrog4UKZtAL4APAbMRsSF9VTVzJZSMcm6HYFr2Fo8CVwcERcAjwK/2JW+OSI2OGiZLR+BOBDjSVvThl2e7AcR8UL59gBwsOuQt5czvz84Uu3MrDUiYDbGkramjdTHJel44I3Axyu7dwCnlK//RtLfR8QDPc7dSPnMnSlWjlKNeqgdv5aYNaKW1XmU/wBUSasp+rKumOvfAoiIPZVjbgVeCRwWuMpHXGwCWK1jWrLokZnNJ2BRWlMphqqFpHHgRuBjEfHtrrTVlbfnUfSBmdkyUOODBEcybAmXAucCV5fPjL5M0vVzaZLul7QdeDIittVSUzNbUkHa8+YHeNjg0Ia6VYyIm4CbunZvLtNuAG4YsV5m1jLF8mTtGPrZjlqYWQa8IKyZZSbIfOS8mb00ucVlZlmJkFtcZpaXonO++ek8KRy4zCxRPc+cr0N7Apen3FgbqB1/mG1UdM634++0PYHLzFqvLY+1ceAysyRzI+fbwIHLzJJ5sQwzy0oEHOg4cJlZRopbRQcuM8uMR86bWVY8HMLMMuRbRTPLUPbPnK+dRyxbZjTWjj/iJJ3Rsyh+VfRcRTPLSJsGoLqZY2bJOuUSZf22FJJ+SdLO8vVlkrZLulvScf3OHXaVnxMk7SwXytgiaW0l7QhJf14uCPupYfI3s/aZ+1WxjsUyJI0B7wCekDQBfAjYAFxdbgsapcW1NSI2lNvOyv63Uqzucx6wUtK5I5RhZi3SibGkLcEvA7dQ9L6dDDwUEfsjYgY4vd/JowSu9WWr6hPSIc+kOQe4q3x9J8UyZmaWuQhxMMaSNuBYSTsq28a5fMp1WS+lXBkMWAM8Wymq7y8Aw3bOfx84CXgB+CzwNuB/9ajEM8AxvTIoL2QjwBQrh6yGmS2mATrnn4qIdfOkvRv4UkR0yjbP00B1IenZfpkP1eKKiH0R8XxEBPBl4IxKcrUSa4Dd8+SxKSLWRcS6CVYMUw0zW0Q19nGdClwu6U6K28SNwKmSJiWtBx7sl8FQLS5JqyLiufLt+cD/rSR/A3gTsA24GPjcMGWYWfvUMRwiIn5z7rWkHRFxpaTLgK3Ai8Dl/fIYto/rdZIekHQP8HLgi5KuL9NuA366TNsbEfcOWYaZtcjcOK46flX8UZ7l7WREbI6IcyLi9RHxRL/zhmpxRcRXgK907X5fmXYQeM8w+ZpZu3nKT5Uymz5h7eBpYgOo4xYPDvpBgmaWm7ZM+XHgMrMkbZqr6MBlZsnCgcvMcuPOeTPLSoT7uMwsO2LWvyqaWW7cx2VmWfEqP2aWnyj6udrAgcvMkvlXxUPI0zc85Sk7hz4/s910YPQ8wp3zZpYj3yqaWXb8q6KZZSXCgcvMMuThEGaWHfdxmVlWAtHxr4pmlpuWNLgcuMwsUYs654dq90l6jaQt5faIpGsraRskPVGmfb2+qprZkovErWHDrvJzP7ABQNINwP/uOmRzRPz6aFUzs7ZpS4trpFtFSUcAZ1OsRFv1dkmvBW6JiE/Nc+7GufOmNI3G29Hpt2TGXuLX37SMpuc0oobrD6DTacfnOOpfyxuArRHRqezbAZwCXAhcIunMXidGxKaIWBcR6yZZMWI1zKxxAYTStoaNGrjeCdxc3REReyJif0TsB24FXjliGWbWEhFpW9OGDlzlbeI5wLau/asrb88DHh22DDNrmZZ0zo/S4no9sG3uNlHS9eX+SyXdL2k78GREbJs3BzPLiIhI25o2dOd8RHwV+Grl/fvK/78BuGH0qplZ67RkBKoHoJpZmoBoya+KDlxmNgAHLjPLTUtuFT3q0czS1fCroqTTJM1I2irp/0g6StJlkrZLulvScf2q4cBlZmnqG4D6SESsj4gLgPuBtwEfophGeHW5Lagdt4oSjI+nHeupMQPJaSWaRi3XVZRSV8faW8/11zG4NCKqaw6tBP4ZeKgctD4j6Y/65eEoYGbpOkrb4FhJOyrbIfOZJV0k6VsU40EPAM9Wkvu2YtrR4jKzLCi9xfVURKybL7EcB/oqSb8BXABUZ9zM9svcgcvM0tQ0nUfSiojYV759BpgETpU0CZwFPNgvDwcuM0tU25MfLpL0YaAD7ATeA/wrsBV4Ebi8XwYOXGaWrp7O+duB27t2by63JA5cZpau0/+QxeDAZWZp5sZxtYADl5klG+BXxUY5cJlZupYELg9ANbPstKPFJaHJyaWuRbplO30ks+tKne6Smyb++6rpu/WtopnlJZibzrPkHLjMLF1LWlx929qSVkm6T9IeSaeV+xZ8do6kK8vn7dwu6egmKm5mi0+RtjUtpZNgL/AW4BYASRMs8OwcSWuBtwKvA24CPlBfdc1sSeWyPFlEHIyInZVdJ1M+OyciZoDTu045C9gSEQHcCZxbW23NbGm1JHAN08e1hoWfnVNNfwY4plcm5fN5NgJMjR01RDXMbDEt1m1gimF+T36ahZ+dU01fA+zulUlEbIqIdRGxblJTQ1TDzBZd+oMEGzVM4HqU8tk5ktZz+LNzdlD0fwFcDMwMXz0za5O2dM4n3SpKugM4AzgFuA64lq5n50i6CtgcEY9Luk3SDEXr611NVNzMlkBLbhWTAldEvLnH7s1dx3yy8vpaiuBmZstFi/q42jEAVYLJicRD2zFyN0lOdYV2rKC01J/ZUpcPzUz5qStPBy4zy41a8iDBFvwTa2Y2GLe4zCydbxXNLCvunDezLDlwmVl2HLjMLCeiPb8qOnCZWRr3cZlZlhy4zCw7DlwVY0JTK9KObcOUjCbq0ILriqZWL2rBtWX1nTUy5aeesea+VTSz/DhwmVlWwr8qmlmO3OIys9y0pY/LT4cws3Q1rPIj6UxJ90jaKulLkib6rdXazYHLzNKkBq3+rbIngYsj4gKKNSx+kQXWau3FgcvMkoiBFss4VtKOyrZxLp+I+EFEvFC+PQD8LAuv1XqYvn1cklYBXwN+DjgbeBz4a2CKYmmyKyLiu13nPAc8UL79tYj4x37lmFn7DdDH9VRErFswL+l44I3AbwNrK0nda7UeJqVzfi/wFuCa8v1BimD1pKQ3AR8GPtB1ziMRsSEhbzPLSU2d85JWA18ArqAIVAut1XqYvoErIg4CO+cWqYiIfRT3qFA08w72OO1ESduAh4ArI+LFfuWYWQZqCFySxoEbgY9FxLclTVCu1QqcxeFrtR5m6OEQZWEfAd7bI/mkiNgl6SPA+4E/6XH+RmAjwNTEamL6yGGrslAl688TiCbybaq3salpKTl9tpD++Wb3eSUeN17Df2D1PR3iUuBcYJWkq5lnrdaFjDKOaxPwmYh4rDshInaVL28GfqvXyRGxqcyDo498WUtGh5jZgmr4S42Im4CbeiRt7rGvp6ECl6TfBR6PiMMKkjQNvBgRs8D5FD93mtkykNWUH0l3AGcAp0i6Dvg9YEbSG4B7I+K3JF1FETGPBj4naQ/wNAnNPjPLQ1tGzicFroh4c9euz/c45pOVt68epVJm1kJpg0sXhecqmlk6By4zy8ncyPk2cOAys2TqtCNyOXCZWRr3cZlZjnyraGb5ceD6sRgfY3b1VP35DjLNookZGQOUnzp1o8k6DDLtqLGpOQNk28T329j3MMDKPQPVIfEziPF6LswtLjPLjwOXmWXFq/yYWW48jsvM8hTtiFwOXGaWzC0uM8uLB6CaWY7cOW9m2XHgMrO8BO6cr4pxse/frUg7eKBRxUNVp6/kEduDjAIfZC2DJR5dXuSbfmxz+TYwGr2h76y5zyvt4M6ER86b2UuVA5eZ5aRNA1D7NnYlrZJ0n6Q9kk4r931H0pZyu6jHOVdKmpF0u6Sjm6i4mS2yCNRJ25qWcpe+F3gLcEtl3zMRsaHcvlo9WNJa4K3A6yjWTvtAXZU1syUWiVvD+gauiDgYETu7dh8laaukL0o6pivtLGBLRARwJ8WKtWa2DCjStqYNuy73+oi4gCIwfbQrbQ3wbPn6GaA7sAEgaaOkHZJ2HNj//JDVMLNFE0An0raGDRW4ImJX+fJmioViq54GVpev1wC758ljU0Ssi4h1E5PTw1TDzBZbLreK3SRNSpobdHU+8GjXITuADeXri4GZoWtnZq3SllvFpOEQku6gaFmdAnwG+K+Sngf2Ab9SHnMVsDkiHpd0m6QZitbXuxqpuZktuqyWJ4uIN3ft+ssex3yy8vpa4NrRqmZmreKnQxyqMyH2rk2rSmNTJ5qYvpFTXQeuQ0NTiZb42hqberXE+XYmBih/HsUA1HZErlYELjPLREueDjHscAgzewlSRNLWN5/eM3Iuk7Rd0t2SjlvofAcuM0uTOhQi7W7ykBk5kiaAD1GMSLi63OblwGVmiQaaq3js3ADzctt4SE6Hz8g5GXgoIvZHxAxw+kI1cR+XmaVL75x/KiLWDZBzdcYNwPhCBztwmVmaZheErc64AZhd6GAHLjNL19xwiEeBUyVNUjyo4cGFDnbgMrN0Ncatrhk511EMWt8KvAhcvtC5Dlxmlkyd+u4Ve8zIAdiccq4Dl5mlCVozALUVgaszAXtentHKOYn5DjR9ZWyANnhTn8FA023S6zvY99BQvsnf2QDfQ1PfbwOfV2fF6Pd4Im1w6WJoReAys0w4cJlZdhy4zCwr7uMysxzV+aviKBy4zCxR+FbRzDITOHCZWYbacafYP3BJWgV8Dfg54Gzg28BdZfKRwGREvKrrnOeAB8q3vxYR/1hbjc1syeQ0jmvugV/XAETEfsrlxyS9GzixxzmPRMSGeqpoZq3RksDVd4xujwd+Vb2TYlHYbidK2ibpOklTI9XQzNohAmY7aVvDhu7jKm8hj4uIh3sknxQRuyR9BHg/8Cc9zt8IbAQY/4k1vHDi/rSCB5gOoYGmWaQfm5rv2EB5pn/Zg+R7xHhD+Q5U3/RjJwao7/gg+SYeOzG+4GOgDi1/gIdTTQ6Q7+TYwQGOTcv3riP3Jee5oFxaXAv4BeDWXgkRsat8eTPFYyt6HbMpItZFxLrxo6ZHqIaZLZqItK1howSunreJkqYlzT129XyKB4SZWe4C6ETa1rCkW8XqA78kXQf8NXB8RDxUOeYqimfpHA18TtIeisexLvhAMDPLRUC0YzxEUuCa54Ffr+465pPzpZnZMhAsSsd7Cg9ANbN0Lemcd+Ays3QOXGaWF0+yNrPcBODH2phZdtziMrO8hH9VrFp15ItsOO2RpGMHmQ6xYomPnRo7MECe6cdOaZC6puc7PZY+LWRKA9R3LHE6FzCt9GMHqcPKxM9hepDPdoDVlqaVPtZ75djEAHVIO/Y1k88l5zmvgMhpHJeZGbAoo+JTOHCZWTr3cZlZViL8q6KZZcgtLjPLSxCz6c8Va5IDl5mlmXusTQs4cJlZOg+HMLOcBBBucZlZViKzBwmamQGt6ZxXtODnTUk7gX/q2n0s8NQiVWG5lrXY5bms9pb1iohYO0oGku6kqF+KpyLiklHKW7AubQhcvUjaERHrXFY+5bmsvMrK2Sir/JiZLQkHLjPLTpsD1yaXlV15LiuvsrLV2j4uM7P5tLnFZWbWkwOXmWWnFYFL0jWS7pF0o6TJyv4jJP15mfapGso5s8xrq6QvST9+7q2kDZKekLRF0tdrKOsESTvL/LZIWltJq/W6yjxfUynrEUnXVtJGvjZJqyTdJ2mPpNPKfZdJ2i7pbknH9TjnSkkzkm6XdPQo5UmalnSXpG2S/k7SCT3Oea7yGZw+4rV9p5LXRXVdW4/rmqyUc5+kb9V1XctaRCzpBrwK+Kvy9e8Av1xJexvw8fL1Z4FzRyzr3wMry9efAN5ZSdsA/FGN13UCcMs8abVeV4/8bwAuqPPaKGZZrAX+AjgNmADuAyaB9cCmruPXAncDAt4F/PaI5a0AXl6mvQn4Hz3O2VHHtfXLa5Rr61VWJe3dwO/VdV3LeWtDi+sc4K7y9Z3AuYlpA4uIH0TEC+XbA0D3yghvL1tBHxylnIr1ZX6fkFRdWqHW66qSdARwNnBPV9JI1xYRByNiZ2XXycBDEbE/ImaA7pbAWcCWKP7yBr7G7vIiYl9EPFm+7fXdAZxYtsiukzQ1bFmlo8qW+RclHdOVNvS1zVPWnHcCN/fYP9R1LWdtCFxrgGfL188AxySmDU3S8cAbgdsru3cApwAXApdIOnPEYr4PnAScD/wkRStrTiPXVXoDsDUOXY6l7muDQ68BYHyB9Dq/uwngI8CneySfFBHnU3z27x+xqPURcQFFYPpoV1rt1yZpFXBcRDzcI7nO61oW2hC4ngZWl6/XALsT04YiaTXwBeCKiPjRmlURsadsPewHbgVeOUo5ZQvh+fJf5S8DZ1SSa7+uisP+1a772krVawDonn3b1DVuAj4TEY91J0TErvLlzRz6eQ+sT15NXNsvUHw3g9blJakNgesbFH0WABcDM4lpA5M0DtwIfCwivt2VVv0jPA94dMSyVlXent+VX63XVSnzCIrb0G1d+2u9ttKjwKll5/J64MGu9B0UfWtQ0zVK+l3g8YjY3CNtuvx+4fDPe9ByJiWtWCCv2q+NeW4T67yuZWWpO9mKBgnXUPTJ3EjR2Xt9/Lgj8y/KtE/XUM4vAbuALeV2WaWs9wL3A9uBa2oo6z8AD5R1/3x5LY1cV6XMi4D/WXlf67UBdwDfA+4FLi8/v3uBv6O4zQG4CviZ8vWVFH/UtwNH11Degcp394fV8ihaIt+kCNp/M2h5XWX95/K72wZ8te5r63Fdq4Bvdh1Ty3Ut180j580sO224VTQzG4gDl5llx4HLzLLjwGVm2XHgMrPsOHCZWXYcuMwsO/8GzRi1hIazVRsAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x11da41a20>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATAAAAEHCAYAAAAphBrmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGUtJREFUeJzt3X+sJWV9x/H3597duyvL/oCyxp8UC4bEYoR6bQUEtiqsJWIwCtRiqDR2TTRtQ1tb+gPbmAZpaYqYVORKaqtFuoL9ARQptLosXX510cQGUxRrW7uCWRa6uHTZvT++/WPm1tmz5977zJyZc2bufl5m4pnzzJnnO+fc/TLzzPPMo4jAzKyLxkYdgJlZVU5gZtZZTmBm1llOYGbWWU5gZtZZTmBm1llOYGbWWU5gdghJ/yHpraOOwyyFE5iZdZYTmCWR9IuSnpD0jKTbJb2sUHaepMcl7ZX0SUn3SXr/KOO1I4MTmC1J0puBjwEXAy8F/hP4q7zsOOA24LeAHwEeB84YTaR2pHECsxSXAn8WEV+NiANkyep0SScA5wOPRcRfR8QM8AngqZFFakcUJzBL8TKysy4AImIfsAd4eV723UJZAP897ADtyOQEZim+B/zo/IqkNWSXi7uAJ4FXFMpUXDdrkhOY9bNS0ur5BfgCcLmkUyWtAq4GHo6I/wD+HnitpAslrQA+BLxkZJHbEcUJzPq5C9hfWM4CrgK+SHbGdSLwswAR8TRwEfBHZJeVrwF2AgeGHrUdceQHGlqdJI2RtYFdGhFfGXU8trz5DMwGJmmzpA355eVvAwIeGnFYdgRwArM6nA58G3gauAC4MCL2jzYkOxL4EtLMRkLSe4BPRMTGqvvwGZiZDV3eVvpuCn0IK+2nDWdgE1oVq1kz6jDqp87tuJkINPp4G9Gh33f/3A84OPfCQDve/NNrYs8zs0nbPvr1A48BLxTemoqIqfkVSe8FZoFfi4jJqjGtqPrBOq1mDT+lt9S/46b+4SjtxFVjo60fgIZiUJnvdqyhE/0mft8SsZb6DkrFUGK/iX8LD+79m4rB/NCeZ2Z55B+OT9p2/KXfemGhxCRpnGxc7YXArw0SUysSmJm1XwBzzNWxq/cCX4iIuUH/I1D5P42SrpV0v6SbJU0U3l8h6TN52fUDRWdmrREE0zGbtCzhNcBlku4GXi3puqoxVUpgkk4DXhoRZwHfIGuMm3cBsCsvO0qSH61itkzMJf5vMRHxmxFxXkS8DfhWRFxRNZ6qZ2CnA/fkr+/m0Oc/LVZmZh0VBLORtiTvc4AGfKjeBraB7AkFAHuBY3vKnlug7P9J2gJsAVjNURXDMLNhmmP0vRaKqiawZ4F1+esNwDOJZf8vv6U6BbBOx7brWzGzwwQw27IEVvUS8iHgvPz1ZmBHYpmZddgckbQMS6UEFhFfA56UdD/ZHYUvSroxL74DeEVetj8iHqwnVDMbpQCmI5KWYancDywiPtzz1gfy92eA9w0Qk5m1UBCtu4RsRUdWjY8zvv6YtI1L9VIecU/4NvSCL7fj9G3b0Lu+kZ74bfj7aiCG58erxVIUMNuu/NWOBGZm7Zf1xG8XJzAzSyRmW/AggSInMDNLkjXiO4GZWQdl/cCcwMyso+Z8BmZmXeQzMDPrrEDMtuwp9E5gZpbMl5Bm1kmBOBg1dIitkROYmSXJOrL6EvJwK8bRMeuTNo3GJsoY8RCSEvtctt8BEKWGMzUQQAuGB5X6DlL3+WQ9X5Yb8c2skyLEbPgMzMw6as5nYGbWRVkjfrtSRruiMbPWciO+mXXarPuBmVkXuSe+mXXa3HK4Cynp9cDHyR7Q+H3g0oiYzss2AZ8Dvg3MRsRb6gnVzEYpG8zdrgRWNZpdwOaIOAd4Ariwp3xrRGxy8jJbPgIxHeNJy7BUnVbtqYj433x1Gpjp2eRdku6X9CsDRWdmrREBszGWtAzLQG1gko4H3gr8QeHtncDJ+eu/k/TPEfFon89uAbYArJ5Yz+wxa1IrHSTkWvbbyI2YhoYHlRqW0tQNplF/t2ViaOjf3sh/h/E6Dkyt68ha+agkrSNr67p8vv0LICL2RcTBiDgI3A68rt/nI2IqIiYjYnLliqOqhmFmQxLUcwYm6RRJOyTdJ+nvJR1dNaZKCUzSOHAz8NGI+GZP2brC6llkbWRmtgzMMpa0LOHxiDgzb0N/BHhn1XiqnoFdDJwBXCVpm6RLJN04XybpEUkPALsiYnvV4MysPQIxF2nLovspXLEBRwH/VjWmSm1gEXELcEvP21vzspuAm6oGZGbtlE2rlpwyjpO0s7A+FRFT8yuSzgX+iOwm4B9WjckdWc0sUamJbZ+OiMmFCiPiXuA0Sb9BdjPvmioROYGZWZKgnp74klZFxIF8dS8wUXVfTmBmlqymJ7KeK+nDZCN5dgPvq7ojJzAzSxKhWs7AIuJO4M7BI3ICM7NEWSO+ZyUys07yM/H7ivExptevrn/HJS7XRz08aORDaBqNoaFtS2hipp9Sf19N/btPjGGuhhOnrBG/XUOJWpHAzKwb2vY4HScwM0sy3xO/TZzAzCyZJ/Uws06KgOk5JzAz66DsEtIJzMw6qqae+LVxAjOzJO5GYWYd5ktIM+uwtj0TvxUJLMbFwfUNhDLqnvijrh8amwSlVLyN9a4fbQyjrj+LIW3HMT54ANldSI+FNLMOckdWM+u0tl1CVp2V6ARJu/MJPbZJ2lgoWyHpM/nEttfXF6qZjdL8XchBJ/Wo0yC3FO6LiE35srvw/gVksxGdBRwl6YzBQjSztpiLsaRlWAap6cz8LOtq6ZCWxNOBe/LXd5NNv2ZmHRchZmIsaRmWqjU9CZwEnA28mEMnptwAPJe/3gsc228HkrZI2ilp5/SBfRXDMLNhWhaXkBFxICKej4gAvgicWih+FpifnXsD8MwC+5iKiMmImFy5qvLM4mY2JMumDUzS2sLq2cAThfWHgPPy15uBHdVCM7O2WRYJDHiTpEcl3Q+8HPi8pBvzsjuAV+Rl+yPiwToCNbPRmu8H1qYEVqkfWER8CfhSz9sfyMtmGGCeNzNrr7b1A2tFR9YYh4NHJ54MtmJ4Tjfqb0sMrRhKlKpj323yUKIabgxGwIwfaGhmXeWhRGbWSR4LaWadFk5gZtZVbsQ3s06KqKcNTNLrgY8Dc8D3gUsjYrrKvtp1S8HMWkzMzo0lLUvYBWyOiHPIOsFfWDUin4GZWbI62sAi4qnC6jQwU3VfPgMzsyQlx0IeN/+whnzZ0rs/SccDbwXurBqTz8DMLE1k7WCJno6IyYUKJa0DPgdcXrX9C5zAzKyEOu5CShoHbgY+GhHfHGRfrUhgMQYH1yZ+MV0awjLq+svq0nfbUAyjrr/sflPjjRomE4q8Eb8GF5M96HStpKuAGyJia5UdtSKBmVk3lLiEXGQfcQtwy+B7cgIzsxLcE9/MOinCCczMOsyDuc2ss+poA6uTE5iZJQnEnB9oaGZd1bITMCcwM0vUwkb8qtOq/aSkbfnyuKTrCmWbJH03L/un+kI1s5GLxGVIqs5K9AiwCUDSTcDf9myyNSJ+fbDQzKxt2nYGNtAlpKQVwBuB3pHm75L0U8BtEXH9Ap/dMv+5FeuOYXptv636fbBqtIsb+e/SsdlwOvc7dGn4l+o/hallViJgbm7U/1AONehhvRm4LyLmCu/tBE4G3gK8LX/64mEiYioiJiNicsVRawYMw8waF2SZOGUZkkET2EXArcU3ImJfRByMiIPA7cDrBqzDzFoiIm0ZlsoJLL98PB3Y3vP+usLqWWSPjDWz5aBljfiDnIH9NLB9/vJR0o35+xdLekTSA8CuiNi+4B7MrENERNoyLJUb8SPiXuDewvoH8v+/Cbhp8NDMrHVa1pPVHVnNLE1AtOwupBOYmZXgBGZmXeVLSDPrLCcwM+uk+Y6sLdKKBBZjMH10Ymof9VATGvoN23BcDYXQqSFKDQzjyfabvmkTf191DCUCP9DQzLrMdyHNrKuaOkGtygnMzNIMeZhQCicwM0s03CdNpHACM7N0PgMzs86aW3qTYXICM7M0LewH1q5J3sys1RRpy5L7kdZKeljSPkmnVI3HCczM0tX3QMP9wNuB2wYJxwnMzIYuImYiYveg+2lFG1iMw0zqUKIyRj48qMQxtWAoUXPDeDr2PTRS/4iHKI3XU3+JwzhO0s7C+lRETNUSREErEpiZdUBQZijR0xEx2WA0gBOYmZXRsn5gS7aB9btbIOkSSQ9I+rKkV/b5zBWSdki6U9L6JgI3s+Gr6y4kgKS7gPOAT0u6rEo8KWdg83cLrs0rXQn8KtmUaW8ArqIwM7ekjcAFwJuAnwM+BFxdJTgza5kaz8Ai4vxB97HkGVifuwWvBh7LJ6/dAby25yNvALZFRAB3A2cMGqSZtUTL5oWs0ga2AXiusD6+SPle4Nh+O5G0hfzMbfyYYyqEYWbDVObycFiq9AN7FijOvj27SPkG4Jl+O4mIqYiYjIjJ8aPXVAjDzIZuTmnLkFRJYE8Ar5E0IelM4Os95TuBTfnrzcCO6uGZWZvU2Yhfh6RLyPxuwanAycANwHXAfcALwGX5NlcCWyPiO5LukLSD7Gzs0iYCN7MRaNklZFICW+Buwdaeba4pvL6OLMmZ2XLRwjawdnRkHQvmju5tSqvBqIewlBrG08xfhhobmpMeb1MxaMS/b6njaur3Td1wrKb6ncDMrKvUsgca+mkUZtZZPgMzs3S+hDSzTnIjvpl1mhOYmXWWE5iZdZFo311IJzAzS+M2MDPrNCcwM+ssJ7A+xoIVa6aTNi03fGS0w3NKxdpA/c3G0LGhRA3ss6lRWmOlvtu0bcfH62m88iWkmXWXE5iZdVL4LqSZdZnPwMysq9wGZmbd5QRmZp005CnTUjiBmVkS0b5LyCUfaChpraSHJe2TdIqkNZLukbRd0lckndDnMz+QtC1feie+NbOO6uKsRPuBtwPX5uszwOURsUvSecCHgQ/1fObxiNhUW5Rm1g5dOwOLiJmI2F1YPxARu/LVabKE1uvE/AztBkmra4rVzEYtEpchqdwGJmkl8BHg/X2KT4qIPZI+AnwQ+JM+n98CbAFYuXEda4/en1hv+rczNuIhLGWGhDRRf1mlhrA0EkG5GJr4fsv9fY3+dxhLzBb/PlZDD9QWPo1ikEk9poBPRcS3ewsiYk/+8layCXEPExFTETEZEZMr1h81QBhmNjQ1nYFJulbS/ZJuljRRNZxKCUzS7wLfiYitfcrWSBrPV88GnqganJm1i+bSlkX3IZ0GvDQizgK+Aby7ajxJCUzSXcB5wKclXQb8HvDm/C7jx/JtrpT0KuDVwL9I2g6cD1xfNTgza5cSdyGPk7SzsGwp7OZ04J789d3AGVXjSWoDi4jze976bJ9trims/kTVgMyspco10D8dEZMLlG0Avpe/3gscWzUkd2Q1s3T1NOI/C6zLX28Anqm6I8/MbWZJ5nvi19CR9SGyJimAzcCOqjH5DMzMkmlu8FOwiPiapCcl3Q/8Fz/sJF+aE5iZpamxk2pEfLiO/TiBmVmytnVkdQIzs3ROYIdbMTbHxjXPJ23bhmE0TQwhaWL4SPkY0oebtGEYTRP7be67LfP3Vf+D51eOzdayH5+BmVl3OYGZWSd5ViIz66o2PpHVCczM0kW7MpgTmJkl8xmYmXWTZyUysy5zI76ZdZYTmJl1U+BG/H4mxmZ52Zq9Sdsu157S4031QC/xfTVxXNl+02MYZ7QxNDUSoMxxNRHDhHvim9kRzwnMzLqojR1Zl3wiq6S1kh6WtE/SKfl738on9Ngm6dw+n7lC0g5Jd0pa30TgZjZkEWgubRmWlEdK7wfeDtxWeG9vRGzKl3uLG0vaCFwAvAm4BfhQXcGa2Yi1bGbuJRNYRMxExO6et4+WdJ+kz0vqnVHkDcC2iAgGnDLJzNqlpmfi16bqpB5nRsQ5ZAnq93vKNgDP5a8XnDJJ0pb5OeNe+J8XKoZhZkMTwFykLUNSKYFFxJ785a3AqT3FSVMmRcRURExGxOTqDaurhGFmw9a1S8hekiYkrcpXzwae6NlkJ7Apfz3QlElm1i5tu4RM6kYh6S6yM62TgU8BvyzpeeAA8Av5NlcCWyPiO5LukLSD7Gzs0kYiN7OhG+YdxhRJCSwizu956y/6bHNN4fV1wHWDhWZmreKnUfQ3MTbD8S+qPLv4gsoMoxlvYBjNqOuHcsODxlswWUgbYkg16uFBZWJYpZmB68o6srYrg7UigZlZR/hpFGbWVT4DM7NuchuYmXXXcMc5pqjaE9/MjkQRaUtF/R4esRgnMDNLk09sm7IMoN/DIxbkS0gzS9dwI35EzAC7JSVt7wRmZunS89dxknYW1qciYqrucJzAzCyZ5pKvD5+OiMkF9yO9hP6Xie+IiORe7U5gZpYmqK0ja0Q8RfbQ04G0IoFNaIZXrep9ZuLgxkp8203MCtTcDDujH5pTZuhTmd+hqRia+B7K/X019B0kHtcqTQ9cl4ihdGQtPjxC0g0R8dmFtm1FAjOzjhhCAuvz8IgFOYGZWToPJTKzTqqxDawuTmBmlqzEXcihcAIzs0SDDRNqghOYmaUJnMDMrMPadQW5dAKTtBb4R+DHgTcC3wTuyYtfBExExGk9n/kB8Gi++ksR8a+1RWxmI9PFBxrOjw6/FiAiDpJPmybpvcCJfT7zeERsqidEM2uNliWwJR+nExEzEbFQN/mLyCa37XWipO2SbpDkWWvNloMImJ1LW4akchtYfmn5yoj4Rp/ikyJij6SPAB8E/qTP57cAWwBe/LIVnLDy6aR6yw2jGe3wjSZmwilTf9ltyygzy05jMTSw3zJDypo7rnTjaU+dYZVmK8VymK6dgS3iHcDt/QoiYk/+8layMU39tpmKiMmImNxw7PgAYZjZ0DT8RNayBklgfS8fJa2RNJ+RzgaeGKAOM2uLAOYibRmSpEvI3tHhwN8Ax0fEY4VtrgS2AuuBP5O0D3gWuKz2qM1sBAKiXf0okhLYAqPDf6Jnm2sWKjOzZSAYagN9CndkNbN0LWvEdwIzs3ROYGbWTR7MbWZdFYAfp2NmneUzMDPrpvBdyH5WaZYfW/lc0ralhllUC2fp/SbOGjxIL+FF6ydx/EhJY4nHVT6G9G3HSnxrqb9DGWXqH2vodxhX/X85E3p28J0ERBf7gZmZAUPtZZ/CCczM0rkNzMw6KcJ3Ic2sw3wGZmbdFMRsTc8Vq4kTmJmlmX+cTos4gZlZOnejMLMuCiAaPgOT9Hrg42QTuH0fuDQiphfavqm+lma23ET+QMOUpbpdwOaIOIfsac4XLraxz8DMLFnTjfgR8VRhdRqYWWx7RQtui0raDfxnz9vHAWlTFQ1uudY17PpcV3vr+tGI2DjIDiTdTRZfitXAC4X1qYiYKlHX8cAtwKbFLiFbkcD6kbQzIiZdV3fqc13dqmuUJL0EuK1P0TvIzrruAH4xIr652H58CWlmQ5dfKr6p9/18RrO/BT66VPICN+KbWbtcDJwBXCVpm6RLFtu4zWdgydfLrqs19bmubtXVOhFxC1nbV5LWtoGZmS3Fl5Bm1llOYGbWWa1IYJKulXS/pJslTRTeXyHpM3nZ9TXU8/p8X/dJ+oKklYWyTZK+mzcc/lMNdZ0gaXe+v22SNhbKaj2ufJ8/WajrcUnXFcoGPjZJayU9LGmfpFPy9y6R9ICkL0t6ZZ/PXCFph6Q7Ja0fpD5JayTdI2m7pK9IOqHPZ35Q+A5eO+Cxfauwr3PrOrY+xzVRqOdhSV+r67iOCBEx0gU4DfjL/PXvAD9XKHsn8Af5608DZwxY10uAo/LXVwMXFco2AX9c43GdANy2QFmtx9Vn/zcB59R5bGQ3fDYCfw6cAqwEHgYmgDPJOioWt98IfJnsgfiXAr89YH2rgJfnZecBf9rnMzvrOLal9jXIsfWrq1D2XuD36jquI2FpwxnY6cA9+eu7yW6hppSVFhFPRcT/5qv9him8Kz8r+pVB6ik4M9/f1dIhM1DUelxFklYAbwTu7yka6NgiYiYidhfeejXwWEQcjIgdQO+ZwRuAbZH9Cyx9jL31RcSBiNiVry40xOTE/AztBkmrq9aVOzo/U/+8pGN7yiof2wJ1zbsIuLXP+5WO60jQhgS2AZifkmgvcGxiWWX5MIW3AncW3t4JnAy8BXhbPip+EE8CJwFnAy8mO+ua18hx5d4M3BeHTh9T97HBoccAh08C1dRvtxL4CPCJPsUnRcTZZN/9Bwes6szIBhTfDfx+T1ntxyZpLfDKiPhGn+I6j2tZaUMCexZYl7/eADyTWFaJpHXA54DLozDGKiL25WcTB4HbgdcNUk9+xvB8/l/pLwKnFoprP66Cw/4rXvex5YrHANA7yrepY5wCPhUR3+4tiIg9+ctbOfT7Lm2JfTVxbO8g+23KxnJEa0MCe4isTQNgM7Ajsay0fJjCzfQZppAntnlnkT3KY5C61hZWz+7ZX63HVahzBdnl6fae92s9ttwTwGvyRugzga/3lO8ka3uDmo5R0u8C34mIrX3K1uS/Lxz+fZetZ0LSqkX2VfuxscDlY53HtSyNuhEuO0HhWrI2m5vJGoVvjB82eP55XvaJGup5D7AH2JYvlxTqej/wCPAAcG0Ndf0M8Gge+2fzY2nkuAp1ngt8srBe67EBdwHfAx4ELsu/vweBr5Bd/gBcCbwqf30F2T/uO4H1NdQ3XfjtPlasj+zM5KtkyfvvytbXU9fP57/dduDeuo+tz3GtBb7as00tx7XcF/fEN7POasMlpJlZJU5gZtZZTmBm1llOYGbWWU5gZtZZTmBm1llOYGbWWf8HvFYvMLVyeOsAAAAASUVORK5CYII=\n"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x11dab60f0>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAEHCAYAAAAQ46u9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGh9JREFUeJzt3X+wHWV9x/H3596bH+QHiZjYKoK0BJlBHVEuLQSIUREoA1ZHLa1YRMeJMzqtQ1tb2ir211A6cUx12iKRsVQLmAK2RQoIikloQGjQDhY7SixFCqghhEAwkNx7v/1j98rmcO7Ns+fs3rN7+byYHfbss2ef756TfPPsnufZRxGBmVmbDA06ADOzspy4zKx1nLjMrHWcuMysdZy4zKx1nLjMrHWcuGzGSQpJK6Yo2yjpAzMdk7WLE1eDSfpfSacOOg6zpnHiMiSNDDoGszKcuFpC0vmStkhaJ+kJSf8jaWW+/SFJP5H03sL+V0j6rKRbJT0laZOkVxTKQ9KHJd0P3J9vWynpPyTtyv+/Mt/+65K2dsRzgaTr8/V5kj4p6YeSfpzXe1Bh349KelTSI5LeX+KchyR9TNKD+fl9QdKSQvl5edkOSR93C/WFw4mrXX4ZuBd4MXAV8CXgeGAF8B7gbyQtKux/LvDnwDLgP4ErO473tvyYx0g6BPg34DP58T8F/JukFwPXA0dLOqrw3nfnMQD8FfBK4Ng8lkOBiwAknQH8HvAW4CigTGI5P1/eCPwisAj4m/y4xwB/l5/jS4Eleb32QhARXhq6AP8LnJqvnw/cXyh7DRDAzxW27QCOzdevAL5UKFsEjAOH5a8DeFOh/DeBuzvqvxM4P1//R+CifP0o4ClgASDgaeDIwvtOBB7I1z8PXFIoe2Ve94opznkj8IF8/evAhwplRwP7gBGyxHh1oWwBsHfy8/Iyuxe3uNrlx4X1PQAR0bmt2OJ6aHIlInYDjwMv61aeb3+wo74Hea4VcxXwG/n6u4F/iYifAsvJksY9+SXsE8DN+fbJ4xbr6axjOp0xPUiWtH6u87h5LDtKHNtazIlrdjtsciW/hDwEeKRQXnw0yCPAK9jf4cDD+fotwDJJx5IlsMnLxMfIEuarImJpviyJiMkE+mgxjvyYqTpjOhwYI0vgjwIvL5zfQWSXuPYC4MQ1u50p6WRJc8nudd0VEQ9Nse+NwCslvVvSiKRzgGOAGwAiYgy4FlhLlgBvzbdPAJ8D1kl6CYCkQyWdnh/3n4DzJR0jaQHwiRLxXw1cIOkX8sR7MbChEMvZ+Q8Kc4E/JbtstRcAJ67Z7SqyRPE4cBzZjeyuImIHcBbwu2SXXL8PnBURj3Uc71Tgmjx5TPoDYBvwTUlPAl8jux9FRNwE/DVwW77PbSXi/zzwRWAz8ADwDPBb+XHvy9e/RNb6egr4CfBsieNbSynCDxKcjSRdAfxfRHxs0LHMhLxF9gRwVEQ8MOh4rF5ucVlrSTpb0gJJC4FPAt8h+yXWZjknLmuzXyW7gf8IWReNXw9fQrwg+FLRzFrHLS4za51GDK6dq/lx0NCiA+9Yln8cxx/CLJf49e4Zf4q9E8/09Yfh9DcujB2Pjyfte8+9z341Is7op77pNCJxHTS0iBMWvbXy40r+S8uQPwMANEsvLhK/3zuf+HLfVe14fJy7v5rWf3j4pfcv67vCaTQicZlZ8wUwwcSgwwD6SFyS1gInAD8E3hcRe/PtI2Q9qVcA34qIj1QRqJkNVhDsi7RLxbr11H6W9DrgpRFxCvBd4J2F4rOBh/OyBZPPdDKz9ptI/K9uvV74n0g26BayJwGsTCwzs5YKgvFIW+rW66XiUp57ysAuskG3xbInpyj7GUlrgDUA87WwxzDMbCZN0Ix+n70mrp3Awfn6UrJBvCllPxMR64H1AEuGlzXj0zCzKQUw3pDE1eul4jeB0/L104EtiWVm1mITRNJSt54SV0R8G3hU0u1kz2y6TtJlefFXgJfnZXsi4s5qQjWzQQpgX0TSUreeu0NExEc7Nn0w3z5G9nx0M5tFgmjMpWIzOqAOCc2dM+go0s3WHvlt613eolEBAx/FUUX9AePNyFsNSVxm1nhZz/lmcOIys0RivCGD9p24zCxJdnPeicvMWiTrx+XEZWYtM+EWl5m1iVtcZtY6gRhvyNPenbjMLJkvFc2sVQKxN4YHHQbgxGVmibIOqL5UfI6E5iQO+Rn00AmAoWZ8eUma8Hk1IYZBDw8a9GdQ0XAu35w3s1aJEOPRjH+0nbjMLNmEW1xm1ibZzflmpIxmRGFmjeeb82bWSuPux2VmbeKe82bWShNt/lVR0nHAX5M9EPHHwLkRsS8vWw18EfgBMB4Rb64mVDMbpGyQdTMSV69RPAycHhFvALYBb+so3xARq520zGaPQOyL4aSlbr1OT/ajiPhp/nIfMNaxyzsk3S7pI31FZ2aNEQHjMZS01K2ve1ySDgdOBf6isHkrcHS+/q+S/j0i7uny3jXAGoD5I4vhoPn9hNK/GoZkxKCHmUB9Q00GPYSlrhjq+s4G/T1Ucl5qTAfUnlOjpIPJ7mW9b/L+FkBE7I6IvRGxF7geeG2390fE+ogYjYjRuUMLeg3DzGZI0JwWV081SBoGrgT+LCK+31F2cOHlKWT3wMxsFhhnKGmpW681/BqwEvi4pI2SzpF02WSZpLsl3QE8HBGbK4nUzAYqEBORttStp3tcEXE1cHXH5g152eXA5X3GZWYNk01P1oyun82IwsxawBPCmlnLBC3vOW9mL0xucZlZq0TILS4za5fs5rxn+TGzVvEz5/c3JGJB2pCfqGvoRB3fx6CHeZRU6rOt689viz6zUt2VahpKlPqdxXD/X1h2c973uMysZZryWBsnLjNLMtlzvgmcuMwsmSfLMLNWiYB9E05cZtYi2aWiE5eZtYx7zptZq7g7hJm1kC8VzayFmvLM+UYkrhgeYmxJDZNllOgtXUsLuKae6LWNHihx2FIx1BRuHT3XSx1z0H++IPmzjZH+A8h+VfRYRTNrEXdANbNWasqlYq+z/BwhaXs+UcZGScsLZSOS/j6fEPbT1YVqZoM0+atiEybL6Ocngk0RsTpfthe2n002u88pwAJJK/sL0cyaYiKGkpa69VPDSXmr6mJpv7uUJwK35Os3k01jZmYtFyHGYihpqVuvNTwKrABWAS8B3l4oWwo8ma/vAg7pdgBJayRtlbR139jTPYZhZjOp1ZeKEfFsRDwdEQFcBxxbKN4JTM5mvRR4fIpjrI+I0YgYnTOysJcwzGwGtf4el6TFhZergG2F198ETsvXTwe29BaamTVNqxMXcLKkeyTdDhwKXCXpsrzsK8DL87I9EXFnFYGa2WBN9uNqQuLqqR9XRNwE3NSx+YN52Rhwfn9hmVkTVdWPK79q+xrwKuCEiPgvSecAHwGeAd4bEQ9N9f5GdECNEbH3RXPT9q1pqEmpH0JSh1nUFWupYSl1Hbem4S4N+BwGXX8dQ7omKhryM1bdgwT3AGcBawEkzQF+BzgFOB74OLBmqjc3Y6i3mbVCiUvFZZO9BvJlvyQUEWMd/T+PAu6LiL0RsQV4zXRxNKLFZWbNV3Ks4mMRMVri8MVuVADTjuZ24jKzZFHfjfdiNyqA8el2duIys2Q1DrLeBhwjaS7ZPa57p9vZicvMkkRU++hmSTeSdV4/GrgUWAdsIvtV8bzp3uvEZWaJxHiF05NFxJldNm9Iea8Tl5klq/EeVylOXGaWxLP8mFn7RHafqwmcuMwsWVMe3dyIxDUxIva8OC2UQc+WUlsMg66/ZAyNmLln0J/ZgIfxlImhimf7RcU35/vRiMRlZu3gS0Uzax3/qmhmrRLhxGVmLeTuEGbWOr7HZWatEogJ/6poZm3TkAaXE5eZJWrQzflepyf7JUkb8+V7ktYVylZLeigv+3p1oZrZwEXiUrNeZ/m5G1gNIOly4F86dtkQEb/XX2hm1jRNaXH1dakoaQQ4gefPxvEOSb8MXBsRn57ivWsm3zdn8YvYe3D1H8hsnQWmbcNtWhXDoIcR1RRDTPsE98RjABMTzUhc/f5E8CZgU0RMFLZtJXui4ZuBMyQd1+2NEbE+IkYjYnTkoIV9hmFmtQuyTJmy1KzfxPUu4JrihojYnU8xtBe4Hnhtn3WYWUNEpC116zlx5ZeJJwKbO7YXZ+o4hewh+GY2GzTk5nw/La43ApsnLxMlXZZv/zVJd0u6A3g4IjZPeQQzaxERkbZMexTpCEnbCz0TlpeNpOeb8xFxK3Br4fUH8/9fDlze63HNrMGqa01tioh39vrmZvTfN7PmC4gJJS3AMklbC0tnz4OTJN0u6WKp/FMW3XPezEpIzjGPRcToFGWPAiuAnwKfA94OfLlMFG5xmVm6Cm7OR8SzEfF0RARwHdmksKU4cZlZugoSl6TFhZer6KHngROXmaWprgPqyZLukXQ7cChwVdlQGnGPK4Zg7+ID71faoIdvDHr4Cg0YQlPyuPUNo0n7OWy2fl5VDPmBajqXRsRNwE39HKMRicvMWqIhYxWduMwsWWLDtXZOXGaWZoaG86Rw4jKzRDPz5IcUTlxmls4tLjNrnYkD7zITnLjMLM1kP64GcOIys2T+VdHM2qchictDfsysdRrR4oph2Lc4MZU3YEhG8j86LRoSUj6GEv/0NiLeivcrqdxQouqbNVFRE8WXimbWLoGH/JhZCzWkxXXABqSkxZLukrRb0qvzbedIukPSbZIO6/KeCyRtkXSDpCV1BG5mM0+RttQt5cp3D3AWcC2ApDnA7wCrgY/ny8/kM3acDZwMXA18uLpwzWyg2jI9WUSMRcT2wqajgPvySV+3AK/peMvxwMb8saw3Aysri9bMBqshiauXe1xLgScLrzsfUVYs3wUc0u0g+awfawBGlr6ohzDMbCbN1GVgil5+JN0JFGerHp+mfCnweLeDRMT6iBiNiNHhhQt7CMPMZtyE0paa9ZK4tgHHSJor6STg3o7yrWT3vwBOB7b0Hp6ZNUlTbs4nXSpKupFsCqGjgUuBdcAm4BngvHyfC4ENEfGApK9I2kLW+jq3jsDNbAAacqmYlLgi4swumzd07HNJYX0dWXIzs9miQfe4GtEBNYZgbHHig34GPSQEiNRvrwGx1qamIT/lYiizbw1/4xow/Cz5vIYrOn8nLjNrGzXkQYJ+OoSZtY5bXGaWzpeKZtYqvjlvZq3kxGVmrePEZWZtIprzq6ITl5ml8T0uM2slJy4zax0nroLhgMVjafvW1VYtMSRjaMDDRzTo4SPUOIKl1FCiEvHWEHCZWOv6zlJj0HA1N6d8qWhm7ePEZWatEv5V0czayC0uM2sb3+Mys/Zx4jKzVpmhqcdSOHGZWRLRnEvFAz5IUNJiSXdJ2i3p1ZIWSrpF0mZJ35B0RJf3PCVpY750ThhrZi3Vpll+9gBnAWvz12PA+yLiYUmnAR8FPtzxnu9FxOrKojSzZmhLiysixiJie+H1sxHxcP5yH1ki63Rk3iK7VNL8imI1s0GLxKVmPd/jkjQHuAj4QJfiFRGxQ9JFwIeAT3V5/xpgDcDI8iUctPiZXkOZJsYy+1b/aZcaElJ57Zkyw5PKDWGp50/n0IC/s7o+r9piSNzv/4Yq6DnaoKdD9DNZxnrgsxHxg86CiNiRr15DNpHs80TE+ogYjYjRkYMX9BGGmc2YNre4JH0MeCAiNnQpWwg8ExHjwCpgW38hmllTtGrIj6QbyVpOR0u6FPgEsEXSm4A7I+IPJV1INrv1EuDzknYDO4Hz6gndzGZaUy4VkxJXRJzZsekLXfa5pPDy9f0EZWYN5A6oZtZKTlxm1iZN6jnvxGVmyTTRjMzlxGVmaXyPy8zayJeKZtY+TlzPGR6a4EUL9yTtW2Y4xKCHb9QVa6kYSvxJa8IQlto+h8Tjlvm8ytWf3nOzjs/rv4fGk485naa0uPoZ8mNmLzQVDfnpfFxW2TCcuMwsTT7LT8qSYPJxWdf2EkojLhXNrPlK9uNaJmlr4fX6iFg/+SIixoDt6nGmXCcuM0sXyZnrsYgYrSsMJy4zS9aUm/NOXGaWxh1QzayNqnweV+fjsiLieU+dmYoTl5klqzJxdXlcVjInLjNLE5S5OV+rRiSuOUPjvGzRrqR9S/Uqrq0XdGIv7Jqeczvcos8g2zf9cyhzbmWkfg51fWdlPq9hqo9h7izrOd+IxGVmLeHEZWZt0qQHCR5wyE+3MUWS7pe0MV/e0uU9F0jaIukGSUvqCNzMZlgEmkhb6pYyVrHbmKJdEbE6X24t7ixpOXA2cDJwNfDhqoI1swFryLyKB0xcETEWEds7Ni+StEnSVZIO6Sg7HtgYEQHcDKysKFYzGzBF2lK3Xp8OcVJEvIEsMf1JR9lS4Ml8fRfQmdgAkLRG0lZJW5994pkewzCzGRPARKQtNespcUXEjnz1GrKer0U7gYPz9aXA41McY31EjEbE6Lyl83sJw8xmWlsuFTtJmitpXv5yFbCtY5etwOp8/XRgS8/RmVmjNOVSMak7RHFMEfBZ4LclPQ08C7w/3+dCYENEPCDpK5K2kLW+zq0lcjObca2anqzLmKJ/6LLPJYX1dcC6/kIzs0bx0yH2N29onFcs6Hor7HnqmkyhzDCLOmIYLjOZQok/PWWOW0YjYigzlKiGv3GDrr9MDPOGxvquK+uA2ozM1YjEZWYtUc+/QaU5cZlZMre4zKxdfI/LzNpnZsYhpnDiMrN0vlQ0s1aJah/d3A8nLjNL5xaXmbVOM/KWE5eZpdNEM64VnbjMLE3gDqhF84b2ceT8nyTt24QhP3UMYRkqVf/gP4PaZjAa8FCict9DA4b8JMY7X/v6rkuEO6CaWQs5cZlZ6zhxmVmr+B6XmbWRf1U0s5YJXyqaWcsETlxm1kLNuFI8cOKStBj4GvAq4ATg+8AtefFBwNyIeF3He54C7slf/lZEfKeyiM1sYNrUj2sPcBawFiAi9pJPPybpPcCRXd7zvYhYXU2IZtYYDUlcB5xXMSLGImL7FMXvIpsUttORkjZLulSSZ3s1mw0iYHwibalZz/e48kvIwyLiu12KV0TEDkkXAR8CPtXl/WuANQAvedkIR837Ua+hTKnMMIs6hrCUGkY04FlgysZQX7yDjaHc7EV1Db0q8ec2cb956n+WH6A9La5pvBW4vltBROzIV68hm0i22z7rI2I0IkaXHDLcRxhmNmMi0paa9ZO4ul4mSlooaTITrQK29VGHmTVFABORttQs6VJR0o1kLaejJV0K/DNweETcV9jnQmADsAT4vKTdwE7gvMqjNrMBCIhm9IdISlwRcWaXza/v2OeSqcrMbBYIZuTGewp3QDWzdA25Oe/EZWbpnLjMrF08yNrM2iYAP9bGzFrHLS4za5fwr4pF8zTOL47sStp3WOnH7ad37bQxpO6n9GDri7VEDCXirS2Gmj6J1O+irvqHSnwGw6o+hnna2f9BAqJN/bjMzIAZ6RWfwonLzNL5HpeZtUqEf1U0sxZyi8vM2iWI8fFBBwE4cZlZqsnH2jSAE5eZpXN3CDNrkwCiohaXpLVks4b9EHhfPglPsrr6PZrZbBP5gwRTlmlIeh3w0og4Bfgu8M6yoThxmVmyGB9PWg7gRJ6bm/VmYGXZOBpxqfhf3xl7bMXhP3qwY/My4LEZCmG21jXT9bmu5tb1in4P8BQ7v/q1uHZZ4u7zJW0tvF4fEevz9aXAI/n6LuCQsrE0InFFxPLObZK2RsToTNQ/W+ua6fpcV7vqKisizqjoUDuBg/P1pcDjZQ/gS0Uzm2nfBE7L108HtpQ9gBOXmc2oiPg28Kik24FjgOvKHqMRl4pTWH/gXVxXw+pzXe2qa2Ai4qP9vF/RkLFHZmapfKloZq3jxGVmrdOIxCVpraTbJV0paW5h+4ikv8/LPl1BPcflx9ok6Z8kzSmUrZb0kKSNkr5eQV1HSNqeH2+jpOWFskrPKz/mLxXq+p6kdYWyvs9N0mJJd0naLenV+bZzJN0h6TZJh3V5zwWStki6QdKSfuqTtFDSLZI2S/qGpCO6vOepwmfwmj7P7f7Csd5S1bl1Oa+5hXrukvTtqs5rVouIgS7A64B/zNf/GHh3oeztwF/k658DVvZZ188DC/L1i4F3FcpWA5+s8LyOAK6doqzS8+py/MuBN1R5bmQ/5CwHrgBeDcwB7gLmAieRdTAs7r8cuA0QcC7wR33WNw84NC87DfjbLu/ZWsW5HehY/Zxbt7oKZe8BPlHVec3mpQktrum6//c9NKAoIn4UET/NX+4Dxjp2eUfeCvpIP/UUnJQf72Jpv9kaKj2vIkkjZINXb+8o6uvcImIsIrYXNh0F3BcReyNiC9DZEjge2BjZ37zS59hZX0Q8GxEP5y+7fXcAR+Ytskslze+1rtyivGV+laTOnt09n9sUdU16F3BNl+09ndds1oTEtRR4Ml/v7P4/XVnPJB0OnArcUNi8FTgaeDNwhqTj+qzmUWAFsAp4CVkra1It55V7E7Ap9p+Opepzg/3PAZ4/+VFd390c4CLgM12KV0TEKrLP/kN9VnVSRLyBLDH9SUdZ5ecmaTFwWER8t0txlec1KzQhcU3X/b/voQGdJB0MfJHsURr7JrdHxO689bAXuB54bT/15C2Ep/N/la8Dji0UV35eBc/7V7vqc8sVzwGgc2RtXee4HvhsRPygsyAiduSr17D/513aAY5Vx7m9ley7KRvLC1ITEtd03f/7HhpQJGkYuBL4s4j4fkdZ8S/hKcC2PutaXHi5quN4lZ5Xoc4RssvQzR3bKz233DbgmPzm8knAvR3lW8nurUFF5yjpY8ADEbGhS9nC/PuF53/eZeuZK2neNMeq/NyY4jKxyvOaVQZ9ky1rkLCW7J7MlWQ3ey+L525kXpGXfaaCen4D2AFszJdzCnV9ALgbuANYW0FdvwLck8f+hfxcajmvQp1vAf6u8LrScwNuJBvVfydwXv753Ql8g+wyB+BC4Bfy9QvI/lLfACypoL59he/uL4v1kbVEvkWWtP+1bH0ddb03/+42A7dWfW5dzmsx8K2OfSo5r9m6uOe8mbVOEy4VzcxKceIys9Zx4jKz1nHiMrPWceIys9Zx4jKz1nHiMrPW+X9rBisBPez4nAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.4",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "Plot (logarithmic) data on adjusted colorbar.",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment