Last active
October 24, 2022 10:34
-
-
Save lkluft/d97a5edef6f1b42bc648a9089a7e03d7 to your computer and use it in GitHub Desktop.
Getting started with the Monsoon 2.0 datasets
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "94ef1806-5852-45c3-9b27-5e410ff8a217", | |
"metadata": {}, | |
"source": [ | |
"## Acceess the Monsoon 2.0 intake catalog\n", | |
"\n", | |
"We are providing an [Intake](http://intake.readthedocs.io) catalog to list all available datasets withing the Monsoon 2.0 project." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "aabc8c59-4f32-45ef-ac9f-3742d3893cae", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Available Monsoon 2.0 runs: grids, luk1000, luk1001, luk1002, luk1003, luk1010, luk1011, luk1020, luk1021, luk1022, luk1023, luk1030, luk1031, luk1040, luk1041, luk1042, luk1043, luk1103, luk1123, luk2000, luk2002, luk2003, luk3001, luk3002\n" | |
] | |
} | |
], | |
"source": [ | |
"%matplotlib inline\n", | |
"import intake\n", | |
"\n", | |
"\n", | |
"cat_yaml = \"/work/bd1154/highresmonsoon/monsoon2.yaml\"\n", | |
"cat = intake.open_catalog(cat_yaml)\n", | |
"\n", | |
"# List all available simulations in the catalog\n", | |
"print(\"Available Monsoon 2.0 runs:\", \", \".join(cat))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "35634390-a070-4bed-9c92-3ba6ec907513", | |
"metadata": {}, | |
"source": [ | |
"Moist datasets provide a `atm2d` and `atm3d` dataset. You can convert each of them into an Xarray dataset. The datasets then provides an overview over the full dataset, which means all available datasets as well as their dimensions." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "a4286a71-2030-44d2-9a0e-5dcfe7e5a7ee", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body[data-theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block !important;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2 {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", | |
"Dimensions: (time: 8785, cell: 20971520)\n", | |
"Coordinates:\n", | |
" * time (time) datetime64[ns] 2020-04-01 ... 2020-10-01\n", | |
"Dimensions without coordinates: cell\n", | |
"Data variables: (12/40)\n", | |
" albedo (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" clivi (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" cllvi (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" clt (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" cosmu0 (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" dew2 (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" ... ...\n", | |
" tas (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" tauu (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" tauv (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" ts (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" uas (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" vas (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
"Attributes:\n", | |
" centre: mpim\n", | |
" centreDescription: Max Planck Institute for Meteorology \n", | |
" edition: 2\n", | |
" history: 🪄🧙♂️🔮 magic dataset assembly provided by gribscan.Ma...\n", | |
" subCentre: 3\n", | |
" uuidOfHGrid: 0f1e7d66-637e-11e8-913b-51232bb4d8f9</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-41c823e4-1991-412d-b83a-4acfef949c17' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-41c823e4-1991-412d-b83a-4acfef949c17' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 8785</li><li><span>cell</span>: 20971520</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-79b1cccd-42bd-4bea-97a4-14c16f82b30e' class='xr-section-summary-in' type='checkbox' checked><label for='section-79b1cccd-42bd-4bea-97a4-14c16f82b30e' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2020-04-01 ... 2020-10-01</div><input id='attrs-69fc2cd7-f3f1-41fb-934a-ebe5008bc66b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-69fc2cd7-f3f1-41fb-934a-ebe5008bc66b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3980263f-3d55-4c78-a697-a03dbf6ffa90' class='xr-var-data-in' type='checkbox'><label for='data-3980263f-3d55-4c78-a697-a03dbf6ffa90' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['2020-04-01T00:00:00.000000000', '2020-04-01T00:30:00.000000000',\n", | |
" '2020-04-01T01:00:00.000000000', ..., '2020-09-30T23:00:00.000000000',\n", | |
" '2020-09-30T23:30:00.000000000', '2020-10-01T00:00:00.000000000'],\n", | |
" dtype='datetime64[ns]')</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8686a375-d4a2-4d06-8ffb-c6e996eeb203' class='xr-section-summary-in' type='checkbox' ><label for='section-8686a375-d4a2-4d06-8ffb-c6e996eeb203' class='xr-section-summary' >Data variables: <span>(40)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>albedo</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-f26d729c-a81a-478c-bbf5-4038ac092747' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f26d729c-a81a-478c-bbf5-4038ac092747' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d776200f-1ea8-4606-a7d5-88b0f85964bc' class='xr-var-data-in' type='checkbox'><label for='data-d776200f-1ea8-4606-a7d5-88b0f85964bc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>surface_albedo</dd><dt><span>cfVarName :</span></dt><dd>al</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>4</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface albedo</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86059</dd><dt><span>shortName :</span></dt><dd>albedo</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>Proportion</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clivi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-5dfe21c0-1d67-42be-a4fa-7e525a01c55a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5dfe21c0-1d67-42be-a4fa-7e525a01c55a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9a086974-8614-445f-b518-f37e5e5bd31f' class='xr-var-data-in' type='checkbox'><label for='data-9a086974-8614-445f-b518-f37e5e5bd31f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>vertically integrated cloud ice</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86085</dd><dt><span>shortName :</span></dt><dd>clivi</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>atmosphere</dd><dt><span>units :</span></dt><dd>kg/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cllvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-fd0abe46-a8cd-4aea-a8d3-5db6ec274e9b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fd0abe46-a8cd-4aea-a8d3-5db6ec274e9b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b9af444d-e96e-49d5-8d83-45e3d876931a' class='xr-var-data-in' type='checkbox'><label for='data-b9af444d-e96e-49d5-8d83-45e3d876931a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>vertically integrated cloud water</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86084</dd><dt><span>shortName :</span></dt><dd>cllvi</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>atmosphere</dd><dt><span>units :</span></dt><dd>kg/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clt</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-12e521c0-2bec-4821-9aeb-2cec359a20b9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-12e521c0-2bec-4821-9aeb-2cec359a20b9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-58ec9481-a21a-4d1c-9905-2665994578c2' class='xr-var-data-in' type='checkbox'><label for='data-58ec9481-a21a-4d1c-9905-2665994578c2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>5</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>total cloud cover</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86076</dd><dt><span>shortName :</span></dt><dd>clt</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>Proportion</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cosmu0</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-a9535f0b-0862-4541-a428-14d3c2476fc8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a9535f0b-0862-4541-a428-14d3c2476fc8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-16727d67-be15-42e2-961b-60deb7f5dfd3' class='xr-var-data-in' type='checkbox'><label for='data-16727d67-be15-42e2-961b-60deb7f5dfd3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>cosine of the zenith angle for rad. heating</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86058</dd><dt><span>shortName :</span></dt><dd>cosmu0</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>1</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dew2</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-84ab9592-19a6-47e4-b3c9-7f369b376bdb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-84ab9592-19a6-47e4-b3c9-7f369b376bdb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-870329d3-d47b-453b-b25a-19fd29c1165a' class='xr-var-data-in' type='checkbox'><label for='data-870329d3-d47b-453b-b25a-19fd29c1165a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>d2m</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>8</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>2m dew point temperature</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86100</dd><dt><span>shortName :</span></dt><dd>dew2</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>heightAboveGround</dd><dt><span>units :</span></dt><dd>K</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>evspsbl</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-35e646f9-db92-4603-a639-95dc698721c5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-35e646f9-db92-4603-a639-95dc698721c5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bf22fc05-5be8-4038-ae5b-531b218c65a6' class='xr-var-data-in' type='checkbox'><label for='data-bf22fc05-5be8-4038-ae5b-531b218c65a6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>evaporation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86082</dd><dt><span>shortName :</span></dt><dd>evspsbl</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>kg/m2/s</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hfls</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-fcda0f52-a1ac-4797-8565-57c3d71f88e5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fcda0f52-a1ac-4797-8565-57c3d71f88e5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-947b992b-7b93-49f5-8c21-885c2f84a480' class='xr-var-data-in' type='checkbox'><label for='data-947b992b-7b93-49f5-8c21-885c2f84a480' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>lhtfl</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>latent heat flux</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86089</dd><dt><span>shortName :</span></dt><dd>hfls</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hfss</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-67b2844d-2915-42e0-80df-3840291f4361' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-67b2844d-2915-42e0-80df-3840291f4361' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-15df10c0-e033-416f-8b95-0ec2f61c0281' class='xr-var-data-in' type='checkbox'><label for='data-15df10c0-e033-416f-8b95-0ec2f61c0281' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>shtfl</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>sensible heat flux</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86090</dd><dt><span>shortName :</span></dt><dd>hfss</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pr</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-5273877d-c6ae-4a74-88a0-70506ad97f6e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5273877d-c6ae-4a74-88a0-70506ad97f6e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-87cff367-e6a4-4bd8-b4f6-a443f953d1ff' class='xr-var-data-in' type='checkbox'><label for='data-87cff367-e6a4-4bd8-b4f6-a443f953d1ff' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>tprate</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>precipitation flux</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86077</dd><dt><span>shortName :</span></dt><dd>pr</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>kg/m2/s</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prls</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-75edd050-134a-4ff1-8a2d-fce3d2c325ae' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-75edd050-134a-4ff1-8a2d-fce3d2c325ae' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ce5205db-e001-4ae5-bcf0-a73b61c16ea8' class='xr-var-data-in' type='checkbox'><label for='data-ce5205db-e001-4ae5-bcf0-a73b61c16ea8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>lssrate</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>large-scale precipitation flux (snow)</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86081</dd><dt><span>shortName :</span></dt><dd>prls</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>kg/m2/s</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prw</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-47af8b0a-afa2-4c54-bb7d-ab72ba08bcaf' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-47af8b0a-afa2-4c54-bb7d-ab72ba08bcaf' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-79f8bb8d-9917-446a-a89a-3a5093232cb0' class='xr-var-data-in' type='checkbox'><label for='data-79f8bb8d-9917-446a-a89a-3a5093232cb0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>tciwv</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>vertically integrated water vapour</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86083</dd><dt><span>shortName :</span></dt><dd>prw</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>atmosphere</dd><dt><span>units :</span></dt><dd>kg/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ps</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-aa06f140-2d7a-4b4b-81d3-383e0e99b60f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-aa06f140-2d7a-4b4b-81d3-383e0e99b60f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2825ed2f-54ca-452d-9527-a95872e3c59c' class='xr-var-data-in' type='checkbox'><label for='data-2825ed2f-54ca-452d-9527-a95872e3c59c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>surface_air_pressure</dd><dt><span>cfVarName :</span></dt><dd>sp</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>10</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface air pressure</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86072</dd><dt><span>shortName :</span></dt><dd>ps</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>Pa</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>psl</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-bd2ae612-168b-4bdc-9b64-2f7d98867c5a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-bd2ae612-168b-4bdc-9b64-2f7d98867c5a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d90981f7-75c7-4520-b813-71f6774dbf70' class='xr-var-data-in' type='checkbox'><label for='data-d90981f7-75c7-4520-b813-71f6774dbf70' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>prmsl</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>mean sea level pressure</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86102</dd><dt><span>shortName :</span></dt><dd>psl</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>meanSea</dd><dt><span>units :</span></dt><dd>Pa</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ptp</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-e4920848-08c4-48d0-84da-05751ece3c87' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e4920848-08c4-48d0-84da-05751ece3c87' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bce721d3-113c-4c48-8ff1-c3d224ddfa29' class='xr-var-data-in' type='checkbox'><label for='data-bce721d3-113c-4c48-8ff1-c3d224ddfa29' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>7</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>tropopause air pressure</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86101</dd><dt><span>shortName :</span></dt><dd>ptp</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>tropopause</dd><dt><span>units :</span></dt><dd>Pa</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qgvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-4195b342-e60a-4c1b-94bb-ef81b8bef129' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4195b342-e60a-4c1b-94bb-ef81b8bef129' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-69883765-c1bc-49b5-98f7-deb2c89e0148' class='xr-var-data-in' type='checkbox'><label for='data-69883765-c1bc-49b5-98f7-deb2c89e0148' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>vertically integrated graupel</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86088</dd><dt><span>shortName :</span></dt><dd>qgvi</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>atmosphere</dd><dt><span>units :</span></dt><dd>kg/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qrvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-2e3b9b4b-b7a3-43e1-8f56-6096020e2f15' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2e3b9b4b-b7a3-43e1-8f56-6096020e2f15' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-11791dde-f02c-4fb6-b87c-23589100f4de' class='xr-var-data-in' type='checkbox'><label for='data-11791dde-f02c-4fb6-b87c-23589100f4de' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>vertically integrated rain</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86086</dd><dt><span>shortName :</span></dt><dd>qrvi</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>atmosphere</dd><dt><span>units :</span></dt><dd>kg/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qsvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-7aedd99f-ccce-4493-a1d0-856efb128979' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7aedd99f-ccce-4493-a1d0-856efb128979' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7c23c535-04a5-43ad-b21c-67197192bdd3' class='xr-var-data-in' type='checkbox'><label for='data-7c23c535-04a5-43ad-b21c-67197192bdd3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>vertically integrated snow</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86087</dd><dt><span>shortName :</span></dt><dd>qsvi</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>atmosphere</dd><dt><span>units :</span></dt><dd>kg/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rain_gsp_rate</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-e188609e-3283-4d54-8557-31a3f2f10f0e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e188609e-3283-4d54-8557-31a3f2f10f0e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-10af0f24-e84b-423f-ab38-b4fa9117b0c6' class='xr-var-data-in' type='checkbox'><label for='data-10af0f24-e84b-423f-ab38-b4fa9117b0c6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>10</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>Large scale rain rate</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>500132</dd><dt><span>shortName :</span></dt><dd>rain_gsp_rate</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>kg m**-2 s**-1</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlds</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-58972ce9-d390-4604-b288-44cb73409933' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-58972ce9-d390-4604-b288-44cb73409933' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-34caeade-56f4-4afd-8439-7a2bfdeadf69' class='xr-var-data-in' type='checkbox'><label for='data-34caeade-56f4-4afd-8439-7a2bfdeadf69' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>dlwrf</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface downwelling longwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86067</dd><dt><span>shortName :</span></dt><dd>rlds</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rldscs</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-6440b1a8-7e04-474d-94d8-1100c84b0f09' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6440b1a8-7e04-474d-94d8-1100c84b0f09' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b616cd92-d096-43d8-ac17-f4fbd2194a89' class='xr-var-data-in' type='checkbox'><label for='data-b616cd92-d096-43d8-ac17-f4fbd2194a89' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>7</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface downwelling clear-sky longwave rad.</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86068</dd><dt><span>shortName :</span></dt><dd>rldscs</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlus</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-35a486f3-c717-4483-84e7-e901c91960c4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-35a486f3-c717-4483-84e7-e901c91960c4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cbf10508-f426-49d6-95b9-344e690ef485' class='xr-var-data-in' type='checkbox'><label for='data-cbf10508-f426-49d6-95b9-344e690ef485' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface upwelling longwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86071</dd><dt><span>shortName :</span></dt><dd>rlus</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlut</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-72637312-558d-4d8a-a44e-7e4cc9fd29e8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-72637312-558d-4d8a-a44e-7e4cc9fd29e8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f1da6fd6-8799-4a71-bd40-74da2f37e25a' class='xr-var-data-in' type='checkbox'><label for='data-f1da6fd6-8799-4a71-bd40-74da2f37e25a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>ulwrf</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>toa outgoing longwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86063</dd><dt><span>shortName :</span></dt><dd>rlut</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>nominalTop</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlutcs</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-ff6cb0f2-be67-496a-8bae-29054effddc1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ff6cb0f2-be67-496a-8bae-29054effddc1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4a612dc0-6b57-4e17-a80e-56b8474c9d88' class='xr-var-data-in' type='checkbox'><label for='data-4a612dc0-6b57-4e17-a80e-56b8474c9d88' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>7</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>toa outgoing clear-sky longwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86064</dd><dt><span>shortName :</span></dt><dd>rlutcs</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>nominalTop</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsds</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-0f49d2f0-8e9a-40b9-a63c-421945baf51f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0f49d2f0-8e9a-40b9-a63c-421945baf51f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3fc3eec5-5ad9-439d-8ddc-7d0c8590a7bb' class='xr-var-data-in' type='checkbox'><label for='data-3fc3eec5-5ad9-439d-8ddc-7d0c8590a7bb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>dswrf</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface downwelling shortwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86065</dd><dt><span>shortName :</span></dt><dd>rsds</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsdscs</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-5ec15340-6f61-4196-bbb3-4028f035be9c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5ec15340-6f61-4196-bbb3-4028f035be9c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-56723d9a-c161-46ab-ac5b-e85393ee5318' class='xr-var-data-in' type='checkbox'><label for='data-56723d9a-c161-46ab-ac5b-e85393ee5318' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>7</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface downwelling clear-sky shortwave rad.</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86066</dd><dt><span>shortName :</span></dt><dd>rsdscs</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsdt</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-9762530e-cd53-4fd9-b970-a8f4453f9947' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9762530e-cd53-4fd9-b970-a8f4453f9947' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2555a150-43ce-46e0-9048-1a8c5dcd1fa7' class='xr-var-data-in' type='checkbox'><label for='data-2555a150-43ce-46e0-9048-1a8c5dcd1fa7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>8</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>toa incident shortwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86060</dd><dt><span>shortName :</span></dt><dd>rsdt</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>nominalTop</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsus</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-ca6b63c8-0e38-4776-b3bc-f7189d3c4c9a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ca6b63c8-0e38-4776-b3bc-f7189d3c4c9a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7b4116a-49af-45cb-be8c-699fcb439a6e' class='xr-var-data-in' type='checkbox'><label for='data-a7b4116a-49af-45cb-be8c-699fcb439a6e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface upwelling shortwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86069</dd><dt><span>shortName :</span></dt><dd>rsus</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsuscs</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-432c0573-3d01-42fb-b177-59f996f5951a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-432c0573-3d01-42fb-b177-59f996f5951a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2ffe7c05-7ff8-4f60-90b7-c4618d74e68f' class='xr-var-data-in' type='checkbox'><label for='data-2ffe7c05-7ff8-4f60-90b7-c4618d74e68f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>7</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface upwelling clear-sky shortwave rad.</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86070</dd><dt><span>shortName :</span></dt><dd>rsuscs</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsut</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-a7dd897c-e26b-4061-aeeb-07f66e9ada7f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a7dd897c-e26b-4061-aeeb-07f66e9ada7f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4e9b6e09-4594-46a6-9ba8-2d900db51210' class='xr-var-data-in' type='checkbox'><label for='data-4e9b6e09-4594-46a6-9ba8-2d900db51210' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>uswrf</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>toa outgoing shortwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86061</dd><dt><span>shortName :</span></dt><dd>rsut</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>nominalTop</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsutcs</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-87188381-a01f-453d-8a1b-1d4164c31d20' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-87188381-a01f-453d-8a1b-1d4164c31d20' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c188274d-de29-43f8-900f-cbd13adffe13' class='xr-var-data-in' type='checkbox'><label for='data-c188274d-de29-43f8-900f-cbd13adffe13' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>toa outgoing clear-sky shortwave radiation</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86062</dd><dt><span>shortName :</span></dt><dd>rsutcs</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>nominalTop</dd><dt><span>units :</span></dt><dd>W/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sfcwind</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-311a0cc9-0690-4f12-9269-cb56329f78a7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-311a0cc9-0690-4f12-9269-cb56329f78a7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2f3fabaa-3914-4f54-839d-aa5765ffbfbf' class='xr-var-data-in' type='checkbox'><label for='data-2f3fabaa-3914-4f54-839d-aa5765ffbfbf' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>si10</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>10m windspeed</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86096</dd><dt><span>shortName :</span></dt><dd>sfcwind</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>heightAboveGround</dd><dt><span>units :</span></dt><dd>m/s</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sic</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-01a332d3-7c43-4888-987e-9ad324da692c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-01a332d3-7c43-4888-987e-9ad324da692c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ac8f3393-6abd-43c6-834b-aff9fffd8491' class='xr-var-data-in' type='checkbox'><label for='data-ac8f3393-6abd-43c6-834b-aff9fffd8491' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>sea_ice_area_fraction</dd><dt><span>cfVarName :</span></dt><dd>siconc</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>fraction of ocean covered by sea ice</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86074</dd><dt><span>shortName :</span></dt><dd>sic</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>Proportion</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sit</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-246687e4-30fd-4ea6-8fb7-ecc17a324742' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-246687e4-30fd-4ea6-8fb7-ecc17a324742' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a44285db-1bea-43ad-9505-5b2749279e2e' class='xr-var-data-in' type='checkbox'><label for='data-a44285db-1bea-43ad-9505-5b2749279e2e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>icetk</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>sea ice thickness</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86075</dd><dt><span>shortName :</span></dt><dd>sit</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tas</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-de6c3930-dbde-4743-8a33-60223023432f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-de6c3930-dbde-4743-8a33-60223023432f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-621a0416-9ffa-4bb9-968b-4f467f11bed4' class='xr-var-data-in' type='checkbox'><label for='data-621a0416-9ffa-4bb9-968b-4f467f11bed4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>air_temperature</dd><dt><span>cfVarName :</span></dt><dd>t2m</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>2m temperature</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86099</dd><dt><span>shortName :</span></dt><dd>tas</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>heightAboveGround</dd><dt><span>units :</span></dt><dd>K</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tauu</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-b4f6f9d1-6f6e-4589-8377-80219fd8f9ac' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b4f6f9d1-6f6e-4589-8377-80219fd8f9ac' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9aba6ee3-ce96-4311-84e4-f7473051a668' class='xr-var-data-in' type='checkbox'><label for='data-9aba6ee3-ce96-4311-84e4-f7473051a668' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>uflx</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>eastward momentum flux at the surface</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86091</dd><dt><span>shortName :</span></dt><dd>tauu</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>N/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tauv</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-7cac30a2-d201-49c1-a4c2-2fd3339469e4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7cac30a2-d201-49c1-a4c2-2fd3339469e4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9f9c341a-8c15-4978-bf73-5d9b3153c932' class='xr-var-data-in' type='checkbox'><label for='data-9f9c341a-8c15-4978-bf73-5d9b3153c932' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfVarName :</span></dt><dd>vflx</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>northward momentum flux at the surface</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86092</dd><dt><span>shortName :</span></dt><dd>tauv</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>N/m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ts</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-1f182483-30c1-439a-965d-38d41f4da5a8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1f182483-30c1-439a-965d-38d41f4da5a8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4c9e7b23-8a84-4f36-abb2-7c4440967a16' class='xr-var-data-in' type='checkbox'><label for='data-4c9e7b23-8a84-4f36-abb2-7c4440967a16' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>air_temperature</dd><dt><span>cfVarName :</span></dt><dd>t</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>9</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>surface temperature</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86073</dd><dt><span>shortName :</span></dt><dd>ts</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>surface</dd><dt><span>units :</span></dt><dd>K</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>uas</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-67d40e02-151c-4894-a999-77c472fdf423' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-67d40e02-151c-4894-a999-77c472fdf423' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4cbeba01-f537-44bc-a517-44effcc60c75' class='xr-var-data-in' type='checkbox'><label for='data-4cbeba01-f537-44bc-a517-44effcc60c75' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>eastward_wind</dd><dt><span>cfVarName :</span></dt><dd>u10</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>10m eastward wind</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86097</dd><dt><span>shortName :</span></dt><dd>uas</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>heightAboveGround</dd><dt><span>units :</span></dt><dd>m/s</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vas</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(48, 262144), meta=np.ndarray></div><input id='attrs-a3015a25-246b-4e5f-a526-e1ddf5b99f21' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a3015a25-246b-4e5f-a526-e1ddf5b99f21' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eb17ad9d-363a-41bc-9b04-12e8bd756ed7' class='xr-var-data-in' type='checkbox'><label for='data-eb17ad9d-363a-41bc-9b04-12e8bd756ed7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>NV :</span></dt><dd>0</dd><dt><span>cfName :</span></dt><dd>northward_wind</dd><dt><span>cfVarName :</span></dt><dd>v10</dd><dt><span>dataType :</span></dt><dd>fc</dd><dt><span>gridDefinitionDescription :</span></dt><dd>101</dd><dt><span>gridType :</span></dt><dd>unstructured_grid</dd><dt><span>keepbits :</span></dt><dd>6</dd><dt><span>missingValue :</span></dt><dd>9999</dd><dt><span>name :</span></dt><dd>10m northward wind</dd><dt><span>numberOfPoints :</span></dt><dd>20971520</dd><dt><span>paramId :</span></dt><dd>86098</dd><dt><span>shortName :</span></dt><dd>vas</dd><dt><span>stepType :</span></dt><dd>instant</dd><dt><span>stepUnits :</span></dt><dd>1</dd><dt><span>typeOfLevel :</span></dt><dd>heightAboveGround</dd><dt><span>units :</span></dt><dd>m/s</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table>\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 686.33 GiB </td>\n", | |
" <td> 48.00 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (8785, 20971520) </td>\n", | |
" <td> (48, 262144) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Count </th>\n", | |
" <td> 14721 Tasks </td>\n", | |
" <td> 14720 Chunks </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Type </th>\n", | |
" <td> float32 </td>\n", | |
" <td> numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
" <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
" <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
" <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
" <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
" <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
" <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
" <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
" <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
" <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
" <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
" <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
" <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
" <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
" <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
" <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
" <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
" <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", | |
" <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" />\n", | |
" <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"25\" />\n", | |
" <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"69\" y1=\"0\" x2=\"69\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"81\" y1=\"0\" x2=\"81\" y2=\"25\" />\n", | |
" <line x1=\"87\" y1=\"0\" x2=\"87\" y2=\"25\" />\n", | |
" <line x1=\"94\" y1=\"0\" x2=\"94\" y2=\"25\" />\n", | |
" <line x1=\"100\" y1=\"0\" x2=\"100\" y2=\"25\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"106\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20971520</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">8785</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-12372153-55e1-49c9-92dc-94c7c625f70c' class='xr-section-summary-in' type='checkbox' checked><label for='section-12372153-55e1-49c9-92dc-94c7c625f70c' class='xr-section-summary' >Attributes: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>centre :</span></dt><dd>mpim</dd><dt><span>centreDescription :</span></dt><dd>Max Planck Institute for Meteorology </dd><dt><span>edition :</span></dt><dd>2</dd><dt><span>history :</span></dt><dd>🪄🧙♂️🔮 magic dataset assembly provided by gribscan.Magician\r\n", | |
"</dd><dt><span>subCentre :</span></dt><dd>3</dd><dt><span>uuidOfHGrid :</span></dt><dd>0f1e7d66-637e-11e8-913b-51232bb4d8f9</dd></dl></div></li></ul></div></div>" | |
], | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (time: 8785, cell: 20971520)\n", | |
"Coordinates:\n", | |
" * time (time) datetime64[ns] 2020-04-01 ... 2020-10-01\n", | |
"Dimensions without coordinates: cell\n", | |
"Data variables: (12/40)\n", | |
" albedo (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" clivi (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" cllvi (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" clt (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" cosmu0 (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" dew2 (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" ... ...\n", | |
" tas (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" tauu (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" tauv (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" ts (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" uas (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
" vas (time, cell) float32 dask.array<chunksize=(48, 262144), meta=np.ndarray>\n", | |
"Attributes:\n", | |
" centre: mpim\n", | |
" centreDescription: Max Planck Institute for Meteorology \n", | |
" edition: 2\n", | |
" history: 🪄🧙♂️🔮 magic dataset assembly provided by gribscan.Ma...\n", | |
" subCentre: 3\n", | |
" uuidOfHGrid: 0f1e7d66-637e-11e8-913b-51232bb4d8f9" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data = cat[\"luk1000\"].atm2d.to_dask()\n", | |
"data" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e741a615-cb61-4d82-bc57-3caaa0ffcc1e", | |
"metadata": {}, | |
"source": [ | |
"## Plotting timeseries\n", | |
"at grid cell closest to Hamburg." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "dc53f060-6453-4f01-b692-b14f0a386133", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7ffb67fa7a90>]" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABN9klEQVR4nO2dd5gcxdGHf7WXT6esU44gIZCEAhJCWIgoojBgcjC2ASOSjQEbLPGBTTAmGGPABmMZTDDZJgcTBCIJBSShnHOOp3AKl3br+2Nm9mZ3Z2Yn7uzu1fs899zsxO4JXV3V1VXEzBAEQRAEAIiEXQBBEAQhexChIAiCIMQRoSAIgiDEEaEgCIIgxBGhIAiCIMQRoSAIgiDEKQy7AF5o164d9+zZM+xiCIIg5BQzZ87czsyVRttyWij07NkTM2bMCLsYgiAIOQURrTHbJuYjQRAEIY4IBUEQBCGOCAVBEAQhjggFQRAEIY4IBUEQBCGOCAVBEAQhjggFQcgjYjGGhMMXvCBCQRDyiINu/xC3/ndu2MUQcpjAhAIRlRLRdCKaQ0QLiOhudX0bIvqUiJap/1vrjhlPRMuJaAkRnRpU2QQhn/nvzPVhF0HIYYLUFGoBnMjMgwAMBnAaEY0AMA7AZ8zcB8Bn6m8QUT8AFwPoD+A0AE8SUUGA5RMEQRCSCEwosMJe9WeR+scAzgbwvLr+eQDnqMtnA3iVmWuZeRWA5QCGB1U+QcgnVm7bi8nLt4ddDCEPCDT2kdrTnwmgN4AnmHkaEXVg5k0AwMybiKi9unsXAFN1h69X1yWfcyyAsQDQvXv3IIsvCDnDiX/+MuwiCHlCoAPNzBxl5sEAugIYTkQDLHYno1MYnHMCMw9j5mGVlYZB/gRBEASXZMT7iJl3AfgCyljBFiLqBADq/63qbusBdNMd1hXAxkyUTxAEQVAI0vuokohaqctlAEYDWAzgXQA/VXf7KYB31OV3AVxMRCVE1AtAHwDTgyqfIAiCkEqQYwqdADyvjitEALzOzO8T0RQArxPRVQDWArgAAJh5ARG9DmAhgAYANzBzNMDyCYIgCEkEJhSYeS6AIQbrdwA4yeSY+wDcF1SZBEEQBGtkRrMgCIIQR4SCIOQZBREjRz5BsIcIBUHIM0QmCF4QoSAIeUaERCoI7hGhIAh5hpiPBC+IUBCEPKO2IRZ2EYQcRoSCIOQZrcuLwi6CkMOIUBA8UR+NoSEqPdPsQsxHgntEKAieGHjXJxj10KSwiyEIgk8EGjpbyH8O1EdxYLdEIxGEfEE0BUHIM8QjVfCCCAUh42zdU4N3Zm8Iuxh5QV1DDP+esjphncgEwQtiPhIyziX/nIoV2/bh5H4dUF4sr6AXJny1Ag9/sjRhnWgKghdEUxAyztqq/QBk5q0fVO2rD7sIQp4hQkHIOPVRJcsqpyRbFZzCqRlrBcETIhSE0JAGzTtGgpV8GlWIxhgD7/oY/5253pfzCbmBCAVByGE4QHWrpj6KPTUN+P078wO7hpB9iFAQQkPMR96JBXgPtTGfIK8hZB8iFARLpq3cgQN1xpPTvPZSpa3xjpEJzu/x+wP1qc//QF0U8zfs9vdCQlYgQkEwZcW2vbhowlQ8/vkyw+1ee5BBmj6aCsZjCv4wZ/0u022/+c8cnPnXb7BzX51PVxOyBREKginaBz9t5Q7D7aIphE+Qpp3te2tNt81YUwUAqGmQECf5hggFwZSo2uIURoxfE7E1ZwNG5iN/dAWreSSi5OUvIhQEUzShYCQTVm7bi/FvzvN0fi8Ny18+XYpXp6/1dP18wOge+mWWs5PAzS/3VyF7kBgDgimaJmCU3vH6l2Zh8eZqbxfw0HY99pkyznHx8O7eypDjxAwEgF+aQudWZRbXVf5L5s/8QzQFwZSo2uAYmRH86IzK5DXvGA40+9RQaw1/9zblBtvUjSIU8g4RCoIpMbVVSNYUqmvq0RDznm2ttiGG2hwdqMwWrxujcR3/hIIajgSM6prEGEtOs+3VNkTjz5qZs+b+CamIUBBM2VpdA6BxbAEAlm2pxuF3fYIV2/Yl7OvGjn3UHz/DiD9+5q2QIfDV0m0Ycu+n+Hb59rCLYjxPwafuu/ZM11UdwOF3fYJlWxrNhU6dDPr/7mMMv0951i9OXYMh936KTbsP+FJOwV8CEwpE1I2IJhHRIiJaQES/UtcPIqIpRDSPiN4johbq+p5EdICIZqt/TwVVNsEeWljrZrrw1su37jXc1605aef+3IvyOX2V4o45c83OkEsS7EBvcsO/Ylvjs493FGw+94YYY/cB5VlrsZQ2767xXEbBf4IcaG4A8GtmnkVEzQHMJKJPATwN4DfM/CURXQngVgB3qsesYObBAZZJcID2vesHM4sLRbnMJowGen0zHyVJBf2zj3oYVNKONXJgEMInsC+cmTcx8yx1uRrAIgBdAPQF8JW626cAzguqDII3NPOBvm0wEwp2mwg/3EjDnAn97ymrsWBjdoR3eGX6WswzCDXhV1ObrCkUFxTEl6MG9qMte2rw+nfr0p63IWruwJBN/Hfm+iYZyiMjLqlE1BPAEADTAMwHcBaAdwBcAKCbbtdeRPQ9gD0A7mDmrw3ONRbAWADo3r1puyMGjdb26hvh8uICk30Z6ZqjTbsPYJzHuQ1AYz6GTBOLMe58Z0H8d9i+U2bzRPxySU12dy0r1mkKBkLhp/+ajsWbqzG6Xwe0aVZsel7ttNkuFH7znzlo06wYs+48OeyiZJTAbQFEVAHgDQA3MfMeAFcCuIGIZgJoDkBzQ9gEoDszDwFwC4CXtfEGPcw8gZmHMfOwysrKoIvfpNEGMY184VP3TU99gz/NqB+eT7mOUaOs4Z+m4Ox5ba2utXVclO2/V2FT1QS9pALVFIioCIpAeImZ3wQAZl4M4BR1+yEAxqjrawHUqssziWgFgEMAzAiyjII52jerb38ceiImns+nvnVYmkI2NWH1Vg/C53kKGkaX1O+iaZTpLq8JtFwQCk2RwIQCKTrsMwAWMfMjuvXtmXkrEUUA3AHgKXV9JYAqZo4S0UEA+gBYGVT5hPQ0CoXGj9esh5rJ79uqlxwke2saQrmuEVZCIShN4cZXvgeDsWWPcaC8BvW57NhXh7YVJYb7HHHvp/Hed1jPMR3/m7cJ976/MOxihEaQmsJIAJcDmEdEs9V1twPoQ0Q3qL/fBPCsunwsgHuIqAFAFMC1zFwVYPmENMQnL+m+XbNBXjtagF+CI6zGZE3VvvQ7ZYhMaEvJz3rzHmsX0halRaiuacCeA+ZuxnpzTLZqCg9/sgQbm7C7bGBCgZm/gXmn5TGD/d+AYmoSsgQjl1QzV0Q737dfTUBY3kfZ1LG1NB/5hNOhm7YVxdiw64Btod0QkhkwHQ3Z9KBDQJzOBXPUb+NAfRQzVitKm5deupOe4Zx1u1JCKyQVK+NkU1KgugYL81FA3kfpiJuFbB7nZa5DkGSrBpMpRCgIpmgmoe/X7sL5T03Bqu37PH0wdgVKTX0UZz8xGde+ONNwe1gfbTZ1IHdbmGgy6X2k30WTRXY1jGx1IsvWcmUKEQqCKcmN4O4D9aYfjJ122olQAIC5640nDoXXkcsiqWCBX6V0KgTLixRrdK5rCtk6AJ4pRCgIphh9s6ZjCjaaIrsfW61qGikxmT0tmoI1fpm5nN7nRk3BplDI0i65mI8EwYTkhv7laWvwzDerXJ/PrlDQcgMXFZiE1HD4zdY1xHD9SzOxcptxMD+7ZFNbYdVw+VHM9+ZsxGMTlzk6RhvL+MdXK+LhTKavqsK4N+Ya7h+NKe/Er179Hgs37vFWYB9p6kJBMq8JpiR/G6/PWG97XyPsenXsq1XMR2ZhEJx+szPWVOHDeZtRta8Or4492tnBCdfNnsbCsig+FPOXr3zv+BjtaU1dWYWpK6tw8fDuuPAfU0z3j8YYK7btxTuzN2LBxj2YeMtxLkvrL2I+EgQTnDSCdva02wPT3C0rmxtPgBLzUfCagl302qRRLm8rYszxehRkURykbHrOYSCagmBITX0Ue2vtZ0WzI0Ds+KXvPlAfNx/pQyszMzbsOoB2FSVYt3O/7XL5STalD7UqSSaFZkOUsWNvLRpi7NhrZ39dFNXqLPFsMtnYHRPJV0QoCIac/tjXWLXd3xm8dj78c56YHL+uvvf43txNuNGFSQNoNEftcyDkDMmitsJKCGeyfb3j7fn4cuk2V8f+5j9z4svLTJI3hUG2ekVlCjEfCYY4FQh2PiM7Ywr66+rNEfPW73JUHj3aeHWr8iLX5wCyy6xgVZZMajRuBUIyHVuU+nIeP8gmrSUMRCgIvmDnO3Kqlieaj5yWqBHt2EKPmb6SG9swGw+rS+dim5ZNGf2y1FM2Y2TPkxByGx+9jzT03kde2jmtkfQa/iG5+H7Yni97eqrjbHRLNlfjre83mG63EgrTV1Vh0pKtptvnb9iNk/78haPymPHEpOW2911btR/vztmIqSt32NI+Pl+8Bd+tDiZeZlM3H8mYgpAxnE5WShAKXjQF9b9X/5YWpYmfi9fGoz4aw+TlOzB5+Q5cPNx+FsFTH/3KcrvVeIPmIrr6gTGG28/86ze2y5GOP328xNH++jEjs/JpXPncDFv7uUHMR4LgA/ZmNDs9p7Pzp8Or12PyvAmvgUqDanuadpMmeEWEguAL9iavOWtFtR4vM3scUwgm7IPXHmVQPdIm3tH1TPbMmAgHEQpCAuPemIsRf/zM8XF+Tl6Ln1Pd/bKnp+G5b1c7LpPGu3M2AkDcJ94tyaVPN/N1+dZq9Bz3Aeas22V8voAa7817atBz3AfYmiYpTlOg57gP0HPcB46OSTf2tGr7PvQc9wFmrtnppWhZiwgFIYFXv1uXNsOWW5wmVdFMRt+u2OHpuu/P3QQAWLPD26S3ZI0jnVD4dKEyoPvhvE2G24O2Xc8xiTIreONLdaD+3dnmg/25jAgFwRfsmGjcagp+4bURTj483fm0gfXCAuOeZ9BCIRPZ2fKR5KeV7GWm/fQrmVG2IUJB8AU/Jq8lCxa7jebyrdVYa6IFzN/Q2Fv26kGafHw6TUGrb4FJUCCzw79aus2XBn3Zlr1Y4SAy7IyAXDz9YvLy7dhanajFfjR/E5ZuqcajE5cmrN+6pybh2XtB72W2cOMeLNqkRHQt8DjvJVsRl1TBF/yYvJZ8Drsd6dGPKC6aRu6JehfLfp1b2DuhCU6FliY0zNoOI+1q+qoq/ORf03HtcQdj3OmHuiuoyl8mLsVfJi615bZZ1xDD+U+ZRzQNm1iMcdnT03BC30o8e8Xw+PprX5wVXx59WAcM6NISAHD8w19gf53HsCbatXXP6YzHv44vr60KJwZX0IimIGSMdG188na/jSvdWpd5Ot6ppqC1JU5CgFftU4IBrtqe2VhA2e6bryVemrTEfGLbzv118WUvAiH5cZk5zeWpoiBCQfAHO/MI0msKnPLbz4iVXs+UOtCc7nrK/mZth3FDTOq1HBYuzzmgpmgtNkm8BPgXm4qSnpjZJMXk/fIFEQo5zvqd+3HxhCnYU2OeyN0ud7w9z/3BNj5Ix5oCA3VpWt5LJkxN+L21ugYXPPUtJi3eiiuf+y5h28vT1qLnuA9sz1u45fXZmLhwS/zYBz9anLDdqFGftGRrPEGNVvRZaxtdF79etg09x32ATbsPmDRirO633VYZ3fKTf03Hgo2NNnev7rp+c9E/pmBvbWOZNKFQF42Zupj+7p35eNsk/EfPcR/go/mbTa93+1vz8P7cjYbbzDRCqzGF+z9chOcmrzLdns2IUMhxHpu4DFNXVuGjeeYvvF1enOosBo8eO81surY4ZUwB6c0AU1Ymuqu+8O0afLd6J6547jt8vtg4xo/dzFpvztqAn7+ghFO4/a15KS6eRue54tnv8J46L2KL6tqrN3lc/sx0AMC4N+YZCifNTKI1gkHx1dJtuP2t+fHf/5tv7DYbFtNWVeFL3X2rb0g/8L5mx37c9Nps0+3XvjjTdNvL09biFy+rYTZSzEfG78uQ7q1Mz/ePr1birvcWmm7PZkQo5Djx9zUHNNn0mkLqQG4Qtm6ngfnMSBf7KF12NKNiZDIVpF4oZbu5KszimZqPxCVVyEbS2a3t0uDRBTJdo7J7fz127qsz3R6NMbbuqU05p+O5DTaaD7+EQl1DDNuqa023H9BpOVo2OY1YLFHgbdlTg427DmC1Lp+Efkby9r21qGuIxbUPP6hRtZEte2qwaXf2zX7WGuPqmnpUOzCPJrutOmH9zv0pmsHMNTsNhbUdM+S6qtTzZTvikprr+DSRRm+/dVcM6xf/oglTsHhzten2hz9Zgr9/sSLpnMH0YL0KQI1PF27Bpwu3YPG9p6G0qCBl+yfqeAQADPvDRKz84xnx34s3VycIhaMMQosM/+NnmDL+RHRsUYphf5joS5n1LN2y1/Ta2cC97y/EWYM64/C7PnF03PD73NfnmAcnpay75t8zceXIXvjdD/slrLfzbo56aBIeOm8gLjyym+syZZrANAUi6kZEk4hoEREtIKJfqesHEdEUIppHRO8RUQvdMeOJaDkRLSGiU4MqWz7hl/WozobN1rIcaT4QK4EAAB8vSB0T4YDMR3ZMNE56d0aD4Ua9SP2a4gKy1ahs3VOb9aadoLDSwjLNS9PWpKyzG7n3m+XBOg34TZDmowYAv2bmwwCMAHADEfUD8DSAccx8OIC3ANwKAOq2iwH0B3AagCeJKLX7JSSgNZpezZt+mVTcYtRQx5gd29jtNKB28iA4EUZGAsTocL2giDkwjWX7HIKmgJGnUY5ZhWwTmFBg5k3MPEtdrgawCEAXAH0BaFlCPgVwnrp8NoBXmbmWmVcBWA5gOARbeBUKXgc4n/lmFdZ5mOFpdGw05tx8ZGd3OxG89bfjkU+Xmu8IY4FqVI4Xpzb2NjfvqTH1jtJTH40F2vgku9lmGy9Pc+8RZ8R/ZqxL+L1mxz48a8N1tMDgAzN6NzfvrsFTX6aaQXOJjAw0E1FPAEMATAMwH8BZ6qYLAGjGti4A9E9svbou+VxjiWgGEc3Yts2fpOG5TDzVpEcDkh9C4af/mu76+OalRSnrkgdj7fC9bk6AGU41hcc/W2a5r1H0VyPzUbKL4t02XBaf+3a17Xsw+rD2OFwN82CX5HGcbOP2tzzMnTHg1v/OTfh90T+m2noORp0uo+dy/Usz8cD/slvQpiNwoUBEFQDeAHATM+8BcCUUU9JMAM0BaC4pRq1ayl1n5gnMPIyZh1VWVgZV7JwhPqaQBeajao+D1clEmR31kpk57udvhZ3xAifCyCh4nV+9w7qGmG1t6Zcn9sHDFwzy6cpNA7uTPiMG5iMjwZ9tkwDdEKj3EREVQREILzHzmwDAzIsBnKJuPwSAFq1rPRq1BgDoCsB4iqEQp3FMIVxNAXA32G0VP8apptAQszcG4dc++usm49cwQITI9j0gAooMwnTHYmzYqAn239kCorRhTnLN9dSMwIQCKa3UMwAWMfMjuvXtmXkrEUUA3AHgKXXTuwBeJqJHAHQG0AeAe3tEUyFuPvKGH0Jhq4G3yMcLNuOaf5vPJLW6bJTZUSrNI++biF370/f8bJmPHDhjnfDwFwASo7Qecsf/7J/Ago8WbMYXf0g/9gAoAqS4MFX5P+j2D30pS75QXVNvaK60Yse+OvQan3gf9e/RW9+vx82vzfGlfHp+/vwMzNuwC81KCtGpZSle+vkI36+RTJCawkgAlwOYR0Sz1XW3A+hDRDeov98E8CwAMPMCInodwEIonks3MHOwc/3zgPjktZAHms14dbr7gcJojNMGndNjRyAA/puPgqam3vomdGlVhhtP6o1+nVqkjRUlAFX76uJCwYuGrX+P7rEYl/CSI3ziIm2uSy1Wbttnua9fBCYUmPkbmHdgHzM55j4A9wVVpnxE69F6HWhucNI1doDdRCRGH46bgWY72NEU7OyTLbStKMZFR3YHABRJkIK06PsEXr4avdkwk+FJgkbeoBxH0xS8Np5B9YzNcgkkY3T1aIYnrx2oi2KSmn/XjX34y6XheMPpb1G+ZgPzE/07VetBs9Kfx28nizARoZDjaO+l18bTyK3SD7w0Um7mKdjBTCn6v7fm4Ypnv8PyrdWu5gZ4ccn1gt2ZtX7SvCR3I+To3ykvM/n1nYscUizTIkIhx9HeRa9CwQ/1d3C3Vq6OM7O5BhUl1cw0tEINRldd05BT5qOALH+WzP79KejUsjTzF/YFf55tPpmM9IhQyHG0BtXr+KIfjaDRGeyctj7KhgdHY87mKdjF79hHYRNGSQsiuZt3zK+xeLsdltx5kxRyVwdswjw6cSkaooylW6oxcZFzG/i+2gZcPGEq2jcvQf/OLXDLKX1DjX1kNPkLCG6g+by/f4tzBnfGoxcPMdz+8YItOq+P7MeLd4sXNmZhuG07nProVxjYtaXSGfGA02+m57gPMLJ324y4lXpBNIUc5NGJy/C3ScsTQjM76el/t7oK8zbsxmeLt+Lxz5crxwc0pmAHM6EQ9TlHs563ZxvMi1Tv4VNfrsDyrXsDuW4QJD/6Pwc8q3n86Yd6PsfI3m3xg4Pb+lAad8xdvxuLNu3xdA79u3nWoM62jpm8fEf6nULGUlMgorlW21W2MfNJPpVHcImTHrWRR5AvNnSX56iLxgx9A4MyH5mRa2q+RvJA83lDu+LX//F/IhUAvH3DyPjYUXFhxPVAbe/KClwxsheOVyf+5SJ6M2SPtuWm+/lpZovGOHAPs3TmowIAZ1hsJygzkXOe7XtrUVZUgGZZ7FURjTFW7zCewGLUo968uwZ7axuw+0A9+nduEU8EY+Ql6segWYyVzFVdW5eDmbF+5wFbx9XWxww/nKAGmjXWVe1HtzbKx7xi296szD5mh0wKTn20UC9tU4xz3312854azFu/G20rii1NSTv312H+ht2m252waNMe9OvUItCwJelawGuYOTW7hA4iut7H8oTGsD9MRI+25fjy1hPCLoopL0xZbRrR0ahRH3F/YwaqogLCsvsU+W6kKfgxpjBvw24c8+AkfHnr8fh88Vbc/d5CdG9j3oPSmL9ht+HM0mhAYwoaox6ahKd+PBSnDeiIk/78ZWDXySciOoPz6QM64a3vN7g6D4M9z8IPm6+XbcfXy75Ju9/k5Ttw5l/T72eHM//6DR46fyAuHBZcJrd0YwplZhuI6EEgPnM5L1izw30+gEzwlcXkqHRDAvpBNaN21k/b/ZY9tZi2sgoAsNZmjgXj0MTBu1su2OhPDy5Mgh5ofm1s48Covnf/4HkD8c4NI12dk/NAUwgLO+HhvZBOKDxBRGP0K4goQkTPAZAYvRnGqt322jCE6X0UY3O7a1DhN/KJoJ2PjjqocUBYr2UWF0bQqZW7uQoxtj/bXUgm2PuWTiicAuDPRHQuABBRKZQxhCIAPwy0ZCEyafFWfDQ/NWdwJlm+tRrj35yLXfvr4uusTClOxgT21SVOyf9o/iZ85rMLppNZtjFm08BkM1YH2yvKBzIpzpMbcqOMZHbYc6A+581Hbnnwo8Woj8bAzDji3k/x69fnoOe4D7BzXx1iMcYjnyyxzE/9yvS1mLNuV2DlsxQKzLwawGgA9xLRtQA+A7CUmS9jZnshKXOQK577Dte+aB7uORM8+cUKvDJ9HaautOfC5sR76IlJyxN+X/viLPzPhRBsWVaEYT1aG27bX2c/wG2M2bTv87eksvqNm8iTx/Ruh0M7Ng+gNO4IatylY4tS/P2yIxLWJZt83JqAPpi3KXfdvTzy9y9W4L05G7G3tgFV++rwxqz1AJTxgumrq/D458vx2zesHT/PfmJyYOWzFApEdASA9gBugxK9dB2AF4noCHWbEBD7a5VGVa8AWH37TsYEvMR70TOsR2u8MtZ4Io6TWErM3kN/Z5K/XjIE5x6Rkik2NIIyH7109VE4/fBOAIBe7ZoBSNVIszl5z4XDumL+3aeGXQxDGqKp7tY19dH4/a2pj4Y2KTGd99GfdctzAXTQrWMAJwZRqEwT1s23wm5O2MZtARbG9JpsaBcmMp+QZnaeoO2kZrgRRkRAYSR75n0GFRCvuCCSspzcoXBrPsoEESLDTHTZQnK7k2xCDWucz1IoMHP2+mf6SDYHtmIGdu2vw+B7PrXcz0kdvKbujF+TjX3VL3hqiqPzhHn73dwLcpAiMxMENRZfpBMKh3VqjiVbqlFSlCgMvXgQGWWJ85NZa3eiKIuEt57b3piL295IXLd9by0ue3oaAOW7f/7b1ZkvGOyZjyzJBzNSNsoEfVtlZxKYk0bKT83IDwGjDDT7UBi313f4AhABJQE3aNmAvpd9/7kD8dwVR+LgyoqEfbx4ELUqL3Z9rB1WbNuX1eYtK4jsffdBkM589CwRHQ9r3f4ZAMaRxXKEbOr1uSUMbccv4cIWA82ZwGmIjwgRWgbcoDkhKPNnkU7wlRUX4Pi+7VP2yea5BtloFnZCTX042YjTCYWWAGbCWiiEk24qT2FmvPbdOmzQ9RLs9MacyAS/vhW/zhMLcaD580Vb8NBHix0dQwAKs6gxDKrp048pmJFFtyGFbBZY6fh2xQ58uyKc4HnpxhR6ZqgcoZJNmsLqHfsx7s158d8MRnlxQdrjnNRhZO92WLKl2lX59Px4RHfP5wA0l9RwPuB9dVH88+tVjo6JEGVVgxPU61tkQyj4NT4VBLedqkRzHdWnHb5etj3k0uQO+W8YtUEWyYQUr50YA4U2PCicmI96VTZzXC49BRHC6gfG4LQBnTydRyNMTcENRMF53fz1kiEYe+xBjo7xu1Nz5sBOWP3AGNeCb/UDY9Lu07V1agSdswd3xte3+efbcrV6H1+4cjguHNbV1Tk+vHEUelpEQA2DTi1Lcd4R7upjBxEKyC5NIbkszGxLaDmqQxbVF8g92y8RUBCQq2OEyPHgrd93L8zwE3Y6QE4hD5pdQYSybrC6IEKB5uUWoYDEj+ryZ6aFVg4gtcdvt7HXe9DMXrcLZ/0tNU5hz3Ef4ICDmcZm+N2Ix2LhDjQ7JUIU2JhCQQSYuabK0TFWIRHckAmZ0Ly0KGVdkEHyZq9zF/iQyN2s9yCJEAXar7MlFIhoJBE1U5d/TESPEFGP4IqVWVhnsQnb9pj8sGMxex17vQfN3z5fhrnrjT+CJVuqQ48ucOupffHSz4/CnWf2A6CZj3JHLBCCa7yICN85jPdkdOue+vER+PXJhySsO7V/B1w+Iv1n64emMOHyoabb7hhzGJ756TAAwCtXj8CZAxUzZIzZt0mB9597eMJvt1nWwlYS2jRL9XIjCta6YfcJ/B3AfiIaBCXkxRoALwRWqgwTpCrmlBTzEeyVTz8UUWcRYoKZPeem9er9esMJvTGydztcoNp5s8l8ZwdFUwhGyXbTIBvdvtMGdMLZgxNDcXRtXY5bkgSFEX60g6f074gBXVoYbvv5qIPQuZUypnD0wW1xSv+OAJR33S9h618YknClwlG92qSsywpNAUADKzaDswE8xsyPAcieiGAuYGYs37oXu/fXY6vP6rcXkhvcmM0xBb1Jx8q8s7W6FmtMsrdlGq0B/HDeptwbaA6oC+nnaZPHPSI2x0L80trsCjitzszsm1nOL0eAsDWFQgMPsKA1Bbu5J6uJaDyAHwM4logKoITPNoWIukHRJjoCiAGYwMyPEdFgAE8BKAXQAOB6Zp5ORD0BLAKwRD3FVGa+1mF9bPPStLW44+35QZ3eNUYDzXZeAP1YhNX+1/w73OiverQZs7PW7gq3IA6hAMcUIkQoLy5wFGX25H4dDNcnx/0Z2qONrZnYG3Y5SzbVrLgA+wzKa1e4aHXdfaDeN2GbfJ6WZUXYfcB5YOewcz6c0LcS783ZGP/dr1ML1DZEs0JTuAhALYCrmHkzgC4A/pTmmAYAv2bmwwCMAHADEfUD8BCAu5l5MIDfqb81VjDzYPUvMIEAAHPX7wry9K5J7uXH2J53iX5MIVfy0pQUpp9/YcTVo3olZAMLg+DGFFLt4VbMuvNkPHGpcaSZCl2+8em3n4TTBnS0dc+r9tWl3UfPd3eMxlvX/wBAoqup3TvUvnkJAH8H8JMF0j8sxjiszwNcdpT9+Tgf3jjK1XWMKIgQztW5ns753Sl48/ofKOajAE3edjWFm5n5t9oPZl5LRP2tDmDmTQA2qcvVRLQIijBhAJqxsSWAjcZnaJq4NR/FbGoK+UBFSRG6h+w7HoTrJKA0jE7iKhkNRGroJ5+1b2E/Q5rT3nF5cSFalimGA/2rZ7d91wRsjDkwYVta5K4DEiFCq3JLo0gC/Tobj6O4oWPSM2uploMo2I6f3bfvZIN1p9u9iGoaGgJgGoCbAPyJiNYBeBjAeN2uvYjoeyL6koj8E7kGeBls3VZdm5IVzQ2xGOP378zHl7rcy6kuqcDuA+mvYzfvQj4QyYLQ1UGZj6IxRoFPdctkKA6tMddrunbNR9qx0Zh5Bj6veBlj8Ot5OMXsskFrCumipF5HRPMA9CWiubq/VVDyK6SFiCoAvAHgJmbeA+A6KJpHNwA3QwmoByhaRXdmHgLgFgAvE1GK2CWisUQ0g4hmbNvmPuzSzDXu0zz+e+oavDJ9Hd6d403J2bm/Ds9PWYNfvDQrvs5oTOHBj5YkH5pCgvkoQKlw/tCueOrH7lRxv4hEwo+TH1RDsXrHvsBMKEGiaRf6N+/hCwYl7HPB0K647bS+KcdqDXaQQR3dPq5ozL/Bb6eYCTIldHtw1013q16Gkov5XfW/9jeUmX+c7uREVARFILzEzG+qq38KQFv+D4DhAMDMtcy8Q12eCWAFgBT/OWaewMzDmHlYZWVluiKY4kXS7lEHrJxkFzNCe7DVtY05k5Pbc2Z7CWuCNh91aFGC1Q+MwcMXDMJpAzr6fn6nGHllZPT6ATYUYc+gdfP66E1AGr3aNcPqB8bEU5deMbIXrj++d8qxminOjlCwE0LDqnxGnDWos+m2IE1a6TAz4xGCjQKQLiDebgC7AVzi9MSkdFOeAbCImR/RbdoI4DgAX0DJ3LZM3b8SQBUzR4noIAB9AKx0el27eFEntZfXq13Z6MEmN+h2xxT0H1SeW48CnVFsuwwBXT/G4UdgdRpKHNCbj1K3ad9Jg4khPJIBTcHqe7e63bEAZ1mnw+wdi0SCNRHbHWh2w0gAlwOYR0Sz1XW3A7gawGNEVAigBsBYdduxAO4hogYAUQDXMrOz+f4OcDdJiNFr/Ifx315fFqNvIHWg2V4j/8nCLTj6/s8wZfxJjpPG2KFfJ/8G0LxCZC+CZ5AE1XB3aFESegRWNx0m7QijV08ztZmN48XHFAJs6SpKzZs6KzNbWXFBaELazIU2EnDmv8CEAjN/A3OvtBSjNDO/AcXUlBHs9PRiMU7YLzlnqtdUf0YP1mhMwS6bdtcoCz7bkv9z7dE4LAShMPGWYzH6ka9S1kfI3aSiCZcPxVif5mmUunSn1XPcIZW4YmRPLN+6F307Nsecdbsw5vBOmGEy3vXq2BG4eMJUz9fVePZnR+KK575LWV9mI1R7ChbPoyhirQloHTSv5lgrOrUsw7NXHIkrnk2tr1HRf3p0D5x+eCd0aVUWmpDWYlpNHnci9tY0mpgJwWaLDFJTyGrsPOcoMyK6Vyb5pfVqPjIUCi4D4unx+xU+smfqVPtM0Lu98aR5ArkaRNXCKfiCDzf53CO64Pi+7eMZzUb1UcbIzBqhEQe19X5RHScc2h6FEUrp7HizV6cem858ZGV68pMTDDLHAcaaQllxYfx+h625dWmVGGaciAI1ETfZKKn2spkl3vr6pJfa68uiP/1zk1dhyeZqTF6emG0pxnD8tYQ9NT9osiEkhh/32OwdzKS5wqjT4caMY5UkSXMfNtMECjNgPrLC6DHo1wVhjvXC9r21+GppcAkvm6xQOO6Q9J5LyR0bvQoHeJ8Cr/8g73pvIU599Cv8a/KqhH3Y5piCn+XSM7J3+t7pj4a4Dz52an/jEA1WaPXr72GiULuKElfHHau+N2UuJ0PpMXtMVp2Nk/t1wJDurWxf4+iD2sbLrHHO4M44pEMFAJNxLRcTo1qUKUaHmw0C7l11TC8AMDVBasHxrj/+YOcX9gGju61f9/yUNQnbeticOKlN6POb9Wqq3qA8kJqsULAzIza55+L3I7DTAbHrfaTHL5nwl4sG4aWfpw8n8ZeLBuOGE9x90P+4fBj6tK9wdewHN47CzaPTR/00YsYdox0fc/7QrnjhyuEAFJdYM/fI568cjlX3n5H2fGbC20oo/PMnw/DW9SNtlFbhlbEj4mXWePTiIfjk5uMAGAs3NybLksICrH5gDC47KjU09wmHtsfqB8agsrmxIG5WUojVD4xJCOmQSchgjEr/bLbvTQyY+crVI7D6gTFYfp/1/N3XrznaVlRatwSlWDVZoWC3QU747bMaaefjY2bHcyr8mrTkJG+ytxmjzo7V342gwk14IUL2noFZtcMOwpbvYVKSSRsKPel2NLqkWzefRsLGT4IytzVZofDM1+mnQCQLgZSJZbrlhRv3YPA9nzjKgmVH/YvGnKnzA+/6GKu2+xMa20nb5MVv37FQ0N23TDagLQyyhRlhX0Ca+KFnUCa0rUiNnRTkfIFshAho3Szx2eoFYwuXZiBCsLPKg3pOTVYorN6RPjxw8k1PMSfpfj/99Urs2l+fEMcoHXaeqVM9YU9Ng2/pGZ280F40heSB1Y4tSvGHcwaY7q9/DFpn7cRD2+Oa49InvH/8kiHxMB2dW9oPEtetTZlhiAYjtPv26EWD8f4vj8FvTzvUcD/zxj9zUuGVq0fg/nMPx+OXDMGjFw0GEH7srNevORrPXznc8h0AgOalhbhoWDcfrkh44LyBCWv036aWIRAAzh7cGd3a2BtTIBf5tp0QlEbXZF1S7WAUsdQMbYuTXp4985H98/mNk9fZT03h2SuOtJwXETXQFHq0Lcf5R3TFP7601gD1IQ1GHNQWb36/IW352jYrxte3nZh2v8YyKf/PUQfgB3RpiQc/Wpyyn5nQzaT1qFubclwyXAkNvWxLNYDwzUfDddnGrHKevH7N0SiIEF6bsc72uYlSv6kIAa3LEzUmfYdP06aG9miNxy4eYvtabufT2MVrBkUzmqymYId0E8n02918SHbMQswcaJwTK5z0cry45yYnlEl3Xb0GF3dnTJpoaAubu9fU2094A9gXkNk2ppCJmcV+EiEno14KRlUzsv3rd9NCmdc12LPjaucKWlNosBETzQ0iFCwwCmOd8Fv3TGaoydaTXUqteG9u+iirYX6eTt5nL+ajxZurE8+V5q3UP5eB3VoBAI7q1dZxGZJ7h2YYZRWzopVNG7RZg9HaRvx+fTIbv4gHtcuRJE2APzZ7AqWYXPUdsU4tlXs9+jBz92l9DgytTBEKNrhh8qRDvxDzkQVGwen06H9t2KX4Di/alNjAWbF0c/p9mcMzITl5n/3sEKX70PVC4YjurTH7dyejVXkx1urGiebedQoG3vWJ5Xn89COfecdolBYVYMOuA+jTwWb6cpNqtiovxnf/Nxp3vj0fHy3YbLjPxFuO893MYxTpNGyMzD0a9dEYCgu8zxeJELC3NnEOkr69rWxegjm/OwXNDeInzbrzZBQQoaQoEi9nhJTgbQRybD46vm8lfnVSH/zoyW/T7msnerIbRChYkNxjSvlt8LY6MaPY+fRiLlxS/SMz5qOUczkQCoDSiAKJMfPteAr52Ydrq06GO8SuQEhz/crmJZbutm4ziVmRjUKhS6uy+GStZGoboih3E6cpCSMzT/I9aGmivRllvlOMWqyapZy9ZZ1allpm09MTVKwoMR9ZoLetvjdnIx7+JDHZzW3/nYue4z5IWGc3leJd7y7A54u3pt3PRZQL33DSzvspFNKOKZjcEKdlCDtvQToyPbagXa9Vmb1GKRNYRcOtrfevp5zsAeflm9Mem5t5CkRk+z02iyXllSYrFNqbzK7Uo+8t/PKV7y0b8XOPUDxNzh9qb1bmc9+utrWfmzAXXtCHtXBir/XSgA3t0TrxXA7GFPQkaxhP/XgoLrVIuv7jET1wxuGZSRj08AWDUsqSruEZf8ahGHN4pwBLlUi7ihKcObAT/vAja1fQTPLkZUeYJsEZ1rMNerRtFv/2NH6uhtWwS8SgIfaiLWmvYYScB26MENC5pb3xIvE+8pmBXVul3cfJDOb2zRWfd7Op/G7JtPfRP38yLL6cKU0hWZCmEzBm9yO553/agI6WYTBalhXhycsyk1r0/KFdcc2xifMo0pkFO7UswxOXHRFksRIoiBD+dukRoUXFNeKwTi3i8yeSKS6MoCBCeOTCxu1z7zoFd+jmFdiBKHVmvBehoL2/bsxHESLbGqxMXvMZOw+9OmnwyYqg7P6MzGoK+pc4U95HyQIlnYAxe3RGZcgmC1FyA5FFpvusxomZz83jJvj7bLQzRcj5QLMTISJCwWfs3NBzn/wWXyyxYffX2Xice05bE4sxurW2N4PSD/TvpJO6ePHNT9bI9GXobjB71OzRGZUh7Fj4epLLIkLBHZ0sZqK7MWNGIoQOLRLPmeyN5Oh8mqYAoGp/naNjnRQ/KJfUJisU7KqHXyxJH7YiGmvUE/weG2QAZw50b1d+/JIhOKFv+jDhGq41BYs3aUCXFnj/l8dg4i3HYur4k1K2t0ry7ND3+N+5YSTeviExKqjZszMSAG792K8Y2RMf33Rs2v2m334SJt6Sfj/AQCjYLMuU8Sfii98cb3Pv/OeDG0fho5tGGW5LJxSm3X4SrhyZOOZASA3r7cXds3GgmVCc9GHce3Z/y2O18k+85ThMuz31WwGU8SlANAXf8fOGBjkD1OtAc4fmJa7dJP0aaG5RWoQBXVqid/vmaN8itZdXUZIoFPTnat2sOCU/tNmYgpH5yK2m0K6iBH07pr9v7VuUmmaISyad26MZnVqWoWe7Zrb2bQq0aVaMQzsah0FJ98p2aFGKa49PipFlcEyNB88mTWM1GlMY3c86f4j2uvZuX5GivWhoExfF+8hHmBnfrtiRfkfY+3D1z0Z7BT5duAXrqpTJVG9/vwGPJLmz2mX+ht1ppUKxhRtsJEI44CBMg/4ldtKeWgmFdPewpCix/MlmILs9bCOvJbfWoyCybaWaj8R+5BfJPXIrUt5Vg8ewWct37gLS/U+dAOuwbAboQ7sEQZMUCpNMxgnaGkwasfPdRnUeQtozvfqFGTj5L18CAG56bTYe/3y5q7JOX12Vdh+rD4IAvJCUOcoKt2MKVj3ydPewT/uKhDy0qQlPEn+bCZkiA6ng1lW2Qp292rZZMW491V501HSUJgm/fbXOwmcI5tx1Vn8UF0Ys5zVoJGuUWqepXUUJTjpUyeNc2+D+2WjvHKMxNMaNJ/ZGr3bNDNuYBGy8rtq3JmMKPmL2Mb52zQg0S5ohacerKBprzI6mb0i9qKBOylBkMfPVqk00yhxGAWgK6e5gq/JiTB7XGIU0WcAkm7HMhIzXgWYlc5gyl0BLoDLzzpNxwwm9bZ/DipLC5HdL8ItLj+qOpX843dbzTn5XtcZ1xh2jcZsa5tzLvBvt0BgzerZrhtUPjMEtp/TFpN8cn3Ymuj1NQXk3ozJPwT/MXhwymGxiK0NbLNhAFOl62la9I08Bw/yap+Dw5qT7MJx0kJx+3NruQZh2UiZINbFkNtmCVUZF7RF5eTLxb87FSey8raIpBIBZ+1VAlNKztm8+UpaDiEww7s15ltsthYKH6zozH5lvS85qZYYW8yVdQ97CIDCZGc6jaauqfwba6+SxFCEzJL9fetu8Nj6X1sxjQYcWygRWsw6Z1QRXW5qCahn41avfuyhdeppkQDyzhxUxjH9uZ6A5zKB1aQaaiXDnmf1w7/sLHZ/Xi/lo7LEH4fIRPfDF0m04a6BxmIJk/vWzIzF3/S7D+jx03kD06VCB79fusgxd8Y/Lh+IgnaeOHU3pxauOwp6aenV/W0V1zd8uHYI+7Ztj8vLtONPmfRGAN647GnUN/nxjLcuL8MNBnVHfEMNHCzYneA/2aNsMD5x7eFovISv+9dMj8cXSbaaN/71n98e1L84y3Gbn/dM0hVqb+R2c0iSFgpk0jkQMBjVt3Pewk5JYDjQT0KWV/bSTice6H2g+f2hXdGtTjstH9LB9jsHdWmGwmh8hmQuPVNIuDune2vIcp/Z3HsvomD7t4staLYLyDNIEgR13V6GRoT38Db3x10uG4M1Z6/HRgs0pZryLh5t3OuzQvkUpLrRIE9rKIo+HnW9O8z5qXhJM890khYJZG2oUGGtrdQ1mrd1peT79QLNVW7J48x50blWGBRv2OCluWooKzV8kN0G5Go91sm/izna8QLIR7V6JtT//acw0l9nrWmn2TsYUgtJqAxMKRNQNwAsAOgKIAZjAzI8R0WAATwEoBdAA4Hpmnq4eMx7AVVByVNzIzB8HUbZCkzCcRg3opCXbMCnNrGa9NhFLCmCn74Wc9ujXLkqbnnQN8Mw11kLNDCcvXbLPtNWLn80c07sdnvt2NQaZaCxC/qB1ZDI94K+FrWleWojqGufhNLT2K6jQ70FqCg0Afs3Ms4ioOYCZRPQpgIcA3M3M/yOiM9TfxxNRPwAXA+gPoDOAiUR0CDP77sxdZpKYw22ibf08heT8B5lIWGLtfdSYFc4pTjSM5NSWFQGptkEzul8HLLj7VDTL0fIL9ikIeBKYGZXNS7Dg7lNRVlSA+Rt346y/TY5vs9NeaH3aoPJtBNadY+ZNzDxLXa4GsAhAFyjtpjZHvSUALVHx2QBeZeZaZl4FYDmA4UGULTmhRhxyF9BO/1IpmdKg++34dI6xGlPw5G/tYN/kgXYnM0yzDREITQPt2whjTLBZSSEiEUK7isTBaDsCSmujgor1mJG3n4h6AhgCYBqAmwB8TEQPQxFKP1B36wJgqu6w9eo63zHrWUcMXFLt8McPF2GnGg2ROfHBHnLH/1yV0QnpJq+5fXecCJTkd9mqTIKQDcTTj4Y4XyQ5j4MdAaVpEzmnKWgQUQWANwDcxMx7AFwH4GZm7gbgZgDPaLsaHJ5yh4hoLBHNIKIZ27alj2BqXCaT9XB3oz9fvBXfr90FQHnB9te5D7vrBjNzGKDU57rjD3Z1Xie34vAuLRNcRbMpZPVvTjkEL//8qLCLIWQZWt8wTO/B5NAsdgRU++YluGJkT7xwVSCGlGCFAhEVQREILzHzm+rqnwLQlv+DRhPRegB6P66uaDQtxWHmCcw8jJmHVVbaDwlts7yez8EILk2eGZYubmm2W+E09tEff3R447EZzi9sxS9O7IMf9G6XfkehSRE3H2WRpmCnKESE3/+wv2mkWK8EJhRIaRWeAbCImR/RbdoI4Dh1+UQAy9TldwFcTEQlRNQLQB8A04MqnxF+dG4bojFPCTrcUG4RT8VL45xF7bog+E7cfBSmppBkyg5TQGkEOaYwEsDlAOYR0Wx13e0ArgbwGBEVAqgBMBYAmHkBEb0OYCEUz6UbgvA8Uq5lvJ5AaZPGp+Pxz5e7jojqlnIL81FyZE4nuBEKfTs0x5It1a6vKQiZZq0a4j4Mkp1ewhRQGoEJBWb+BuZjnIbZ0pn5PgD3BVWmZO76YT8s3LQHr89YDwCgiP/pNDNBYUEE408/FPf/b3HKtq6ty127pLoZX3nuyiNRtc9ZCkJBCAPN86csTeTSIEkee8sGTSF3/QZ9oHOrMlx3fGNYZELumkyG9jAP/+C0Sq3V9Jhu7kWnlmXo37ml8wMFIcMEnazGDm6iMgdNkxYKQGLCjQjlop6ghND1c3aj9qIG5fImCNlAWJPXrNiX4fFII5q8UNCHYyDKLq8Zu6yv2m+Yn1ijbYUz7yNK+i8I+UjnVmVoXlKI36qJdbKBajVab5g0aaFARAkDsbmqKTCse/UlhQWGWdYAoEfb8pR1mmDMQfkoCLYpLSrAvLtPxemHdwq7KFlFkxYKgMEkqxxsCGPMrr2mjKqrCYNc1JoEIZfJdMRWI5q8UND7CRNlJuOW38TY/Qxio4ZfO5WIBEHILFE7CVwCpkkKBX3Dr29MI0TYcyB8m55TYjFOGVPo2roMr44dkfZYI2WgMeCWiAVByCTZMOjdJIWCBiFx8ggB6Nom1cae7UQNvI8GdG6JEQe1TVhnLABSiWsKIhMEIaOIUMgCKMklNYviuNkmxqmagtEYg1HP38h8JC6pghAOIhRCIjn2vwYRLF07sxWjMQUjPyojgWe0LgdvgSDkLBUlhXGLxQ8HdQ65NE00R7NGcuNHRDnZO2bm1IbcsLEnJEcjNxIe2rmyIQ6LIOQ7c35/CgBFS8iGPCRNWigY4TUgXhjEmG15H9nVCjRBITJBEIJH+3azJQdJDjaBwZItD8YpKWYvgwbdSCtIjucONAoPkQmC0PRokpqCVQ8418xHlx3VHb88sU+K95HRuImRvHvy0qF4fspqDOzaMn5ftIFmMR8JQtOjSQoFDaP2P9eEwr1nD0AkQtiZFK7aaA6MUdC87m3LceeZ/RLWabdAZIIgND3EfJRErlmPtAY8ucE36uXbFXjaXixSQRCaHCIUksi1MQXN1JNcbiN35wN19hLZDe+lTHprUVbkrXCCIOQcTVIo9GzbDE/9eCgGdFGSwbxx3dF4+eqjAARjPrrn7P6297337P7450+GOb5GqixLlQplFmk79dx9Vn98cvOx6NCi1HE5BEHIbZrkmELL8iKcNqBj/PfQHm3iy0EIhWN6t7O9b7uKEnRpVeb4GsnlNrL8tCovwm4bsZ2KCyM4pENzx2UQBCH3aZKaghXVtf4HxHNikopEyJUJK9V8lCoVcs00JghC5hGhkMTk5TsAAKVFERza0Z/eshPtI0KEAhdPJXmegtEQcS6G8BAEIbOIUDDhgqHd8OGNo3w5l9EEMTMi5M6ElTJPwUAqiKYgCEI6RChY4FfH2kkPndmfcQ0j85ET4SQIQtNEhIIJhQXkWzpKo0ljZlTtrwusR9+tde7lihAEIbOIUEjisqO6AwBalRUDAJ756TB8fNOxOPaQStfnTKcpPHHpEfHlRZv2xIUIkeLO+sZ1P8ANJxzs6JpG5qOHzh+Ixy8Zgvd/eQzevmGko/MJgtA0EKGQRGXzEgCNuVJPOqwD+nZsjheuHO76nOk0hTEDO8WX9ak1y4sK8JOje2Joj9Y4fUAns8MNMTIfNS8twlmDOmNAl5YY3K2Vo/MJgtA0EKGQhJbsIupjiAcn5qAoczx89z7dDGSn4wESoUIQBDcEJhSIqBsRTSKiRUS0gIh+pa5/jYhmq3+riWi2ur4nER3QbXsqqLJZUaC2yA0GcSLOO6Krq3OWFqa/zScd2h4AcMaATigpSJ15XFqYuK5/5xbobpFPWiKcCoLghiBnNDcA+DUzzyKi5gBmEtGnzHyRtgMR/RnAbt0xK5h5cIBlSos2RyAaTW1U/3zhILQuL8LT36xydM5CGxMPnvnZkahtiKKksAC1Dakxilo3U8Y4SosiWHzv6YjGGA1GoVBVRCQIguCGwIQCM28CsEldriaiRQC6AFgIAKS49lwI4MSgyuAGTVMwMx8VW/T6iwoI9QbCxC4lqjZQZJD+rUS9bl1DTC0noSBiEctIpIIgCC7IyJgCEfUEMATANN3qUQC2MPMy3bpeRPQ9EX1JRP7MHHOI1ugbZSkDgGYl5nLUL1dSo4HpYlXbsHsNMR8JguCGwAPiEVEFgDcA3MTMe3SbLgHwiu73JgDdmXkHEQ0F8DYR9U86BkQ0FsBYAOjevbvv5b1gaFes3LYXN53cx3D7lSN74U8fLzHcVlOv9OIHd2uFMw7viD9+uNh1OX572qEY1acxkF4kQrjttL44/pD2to4XkSAIghsC1RSIqAiKQHiJmd/UrS8EcC6A17R1zFzLzDvU5ZkAVgA4JPmczDyBmYcx87DKSvdzB8woLSrA73/YHy1KjXMJJIef/tVJfTCwqxKCu3NLJdT06QM64pzBXTyV47rjD46H9ta4/vje6Ne5ha3jJUGOIAhuCNL7iAA8A2ARMz+StHk0gMXMvF63fyURFajLBwHoA2BlUOXziwgRoqqnUkmRIjAKIv7NhnaLUZIdQRCEdASpKYwEcDmAE3Vupmeo2y5GoukIAI4FMJeI5gD4L4BrmbkqwPL5QmEBxd1Jy1UtojBCoaT1bKbTYkQmCILghiC9j74BjEdrmflnBuvegGJqynqmjD8Rf/p4Cd6ctQGFEcLVJ/bB6Yd3wjPfrMKCjcoQSBDJetLx0U3HYumWalz1/AwxHwmC4IommXnNK51alqF9c2X8IMqM4sIIDuvUAi3VnMb1UQ5FKHRrU46qfXUAZEazIAjukDAXLomHw9DNSyhS3UbrojFQSHdWE0aacBAEQXCCCAWXRAxiJJ0+oCP6dmiO4w6pRHmRxcSyAKmLKm6x1TX+pxUVBCH/EfORSzRNIaZz8xnUrRU+vvnYsIoEAChThVHnVmWhlkMQhNxENAWXaDOLjQLnhYlWLpnRLAiCG0QouKS9mnehjRqozgwtPIVVRFM/0dxiJcuaIAhuEPORS847oiuKCyM4c2Bn031eGzsCXVorZpxnrzgSa3fsxxXPfRdoubq1KceEy4dixMFtA72OIAj5iQgFl0QihLPThLI46qDGhvngygocXFkRdLEAAKf075iR6wiCkH+I+UgQBEGII0IhBHq3b9QYRh9mL+qpIAhCJhDzUYZZ/cCY+HJDNBbKzGdBEAQzRCiEiJ00nYIgCJlEWiVBEAQhjggFQRAEIY4IBUEQBCGOCAVBEAQhjggFQRAEIY4IBUEQBCGOCAVBEAQhDuVyLl8i2gZgjYdTtAOw3afihEU+1EFPvtQnX+oB5FddgPypj5d69GDmSqMNOS0UvEJEM5h5WNjl8EI+1EFPvtQnX+oB5FddgPypT1D1EPORIAiCEEeEgiAIghCnqQuFCWEXwAfyoQ568qU++VIPIL/qAuRPfQKpR5MeUxAEQRASaeqagiAIgqBDhIIgCIIQR4SCIAh5BZFkrvJCXgsFIjos7DL4AREdT0SGE01yDSK6nIgOD7scXiGiXxPRKepyzjdCRNSTiErV5VxvF5prC7n8bIiopW45Y/XI9YdvChH9FcCHRNQz7LK4hYhOI6KvAFwGoDbs8niBiAYR0RwA5yGH3zsiOoWIPgbwWwA/AQDOYW8NIhpNRNMAPAbgLQBg5li4pXIHEZ1MRN8AeJiIbgNy89kQ0YlENBvA34nodiCz9cjZjzMZA0naBsBOAKOJqCSEIrmCFCJEdAmA1wH8lZmvZuY9YZfNI2cAeIKZz2HmOWEXxgnqMykmoj8AuBNKAzoWwBoiKsrV3igRdQNwD4AHmflsAM2J6NyQi+UKIuoK4C4ADwL4NYDjiOhBdVvOPB8iqgBwO4B7oXQ8RqvvXcbIC6FARKRJUiIqUFdPBfB3KL3sPmGVzQlaPdSe2kYALwBYrm67gIi6ElGRtm+IRU2LQfkOBbBZ3XazqgW1TD0yu9A9kzoA7zDzKGb+EEqH42Jmrs+l3mjSczkIwBwAE9XfmwAs096xbCepLocCmMfM7zFzNYAnANxMRH2YmbP9ewHiZrsKAOsAfM/M6wD8HMBFRHRopsqR80KBiH4B4E0iuomIOjNzlIiKAZwGRR2eBOBiIjo3m+3yunrcQkTtAHwDYC4UFXIxgAsB/BXAk9oh4ZQ0PUnPpIu6eiOA9kT0FoBDAPwMwHM58kxuJqJOzPydur6Imb8EsJKITg+3lPZJqk8rAIsAtAbwBBGtAtAKwB0AXg6tkDZJqksLAEsBHENER6u7tAewAEp9shYiup6IzgPiZjsGUAlFOICZV0Jpx+5R9w/+u2fmnP0D8CMA3wE4AcCzAP4GYKi67W71/yUA9kD5ANqHXWab9XgCQF8AnQHcD2CIul8bANu0Ombjn0ldugO4GMDnAP6k7hcB8BmAH6m/Keyy23i3BmllVZ/F0wBOCbusLuvzJIDe6rZfALhDXS4CsBLAcdn4XEzq8ncAHQBcBeA5AJOhCLZeUDShnmGX2aAOzQE8BUV73gugULftIQD/0v2OQIkG3T8TZct1TeEoAH9n5klQ7ImrAFynbhtDRF9Dscu9DcWclK12+eR6rAZwKzNvhCLcvgcAZq6CUpeKcIppi+S6rAEwnplfhWKeKCKiDqz0iqYA6AFk5YCg0bv1K0Apq/osyqA0TLngsZNcn5UA/k/d1gJKrxrMXA/gfSgNajY+F8D42dzNzM8AuBrAzcx8KYC1AKYjC797VkxcXzJzRyj3+wnd5nsADCaiM4ioRP1W3ocisAMn219kAKkqk+73SgCXAgAzrwHwAYBWqgr5GIBvmXkwM/8EQEcAobqoOqjHe1AG/c5i5hrd/ncC6A9gcWZKbI6DurwLoJKIjgHwMIB6AOPVupwP4MuMFdoAh+9WMyI6S7f7iwCGE1EpZ4nHjoP6vA+ggoh+oG67VR3n+T8AJ0ER2KHi8B1rTUQ/YmWMZ7q6370AmgGozlCRDbGox7vq/5sAXEJEfQCAmfdC0RYuBnA7Ed0DYBSUTlXg5IRQQJKE1PVe/gtgPxGdrf7eBMVEcSyAl5j5t7rDfqT1uEPEST2+ANAPAIhoFBFNgmKLP4+Zt2SmuJY4fSY/UO///VCEWjmA0bn4THQfdRmAVwFEM1BOuzitzw9ULe5FKKbWg6GYxJZkpriWOK1LXwAgoj5E9A6AAVC0hvrMFNcUw3ow8z4iijDzZijmvKd1+7wK4I9QTJWVAE7P1Hef1UKBiI4mov8A+BMR9dM8i4ioUN1lJ5RBmOtUL5HdUHoGpcwcI6ICTa3X97gzjct6VEBpdADFnHQDM1/OzBnpLZjh4Zk0AxQTGDM/xczjmXl9GHUAPD2TEl3j9A4z/zMLGh239SkH0BIAmPlJAGOZ+Upm3hBCFeJ4eDal6vbNUL6Xs8LsQFnUI94uaTDzOAC91GM6EtFRzLwYwO+Z+bpMPpOsFQpE1B7K4N6HAHZAsedeCQDM3KDuVgbgYyg9hQlE1BnAEAAN6n7RsNV6j/WoU/dbx8wLM1z0FPyoSzbgx7ul7psVGoLH+sQ7S8wc+gRJj3WpV/erDrPDAaStR1TttFZAFcoqD0IZJP8KqoALZUzHj9HqIP4AnAzgFXW5GYBTodhBD1XX/QHKizEEiifIH6CokE8CKAi7/PlWj3yqS77UIx/rky91sVGPewF8BGCU+vt0KGbVhwEUhVr2sG+e7iaeA2Um3xj1dyWAZQAOVn+3AfB7KNK0HIrL2cFJ5yiXekhd8rUe+ViffKmL13pAGT/sFnY9mLPAJZWIKonobQC3AKgC8CwRnc/M2wC8AeCX6q67oPi1t4EyZnApM6/Q2+aYeX9GC68jX+oB5E9d8qUeGvlUn3ypiw/1KAAAZl7Iygzm0AldKEDxdpjMzMcy81NQ4pbcom57BcChRDSalbGBHVAmqdQCim84Z4krIPKnHkD+1CVf6qGRT/XJl7p4rUdWjEvpKUy/i/8Q0U/QOLFkJpTJJ1rcooVQJ9IAmAfF5e9RIjoHiv80QXXxCvvFyJd6APlTl3yph0Y+1Sdf6pIv9TAjY0KBiAjKBLKXAcQArIAy+/BXzLyFiApYiVt0GBrd5GJQ4uO0BzAOStCrq5l5V6bKnUy+1APIn7rkSz008qk++VKXfKmHLTIxcAHVKwDK5KsX1eVCKAHe3kza5wUAF6rLHXXnKM5EWZtCPfKpLvlSj3ysT77UJV/qYfcvUE1BnWxyD4ACIvoQSoyVKKD4HBPRjQA2EtFxrESdBJTgUKtImdp9LhGdxszrWQldHAr5Ug8gf+qSL/XQyKf65Etd8qUeTglsoJmIjoNib2sNJSfAvVAml5xARMOB+MSMe6AEtdJscldCmcbeAsAJHP4klLyoB5A/dcmXemjkU33ypS75Ug9XBKhyjQJwue73k1AimP4MwEx1XQSKne51KNEyDwbwKIAjwlah8q0e+VSXfKlHPtYnX+qSL/VwVfcAb2o5gBI02touA3C/ujwbwC/V5WEAXg37RuR7PfKpLvlSj3ysT77UJV/q4eYvMPMRM+9n5lpu9MM9GUqCGAC4AsBhRPQ+FF/emUB2ppjMl3oA+VOXfKmHRj7VJ1/qki/1cEPgLqmqnY2hTNrQ4odXQ5kSPgDAKlYjALIqerORfKkHkD91yZd6aORTffKlLvlSDydkYkZzDMpkje0ABqrS9U4AMWb+hkMO0+uAfKkHkD91yZd6aORTffKlLvlSD/tkwkYFYASUm/sNgKvCtpk19XrkU13ypR75WJ98qUu+1MPuH6mVDhQi6grgcgCPcBbEbHdLvtQDyJ+65Es9NPKpPvlSl3yph10yIhQEQRCE3CAboqQKgiAIWYIIBUEQBCGOCAVBEAQhjggFQRAEIY4IBUFwABG1IqLr1eXORPTfsMskCH4i3keC4AAi6gngfWYeEHZZBCEIQknHKQg5zAMADiai2QCWATiMmQcQ0c8AnAOgAEr4gz8DKIbi314L4AxmriKigwE8AaASwH4ombgWZ7oSgmCGmI8EwRnjAKxg5sEAbk3aNgDApQCGA7gPwH5mHgJgCoCfqPtMgBJhcyiA30AJySwIWYNoCoLgH5OYuRpANRHtBvCeun4elLg5FQB+AOA/uoCaJZkvpiCYI0JBEPxDHwIhpvsdg/KtRQDsUrUMQchKxHwkCM6oBtDczYHMvAdK/t4LACX+PhEN8rNwguAVEQqC4ABm3gFgMhHNB/AnF6e4DMBVRDQHwAIAZ/tZPkHwirikCoIgCHFEUxAEQRDiiFAQBEEQ4ohQEARBEOKIUBAEQRDiiFAQBEEQ4ohQEARBEOKIUBAEQRDiiFAQBEEQ4vw/RMdkQYkzh9gAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"data.ts.sel(cell=4_283_159).plot()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "83f48820-a60e-447f-9dd8-ebad6bae8c1b", | |
"metadata": {}, | |
"source": [ | |
"### Loop over catalog entries\n", | |
"We also calculate the one-day rolling-mean to reduce noise." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "ad241856-3861-4668-bda7-7d6a07f3db45", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7fffc9a57310>" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACwBUlEQVR4nOydd5hbV53+P+cWdWk01TP2uMaO7VSnEBJKAiSBFEhYellKaD/aAktngd2FpbcNu7BAKAvs0pYWWkIIJYGQhPQeJ+722NNn1KWrW87vj3PvlTTFLR47cfQ+zzwjXd2uq/Oeb3u/QkpJG2200UYbbQBoR/oE2mijjTbaePSgTQpttNFGG22EaJNCG2200UYbIdqk0EYbbbTRRog2KbTRRhtttBGiTQpttNFGG22EMI70CTwS9PT0yBUrVhzp02ijjTbaeEzh9ttvn5BS9s712WOaFFasWMFtt912pE+jjTbaaOMxBSHEjvk+a7uP2mijjTbaCNEmhTbaaKONNkK0SaGNNtpoo40Qj+mYwlywbZuhoSFqtdqRPpXHBGKxGIODg5imeaRPpY022ngU4KgjhaGhIdLpNCtWrEAIcaRP51ENKSWTk5MMDQ2xcuXKI306bbTRxqMAR537qFar0d3d3SaE/YAQgu7u7rZV1UYbbYQ46kgBaBPCAaB9r9p4LEDa9pE+hccNFowUhBAxIcQtQoi7hRD3CyE+4i/vEkJcK4TY5P/vbNrmA0KIzUKIh4QQz1qoc1topFKpfa6zYsUKJiYmZi1/zWteQ19fHyeccELL8qmpKc4//3zWrFnD+eefz/T0dPjZJz/5SVavXs3atWu55pprwuW33347J554IqtXr+Ztb3sb7d4ZbRwMRj76b2y58KIjdnxZr7P1OZew+53vOmLn8HjCQloKFvAMKeXJwAbgAiHEmcD7gT9IKdcAf/DfI4Q4DngJcDxwAfBfQgh9Ac/vUYlXv/rV/Pa3v521/FOf+hTnnnsumzZt4txzz+VTn/oUAA888AA//OEPuf/++/ntb3/Lm9/8ZlzXBeBNb3oTV1xxBZs2bWLTpk1z7reNNvaF6e9/n/q2bXiVyhE5fuX226lv307hqquw9+w5IufweMKCkYJUKPlvTf9PApcC3/GXfwd4rv/6UuCHUkpLSrkN2AycsVDndzhw3XXX8exnPzt8/9a3vpVvf/vbLetUq1UuuOACvv71rwNw9tln09XVNWtfv/jFL3jVq14FwKte9SquvPLKcPlLXvISotEoK1euZPXq1dxyyy0MDw9TKBQ466yzEELwyle+MtymjTYOBkdqQLY2bQpfl2+55Yicw+MJC5p95M/0bwdWA1+WUv5NCLFISjkMIKUcFkL0+asvAW5u2nzIX3bQ+Miv7ueBPYVHsotZOG5xhn95zvGHZF+lUomXvOQlvPKVr+SVr3zlXtcdHR1lYGAAgIGBAcbGxgDYvXs3Z555Zrje4OAgu3fvxjRNBgcHZy1vo40DQbPL0ZmaInoEzsHatAktmcQrl3GGh4/AGTy+sKCBZimlK6XcAAwCZwghTtjL6nNFPGc5wYUQbxBC3CaEuG18fPwQnemRwaWXXspll122T0LYG+aKEwgh5l3eRhsHAjeXa7yemp5/xQWE9fAmYscfj5ZItJxPGwuDw1KnIKXMCSGuQ8UKRoUQA76VMACM+asNAUubNhsEZtmrUsorgCsATj/99L1GTg/VjP5gYRgGnueF72emfj75yU/m6quv5mUve9k+B+xFixYxPDzMwMAAw8PD9PUpA2twcJBdu3aF6w0NDbF48WIGBwcZGhqatbyNNg4Ezuho+NrNHX5SkFJibdlCxyWXYO/e3SaFw4CFzD7qFUJk/ddx4DxgI/BL4FX+aq8CfuG//iXwEiFEVAixElgDPKYdiMuXL+eBBx7Asizy+Tx/+MMfWj7/6Ec/Snd3N29+85v3ua9LLrmE73xHhWK+853vcOmll4bLf/jDH2JZFtu2bWPTpk2cccYZDAwMkE6nufnmm5FS8t3vfjfcpo029hfNpOCVy4f9+PbQEF6pRHTdWvTOTpzpI2OtPJ6wkO6jAeBPQoh7gFuBa6WUvwY+BZwvhNgEnO+/R0p5P/B/wAPAb4G3SCndBTy/BcfSpUt50YtexEknncTLX/5yTjnllFnrXH755dRqNd773vcC8NKXvpSzzjqLhx56iMHBQb75zW8C8P73v59rr72WNWvWcO211/L+978fgOOPP54XvehFHHfccVxwwQV8+ctfRtdV0tZXvvIVXve617F69WqOOeYYLrzwwsN05W0cLXDz+fC1Vz782Ue1+x8AIHbc8eidnbjTucN+Do83iMdy7vrpp58uZ/ZTePDBB1m/fv0ROqPHJtr3rI35MP3DHzLyrx8BoOtVr2LRB95/WI8/9u+XM/nNb7L2jtsZ/tCHqN5xJ6t/f+1hPYejEUKI26WUp8/12VFZ0dxGG20cGgQuIy2ZxKscfveRtWUzkRXL0SIR9GwWt+0+WnC0SaGNNtqYF165DEKgd3cfEfeRMzqG2a9SsY3OTrxyGVmvH/bzeDyhTQpttNHGvPDKZbR4HC2VPCKBZmdsDMPPtNM7lSKO044rLCjapNBGG23MC69SQUsm0RNJ3HJp3xscQkjXxZmYwOhT/eW1dFqdU/HQFqS20Yo2KbTRRhvzwiuX0ZJJtHT6sLuP3KkpcF2MXkUKuk8KbrF4WM/j8YY2KbTRRhvzwg1IIZXCO8yDseMrFgSkoKV8S6F0eC2WxxvapLAAeLRIZ3/wgx9k6dKl+3U+bTz2UXc87t+T3/eKBwCvXEZLJNDTqcM+GM8kBT2tnuPDTU6PN7RJ4VGGQymd/ZznPIdb2qqSjxu85ft3cPF/3EC+cuga0gQxBS2Zwi2XD2tPjgYpqECzFrqP2pbCQqJNCguIIymdDXDmmWeGyqptHP249gElSTFZtg7ZPptjCtg2Wy+4EGvbtkO2/72hQQo9QLP7qG0pLCQOiyDeEcPV74eRew/tPvtPhAs/dUh2tZDS2W08vjCcr4avizXnkO3XK/uWQioJQH3HDnI//gmL3vueQ3aM+WCPjaF1dKBFlWC3lkyApuG2YwoLiralcASxkNLZbTy+8NfNk+HrQ0sKQUwhHS4T+uEZNtyJidBKAPVca4nEEamXeDzh6LYUDtGM/mBxJKWz23h8YdNYw6VSrB2amIJ0XWS1qiyFRCJc7hYOj/vGmZ7G6Gx1pWrJJF6pTQoLibalsIA4ktLZbTy+MJqvEcwrDpWl4FWVS0pLJomsWNFYfpjcN14+j57taFmmpVJtS2GB0SaFBcSRls5+73vfy+DgIJVKhcHBQf71X//18Fx4G4cdowWLNX0qZTNfPTSWQiiGl0gQPeYYjvn9tUSPW4+7wIFee3QUr1rFzeXRs9mWz4K2nG0sHI5u99ERQqlpJvWZz3yGz3zmM7PW2b59e/j6v//7v8PXP/jBD+bcZ3d39yxLI8AHP/hBPvjBD85aPt+x2zj6MFqosX4gw3Cuxs6pQ1N53KyQChAZHERPZxbUfeNZFpvPeRqpc87BLRTQO2ZYCsl2TGGh0bYU2mjjKMBoocaiTIxVfSk2jx0a904gaxGQArDPyubCNb9j0rduDwZBGmrp+uuRloU2ixTalsJCo00KbbTxGEexZlOuuyzKRFnVk1wwSwFAi8fxrNqc67ulErvf/nbGPvu5gz6mOzXV8n6mpaAnk22ZiwVGmxTaaOMxjtGCGqT7O2J0xE0Khyj7KGiq05x5JKIRZG3u4ritz35O+No9SBfTzCY6eqZtKRxutEmhjTYeo8hbeR6efpixohqke1NRMjGDkuXgeY9cjmJOSyEaRVpzk4IzMhK+Ll1/3UEd05lqJYVANjs8fjKJWzn8zX4eT2iTQhttPEbxob9+iOf/8vlMl5WlkE1ESEYNpISK7T7i/YcpqYl4uExEY3jzdD7TMpnQqtjzrndjbT1wOYzAfZR44hMBMJcsaT1GMgm2Pe85tPHI0SaFNtp4jOK6XdcBMFxSs+tswiRiqJ903fHm2Wr/EbiJhC8zoV5HkLXarEp66Xl4pRKdL385aOocSn++/oCP6eamwTQZ/I8vsvz738dctKjlcy2hrJa2C2nh0CaFBcCjQTq7Uqlw8cUXs27dOo4//viwrqGNow+jZZWx0xE/tKQQBJS1WCxcpkWj4HngtBbIeYUCeB5Gbw/r7r8PkUhg79lzwMd0pqYwOjvROzpInDq7rkfzf1teqcS/3PgvfP62zx/wMdrYO9qk8CjDoZTOfve7383GjRu58847+etf/8rVV199WK+ljcOD8cokpi5IRHQi+kJbCoogPKvVfeP4kxQ9m0UIgdnfjzM8woHCnZpGn0MlOEAQ33BKRX626Wd8+/5vH/Ax2tg72qSwgDiS0tmJRIKnP/3pAEQiEU499VSGhoYW4CrbONKYqk3RETcRQjQsBfeRxxSkVUNEIgitMUyIaCT8rBluLgeA3tmp/qfTB+Xicaen0Tuz834ekMLUZFsJeKFwVFc0f/qWT7NxauMh3ee6rnW874z3HZJ9HS7p7Fwux69+9Sve/va3H5LzfrzggckHSBgJVnSsONKnslcU6wUycROAqE8K1qFwH9UsRJPrCAhlrGdmINW3bgXA6FMxABGP49XmrmfYG5zpKeKLT5j3cz2j1Fqnxnce8L7b2D+0LYUjiMMhne04Di996Ut529vexqpVqw76OI83SCl58a9fzHOufM6+Vz4CaP7eS3aBrE8KhzTQbNVCEggQuJK8GaRQvfse9GyW6LFrABWH8GrVlnW+eMcXuW3ktr0ec1/uI72rG4DSWCNecTi7wT0ecFRbCodqRn+weDRIZ7/hDW9gzZo1vOMd7zgEV/T4wVDp0e1qqzqNAbfilBgMSMEXQzwkgeY5LAUxj6XgTk9h9PaGz7GIx1qK3CaqE3zj3m/wnfu/wx2vuGPO40nbxisW9+o+MnoUKVTHh2GpWmZ7NhE9ckDX1sb8aFsKC4gjLZ39oQ99iHw+z+WXX35oL8yH5bjUDkE+/KMRzTPavJU/gmcyN4r1hv5Q1S2RTahBsRFT2AcpuA7kdu11FVmrosVaLYX53EfO5FTLDF+LxsI6h7pb5+n/p+Jbmph/yAmC1cbeAs2xGFoyid2UuddMkLkrr2T8S1/e63W1sXcsGCkIIZYKIf4khHhQCHG/EOLt/vKThRA3CSHuFUL8SgiR8ZevEEJUhRB3+X9fXahzO1w4ktLZQ0NDfPzjH+eBBx7g1FNPZcOGDXzjG984pNd33heuZ92HZ2dKHQ14cOrB8PW2/CPsSVwvwx8/Btah0+wp2Y192bJMx4G6j375D3D5CVCfvzrYq1lhtlGAZveR6zUmBO7UFHpXZ2O9WBTpW8a7S40YV1+ib97jBRIXeuf8pACgd3cjmyqfq06VwlVXseefPsjw+z/AxJe+tNft29g7FtJ95ADvklLeIYRIA7cLIa4FvgG8W0p5vRDiNcB7gA/722yRUm5YwHM6LHg0SGcPDg4uuK9111R13ys9RjFUHMLUTGzPZk9pDxv6Nhzcjqa3wxdPVq+jGXjy2w7J+TVbCg6VBinsb0rq3d9X/0uj0LVyzlVkrYaIzR1TuH3nTbzlwddyzfOvoWSXkFNTJDtnWAq+NbGn1PD/e3L+8wpJoYlc5oLR3Y2eaxB11aky/c537XWbNvYfC2YpSCmHpZR3+K+LwIPAEmAt8Gd/tWuB5y/UObRxeHA0Bvp2FXfxxAEltdA80z1gbP594/VeBsQDRUAKHZEsQq/OthT25j5q/r5quXlX8ywLbYaloE3cD8Adu/4GwI8e+hEv+vnz8AqFFveRiimoyufg/l286mLGKmPzEoMzrlxCe3MfgYorRPKNCUnVqc6S2G7LYBw8DktMQQixAjgF+BtwH3CJ/9ELCcNFAKwUQtwphLheCPHUw3FubRwcmomgXD+64gqu57K9sJ012TV0xboeGSm4TYql1an51ztABO6j3vgAQmuQwn6lpBabisrs+dNGlaXQRApSIq5Sac0pqWIYV26+kpQ/PjfP8LVYTFU+2zZDJWV19cR6sD2be8bvmfN4tp9Kbe6jx7je3U2iWGdpWg0dVaeK6adrB/AKhb3uo435seCkIIRIAT8F3iGlLACvAd4ihLgdSAMBpQ8Dy6SUpwDvBL4fxBtm7O8NQojbhBC3jfsNOdo4/Cg09QEeKxx4PvqjGbeNqiBzOpJmSWrJI8tEyvn59IluKB265zWwFDojixB6lWyi1VKw92YpjN3feG3vJaYwMyXVriB0NRmoVtSgO1WbIuPvonmG36h8tthT2sPi1GLOW34eAHeP3z3n8ezdu9G7u1ukuueC1tdLuiJZFVVieVWniltoTQZw26Rw0FhQUhBCmChC+J6U8mcAUsqNUspnSilPA34AbPGXW1LKSf/17f7yY2fuU0p5hZTydCnl6b29vTM/buMwYSTfIILduaMrtrCjsAOAZ696NoOpQXYXH4GlML0d+o6H7DLlvz9ECEghY/Qh9BrpmPop71dMYfSBxmt7/u9OzkxJtUr8LakshJ3jm8LFmYoiiuYAcZC1JGs1hsvD9Cf7Obn3ZHriPdw/0URKTbB3756lijoXqouVRbK+kgWgYldwp3N0XXYZS7+m8lPalsLBYyGzjwTwTeBBKeUXmpb3+f814EPAV/33vUII3X+9ClgDbF2o82vjkWHLeCOYXracvaz52MN0TQU8u+PdDKYHGSmP4HgHeY3TO6BzuSKHLX+AyqFxIZXsEoYwiAo1QJqmMrj3K/torIkUnL27j7RYFDfozVAv8Yk+X8bC8bj0GJUW3bAUmrKPmiyF0fIoixKLEELwhP4ncPX2qxktzybI+u4hzCVNriOnrlxQM7CnS9VCrC+o6uZaKY+sVtE7O9EyyrnQthQOHgtpKTwZeAXwjKY004uAlwohHgY2AnuAIPXmbOAeIcTdwE+AN0opD50Tto1Dij88OBa+LllHV0whZ+VImkkieoQlqSU40mG0cpCz/Oq0ch1V/RTKob1X9O4vivUiqUgK6arB1zgQUpjcAl1+dXt9fn0iz7J4aNrmmH+6il1TFbCKRDVFEKYD7zjtHWhCC0mhpU4hrs7LrVSYqE6wKKHkL3rjyrp/1W9f1ThQeQJZnsLeM0xksCnE+LWz4Reza3geTqsJyWDOd5VNq2FC78yih6Qwfx/pQw0pJWOVsX2v+BjBQmYf3SClFFLKk6SUG/y/q6SUX5RSHuv/vV/6EUsp5U+llMdLKU+WUp4qpfzVQp3bQuPRIJ0NcMEFF3DyySdz/PHH88Y3vjFUT32kuGtXjp/eMcQ5x6of+NFmKUzVpuiMqlnvYHoQ4OBdSFZRpaIe91z13j40fQCK9SIpM4VtK3eOpqn0T0MTCLGP7KPCbuhZ65/P3DGFym23IWs1fr81B8D9e/JQL2H4pPB08xy2j2p876LvcZy2BA/wMo0ObYGlUCxO4EqX7riqRH7DSW8AGveVGy6Hzx6D87kngW1jDvrLawUYfxDunp2iPekWKMYhXlDX7PikYHR2NpHC4Ss4/No9X+PcH5/L1tzR4dhoVzQ/ynAopbP/7//+j7vvvpv77ruP8fFxfvzjHx/QuVTrLt+5cfusquWv/2UrcVPnQxevB6BcP7pIIWfl6Iy1kkIQbJZScs9Qbv/aXXoe1IsQTcFFfjP7QxRsLtkl0pF0SAp1qWIDQghMXZufFFwHisPQ64fr5rEUdvz9K9TqfgXyjskKWCVGTR1Xl+zcMcILvnoTJ/ScwGrRRzkGZbcRnwhiCvmiut6AZDuiHZy//HyGS8Oqt/Tv/0WdxsgkAJGlg3D/lfCF9fNee87KUU4aiLyyBrzpHKAslcB95B1GS+HaHdcC8ND0Q4ftmAuJNiksII6kdDZAxv+BOI5DvV7fp77STFx17zD/8sv7+f7fGoqU2yfK/OaeYS48sZ/VfSl0TRwZS+Fnb4DffmBBdj1dmw5JYVFiEYZmhMHnK+/azSVf+itf/8t+zAoDqyCahkQXCP2QBZtLdUUKVt0M3weI6lqL++i+ifv4xN8+oeoDisOqXqJrlTqfvWQfAXTVlG9+y3iJSnWKnK7jGZD2GgQQqzgUE1CoN/z4QYC6WFSDfXA/AdZk17CzuIuzPnUVslsJ6NllpdlkDg7Cj18FTdczsxI8Z+WoJ0y8QoG4EUfm1HH1bCdaNIqIRo9ITOFocSEd1YJ4I5/4BNaDh1Y6O7p+Hf3/9E+HZF+HQzr7Wc96FrfccgsXXnghL3jBCw7o/LZNqEGtUGvk2n/7xu0AnL9eBQ4TEZ3yYYgpSMdh48kb6HvnO+m+7NVwz4/UBxd88pAfa6o2xZpONVgZmsHKjpVsmlbZNg/sUYPNxpH9mIla/jrRNGg6JHugfGgGjkK9wPLMciYsRQrlJrdUxGiQgu3avPQ3LwXglce9ksG8n17bMQiR1F5jCgCbs4MMdsbZPFZi2yJFjJomSbiNAHW0VGc4BgWrMRAH3drKReXa6Yo1JjrHdR8HSIzoLuTUdtzO06iXHwZNzKo3ABSRRdeEb/NWHicZw80rUhABKfhCenomc1jdR4Ge02Rt8rAdcyHRthSOIA6HdPY111zD8PAwlmXxxz/+8YD2XfXdRnFTD5cZmtr3BSf0A5CKGpQOwFKQUjayWQ4Abj4PrsvYZz8LWw/sOg4EUkpyVq5lEFueXh5KNYwXlR9789h+6BgFpBDxY0ypPigdGlIo2SVSZopyzQjfBwhI4W/Df+PV17w6XL4lt0XFEwAygxBJzEkKgTzFyNMu5rcrTqV78c1smhjn9oKyjkzdI+41BPGMco1SXLRYCoEbpzqt4mYtpOAT1vHxm5m4O8amrwwz9mCKUtpASL9s6dx/gZf57s5a6wA/XZvGS8VxfUtBK5RA09D9qmYtkzms7qOAkCerRwcpHNWWwqGa0R8sHg3S2QCxWIxLLrmEX/ziF5x//vn7ff4Vv1K5uRBqumKzJBsPzzdu6geklPqZax7iK9dtYcsnLkLX9t+dFShuArDrVvU/kt7v7fcXVaeK5Vot7o50JE3RVoPMREkNWnv2pzYjcHtE/RrMzJJ5lUm9chkRiyF0fc7PZyJwH5UqOsTmsBRcj9f97nUt2+Q33ktl924SAJkBiCTnJgXf9TLVN4gRe4Ct3g+xkudwX2mYPsdB03XirroPtuuhFSuUOlvdR0EhW31yHFKQjWXDz3rvu5Iex2UgcR/FXcqi0D3BnqQN1ZxaKd4JMf++zSCFvJWHdBb34THixgB6oazagPod4pSlcPjcRyEptC2FNvaFIymdXSqVGB4eBlRM4aqrrmLdunUHdP6FqnIbNctYTFfqYfUstLoq9gdfuW5LuJ8DgVdp8n0XFq7XwbSlsrqCwChA0kyGPvvAlTZVqePsS546cKdEffLqXg1TW1qlL1DWyeZnPos973nvfp2j67lhoLlQVT/hZlIwdQ3LbhyjL64mEGv+4cvs+NSVYMQUUZmJOWMKblFda9GIE42qz6M917PRmmSN4+EZGqZftzFWtBCFMqX4DPdRIoGIxXAnp8hGs5ha45lxKznW1utMROpIrzExmOgQuIEUSDwLMV/PqIkUPOmRr+fROjJ4hQIJLY5ZrIZtQEGRwkIWrylrt/GbCJ6N3F50pB5LaJPCAuJISmeXy2UuueQSTjrpJE4++WT6+vp44xvfeEDnP1FSLoJKk3toulKnM9FoaGLq2t4lFebBVPnASEE2Wwp53wViV1rF3Q4BgsK1mZZCxangem4YVJdSEcNeEcYUfPfRohNUsdj09pbVnD17cCcnKVx11X6dY9lRBJAyU+SrDoaIt7qPdI1R7/bwvaEZpJusKpnoBSFaYgr28DA73/AGcj/9KV5RDagFPUIk2iCbbbLEoKfhaDoRnxR2TxSRpRKlWMN99OehPzNcGsbo6kLmCnTHulvO353cykrbZjsmdrnhrBjuhPG8ilsQyzYsrCayKdklPOkpV5GUZN0I0WKtpTGPtsCWwj/d8E8886fPBFTMpu6p56C5r8NjGUe1++hI4dEgnb1o0SJuvfXWAzntWQhIobk4Le+7jwIErooDxa3bpzh20f67f1rcRwVfilm6atZtHLquWwEpZKPZcFnKVIN6yS5RqbthHGWiWKcvHZtrNwpBBk1gKXSuUP9zO6GnETitPfzw/p/glW+mdN8PYekSYkaSmu2R1eItUtoRQ2Mz/xW+f/1Jr+d/7vk2oK7NEb2YoGIKFeXy2Pz0ZwBQ/vNfGPyy6keQ12MYZplEJBMO+GuJUBeCpD8Qju6eIA3UkgaFeoE9pT285Q9v4bju4/hUVxdGfhfd8RUtl6DlthNPCpb54ZXSmgFSm4YZ6hHsKeygH5SVMIf7qOJbNoYfP8jWdWJlG31lNlxHz2RwiwsXU/j11l+Hr5sttIqz90yuxwralkIb82LSn81XmuoQclU7VOQEMHWB7ez/bD2II3zw5/dRrNn7WLsBr9IgBbvc5LvdR0rlgSJwHzUHRoNZdskuUbYclnUpwbbJsjV7B80IYgpBoDnrV+sGInnBag+p/HZtP4oeuet7FAPfuVTn0RUZ5OHpBrFEDI2Ip1xGd73iLl5w7Avocxoic67I+hc2ALldrYQLVO+5F4CiHgO9yGB6EK+uLKfzvCSWbqD7E4HRPaoOwUvFKdQLDJeVy/KByQfQu7qIFKph4Zra+TRGvcCr8gWWjavn5uY3nMXn/07jxvWCoaLvGox1qPsmNFXIFmzuz8aNjLqGjKUTqTroqcYEQ/ddS3IOiYxDCcdzQqstbsSPGkuhTQptzAnb9chV1KBdCl0mknzVnhFT0LEOwFLoSjZm9fuV1ulDNjWBr1eKlKQ/Qz/UpBBYCk2B0ZQ/qBetIpW6y+KsOna+ug9SCyyFiF/pmx4AzZhFCuOXfxEAae3foBKSAspiW5k6noemHgqthaihIWScJy9+MrqmAtedXsOi8Ux/kB58AlQmsO//i1rn5S8HoLZRdZ3LaVGkrtw/53a9h38YjvLwqEtdM8FxWdwRY2xYZRfJZIKKXSFn5cLjVNMR4qU6Kzuamvj42k+32hs4ecSlGtHYnCgyfKwBmmBXxZf1jmWViyuaabUU/Nm4mVUklalpxGoeWrpBClo6A1LilfYjQ+wRoOpUw3vel+ijuhdxwccS2qTQxpwoNA14RV8mu2Q5uJ4kG28M7BFdYB9AoLlmuzxtrZLH2D6x/5IPzbPZpLCYlL5r4RD/EKdr08oHbzYGmcB9lLOKOJ5kse8+C0hzXtgVNdM1/AFZ01V9QG5HuIrTJP8ubXfWrL0FngtCo+TnxUtPVQ2vzKyhb8Jh6KWvwB4bw9Q1XCpkIg3l+Yzb+M6szuPZkd9B/iGLN3T2ccXNXwMgdvzxAFRuVg10prQItphgSWoJLzjxTM6q2JRknJoeQbqwslOnMK5I1EvFqTiVlmDrLj1PpgyrMk2k4H9fP/POIT3Zya4ej4dyD7NCi9IvNYaCDJ7AdRTLtMQUAvdRNKssuVQVopZET6vvaNP0Jr6544fAodE/KlvOvNl1FbsSpqEOpgepe3Vsb/+t30crjkpSOBo7gS0U5rtXzbUHgZsnmBk3u48OJKbgeZKS5bCuX/3gh/O1fWzRtG2T+0hKmMQfNPai8nkwmLam6Yx2tqQIh+6jO+/m6ivfzTF+Adq+LYUymEk14w3QsbQlLTUgAc1U99DN5ebfX3UapEfZ8O+/rf53x7O84AYP7n+I8g1/JaJruKJMJtoghWwTKdx4902880sXs+ej/85JN5rctUcVeEbXHgu6jvTrFPKijieqLE0vZWlXggQWZWIsX9KDdAWDUQuZ9zW4TI+KXQndbwAPMULEhaV6k8S9TwrZTAdLpyx29Qp2l3az2Eiz1JXsqufAiIPuX2O0Y073UayzB4BMro4GCN/19u37v83Gurq/3n4UsP3HHf/BbSPzixRu+OjveNblf57zs7JTZqKqLKVl6WUt5/dYxlFHCrFYjMnJyTYx7AeklExOThKLzQ6WBtZBNmGGBBHMjDua3UcHkH1UrDlICb3pKD2pKLun9/8H1DyDlq5YMEthqjbV4jqChqUgb7kLgNV//jWmLsJ7NC/q5YbrKEB2OeSbSMFPtU0tVuTmju9FBsMvfCsvOg6AyLQKuPckOlg6oZ53r1zG1AVSVFsshbTdyClZdO0DrBxV68fq0OEbbGZfH4bfoyRx+umUPXW8pemlLMnGSYkqZRkjnk7juYIlkTJvLXwFAFHZEVoKcSNOV6yLB12VJdZvNxITAnffkmyKVKXKWFYR5tJoF0vrFrucUsNKgHkthViXIoX0pHovk+oYi1OLKfuP874shVK9xNfv/TqXXXPZvOvYrlS6Tz6aW4lW7WpICkEXuMohdmceCRx12UeDg4MMDQ3R7sq2f4jFYgwGypRNCAa8/kxMySbTmBlnWwLN+1+nEGyfiRksykQZL+0jUNsEr9r0w3QEk8bCuY+ag8zQiCnU/IKtSK28f0V79bLK8GlG5wol21CdhngnXlmNyJGU2pczsgNO2jD3/srqmS5lBmB6D9FKDuimL5kFf/zzyiX0Lgts2UIKKbtRFHf3CskSn0SqUciWpKoI7upCRJRFkXr606nlG6QQMTQSWFSIEe3oouIJTqjdTsK2KBFFj5tUnSoj5UmSRoaV2WXkk2rAjBcbqbu5QoEssDymjjPtx9ZXpQap77qZqUSEcixDSKXRDOQbdSnBTDyR7KRgmiR8F6Tjp0kX60XKMUU0+5K6aE7jnQtz1aE0WwIVR8mCJ4wEPfGecNljHUcdKZimycqVK/e94lEMr1rFHh4mumrVQe8jsA4GOmJsHCnierLhPjrI4rWg8KsjbtKZiBxQAZusNtxELaRwiN1HU7UpTuhplS0PLQVfjTOSnyYe0anuqze1XZltKax6GvzpY3D7t+Ep/xhaCkZM7cubGlH+MccCc4YFF5BCLI0mJXq5CHTTZyYJ4vBusQi96k2z+yjtqJ96Ne2RLcJqtxcYp6MMEtCyHQhdV3IigDhmNaVb7yMKLEkvASlJihr9vd1o7gDSFTx955cYr6dBSCKJOBW7wl+37qRg67xw7elcnVTCjPboGIGtsG1kglOAY3ztpJ36BuAeju85nrKt0rGHYgnWBice64DRRqe2YNBNRpKUMhliY8qKqPsTlZyVCy2FfRWw1fbx7ATV681oSUH1Ywo98R4ShiL/oyHYfNS5j9qAPe//AFsvuhinqefCgaJkqQF8wA+qlutO6D5qDjTvVaZ5BkJLIW7Sm44yVthPS+G+n+FNN5rNe44gX0/i2uKQZx9N1aZmFVtF9SiGZqBPqUHGGB8lbupU9mkplFRMoRlLn6CykPyBziur89fj6h7K/AT85DXwrWfO3p/vPqqYUZKexLHUANVXbiLMYgmETwqR5piCCkrv6NXoK+n0j6oBL1uSdFSArqw6j6zK/38oPYAWmSJldBE34mBX0ZBcdOpqRFqtK12Ba2voEY+EEaPiVMjXp/GcJM9f/SKGu8DTBIXfXh2ex9ikn901NobUNDZ6z+OTp/+Mzs5VLHPUROTGSNNcNZYBa3adQsJIoKdSRIYUUdY7/OB/rUEK9tjedaZq7t5J4aHR2e6nZlIo2SXGq+OKFExFCkeDpdAmhaMQRV/4rvj73x/0Pkq++2ggEwvfzxVojh6IpRC6j0yWdsYZzlfnjUeMPbiJ8t33qHaWP7kMb2NDBE86gmf/5gY2/3IR2IfOUrBci7JdbqlmBiUwmDbTRHPK3SCmJkiY2r4thfoclgL4LiRFcoH7KLQUClNw/89g+G7VjrIZpRHQI5SEICU9HKtCKmogR5sIs1REGGpgao0pKPfRw72CnmkXL6cG2pUlSaYscSPqWEu//GUGPvZvPOBMo8WGQ195UPksoim0pLomzxF4dYEXNUm4LlW7ijDySCdDuRrj5y++mtSFF1C+vhGonfID6c7WnejLlmMZMe7ebkOyj9V19Xx8ixx5K8/rfvc6JoyIqgz3Y4QVp4KhGZi6iZZKIfzltUVZAIp2kZo/Z5n4j/8Mj7t5evOsOGOzpdAsWxHgx7c1Yj+BK6k5ZlCql5ioTtCb6G1YCu1AcxuPRgSzvcIvfnnQ+yj67qP+DkUKhZpNrlonYmjEzMZjcyAyF4GGUjKqM9iVwJNzC8vlKnV2vPBF7Hzxi5FbbwBAlhuuAM8RmK6LZ2twCH+Ec0lcBEhFUkT8GbnwPDqkTdXed6D5N7rFW//w1tYBKdEd5usH7hozoe7Nb/bcxm7D9/9XZnTm++sXwa1TdmskPQ+3VqEjbmL7UumllIFbKiF0NYAnjY5w03TdoBqB8Y5GJlR0/Xr0MmTLUBc5tWz1asxLL+Tyja9Fj+0hHfUdP001F7pPCret/SCbykuomxoJ18GRDppZwLM7GJqusjSzlOTa9XiVSpgoMO03xrHHJogtVxk7X//LNjaW45jAJcUSOWnzvw/+L38b/hufKt6r+j/4x6/YFWW5QFibMJWCqinDz6Wf7SUSCdxSmQ9f8y5ufOUl/O3O1maOzQN4vt4af3Bcj1/fM9xY17cKmy2Fol1krDJGb7w3PKejIdDcJoWjDJ5l4Y6rwaR6zz0HXdVp2Wq7Rb6lkK/Y5Cs22bjZkq4ZMTQ8OXdQbiZCKe6IzmCn+hENzZGBdN/uAil/FmfdqtqLeq4BprJQPKfpsT2EPtyg8KpZDC9AykwRq9RxUdfeKev7tBRkLcf77Z1cP3R9q1sh1hEWZLnT06BrGDF1/7YUJ7hg6RK1XqWpcjtQDwVKTo2kJ3HrFbIJE3vPHjxNMNQt8YolpFADqEFTQVelRi0KE02JPYlTT0V4gv4c1BKN7/Se8XvC1xeufJZ6EaipRpKIhJoV74lvoCNXotYZJd5k1Ugny65p3y3mT1DcXI5q3aVaUaTgTk4R6Wukql69WbkST/HTYR+aUlXecX8GHqSlVp1qOCvXUoqcRjobbptg0L7hOIGsVLjvmRdQ//PNPGGTxP7ad2lGs6UwU8wuSJfuTSu3W/BdN5PCSHmEilNRlsKhch/VCvCLt4aW5JFAmxSOMth7VJpi/LTTkPU6zujBdfqqux6mLsIK5HzVJj9D4gKUpQAqdW9fqPpyGYmIQXdS/djmCjbvyTcGevdBZSl4tovhi565dlPe/yEkhbl0jwKkzRTxqsNYQmUmZVyLqr13IryGxgDxsZs/1ihsimVDUqjv3InZlUBoAs+AmK3uY14ToTUBwORm9f8lP6DiVEhJgbSrihR278HuzpCPediFHBbTSKmhyYbryisWqUZFi6UQP7Uh0FgxGzUXQZplZupdPH/N89XCJlIILIUnl3YQc20KXQn0Jll4z87ywZ/fx32786F6qTM1xZV37SaGhSsNnMlJ9J4eelLqOdgyqbbvd9Tge+fYnQBMBf0V/LTUilMJB+BA2mI0K8JZf+BeqkT9052aQOTVPi23NYbVHFOYqk21fLbTz7gL+pAHE5pAQh1gW34bAL2b/ki8klPHf6SWwqbfwZ3/o6zCI4Q2KRxlsHcrUkg+6SwApr//fXa/811U77t/b5vNgmV7RA09JIFc1SZXaZW4AGUpAPsVVwj6M8TNxn4L1dkumKnxRoDcKZRh/XPwXIHeobKAgtaNANI6dOZ6QAozU1IBOmQcw5WMJH1S8Gohyc0Ju8qtkcbP69dbf82121UvX2Idqnez61D6y1+I9qUgmsYxBVF/DLw/Gm21FCZU5zd61lC0iySECrJ3xJWlIAb6qETBLhYoOCPIehcVyydqx8IZ2U1vwiDe3ZQ5tmxZ+HpkceNaggFyUXywYRXWGzpOmm8pVP2Y1URfFr1JhkTayjp49n/egNGtgvbO1BQf+Nm9xLBxvQR4HkZPDze87+mcsiwbuhEH/GBzYLVNBC4e31Ko2JWGpZBQ1uZYEymU7TKDqUGKTaURy0fUZzV9/pjCTPdR0ExpRbdvAfjPbvMzsjWvmg71PvQ7Er/7Z7WeUzk0NVJNabiHG21SOMoQ+Jc7nvMcomvWMPn1b1C46iq2v/jFB7SfuusSMTQ6A0uhYvtieK2KpAEpWO5sV4pbKlG45nfhj6RaV/vUNRGSwlxVwaU9jawRx9LhpBcjHQ0jrX7pVqVJm39vFcAHiKAad2bxGkCX3wt5xLcU0nYtnD3OiWqOqfka5vh9ArziBLJSwUhqEE1jRwQx/3aM6XorKUxuUrpJnStULQU6mlOlIx7B3rmT6OBSKlGQxRJVL4/nphpV6d9/Md7Ou+ky4SeJ48Jdmv394esxszGLzlk5kBr9qSY3WpOlEASa6zt2IDo6yMdSdDZ1YvvOKxuNnBw/U+mLP1HpqWu6dDxHfY9Gby8xU2dVT4o9uVZLIcCO2gQOhPGVZksheK5qEeVWqrt1HM+hN9HL70/RyC1RrT3X7FE3VdZbLYWWmILVSgqBGORgZ5Bq6obr6UJnIDkQWlR9rospXUzN5D/v/E9O+u5Jcwau9wu+JDnugUnLH0q0SeEog+On4ZmLF9Pztn8Il8dOOP6A9lN3PCK6RjKiY2iCXLVOYQ73UTQghTlcKWOf+xy73/526r5MeKXukoiogTJmakR0bU5SqI01XF5fj2X5Vv5BPEdgpNSxW0ghf+gkkqdr0wgEHZGOWZ9lLZUmOZpUM9+UUwtnj3OiOs2UrrEkkg0Xefj3KK6W2duUsmliMArRDLWIRtaf3U/rWmvHsYlN0LkCRwhyVo5OYaC5NRY5JZzxcbJrT6ASAa1qUa3nkE6yoUK79U94jkDIKkSSLPvvb7H0iq+hdzdSb3cmpMqW8u+DdJMs6miqk5iDFNzpacyebtYtGyBL43t86uqlfOb5JwGwxVHf1dSQ8pGf2Gfi1JVvx+hRrpllXQlGCjWsV/yG5PHPC/fztKVPo+zWGDb00MfeHGjufNGL0FIpbjlWULErob+/N97LZEbwy+c9B4AlU+qeikprptreSGGqbKFrIoypBTGFaWuajmhHS2ZXj+uCHgnJCmB3aTcHheA+O/tf2Hmo0SaFowxusYCWTCIMg/S55zL4pf8kfvppSHv24Ls3WI5H1NQQQtCZjLBtosxYsTbLfRSQwly1CpVblaaM52fYVG2XhN/vWQhBJm7OSQrOWCPrJmLBvz/0P3iOQItI0AR2qTEDD7qEHQyk47QE4nNWjo5oR6gs2oyMpa5zKqMG0oRd3XtFc3WaKU3nmNSScFE5+MH7loIzrFIejZgN0TTVCHRYHqaEaSPSIu/A5GboXtMIhosIUVnn1Cu/AUDq+JOo+JW8E9PbkW5SVaUHqa+uQMOCaIbkWWeROvvssH0lwOaMAZUJSvUSP930U6Qbbe0V0ew+SjZiFUZ3D+ecsILEjISGs45R92ljwQPTpKNeJh0z6DBcnJp6hgw/0LyiRw2mO1Inwwu+xWtPeC0fe/LHeNm6lwEwYkbC62gONMfWr+fYW29hqtOg6lTDIG9vXO33Qa/VvacX8jC5pfEVBTLcwpiDFOp0JkySUfUsBKSQt/Jko9lQDysmDNKeVKRgNEghcC0dMIJnpG0ptAFgbdv2iArOQBUvBal6QtNIn3cekSWDYV76/iKwFACSEZ2r7h3BduUsSyFYZ66YgnTUgB90warWXeKRxoCbiRthlXPLdlO+28SQJPwJk3QFmi7BFMhSI1jqFvZfaXUmNp5wInve/e7w/XRtes50VIC0P8mc9iWb4/UqtivnTMe1tm5FFsaZ1HWWJBv9skNZhcB9lFPkp2k1piMJcqZLpi7pEgaTZrQhBOe5ajDrWR32G+ghSgyL3jtuBCD55CeFwdWEBW51mSIF3zctXYEwJHQ0SApgyX98kVveeiq7oga3Dd3AWT9QsSgtOkGfn3kDtFoKmQxaRs2Ujd5eiCRJeK1+9IGOGJpQWTz1ZIYOq8x/vOQUNKeC41tdRo+ShljRrUgmUM19x2nv4NLVl7IosQiA0UQnFFWsrNl9BH4NSSRNoV4Ig7y9CUUKm6oVbLPh7jQqdfjTx8P3VadK3IjTEe1okfwGmCzV6U5GQ8u2YrvcM34P1++6nmw0y+KU+l5r0lH5aLrZQgqBa+mAEdznI1gZ3SaFRxG2XngR2/7ueftecS/wSkX0Jm15UGmBB+p7rzteGC/oyzRmjP1NrwGifs2CNQcpBBIOnp+ZUqk7JJqqVTviZotEN56L9FyM3CSO0CDlkrBA8yTSE2iGhzBFyzHc4iP78RSualTbBgqpcyFRV9dZS8cQkQjxujruzLiCm8ux9aKL2f2Jz1LUNbqSi/jzi1XxVpjO6McsvLwK6F5jFDhbbqVqQtaS9KQGmDTMRjvP/C5wLehew/2TKmFgNQliQs0mo2vWIITgrU9WLV3fuOpVOPlTFSn41oYXkGrH0pbzzTzzmcRPPxlHCC67/ZPhcmv8PJb7QVZcB7b4xYNGHCEE5oDy15uLByCSUi4U4NS+U9VqukZfOsbN26bY7UVI18ss6VSV0U5VQ0un0XwhxpW9ihS2jLcSfF9CNQoaj6cbloJdbRl8g/VGK6OhpRDoENVlDaKN5820UcWQPgJSyEazc1sKSZO4/7xWLZuXX/Vy6l6dbDTLU5Y8hUXTkvWBp7NeJqI3CCgISB8wAous+sgmh48EbVJ4lCBw7zgjjyw/2S0UWxqOAOjZrCogqu+/SWo5Xuga+s+XnsI/P/s4upIRnrCyNTMn4gdT58w+8mfRMiSFVkuhY6b76LPH4H3pDDLVArVYFC8iiVuEGTlC9xC+oVLNqh++XTo4UpBz3Ivp2vSc6agAcX91L656AEf9rKfajLhCIK1QekDNFLtSi+mMddIR7Wi0zPRjCgEpfC6j9lEzIZJaQU92FZO61nAfBS6P7tXcuOdGumJddIgkcc9CGiapc84GYHH/agAuGXgGcdNUUiVWEekBnkDoErpm64INZls1smL0UZ84j9OW+wT54C9h2/Xqte9y6nrVqwBIP/OZYCZIScn/nvGvfPHpjVTK/o4Yt2ybIh9JkLErqo2rXcGpyNBKAFXh3peOsnms1RWYiqRIGAnGogkojuBJj7JTbrEUQJHAZHUytBQCUhCahYZ69ooJiNZFY9Cl1VII2o0GKFkOqahJ3Hd3bis+FH6WNJM8ceCJ/OdXXT7yLd9FZRUx9YYVPTPFdb8RWArVg9z+EKBNCo8SOJOT+15pP+AV57AUupR/153a/wet2VJYlInxmqes5I4Pn8/KnlbZhr2mpPrpjIGlULXd8EcGkPR7HauVXKhOo09tpr82hRfXcCOShCXDjBxNd9F0dRzdtZEGOIWDk7kIrJhmhO6j6jT8awf89T/CzxL+OdipPLu8CWRFae7MDDa7vmhekJXYnVIz6pSZahQ2xRWxugW1bsWfYC7vX4tbqeLUk0xoNALNU8o/fatb5M9Df2aqNkWdKLFSHeHYRFYrMtD9ngJeqUQqZihLoVbAc9X3oBkSBhq1CQGeuOzclveLeSafz/wIMeIXse2+fdY22ef9HWtu/CvxE08MpTxOTgy0ZG4F7qdiJEmmXiYZNZSlUPFaSAFgaVciTEv1mlxRfYk+Rg0disOU7TKe9FqCvKDkPIr5HVSmFHl2RDvQhYmuVameVeDWNYKHj/HU5GJGb4a4EScTzcxyHyXHd/Oc33yNOOr73Vi8OfzMkU5L2ml5NAL1Ep85+zOcM3gOmUiGydpB/p4DUqjllYV2BNAmhUcJ3H0oOu73fopzWApdasZ3IKRgOS4RY56UyiaE2UfOHEFXnxQCS6HalH0EEG2W3S43fLBrrCEy8RrlSISEBUl/3NcNF+Hr2ec3nIkb13EK+2f9PDhcYLJJqnsmKUgpVVZPrBO2q4I5rv1w+HnMAkeDUvI2KlHYM347Rvre2e6j6Sl/f+rau/z+xAkzQSmYpZoxMJN4xQKeLrAN+HDXE9iw9IlU8iX++ECVaVwq5TEcz1GkYCb4y7RyHX32nM9SlRH0ab/uw++YFnzvbrFEOmYoqRKriAxI4aKPkas5lK0ZAdh4lq+PTnHVnkmu3zHEumI/z6//An72huDmzHlPjS7fagx6UNdb3T8blmUBKEQSDGoBq1ZwSm7YtyFAXzrKprES7/vJPRz/L9eExLAosYgxIaEySdFP0Z1JCulqgUJtmspNisQTRgJTxEjreUpLbT77Ah0Zl8TrYJfGwuvZm/voBTf9hGPvuQHn9lsRAnZU7gw/W+YKnOGGBMbOP/VgjxdYklrCl879Eis7Vj5ySwFgRpX14cKCkYIQYqkQ4k9CiAeFEPcLId7uLz9ZCHGTEOJeIcSvhBCZpm0+IITYLIR4SAjxrIU6t0cj5N7aMB4AvGIRPdNKCmEB0eSBkELDfbQ37N1S8M+pOrf7KGI06SaVGmmoqVqVbKxALhInYUHavzW66SgdHKC29njsmIFT3L+sqgu/+BfO/cL14ftAiC5A0S7iSlfFFKzZaa6Rukc1Ao4+RTkqSFiSaN9v5rAUlC84GEYDd1TKTLVIJBDvxBvbgR0zWOy4vKjnNLRkgqhTx7O6cIEndri878/vg/GN0L2ah6c3sa5rHResuIAKEQxftNDw/ftaaCkUSUeNMKbgOb4WUKqTDR+9lhd+9abWixOCM7tPYKlVpsvzWFv2LYNx1ZGN0j5cmoHo3/hGuPcn4eIXnKb6dCxdMYBWLqrZdb2CW6pj9LZaCn3pKBMlix/dtouq7YYVxYtTi7nbGuffOzso5JTFNMtSqExT0DQqBZUGmjAT6MSI6WUq/sQkYqjnplT3cEZV1lfoPorMdh9ZPql7+TxxU6Nc38ELC0X+ZWKS1/35a9Ru+0vL+k6hMcnojnWHbToPGE3urZaK9sOIhbQUHOBdUsr1wJnAW4QQxwHfAN4vpTwR+DnwHgD/s5cAxwMXAP8lhNj3VPUowVzujAOFlFJZCqkZlkJnYCns/4Nadxvuo70hspeU1GBklFbDfZSYQQohmfizwB3ZM3EtpQW0w+whXodUTe1Ij9gIP/VRS6Ww4iZOad+V1IGp39xTufl+S89rFcNrLhrzCcKo2dQiUBO7qMRUhg9CzkpLDbLHhCsQUoapiwkz0UoKAyfj5aexDJuM50E0jRuJoSHRp9eHq/1ux+9UkLf/JDblNnFs57EAlL0Iun/vggrj0H1ULhOXVe7YtFNZCkJ9XtOUz/uB4Tms0nUXhS9PtprcRfUKPPhr9fpZn5i9HTRI4Xcfgp++NrT6+tIxrv3Hszn3jDXgOHjFIl6limfNYSnMSGAY8yuKX77+5QB8L5Om4Hesa+4TAZB2LBwhmPIz4RJGAiFjxEyLqqYG9zFDEef49V1setqzkFK2xBSqTjWUwXBcDz+nCGd0lHisRlXYrLQdXlAsE5OS2l1/AyFYeo56VtxSFVmvs/3v/57jN9cPPvuoWSbjCMUVFowUpJTDUso7/NdF4EFgCbAWCLR0rwV8cRUuBX4opbSklNuAzcAZC3V+jza0tps8uGpIWa2C6x4aS8H2iOr7fjz2VrwW9PptWAqt2UeRZveRn4J3Y8fLAMFNx76enZEOTBc6/Ym7LsqB8YGRSWPFIzgVOb+swF++APf8X0u/6QDNpOCVSq26R82ZHz9UufJGzQklmasxjYQFQqtSmbHvIKYgJGRLjf7OKTPV2unr3A/j2oJqRJL2SSHv97yKORLhX2kgDV0fOJGxyhiD6UHyVZvRqobueGiJRFhvIOJx0DTcUol/KX2U30fejVXO4Wlq0M7Lxvc5q8bi9Nco9VbgNO++xvJrPqAyn1L9cNZbZt9jaLiPAgQ6TcCaRWnMbj+GMjWF4w/2+oyYQm8q2vJ+xI8Vre1ayyWLzybtSYpFZQkE9zRAxg/6jxr+/TNi2I6GYxapCHXNI2lFtO6E+hLdXK6FFKBRwFauu8T94jF7dIxYPAfA0iZV3Oo9DxBds5pIWi2r7PGwR0ao3nY7Z331JnJWbpbW0n6hXoFMIIh4lJFCM4QQK4BTgL8B9wGX+B+9EAhy5JYAu5o2G/KXzdzXG4QQtwkhbjuaWm42N6b3qgcXPHWLavScaSlo6TTCNA/YUoia+28pWHNYCiEp1Kp4nqRmey2BZtNoatDjFxLV/GBjpXcVQeFyX963FJzx0PrQ02nKsRh4AndyIgzGhqjm4A8fgZ+9nkLYS1ny6Vs+zf0T97eQgpvPt+oeNQUj2fYXFfCzLCzDjxN0D9JRNxB6nckZft9mAcI1oxoRzW9vOdN91LsOz9aoRPAthQxTMiCFOq82nwvActuBlWczfKySjlicXMzLv3Ez9487eLZAS7bm7GvJJF6xyHrrHvrFNMXcFNInhZzb+D6DFqshoml471bkzAF+k6/XdPzfMS/iWTCaxIZm6PYIX912z/veR36HsghmWgoZv/5lsV9F/ZXrGkVmx/acwIShs72wXa07M6bgf18juk5cGEgPLH0H40aBgk+Y8VRr1pw7PU3Vrob9pAHGKmNQzRH56avo92MC9tAQkZjaf6DLBDC9c5RSV3coeV7cHcUdV3EG3a+9OShrwS5Dh98e92izFAIIIVLAT4F3SCkLwGtQrqTbgTQQRArFHJvPmgJKKa+QUp4upTy9d8aD9VhGSw/iysEVZAWB5CCwHEAIgd7djTMxNyn8YvMv+Oa932xZ1mfv4bjS3/Z5zOg8KalSyjDtU1p1ak5DNjtARNewXamCir6lcPz/fQ8Ar7ubSkx9/U960JcpqE8EIQXMZIJCQg1gm55yNrWPPqFVbnhPIzCYLymS1ZOb+N8H/5cP3vDBVlLI5cPsk2wsq1JBs8vhki8BEvI7kTWLuh94j2a70OsOuisZLTcCjqC0pxKLNTwBxw8boaDcLPeREHi9p1KOitB9lPfU/uNOnbi3nkuKJepCkH/KO3j2L58LKB/7fbsLVIng2lroOgqgpVJ4Qw3xQ2N6M55QA+1Ek+T4DZvnHrC8mWKAhd1gxOBZH59zfXVQHbqa0lpnyD7HTzsdgOrd9zBxn1/01tP62z1+sVr+z89R2kwPNrm41i7aAMBthXliCjU1GRo1IyQcG/3fOjHqamL0UCyOqZlkOlstE3dqKrQUgvarN+65Ea77FPHNv6HP18Gq79iBHskBMOBnA1laAqNscdN4FaFBYlkC3ZS4E2pCELg4g2fKdm12FnbOc/NmoF5pkIJvKUyXD29184KSghDCRBHC96SUPwOQUm6UUj5TSnka8AMgmBIM0bAaAAaBPQt5fo8myGYf90EGnR2fFMKskCYY3d3zpr1+6K8f4vI7Lm9Z9m35IV6x9d371GBpFK+1uiMCKyF4HQRkZ8YUwI9H+KSQnlaDlbNiNdWoIoMef3wQAjLL1ABv9vaxM9MX7mvbb/taZ6jT28OX1Sm1PLHsW+pcXasl0OwW8uQLY5i2bASaoxlI+4Jx5Uk8q0bd93wl/BqJhAVj1RmkMDREJOMwscTk2KHGnCZISW0WSnNLJfIxQbfrQqyDCVfdmxUpjT12iriUVDXB/fXGjHEgoSppq0SV9Eei1e2ip5J4O+8O32eLD+MJNYv//HWNe/LQyNyaUTsu+l++6jyHG8/+LnSrVFe616iBf2846UWN18XWe2Iu6mMmjL5WUljalWDzxy/kghMG2LA0CzQmGmu71gFwgzWKJrRZdQqZmvouR0yThC9tccGIGlg3RSLEjTjdM9xVThMp9Cf7Ob77eG7acxPsvh3pglFXx65v3YrubiflQubYi+G929gROwnNldRj6oEw+7LYZR13srX9Z95PKX7+r57PxT+/mPHKfng27AqkFinxw+o0t++Y4pR/u5Y/PDjK1/+8lfO+cH1Lyu5CYCGzjwTwTeBBKeUXmpb3+f814EPAV/2Pfgm8RAgRFUKsBNYAtyzU+T3a0BxT8A6SFFx/0NfnIAW9pxtncu/mbLOUcK9QD7SXn2TLxc9m8r+/Pec288lctJBC3Qq1Y5rdR0E8wnY9sCtID1xN46aTzyWaiFGJNQZQb4MaoHtOKHLTP7yRaFeWnYlF6JGm4zYHiJsIwpnc3nJuqUgq7I2srjHPce/7Dh/+kSRuxKkPT1IeMcFXRKUyibQs6qY6VqpfzV36cpCrq2NKKSlMjeDm80TiNSZ7THqnGu6GpN+rubkJi10oUIkqQbXdtUg4k+83PbbXksQ9SVUIiroafAQCnSwAVRlV7qNYKylolSG8cuvzI1HrWE3FVT+8dRdzYcRcwqeclyKWPwUW+SKKye45123BWW+BF39PtRotzJ7LLbn88sYbITA6Z1eOG/6z9LIzlKT3iN/opjPWyUqpnptsNIsmmoYt1yFjqVhNCS+U21jlqmW7dRWDWNzfSkz16Skc6YQEc0LPCdw+ejs1q4BTU8dyVq0B4PIv3MyzpuvqeUh0MVJX56753d6M3h4cS8OdaCWFX279JT/a+KOw78KOwg72CilVSmokCfFOqE5x75D6Hf78zt18/KoH2TxW4q6h3N738wixkJbCk4FXAM8QQtzl/10EvFQI8TCwEWUJ/DeAlPJ+4P+AB4DfAm+RUh6k/uxjDy0xhcrBkYLt+7ONvjlmZt09uPsINAczmeYuaqXr/kh9yxbGPv3pObfRNIGhiVmk4NWaagJaLIUm2YFmQvHlD3TPI79oKVFDpxZtfP2O35hdCPA6uomZGpOig2OfN0LXsSWE4SFLTTOxQpNKZW6Hfx5qtrhxaiN/2fS7xr4nJkgPTbNul4cQgu3fHWLnj0aQgVrqjhvwahYWyl3V88SnALB2SFKo5wD4wcYf8HffPQ8APWIx1qWTKTihmyoghWYXkiyXqESgx3G5Z1wy5jcP6tJcRqo6CelR0zSKfgHV717wOwoVv1cwUTxHQ4s3kYLroLk5XEeDs9/buP8yIIUIX3zJhnD5XJ3jJkvKVdGdikCnX/2c6Jm13izoJqx/NmQGZ1kKAJkLnsWKL7yHZH+NFV/80F531ejK1yDQZbq6f3GtuzVIbhVUoN5H19Izme48iWPcXLisO97NaataVYIrU2oAD4LWz1j2DCSS/7aHcWrquaw+p5GR9eIdZTVQA8NV/1xMda/07j6QgvruxjNnOpLfbP0NH/vbx8JlI5V9pPY6NUCCmVC9x2//Nnl/LLhpS2PC87z/upGNI4emrmkuLGT20Q1SSiGlPElKucH/u0pK+UUp5bH+3/tlU+qIlPLjUspjpJRrpZRX723/RxtaLYWDS091hofRMpkwNbEZemcWN5eblanT/P7zf7iLL/1xU4uOUfE6lY+tzbHPAFFDm6V91KxdL616WOQ1v/uoQr2mZm13dnyXjcW/UIk1UkidJkVPLZoiauhMSt8/HXeRjhYKzHHbt2DjVbD4FBAaRt6foemNe/zwnntCyYbCNQ2CkFLi+imwdtEffG78T7xajaq9nKf1vIG1a85E7+1hxahG1VGD/E83/TSUwtAMyXC3H2vZpSyWmaQg63VE3aYSFYw7g4xbGsN1RQrLpoY48e7rifuz3iBgmTSTYac6acR9S6FBsuy5A82UeLHF8PR/4vrV76Ne0hn5mao3SKTiXLphCV96mapq/sVds+Wdh/2ud4syMYj5vvvEflgKATIDc1oKAPGlGZY9bYr4KaftdRdBD4Ohpv7di30J8u2jBv/lB6Fv2z7F5355C2nPCwOSXakBipFeBkWOjH//umJdJDpb4xDWlJpApEz1XD9p8ZNYn1rG7bEodlV9d58rf5P/91b1etGEp2pLPMmOvLK4lkT8GF6fshzt3Q0yTM6RK1JqrkGYC750OZEkrFATj+iYygSbnBFX+NYN2/a+r0eAdkXzowTNRHCwMQV7zzDm4sXkajl+8vBPWgZ8PZtFWtasfTenSf7q3q187ncPU/ddP7WcQeFalT3sWfPHFlrqDYJraGrPqGIKypUyM9AMDUth57XqhzuVFvxx5Pvk0w5WRLCrByaec0LjWmJpoqbGlFSzvDs71Y/04Td/DTm9C379j2DlYclpkOwjUh4GPIReIWsqN1SsrtxsIhqlensjL99tUqm1x3LQfxKk+vFqNSyR5syeSxBCEF2xkkXTUHXVIK8JjVhACqZkyPeO/OSXN/Hx3zzQQgrvvO6dfPr6jwBQjcKHq29jomixu6aGtpP/+BNe/7cfkHiSmlEHFlzCSIRBxw8//0w8W6BHm3z9m3+PZvo9rIUg2rGI6mRDpG3UP79VPWogfP/P7p2VmronVyMdNZQabtpXeF12JvuNdL8KNM+VJhyk+sZnuzeb0e8rrDb3717lq81qtUXc67tP/u3XD/CnuzdjAL2Gsuq6Y92UtAwdohyK9HXHumcF5Os5dS5B0Pqz12xksB7l9liUPbY61vZMlZc+5c24kSh2SceOdDA0XSVnqcD9ssgYVS2F3qNqIOq7G+6jZA3+7kaPV/6+cX/32b85sCLNBJyvno9IoTH4dyZMPnqpsnjKNWfW5ocKeyUFIURhH39F3xXUxiOErFQaWkEHWchmj41iLOrjv+//bz5y00e4bfS28LPAh2tt3cbwh/85tEyaG5YLXQ3kdrWAXdFU8BaIn3oq2PacInKgSGFmoNmzGut6TTGFwFJwpqboePAuQJGCtBpulT3dENWjWLE6H/nnk3nX6w2qqUbKox5LETN1pklzYyzG5asaKbjO1qa2owMbIDOAWRmlOw1CSDK6mtXF6qroK0iXDFC5rUEQ1kMbYe1FUBpRMQXNCGMiemcn6SrUfFIYr4wTr/ups4bHtg5FknfefC9f/8s2opo6/7Jd5tod1/K7B34BQDUC0skwWa6zewbvmgW/8KoyRsJIIKVg2i/AS2d7lPuo+fQnNqGnGvGSRM8yvKZ+1quXKjfQuv7G/XrlN1vDdkPTVaVmCip4/PKfwnGXst9IL1Z1DXOpfAYxH18QcD5EDI3+TKzFffTCxU/lY+OTdE6dHIoodiQiZIRap+53xuuKdVESKRaJHAk/qD+QHECLtsZeHJ8UUpEUNdvly3/aQmxnHkcIthQEExk4d91zedOGN+Olkrh1jaqRYdd0haqt9rXCGKZgdKF1qaB5fbjh4knW4KXXezz7Vj9zDtGafTYXQkshobLfEKRKjThE3NR5xelLuPrKd/PWj/09tYcWZujdl6WwRUqZ2ctfGjh4Qfs2QnjlCnqPMtMPNqbgTkxi9PSERTgPTzceGj2bBWDk3z5K7sc/DiWjp6ymOIPmk0KlQNUv8uk49wwyz3qmf15zk1Xc1KnZc7uPtHQaadVnZR+N//vlLPnYe+iwSliOF6bh/vjUxdiGoOqWEHqN8aKale0sN0ZMM5Ehamh4aHw1sYodiwQ/epoa/Gr339s4icHTIb2YhDXG0h714+zkRABiturxGxQK3qliiox+slG1O/rJTyEzi9Wk17Ko62Z4/npnJ+mapC7VPSnUC6H76HXyHxnTqxRiERaX1UBxx3a13khZ+ZWDPhFlI0FHLMG2iTLVJullAOm7r0YrowgZY/UHr+be3eq7TSU7QjnxEMVhtHQGr1xGeh6pY87klyXVH6Gmm3z3tU9U34kmuP1DKv5xy/ap0KIcmq5w164ci7M+KWg6rDlv35lHzcioWfOcLqTKpOoloZuzP5uBwc5Ei6Wgx7u4tFQmK62w2rlmu2T84adqqX0ekz2GAsoqC2oUVmdXt+y7FGu0cU1H0kz4mlhPLdcREozJGrt6BP9wil+sl0rgWBoVLcPu6SplnxQ0UyKlh97b6JlR9VNfk7VWSylhJkIV13kR6B6ZSaWP1bGUbmsXx/jS4k9f10f55kaaeOHqq/a+v4PEvkjh+fv4fH/XaWMf8CoVjG71QB1M9pH0PJzJSYzunlA6uLklYCB1YW9XMw/h59y3WAqaX8VZLVCbNkGTDLz2QkRUDczzSW8nIkboHgrPx3cf6en0DPeR8oEXr/sTAIPFMequh1dSP4gJf4Y9URtG6FXGp9UP8Kf3NYrCIvEkEV1DCLhVU6mHt52soUU1pn6umsnz3K9C33roXM6AM8SijLq2mzY5rNZfolw9pR1gq+U3rvNlDYZHiGZthG8ReFoWPMDzqOsNfX09myVVdbHdMnW3ju3Zoftok7EIISQjHSnW+wHPfEXtL+jIFZBC1UiwOBtn81gJT7T+HB2fFMYqY1h1RRg/uGUniYiO6dc0aGaThTa+ES3dAVLiVaoMZBOM1zrIR5K8+NJP0JVskE53Ksrfn6myfHZMVijUbJ7y6T8xUbLCFpQHhcDlNDPYfPeP4JYrZlc/z4PBzjhbx8uN9EvfuugQJXbnqpQth3zF5kmL/YY9e57F3x/7Rs4ZPIdpqY7R5SdMrJohDb5tkcBuch9N+S65FeQ4Rkbon5Ts6ZEM+JXOeiKCa2mUtDRDuSqGv1/N8Mg4UyrQ7OM+U03sopNrwmXCkySMREv7zzkRWBIR39W1+GTWOQ/ypGN6uO1D5/GvlxyPvUeRrSdE+PpQY1+k8NS5FgohTCHEDwCklAfZd64N8Iu8pPRJwbcUqhWk5x0QObj5PLguRk8Pdb+VX5AKBw1LwfVbYwaz/qBZPYDQ1HaVUh67oqMlXDxZQ/imt5wnrpCI6LOE4YIYhNbR0VqnELTjNNTMrqeWx7IbpFCJ+93a/MSzmKbO29IaM69ENIIQAilBGComsicuyJ6YoPLwLjWzP+4S7tg5zUj6BEwc+jXfDHcT3DdkEatLPDeP5qt37unUcGK+dk6fxcCbnguAY8fxPEUYVoulkEWXYNbKYZ+Ezqqvvul7KoZSaRYVJxjoiDG5eYzn3uixZUpJQMT9XsxWJEYmZoSz32bUc2rZZG2SuNGQLO9MRMLqdd30yXjkXqhOo1nKr+2Vy8RMjVNyO9id6qE3kwgL6QK8+kkrAHja567j3M83xAJbOq4dKFJ+/UF5Rk7+1X42VGF2cHsuPHl1DxMlq6HT5Etyd1BGSnhotEi+atPlJw+U68tYF38uQgimPTWo/sN0jgv7zmBZWpHf2Ds+xM5lacY7QPgd+1JmikJV3cNFYoonVDqIuFDulAi/zsBIGrh1jTwpRvJVenX1bGqm5N86PoKeaQSxd6ZVt7jkxLHhsqduOZuEkdh/95Eff5JLnsASxjnW3khPKoqpazgT6r5+7+nPRl74tP26lweKfZHC24UQb2heIIRIAlcBj1zB7XEOKSVbzn8mwx/4J7xKBS2TRkQiyGqVsc98lodOOXWvAd5mBAFSvbMzDGhtmt4Ufq7PyAsPCt1aOkQFpFCcpmLrbE4ZfHnPdWhRNcOclxSixixSCNbV02m8esN9FAaafZfF/7N/Rd31cP3c+mrcosNspEBa9SjSMyiLRpZNsimtVeiKFGwBTsQCV+LJOESSPO+/buTvf60+T3tBW8oE0osRr4NrShJ96poLccA/tUjKQfetNteNhtLTJxjbSNvKHRTEaBKVYhis76+pa7SS6v1wKksiN8EJ3VE2XPl/vOx6D+cBlQkUuJrqsTjpmCJIU28dtEd2NwrMpNuYvfemo7h5NVjqRl1p7+9QyqfaauUu8splyjfcwOLcMFetOIv+jtmz/2N6G7P28SZS6ss8AlIIgsjNMYVaoSEDfeab92s3Z/jNnL73N78S2K8Z6dH86uV8jalKnU69ikRQ0+Lc4+f0T7nK/XVGzeIzZ/xT2HM7+swL+MMTn0A5DtFynageJWkmKdZsotTpEiXWVpV1MJ1pXIMZ13HrGlNegtGCRY+mSEQzJHe5q5TmlI+AFFZWGpbS8YU8cSPRqn01F2ZYCta6S/3t/xyu4k5OUoun+NUTr+a1k1+ctYtDgX2RwnnA64QQbwMQQvQC1wG3SylfuyBn9DiCrFaxh4bIX3mlIoVEAi0exytXKP1JuVfKf/nLPvai4Po9mPVsR2imjlXG8K7/jL8827r+lHrgp61pTM0kridCS6FeLlBydSpRwbXFTQi/beJ8BJUw9dnuo4AUOjJISwWaNdEoWAuC1qvru7FsNyy4qiYsVqbXhvtx7CjSi/DEY7u5xVvLZ+wXk02oQfRTzzsR07TBnxlW/FmjZzRSKMekum6Buj9feelTkW6UmA2OCf2n55F/N8BoJ2h+BlUk46J3KZeAW3FC6ennR/7C0ls/1nI/U7Uq5Rddxv990mFwWlI3INWhjrXHL/p6UqrOiTtUaqE5NIYudHpddc5OLEkmrkhuaVeC1HnnElmxAoChnbnG9+XEeNIx3bzl6cfwz885DjevPtOru+BTy+Dq9wCgnaBy671ymcKvf009leH6wQ2zemuDkj9prlsIOq2dveYRyMdEMyC0VjG3CT+29ZLvz6+0OgNBrcKPb/OL7FKLsDE4LpED4IFdY9Qdj16zhohlsD3BN2/YhudJJp0mUks1XDvdyQij7hIWazYRB2KOhhCCQs2mT6jfQ19ZBeHHO0RIZJG4xKsLpmsaY0WLLDYiHuOzx3yHfF20WGBjiU7cSJQVTXLjg/Y4ES25/ympfkFdKTbAVq+frnqDYJzxCSopZUm8Yv3f78edPHDslRSklFMoYnixEOJTKHXT/5FSvn9BzuZxhhaphWIRLZFEJBJ41SqxE1QKZvWee+fbvAXhINHREVYmSySl6z8Bro3QNJZ/73/DWU3QDCZXU41lonoc/J6/drWAZwsqUfCkh4gE7qN5YgrROdxHtSDQrEihYimFVCEE0nFCy+ZXeprf7v5f3EBJNeZxTLbhj5VejIgWpT+r8/MN3+S/3EtDn/dLzliGptfpiqjgZtEnhbFqImztWCCJLXVsqQbqZ6xdzuuefByxOtQiYMQ8citV5pe7XhFbrMNG71+u7lMuj4yrNFahS+LF7eo++5ZCuioR29WPdvlWjUICkil1b991mRKxO3FqO6bvDussqXaRyw1/sEqkyfiWwsruJEu/9CVW/fpX6qMmorXrUQY747znWes4dVknnt+USS81rEEAzQ90euUStQc3Yq1eh6MZGNpc0mJw6YYl3PSBZ/D5F57MT9/0JLZ98iKWdiXmXHe/oGnK1RNYClYJrnq3et27Lsyw2xeEEJy2vDO0GNB0RkQfa4wJnqHdwbtuOZuna3fSbVQh1sFL/Srom7dOMmk3kUJTDKMrGWFI9vAMP2Ps9Z0XIz2PYs2hH3W+HaUkHvDu2kR4DdGYBASlyWnGizU6pI2WSlHuWE15xnM/FctgdHRwfJMjpd+exhTxfVsKAWlEFTGVag67ZQ8Zq4kUJiawk8ryWbZjYQQf9pWS+jwUKVwBvB64FxgSQjzP/6yNR4BmUpDNlkK1GsYTZjaDmXdfwSDR0dES0CpoGuSUCZ447TTW3XkH8VNOwQkshZpqVm9qsdBSkJVpRF2RQtGtN7mP5lZvTUT0WdWxze4jpKRWtRrpqJNTofsoVhFcO/wd9vjKkpUorMoub+zHi6GLKFWnyif+7gTu/ddn0uv7vG3XxvZs+hLKZA98+dundc4LG+oITOEiJm4naSQxNZO1XWuI1WEy6hevldSPLnHCFKs/+myMuIe+WAUn3Xwe79IrAJWEoxmKkIIuZ6mmsI9ZF+QSoEVUsVl6ucp66brjxnCdTEWS1HvodlI4GsQSmfB6glRQYRiQSJBuIuGaFaW7SV46cB9pgczHumfDux5GS6pZpDs9jbV1Kx0nHIepC154erOsWCsGOuI832+IMzPucFBIdKkB9edvhC+sb4gTdq44oN30paOh1AXADtnHYjnKxcatAJyt3UNaliHWwZvOOQZQBW/j9aYsrqbrySYi7KaXlB+cP+N9P2Ts059i/eZvcpKmQqNOzqOSSHOKU2+4jyLq2SyNTzNRqpPy6uiJJImoQdlqbc3ZF5/G6MhgjzQspfQNJUwrsm9SCNqv+v0iSpYihWS1EVC2R0awU+qaMiP3z9rFoYCxj8+f0/T6lzOWSeBnh/yMHkdwZwz4DVKoIP201P2tWQgCyHOSQmkMuo8Jl+ldXdi7lFk+bU2TjWUp1uyQFIzKGLpPCtOyjqWrh34+91HcnG0phCmpHeoBr5QrqkcvhMEygP6c5P9d5VKsuaTRqERhaWZR04XFMEWUmltDCBH636FRDNQX72NjAcpR6ALKdqv/vCoj5DWdrJ/UvySexPCg5I+xOalm5FnpYY5dB5EUWlc/GIaqAtfUzFnoEsoqkBsEFwcnWlMP8ylBTewGCZm+QSqJBNaNf1XnGxFky/DQbo3J4RJLItCXjfDC0we5b3eef3hGw0Iysh0s0mwMkjiUcZwYy5tm8OH3bUqlObT+2ep90nfD3XMvOA4Dp53EpgsvnPmVLSzinSrwPdlqxRxQaiuwpi/F1feNYDkujivZ6vRyuv03TtDrIOEUfQsRpxdiWXrSiggmShZ7apEwPtQMXRMkEinsWOM+Tn/v+zz5Bbt4sgklGcOZLDAVyGxXcwAYgQW6exToIOHW0ZJJUlEDx5MtDaa+3vUN8h2nYwNGQuBU1PMxuKnAPYMF7h2/lxN6TpibfGt5Zdn4WlfFmsNWOUDUug4qU8hIBmd4GGuFslwz2RUHdD/3F/tyH122l7/XLMgZPY4w0wrQEgm0RAJZqYbZJftrKTiTU6BpaOk0VadKxP9qy5rWKhQHGF2dOIH7yMrRFe3CELEw0ByrjmHWBWV/0JySaoYzn/soHjGo2m7LjClwH+lpNXj+6d4mgTq/D8ZEt2TxFJx7tyT9kK+2akJ/qhFoll4MU4vNmc4X5H33JxWJFGLqh1Ztdh8Ap1tfITais3a3mvH1+Nkjed9SyPuV1R0eyv+d7ldy4x0duPl8aPXcljknrNYNLIWTR1vnVbm4TsVT9zsdSWMu9jt+xbPs6oqQKYO0O6jnLSoxyMQFfekYX/n700KLAUDPdNAnbBJFZTXJeg8rehoZSG6hgBbVEBqw/Enh8sBSsB5WfnxzcH4LYcGw+JTZhPD6Px3wbpZ1q2vZk6sxXrTYKfuIOQXWSpVVt0KMIao5iGdJRAzSMYMHh4tM2gY1IwNn/L9Z++xORigkGkkXsqnocotcjD4xxmi8Cxc9tBR0Tf0GH9qkMqdidg0tmQwt37LlcuXapxBJO3Su3BDGmzInd7H4Taqr8DH3j1BxKrzsqpfxzftaZepD1PKqjsNHyXJ4SCq3GKP3U/qzii9WutTzGD1vbj2yR4p9uY+eva8d7M86bcyNWaSQSiESvvtoH6Twnfu/wwf+8gE82ZD4jSxbhtB1ak6NHqFmxWWhQaVVHVXv7MKdVjpI0zVlKeii4T5KlscQQMUfZIv4MYomPSPHc3ho6iEgKEhzuX2kIdksK0WEJtGmlIkbcZ2w7647oc6nMFc6vBB0xxuBYukmiGhRrDkkvANLYYkvcR2QQq3esCZeddZy3vysDbzwJwav/5aaXffovt59QAqaRkIYmH2+aFpK7U/v6MDN5fD8mgsn1a2kja0CmldFaJJsrrXgbEeX8mGnzBS6pqPFlEuoV3fIJTWyZYlnZ0nUHaoREEFD+xnQMxkW79zIN750D0+4/jyc0npWNpNCPofe1QuX/GdDzZWGW8varFJfzf5FHHYc99zW96++CpacesC7WdokjDdVqbNDNq7levckshRUiqsvVLd2UZo/PDgKCK5/9g1w0Wdm7bMrGWEs3ioYGSQSnMA2olPjDMc7sfRUGGjW/QK5jB8IjlhVtGQytHy3T5b52vrnMnlhp+rF4Qv0mf39dDz9yST6LBbvariT/jzUyCZqwSxSsLnPW6HeDN+F7QvuTfSr59gUjyD2sxfsK/vos0KIU4QQp873B+xfOkEbs9As3wxg9HSjxRN4lQpuqeSvMzcpfO62z/Hrrb8OC9ScsbFwVlp1qvT4jcfLmpglOaB3dYLjYOWnKNQLdEY70WQkDDQn/Y5PIqL2kZO+K6tJz+jnm3/OC371An788I+JmzqxJd/nst+9ggcnH1Tr5scQukTc+30AIp7DZ19wkjpX31L444mtj9/Vl6hGe53RzrAbFtIkaij30UwElsKiVCfCM5nyScG21Y/1ilecxkcuPYG3PF359n0uIOYTzKQvJpfXNDr0GCz1u7/6ufZ6Noubz1P3M6O0rF+tWxyBsQfRTI+s1eo22+g3pA/UN5d87rOgaSz9jy+SS6lA8xnLVhKrRaiYEd548utnXReAlkkT99tMnrtpK6C11A94+QJaZxec+sqW7UQ0ijBNnNFRtHR6VtvLw4IVT4ZFJ0KyD/41r94fBAZ9d9nQdJVcpc4W2agc/rXn6zFZhZAUlnYlQjfmQE8Hc6E7FWF7pJUo7bKOlTf43tiz0R2bPZEMNTPTsBRkDoC0TwpmXVkKWT+ja/Oo+q3GupdDbhdeRU3ozMFlkOojmnHonCqHcbR5K5tnkkLNYZIOvGQfjD0YVmGXIhVMT8Nx9zV8Hxz2FVMYBb6wj3U27ePzNubBzAHf6O5WMYVKZa+WQrOb5uHph1maXopbLmEs8gOuTpVu1wMdyroZ+kbD4/j9FnIjKgDdGetEEA0thVQtT5kMkZgBuJSDAHST+6jqN8W5ec/NPDF1JmZGWQSjlVHWd69HlgsITSJkDUhw4bGdPO9UFcx0xicQCZPfnSI5b8ziD0tjmEtKDEVjaDKJqZv88OIf8trv3sQDQEyPhgV5zQgshe5EGpwUY5EcaBLXVj+WEwfnHhjCwj3fUsjpOtmAFG77ZhjwE5kM7sgI+XzJ/34WwzSqWndqK3pE4hZbyWpnuh/YHpJCZMUK1j+g7s3Ytz0yVTi7bwnJus2kdgyrO49hLjT7nF3/dcuyQgG9Y/b1CSHQ0mncqSllOR6KwPHB4A3XwSNUvl+UjmJogqHpCqautVgK273+xoo+Kbzo9KX8/E41SVo2TwZVVzLCLreDk5qW2WWdXTd08QRP6V6NxjtxIh2KFHK70Cgiop2cvftu7uxbo5JCkkl6fJLe6Dcs6h5cA/f9AT2uOs0ZAz4pZG1imx3OvUvjD6cI9pTnqUSu5SHTIL6i5RDpuZafdC/mRRMP4+aXoKXTFPQapmuEysOHGvuKKTxNSvn0ffy1ZS4OEjMHfL2nBy0eVx3SfBN0LlIItI0AJqvKf+0VS6G8ddWp0uP4hWiRRKNwKDiOn05ZGFV+/mwsCzICWp04NWK22jbqB3UrQrk4movXbE8tq3v1FjnssYoKxMpKCU2XKjgLZJumH874OF5KbTN5coSdqwU7owbTwiKCGugGUgMkNV/R1Ijt1VJIR5O4ToZxQ0c3PXr8Cux+P3XVsRuEIkc3UvrLDQDkIhLO/yg5TSNrxGGJ+jHTuZJf3LWbX2wpYU1Ns2XIL1jr87OibrgcrvkgmtkIMBZe/Sb+OHgqFaFcX4Y2e7411qUC2s9IZUg4NSrm/HISiz7wgfD1U7KS7Z+6uOVzN59Hz8xNegHS55+/188XFLoBxiMogkM13RnIxvjyn7bw7h/frfz8PoZpkvNOKsvurGO6ec+z1nLSYMecdRkAXckof6ody+BTphh4orIEttdWgNdaa1DW0rDjRrj8BISA9CmrWT+9g6/+8fM+IWfo9bPBHhpVmWBm93KQLos6rqRvQ57YaWdBso/0oHp2n3avel6K9SKF+hz9EGq5MPMIoGw5RHv/wL9pUzC9AzeXQ8+kmNZ1dDeKNUNv7FChLZ19BDHLUujqUo3YbTXgikhkTlLYlGsYZ+OlPFvHS3ilEno6hSc9am6NLssv/4/EZruP/EBYaVKlYi761a18+BO/RxMWfSKH6ytrJhJq0CoGlkJTTCEo2Z+uTaNpjQF7tKI0irxaBaFLNF+eIqs3HmBnfJy6P5GLuwnOrtS4JxZlR3SETn1l4374gmYJM7bXmELCSLC2b4C8rqGZkhP70tzx4fPDWXIp35A0zn/zs0x86UvqdQzcM99CLjtItvd46FkNl10Nz/o4v71vhEIkgTU1zW9u3Q5A76rjVIvKrX8Cu4Luk6YwTTa8+y385ILX8/yTVI/hxcnGjC/AE9e/GoD+skPWq3PMivn9/ebixSz95jeIn3wy1sMPhy63AG6h0CKv0PKZX60eW79u3v0/VjCYnTHjf+3vec/i7zAimyr0uxtZW295+mp++danzGshdScj3C9XIl7+ATpWVBGmzi1Wa3+H8XiW/v4Bv+mNQvbicxsr2DZaOqMaEQEPjShLMtGnnl0z7tG9roxYcgrEOzFiHolei7W74fO/7kL4sbwW2DXI74bORjp2qUkeW5bHcKcm0VNx9hg6hp2epUx8qNAmhQBT28LZ+eFA4dprsbZsQSQSdL/+9STOPBNhGC0l88ZA/5wpqV+5+yvh6x/evplzP/cnvHIZLZkKC9eSTo2EMCibsVnuo0BbvlzwB48vf594zWbplM2ANoVbV49FMplESEnFq4Gut3RTCwbkkfIIFg3LJbQUajWEDsKf3KX1hsvLmZigFPe1kGSGp5cbQbj+WGMgM3zZh5gRxXL3TgrHLVpEQdPQTQ8sp0X8rTjZqC6tbWlo79RMKNTLTHs1sjF/kFn+JDDjxCM6pUiCqFMn5Wc+HbO0t9GiEtCi6vy0dJqoofOndz+Nd559Acd1H8crj2/19QNcdtGrALCH95B0apyyfnDWOs1IPfnJ9LxFyUJseurZYUtUKSXuxEQYVJ6J6HHrAYgcs3rOzx9LMGZIf7D0CbzgvKeyalG2saxrJfuLYCDfte41iI/kMZcs5ay7r2tZ5/UXnkw83dpYKHH2uaEGGKhEgETEIBHRmShZGJog0dt0Hpd8CYwIaBp7us9Ej6qxZem9YwyOE+plhZjertxtPY1q/mITKUxqGu7UOHoqxm7DADs7S5n4UKFNCgDjD3HNN86i+Nd/PyyHc6am2P0Pb6P429+iJRP0veudLP/2fwOgxRszI7N/ADlHH4Mz+lVA1BAGY6U8cachUx2kbsY8SVKPUtHNWe4jzSeeWql1ttJZlAyYU9T9XsGRZIK4lJTtMiIabXEfBZbCeHWcqjcdbv+y1/6E/C9+gazV0EyNeq96yFN+S0kpJc74OLmEQwwNITo4xm5k4PTFloSvY754niHmIQW70eqyI9pBQVOWgldpXbc01bAUvFwjPbcWgc2TIxTrRbLRbMs2o4UaU37nscWlCaTQEJEIdDRSPDXD18BJN6pm+xJ9/OjZP+KUvlNmna/e3Y0wTepbtyFtGy0196DejORZZ4Wvxz79aR5+8lOo3nGHfzFzDwr9H/4wXa9+NeaS2dbKYw2BzlVfOsrP36xSb5+4qpvf/eM5KpgN+9cu1EfgUhwpqMmTuWTJrHUSUaOhVOpDdC6j501vCt/rfv1Nj+9C6k5F0LJN6b/9jaZQpb7T0WON72rNHknBmuE+CnqKN+2jaDUmhNsiJm5uGi8mqGoatt11ZC0FIcQLhRBp//WHhBA/8zOPjgrs2Xkb2i86+eofvn9YjueMNGaueiLZ8pnWZCkE6YQzi9zqbh1NaHTGOkG3SPjyz1oqGfre41KSNOKUdH2W+0iEpJBvWR6vwyJjEssP1EZSGZKeR6VeQotG53QfedJje+kBAJ64W/m497zv/XjTQwjhMLlC9WLoqaigtufn/Y8lXfr1ODUjS6wpcL4005g9v+O8NTxxZRcrujpwpYvjteorBaQQN+JkIhmqmoaIeLiF1uuq5hopufXRVlK4b0zlvM8mBYt4r5ot9lZziERcuSSaegEEPn19PwZ3AKFpGIsHqNymmh+ZA/372EK5plb+4krwmwG5k5OMfe7zAHRc8pw5t0mccgqL3v++IxdkPoT47AtP4qVnLOXad57DKctaRR155ZXw1tvCtqr7g760IoUJXwBQS8RnrbNhWba1tufvvgaRJHp3c+qvIoVFvnhgZyKieiAE6G1YvGLxBsx4YwBfPiYp2DNJwdd46mg8/7km4vh8V5ZSbjrsW2452VktcA8V9vduflhKWRRCPAV4FvAd4Cv72OYxg/y2rQxOwhnXHFxzmwNFs384KDYK3zc9pEa/SoGcmbpquVao8Ci0OknfOtDT6dB9FJNKw72saVBtHSSDY9ZLhbBHLahuZMu1nUzZCWwd4sk0SU9SqRcR0WhLRXPZLodpo9ft/g0Ay8uNwKd0BEKXjHcqd0vKjzVYW9UgvDstGTAz1E21zbN96ez1PcvCfRy/uIMf/b+z6PArUGdaCxWnQkyPoWs6GT9A5558kdIrkpLC1VfjVautpFBsBIAtE7618bPAXKRQY/Uqdf97KzmM4Hs6/u/U/7UXoZ/qdyQz9r9SN7piJdZDqr7DHNy7+yhAbO1aUk95Svi+eqeSjYisWjXfJkcN0jGTTz7vpLkDx8ke6Fkze/leEBQIBlLlySc30mVX/vxndF/5a56wogsu/Ax0LIN/uANOfglA2O8EGpZCyq9VCDKQQpiN33Fk3bP43/5G0H9RDgpWAXu00SOE/JDytab6qTpVrrjnCiZr6vN3/9Tl9L8YRGseQ75KbMXtPOKkENDcxcBXpJS/ACJ7Wf8xhakxFXB1DqwK/6DRTAp6tjWDpLmXbDCTnBlsrjk1Mm6Ul/9kgoFCoWEpNMUU4p5HKpKmIoTqV2w3gmbCNEHXcSsVerTGLDdeh0ViNzk7QSUKyUhKuY/qRUQ0gqy1ksKxncfSF+9juDKElBqdVuPcHUtDW3kW4xHlwui673/g+y+hfu03ALi/X2cg1oUdUdf/4YkpOrZcxrLu2bPuqJ/FMosU7ApxQ/34gl67dncPbi5H4Ve/Yvc/vpOJK66g2uQycq2mL1kIcrZyLXU19Q2u1B2KNYd0n1rWZxUa38vAySr3/qU/wFytEhtldW5NqLnQ9epXha/3lxTUdq8mff559P7jP4bLtNgjaIbzOEU8opOOGqFUePbFL+ajT3odf/jAl4itX0/fOj9FOJKEf7y3RR7G6GnEGYIg/3+9/DRMXfDd1/g1Lm+/B95xX8sx+zqSXJ58IRc+93PEllocu1ti/Nd72HzO0yhc5XdPK42qLCrd4OcP/5r/vPM/GdV/xUW3eJzxsORiv63nFtTYUXczWAuUkrqvOoUAu4UQX0OJ431aCBHlKIpHTE1M0oUSczocaLUUWjtRBV3OgLDuYBYpuDXW7YGTb8/xsqLDNd1+cVUq2YgpSEmpHmVnICiWH1LZNfi57L7GUp/VOF68DnGRp2j34UYtEhHffWSX0KKxWe6jnngPg9EsY9UxhN1BvN4YcJ2qjkh3MeVXXUpPIB+6mtGf9wMaD3XpnJMcwPFn6Akpsep9rOhutZxA9WsGZmUgFetFUr4KZkAKVjKC4TiUrrtOHbdaw5rhPot314k/JQcoworpsZaWjUEbyKzvPhKei5jDzWD09vr3ff+6iUFrjCDYfr+2e+IZJJ+oBh6vWiF55ln72KKN+dCbjjLut+D0JNzUt44zlyzbx1aETbAANJ8U4hGdTR+/qLFSU/ZQgHhE5wevP5Of3jHE0JZF9OzKkd2i5tS1BzeSuegi1ZTIL5q8fqvquSHMPbz6D63WwIOmA2hIN3HELYUXAdcAF0gpcyjdsfcsyBkdAVh+BaImDw8tONONQWrmbFFvCloGxUkzScFyLeJSmdPLJmuhpaA3B5ql5J7dbqNjWW57yz60RAKqNXrrjYyKWF0CNTxbCdMlohkSUlLxA80z3UdJM8nivDJx++uCqNXkw5YCLd3BcMUPMLsCK2fg+ZlNjiHo71iB2+S2+efnPSEMLjcjIIWZtQqFeoEO39II3EeVlJrnVG5VfntnfBw730oKZsqh+/mfBKBLnMIfX/THsIUpwE1blGVx3LGNIGSzBRcgvmEDybOf2lJTsD/o/8hH6Hrtaw7a59/3jneQPPOJB7VtG9CTjjJeaPR5BoiZ+x4Km6vD9Xkyv+bDWcd08/xTB/l2QmkhDWwOxCH9JIjyeFhvcf12ZWl0zQxGAzccp56ZhSSF/bIUpJQV4GdCiD4hRECpGxfkjI4AHD/tUx6mwJxXKmP097PoAx+Y9eOOb9hA9iUvJn7iiaHvf2ZaquVYdNtq8IzZHgnfZaSlUtR8eeuYmSIer2JHihSFID29o2UfFc1EVgqs2tnI/IlbqGBtXVJJCBKxLEnPY7tTQUSzLRXNASmkE31QzpN1NSK1VnNW7+jkwSmLSwHPVdZDMwa61zIVbxBNIjV33n1MV9bMzKrmQr0QkkFgKdxSeYDzaFhj9sgIbmeRWkQQlwbStjGOfwbGaZdx7F1LwU2F1cfjRYv7dufZOFKkI26yemk3D5umyhSagxS0RIJlV1wx5znvDZ0vftEBb9PGocNAR4zbd6iJQoMU9u071ppSUoWxv06WBk5ZlmVrojXbyfnbT4BPKVLoXs1IvoYeVROtXj8UWHjyCWT+eh+bT4piRfzfmBc94tlHlwghNgHbgOv9/1cvyBkdCfi+ck8cHkvBKxbR0ykyz3rmnFIFA//6r2Sf//wGKczhPkoGaaOuJGkHpNAINCeSi7AjSinzlngCfvNO8LuwSSnZVZXYZYun/vihcL/xOlSEwLQ9KjFIxDpJeJKKU0OLRJG+9pGUkopdIWkmifrHFkYR03IpNrm5tXSaXTkLV9ORmZXUI8o/O3mK2magex2iScwtk5i7AjaiR8LrbkahXgjJoD+p4i/XFe5oWccZH0eWSlhxI9TWN048B3STwUw/owVFijsmyzzh47/nsm/fyg9u2UnM1NA0LXQTaInZbq02HptYko0zkq/hepKSpTLagoDxQiJm6vQfu6JlmVMGtvwRSuO4ooOdb7qM5902Tq+TYWBKjUdr/uF9ZN7xFhZ/4vKmLbUjXtH8b8CZwMNSypWo2MJfF+SMjgA0y58tH6baNa9cmhVLmAvB7HQu91HCTxs1HEnCqSKFQEvEG+6j7DIi46rwKRd8y3/6uNre8bB0kydsacy8d6e6iNWhqgkidU+5j2JdJKRH2SogdvwRz6+XsFwLRzokzSTn+Of2/PIURq3OZLbxSH3qL7vYOlHGM03k6ouwlz4XoQvuf46qXViU7EdrJoXYHBkmKJkLmMNSsAp0RBWpBgHnYpPrP7puHc74OKJUxU5EwnqPINV3VU+K3bkqlboTauYEGOxU914PSWFhFCnbOPxY0hnH8SR/3TzBXbtyAGTmkcWYiRU//jErfviDgz72+U9oxK5iqwZwqhoM3wNOleJDRdJ33MXLrvd47+3LWTUiqUYge8IGlrzxrfT3NzKtIoZ2xGMKtpRyEtCEEJqU8k/AhgU5oyMAzZ8tRO3ZA8+hwM7Czpb+rG6pvF/ByZAUqq2psjWnRtyXojBdSDgVZDyB0LRGSmpmkGJOxSvGmlMmpaRSd1lRaLT46/z4JyhEksTrMK2niNsOlSjEY50kPUlVEwhNImu+dIZfo5AwEqyd3s0d23byovIksVqOUmfDVJgMEtQiUbxqjeIf/4i5bAXDK86kK9ZFzIgRjae4yT2OD9mXhb2KZyK0FJpkB6SULZYCwHuf8F5KTaTgrFmGrFZJTlfxkjEiy1UQMHaiyhpaN5BGSvjbtiku/32rruO3Xv0EoE0KRyOW+oT/ym/dwtt/eBfAvFpJMxE/8QTiGzYc9LHX9Tdl+z3pGbh1HW9ItdytiEZC5/I/3skxw5Kt/aD5rqq+JsnvqKEdcZmLnBAiherR/D0hxBcBZx/bPGag+3K7UXsvsrYHCSklF//8Yt7/l0Zba69UmpsUrv0X+O0/hW9FNAqahleZI9Dsk0LUgc56Dtf3x9cCDfj0EuqOhuek+J3ZqK6kXqJsOSScBvl53X1U9RixumTM7CFhO1Signi8m2QgzKc3SCG4RylhQHkc85S/RwCmVcFON0ihErSujEQo/u532Dt20vWayxgpjzCQVDUAiajBS+0P8b/u+fNbCn5MoTkltWyXcaXbQgqvOO4V/PUNjZ4OV9R+D0DfuA2pBEu/+U2W/893iQwqv+5xA2rb13xbtXd81vGLuP1D5/H7d54dDhLCLxozFrVq8Lfx2MVcGW77SwqPFCcMdvCj05Zx1zEGsfVKJ8vZpJIi7hzZiifgjkUqbHvsHtja34hzmrrJBSsu4CNP+ghRQz/ilsKlQAX4R+C3wBZgr811hBBLhRB/EkI8KIS4Xwjxdn/5BiHEzUKIu4QQtwkhzvCXrxBCVP3ldwkhvnrwl3VgMCx1c6M2lPfVR/UAEbhzrh+6PlymSGEOH/VfL4ebvxy+FUKgJRJhoFlKyeinPs2KjTliTQbN0sI4Tlq5UWqVcXQpqceUlaB5HTxECu8iVQVLvUyl7jIZa5CS3d1LzYiQqENF+PuJGoiYyj4CcIxGP4Wyo0gqafn3arkqADKtGrLJNxvIROixWNg+Mn3eeQyXh8MYQCBjALSorTYjTEltIoVAZTITbQ1OC72xjz1+BmG8DiKdJjK4hMQTnhB+PtgZJxMzApl7Ln/xKXSnoqzua8zmdL8/gtaUKtzGYxtLu2anF3cmDg8pZGIm1559Ep94oUDvU8/W5E3TVHIGY8O7KaRNPn7664mdeSbeom7Oe8unWrb/7Dmf5XlrnqcshSMcU/hnKaUnpXSklN+RUv4H8L59bOMA75JSrkfFI94ihDgO+AzwESnlBuCf/fcBtkgpN/h/bzywSzl46LYaFaIOlMuT+1j7wDBVm5q1zC2V9lsaQYvHkb77qHj11Ux9+9u88dtjxKzGA7G8MIkdWArVaaJSko+omW1K7wIjTxl/ULNKlOsOb3/my7l3uZqFWNluhKmyjxzXT/+MRcCIkPAtBcdoSGcHrrDEuApk07eeCnGE7UGtoRU/Hs8CYMbVsYVpomezjFfG6Uuo80tEG4P4fCmaQUyhpfe0TwpBSupccLoa99iYQ1FUCMG6frX84pMGiM9BSj2vfz2YJsmnPmXWZ208NiGE4KdvOovFHQ2iDzSMDgcWpTpBSJxu9ezmtibZ8ds+4jmLWkcPVjTBiv/+FsdffwOnPvGSOfcRNY+8+2guYfa9dgOXUg5LKe/wXxeBB4ElqBqx4BfaAczTceLwwbQbWUeV3PBe1jxwzJTIla6rmnTMdB+5Td64WiM/WUskQpmLmt93FyDaRAq6lNQDUqgXiEnJtD/jj0cEemyY2wMl0nqJiuWSS+l88kUal7/97VjCQDc84nWQflaTFVM/ktBS0EH6wnWBOmlqarvaZ89aovUaIBCRxr3MR5U1pPv70nt7qLk1inYxJIVmS2E+dPoKps0EG/SUmGkpAKy66jccc+3veNt5/xoui3R0zloPoM/Xrlm3aG6Sjh13HOvvvYfoyv1X4mzj0Y/Tlnfxm7c9NXyvaYdPJ2pxJgvARGfrs3vydomdGSRh6vusYfnvVz+Bf37OcQtyfvvq0fwmIcS9wFohxD1Nf9uAe/b3IEKIFcApwN+Ad6DafO4CPgc0V/6sFELcKYS4Xgjx1Fk7WiAYTW1yy9Nj8694EJi2WkkhyCSa5T5qVjItNgTzRLLJfdQkpxArWFgd2cbmSb+it14i5kkmpa/i6Bdl/bHoB1LrylIQWhXHEIyb3dQcl6hpE61LRF0N6lZMBb2SZ/0DALYB0naRvmoqQDI/BKueBpEEXpANZXp89OUal5/2Yl771GO4/yPPCiWHzf4BJvx+0cF5pWL7JoWoHiUTyTBeaVSCh+6jyGxSiK5aRWTpUk46ptHQPpbpmrUegOb/+JbO06mrjaMXnckIiYjOKcuyh/W4KzrVs/jAVI7KQOtzafmy7fvC8u5kKO53qLEvS+H7wHOAX/r/g7/TpJR/vz8H8APUPwXeIaUsAG8C/lFKuRQVo/imv+owsExKeQrwTuD7QohZv3ghxBv8WMRt4zMajxwUpCRSb8xuS9Oje1n5wDHTUggG+FnZLM1SDMWGtaIlEmH2UXMWUmK8SLm3UQhTTaiZbs0uEwUmbTWov/LYtwMg8EmoXqZSd0BXBFOpGZQsh7hRR5cCo6wY0vFF6JLrlehb1Z/t/+Du71Dy4y6JwihkVUbPbl2l2kVMj/uWaVyz/EQWZ+MkowZaVJ2LOTDAeFV9Z71xVb3Zk9w/s70n3hNuC4TSw0FK6lzIRDO4/oQr0Tm3pMQ7zlvDxScO8Mzjj0CD+zaOOG794Hn84PVnHtZjrupRRHDN9mv5pwufyDtfp3PjevWg3vi0F8wbWztc2Fc7zryUcruU8qVSyh1Nf7Md5XNACGGiCOF7Usqf+YtfBQSvfwyc4R/L8tNekVLejgpmHzvHOV0hpTxdSnl67wFox8wLu4ppC8p+7KmcO7QxheaBTEoZFoDNEjNrboTTTArxhqXQXNkczVUoJRqcWfVfW3aVmDAo+A06ju3tQUqNySDbyCpStlyEpgimVDUp1hySpnrfUfIL1JKKFBKG+n9zUgXivnvnNxrZR6WJsKfsH5Ypg69HU8fV4ztZ5GvX46fUmYubSCGhvrv50lBnYmXHSjbnNofv92YpNMP2d5/uGZjz81W9Kb788lNJ7Icbq42jD8mosV/VzIcSS31X5l8m/oc9i65lqFew6w3vY/3GBxmPZ4kf4WdxwUTthHKKfRN4UEr5haaP9gDn+K+fAWzy1+8VQvXpEkKsAtYAWxfq/ELUyyrrKK5uRa2YO6S7311qFEVVnSqeLxUhIjNmyC3uoxmWwhykADCVbmixlOIqRlFzLWKaQa5io2uCpV1JpBsnF+T4+5aC8C2FQkWnWLPpMJVLqKekzq9/idp30lQWxg4/hXplfLBRpyA9SKvBNovabtmlVxDR4piZu1k/oKwX6yEVC4muXRe6gAJLQQjB285dw7cva2QFzYXjuo9jR2EHuwpKd75QL2AIIyxamxdBS8+effcuaKONw4GOWKt1W59+IlZVtaep1N1Ht6XwCPFk4BXAM5rSTC8CXg98XghxN/AJ4A3++mcD9/jLfwK8cX8tkkcCWckTcaDiz1ityhwNtR8B9pQacfRCvRAqjYrYTFJo6nnQFFNQ7iOfFKoVaFLrHE42VBtLUZ8UpE1UM8hXbTIxg3hER8gopSCQXS+FloIp4hRrHvmqTdZULqH4tBrwI5lGTMLQDHypJSrlHGW7TFyPqofHJ4W0ny7qZpfTaaxEi0yGVcFBJXHq7KcyXh3H0IyW/gXvPP9YnrZ273UAT12iQkyXXXMZoALNmWhmnwG5uH9fjO65YwpttHG40R1rbfW5TP49W8bV7+/RQAoLZqdIKW8A5vvFnjZzgZTypyhX02GFlVOB5WoiCtRxKoe2TqGZFIr1IpnAfRSdQQpBTCHWMcN9FEeWG5aC6OtBblez5V1NPQCK0RR4Hla9TGe8h1zVJptQ03uNKKWgUtsqUbVdDLNOVEsiJfzPjdt5qVlghCyJ6Sq2DomE31VM0zE1k7qptg9IIan5ed0ZnxR8S6SgRcHpwIyMEjHUnGPp176KtXUrY1qZG/fcSG+894AVQtd3q77Dpn/c8ep42ORnb+h985sY+/wXwoZFbbRxpNE8IXrqkqeyu2hwy7YpxosW1bobdnM7UjhqeiIcLKo5NSsv+z50t3Louq9JKdlT2sPaTqX1U6wXG+6jmaQQuI86lkG9UcGsNWcfVarIvsYsY1skG76ejsZh46+oCUGsMKwsBb9K0xQxJSZnxKBeomQ5GEaNhJFiqRjlzNLviZoqwLx0XFJItD64VadK3Z8+WNUShXqBVDCfSKuYQsIXxpvSItRqSaReRPrprPGTTiL73OfyhmvfwMapjaHr6EDx+hNfz3B5mLJdZqQ8wuLUvnsQd7/61ay76070uYoF22jjCEDXdK44/wr++MI/8l/n/RevetIKAG7cMkGhZpOep7L/cOFxTwrFKZVtVPV7rnrW/nfR2hfyVp66V2d1p8rMKdaLSH//s0ihmgMjDvEs2A1i0hIJpG0jbRuvUsHtTOMKkIbONpEi36HIrCA0KE9Q0wTR9GLylTrZJlKou1WIpKBeIl+10Q0LU8T5ivlF/j3yFTRDDeAJC+5fJlqyel5zwmtC95HpKOtncNLloZ/2Ux9XvShi9SqO0Ljse/cwOh1BinqYpRRge2G72od+cA/96YtOx5Uufxv+GxunNobxjn2hucq5jTYeDThr8VlhssVFJyor9n9v3sFkuU536sg2tXzck0J5WuXN17MqI0DWDp0gXpBpc0yHkowu1AthVfAs91EtpwjBjEOT/lKzKJ5XqeBGTcoxkAO9lB3JL19+Af/xHI2KV4HKFJYQxFafR75qh3ouMSNBXdZUi8F6mULVRtMtFnd0coK2HQDdbKTl7ugTLZbC2099O19Y9zIAIo5kqDTEm786jWdr5H/5KwCiVkVpHQmBdBTBjlUaNR+yqYGR7TYVhhwANvRtQBc6H79Zqb2eNdDuPtbGYx8xU6czYXLr9mnqjkd3sk0KRxRlvyuX7PRbL1oHN2DNhYAUVmVVg/XL77ic/7hZaRDNdh/lIZb1SaFhKYi4Cix7lQpetYoTMygkwFvSj+NJyqtWcsMJGjWnCsU91IRGzEz5MQVFCgkjgStrEE2DVSJXsRGaRXc8g1QJX2hGo0I6l2x1H2lCI9O5FFCWQt7KY0f8mIDuF61VK5RNlYLq1VXm0tZ8I3ksyFiCg7cUEmaCNZ1rGKuOkY6kefYxe5XfaqONxwwCVV6Arv2s3VkoPO5JwSrkADC6enB0EIewGXaQfrkmu4aeeA9jlTGm8iqGMaf7KJ4FMwH1ZkvBb7RTKiFrNZyowRUX6tRfq2oHk6ayJCy3iszvpiYEET3aYimkIgk8YeGZidB95IkaSTOJ8LfXmiyFXGp22pzIKFM3EiQxxRUp2MMqKC5LJSoBKViLEGhsnGo05wsqu03N5N+e9G8HchtbEMRnMpFMGHRuo43HOjYszYavT18+tyTL4cLjlhS+f/efsJw69aLyiSd6+rENX0a7uZDsIGG7Nh/664cA6Ev0cVKP0vA3/UFVi8wwEWs5lXk0j/vImVBFdfWoxsalAnuFckllIoo0al4VO78LKUBIEykbcsCZaBKh1diqR8AqkqvU8aiRMBNgKHISTU9CLinoiTVqIAC07KKW849XlGVh71Z1GF6pRNkXrkOa/7+9Mw+TqywT/e89tXdV9VLpTkISskeSEJYAEmRVNgHnsqmI4DajMC6j4HYHdFwGlVFBro4Del3GcQYURUBUGHmuiiiO7BAl7EsgO+l0eq3uru29f3ynlt6SXlKpXt7f8/RTp85W31un+rzne1cWJRfx7O5yraZiraLrXn8dB9YfOJqvcFg+fcynmRefxw2n3DDucxjGZENEePQzp/HzDx3H4ubaBkXMSKXwmycfp+3qD/GW755N3q9FlGg5gFwIgpk8XL9uYIG6cbB+p6vrPy8+j2gwyptf82bANcUBkCEZzUXzUd0QRzNAbpfv+wi4E0iXUxJJv+hcKruRnlb3ZO6pMzkVQ1KdUshznvcKL2Q76OzLkKOPRCgBuaGO9Y54OeO4iKScM+wjvyxw2qMFwv5h2c1OKeS7u+kJuc998FOnsLhh0YBw3GK5j0qz1HiIBWPc/Za7SyY5w5gupOLhATOGWjEjlUL0wf/mlPXKV7/xMnUPuJj/eKqFbEggJ2zItMHWxyb0GcWSDD8884cAHDvvWN520NtKT9oyeKaQboV4c3mm4DtmPT9ZLb/LKYFtu14GIPXEjwBI+DOFZfkn6PKzdz3cMfV+sblEuKyAHi6kwXPO9HjAhaiy6Dj4SFneGy+8A08G/jSCzWUlccndbpbgRYNkt21D83kKXV0csWoB111wGLPro8yNz2VbdznfYnvamc3m1FmNIcOYzMxIpaD15TLJTbtyZALQWN9EOBAgmoGvzGrkyT/fOaHPeL79eZKhZOkmGPSCfPK1nySUVwrBAOJVfPWZtFMEdSmnFFBuffAF/vPPG4eYj55tdxnX0bRL9q73ZwoxbaMr6Uo5BPHrFvk1VGZV1Eh6xsshnouAivtOZlb9L0gtpeXjHyO8eDFLUsuGyCPBoXmO0YUpyOXItbaS7+5m7rxmzj/CNfeZl5hHV7aLrkwXuUKOp3c9TVCCpZLZhmFMTmakUhicaJ2OQFNdHbGA0NxX4LFolBc2PjmhT3i+/XmWNy0fkLkbCUSIF8Lkg4O+9rRfhK+uGfzY+y/e/hCfvWNDhVJw5iPC7im/K1M0DbkyDh5pOv0s5KL5qFiC95zlZ5N+5W9ZSYpngh6NLXcAENj9sj8wv6TFJZew7Nf/PaJMydcMrOwaOdDNHnI7W4e0GC0mlm3p3sINj9/AT5/9KTnNEfAsZ8AwJjMzVCk4Wv0H6FwAmqJJgsECB/Q5m/2LkfH3VcjkMzyy4xGWNy4fsi0pUXLBQSUe/B4DxJtd2CiQEOdXKCkFv0y4hPoJqtLR4RLDGn2lgPTRFfYjiXylUKyhMjfZQL7nIFpo5JVQkFyjU3jp5+52x0ZHLj9dyYI3hqg/vlziO7LQ3fgzGzdCPk+gqbG07cCkcyZv6drCIzseGdX5DcOoPTNSKWjB2es3HuDET/RBQzRGKJgjlgVR5dXA+GsgvdL5CjDUWQuQ1AiZoA5cucOfldTNAr+vcT1OKUhRKWx3NnkvniOiSr7PRU0lI1EEj5CXptPvu6z5gUohGgoQCwUIaYL2iuzec4ppynWjLBZ35peZFS/ncUSWuW5kWz/xCQBCc8uVSBcknRlpc/dmV2ID+Nap3xrd5xiGUTNmpFIosjtVzhWIhAJsji8jn/VI5j366N/DkXumWN6hGIZaSaxQrjha4o4PAtAXauSr97iInYSvFDISQGIxMr5SKESzRFQJ+C0xY+EgIYmA109nnUvAK2jU31b+oMa6EBkpO3l/sG0HiWIRvtgo46KXvp7QkoNKbyMHHTRgc/z4ch/j+nA99eF6nt39LC91vMRFKy/i+PnW59gwJjszWil0z0qxrQm+90b3NWxNHkR3Lkq8P0CvN/6Q1K6Me4pPhBNDtiW7crSPEIb8ZLqeP2xyPoN6caGyvZk8XiKO+vkUuUiGaEEJq3v6TsXDRCRE2vPYHYrgiUc+62cyVzTrqI+GaGNx6X1zLg/tbkZDbJQzBSCwotzi0kuVK4/Ou/ZaAoP6Tq9MreQXL/yC3lwvJy04CcMwJj8zWinEI0kue3+QPxzivobdGqQul+Eb/9pHoDtPzwMPku/u2ctZhlJUCsnQ0GbwyZ1pttcXBtQCYt5aWH4am7qUNr+3ckrcOXqzeQJxd7MtIPQFM0RUqaOfSNCjLhwgSpAeEVoLOVLRFL1ZFzIaq+golYwG6cuWZwSp1Iry58caRy/c/COZf2wbi05uRRoPpO51x9D0jnfQ8DdvGrLrkgZnXgp5IdbOWTv6zzAMo2bM6B6EqeDAR/Z2LX8d8zYJr7z73cSPO46F3//emM5bNB8NniloJkO0rYdtK6E/30+0mAHcuxtmrWB3T4YuP5w0iTMP9WbzeEmnXHqDEfq9olLoozkRQURISJBuzyOX76Ml1kJvJk8k6BHwyg7t+liIrd314FeGSBZnB3MPKWU1j4r5R1C/sA8iDRBvZtEPfjDirgsSzq+wrHHZ3jukGYYxKZiRSqFQrPPvx943BOYDEEmUQy7nbvXbcz7xxJjPXzIfhQYqheyrryKqtDZ4pHPpslJI74ZYEx29OXpw64rRR72ZPEm/F0BfKEyfiFMK0s/SFre+UQO0BQJkcz3MSbaQ7h7avSkZDbL9lTD4kxcp+hGWjNGs0/waOO0qWHbKXndd07wGgNMXnT62zzAMo2bMSKVQxPOE37zld8T98gznn38CfffcBEBjZ2mnMZ+3J9uDJ96Qp+NiBFFrvdsnFU25chr9HVCXorM7SwGPtEao8x3d6UyeRt9Wn49EyAgE1SNGP5ee6Eo9NCo85XnkMh2sjq4k3ZYf0oj+8U3ttKcLlAxaRfNV48KxCScCx102ql2PmnsUd5xzB4vqF43tMwzDqBkz2qegCHPiLSUzz5LTTmL+1/8PACs3+TuNo0FLOpcmHowPaTnZu/4vALQlhXSx6F2xN3Osic5eF+7ZQ7QUfdSXzeP5PgUvHqNPPGLBMHHp5/hlLtqooZCnMxCgI7ObWdFZ9GZzAyKPAN6xzt2Y0xvfzxHBz0DOr6+UrG6byqWNSy1hzTCmEDNaKQxH/Rln0NNUdhAPaYYzCnqyPa4CaeW6+x/g1WuuAaAtUdFfoCIstLPPVwoapU5cdJHzKfjN52Nh+kWIBaMIivjF7JpyGdKekC1kSEVTwzb/vuC1Lpks37uYiw8/EeY4004xL8IwDANmuPloJAa0bxyn+Whwq8ju3/++tNwbcfus3/EXtjzxJGeBP1PIsTBVR3+6jnVzI7DRzRR+90oPa4FQXYR+ESJFs9TWx6DtRRqzPSUHclO0iXR/fkDkEbgy2j+59Bg2bO3ktNVzYNknoWkRLLLcAcMwysxMpaCFPW4O9bscBfWUfFsrbPsLNC0e9VN1OpseohQ0X9G8R4TOTCcf/K1LWnNKIUVHb5oVsxMclJ9Nv7j9N7ameaU1w1ogGsIpheK5/+MsAGYl4i4bGleauqM3y+LmgTMVgHVLZ7FuqduPaD289n2jkscwjJnDzDQf+U7WwTb/IqEuF1LaNz9LoSeNfvsEuPvKUZ9+OPNRodN5ruu+/DkAtvWUy0pnAWKN7OrpJxUPQyiG59v8t7SnSfuO8EhAXQ/mQclm9YWykmuINNDRm6UxVts+r4ZhTE1mplLYC7mzXSJW+1wPEDQvUKwoOgrSuTR1wYFKIdfWRvSQQ2g880yAAQ1ozp9/APloE63dGWbXRyBUR8CvF7SrO0PWd9TWhaDPEyLxgV3RkhVKoTHSSHtvhoY6a1VpGMbYMaUwDKl/vJK/vTxAW8JVDy3kZEA3tL0xnE8hv2sXwVSqNIPY2lNWChvDIX73Uh/5gjI7GYVQDPFnCrt6MnjFm35AyYoQic8dcO5kvqwUol6Cvmyh1IrTMAxjLJhSGIZZ9Q10R0LsjrgbayEn0LNz1McP51PItbURSKUIeSHCeGzb/CAAi3rqCKjy44ddDOzsZMQphWwv0ZDHrp5+1rcsR+ccQPx1rmxEpG6Wa90JEIwRPPnq0ucUCsVWnKYUDMMYOzNSKSi6x+3RUBDNNdEadk/gmUKo3AhnFAznU8h3dBBobAQgns+yTV1y2pG5TvIi3PPcSwDMro/6fZrTxEIB2roz7IjPIn7bL2FeyB9fXanvAid/muQhbyt9TnefG7PNFAzDGA8zUimUsnlHcDQDeLkWXvGdtR9vWeB6GY/ChJQtZMkUMsQr6ippLof29uL55SrqCkqvH+p6RMYlr0moHSjPFMj2EgsF6Mm4KKRYOEBfv3OARwIRKNZVijXRFC2X02hPu1wHczQbhjEeqqYURORAEblHRJ4SkQ0icpm//nARuV9EHheRh0Xk6IpjrhSR50XkGRF5Y7XGNhrChQPYGXKJZV39fWQAelr3elwxU7nSfFTodjfzgF/YrrjFU3htn3MoBxNPA9CSdI5mcn3EQmWlFQ8H6fcT3iKBCDT7VU4DYUJB54hOBZfQnnalt818ZBjGeKjmTCEHfFxVVwHHAB8SkdXAV4F/VtXDgc/67/G3XQgcDJwB3CAiNauPUJ9fS79/X41m4eVQqNw2cw8UM5UrlUKx/LYXT0C2l3je5UHUFTzm5fKs0RD1LY/xpkMPIBoKuJkCUB8s5zbEQgH6sxUzhflH+BtceGp+42c4uf4q2v1SGWY+MgxjPFRNKajqNlV91F/uAp4C5gMKFLPAGoBiGM45wM2q2q+qLwHPA0dTIxbEV5Le8TEAEr2wqRDixt88zAs799ymszhTiIXKxfAKPe4Yb+cjsPUx6vx2oHE/aOiUxGL6aePaC1a5Fb4/ojGU9c8VwPOEfv/c0WAUjv0IXHwrLHfVSiPSSC4fLNVPspBUwzDGw37xKYjIYmAt8ABwOXCNiGwCrgWKWWHzgU0Vh2321+1zdM9+ZgAiQY/deVfG+gN3FTjgpkaafngzD333s/z6kWfoy+aHPa4n588UKnwKhbS7mXuPfRd+eDZxP8Q0m3fmpDnLzwBge4+rolqaKQTcjCIWhiv+eAXvzbuvJxKIgBeAFaeW/CK701n+6/6XaU9nCXhCMjIzk9UNw5gYVVcKIpIAbgUuV9VO4APAR1X1QOCjwPeLuw5z+JDbt4hc6vsiHt65c/RhosOddqSMZoBz186nPTKwH8LSLVtZdNedvP5X6/j3b1417HE9mW7OerBAYofrqbC9o490j/MbiKdQyDLXL3nxanY+1x91N7NaXHG63X1+cbySUnBP/fF4O3e+eCe94sZd6sMwDK3d/TTEQnuUzTAMYySqqhREJIRTCDep6m3+6ncDxeVbKJuINgMHVhy+gLJpqYSqfkdVj1LVo1paWiY6whG3LG1OUPACaGDgE3djq8eD0Qgf7Pw6m7s28+OnfzygtWb/5k2857cFov92E7l8gWO//FuuvmO9+7SA229OzikFzccIJFto9HMOdvcXlUIdm4IBHgr9FxLoJhrNDBjD4OY9AKevngPAMzu6zJ9gGMa4qWb0keBmAU+p6nUVm7YCxXZfJwPP+cu/AC4UkYiILAFWAA9Wa3x7Y16jexpff+XX2PTh8/jZcWUF0uOHk37+f77A1Q9czXPtz5W29bf6s5dHn+Cl1h4KCltf9cNO/W/7aD/iKNu1hkQkSFPEdUFr72t3O4Ri3JJMskVeIFi/nkCgb8DYBifGAZy31lnaHnulnXjE+hcYhjE+qjlTOA54J3CyH376uIicBVwCfE1E1gNXA5cCqOoG4KfAk8CvgQ+p6vCG+/1AQyxEXTjAsw3z+b/Rw7j1OI8X/eoS3Tn3tT2/2ymD1oqopMzuNn8hy64e94QfKjjfgOfPFFZmsvzotN+Q715FMhocdqZQRAJ9dGU7qWRwYhzgaib59GZq9rUZhjHFqZo3UlXvY2T7zJEjHPMl4EvVGlPFB+11FxFhxewEG7Z08sjGKMlVwn1HwtI7oa8vAAI5P7S0rb+tdFy23V/2vFLOQNjfTzyF9/8JmhaR2+HWJaNBYsEYsWBswEyh4H9zEuiiKZmlUi0MZz5aNKs8e8jk91wa3DAMYyRmZkZzkb34YlfPq+fBjW1AkCsjZ/CROmfm6WlchwIdud14BaXv/oe57ObHeGZ7F4U297QvgQC7/ezi4kxBAgp1KYgk6fZ7NiT8+kqNkcYBM4Xdvonq0CV5Tl/jInhv37yN6+aeiidDL1tzIsJPLj0GgOOXT9TXYhjGTGWGxy3uWSusOqDcVGf2oZ8gdfQHaL/lTQR6+rkz7kw459yvHHzvT7jx2Aa+3Jvlb3b5PZdF2D14phCgVLOou688UwC/5HV/uzs2FKPD7/7WpztJ57tIBuMsz2ZZ3nzYiONdt3QWd33kBJY0D/U5GIZhjIaZPVPYCytml3s1z0qECc6eDYC297Ah4moLtXQ4U9Tizu2092Zpev5Vt09/P50dLmehNFPwKNUs6uorzhScUkjFUuxM+07qUIx2f6awpXsL7f3t1Bf9CJE9d39bPa+eWNgczYZhjA9TCnug8ol7VjyCF4+TDXloezednkckG6PLT1xe1fEUHdkdHPBCe+mYzHaXjFZyNNclS8lmnX3OtFQfdeaj+fH55R4LoTraA+7SZAtZtnRtoT7gf9AoW4IahmGMhxmpFHQvPZqLzKmI6EklwogImoiR7eriyUiYuIZo6HShoOu2vkhP9LMDjp91/++JBD1CvvmIWPmG3p7O4knZfDQ/OZ+O/g66M90QCNPuedSJ27a5ezP1AX8skYZxyWwYhjEaZqRSKLGXrF8R4aJ1CzloTrJk5gkmG6jrh+fDYZqDYeLtzsQUyedZssOZkm463pmItqULLGtJuJlCUJBYY+ncbekMjXVhPM+NYX7CKZct3VvIa4FOz2OR52YHrb2tpLyiUiibtAzDMPY1M9zRvHe+dO4aChURrKH6Buq6twHQSIBEby85D4IFWLTD7bPNW01f4DGi3e0sbq4jRs6p32j5Kb89naGpomjdgsQCwM0KWupaUBEWEuIpf/tsUwqGYewHZvZMYRSICAGvPKOINKaI+1UnUnjUZ3rYOMfd3Jdud9pjZ/4IOsJxzn3xPmYnItQH/ByFCn/A7p4sTXXlRjjFmcLmrs3s6nVd3pbmy9qovnipIkNzFAzDMPYVM1IpjKZK6kgEkknqMy66p0nwlYLzGZy4wZ0419DE7mg9AS2wZtuTNHu9vlIozxR2++ajIg2RBmbXzebPW/9MW59LgFuezZa2HxH0jw2bUjAMo3rMSKWA72geTx3RQCJJrA+COWV2X55kppf2QWkBdXNa+P6bPgzAuod+wDE9fyQYyA8yH2VJxcvmIxFhbnwuf9r6J2559hYAlnS8Wtq+qOC58heehZsahlE9ZqZSKDIOreAlk0T78lxxS4Hjvr4VD6XTmzVgn9isRq5934nk1hxG/tkX0YIgnpLzy1Os39TO9s6+UjZzkb8/9O8BuHvj3QA095TLZzRnMzZLMAyj6sxspTAOAskEoZxy6MayDerR4FsH7NOSjLFybj2pJQvJ9UlJKewWVybjht8/D8AJK5oHHHfighNZlXLd14Li0VAoh85KtseczIZhVB1TCmPESwy9Mb/QsIzb3vEpNidauOHQc5mVcL6CQGMD+T5F8y6beavnyqy29WQ4ekmKN6ycPeRcK5pWABDywnjAbZu3cePW7fDK/aYUDMOoOjMyJLWYGzCe7mSB+uFvzHLEUVzSnQLgioQLHw1EPApZoZAXJKD8Nd3EYcBLrWlOGUYhACxMLgQgFZsFn+9gxfqb4fa/h/4tMHvVmMdrGIYxFmbkTOGY1UcSO8zjlCOPG/OxgdRA/0Hed0wsayl7m1N+VJHn9QJCPuMhnnL7SwEyuQKt3f0c0Dh8S82E7zd43bzXuRWHXAB+vwXqmoc9xjAMY18xI2cKdWtPZfFPNozr2Pi6owe8f6J5KQDHLC0ri6a4bz7SbgByvQHCyRyPb02zcZcrkjc7ObxSWDt7LQDHzjvWrfA8mLcWXrwHAjPychmGsR+xu8wYkXCYlX9ZT+e/Xk7w+VvY9b6fc2PDrAFNbpY0u4qmXtBluRWyHj0th5AvKO/94UMAHJiKDXv+1bNWc+/b7iUVTZVXHnyuUwrFGYNhGEaVMKUwDiQcpuHEtdB9E8evTEFioFlnSbMzAQW8/tK6usWHALCprReAxbNG7nkwQCEAHPkeWPoGaFy4D0ZvGIYxMjPSp7BPKOYMZLpKq5Y0x2lJRkplMQJeT8XucQ5bUE5em9c4/ExhRJoW7bWAn2EYxkSxmcJ4KdYg6i8rhTv+YaDjOpLsKy2HFy/m5xcfx1d+/QynrZ49oJ6SYRjGZMGUwngp5gz0d5dWFRvmFJG+ckZydNVKRIQrzly5X4ZnGIYxHsx8NF7CvlLIdI+8T3pXaTF68MFVHpBhGMbEMaUwXkozhbL5iC2Pwucb4A/XuPc9u1j80ZNYcMP1eNHhQ1ANwzAmE6YUxsswPgU23O5e198M2V7I9hBbvYLkySfv//EZhmGMA1MK4yU8jFJ41e+TluuHtO9PqBuYAW0YhjGZMaUwXkohqRU+hdZn3WvXdujZ6ZZNKRiGMYUwpTBePM8phmL0kSp0bYNgFApZaH3Orbd6RYZhTCFMKUyEcAL6O91yehfkMzDvCPd+xxPu1WYKhmFMIUwpTIRIsmw+6tzqXuebUjAMY+pSNaUgIgeKyD0i8pSIbBCRy/z1PxGRx/2/jSLyuL9+sYj0Vmz7drXGts+IVJiPura51/lHutcdGwCBWGMtRmYYhjEuqpnRnAM+rqqPikgSeERE/p+qvq24g4h8DeioOOYFVT28imPat4QT5eij4kxh3uHutWubmyV4gZoMzTAMYzxUbaagqttU9VF/uQt4Cphf3C6u7dkFwI+rNYaqE6mvMB9tAQQaDiw7l810ZBjGFGO/+BREZDGwFnigYvUJwA5Vfa5i3RIReUxE7hWRE0Y416Ui8rCIPLxz587qDXo0RCoczdv/Ci0HQSAEyQPcOlMKhmFMMaquFEQkAdwKXK6qnRWb3s7AWcI2YKGqrgU+BvxIROoHn09Vv6OqR6nqUS0tLdUc+t6JJJ1PQRW2PlaOPErOda+mFAzDmGJUVSmISAinEG5S1dsq1geB84GfFNepar+q7vKXHwFeAF5TzfFNmHDCmY86t0L3Dtc2E0wpGIYxZalm9JEA3weeUtXrBm0+FXhaVTdX7N8iIgF/eSmwAnixWuPbJ0QSLjdh0/3u/WClEG0Y/jjDMIxJSjVnCscB7wROrggzPcvfdiFDHcwnAn8RkfXAz4D3q2obk5mIb9166Y/gBWHuGvc+5Ho0o4XajMswDGOcVC0kVVXvA4ZtL6aq7xlm3a04U9PUoVj/6PGbYO6hEIoNXG/tMw3DmGJY57WJUO9HGeUzcMhby+vXnA/P/wbWvb824zIMwxgnphQmQjHaCGDV35SX481w8U/3/3gMwzAmiCmFiRBrhCPeDTufhsaFtR6NYRjGhDGlMFHO/lcomEPZMIzpgVVJ3Rd49jUahjE9sLuZYRiGUcKUgmEYhlHClIJhGIZRwpSCYRiGUcKUgmEYhlHClIJhGIZRwpSCYRiGUUJUtdZjGDcishN4eRyHNgOt+3g4tWC6yFFkusgzXeQoYvJMTiYixyJVHbZL2ZRWCuNFRB5W1aNqPY6JMl3kKDJd5JkuchQxeSYn1ZLDzEeGYRhGCVMKhmEYRomZqhS+U+sB7COmixxFpos800WOIibP5KQqcsxIn4JhGIYxPDN1pmAYhmEMgykFwzAMo4QpBcMwphUiIrUew1RmWioFEVlV6zHsK0Tk9SIybJLJVENE3ikih9R6HPsCEfm4iJzuL0/pm5CILBaRqL88He4JyeLCVL42ItJQsbzf5JgOP4ABiMg3gbtEZHGtxzIRROQMEfkDcDHQX+vxTAQROUxE1gNvZor/5kTkdBG5G/hH4F0AOkWjNUTkVBF5APgGcDuAqk7Z3rIicpqI3AdcKyL/G6bmtRGRk0XkceBbIvIp2L9yTOl/UBhWg6aA3cCpIhKpwZDGjTg8EXk78FPgm6p6iap21npsE+Qs4HpVPVdV19d6MGPFvy5hEfki8BncTfRS4GURCU3Fp1ERORC4CviKqp4DJEXk/BoPa9yIyALg88BXgI8DJ4nIV/xtU+b6iEgC+BTwBdyDx6n+726/MaWVgohIUYOKSMBffT/wLdwT9opajW2sFGXxn9S2Av8JPO9ve6uILBCRUHHfGg51rwwzvpXAdn/bR/1ZUMPQIycfFdclA9yhqieo6l24B48LVTU7VZ5GB12XpcB64Df++23Ac8Xf2FRgkDwrgb+q6i9VtQu4HvioiKxQVZ3s/zNQMt0lgE3AY6q6CXgf8DYRWbm/xjFllYKI/ANwm4hcLiLzVDUvImHgDNxU+B7gQhE5f7Lb5Ctk+ZiINAP3AX/BTR+fBi4AvgncUDykNiPdO4Ouy3x/9VZgtojcDrwGeA/wH1PounxURA5Q1Yf89SFVvRd4UUTOrO0oR8cgWRqBp4Am4HoReQloBP4J+FHNBjkGBslTDzwLHC8ir/N3mQ1swMk0aRGRD4rIm6FkulOgBaccUNUXcfezq/z9q/+/r6pT7g84D3gIeAPwA+DfgCP9bf/sv74d6MT9+GfXesxjkOV64CBgHvAvwFp/vxSwsyjnZPwbQZaFwIXA74Br/P084LfAef57qfXYR/kbO6w4Xv96fA84vdZjHYcsNwDL/W3/APyTvxwCXgROmqzXZQR5vgXMAd4L/AfwJ5xyW4KbDS2u9ZiHkSEJfBs3g+4GghXbvgr8e8V7D1cN+uD9MbapOlNYB3xLVe/B2RFfAj7gb3uTiPwRZ4/7Oc6cNJlt8oNl2Qh8UlW34hTcYwCq2oaTJ1GbYY6KwbK8DFypqjfjzBMhEZmj7onoz8AimLTOwOF+Y5eBG69/PWK4G9Nkj9oZLMuLwKf9bfW4J2pUNQv8CncznazXBYa/Nv+sqt8HLgE+qqoXAa8ADzIJ///VmbjuVdW5uO/8+orNVwGHi8hZIhLx/19+hVPaVWcy/5CHTJUq3r8IXASgqi8DdwKN/tTxG8D/qOrhqvouYC5Q8xDVMcjyS5zT72xV7avY/zPAwcDT+2fEIzMGWX4BtIjI8cC1QBa40pflLcC9+23QIzDG31hcRM6u2P1G4GgRieokiNoZgyy/AhIicqy/7ZO+n+fTwCk4hV1zxvg7axKR89T5eB709/sCEAe69tOQh2UPcvzCf70ceLuIrABQ1W7cbOFC4FMichVwAu7BqupMaqXAIM1Y8eTyMyAtIuf477fhzBMnAjep6j9WHHZe8Wm7xoxFlt8DqwFE5AQRuQdni3+zqu7YP8PdI2O9Lsf61+BfcEqtDjh1ql6Xin/qGHAzkN8P4xwNY5XlWH8WdyPO3LoMZw57Zv8Md6+MVZ6DAERkhYjcAazBzRqy+2e4IzKsHKraIyKeqm7HmfS+V7HPzcDVOFNlC3Dm/vrfn5RKQUReJyK3ANeIyOpiZJGIBP1dduOcLx/wo0M6cE8EUVUtiEigOJ2vfNquBeOUJYG74YAzJ31IVd+pqvvlSWEkJnBd4uBMYKr6bVW9UlU310KGIhO4LpGKm9MdqvrdWt90xilLHdAAoKo3AJeq6t+p6pYaiDCACVybqL99O+5/5uxaPkTtQY7S/amIql4BLPGPmSsi61T1aeBzqvqB/XldJp1SEJHZOKfeXcAunB337wBUNefvFgPuxj0hfEdE5gFrgZy/X36STOcnIkvG32+Tqj65n4c+hH0hy2RhX/zG/H1rPkOYoCylByZVnRQJkhOUJ+vv1zUJHjr2JEfef3hN4Ctmn6/gnOR/wFdwNfHr7Atv9b78A04Dfuwvx4E34mygK/11X8T9INbiIkC+iJs63gAEaj1+k8VkMVlMnlHI8QXg18AJ/vszcabVa4FQTcc+Cb68c3EZfG/y37cAzwHL/Pcp4HM4LVqHCzVbNugcdbWWw2QxWUyWmSvPROXA+RAPrLUcqjUMSRWRFhH5OfAxoA34gYi8RVV3ArcCH/Z3bcfFtKdwPoOLVPWFSpucqqb36+AHYbKYLNVmOskC00eefSBHAEBVn1SXwVxzaulTWAb8SVVPVNVv4+qVfMzf9mNgpYicqs43sAuXnNIPLiZcJ4HPoAKTBZOlykwnWWD6yDNROWrulxpMcO+77DtE5F2UE0oewSWdFOsWPYmfRAP8FRfq93URORcXOy34oV2T4Qdhspgs1WY6yQLTR57pIsdIVF0piIjgEsh+BBSAF3BZh5ep6g4RCairW7SKcohcAVcbZzZwBa7Y1SWq2l7t8e4Jk8VkqTbTSRaYPvJMFzlGRTUdFvjRALjEqxv95SCuuNttg/b5T+ACf3luxTnC1RyjyWKymCwmz0yQY7R/VZkp+EkmVwEBEbkLV18lDy7WWEQ+AmwVkZPUVZsEVxTqJXEp3eeLyBmqulldyeKaYbKYLNVmOskC00ee6SLHWNnnjmYROQlnZ2vC9QP4Ai6p5A0icjSUEjKuwhWzKtri/g6Xvl4PvEFrnHwCJovJUn2mkywwfeSZLnKMiypMtU4A3lnx/gZcBdP3AI/46zycfe6nuEqZy4CvA0fUeupkspgsJovJM13kGJfsVfgy64AIZRvbxcC/+MuPAx/2l48Cbq71F2CymCwmi8kzXeUYz98+Nx+palpV+7Ucf3sarjkMwN8Cq0TkV7gY3kdg8raXNFlMlmoznWSB6SPPdJFjPFQtJNW3rykuWaNYN7wLlwq+BnhJ/cp/6qvcyYrJMjkxWSYv00We6SLHWKhmRnMBl6TRChzqa9XPAAVVvU8nQYneMWCyTE5MlsnLdJFnusgxeqppmwKOwX2p9wHvrbWtzGQxWSbz33SSZTrJM13kGO2f+EJXBRFZALwTuE4nSb328WKyTE5MlsnLdJFnusgxWqqqFAzDMIypxaTrvGYYhmHUDlMKhmEYRglTCoZhGEYJUwqGYRhGCVMKhjEGRKRRRD7oL88TkZ/VekyGsS+x6CPDGAMishj4laquqfVYDKMa7Nd2nIYxDfgysExEHgeeA1ap6hoReQ9wLhDAlT/4GhDGxbf3A2epapuILAOuB1qANK4T19P7WwjDGAkzHxnG2LgCeEFVDwc+OWjbGuAi4GjgS0BaVdcCfwbe5e/zHVyFzSOBT+BKMhvGpMFmCoax77hHVbuALhHpAH7pr/8rrm5OAjgWuKWioGZk/w/TMEbGlIJh7DsqSyAUKt4XcP9rHtDuzzIMY1Ji5iPDGBtdQHI8B6pqJ65/71vB1d8XkcP25eAMY6KYUjCMMaCqu4A/icgTwDXjOMXFwHtFZD2wAThnX47PMCaKhaQahmEYJWymYBiGYZQwpWAYhmGUMKVgGIZhlDClYBiGYZQwpWAYhmGUMKVgGIZhlDClYBiGYZQwpWAYhmGU+P9oPy0nbSDxVwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"\n", | |
"for ens_member in cat.search(\"luk100\", depth=1):\n", | |
" data = cat[ens_member].atm2d.to_dask()\n", | |
" data.tas.isel(cell=4_283_159).rolling(time=48).mean().plot(label=ens_member)\n", | |
"plt.legend()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "33d1304b-11b8-48b2-b6fd-2a992db3d383", | |
"metadata": {}, | |
"source": [ | |
"## Efficient scatter plot using datashader" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "df3bf046-126c-4bd0-84c3-122f1624ebf7", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.colorbar.Colorbar at 0x7ffb64349460>" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAv4AAAFiCAYAAACOKdwcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WYwsSZamiX1HRHQxMzf363eJuLFk5J5V1bV0VVex2AsJNJoz6GZjFnBAEs0XkgCBBggCfJ2ZFw5IYAC+EmxwqYfBzDyQw8EATXBrErOw2TODXlDVXdXV1ZU1lVmZlRkZ+93c3TZVFRE+HBFRNXO/NyIzIzI98toJBK67uZmaqoqoyH/O+c9/JMbI0Y52tKMd7WhHO9rRjna0n20zP+0TONrRjna0ox3taEc72tGO9tnbEfgf7WhHO9rRjna0ox3taC+BHYH/0Y52tKMd7WhHO9rRjvYS2BH4H+1oRzva0Y52tKMd7WgvgR2B/9GOdrSjHe1oRzva0Y72EtgR+B/taEc72tGOdrSjHe1oL4Edgf/Rjna0ox3taEc72tGO9imZiLQi8o9E5PdE5A9E5H+ZXv/vpd+DiPzGwWf+TRH5loj8kYj81c/q3NxndeCjHe1oRzva0Y52tKMd7SW0HfBXYoxXIlIB/4WI/B3gnwH/GvB/nL5ZRP4M8DeAXwReB/4TEflGjNF/2id2jPgf7WhHO9rRjna0ox3taJ+SRbWr9GuV/o8xxj+MMf7RDR/5V4H/IMa4izF+B/gW8Jufxbkdgf/Rjna0ox3taEc72tGO9imaiFgR+V3gA+A/jjH+wxe8/Q3g+5Pf306vfep2pPoc7WhHO9rRjna0ox3tpbG/8ldfj48+2v3In/+n//jxHwDbyUu/FWP8rel7Ek3nV0XkDvC3ReSXYoz/7DmHlBteiz/yCb7AjsD/aEc72tGOdrSjHe1oL409/mjHf/z3/9qP/PlXm//TNsb4Gx//TogxPhWRvwv8NZTjf5O9DXxh8vubwDs/8gm+wI5Un6Md7WhHO9rRjna0o71UJiH+yP9/7LFFHqRIPyIyA/4F4Jsv+Mj/DfgbItKIyJeBrwP/6Me/yut2jPgf7WhHO9rRjna0ox3t5bEY4RMA+B/DXgP+PRGxaJD9P4wx/j9E5L8D/G+BB8D/U0R+N8b4V2OMfyAi/yHwz4EB+J99Foo+cAT+Rzva0Y52tKMd7WhHO9qnZjHGfwr82g2v/23gbz/nM/828G9/xqd2BP5HO9rRjna0ox3taEd7uUziZxrxv7V2q4H//fv345e+9KWf9mkc7WhHO9rRjna0ox3th7Df+Z3f+SjG+OCnfR7Ps0/C1f9ZtFsN/L/0pS/x27/923uvua/dXEQ9fOu3cV/7jfLvJ/3bD3usw/e96JwOj/ei4+djTS2/5/C1T3r8H+a8P+m9eZG96N5/0s/fZMcxP4754bGPY34c84/72w97rJvO8Tjmzz/Gccyff/zjmOt7ReRPf6yT+CwtvrzAX+ItTnX8xm/8RszA/8edxJ+VfRoP2E3HhP2F4rZe/6dt04Xxtl7zccw/XTuO+XHMb6Mdx/zTteOYv3xj7r/9O7/zSSUvf9L2q792N/5n/9l/60f+/L27/9GtvbaPs1st5/k7/+wPgeue7G2yz+IBPjzmTZGCn1XL134c8+OY3yY7jvmna8cxH3+/bdf9WdlxzMffb9t1H+3lsk8F+IvIvyMiH4jIjY0JROQvi8gzEfnd9P//4kf5ns/CG7/tdtNi+TLZccxfPjuO+ctnxzF/+ew45kf7aZrE+GP9/3m2Tyvi/++iHcleZP95jPFX0///qx/lS16mh+VlutZsz+NFviz2Ml1rtuOYvzzXmu045i/PtWY7jvnLc63ZPg9Zjc+ygddttk8F+McY/x7w+NM41qG9qFjmaD9bdhgNOY75z74dx/zls+OYv3x2HPOXzz4Xzk6IP/r/n2P7SXL8/4KI/J6I/B0R+cXnvUlE/qaI/LaI/DZ+KK9/LibR0T5VO475y2fHMX/57DjmL58dx/xoR/vpmfsJfc8/Br4YY7wSkb8O/F+Br9/0xhjjbwG/BSDt4vPtVh3taEc72tGOdrSjfUYmP2b8NhIQDJHwKZ3R58QiyEuKMH8iwD/GeDH5+f8lIv87EbkfY/zoxZ8URA5OMYaXb4Ie7WhHO9rRjna0l8KeC+blUyRppGOJSPrOib2oeDWG/XOJYf+84ucHn33eufo/qv1EgL+IPATejzFGEflNlGL06BN8DrFN+T2mCSUZ+E8nZ55sk0l3dBCOdrSjHe1oRzva58mei11uANU/VMRfzB5Wyt/zomPkjAAAxukxJLsJBjHVzd9z6+3zz9X/Ue1TAf4i8n8G/jJwX0TeBv4toAKIMf4fgP8u8D8VkQHYAH8jfoLOYYfvEJNP93BSBZ3EMaSfI8RwfTIfswVHO9rRjna0ox3tZ8R+KEzznGj8xx2j/D10e68rRYgR6E8Bv+zlEG6dyUvcufdTAf4xxv/Bx/z9bwF/60c7dkCueY83TFIx5X0xDCD2+vuiQYB4MHlfBstO0PQBv+m1z7MVR+9wvhxEOfbec7hQxXjDgmUmb3nOdxxaTn8epkH3/p6iJ6HTeW5qIOzPzxghDD8zY3S0ox3taEf72bCyLxU2xgRSiv0pnNHRPon9pIp7f0RTb2wE/yalmSbcsuLBTgCtuaEuIIZEYksAKwZiHHhZ7CbguJfmO+Do3QagKTJNK74AfN8UxXje3/ZAuGHfOTw4rhgEe8Pn2Af2AOIQMYSwIeyus9iMWwAQhtX1c82H9JsbXzfVEomBGHoIac7anF5Vh/cw21WO+RLN8aMd7WhHO9pP1q7VYcLnhOrDi2sZfobtVgN/QRTklUmUgH4kAa0KjElA1SdQ9CLAGlBw5z9XBSifpglGeXoAIiO4PgC9kn8uzlXQTEr0nzgCLYeOWvpOYBJZz+B7AsLzw5j+Ps6B/eMVUD45b7V0rL16Dz/+OV+TGEQaphbxxOFqPAdTPResi6k/cfboRYD/RSamJvSX1//gd5M3Oa2FkTp/aBKBCUS/I4buZy7Dc7SjHe1oR/vJWgH6e0G5vIdP33f7wf+R6nMbTQRSdH4P0GfQP43MRoh5nsUAcZjw/rNNAah5acD/FICLmdy3KdiXw4e2Qgt3FHCLWGL0GkGOw8TRQn+/qeioRKLhmkO2R6cxY0YH1Jmb/K2c440XN35OJtclpiKG3aQgPE91zfyIOGIciMOlAuPnRMZfBOw/LcqYmLoUSMUY9iL/+TvE1HrPfD9mauwMU50dRFwMYXhG6J9dP98j4D/a0Y52tKPdYNOayGtsgAnI10Ccm2Coz+m+EjkW995qyxONFOWdgsRrPH4F/THsA7kSNY6BPNSC+5mnQuzTZRJtqvx1Qlc5mP+RbrxXN2QE9n42LaaMSzazB/z1Z73XI7C9iXc/OcYBZet6hH9K/0nzQ8bzEKkSbd8ThmfE/nIP/JrqDLELPS9/fR4Yt0DckuhXiJkR/erGyP1NGshiaqRa6uXtnoBxz3UUYug+3okQQUyNbd9E0r3tuw8Iu4/A2GMtwGdoggFbIeJ+5MzNZ21Ssj4OsbP0Wl2eBzlwjvNzGQnFQY5xp3ModBD9S1kLdbSjvQxWMv/XMvAABnOYZc82DeTdFFT9HET5p3bU8b+VJnsgTsGknrKCyKks1YTqc1gQnB2HzPN/SSL9kO7TNVCvJuLAVCmabNI9Zu/hjXHCK4eb710MRJMeIskZAoeI1bWkUHMafW8CJDF6QGstYuyvFd7u8+vN3piWc51a+dwIxH3/+MboN0Don+Fmb9LMv44PG4LfEMMG4oCt7uOHp8Thkqp9U4GSO2Owj/V+iEHMDGNn+n1xwA9PCd2TdEs64pTr/0OCKDE1pr6PsTOMOELo8P1j+tW3r7/5BqflaJ/MisNoG0x1Dhhi7IixJw7r0UkNnhB3zz/QZ3l+xiJ2jpgGY2ZYu8DJnEoWOGmxVDgVUVMHHAh4AgFPR0g/RTwx6s8+bgmxJ9DjUWfcmBlRAmIaYuyR2BR6321xArITFv1PfiyOdrTPk12j2t6UZT/M/gP7wdRDgH9ohzjr8wX8X1a75cA/FtAZJUeoDt9yQ6ppD/QrLShmXn8pgvy4Cf2zbyXSHXowljhN4xmXIuYN4mZkus/+5/0EwGe7eSykHBu83+yDfr8pnxMzm3zW7dN35DCrMDluOadUmByDAvewfeE9GDZvM/C2foNb0My+hpGK1tzlQf0m3/P/hFP7Be5wn4GBD9136cIzQtwqiAo7Quzw2/de+D3Ps6mTYtvXMXZG8BtC/wi/fWdamXC0T8FMtQRMAbLGLbHuLEW+ewX9fpXWB7378WM3vx/fxDaInWPsAmtPqe0ZjpZGltS0zDmhwmHiJF+XwlWBwI6ONZcF7Fe0OCo8HZaKhjlPw/fxyXlpzV0G2RJCrxH/sElBgrTOxuG54DrT5J57LT9kF9A9cYFJIMLYBWK0BseUWpw0JtcyFpna2U8yvuHgXHPBv9+PdCZH/mc9+3u0n57tzfFJBl7n5wGGORBouH6wm4H8j2ef9Hk9uI6pxbAfJLz1dtTxv+U23XinFJ+Jt3rYRW4KBo/w6UbbS/fFCLEfgfP0fTnqaFp1CEok3pHH4SZKgUhV3qvRxj79LTsLRukIzhHCZkLjGr+3OBs3RPP1uKHQurQGIUcmf7iFUOyMMKzYXP4eAPbsLxEk8GX76yl2GngUvw/AqX2TgZ5nu3/OsHlbAXt9XqL9+8dtcO2bGHHU9i674SO8V7qIc0tEKrxfMezeOQL9n4DFYYObfQFrF3i/IvgVQ/fBvoP4E6BNCQZxM0x1TuXu0Zq7NLKkZYGjYhFnzMRhtDy7fM7IlKgXyU/rhg07VmzDY3b9e4Chcuf0wxOCv+R8/l9DxLLb/AliFwzmghB2tPXriLuHqR7i45YYe0JyikaHPoxUoBiIfotEM1lr7TWlrby2iDSYBN4l12YxUo4Ee63oXA6CDCH2hNhDyljkDGEGTCVbOBUhIEDQNecTjeNPMQi0Vyz5SQDfiySC078/ytwV2xwzKT+CFVBvLFpf5sgceMEW/DH9eRp4LFnx54794esvAN7l57wnhoNn87rwxfPtBlz1ooDpi1T2bqMddfxvq8VSODpGdUMCnAdppaTQksHiNKIMFNCZfvmRF8efBcu8/xi6T0RBiXFIG/0AIRDTvVfePiVlqBt2hZGqbN6CKRt33rTH8xizBaquczgeQY+fCl+LU5HAv0nREjGOEJWSUCJ8cUiqT60ealoUm0DJlL5wKKUZCXzf/xP64QmVO0cwbLvvQei4jAFT3aNy96iW99h1b98I+vW4u0LP2TFmFQD64RG+e0T0mx+u++LRfmgzboGp7gEBY+rRCTV1eU/mtn8Wa4OIQ9wMsQucO6O2d1nIA+YsmTFjRk2NoTW6NRvRYNSgRTY4AStgJBJS1N+o9BY+CvNwzpuccyUDP2i+zzo+pg+XnDe/iMHQxTWVzDmZ/wrr7k/xw1OMXdD5J/ocJcfcl+ybGQv5Cw0vOflunrKBNcY0e2A+A/lDEB8n2ZNMOQJPpAcsGdSHkIFnAvhhV/pc5NfHAdvv3H4bI/bXiyMnliO7GVTlAMZzu7Y+5+dPyV4E+n8YBbOfdcuBsALyTb1Xe3hNzWZS55ZFRzDVtffuzfE4cWhvPIkDik0MY01cDCB1ojznN4W9Z6TU393YJykff1r7lwKt07q7Qzn1yDiXPy/72VHO8/ZZjHEC3MfXhawmg6r+kCJHYjCmSan5HK2aerihTPaXFfTDzbz/F5mIU/CdUvAw4d8DJJoEpoLYE9CFxcQc+bfjeJTPM4na6TGun6cuXErBGMbzmPw9Thac4iDESa1CXOj3hE7pDKGDkJ2N51MWLp/9/fKeIX7vhnMbCMMzINwst3mD5YhazirsHe8lno+fpeUC7qZ6FRGLj1sMlVJexOw9B9mB/bSinmJqrR1w5zh3ysw8YCF3OeGMU1pqDHMLtQkJxOscSL0wEQErESMgB1VoPijg74Pu7K0RhggnxvH1+GW28kUeW61tWXNJFy8Z/CVgqdw9gj1FxFAZLUBXvr/Fs9LsW6LWiGkx6T3lukpWT5387DSEoM7UtbkcwyQQk6PSE2Wwssbf8CzuSftmG2mDe+cls/J948enwGRCoTiMmn9Ge0KhiX3celvUx8wLgwA/rXXitoP+veaNExrYD32cSSBAXzhQsikU2DF7lYNecQrYgQx+zVRJLxiQzFY4nKeTuZmvRS9k/H0aVY8H759+bs9hyK87RPYdAGLUvfsF8/9jdfqn3zVR//ncqv28BHargb+IxVTnWmiW02RhOKCbGIyZYUwN2Ju95JKmSr/ewsjQrTaT7nVxGEyquUgp+pjSmFO6xIHCj0YG3bhAioE46bY8lQmdbtx7EZHduIblCMsNEZG9Y+QIixgwNcYuAZXMjH7zsRvyGCEZnQQxNeJOlA4y3Nx068ZjHdPoPzETO0PcHGMWWHtCHy4gBqxdENCN2YjD0+uGaCDiNANm7Li+HPJtb6LCTVL9Gg2sE1d/QWXOODVvcMo5p7TMxTCzkcYErPHIZAJaEzEoyLcSrwWIpxaMgn4jBh8iQxSqKATAR6GNBhfu8D3ewdNjpQEDQ7gkRHBmTmvu6iXh8fR4tgxSYW2FMTUhdIg4Knt2jW4Two4YV0xpA9fqqCb3TG9lej34j60RuM6HnkRHbywgnPzNjOBIrq0PN+wN6dwkndtPKzC0r7SSA1Z7nqk6BiYLVSgQVW51yorkzMpPEahLFtIABcWpRoxcN1LW4/SMveCeH2aPxlqQFHFP6/pNc0IYA1SHuEADQP3+cfKx9o5hE2CeyEGXLNYYuMpBKZm8d6wb8iiNdmBKVd4Xq1Da7D59LdWtJGBe7le5iNEpHrP4I83tx3GA9r/mJof8+kujw6rOzTUn6hbakepzi6142BgwoVB/RCpVuRCN8oe41YctTgvAwj7HP/Q3f8nRnmvR74iMoLXwd21D3qBiWqBKZiAE4rAqi0YeAQXNi3TggbEngyN3VJ7q7N+cCeh1YQwJSMSwByo+rQVv/zvHxS+GDnZPwDbXosbZjFvcWunHn3VTcFRTVfcx0uq6EHZa5J826xA2gMHaE0LYEKNR8GTq/Q3rBsey4PFEbVHam1PVHWmozAmNuUPDIkX355yIoTHQ2EBlFNiDgvxDsG9NLHt6mBbzxn1PwErEmEAw4IIQSRmAoO+tRfhSfINV7PlQPmDFI8QYFuZBCaRo9YrSiABm1esF5BvbEmJP758lXv2EPnkT2C/9PG6Irufb+QmeyRw5FaZ1BFG/X4TcsGWvsd/heBV6zQ20i2kW4JCXnDOSOUj0HDB6jb6T6aM/YlApZ6ZEDGKaQptU84Q4YNJaaUXpi07m2FRHlYu5HTp3h4mak6dniFv6uMLHHSFuCaHTee83xLD9kYISYmflWYmhK3TJvXsQA/EgIyrikPoM6+4oFTQXZ2fAmwtEM4V0SoeS6X0Z+7/syTgf1IGVGpJSGzIkkJ9rK0ZN+gz0jWnKa1nEYvq7vqZy0VJEKJSyls8vxh5spqGOgbLpnqYYpk7j0Y3XH4fRURCr/5eMQJLenMy36f78U7O9ouPPAdUn8tImJW458Bct/jRVefBV3cGXBdBItcchvynar9HoHbkINEckjvSKH80iKcKUusHuFduGDrhZ674snHkjEAPSjZlMOyc3ZlNqjy7qY1pyqtrRge/HiNcE7OfNSA4KNIuiy4Ge/9552gbjzvC7DzDVGblYMG9qpj7XOWUa/O6D596jI+j/6VkkIHEgxAFnKqw0tPZVAn3ZxIewxkiFj9vkZHp1SmFSU5QB5phdnKpImbT+GKlwtNQyZ8YpLTNOaGkx1AacKJ0nA/7M3zcCMYo6xVEJjCFCRPABhiiJAgQ7b8bnBOX6W4lUJqZzIWUPRv6/S8erxPIgvsKJnLGVNZDlPi3p21McMySaXop+R5TKI4YYRxAK+5HHUkCbns8pveYw0roXgZ9E8MfI6gjkrlHxppQK2Hco9pTF8neniOk08FOA/jT6yujsXStSpjhJOdA0BYChf0SulxK70PfbWQJwHXHYvNAZMM09nLuLNXP9vYBGXxSYrMypTEVtlrScJoA/SrgCGExRfbIHHCifZk4wkZ6BQGCgZ8uagGcXL9mFp+n7dHy9vyKEVaoBU2ckxp7o17ruMipiHfLU/fDsuT1P9D0DcfdIM/X2lLY6JxL2isundJn8/E0pJyPQpnx/ju5Pi8Nj9Om512c6RIPEipjVdFKWWedfdh4C3l+UOhYIhDDg3BLEEuIuBRK0vmUYHmstimjwAHE0zVtUdjmeQxxpcM7MMSSKXJrL0eh7cg2Mfq7H+xW++/BWZ4v3HWG7V9x8m00AOXL8b6GJwdoZJkU4QBdGKw2WOm1eYwQ/R/tzGi5HdMa0mScXUR1B/6djN0bEUn8AYCxctZkznCJEw+raOES/K58VSUDH6tiXRT3JfYoNRDeJDqUIiTDZIOwMiYOmSpmkv41DRPYoB6VJk9UN2LYPicPltc3reUW85fOm1gzJLefE/qxbGFaE4dsMdoatHxQamnVnnFRv4UzLgGrZa5T1oIBcdA4aqgLuBYuViooWS01NS03DSWypxVKLFuHmotwAbNP0Nl6Pm2e7QcH5HiHugNpjGAt6TcoMTJ+2GIU+6Od8hMqogwEmvVEIAnMMHUKF5SS29BLoGRhSrVTAM9DTyTZRfjrNoIrHYPX6saVfgMFiJuB/oMNgCXh6tpPX+wmI0eizXpdN16v3vElKRjVtAbDjPdA71Jdzzf/pOed/Y/puH3t83KbIdl8ivDlbMXXmMk87ixHk14ERhMaB4DdoL4MdPtFOQdcyU93D2lGCOOSCZEjrySJdf79XAGpyT4ZcS3H4vSkib8wM57Rnw5w7zFlS4egZyr2pcFRRmy5N55A5LIJI786vB+4QiOzwXNorOrbsWDPELd6eU8mCPq7owjOG4QKiwdilOgSTGgmRCkOV9uIe45aaObMLol8pwM5rcF5vbUMu8O7DM5xZsrCvY7B0cVXGcKqIk8dp+ixKmot5bh0q+OV5F+jxYYuRkOaFmzirqgaXsx85oBRFisSuMQ19/xFV9SrL6ktc9t+lX39HlbncGTHs7xWdmRHcHYxUVOZkdF4wVLJINTVaW6Py0XfwdPRxXbJsQ/fBc3vQ/LSt7LHTIufMBLhGj7qtdpTzvJUmGFwqLBMMVlpqWWAwusFEX4qhDBVRekLeSaMha+QKVrniGewdQf9nZqVrqJuD30JSgzCmTlE25aZKtdTNw2/G1KDXlK/4QMxUohRxinSqnlBS8JN6D2mU/99f6mv1vHxXKeae8vOTExLp9LtI2R+/U+ejUI5MSWdPaUs32fTzJl3bsZbkp2/Rb/DbdzDNKzi3pLWvJiEAi8QOZ+b4YCClyrMyjZEKJ3NaWTLjlJqGhpoqGuq0iZcyzISvQoR1jGzSuFdiqRM8c7IP9DVCr6B+apn2A+AS9SdH86egTiQSo5QMAYAzAQPUdmAIhs4LtdEi4FkU+ih0wTAQGXCEqG29dtIXMF/AuVgcFQ01TXQKKgFX4OboqOS9MxMrs/zokCLynkiQiIlCkEiDKwpGleh1Zss1CkMc79UQwUi9R5QYknM1EBhioBftZTCIOjA9+n8GflNAmEEjwDhC6lQMccvAliFcpowOGHteosgmRdlzwClHcjVaq44SVvedSJhkiLKjNDpCMfb4Iu84Rq8l1Vk4e4ozc2pZ0rCgZUFDTc9AQ116OlgEJ6aMTZ5n0/mWd7wuQEdgkyL/AM/kCTvWe8AzxB4vO6w0VGaJcZPsgjwkEuj8E43Uhw2BHcY0OLPU5nAYzYDUrzAMT4mpvkZS4C4rPVVmWZzLihafnDgRi6VJz2GLoPMxO106X02Zt/ln/Zte9UBPkEDHVhvZWe1xMaTmdVPnMISgGCHGktGGTHN9VprG7XaP8DPNBpjmFWLcaTG8XWg2y+/0vWHD0Gs2YTfJ/Ig4qvmXEx1ozJ7teJIyCT1+996tChztFU7nqP6UZpfpV5nyeFj8fLRbZ7cb+IspXr6TlpoFBluiSrpRjRuQyHJM7SVKUEgdVYnhVqfLflas8DwP5THDVqPpUXXAX9QNdEol+qQmttFUrRVi92w8zuGxQ1coAmIbok0LW5YVtTNN1U+aisUfgrZj6nPlkpvRqfhE588P1/ToaD+ExUDon4C7w3r4AbU9Z24eUMlCwZqpkLjfiG6qrOKouMOcuRjqhN8y8MwAK4Nfh1BLVV6vDiQ4I2NGIL8flK9vJeIkYg2J7z/WAoxUnnRJCEJSvUqU3/wdQqSuBha1qv8MQei8KSpA+q9hiCaB6IpAxCXZUJfWUz3/mIqO9bwoEdj9c8nmQ74/QoyWYXLd+rl03RKpzDjfh6jnle8FCF2AqxjY0DGLdXE8WgOtyY6TQMlAVOVY/STroo7OdQcrf/uOgWc8pWNLEE8MKypzhpUWJ21xiBwVgcAuXtDKHb1eyT0Pxmtx0mrWJL2WHQ8fd+McExIFJfc2yYGtpf5MjS1ZkAxsDT1DofRUyQHVOSfJkRrHS8dAlDKGgn4npBoJVxymE84445wZNTsZ6GXMrqy51GyQXdHHNY6WLAUp1pSagSntTTBYd5eIx1JD/aB8Ru+nKZF6HYuc1dlS0VKl9yDgqKlp9rJAZa5N8j/5OPl9BsMsNgSJ9MwKvWmgZ5AeL506BrFnF57SF/nnlKme7j22SUXEkRg6hs3bJXgERjMcsdc9jYAET4wrnXGHWe040K3+uPw+7jW3z65TeOrye47qA5R+O2JKHYqhYtqL41bakeN/O00wZYFtmJfXNdVe4aUvi2pMRU1B8u+awuvDFUEaQlxf54we7WNtjJCPabzCX5109zRuAWKeK20ZUzT8s7LpsUvx8XOi7qUgapj2FMiqCFvl6+bUpRjdDKJXvmdBWpOFcKpiEjrNJJga7DwVpiW60XMoZrmZk4hL6ebbE+35vJtgsLM3CcMzQtzRuleUvoPBJp6tiEaAp0DNSZsi3pph3DBAdIRgCjDOIFmAad1t5u9PI/rTqPaARuoNCtQkAX4RSh2ApFqATPMBnXqZ6R+Sq3jteg/YHc4GGgvLWiPpnTf0EycgOwIAVrQO4fAcptc1tRgzZSSWn50bi5UPLSbVoRj3TzJEcMTiQIQI68GWJ2VJw4kRGhOpjAJnZ/ZlTm+iQeXzjUx+jnrvQJ2ilReIjvN4zk6UAPXYeGoW5Vg925Qx0A7IjcxLpLlGAWCQUMD5OBgUUJqjz+Wa8en/EbTq8VpCyhxkIOviCKBmCWw5kUJcqlPmpDKhzCMrEZfmh09OVSWa9XGRlOcwbAMMVAxEQhJWmFLA9NwsNQtaOcVg2LEmiGchD/ayKhnIe1Hql5MFnq6AfJMcGoPBUdOi2eGTJG2bx3FqA5pBs6iCVUjOSr5nmcgD6v6Ve5kcoxADVcIGnoZBPBs2hHSfB+lxtmVrWjrzmEFMykKrBLWYJDxhFxA2KLfO7tFEQ/TY5iGueSNlNzSyH/onpRme2FlxfvC7kdt/i0D/TWpaeV8kiReUSH4C+WQq4EHvHj3eLQf+HDn+t9IMjiV308+2POih+Pq+FDgFyc3qt0Wtwks3cifFqO76xxRbHW3fYugU5Np2omAyAzNTPn2dG6ZpAZVzZ4SwIewe/djfnZ0JoMhmfqKxSxEK/cAneXsNYvcW4Wu1gmiGQExLVhL6pPxLwSD1mf4cB8TMUqHcmPn4YbIKR7vZTHUGxjFrvsz66p8WB0pMRdU8pDJnCS57urgu0ccqR1XlOnVgSgNZ0bELthRPtuJwMkafs1VJljNbdgtD1Di5lcipDTgT9yQ8YYzsi7AH+KcmAo6wl2k4rA/Ix5u+7EygsTqxh2CKIxCi4IPc+PkXUWBtKizWAH3cO/f8txgVYOs13HywGEenZAjCLhh8hFrg1CmgPexnEKMwVUSCpKkSBStRy5xFrzPEEfBnZ8kHYZeuuY+eSiw2CnOZc58lmzgwiC8gMkhkw7bsQQBNApQuWhqxOAza3nCixJR+zxSoIdGrBvHlsxnUFgoVY7dmg2BECsCfmZiKviOXg4J/JzB3nhhHhwh0nqlTp86cN0Id9zNUJxF2wQCCj44uQEjXVctYo6KZE6UI9ZwxMLBNIg5bNNiTQX4li+IEVLRUaJ1Wrk9w0VKJpc1AXfS7WhvK79PC9RA1a6XPkGHtXXJYlOaVHQKT9oqWMTMXUlYLNAO0jYKRBTs6OnbUiUJkpWLu7rK1l3ThGf3wBO0CbwpgF9OAS8GuqZpbUtzp+4+wdok1c3xYE11Ahk0SnHCpFqBLTfJGoC1ullSRdj+x7snXekUcqFTtAf6kuqd1KXWJ6Bup9oD+NKhlqallzq23I8f/9pnDcScuy4PtDzaO6YK5SVGK/EAPdAwp3WRshTcn9PaUwT4l+ktivzpSKz6BySSWpuoHmceXC6jVSvQjqE6zbV9XFYWwIe6UC3pTxuVQ9rKafzkVW41SnjGkBfGTauZP9KxvvJ6sGkQqOg79C6PsuW4hg3QxNWH4ZE27IBWd7xUFf/LPHu2TmWCIw4p68Q02mz/C1HcxRrMo1szZbb9LrAONu49gUJnDDqixKdKaKQUZgk051IACC7kelcwUigyo/CSinSP/lQm0NlDbCYidAPwM7k16bUqlOQT15ZolFhnOw7cc1g7o+8f31QlktS5zzhO3Pmg37pssR8qnmYZrTkmK3Od/I2Dt6MBkAB5jcoRSjcIQjEbmUeDeVnqfbMo+KJgfI/ekGgfNWJgCFn0UdkkRKduYmQAfDV2AbYx0cWAtXQoa1TTiuIw9G9kxSE9Ao/i1NFgMizhLOkiT3gs5Eo1y510C7bn+w5WCb6XctLnHAJVeyyR7dFiYOwLgQIjQ2KhUqqDfd+bGbFF2ivQejfc7z5GYHCKXHM3pHK2tx6cMyWm6h/lcziZjCuCDpQ8VuyAM8TQ5BHrteafIIHzqyJRrAoyBXPeSi9czpa1KjotLNLDxdSm7dWsDQ5BED7Pp3E36bj1udr6zw52tjY6LEDBRaKQuRe4Gy4YLnLRYq3UIQ1zjg4pThLBRwYCU0c56/UWuuvsQcScMw2O63R9rptxU2sMgBur2i/o+vyKQaJ02das3tdYGQFFM+jRtj6NfXswgf3ytNCkrnH1Hlpc14jDSaqHyJJJvUuPUXIORgyhZdeqdT/1qPkU7Un1upxmEea4MlzE6oH8bf+4CDDGn+RqMGLqS9rNU0tLLFistvTR4t8S7jaoT+K0+vB/TVOZltcJZZIu4OVI8f1VlCGGDtQva6uFEUckzRJUNtPIQ2/48lrqohQiGmdwpad8Nl1z232HoPsDaBV+1f54FNU9Z8278I7bDB/juoxvPT0F5AN+P6dNUIyBocS6hH8fWOMSp7B5x+MRdd/XAAUJS+TjarbLsWHab71C1bxLjkDrQ1kUdo+uf0fHHJXMjdkFbv865+SJLljQ4Mo8cKKBsCuQOLYO3IepiOgUyma+fi26tiXsRcTsBPKAgTdiPlt9kYc+x2AfhNtUTxPT5EKV8V/7sTZkEk64TFFQdZgCm35cB/BDMHhUpn5dJVIwQ5VrvAUQViHLmI6DSpbUN+CC4dJMrE/eCcVMwmv/tY7pXYb/OIHPbcyYgOwF9JEW0KZz/E1r6FCS4kDWDpGJdAhsusNQMaPFzK7M9TrnDYTF7VJMMdxucRp4ToBeBBr3uLikx5f/TbSn3N88za2JSadqnK2WnbRwTynum/w5B9vpFgDoAfvJ7GZaoqlD5HA4zSTbTlAyJMV9+Tfdr32IMpfA8OyLTJsyHheHZyctg/TALFogFbhqT7mkAE8EEpc9ZYBc1S7EO2fHadzAqhLvW8NTDii7Rg1xSiFIpza1/zBCucOYEDEkKdEDsDGt07TCmwftLZvVbiFg6/5jKnLHeKn9fbIOt7mNMrZlGsaogZi3m5OsMwyXGzjDSqHSqVYnqHzYYWWitphobfYGCd3NQXFui+GYE78mByeqJWTUxF8Bb6tIj4iYbQb4r6lJOtIrDIfzhD3U1R/tJ2a0G/lYid6qbH4Sy+CfPX9OsumDYKFSiU7FjVyhBQRb0dsEuXhCMAkVVMNgyDJeqDBM61fuf8PBeehNtiCTSpCiqpvo8Oyp7h6V9nYYFQTyOGie6EJwm7mZefIcIM6sp3Mwv7iJs46t8VD3gkfs+ViruiSaBT+SE0/BrvF29zVPzJ4R6h/crlYhLsmtxkjYtWtyJS69KOzeA9DAW3ompn8u9z5YlST/P80GykpIY4rAGPv/F7ocZpJy16Vff1kibOEL/QXmvdr90iJ3jqvvU9pw75guccZ42LC2SBAUkebRdir5OgX/+PQMK7cTLNaCVwX2O7NsElDO4d2YKWdX2aDIT4KykDa0XuMknGAuBp+BcP+ejlO+Zgn9Q2ktMkd7eG+qUmfApIu/MyBXP4K2yEWcybWgE+NnpcKnAdPo92VGYgtAQIxiDibGA/nx+0/PMjoidgNxMBcmR/iEYfBgj/EbStZFoHiEFjFA6iDOGIUItStFpUigiqxPB3UK7GSUw496/kCPZI50n70NTUN+kTA/AIo1t7tPgC41F9gBvvrfORJwJe7URUzWnqeX6kqnJxJnw+bPRIIzzMP8LGXRfO/TeeVWTrFREkEjJwEwzX7lQ24jeiPydU0c4OzV5rtcm7F1bvqbyb/qrEcFHPa8qZYCiEXL7vVyA/9gPGDGciCn70FwMJjZ8xGUKPl3QxRVOWu7YL9HbLbt4QSTgaMGOVKYMiE1lWMfHrHffoarus978YQkkRb8jmNVIgTUn5XqcWRJMh5GG2p6BPWNw5/h6Tb/93litH2PplZNrzQrt6DA6T2IclV4Y42hOpWutNFjTYlC1pGnjN629qIrzmh3ZKZhn/8jUMmarpn9VB/b202iOHP9baFYip/VQFpSp5S6VOUUJmmJ0onrGDsMMxy5qQU9uXAJLgtxV2bck+RZiz2CzxNe2dBIcNaB7zQwkvt7LZsrzF4xb4v0K4sAgRpvZGLgK79ObM1q0+GtGy4KKNqW5c9q1nfCGrUSsjTRRWCLcied8JZ5jRWkReRN4YIQT/xbftLA2jxjMGu/W6qjZjUqG5oj+c+g6ewBRBHFLjDiCX6ViXJ772XIPPufjHuMAwwqxs1GFAvYyJZ83e16GTqqlNhzCY9qH6c36XuvOaN0rzOUeJ9xhRkuDw00AvxHlU2fwpiBjpCLUJuxF0YdgaKy/BpYyALcTwK8c7PF10OPvEr8dUjAjGOW2m1i+3ycufj5Oud6DyD2o02IFJNFslN7B3mdydDUDMWfC3nHr/Lym323K10UUkA5BI+vOBK0TiLJ3TZLAWnZCnAl03pSi5VLAnKLDkMFsPodYqEE5yu2jpHMPBITBK9Wn80YDCUHhiUtR65DOZW4DjRmDDdnagpESMh3v0OSpmM6NkbaSAX41UdHJ783ORqafRG90DqT7XZmITWQok4KveS87xCLDpAAbxjqQfE4ZJ2bA78M4JzLNp584CsJ+pqkc9+Dnw6zAYZReG82N55X3aHUyx+/IjpmRTOuScv7WUN4z/Y789yk9zUg+LpPzNyWItAuqBPWMrtD0KrHMxbElsI2RGuFJ1L+fm4qH8ZTv8QHbeImTlgV3qGlxnNPwFgArGYNHAc8sFSW7aBnkNT5o73Ax/Am2fgXjzlXBztSIaajMKT7u8HFHZU7IPQhcNSfQK1ceS22XROsZ3Cv04YrBXzDs3lHAbhstLk7ZdpmA+7HZYLax34E1LZXMS52Fo74Wna/FanRexvXucN2bHn1a8G8YVcWmNs1y3no7cvxvn8Uo7LyuihkslsXtOeM1TPiFDpMWasdATR89YbKYZX5fJ1sGenrZavMQ0eYhPqwV6IJ63LZCgraof27n15/RrsDR7xg2b5ffxdRE2xDMjGAXBNsTTcBJxYoVlwRMNNSxYe5rTozjbqVR0emzFqPSIaZFZzGOGuYArYVf819g5d/iioH35H1W9hGBniGsGcIVvvugFEhdP/kwRk1iTDUDrlzXS0PxEklOnEaJpDoHF17YgfjzaKF/hqnOMO6Myp3TD08Iw7OS5dmJoXGnOBwLqtJ4K294WWkHRpWdzM33iUaifHGhNoGmHkp025q4F8U3Ex6+KeDmgGYhsLTDnuRn7w07r9HeAqbTGtilv0052/vHU8386b+gkblcQGsy6E7PWUBrGrKDsEvqP5I+s0vAFXRdrmxg1TtmztMnSokRqGygNoEQ9dxyYeYe9SZFhTMAzvmLTE0C/bdL9QZaHCx7mQyfQKfWJKhjoA2slDLUp+8FLYjN12pFgw1lruR/S5ZgpJtMuyzDDcA3juBf7+/+uFoZexJotiFljoKUTBHpe9o0v5wZFZKmUf3Dc8iv5+Zte0W8yYEwMoJwUDCtAFzoUgmUNaOzkYvNgZJNyZ8bOf5SVIJ80MLg7CTkmoT8vdOC6iGO52vTMxHSnM7Opi11IRMHLI41I9O6F83u6OtZQ6YSCAKLWDFILL0iAFyqAXACs+hYScejGDmXmtfjA87kDpdc0rGlZc48at5gJwNrLjnlnCZ1ry6F3BJppeI8fpV33F1WPKVLFFcRwxC3WGqctGzjU2pZcsYDahqueMZl/JCZaFO2LWsMhiABb+9oz4H6K+V6M3hvWTCjpYqmNOILBDrGfc9RjQGNlI3KWffcNyNLvoqMmajpXJuqX43zeaxNmr6fG56R7ODfaoscOf630Q6xvZ+oYpD+rU1giHkz0yLgbHtFVmnRzUXAPQNNrLScT9z44Ajk2G80SRY0ODCp8j5JWYoYpQRFn4pJc7EOEHr91gMH4PNGF3me/Gm5tqSJ7/HE6Am2pzOXWGmYyR3OeVVjqkZoDIUKYScLRZRxQ9DRFa5HTrWgq7VwD+Gt+JC1f4O1hz+y3+aKdzCN026XfkUMqXNudgLEgEnpTrdE27Dz3C68P7Pme7Aqxeaq+8TY72lK/yxZ6J9h3BlGKpb1V1mnAm0rc6xJUn4MBCJOpMghZqB/qLYDsPO2ACqXlGac1Q00R/JH7v4+wM+gdZo9yDYEwSMl1i1o0W1tRwDXpwh7YwOV8YQo7LwUwJcj+MAeyD5U95k5PwFuwqrXLWBK41n3jlVvOWt61r1lF0zJdFz2TrnS6To7n+shcmZBnSYfhWFI1B7AmlCyHFlpp/eGGCOVTRAjgfrp+h5RidB8foZIH801GtRuUCflatDzyZQOgEuvDcycxALoG7tPM9ExGkFPpuGM/QvyvUWzn0SC6GX7VMtQmVAKcIcokOhVVQJcMO5pPkJfstXC1psipZrv4yHw0u8fI+F5zXQTgZkQE1DPTolAFwxXgylKOLvotYCZXkFibKhy5JexsZreRy0uzlKzo1RtRERobShg/lBaVbMBo9M6jeY/DxTmZ2MaRZ5G//PrNtFFu6BOqY/jeLeimRcjY0+KAa2tWMfAjoEVK1Y85cOoEXdQwKy9BO6VhnBXPMPTccETnFQsOWXA00SXjmvoo6eWhgVv8EyesuS0NJMb6DjjHOQNljQYhGdooPGBfIlXOE1jckKQSNBwFqAdmbN+YYWjiY5WUh1SmZN1us6T0sMhzx/NFu7jjfzsZxpOdqJrG5g5bfy3GSy7ICwrT2UDO2+KPO5F7/ael1woH1BHa251rzbE5wZnj/bTt1sN/PPasK/BnDmRKZVnIjNdjVkHCImLNvItR36mw7CkpksP00o2OFzRLW6Zc849ehlYyyVrnrKTZ0SjzVeCbFS1xjQaNTbTWFtAjIILVb9R1RsBVMd9GB2C1OZa3+w5lJK8dh9S91tIGQVjC//vx7/H5ppzgm2w9QOsPcH7C1Xm6S/Hc6gWYOqRHhMGAqMyj7UNFS2vmzknLpSUYJhE9PKmvc8DTKno/YAP/TQCFjWa967veI/vswmPVDotUbKq+hWstFhpxlbz5A6+qq8spkrKQw/1vosqwvys6+fn7sL4Hm9mWLvAVMtrBc6mPgc+f46R2BlV+yYL9yYLuVuUeiwGZ7/BQiralHFaRyX+zcWMEVlvWFjlY5swds0tx2c/qpmjZs8D/WOE/zrYn1ptx7+pyg0lWq0btX7nSeVLvYCCHoszEZ8i7tOCywzs8zOnxzSp+FfPad2rIspF5+iD4YlXecSc/n821MztlFYBy2ogIkV1JVNX8v3ZDJY+ZCGGHD0OStOYZDyU9qFOQebh+8wPJxUlS0TS9eUoeB/MmBmJY/TZmcjWG9YhsqJnhmOTAF7HlhN/xkOZa6GnHSOW+V7k+2IFuiIUoe/rvBnH1sDgNYhRS2Cb5FBjOp/tINeKiU1yQjoCffQsEyfbCHRR96cuaibAHGSfMj2I6X1Oc1KbpUlxUkj3zafMjTWRGCM7b5iZyImLXPSGXVSZ0kseYzB0MnamvuQSFzRiDLCkxmBZWB37nFGwJlLLzUGsGHM2RorDMJ3/dgJQ8znLBIhac93pmRYG559zfUS2fVWknHHR+bQN8Jg1VzxjzVMq2tKl2UnLkrt0bDnjAQbDEx4R0OZmd5izYeARH/IR7zLQU0lLxKtUqUCWF5+zTN9vuBvPaMWxtJSaFSeRk9hyL7xVnNMuUqRjnXaUZEeHJ2AxNLFS+VNJTpm5udnftAYk3+M3lht1mAU+XNd03qRMWn6e1KHeDYZH24rWBq4Gw8JqXckv3rvi7auGq94xeKF1gcqGMgbZ4V33ji7E4jj3weyN8e20eOT430YT0ehJThdOAWEfhI3XSHJlAjOj0mldWggCkjiW2rVxKi3mEGbUnNHSMW5guRD17XihFf4x4GTOLj5WOa+wGRssTeUiS4e6BN5NrZmB0txJU38lI5BAc/gE2u25YDVrwUe/xbgl1p0lsOtfqE40Nqbq9GfYz0TsnaPTRlJ2iTFNeq2CuCrngHFgaoxZELNzk6S/YhwIcUcXnvHMBH43PGXe3eGMc95yTanXyFHKaRodRq5qBhrTiF5O3689rOPAE3nExfAnhKgqO3F4BrYlxlO0j0OPkzm2avFxS999oPchBsg1HGFXrtG2b+gY98/K2P4wjoBxi88NbSii9J5gKsQuMJU2LsvOZOiejHPlc2CCYbb8s3zZ/jpntAyEibOf0txmX+KvjmYv+p430indAUau8zS6n+doed0o2M+qPC8C+fvnfcjPj0VxrzJxL6otAtvB4Jy+3phA24by+RDG7rclYGIU7O+8ZityJLvzhvXg6INwNZjCi25K11PtAtuYseNwjiAqoAw3RmZBFWeyTGdA6Tl9omVAKuhMJzgWPut9c0Yj/PmQqt2un+39KN4QyIXB+T7qWnI1GD7igi0rAueJytlT09KxwyVd8W3ONJhQznFaFNtOVHOsRBpCAbIfdrrWv9IMtE4VkDoUwNnkkGVw3BgNSF2EwFOu6NjSyZZnLDiLp1TYUpdWY3SfSteVa0z6VPg7M7lmQRJ4S8WrRD5K8sAORxOr0cH16lC0BmY2sPbaFO2BrViHCssbrFhhMDTUjFo9lN4FH3FFQ03nHUYs501PM+m4PO22PM7lSGX3wXqeK5m2ky0XvY+9Hp5veX8g3ZfsgISs6jSJ+jujoL+bvKb3SPfTx90/B2BZfwWDYc0lLQsGep6womXBaZxz1zq6CE9jR8DzCm8ww/GYq0KnecoVudmZo+KclrmlOJLVxEke0vM5m2ZpQihgHyHNWQ1YzKipxXCSIum5vuhQTSln+ayM2Z4qUci2Xmtgvnpnw1VvWPWWVe/26Dw+COeznsELUNEHdRDeWdW8Mu+4G3reuWqUcJXSkrk3R4ywqAdOSt2GZvV2w+eA5f/5IWB8qnard3cr8GC+Y+ct28Gm6MqY+r6KgUd+4MzXLFJkambHxShE6KLoIpai/5ApQHBiAUx5QPsIFyFJ0eFZyF1W8TFn9ouItXh6LoY/0cLSVOSKbSEkzfmsHJJB+HOj8glI56p8O0uylEaPC9osRBwmURSMNKWiX8G2Epj0ZPU8JAakmjGqE6V28onykkFpiXpjtENt6CDXLvQrYr8iWP27cUulNpnUzty2zJov05q7dPGSPlyWQtGQtPFVyq1HRPXRAd4een7OmUKTmNrholXGP6esY9Rup8EwAE/lkh1ransXH7YMGIKYNJY7nJlTmyUb/xE+qFJC6TBcnRHFjFkYAONSQXdfsiuSxuXjOumKnUH0n8iJu00WQwdhQOxC5xphr0/CT9uBEXHY9iF++x6YCls/oK0esu3fA6CtHur8kiXnPOQ+S2qRxOlNqhQSiwxhjo5No/ZTuUDI9AUKtWFKSZhSfvIMnervZ468yH7h7vT9cfKzHjMdJ33vTY26phmxk/rm3hQAxkA9gc0haPfbLinuZFrLZrBc9Y4POuGSHU10zMVxT2q2MeLEsbB6v1qnpbyHKiwwgripHGO2zOGPcQRrufBXo/t6ocMEKLh07FzMHFFQ0vuxcDdnMQAWlae2odCGAO41Htedsg6nOIFTF2jsjNoE+iDM3C5RGUyJRDvjy/qTjz/luefrHdCGZ62BCx/5p9stb5kTlpVnbj2Pe8vghXu1L/vTejA88j0r2SRqWU/Lgo4tT8Qz54Qn8j6X/h0CPVZaluZ1Lb0MqrICsE5R+JzBCgQGetZcsoofArCUh9zjATZlu7dBz3Uu6sA5E6mjuk4hOQMutjyg5SIMtOJoDVyFukxag6SIv87vXYAPNjUP5x3OZPlVdQ4P+1E83+Kes5gdy8NsxnQ+ZaCZ5WFzbcfOj5mg6dfmZ1Ybdim1aSc9FzxhywV9XOOHpxi7YDW8S2vvp2Z+qmNzwhkntBiBpyFwagyvxBNmsWEnPRu2AHwvfpOI52v8Mh/JYwyWQOAy9ty1tsylXBvk41hDkq/XB6Exlj6MUGyIYy+CKnWrPqRSTZvW6Q3Iz+VI7hmCcNk57s96lq5jWQ2EVusynnQVH2wqtoMGQGaNOvNXvcXZyLa39EF4vKm56KpyrtMxyxn4aWAENCNmiKVHyK21yLG49zaaj7AddGrPqwFndBPYpNcMytV/BrSxvsYbVMWIlDZFlOcXPReyJuB5x+sDfMY557Ss48CFaJHNHe7zfvwOAU+fHvQ+rnFmiVQVtn4dJ3P6cEkfLohhh7ULwDIMT6ncElJE3JkTfNxhpaH3T0uU3KRovhWt8Bcspn4dKw0h9toBUSrW/n18WGPlBGfnpTPiJjxSICRG1W3E4dwdjFSqUOQvUqMpc1D5z8RhQR2UA6AnMSbObV8UBab2kLd4h2+DgZgi5JUsStq0pil1E010nBhHFzRiYRJVoKg9TDZYZCwkk0hZ0Coj1DHSGOFkOKeL53REaicljX7Flo4dK54CUNsv8iR+CzEttn61ZDFC2KdVaeZkl+oWtpo1MZVmET7GblPL9U9qew1dxNHWr7NZ/+FPHexnM25B1b6JSMXp2c9RswDA09M0d4h4ahaccIdFnLGQirnJ3GMFrbUNnFQDjQuJajJy7PNSn0FpjtIfKlRkCkd+L9wAztNruWDOyghcDzGQmRx/GiGdHtPesIGXz+fvPMgoHL43R/JaF2hsYDNYnu0cl13FRzvterpKVAItiIXTKnA+Kd7LztGhk75/7WPhco7kZtpRLoKurFJNYCyGnkZ8IRdqjsCvTg2arjpHl2hDGWSc1oPKjgZt2pR/7pNU6FntuWf2m6QBiQevRcnuQC6y1CdI5KJz7IJwvxmASJc4z5WJzJxn5jyn3nDfz4lxdBa2MXBi9Hxq63EGnvaGnfQ84T0cFQ0LnsX3aGRJyxkAXVzT2rtc9d/Ds+Gxf6Z7Q6IDDeEqnZvToA8BIw1GKmb2PvfkS9yNZ6ntnLCSHiLcsU6VjGxkOxguele68LZGVY5ComTcN44rr/PrnpMio6rjqK+3LhRJ0cN+AtOocXZUD5+TmxgV00LubIZ9Gdd8nCGo87cbDH0wWry996wqYDaioCYHCM3k2DtWbPxHGpQyDdYuqMwJEU/DgpqWlhkWrRXMzpAV2KKZEt2P4Y/4NgB9uGJtO74ir5Ti4UpUYTCvB7k2xUyyXYUqIwrerY2lpiQHDl4UoMiZM4PW2bTOs6w9m8GUuh0jkS4IS+dpbCjOs5PIg6bjYbtj7S3vrBU7PdpU9KmI/6Tui6Tvzlt2g9lzvKeF7rWN12g92p/jY73An769nLj/dgN/oCz8FfoQtS6UBefMWx7tlEfuUgv0PhiepUVs6a5vv9Oui4HARfgB7/vfxUjDiXsTg6VhTsuCV+XLNLFiR8+bZs5jP9CbwCWXLFlionBpr3hq36NmQc8Wg+Xc/SZXPCtKAB/KB2ziU9b+fQCa6iGNOaNmwT1e4Yy2NHrJi9k2Kt92TceVXbIyjzVqFNeE2JPbZc/qN4jRs959mzisyQ04KnOCc6/h654uPCPELd6vUnQXLYKVVJQsMoJBWxVEJCZrnyfOq51RmVPm5gGewD35AgbDqcyZi9nTPg9EWpkTUFWe1gYWKQJQdLwnY7MXGQmTGgDJkoDawKW2sBRfFqEhqoNYR0Md5wy0vMIdpXjFgHMVG/cmG/8hQ7hCxGDtKSHutOEJeg8Ei36lSdf7HNWmn1BL9c/KjFsg7qw0j3FmTi1L1p+0K/JnbKZacr74C+U5rGlZxhMqsfTRYxHuWoeVrPwUS8EjaPHqWdNzUg9FOaRoz6fNaargkv8tIH+yXJTNOf08pdGU9wBPtxVt2lyzE3AIXATNYN0U1Z9a5mfn+f5J7PC9EY3C9V54vK246hybwSroj5HHrGioeShzagNz69N9gMb6UpOQwV//gm6+h5azALVVadDdYJhXHsPNxxGh3OjsPKgiyKhO4yTioylARJ0RQ+el3LN5AuWHGcWRDy8pwJFeP6Cb5Nfvt90eOKtNpKrHeZLvSesCq97SecN3hx07Oh66E6ViJPrXV5Zb3hgq/sn6TR7xLpfxQx7IFwFK1D5ncRfuTYxUDHHL1n9E13+Ic0tdp/2GIWwBg9gW27zBF+2v85adsw2wTdS2TBU6NY7GaAHzLt0jpYmo81QnEBijMLOeIQrnorUCVrQnhTOx1Jkol16dp9oqxzsD/Az68/0rlJ3s4Jr4wrmzV8QrlAyOOXgwQhxr+zLo78KYNXKMCksl4h90H8qdtytachfeGHaEFOhwolnplhl3mFGLjHUZUY9zt9Ii5vWgdOBfM1/lT/wFH5rv8nb4Z1yYN/iGvMFFCKomFPV92wBLe9BhmVhELQhazzAF+novRondDOpFtM5H75NSbmYu8HirTuLdtmdmA7tguOoNl53j1XmHiDrffRpvK5HV4LgaDD9YNTijxzWi57Laub2aARGl7uTnZtpTwSZa226w+xnBayvl0W6T3XLgnxcVKdrEOZLkjEaPF9bQpBSTyu55Wic82tm0iAmD14jwhoFGHIs4S4W9FSfmIXfMF9ix5mn3TULYUFX3cTJnYR7QsWbGHd4NhqU0nIrjgdwDdOF5YM6pzB02XthOVrE7zHEYnIFNPGPDU6w0PKh/gYe8yqkxRVrr0O0MgAuGdRB8rOik5RLPLjzGhw2NvacNRFJkv+MSwRL8hq5/H2uXiFT0yQkwKYLU2lcB8HEL9t6YGYg7Bn+hm0zslcKUGn4AiNRYO6MyZ9RmyYwld5hxZlVlpDaB2g57xVaB65JwsL8g6CIyRosGzF5BpBYm7s+Iw9+NRFZeSq2GfndM0RfDQ17F8ZAP7APe45+nc1Dt44BRudZU56ASl2cp8r9JXIVA6YIoTpt5ZToQJtUNfDqRcrENxp0R/epG6tCPqwplmnt6bXFHDAasw0pDI0vqk6+zu/qjH+f0fywTUzM/+RVeNT9XgH7LWMy2cJ7WKTVDZKD3YwFpjuhnmkjjFHypGsW4QYXJRjbdlqYSnYYR4OUi02zT7rd5GvbeJKWdcQ06VPDJWYFpndJI87kewf+x76VE1p3l7csZT3YVKy9azBwHarHc54Rl8hRyweZUn3uU5MwgauyrAeMzPgXM+Y60zpefjcBp0xdJz8b6Unw6FuhOzjvRQERgM2jhcZGnRMeplZAaWnmadA33bC44FHZJglTvbR6HiLUjVegQbMI+1SSD2pxFkBS11UCDYTsYPti5Euh4w7bcaywiQwF2Csx0jv5C07Aevsqlh20ceCzP6NhyEX5AiH0ioXpi7AlxIIae6C/p4w5rT/Gxx9hzbKq9WtovAPD+oBTLnPFqbaSxBitDyojkNTgWjf08zpWJrAdDhe5BLnHBFfAKtUSN5MYxwlz6VnihtqMjl2k+GTgWJ2AS0c8yoNkpzMG76ZN4U9FuBqCq6JdeI0X4maj2yfjZfEQjGhAaCFzwhMvwDt3wITF0GLugda9g0GZcNS1NrOjwtOJKDwZSNvmbvXL6tTeQp4mWO5xwJXfY8JRn4fv8ial4k1c0iIc61FYMTwbhkp4GxwMnRboVNJB1U9g504FqG5hXqTd0eo4qq+P5bOcU7DufePzCnVqfj/O6x887hiCcOK8OKZErr1m0ygSsGJyJXHWOD1bNXkQ/z12AkOV3UwYwK3Pl8fVBu0H3YTpG17MAt9HkSPW5feYjvLupkrzYpOELkT7oqj9tXz7dnO41vix2OeVXRcOVbLkvc153Dh9Py/sf+0BVtxgMF1F5xBUt56Jg+Z60Ke2nC+DWKyh57Afa4NhG7Q74AR8VXjvAZXzENl5yLm9w3/5C6R64DvA0Krdynp6xrCE+tUps6qanFKIYB3YxUNdLGhbFoWjqN9iGDdGv8BmsimMwDTH0WHtCkB4rDVZanLQ0LErvAsHQiykREWNmWDPHSoOIxdEqQESlED/gKd2w5G50ZRZlAJGjA32gtJyH/eheLgAaOcL6b+YHTy2DsljUK9JGjKb5VQVjPNY6DrhEbSo6xlQ4M9dNNqpMqzEVxjRlwzXitFh4uFTHx5IyHnXJlCBmrHmAHzn6r+pJ1X4xtu8J/qMbwf2nIQUbdo/Kz9HUxPouRlq8PS1O3mdtYmcsT/6cnk9UXvM9+QI1DXeZc2L1GVhUnsb2hZ4xd0MB8NOIOox0nSkt58NNU3iq1kTuNH2hkFgTebqtC095XmkGaTtYjCilQzMGSU4SiMLEORi/2zp/I9UnnxeT909FwG5qoKSOwsffw7GB0n79QLbLznLROZyJSVrPUAfDVRBaEc5rP1JhMlc40aOyQhHpXBT4Ci6OCjrZiZoWW2bLGYt8jAzws1a7STUXuUtwBo8xFa2+vdG19NQ4FjZyd96l+6v0nNH5ovyeG5pFYskIWLlOGRmC0DM6jHYvMJHUZSbjUk32lhiFVXB8sKmxEnmlGZg5z1ThaByfnLXR109MoLWBy3VFL6r+UtNyat5gFR8xxDVCgxhLiD1NdUbVtAhaV2YwLLjDggUNjjvGMHdTOlMKuqR7nbvn7lFzJkXjeTzyer0bVA57Ufm9KK9BM0DT8dZskhaLuySlPQL2WDI12XIPh603BfgPQVj3tsikCnouU1WqLNfpvUEbhSk3vRwj6toO+6A/z7289ztRNb8TzvCmgwo6/4TgN6w230TMjFn9JtZULGXJjp46KrZY0WOisBMdgxUrAjMaHCs6nvAIT08tC3zccsUj3sHyZrxHk65tWXnmTnglaGH1zgurQXMQc+fTM7wvb1rkhCdze9VbhmB4uq2wEjlr1GG/7BT8v1prtP+yV1WtHOXvvPC9q1blTlM2Jkalbl11jifbusz5KTVnmhFTlTKdE41TRZ9uMuUPuyzrWIx9NG6tXY+5vjR2q4E/qOze1kMrBtAUX2tU5SAX4cGYesra1lkNIUtmPWWDFcNDmTOzsSwQedI/EMENr/Mej7krb+GoeIXTAuifhR6oGKIwN2NU+651XIXIlWx5xodF1uuEMyocl8AiZQieckUdTzECl3R8KO+xiU/xw5baLKlZ8Gp8jUYsgUgffdJXNgQ8YXgGMeDNjov4R6zdHfr+MRBUjYaAOG0NHvpnEHowluh3eFMjpiKGHrEzbH0fZ05wZo6jpTJLKrNUqpK8XjSel/GEQcYinR0dDbVqEos2oskL1ZQKkTeOIZiyMeYorU1p5GkjnPwNh01ysh02tckpX4DFRA6xj4IJjlomtKMIb8oJ98Ov8Sd8j05WDHFLQPmwKjc94P0Ka08xlfYE0KJlpf2EsNkv4s5HNxUSzQ+lAFRAP/sF1y/KHEQCYhstwpYf7vtutFTfIWijmTv2K6zPzrjafnPPQfg0rF58nbvVL3Dhv09r7/IGX2VJTW302aynEpvR8PpywyKBUzehCmQg5z4mkrT1VgGLxNJ8agjCzruiO//BpmYddC15te1ZJR53H4Snu4pXo9b1nDZDATMZCE4LQPUeZtAznsMh1znr7OesQv5ctpscgeeZPdhPI1I0s4eg8pyrzrHz6vhohBXuiNbP1Eb52rmbai5qNqIFeTlC34exm3BuJJadpQz49vjZEnEHEo/T+9T7UYrTSGReeTqf1gJ0bN+cKdgEj7Mj/Q/0dTfhSWcqRD7mEIWZ84VeMuVHa5Y40kzA/DRzIyilo59QGraDJXen3Sbu871Go+y5iLs2vmSic1flfH1ZrSZTr7606IhReLx7hXd8R8+MUznXyGu0RbIxS8pO51lpjBUiIr5QzzQIomMVULUnazTgIslxtQKECdUtHY/0LDU2TMbl5uCCEVWcyh2TTRyvM8+DIUw6N4tS23xypnIh9s4Lu3SPbYypt4JhCDkgpOfmvaTz173cB9mba61RGk5R6xPd66ePRs7IGIRZbNjKgsp8kSfA1m9U4MGv6MMzNtLyTFrmnLCJA4N4PIFKnHL+CcyYMUvqR+e0LHiNp6zp2LE0d/kofpetrPiIGSbMcWIYYiw9GjZeg1QnzlPbSOcljQV0KYtiJe45nDaB/tN6wJnIPNXt5Ot+vHNcdo4heOp2zIZddpZ1r8X92QleD66sic92kmhZsQD+1mmWL6+Reb5UNuxRADeDLft6kzISPq0zq86xGcwexfJW21HV5/ZZH+GKLRWOEB0nqSNvF3ShWWCKVnHWtgbKhjYFjxaDJ/DN+D02/VO+Lr/Eq04LXYaUUn6tibwSz/lON1BFAwKvVpY/Gp7yiO8zi3e4xyvUsWWWwObGq4rCl+wJwgkzu1/J/nPmC6ngS2dYZTq2g+EsWr4c3+RqeItHvucZF1zyiG/F32HwlzT2Pj7umMsDKloeyJdgDpfbPyDunjDwBM87GrmulqXINEegxTaIW+DqVwqP1A/PaGdv0PunEAP98IieJ0DAmBln1dc440GRMYOcOq2IKEirpGVZDbSuZzNYhMiyGZi7gcZGLjvLZnDkTsu5E2NehGOUvYdNJpszjJGGTAGaqoaU8Q0KrCqJ9Girdiuj857rJZpE19gFbdDUuMhXhrd4mw/YyYpetvjYE/EMVAxc4f0FuSeAMTMOQX/sV3uRd7GNRv/D8Iki8mJnZTyYZgvEYNwZxOG5CkHR71TeVayOeeoNUSRZU/Ffrtc4PJ8ixyqCqc5pqtdozJ2iaPGKfJWHs6/zLf7vaFv5+3Sbb/9YNQ0P7/wrfIW3+IALXjevcyKOO1Vg4RRANc4XIN86T1v4x/ugeUofcMRrgHPUUlcwuKgi4NkOBjsoCPZBeHejDtc2RhxCF+CP11YLGMXSxUgXPbWpeTDflSh8nXjNIsBEqnAqNVyKhV8Q6MoZgSlPdhpdO1y3PqlpVFVY9VYbY5E7sgoxddFtXSrGjGNBcjmvpPziM+j3hpCiuwYNsjROAYc2E4sJJOsTnik8madvhD29byM6vqveqYxmFIagY2VEQV2Q0VGYFkG3buxfUAD9ZNzzHHBokaQw5Z5rRF4makEwcqSnACVEw3awrHrLs95SiUZltXlgoHF+j+uc79kQJMkgAjKe16HGvHK74cGs4wHgg87F/JT6EFCi4hilVydLyvob4n7DpNYof39IRZtXg+XEaZGblUgsz5A6CNZEHLou56xH1s7PNKhcOJoBfYijAzKl8kzHxAdds/Pem+sv8vtiqh9obSyBuRgFRLNS+TXJEj6ANkDTAvJ+QvPJ9yxn4KcOXJ7TjdGIzlWItCJK6Yl3eUfeKesjqGpdiAM+bvkw/BFWGmqz5A4PGehZ8ZSI54R7BFqVPxXDO0n+U7X6T1jFnrvyZ2nTsWdGg1BzExgizFNQoYtwMVhO8TROnSHNzoz74JBAdGYXLCrl+Gd1pkpi6db8cNaz8Z6rXgu4LzrLg1nPWa0F5u+uai76KkXpTQk+FId0QsvbDqlfRXHyI/dnHXeagXdWNevecdr03J91nCUK31Xv2PaWLhguJ7GoLBV8tNtptxr4A5zS7hXtzI0C/y7CdqB0GpwWxpQ0L8lJIGIw7Oh4Nb7GpSz5U77D9wf15B/yBRocF2x4hRMaHDsZMAQqA3fikq3c44QzXjMq8/VsEE6sRptPDSxcjzOhdPeMCNvBEFDqQF78tMFN2qyInLjAibP4cJdduMf7dHxPvgnAufkiLQsaVNrt18yvsJ79EmYmfI93eOL/hH54grUzaCyNPcdS08VLzswXOEczDa+ZlrnTDnwnlS8pYB9Vcu57w45nPOEyfshaWmbSliJjA9ytRx4wZMpN5P5sx0k9sHCegFCbyINZV9q4rwaNkl12qhneJ0WmvGHkCFGWUIRR9k9kLNLbpgiDTVrWdeL2DqlhSBeMNu/xkw2BVIhmIqEbp/nSwpfCKzyKWx7xAV56PB3W1FjT0odL5f0zI/dIEKxmTsIOcTPisCoR+uh3YKI2NfO7vUi8capGEwalUklzTlW9CnhEKkLYMQyPibsn2hX6E0Txx/fMENuCceoAiDpUue4AsZik2pOlYUEzC9aeMLevMpM7tKi2uaqO1JgotPVb6f5eYetXGTbf+9jzusna5S8lpyrwppxSW0rx42YwLOsh8fMpkfx+ApaKrnscaQzaDGikkmSbdpOMaIo9RgVFInAVHdvB8eqsp/OGVZqH7/eenQxs2PAwnvO1k557sx3n7VDWk6zvn7exrJcPIAmo+XhdXWfK389gP5vSG/YpSvnP1yP6NzsDGSBuBr0eyEEPfS5mzlOZSJOK6nPhpTA6KTlraif3fwimALzGhgS8UxGx5LocgzO+ZENiihQqoKR8H1BoC1YoFKpcfzEkWoIR5ZRXxu+tM+V+ZbA/KdDWiLs6ETlSmjMEYSIQENN9yVkLAG9G2kkXDH2KMM/cwHYwNCZyr+0TFWwo9zavSdN6ESPgbExOpzpCQzTFGcgZlfwz6f7blOmq03pnXCxAOyvYeMYsQpuCTbMg+DiqHTmJVGmsT2VficlM5t/oBOgJ5Gj9YZ1DPj8RqCTsdXXOju30mcxOX167uwmtZ3qtmdJTEamMFAc/Z1NgpCnl6yI5n9P6GjsJ6uQahtzpeCoxCcKJ0WdyLjrXXo+vc2Xusm2/VED9Xd5gy4pVfIyRio3/kHdQIY7KLKlkzkDPnBPNvKeajIGOD+RDlVmVhiUVZy5y1vSlbujxztEYOK0HTip4tqu0dgjNLN5pMvlsdEdgEnW3gdrGAvpjhE3QTsVPO8dJpdH9R5uaVxc7LjvHR5uaNs2HUkuTVpccaJk5pULnzCCMEf48p5d1zxuLneKpBXz7ieNiV9HOdymDqhK2d2c7toPlnVXLk0EpUgGlGN56O3L8b585hBNjCp9MI86Zsw+67aoTUAOZaJJbszcmsh1Ur3rDhkBgIwaDZcaSgZ7Alvf4PgvusGTJlqAKAdHgRNh5oRbhS7zBmYvMU6HMOePGtPUKPLedptLmLiASOKnVo39/U/Gt+C471gyJQrAJH9J17+LcXWbuNc7kIQHPQ17lL1a/XBZAvUrVUB4ifHWuhT5f5hWcuY81kQ/XDYvKs6iHveK1u7MubSRXRZJrLL7RBX3mPK8a+NbFaxjzWmksImi0627b0adiIBFdkBZVT0QXitYGZk5l42KEe00/2YwDrQlsQ5bzU/1ggLfXNVed1UK+3tI65Vm7KMwqz2nabLXhkCpPXO5Gqkbm1moBV6AyFiuGjR8jgD4K0ZNS2YwRJiO8Glsa/zoXsuaKp3SywsQKQ0U0M7y/Gqk34jCmUVAnM6w7AwIx7Ih+qxH80CnYdgtVC4pBm2PZBeJ2GNNQO3XEco2BSEVdv0asXsX7K/zuvWvg/3kUIM3wBMTOEevGqL8YRCqcu0tlTjBSIZp0L9mAShYsUNBf4bRbJGARnBh+xf5Ffqf/f9Ovvv1JH9VrJhi+av8896RlaRVQVSamjSyps8gI+nPkMYOKIWj0ukm882mTp2mEXe9RivQKe1uNpMjlWT1wN1E0tt7w9uWMZ73l1VnHN847FpUHhLl7XCKz+yB9H4w7Yoks6nnEMZsFTFvVH0bVbkoGvCBBsPf9+bgRKWotfZAiedx7/blLRZoi2lhHz0n2mmcZRv5w5nv7qGuoM4FGIjMX9rIpwki3miVKUObF5yhlAdvpMy5F2q1AFzQ4oGtk/nwCoPl+JbqgRh3DNccoN0uDkbKS1VIAck+WIJCPqo5ADgqN91HS+KnEsGEzKIVpXmmNRw42GFEgP453Krw0ody/OoZCdTQSMWHknuemR9Oi5hzEyBKvWS1opDYZbKWUp6nSU75H2aZKKntzRva14m0CyCITB3Ay8czBMcSkiD8yOafrKjzpAkfHMdM5JVIfBIum3P9SOC5KCQqRAt4zBSXLdtaT4EAG+dOxmF7DtAt2boKX33smGkTq4wlDPOEq3AfgxBiuwglGHtKKgPsG2xjZxIGVbFhziWd/XV5wh0seM8QtG6l4wJvqsECRf10PhtYG/rQf2K1qXp93nLd9ceoi2jF3lqRSy3XIeH+2g6U2HRe95bTyvL+peHXWl3t8mfbQzhu++2xeXl+lYFfOwOT70XmVzs3rr4hm4l4/2VKbwHqwfLBuuJsi/UNymNe9SoZukzTwvPI0dqCde1ob6cJA6zzvr1o+2NV8ENecTWodb6VFjhz/22ouLeIAjUkPf57M6eHQrr2xtEpfeeFJ6NlJz+tmzlloSXXxqUWHwaHcvTPaVDys1CKDOgxPBi0yizgcwtxqFHFZ94jAqnM87fUBv9P0qLSWlJTZB9uKP4nv8u72v8Rv38M09zhpfx7BEuh5xf4ZutlX6NlyNbxNsD2df8yH/DOqcMaXza/yjdayrPuUDtRF1ZrIiRsKgHcm8HCx5aQeWPWOpvKJC+hTRC+mCKvnonNF+SI3X8lqFa/PhklETwFFbZS/V9t+b/PJTsHMBe43vUbMguBs5EGtjs3M9sxtaiBW0v8qy3fRt7zSNDzuKy56x6o3PGgHTqu+0AXWg2XjDV0QWquLqG17hqQOkcGOLmSpYC/NER9zl9YEBhOi7FPqOm8/rTjWOEwSQxzimkBPiDvIcRmpivRl7rvg/UqpOmIS9cYg0irwDh2IpMZY2sHZ2kUqItaOwgDDcIFzp9TmDCct0QYuCfjuwz1qTYyDSnDaBWE3Fv6KOGz9ADENRhya4/AYaanNGbUsUGVvizaW8bRJD1+fAEtDTRUNRkwpgs7P3K9Xf43fP/2HbDZ/nOpHPrmJqXnj9F/mnrTMkgTgshkK795HwSYHT69RP2fT5h6FvejslNOvetjpewqIzb+P71OwqSCxnoCj1kXOm0t+6QZAnutSYJ/6adgHRuGAy6N8ZmASQc0p9X2gFLkWzX/BxnPoTPgodIkjvU5Skvl57NNrm8GSZf6qalQPyTcl8/QzkKoScM3qQ96FPaCdz3uC8fZeN0nLPtNSpnUQem9zczINiOTIcI4i53uVxztHjTXLsp8xyd+dnbOchchjlEHOnuOV1i1jlMO/m1BQ8vG0S2mqafBSaDCNTYXbJhJDHBko6bpyhiE7RtnJAV2XK6v8+VWvNLMuKQ7luaTyrzHVBrB3T/J9HPw+b17vaSjHmToTeT4dFl9PFXlipOjJ39SbIr+2188igf+cBZo20sqOUT6eM4FKrs9rjz4j+5Kb45t0LxIkZEdac2l1mqMxjpk2g9KfsrME+xn/qQ1RVXTyHrSofAnynqR9yxBxoqufk6jOBsJJrHgoFUaWhESlCsx4NgiXdBgsV/KUq/AeT03LPLxOa1wZy3nizH/NWNYDXHSOeaLbzZzurUOqzajSnF4kh3M3mESr6bnoLKe1L07mR1unmUy0Sd/jVHCeVbByXUo1qQUgzdk81LUJLOsBa3paGzipPHMbiPR8ebmlD8IfP5vpdafAwGuLHVe90wCBwIdr3Q8bF7TJnlfJ3YftwLKfET4PqPrI8b99dti4AkbFBJe869qMEf6IUnuehJ5BPBWOR77HIpyKUoZC1JFupOXUGGYT7itkmhDUNsuGDpxWieOboiTrXlUzssxgTs1edY53e88P5Ps883/KQ/vL/Jn2X6FpHV+fex7vKr7tL3gUv8/j8F3um6/yenyd1n2Du5XSUp71lm+FD/iQ9/jBdsXPb3+Br57slPOXwGzm1q16y7Ly3J3tcEZTjG1q2FOZpN3rM6Ui8pXTLV0Q3lvX7AZDmx7YygYudiq9d9U5TuqBGLU75swF7jZDUWVoE283tw8/cUOKmCnYr43K+W18hY+GpdsydzuEyM5XbHzFe7sZH+xqrMCrbcfZSc/deoOPwsrXdMFgpaK1CnK6YEoDkiEmDnKl/G1nDFuxMICtYknf6/zRMXUp2lUZVYcAqKJQiWHwLWsqYhy58aUNTdRCXsFgpSES6IcnxBhS52YF/5A59jkybxDTFCUgdRQGoqmRFIGf1W8o7zSp6ThpOW9+mU2lKh8xBrrNd4h+o5z/RC9qFl8vNCFr5ggG7d0wKjVl5aWAx2CZc4JFCwgH8RgMDU57cgppg01Se8kJXgr8N+Kf5+9Lw2r7x/jdB5/4uf0zp/9DzpNDPbOeZT0Uik9WG8kAWCQWQFroE3trABOAqAAjBEpav7XXNxcr+7z5m36eggSZ/J5pZi9KUheHgcSXTSArBx5cAVlSnInD6GrmoF9XxRnBfkQjf6vBsh00q3jVOR5vaz7qDKvY86qrig5/k9axpjRbIj1LowzflNYzBdv5+zINBw7oVMk5cik6nyPV1owUi0y5mY5Ioe6l3x2aHXCJU57X1czdn7lQ7psrjlsokfpdUgJTepXKOebfpyoiORtQFEviuHaU96QsSGW1zkDpmK5EnVvn6b1h622RN81OQWnGliPrQWdF7nKsgFKLbds28P66LsBZzHhuWanMTCg6o067lKzBVD2nCFokGkwl4+fye6pJBHkqsSiS793YbCtH9vPcnFoG+n7yVObC5UOt/dExyXNipPvsSUVOnv3pM9LHab3FCOZ9VL54Lt6dqgflPUmV/oQumvIcAjzzkROvQNnJSDnS4nUp3XHthH4bgmGXxi8HkfL/PsD9WjgLFR8Ojoaa2rQM9HyL3+e7vuXn/S9wv9ZMd5WyQstqKBK1czcgosXqEaXbaF3SwHk70NjAo23FSaV0nNfmKla9HjRg98G64Tz1m3i2rcjiGKNiU+DerE8UWWHZ6L606jTAtai1bqWxgfOEDSoTmVl1ip50Fd+9akuALUTh/qxjiMJm0DVo520ZN99LERKwyVE7rYdCP7zVdgT+t88EBZgwFjnBOME3XqO3QxQ2iQoTiNyzFY1xmPS3VdLxN0CduM6tgRMXShoxK9MI2no6t4qvC8c1su61Un7nbeHPOhN4vK15ux/4vnyTZ7s/oK3f5KH9ZX61vsNX7qxp3Zpl5Xm0rXj7/bo08nos32Mpv8gDC3eaAZday7/f/R67qz9CTM0/cP+Y3wtf5QvmV/ha1SjgTpGm03pg5y1/ejHntB64N+uwEjlve57uHD6qzn5rA/NG76Mzwr2257JzPNs5ahvYDpY3lxsqE3k412M82lYpBakb8GmlHTPn1nNe9YhENt6mNLbgrG4NtVFH6Kzacjk0/H8/fI3NYHhz0bF0PZdDxcx6fvP8EbUZqMxAHxxWAn2w1MbTBd1od97SRQX+XYrKdUn+b4hCX2kEdOsNqzQuoJvmZkJ5sCY3I4lYm9QekgKHw6hcagLkEieLlTil8cQBH9ekuC4iBuwiFdP6Ue0nBnUgjENMi5EG7y8QMQS/Ingt2nXVOTBn698nxIHG3qMSjcbnbs0h9lSLXybLjwb6kmlo7V2MsRhRmVeDoUppVUdNjTocJv21iQ6PNrKx0eFEcwEuAVzV7dZNMctSVomK8N+UX+UP5C3ecb9Nt/rjT/TcfsS7zPgiLhgezofUWGlUjsmNtabgekqTKLdf9iO9BViYEaBM1+3DJlYjfXMEAtn5yJapIeV3JH3hCO4P7fA1Q6SLho03NCbgScDVxBs+m8D3BGBl4JVBfwb8PgpPdgr0rUQ+Wtd8s9txwbu8yWu86iq2Ae7UoxpPZUYd/Wn9zFQdprHjmpfB/lT60qWxzw7BFLhn0D91GhQsQZ0kJvM6rTUPWWFHgUv+jmUCNXktz+cTogLDUgdgIjbqvRnK+eiZRLhWE6L8esGk+VSKf0lyw4xxZh/H+ZWj5FVaD3M02VU+ZQWkINbcLyIXKFdWFYr2xlkkyaPqnD6tBzZD0vdn/N4QGTMuab43NtDUo2JddhSf7nTv2vR5HdK/Tx1brTWY8OsnoD/XReQx1Xug4zf9farWNKXh5TkyzTBkm0b4fcy1JHqlWmCeVH9MnkUjBSkDV6Wjpc+FsQZi55Utnmm0Oy/YNKY5m2GEVBgcoajSBGaWUvic5UPz+TWlXmNcT/okGdokBy6QCtOz0k7qC/Rk0CDiTGo8qqT3DfMGfxi/wwdcsNrNuJQrFix4YGqGCHcrfTbXg2PuFIznvher3tE64QdXbdr7DB+tGxrr+XBdc9ro/nvVOXpveLRpCiUqO4y1DaVx4avzjj94dFK4+DM38GRbc3++462THXPr2QXD3PrSK+NxV/Huuub9dbNXmF4ZvedPdm3p4FuKsxkzQjkD5f24bhztdtqtBv4wbpT5KayMKhj0QSMAuwn/H7QuYIio7jSqCb50+kDnlt6V6OKqElmhbIx5AYmAt+Min6Mv1kSepS55d5qhgOZF5fm6Ex50v8A/qC8Z4pp3h38M/DneDA2nqR333Hn+4p3Aqxd/hd/2/4QQe/4r///jB7xJe3XK67zGHWP4S/W/SDj/FwH4ZvweH27/Ed+S9/ief8DSvs4vmy/TpoYrldHFsPOa6jcSOUlZjd2gRWuPN1VpaiSi5/6NszXfT007rnrLzhveWmx42G4ZgmFmWy4Hy8NWPf2l81hRR+ms2vJw9gQjkat+xmpo2XhHbXQxeza0fPtqwbcvZmwHwxANlY0sT3p+7uQpD9qnzOsNPgH17dDQuh19qOiDo3U7Nn3Lo90JT3tNN3akTq1GOxNWkrm9OjEySBmCIUp2DhO9SyK181QmsBm0i2lJ91q468/o2KZwkr4eCUiK6JvUzExBfdK7D4bIgES0A7JCaMS2iDRYO8NKg6seMoRLopkRCVTmFGtafNhq5iD0dDxhMGtm5sE470UbywCISZQda0vB1EC/x9M3GEwULKJsfolU0SjIFylp11DuSiyAPxfHRxK4CmMRbW0Dv2LOcfwF3l42dNvvv5D605z8HA/jm7xaCa8stiyqAWHs8QAj/SL/DPs0Hf39OkjPr3+cTaO6h/SfXIi7Xww8UkymTbYy4I2T8zw0kw5cl2jtGOG3MoKHvfcz0oACsve3ILEAzCyRaIh8sG64Ggxv2Tm/59/nKWu+2jQpWp3XLuWiG0anw6QoemAsUg4xRaRtLN+xS43I2qTTnZ2TUM5Fz0frl9JsT1HT1kZmlUbEH21V8vgkdes1ZnSszmoFLxedZesNC+dL/VCOpMsEmreJCmMllkh/HrPssM1dmGT44t7YTyO/MWYqyigsACMlxkeh25s3Y6ZZRQJk0hdmPyuUqVC1CaPqTQGZOkFOa895iryqTOqYDTFGs1gmOd5zFxIYHyleViLn9cAuSaxOnaiLzqlGO7noecyECLHsU4eOaJ5b4/1IzpemBQrIL30oZPw337dCVZnQ6aYZizzXRSLWZJWeac3AhMpkx2Zdzox9FmKkaNNnwCky/n09WPqoXXIzGwAoqn99MFwFuHPgnGXAmsekj8KVhzMXC1UUKBz8LhhI2KMWpYrObGTu5wxRj/9n/ZcRNNO5C3cwKEZRWXFVJOtTYEqfBeGkGmicyrf2qdA5A+/aBla94+lWEtUv1cuFXFtj8OkZWfcaiT+pe37/o2VR6YHIVVdpYG/RsfPCo22jalHpub7qbcIyqtC3HSxfPN3yvUsF+31Qxat1UurJjpTev+ywS6nXyON2m01idhZfPrvVwD9H+WL2yM24UTqJOIGKMeqTNf5PnGfjraaGozoCMxtpSBuzpChdeoiW9VAiX1merXaxLHDPthXfuWq4X2uU6k6tD4bqgxsFw03PvPL8yuVv8g6PWLLkr7+2wcmgC3U0/OCqZd07HrQ9/6P511PkTVVv3lu1dF44rXve31Z8Nz7iIXf5eXmLk/YO74VvsuneZtf9gP+8+g7n7mv8uvtCkvrqtYo/9SfognCWdNDvNJ4uCDMb6IJw2dnE5YMvnWxLRCg3yMnyd/ebnk26P2+0G7bB0gXLEGDrHeuh5aTasKzWNLZnO9SsfYOVwLvbGWtveW3RcT8VVf7a2fvcbZ9RuV43o3pHCIYYhcXsimGoqGOHjxYjAWcGnBm426y47Gf8YLPkSV+xTk1/hCwnSFrA9iN/zgylYUmmOeTCRyHSWG0wZmPkJBjO4z2Nj4ulM1WJumtHzYChUrqDKAgP0mvr92ggmiKnKliMaRDRhmGQgHtqglYnhYjOgIgFq9QiH3dsw+NE22mYyz1q2hLRN5N4dkhdD6avNbjU60JtQFPxOaqfn5ucQh+7siZgOvl9iLpB5+iflcgvNwve7P4y7y3WzGONEUOIge/Ln/Jk9/sMm7epFl/l3P0crzvH3bbDSaCegI282edakcOI8rTZ0iHon0oHwn7hYQbquQ4l27QRVb72PYnflH2Y1hMcgjkmv+v4jrbf1XcEfhnwl/PI70efzV1S5ThUC9J6FOVDX/W2UFMCGhmf28B7PXydL/OFec+80uBDLsKdRuqz8la+tpjOtzahAE2AAY2sVjGvdyO9A8Z7k5+jaZ2PM5T1sgtjxiYG7SraJZrhg1SMKOme32nUCdcobg5IaHGxcsnzGAtVGqPGBPrJc14CNDHRo5DSYdSJ1olkMJu10nNUOcVFCkXTR2GTJAnzOMQ4NocUwJpAZccoddbsz5mKPAenfQKmzcxytFppYP5a1DzTXvSeh+JIRDSjmZtXaZddzdp0CQTXs75ca+6PkusOtoN2tjei1MhpsXnOBqnDlVWCxoBXLjrOxcDT4vtp0aiBouRTm7GLMoyKPZWJRQveJ0qIzh3N5ub+EFm3vzLjs15b1abP1B6Z3PdMU+mDQKIDLZJQxM7nmo1SsaXc9/ScbtP+psp/0MXI/WrsbJxrkpzV/hQuRrY9NFZo7HhtC5sZAzBnpN3NxRdHZgwIxJLlyA0sL7sq/V2bfG23VVmj+6DBn5z1yHNFx9rs1SWJKG1tCCZdZ5acDUnO19N54d2rGU+2NadNr/WJaM2iTbTnkgHYOda93aNpLSpfriM/o3kuTWs2plmnW21Hqs/tM0kRx5gW6LFpCEianAQhd5abpYdg5lQCSyfseKxsY7HU6J1mSkuOiuQU9EebiqveEVB+adYZz3UBy7pTRZogDDGytPBWuMfXTzdaQJuacnz76YKnO8ei8lx1ji+drQFd3HRzvKALyrv/RoRvrFuENR+sW+r+lNflNzGz31QFI4FvxXdLJCXTWjJF6c3lhmVSxtl4w4Nm4MNdxXurmpPKs3Cery0uy+YA0JiBK9+UtPJ5tcMsImeu4269xonnamjw0XBWbTStFwxd0qJe1mukj9ybPeWN5fsIWmRUuY6s1W+SVF/e5KraE4PBe4vJFZsetkOLQce9tTs673jYrrhXG97bLXhn07AaTCpUSx+LuvlsBkdWHalSAVTWH3+ytSV6prSfDG4j3VADd3BUdDJnJ6rA5OkIsUfEkrvnGioCPYNU+LBWOo7UxLDFuCUmdUcWLDO5AwKenoqWU87ZsmGQJb1s6dHIfyWLwsk3UtGywFEV+bhcoBvSShXwdFxywh16NJK4w3AutXarnAAk0Ad9WgB3CDwyOIlR9vjB+XmpTOTVWeBVqrQha4T3df9l/pQv8Kj5kDlL7nLCvVad4DZJxkUUEB0yPqe8+um5ToEUTGg9YZ+LfP197HHDYT8CP1UDmQLzIhUpH79TTSkxkMGnOkh9TFKMjO/JgCwX/GlxOjRWMy6bTrn7XYrknibObR+Ey9R997RWWcmrvsEQeLX1RR3prBkKX9/JfrHjONfHugNJUeQswbjz6mw0ZihgaZdojrPKX6MkDVHVuXZeCyN3XrvIZnBxUmmNUZM4xHeaoXy3ArckP5nG6GoQQJilotCiaR81c9XHsTkZ5W9j5iZTSUrOLe5Tt7QAef8YRZlHItFA9ON4ZWCfn4HGKlj3aa2URN0Rs+9EjkpTUihH0yds6uAdzjKfItqtibQJbGYePmjmw0hkg03PqF5jH2zaw6TQLMaGd7F8djtpnKbHnJxZok5WST3Lh7EOIsp+TUR2eKyJ1DJSkfL8z8A9xFH2dDnp5ZDvyFQ21JmATeNnjTa1mtKOclDPpmi/0nBCiTZnZ94H7dXiJPL+zrKNA+/I2+V7vsZbfNQpeH6GZ0nN3Sop29lMgRub1OVapMOi88oG6uRgWonFObQp+l67VE+TnsnOG06dZ91bGqeZF5uLs9PzmiXAc1Osyo2KT/t0uJSdSCqC+r0pQZjHtx+Dd7Mk8LEbdPw7b1j1jsHr37eD5Z3UEVivMfLuVZu+Cx5vTKIVB8SOmZ7puYwZwdGhzHnSzwXw/zyc42dgtxv4o5Jp6jFPUodpsKxEvAg1OlFzR8qINgKxUQiZulFSiKPSRX7tqne01oML7Hrd0E7rgfVguUwSnfdrfZCy9rg+ELqxdN4olcZE3jzZMKu8ytalDfx7FzP6IHzpbJ3aoudFcrRdMBqpSov66wst6Hkw60phWi6GG4Lw5c05Me7SQm3ooqCwKPLOVUuIW1obuOgdPvZ8Yb5TPvxg+fbFDCuRb5w8w0lg7nZoT4Edj7sFT/uGE9fz9cUjWteV1OrcbXEJvIckb2djYAiWxu14cOd96sUa31V025aua/cAv6uTE2ACvq+4ujpj3c355sVrvDl7ykm1oXE7rHh6X2FNwEdDbRXYXsaWs6rDSuBZX3E5WJUzQyMRzijXtkj0iUZOe7+vM304x6yJnFgBryo3O5mxoWUrawX+ot2YY4rmWGoCHmdaBjPHhy1edmBPqO2ZOgppm3dkHv6Cs3hKI7b0pnjKlUrFiaofDfQlwp/NTFR5VIZ2hsHwdvxj1v4devdFltxjzSU1LX0cuB/nLN3+Ip35sJkGMuXA70fWx42sIpboWnbkMudXNzphHoXzBjbDqwxBaJynsb48H7APzq8/4+lfyUV7N79vLztw8J4cVc3Rv9qEPYlHIBVm5p/HPxxuYHJwP/S1CfgVjb5lIDl1RPJ55PPUCKhGsIeQeMZ2EmwQqKvIogpsvOGqU6k8ZyLL2vPl0y0fbV3i7isl8Q0XOW16TqqB86andbEAoGn2In9/lwIj1cThVkoRSIBOhN7rewRSTZOuMdNOrDGyR7fJah8zN5TorTMq4fj6YreXAcmfF4nUMrlvUcGWIRaaTc725POfdvWO7HP69bi5NmKM6vaTuQKjdGUIifIzmQf5vLIk5y4V0dapvinLQ0pMPPfsUKKqQyXDwjSTpe/IZzrNAEWUmtKkOi0nkUVaq7L2fZei+1mFpTKBpQucpEh2/s6segaU9S2EfS5+vtZl7TGizt3TbVWyGzmaG1AnMM/lzNHP63zJsJmxu2yO6uYshzbJGyP1U/lYJ0H582G/cVQGrpKAb15X1t7wbBAGAgbhfqXPZb5vIuPnh0FKnd9V8HgijVi+xlt0BFZ0PJvIcZ5Rs3T7ClK1HUF8VmuaPveZSpfr/ho3OjQ5cn/edkq3S46B1ngEem9Y1APr3pWmdk1y3Pug1CF1JLRbtQ/C/XnHqrNI6h6dxzP3AfJB2KSxn9uQJIkTa8EG7s86Khv4/sWsiH2IRIyfZJfSc2YnTUena2vuXzF9LReSF4WqybNaskXJsbn1LJqcCnoJ7VMB/iLy7wD/EvBBjPGXbvi7AP8b4K8Da+B/HGP8xx9/XC1Wwo/Ft3mxzjYtWoMEfWPiyOXISRgn+aGusJXI4IUOk9KkOnl3KY133nacNQOPN1Xa6EJZGKqU5h6C8HhTp1TmGOnpE0A4a/tCK+gnEny5qC6f/6jWsG95IzROpQlDhHm14aqz/P5Hp5wkuk9j9dx2g+H7F3PupHNfD6ZwcZeVcvY/3FU86+9xVg18YbZmbju+sz7lw13NN05W3Kk2nNYrjAlY8VQ2FfT2M0IwLNtLqkplJ631VPMNbt7hd47dZs7F+oxuqKhdz3J2QVV1bNcLjShXHSFY/v773+BicJxVPR9sl3y0O+Hrp+/QVDuMCdRux65vOXMXmhq9eI2td1QSte250c3wsndsvaG2YxoyRxmNJIrPcx7wnNYNMTCPhjo6uuhooqOXBT0DNm3bOzo6tgr6qRmko2dLZ9bFMWjklB0XCBYnLTUty3iCRajFUqdBXsdAQw0s6dgy0JP19rNlyVmDYUFFLQra1jEoFSl0XHR/zFBtWcg9Orbp/ALzeEIlMdWvXL/mEHWzy/drSocpShsyKoHoPEzVAVHpQLYcP3KS9OKn0oH6mRv4+3vnMm1udN0UbI3gehqtL3KUMka88/NyE+g/zHIUUMv1aP80WpWjmCFKiUBXh9ckyonP/OZ83VkhR98TIerfCj0lLWaNCTStBi2sqHzt+xvl5c6cL3VNi2pgUXnOmoF50s1/tNOCv9wocOa0DurZznFaa4YviBY/VyZgonb5zc5LLlzMm3VM0cbWTSOzClCzjCboNWyLROV437LWfgb9+XumkfipekwOehxGkPM9Kw2ZopSi8+IUxNEpLGMqIy0lX1Pu1Ju/VRgLzQkk2eJA5ZXL3NjM8x4/oFnmyRzRlGvJDuR7lxVwsiPoTCwqaAB1HYvKlZVYsiorb8luZgQVT5hmFWSMcmenrvNJ2cdGGqJKlhaAPWbr8v4iAc7bnstOs8RDNKmGQc9tM1g8WqCZ99by/OfjEEsHY8g0lFTcmXIdnTe4GAp3HWP2AOTO2xv343e3llXsWUkSQsAxjzUXg2OZIvI5qDZGySMNgbd9x0fyLm/EL7Ci44FrVF1oqLliy33mqdtvVnmCs6Sml4MVkOsBU+MwE3GM/RpmzhenaZYa44WoPPw7rfYXXvXaUOuwd8HU1n2aQ3HMzmkdgc6bj9ZNyRzkWpScyZbBsAqWqxA4t4ZlasoJWiz8C3fXPN1ZvvV0wbq3iSo1SvhqHUgo13eTrOtNNl3Xs4PigyA2z88XB3mOdnvs04r4/7vA3wL+/ef8/b8NfD39/18H/vfp34+1xnoaO4ICjeGMP2fwnFPXpAU/OwnE6xHOQ5sWzWQvNnv2zkSuOqtevk2tslPTjcpoGnUIwrq3rFJLayOeXYqun9RD4TlPAVB+kKc85Juq4M0BaFPOb+bKDvzGq09Lp75lrXJcoRr1lTfpXLfJCfniTMH6O5uGLgjvrGve29bcb3oaE3i0dfyXmzuc1ksetPf4S/feZlZtqehxrmfp1AGo6h3GDYS+wrU7TOWJ3iAmMj9/St1u6HcNrupxTYfvHdLXfPvxF1k41fp/c3bBl8+/r2MZDZKApfcOZwas9cig8mrdULNwW550M96aP+VqaNj4iid9g5PI2mvB4MYbghcGERqrvNpMncg0ravOcZkaiYFutZWB7HL1wTCPSu8aYl02/yG2dJywokukmwZYspU1m9TkxWBo5JQhbqkSR38m2gvCTABSjSFExy5F+5XWYwhYalpaZjSx4sxUE0k/Bf2rRD+K0RNjx9a/T+0WLLlbOvCuPZy5PNf259bYOEh7G9hMX0h1ASHRaKYRu2vzMoPw9Pf8LGbgYyVztkfKyehQjOfyvOMfgrQMXLIDrXUaShk5BO2REWzuZT1k3EDtBETpZ8a6hmy5dmS/wdR1ABsYKREW7aEBet2Zi03cr0PRND4J6MPYNEzPqc3UiwSC69Svo0o83NYq6Ws1JNBsQ3HGclfie21PH5QfbkWlA/soPOlciRTn+xkYqVQ50p+vLUblim/LfWSPWhKCRm1Lw6qoNJ18/0eKwBilzXPCR/hwU2FN5LVZV74vU3dyNJ00d4Qs5ZzX/bExVj63cUzHCZRlRLOUaHbMei9Ulb6z9zLSpiaZ4Wn/BZfWKCMQzH732kzrnGZfGhOSlKRmwMpzxjRYpT/ftZ61T0EMo2vazhsukyzi3AbsRL62NpmPHooTBIbKenove8Wr2fnJ57uoPI2N9CFw1Tu63pXnJAfcxsZf4zzPdQuBsTDYSWCIphSnwkiTycfMhdUDkmoYRifZp0j2RW94xnayJjruMqc28E5UhZxMXdp2hjt1pqepU9wzcJ/XuJItDTXvD5E+eixCJU6V/aLReiZUulhrE9TRzg7SstEC1+nczcXGC+OpwiiU4YOw7g2N9TzdVny0adh5VZ9rU+f4PCdySDDX0ZDuYw62DNFyUqnzHgJ03hXnKHfFzp8PUZiL8MpsV9bQ+7OOXzxf4aPwp5dNoReVGgDGug3gmmP3IjvEJlb0Jg5e9uZJnitZ0vXW22cY8ReRFvh7QINi7f8oxvhvichd4P8CfAn4LvDfjzE+SZ/5N4H/CVqS9D+PMf5/Potz+1SAf4zx74nIl17wln8V+PdjjBH4ByJyR0ReizG++/HHTgtFiTqOG0pe9IfEU8wyXfl9OdqT+We6KeTwYtyr6J4WHsYIW29L8SiQohz6s5HIeTuwSTxzEXgw35XiuiEIlY34qCnz3DMmJ3+z1vPzJAxfZHmTAN3YZi7wxdMtViKbVAAkotr7XRB+cNXwZFsTInztVLvzPesrrIyycY87x3cu28Qn1gKgH1w1PN45vjg752un7xERhqGiaTYYEwje0u3GznwOcMstEoTuYkb0lma+RnIUZdew2c15ZfaEOyeP8d4xDBWDr+iHKl17xNmBEA0WzzBUhGDw0dKHii44XmkvAVj5mofNBSeu41nf8GHXFjrFFkNIqhm1iWWjr60WuImopnKOWuVCQaCMeaZHmAmf00fBBYOJDV309BLoGagnHQpz4a2VqkTvDUJrxvEDaAUIDh9nBPEl6p9B/x1mnDqd40P6vyOwi55eBkQM1p4Q4g4jLbt4QSNzZsxoUKdlE4Q+2hJZzFHVaZMjKQANsi73GP2XxAfd3yimVICbil6nlpu95PHNx53KF+p3jk7GFPRPiyczSM0R/gz6pw4CBz9Po/8hjlHeafOu9K17/5qkbJJ7DvgERp3RAt3c06NLWcJFigReDbY06ckUlCEV1/dRCg0gO2NDAi5WZI++IKTxShdTJWEByNlIvQ9nteeit/T9OE61mQYUYilmrEQd3y5I6oGR61zG6Hgu+t1NeOGj3nwsEot2Ek0PCLXs6+5Pi8lzBiSPe5YtzUWPryelERl9g/S9lLqFKfBQBRstJM21FWUUozAgJUACY+TdCrhJn4AYdZ3O86Wu1Dk4qbyu4WZUenOTOZhN6TXZoQ0FzGeA/zzAn+8pkDJIhnpSvLrx2oxPO6maUg8BFJ57iKNgw2qwTIvlTRRaF9N3x3Kf8zzeelV7W6XjKN3jenfeDNhFdIyzAER+TPL+lZV5SgGyGRubrXaOxvrEd9cxDjHLMmeqrWXl9Vl81bRAyzbAQOAjrriIj1nHR3TDW3wj3qML8N34iNcH7YTeEaiBCseKFY6KSy75AR/QsybEHiK05i5NHJsYOl/TMuOhzJnZiIuRp70WuTrRBlvZec9ZMWcibVSHoQ9Km9LbIfzxRc1/Fb+XgjiBe/4Br9uas3ooWdY8xtn6IKVnQGMi22HEHDnDkoNWH+4sCztmOXtR6u/Pna9ZVkORJ+2C4fGmLmpEOTsmJu6t4dnyWhGRPYdkqnB2k1mJYPcFF0AztMJ+48Vba5/tKe6AvxJjvBKRCvgvROTvAP8a8J/GGP/XIvJvAP8G8K+LyJ8B/gbwi8DrwH8iIt+IMfrnfcGPaj8pjv8bwPcnv7+dXrsG/EXkbwJ/E+Ckvbv/N/bTwJlbN5Wfy8DNM0aBpsWKOaLk02YEoyc+VTuAUeM4vyem99RWI+mqmKDKJbsEKp7t6qS0ofSeHLXLXrGQulqaCHEqa6gA5tDB0b+NT99YiLh/33LRk2YvhLkNnLjAV842fPPxAh+F3/lwyazyvDrr+HBTs+ptKRCsEljog/BLd6641w5857Ll956dcVZtecBTatdhB1Ug8N5hjMeYwC45AGICdt5jbGBz1dIAu13Lertg52uG4KhtT9e1DMHRDZoOVQ5jwMnAbmjoveP9zR3u1GsW1YbaddSuY1GvcK7n7/7gl3ijveKNs3fZ7OYsdqcJ2Da8t22Y2YHLwaaoFzQlej3KHp63He+v9LxL4xOhSKPlgsHK5OK5lCYV7epYi2MbAw2OTYr0B0IB/i7VAYAWY2elBFK0XSCpqzhsXLKTGZ5QovynLiggS5kCFyEEw4BShObcYbBbhqDdhiOBgV4zETEQJHW3LE8O6byUc55pPHl+5Sh5vkek663t9ULbDPpLxIgD53V/ah5Qf/bfV5R82Af8pHPMsoY5mpuB4E2R/nz8mzj66kDsv1aKDSeR/+z8hBhpTJysDdPvGPnYuUnNqjfUNnKv6UvXa5cip+d1rypjgyr1xDAWgKoCjerBG5OaBqX8w6i1n+hFZoycX3TK9RUUINR2X4o0omtWpqvUKfLcB8vCed5f1TyYd2ySA5ALe3Nx51TC0EQp3OTc8XuIqrhjjM6pQpthDMBkGk5ZVyFFi3WeVZKBkBY7Z/W2IKLLYxoTjyqw5EaNpON4xvX5kMaVQUfW6s/SnmaSORBJtJEcvY0UTntj0/ikugVDVsCZZmf2KWFV+U4Fya0ZgXemYkxBn09rn5XA5VCVbM0QhYteaz2y87H1hmf92Pl1BGh6Xj7qmj/NTkz3xexgdl7XhS5lqkHpIQAXu+oGyltesyJ9VPprVsfRcdD354z5NBiXNeZVwWY85nubmvfDlg0blvGEM2NxAo9ixyZuucMJ7/Aub/E6FY57vIKXng/8N3mnv+J+9Uucc4+3+aAES87iKStZseIpADOWANSypEk9Ujyd1mwR+DJfZi6GhY1YE5QOB4UWOUTDus/rZCAkBatN0rFXYO2xJvLuquX3/PfoUHrSOm7Td7dc+nvMJ7Uymmkdo+EGmKXnqS8OlPYRsJP5shpG0J97Gp1Vnn/hjUdlju2C5Vnv+P1HJ6VXQKYvaU+buLd+a/BiOt77Y59nag6yTt8/pTGVNV1Get+U8nZrLfKZRvxToPsq/Vql/yMaCP/L6fV/D/i7wL+eXv8PYow74Dsi8i3gN4G//2mf208K+N80A270tWKMvwX8FsArp1+MbgLazWSCqVSjgueAaIxTpBQwAtciNLnregTEaprK2VhOxSeVihwR0rS63+NZZrmxq055oFNNeGcir59s99KDnTdjgxbGNF3IUTagmqSMJY7qELAf4Z9aeRAnjomm+vW4a294fdZxYgc2p1ajik2PCDztHCfVwGkzcF5rV9731zVGIutBeHfb8vMnF4AuON+8usv99hlWUjTbDpp+7BoiQtusMVWP2IjfOoZtg3M9w+C43JxixdPYjsZqCrf32m2w9w6RSOt2dL5mOzQMwXFSr3hj8YgQDTtfUzuV+fTesuoWvNFe8dbpe8RomLcrfFSlBCenfGF2xYe7OZtguRos68GSJf9qgYXTpWkInjdPN2nO6cJ42VXUPoMgBQmB/aipjUIrKgHXiqGLkSYqGx8gSCzKO56gHP0E/PXl8VGoTOTcoJSfoFH62iSahyhNqRT8eYMVYR4d2wBVfAACa/s0XYMq/3TsmFNj2Je2hJEXrc+GyuGmwHaxfHaHcy6DiP3X5GDjoPBIs+2D7cnPB+87nOEZ9Dsz1iCUzIWJ5TP5mMI+6J+Cs6llwD/dtKbdRYtEYfnsfpRuBHKxUGIE2ERD5/V6H9Q7NsGy8ZYuCBd9RZbyzIGLYRCckdLZs1BcROcdKTKes4R53cpgWiPKY1FtHotpUCBTrXLkfOsNF73j0dYxRMOTbVUyLVn5w0hkUStnWAsefRn7rH0/jsPYNEvHdMxkalR+X2loajEKPSkaTy7aHVX8878AEkdHK5uVDH73I6jCCNizkxGiYOPoOGYaUf7bEAWJFJDvJ865niuYSfQ/zwNBHR+de4kCxPj3TNNwTCRW2ccao1OkGduYvk8LfFPEF3UEdl4KbTE3I8vSu3Uu3oTiFO+CRqWNaPH0EFRKFkZHaTtYzdgkwYpc5zalg2R6E2hG9NDJKh15o5QAx3Qu5N4UViL/YLXiXf8PObGvM8QtK5kT4hs84RGP/Lfoh0fM6y8ykzu8x2OWLPkB3+ay/y7EwK/Xf53HrPhu+F2sNPw582ssbOTRABsaJVzGSzbxEVZazuQeS07xBK54xhnnGAw1hi7Ck37gC7Ut5wzwZFdx0TkeLna4pF4GmgVb95Z3r1pmLnCx+/+z92e/lm1Zeh/2m81qdnPa6G7cNjNv9klmVZFFihRpdRQhWbbgB8Mw9GC4EWDAkP4HPwmwX/xkA4bgBxsQJEswbFiQbNgQQKojKVaVKpnF6rOyuXnvjbjRnBPnnN2sZjZ+GHPOtfaOyKqiWSVFgbkSN+Ocs7u115rNN8b4vm9YfnV4RiDQsmLJiRgxpH1yxaowCOYgeE7vKetnGt+7RA+oZuWvqcIjTbc0cN6M/HPvXdEmfHQ11IxB8xsv12wHyzurPbvUs6boO9ThGn68ds/ZFMcB4HH2vi+V8Wn+x4TD8vpqXlvV/8k7lFIG+DXgq8D/Icb4XymlHmW2S4zxiVLqYXr6e8Dfm708J8j/xI//poD/p8AHs9/fBz7/o1922FEyLzjHw8nORIeFdzgrN+bnl46PUUR1xk7RqTgSHEWw6bHWeq72DWftUDLjIWVQDn2P5X3djC5SGpEEmdi9N6mMHEoFQAJP4QQSUpZvtmHPwczPOrJXQhbXATzrKkIDXzvZElH8cLNg52TDf7AY+HOnGz7ZL3in7Usp+9NNw9YZnvYLvrLa8ryXLrAvujM+qPdUlTjzaB2o230pmRMVYTQCWLyh65a4YKnMyOhTOTQtdP04Zf/HYNmPLXfjkj5UPFpc07kGqz1Ge7QK9GOD1uLt3+ier5x/yugrRl8RRjm/he35YPUCHw1r27NxDTdjy9VYMwbZOHOWcp0yXGMIhWMqDh7SCC1E0WxsRnvQoVATS3at1io1jVOAEc4xiTuawH6XDMPtDCzk8ZKzh1l43uhcnZJ7lwVZdXpO5nT7oLgbLTpY1jzmJtzHKaH/NNQ0WGzi6c85lseORhmIZPFYhjkm/RYV+MAB/UITD9B73jgyeMwbzLFVZj7mPv1/WC5oTu+ZC+H1G96r3IGjTH/OlM+PkO5XFtDm4GAOKjMXNwOmMj/jJIbNWgYXJTPXJyHlzhnuRkOjTaFTZRC8TQFopsaECN7LVc3C5ExZmV+z4xmfqUN1BuZlQ5465matQk40GBV50VfsnOamtyKIVKG89340pZFWm7zm8/1sjTTMixGMmd1nJlrLdG4ylqczkjDLHQGJPJ+yY88c6B8Hc/nIPPbpvY+cnpgCj0xBUgpaFSfNyux+wuSEk+8JwCLPs3S/ax1ZFAeecNCoqviyq9cbtYHQeGKyaNTAiGSSrUqc/DLn5D66CL2f1qO5RWxrAk0SUebzGdO6SzmPHDRkFzy5/7vULGpIoFLcYXRJTvk4UbsOkhwlwAsliz/fj5WSKkF+Tmkolc4rj8MqLQjXg+Vz/w/wYc9OPSdGjzKae6rmkXrM3/E/RKmKd9TXOGXJOmXkH4Vv8TvVOT07fjv+BhrDmf4AS8Xvxc84dRecs+A+azTv45TjRj1nH17Sqy3v8oBTo6jUolQpF3bkuq/AV/goNKR1HaQTs5Ixe9tXCMVX8f7pnu1ok9+9BGa/NeyT7bKVJopRUSmDLdl8SSTsvUlz6nCNmtZPGd8kdx+rhIYboiSHjJl6DuXK01995xWX1cjWW366a/hs2yT9SuDRumM7GM6akY2y5J43uaI612a96TgW6eZ5k+ddjIdYZJ4kyU3j7Gy+v9XHP95p3ldK/ers9387Ja6ntxeazi8qpc6B/4dS6jXzm9nxprvyp3Ih/5sC/v8h8G8qpf6viKj35o/D7wf51lPZcBqAc/7nlIE4bH2eB+mxTiDGSRgGMMQs7I1USuy8ah1YVCKSam3go7NdKTdnp44MnqYyLpDOdWo0MxNJheyfK4tljohzwDGgpaSOTHCrcvv5DIBet6OcH8dgx0XJ8GhvsSrw3bNbbl3NZ3XDzmnOqp73gcuq49VY8bDp+Wi5KxoAgG+dXPHZ/pTfurvEqMA917Csd1RVn/z3A7Ye0NajdGDcLXCu4sXukq1ruWxuacxA72uMEutPFyTTvxtbrPag4KTasYiWu2FJawduu5Vk8bVUCwgQlaK2A1p73LigtR1oqNTIotkxjA29mwKBte05sS19sIytZuctW2fYeVOs8YZUNs3Cv1j5ZFUm46hLm6bcJ0rWrnCGo6JOVafJbUb+raMuHaXHxOPMgUO5Z2lc6LQx5EzQwGzzZvLIHhMHeU1yUBkrdsFSq1Y6Vs+WjhCRjsfl99zz4nAMxYS2FFN2NoPkuYNOzhjlTKZK569mj2cwdHzM521+/s96vAh402dkTmse4/m/DBIPNlNy9+3XQf88E56/n5utA/P7koFl/i9TjpSKKRs7NZU6rYRG86oX0ezTrmFlxdJ3bUVwv7KenTdsRnGYyucyhDn1ZBLvy3WYwGS+rkK9EqOBAibIWoOpIgECWjuved6J7e1uNOW65DVrLnKv09pj0vVujPy3ME5sMkMOiGRtqvVk2ze/dqVnQLrW80ZPOQDNQfKc2pjB85zOCYeAuljTqknDNR/TkekaGCXi2uwE5KIubjr5fmfrzBzULRI1IlNWJMifHHgy4MmuTmp23mKrrEvwKP7/FECX1/z8uS7qQrEa0n0vHvpM9IpM/8jX1aWMaoQyBkwaO0NQZf5k56gYZf1RSgB+n3jkokULuOwJPxd7pgATDSqBfheyMF6AaH5+a6UhWe4mK45Acv12TgSrVgfRwph32cSfsNaPeNH9Oh+aX+J57HgSf0RrLnnf/AIv+ZznceRdPuZU13RO8RX1mCFKR/ItA020PKrMzOVJ7tl9I/RNH07Y+o/FuceK7Wyb6GuZrhSjonaandfsveFqNCxykOIDEcPSeAKKH98saY1Yej/ZNWxC5Bxp0JjtH4ISXYIr9DMPUSq6rZYAaG7mkcdZvs+SDEr7y6xiqRXFaEEc1DyNCeyD4Ueblk/vWvbO8O6649FyoPOaZ9uG7WiT7WgODvP6Gw/W6GNMccyUKGNiNj4zhejYtcgc/vr2H+Ef64RfxBh/+Y/zxBjjK6XU3wb+ZeCLrHFVSj0GnqWn/f+ZIP9HP/6k7Dz/PYSzdF8p9Snwv0b4TMQY/4/A/wux8vwBYuf5P//jvrdRUWq9TBzgeZY9UwsyyM9HJPP4p9fPrTQPG5pk8ZUM6GXli+9tU4eSOcvva1KZf16qmzs05IYxJgHH7GRitJxnm2z3csMO0rmOci1RWiZnFtpFJf+nZgvBz8r+z4GbUYqrviqdDK+HioftwJeWe25cxdN+yfO+plKRDxdCezmv9hgVedRsEP9wxzdOv+Dz3QW/cv0I/eohf+niC1Z2z8XqmqbpJMsXFK5byPnpwGm9YV3vsNpRmRGdMkKDq5OWQMD/1rVU2nFS7XDe0tqB7dhyWm8xKnAzrPnJ7pKvrb+gtgObfk1bdSyqPYOrWbZbcq+AKipGV2GUx0fDyu7xUROdYqFGudcWzqoxbeqanTfFDztnFMcgZe8MbDO3ee8MEIrwSag/kx4gRHWQ2QmR1DyH0pxILBWnxjNlHKf7mVvTA6VypIjFQi5nHLOndW0Ct4NlTGOlTVShnJUegy5gKm+QxR0CoZblZjgmjdHM3xcgHwu/HmYZ+BngP26Y9KZjXhV4/bH0b6JOzD8nV9jyazPIzI3GjrP8+ZiD+VwNmHuHz1025o/lIDCDybw+5KRDSFWjGBW7ZEn4TtOhVOSdVn7/tZcnnNSaP3e6KVnQMUrHaasnz/r8nfvk4jIXWUpmf8peR0XSBkz889y8yegp2z8GzTY5lAw+Fg3C7VCVrqWS0NAly3tSjwWQ5CZOplgnJuAQJfFQznOWFbRaej64GQhQccq6zwF+rab+J/me5aqsArKp+6EAPfnt6+mc8tjIAD2fUx80O2c4r13qHB3ym4jqJs7EkykwyEcOniJT/4OF8UVb4ePkwJSpIT7oWYVommdGxSICz4LcCCVplIPHrN/IAawi8/GlMVqudC2zCDnNyayjKDqImMZuFLEsCEjbjkZoIimJlTP2LgjnezdaYqT40pdALlF+ejclzTLQn4O9VfJ6Dyk55bzBpP0rRqGnQE5cpOu8+xG7k0tC95TTtuX7/j/jY/NXOKNlbWDtvsJSWerktHa/9sWZbzMa7qmGRgeUCqmiINkRzbTetibwaCHatVXlqExgOevom6/bSS103cxZv+otRsE7tVQFYlTU6TtsR8PNUHFeO+7pyDZ1e55bRedqb4jQodgy8oIdS1+zDBIANDORbb6eY2YBzAG5lmQTatJSGCXfZ+dMqdwMXvOlsx33GoeLile9JUapMsboaSt/sI5nh7M8NsucnSVl8rzNAfp8zsxpS1lXmAOC/Mibd4G38PhTPFGl1ANgTKB/AfyLwP8WSYT/T4H/Tfr3/5le8h8C/65S6n+HiHu/Bvz9P41z+5Ny9fnX/ojHI/Bv/KO+7+QGcvj3uUd73jSye08EMiMhMgmAp5NRJQsCk1tBW2VefigASaHI9MYxiKDnvJVNMsYJnMzBx7zk6yOleyzk7JR4nufnjX56cc4yqgBRTxua4tDJp2RjjwKAQxAEPqZeA2mxH6Piyb7hg+WenZON/yurLf/w5oR7zch3Tq6JKB41m/I+p/WWEDVfOX3K48Urfv3VY/7TF49ZmsC3uzMumy33llcY49A64FxFN7SMoaKtOpqqK8A8BANWMtqt6hh9hR4j60rAe20HRl9xOyyF05/A+3cvrtE64L1hVW/pXMtdv6bSDjpEdJyafI2hYjsuOG/v2AxLLpo7jArsfS2+/0YMlPfBIh1zA2srThpdEkD5qFhaTWsmEaUL4qAwdwPK/O8xUIBP4fMji3Y7a18/X0Ctmqg4+fl5Ec6OMZAzj7pUhaq0ASoVUjYwcF67UhWQjLEqVJS8cDfGF3/qN2X8lYo0KSDNIDsHpXPqxIE4V02OKfk9i1aljMnZ85n4o/P+Ffnf+ftNYH06CrWD+WfF1+ZBvobyvuHg99LpM05gLM9hI5izZNp9OMw85+9zO5qSiX1v0Zdgv1aBMWrutyN7p9kH0f/UWsZZk2gkVkW2qbcGasqAz8X+RgnQzd8/+4rLdZycqtpUdRi9bPSD1yzTRi/8b2liF6M05GkTmFxXYrg5el3OaZ6NzCA29zOR5mjSp6SYCIRpvrjZGM+6JK1er1hkoD+v2MzHi1Iiapw64EImD80DTZvGf6Y6GRW5HS2NDjxYDqUqlSkqhVaTnGlKdUtNY8tHK25uKcvfaM/cCS6PX1DSKzsKgC9C8TS2hsStn1uTFnrT0RjNdCJVrg8sVcClzsf5M/M1zb+PUdYcmwLFndMpWaTKPcn3c5saR1UmEuMkNnZBLKt3o+HFrmbnTakarqxUPlsbij3sSe1K916YKtXFKSxrXmZrQZ6be2d45QPXu19huf4uAP/y/f8VY1Cc8AEaTRcdayzvNxqNL6LzUqlLg6nSkb03LIyM885rtmkfrRWcpJ4MUqWQ16zVyE1fHVT+ciJBaJ6ezhneWU5NuPL394mqt7A+Vdd0EfkujadSmjufK8Fy/YyONFHRhprroNipgRoRbpsoDUaLpXK6jjYF8ZP+L2K0Kv9mI5MX+4Z/+tErXo0V29R5N/cO6L1Q9t492bMZhOOfmzbOjRvyWjKnLs8pXGVd5vAwM9aBjGtKwiIfUzdf3uojRoh/iuJe4DHwf0k8fw38BzHG/0gp9XeB/0Ap9a8DnwD/Izmf+JtKqf8A+C3AAf/Gn4ajD7z1nXspdmtwCJzy/SqAOOYs3rQgwZTZm4v6NJFF5eld8h5OlIycTbQ6oKNE2Tm58XzXSCnXe9rUCvuYx5YznzqdfABqdSgmm3+PvFC4meNPjFLKNYkvZ/UU7cv3VKWCkQOAOUiaq+6nknw84K3uvOX9Rcets+y85VVvuagdV+OChXZY5WnMyNJ27F1LiIp7y2usdnzn9Dmnuwu+9+qEH9495qune97Z3Oe9xQ0X7W3J7p+1rw4pTzoILYhRLDq9JWrFSb2ZhIkq0iYHoRA1g6+orFQMqkqEwcYI2F9Ue0LU7IYlP7x9zLvLK26HFb+zucdl1XOSHIFcMFTa4aOmVpZaO2rtaaNj4+pyjlaJRLxOVZkxSLZqYU0C+9B5z84Z9uNE/wHYjVYCtpirA8nD20bq+HoTl5xRz9/bBY0PlFJ5iJkWIYCvVKWQ9zZawGTOGkWiZFiVKkJyH0Vo1dpQLOKUClRxqgLMefEuaO4GqUDVWhrvqAQc524xLlEG5h1ii63j7Hu+RuVRM+pdAWGH2oBM3csZs2wbmefVG0Wi6d8cBOTn7L1JFI2JLpHny/wcMwjNnxmZudEcAASZd3uvWZjAu4uuzOkhGIb0mq2zRBT3Wsk4Cx4ULvvcv32ezJhnxvNaka/vPKOdX5KtTAFW1tEHzRWS5Xu0HMo93TnJCLY2cNmOhCjWhJXOFVLFjhy4Teejiayryas8d0POZ7D3k2yv2EFm0ADluXm9mWf0s93n4ZyYkhr5XitCuW/kazd7iYLZewqHfm09mxk1L++2jfGFe25UZIhzf3tZ7zfOHlC4pu+QrrmKpWvpGKesvQi2dbk3U0A7nfM80B2juK+NIfP4D0F9rjw3eroyOUgCSpW4ipoxKvZjrgzIWlGbiArgvQQ8CxsYg+flruG0GWmtpzUB6fEi8/mklsZQSyd0sE8Hxff9Z+zjK953X+exblnaQO81DaF4/M+DYq2iNDjzhj45RWVd0uA1Lx38+vD/RqmKRp/xy+Zb7D38Pfe3+bb+6yyV5bwOWOWLs06XqiOSdQ9snCm2mo2ZqLunteN+qkrkbrnZfva0cSjke45BtFuZ8lYVWpdK4nYSGJdr/mjVcdY4vv/8FJsCHx8VZ2bgtpeGnhftQGMCn28WPN3VxUXL6CgaQGClKgKRPEryZRuDYu9FK7ZMCDvTtHLwnXnzU6Mv6anxya6VngbOUJnAs21LW/lU1YObXih89azT8eEuNI2tcv/UIcZ603FAEQKO3zTGP5yO/E/SEWP8PvBLb/j7S+Bv/IzX/FvAv/WnfGpvN/CHN2/28HokmurE8k96MG9uw2yRUikzsRlscdypMlcVJpsz65PbjrxuVbnCyTw+r5whnAPdMZU2WxMOgH4+p0wFgjw5p01/LvopX+941jJ9xwz65yCMFHC4KF7sSyPmkhp42VdsjeFB09MHw8PFyPO+IkTF/aZnYUbuxpYYFSf1Dq0C+2HBdlywdS0/3C5ZpdLwb16v+AdhzV96UPM1X/He6jmVHenHlqbqDoR8zldoFcji4EqN0/VKYl2rHVZL9aCtOmrbTzShQfj7LliaqkPjedGd8fvbUy7rLb+7ueS3b5YollzWe95bPxNaUOgYXM1Fc4cPmp1rMTFgK88QjNCBmMrSLmi2WCKRE+tZJLeLnTec1FIyH1IlaRK9ydiJ6UbpDORUpFa5pfkh3xkVU/t1qTzNM2VzYJTHT+7Cm7PbWcRttT/whwexMFUKrrqKLtEGah3YelMoSfkIKJzPAFNRNRMo8jm41BO4y02Q8hkec7zngD5raY4z5xlsH4P+/P1zlnn+/Dn4zQBpslecPl/40eoANM6pPXneWCVWfplGlYFkKXkTCwjZJd9uF1XhgWf7vXyW+X0aHXjY9PioS8XBqsDaSlOm6fvJ6+baCMthoJK/izwxFhCDhpMkUm904P1lX5w2ylpHpF5KIJh1EnWiGvVBkh1LG4q42KjJHSbf/9zHAKbAqNLZcUiOeka5ms47Bbhq6k48D7BqnaW/k93ntI5NnvhwuK7mw8eZODade5Ndx1Sk1ql6lT6jMkLRmwL0tO4giZBcvTBKTfQgpu89RIVTkvnee1NAfaMDW2clU56C7l2iUDVaOqnPK3o2jbFd1FzYMXH9p/mYq1DyPab7mDn/WfRpdcRECCkrfrxLKihZ/UzHyU51ud9MYwJGy1jcDCL63ntDC7zP+/w+r8RtJ3iWwwndsGPJCe9wyrsLx6p2hRZkTUw9P2QXy+uQJMs03/d/Bz9e8Z3V/5gPbcWdh0/jNb9s/jlObKQ1vowhWRMF7Gcuee80Z7VPSYnDJKhUJ2O5LgA2ee8rEiUyVdBzA7wxKFaVLwG2uLpJAmdhPcvK03vNk23LGDQnzUhjPAsr5/Tl047eC63OqMj7J3vO24Gr1LG3rTzPdzV3XioZc4Ccq0IKirXy0vhSOZkHuVl3qHMiRMurXuwrHi1HFpVniVQ4nm0brDnM3v8sy+X8t/lxrM/KwfU/ynH8+rf++NPN+L+1x1sP/Au4OPrbPIvypuxifl6IkdpkDuL0nGUScQqNQxdnh2Jv5w0KX8p+tQnYmN18dFkwlHpdfBZShiLGQ1rFsQ0aULjk8+8DlIVv/n1g4olnoJ8za3MgNy/TeWTBuxmlsVB+r85rvuhaHjY9j9qeV2PF887SGs+n3Qmd17zX7vBRY7XnpJIM+pPujEftwO/dLtg5w0cnHZ9uGv7gruV7L9/nm+eX/OWLp5w1G6x2Eni5msqO+GDQ6boIqDSE1MilSh2B8yZf2778nBeTuu7R2rNe3tJ1S672F4xB87DpeTUu+e7ZFzztPuR2MPze5pxHyyuhASWHIIBubKmjwwddqDZDmMDCxtWc2L5kAb2WzqejUoU2Fe0Eznde07mBzmVerT7KVk/fQVw35OcMEjunXwv45kf+u1AtJgB1LKrM9ph69vchdXVdpnK1dBuAfYDKynmNEfpcalbZ8UMcrpaVO8gGK5WpFVOGdqLaTXMxZzmnzWbKdOVxa1TygE/fbT7PtZLeGHlMH79/droqXtRk8DNNlGWiLWXKirjcTM/LoGoIujxvTOAvhskfPou/sxVnCNBUMi+rNF7rlNlvdaALutxbkxooDYlqIo4ukagDLhpU0ihl0WQG51PwLvc+JT6pVCz6kqUNLIwvm7NRnoXx5fsNqTKjkexuFqj6qAgYEdXPxlcG/XltEH3PZFqQufH5/tWpCmCPqDNSGZHz9agS5OQjRIXOOhUOwf38XKbxP4F3ORdVzsWWAEHOY+MrLqo+jYs5AEkBa9Tl3GL6LILUWSqtC9Uve+fL+WbxsADSrlQ7FCZ9H6Wk5wOQ9hK5n7nfQRbTSiVH7sODZixjM2frcyCbXery3N55QzPjf5d+Cenz5x15Za5A5vHnSm+V7DpDVGxGOZ/eaTonFc270bKuZAwtEyr4gO8wBsWLUfFb8Xtsut/hrP0uX9Dx2/sT/qr7KvcXAzb1YLAmYhKVSKdExmY0/Kr/PS7NV/j26V+jC7L+hAhf0Relu+38XhkFWkuGPTsMndZj0cjkOZUDu86JXXVjvFBwgqKxkqzJCQ+pxpmkXYB15TlvXGnw6CPca4UGOgbNZtSsrCR5CkVPR84aR5t69yjgZjCsG0/WBD3fNZzUjsZ4GlPhxkCtDDatvdnswaafJQimJBjmx3xOWDVpf1TK6H+47llaz+ebBZUJrGo3ORMeJU0O3/fNCdVMb57Tiqf7MqO8veG1bzr+UYOG/8aPCIXS8U/Y8VYD/2Ovb5jzxyYuY7Y/K6+bPX/6+7EPdJTOtQZcnOxAM7cvL6hazd97JqZLfOq5IGaegZLPnkqJB5NIiYf6tLlMoGYu2HrT8dokPiqBT8+bnh+IKKWmhj9pcx2j4pN9y8Nm4LIeiRF+sm05qTxfX29pjRNbTRXYuZZ1veNLq+ecDSdoFfls36CBR8uRm0H4xd97sabz7/ILZ9d8dPKM1grHP3fn3YcFRvkC6n0UYZUbhCJR6ZG27srjMWq8B+8tVTUwjjXGeKpq4KF9xuWi4oc372NU4GJxw7/y+Ef83ZcfsHWWzbDEKH9AN8rC4P24SOI8wxhsOhfN0vS4aMBBnXjQe19JV1ZvZ1lY2VAXyXP/002TLNOyo8Z0UzJveV66ZcaxzXx8AeIiHs1VqHkmNXPBrRYwJ1WCabwcc+ezViAEOYcxCfa6GFkkQDZ6Eafl4GNIoaVVOvH+A5bUvTYogj4EZpl/nN1VcmWgeO1HimUjJC65nsBj5mwbNbmjlCZdRwAsHxnsHwpwp8z7GCaOer7eGfRO3HK5PhUTnSYDkNaEBPYFXGTBb9Z67LxhCEaoHwn45Wrgy6EulaMMbOUck8g7CUWzADt3oc0UmHzd8pqSR1G+FrnqkbnqMOdSU65Do8WGMq88cwB+Vjmyy03Ozs8zznPwWwToKtNRYrK4dOV+HID72dioOTzmCZJKJcHo7K9z3v/rFs6xVKryeRROMjBEw6kdSqY/H2PQqaJ3+NkmAelBGVQwuBgOgsN8zC1fXdRFyzCJnCUbCxIkZn1AXgPmNK4mJXKMioXGkukbLuRmkFPvjvz40vgyfvO9zkG3gP55EAzKQPCSOOoHy3a0dKMRCgzStXnvDG0CxbUJPLADYxADCBfhQSNjeOc1v8dvs9n9Q4iOId7R6DM27lP+Vrji8fhtvlmtuWzHA/rhbrT8xha+vRz5l9SXiFHRec9FskyuTSiapDGoIlg/aVxxwTNpHayNXBPtZR3ovT5IhjVW3nPwmpuhkrGrpUvEGKbmdJkOrBSsa89ZchuaC7bvnGEzihtRrWOxK11WnpNaAP555VLlTj5/7yR7X+nIw2Vf1rTOafaMLLC0Kjn/xGku6BS1S8LlMNufwXVO9OW9gzQOXnVVmTkLm9gIYbIqns+p42MOF97EJDjuz5KfMmmAXk9mRqYK7/Fz3urj5xn/t/eYu/gQDwfVHzXI83H8SHYGKY9HSjOc3HgrP8/7qUPmBOqn9uuFx5o/RM/4uirzuadgZe5jnifMz5qMmV99nBHOgFBA6LE/8Ovf3yiKG4QYBUy2bxtnuayHIlpyQfGf7i54vFzx3qLn1A6c2L6AjaXp+XBxy9os2HvLrbPcDgu+fbnl2b7iBzcLPt/V/M2o+crJF+TGX2L1ZohKYZQnoEv2f17yHxL3XisBLlrDbljSRENlRkIQqtA41gyu5oP1F3y+fcDvv3qfi3rL33j0ezzfX/CT3SUfp8xmpR0qRJqqxyhPbQe6sUURqbQTUAEsbKT3NVb5VE3R1NrTeemEOLfiy1aAWkXcSvFyH3m5r2Xhjofj8tg9SoSJTt4jqFTFCbSo4vu9rJy4tIwScNRmciGZA/4QVREp5ewbgI0C53M1yyoBtB81Egy96C2bZB21x1FFjU4blIvCh7U6Ys1E+6njRJnJgD+Pr0xrmDdPUpIqKsF5tqFcpC6jMAH9zKk+tu5U8Ma6cabR5C63IR7a2ebrnt/XqFxFEICZAVacvV7ukcISaayT8Y4IwF3KGkrGUTEgtJ0+SCZ/TBzxIWjaGY+90cIxr1PVZmnkvTqviVGztrE4emRueYhwat1B1Stn1McEQnNvAZe7zeoMHDV6lgjJFQgQlxqXOOn5aiWPoBIwLRPtImejBazENI+E637saJaz2RPQjWU+Hwek+b4dH1nULfdlyuzP1+7JiSkyBJO89QOnphd+uJKguPNVuS75UMSDpkLiNx4wSkvVJlFEcwU1MuOZzxJHOfAYwtRwLIPwXAVSMDVvhKLdqbRkqyMk3YHMnanvDAegfz5G87Fzuvj7j0GEvT6q0lU5i7ld0PzBzZIfh1sCnvfVBbWCs9rzzqor4tl8zU+02FXuRsuzznIbHM/UE1zs0PYMY9aM/obR37CwjzlT73DOGoAvdg1ntYzX28HSB8XHtceHSGUlo57Bfh7H2QnGKjESOKklmFzWjmxhqYG7weCiLk5qc/OBrDXITc82TrM0gdBXnDVjcmIjBRehVC0XSTydfecjiquh4mYwLGzgg3UvHHynpft2M1In3UKmtl0PUiVZpS7rn2ULTeN5dzXw4emO51cLXAwMqOLvLw5w030eAignYmU7G7L5OslckwBlbkzyZNvIeqkjMeSA4TCQPhbt5rlzjCnyfP5ZoH9+/GFarj8zgD8ff8ZO90/q+DMB/DNwziXMf9RjPlCLBZ0Sh4OQFlABUjLopZyYsvVMYmFZrKcsf0zA2Sb6wxzMz7NWkEq4+o8OL/N75M0TpgmaN5m5cGwMU3ZfnjsFJNPfYN5YR8q/8mnV7O+/dH7Nj+s1WycWl59uGn5026KAx6uBX7pouF9vac1ArR0Pmw19qNhsz/j4ZM8f3C1YVZ4/d7nlyb7md+5OedTesrA9WgViSN08tSs0nyFUuGAKOPBRJ26xbOI+apZWWqB3Y0s3tkUnAJTqwUkldqSf789ozMhFc8f3bx9wv15xVm8Zg6XWI93Y0vua1gglQKlI72p6X3FS71BEFraj0tM5rYLlblyw87XQuFQCSinL60yiiMSJtuGjKvSfEA+76Kpy/yJr4+i9OAfNOe5ynzLdS7i0dRLlSZZ9Ep9m0N9Y2bgHL0GJjMtAiKIuiSga7bm/6Nk5aU72bhKEdd7wchAf62V6j3zuGThPAt7DOajS2BZO8+QhrjNgNVCn8dqawGU9Fh51roZlcJOByNxlZj5/yxiOENEFSM5BXs6cZUArQC65daXnHFOD5joBxSTKbXLFy8v1qms579KIKQXQnc8uH4F32i6NXVPEbgvj0hrj6YJBR3FhaVNWXjLqgVYHlsl5Kn/fkID+GDV9EPepTI/SSiwyQ5Rumgo1CwQkeM0uMxn050Oy/vk7k+ZT5pPH8hxmj83HqDr6m2giJkpKSXQQSyAyD4LzfNcpaJJ79+asoWRUQ7mvVnl81LTGHVIkU1Y+B+2TMDrikrwy04XGaMoaW+tQuP9KxxJY5Qx8XtMz6LNKhN75WmglnZRzhUjeMxb/+jwuh1R1yxQhYvbvl1A5B7E5A21VICp18Lqs5ei95lVvuellG8/UxRjh821b5tg5a37ED3gnXvC107149wfNF9uGPgilJc+FJlUXVibSaEvt3+FTBbf7/5Ll2V/jXL3HVfgxF+o9HnLBK3bsR8uIo9pbTmjQKM6sVAtzFW2+jw5BaFV5nLTpfG77ilXtRJRc+RJ8WR3pBlVsh6sE2nsvCZhMpdqOhrPKs6rEgGNhhaqbxbyZglUnu+5G+1L12jhx4FrYwEXSLjzZtTQ28Gg1sBt1aiJHqvhpTisvvX20mCv4ILSuXJn9c5dbBq/5zZsWR8QRsShqFENOMpAaQQaIGE70vD46AXMXpMcPMWmitARYWceR97L5cQz6MyaZi3izuFzuTZ6vh2YC8yN/Qn6vN3X5zXPiD0vE/vz4b/f4MwH8/zDqyx/nyEBszm2b02/yJMiWekZNk0hHNdVymbsIJe92DoXGc45zPg4Cj/zvEVifd1ktgF8fgv43TaQ5P7p83uw7Te8JIVcaYhIaJyBkVaYlBL51ck2IiqtxwUnledFXhABnteN7r075a/cGOm85r3fEqLho7lBEfrI/5bT2+Cgdg79ztuHXr074zdtH/ML55+KsE0Qv0LlGMna+oktg2kfNEAx9sKIrSJk7owLXw+o1MJA5xZJxlVzKyg78cLsC4N3FDffqnpXtcEnA281cfDZjS6U9CysVAKs1Pm2oVnsq49AExlCxqDoaM7AdF7ho2PuavbclOBy1YYgCxk4byVqJZWNI/R6SBd9MS2JUpLViIZfFdzn73+gpM9aYSbA4p47l61CZqUFcnZoV7Z3BD0nAGXRpXFOlbLLQCjz3F1Npfr9pWZnISeXJntxGp9K608lmThHxZe7kxT/TcqyeN2+al+vznIET61ibKZMdVBZqaiKHVBYNBzaMpcKGbFLZpUf+N2VlpYqTu9dOABmOff1DCQAOhb+HM6oPkuVHTxnY/F6ZPpXF+Q+aHqHR6cLRBXGCyc2b8vhtM61HiUuP1YFWu+m9owCMPpgCtLWKrIwEuz6q5LCTm2tJBjkwCdXzYVRk62S5z5SSHBTl8TplsqXRVYgcBAv58fxzuV5RIXoGWcVsqvDly5gz12MwjEzBTL7WPllfAtQICA0oDEK1syrQB0udqnB57q/tkM49MLeUFWpXSHRK+dx8Mvm75BGcK79jVCUgqAhljEuWlfLd8rh3KSg4EKRGAe2NEsHv9WB5kLq9K2JqFifvm7vu5ipsFxRVlESMUK0my9IpuSN9CprEe2+0wwUR8E++/GI7ea8ZebIXOohFseKc34zf5+nNB1xyxlcWgcfrjh/fLrm3GErgfTdYvthX/Fr4NTQVH/NtRtVRLb9Mo055GX7IY/1tPtSnLE3gXbXg1hkqNTUTy/qaTC3ySUfnw+RS1gWolYDeO2dYGXiwGGiNCG7ztQ1REhpaSTBsE822c0Jdak3Wbkkzr3UlouNVJU2u7gZb1l6txAN/aQNr69PYzhSqiU51Nxr2TqhXz3YNL3YN95c9rwZbXIVOK6nWViqWng+QAzh5r5vR8vH5np/cLeiCoiOwZSRES41+jWUSotCDFjZrBqbHdKJROS/6hYt2SEYkAvrnnP4yLzncK8rvRJI/AMeuWyHKgI9qViFgwiCKeTIiVx9SQJeshPNfjt3s3rojwj9mA68/s8dbDfz/cQH//Mhlr+x+MokOJ/tDg2Rsc4t6OAToMcJIcjQ5ippVyk5kF5O5WKdE2swnU5xEyEqoIccUnUns9ubvNC8JK6bA5U3tsud84Ry0AMUz+0nXsPGWEztyagce1Fsuqo6Nq7lxNU/2DSfW86PdKefVwBDEGvPOLfi9zRmPmo5tbbhzhqd9zZkdWFYhdStdcNncYrUAFuctva9w0bB1NT5qblw9cxGR+7HxVWr4E0v2fwiaLuiSscmUkloH/Njw9fUdRkWuhxUXVceL/gSQRWjjamrtOav6wuXvfUWIwgM2KtDanr/z4stcVj1fP30qrw2GSo+ct7e4YGldQ+3axP03VMrzsN7TaM+rseZuFObyae0LMDxuHDdZvI6FH++CBHu7MbVu11lwOZItJjunS9ZmTGLE3PRq7wzPR4vzqjS3a4wv7hhaCdVmWXm61Mchi9DfWXdsB8tmtOX6jwFCNIUGt0zVgUO/55lYt2wwU7bHKqEnhaiwJrC2bgqsE/iXknac9b+YKiQZ5OW5oPPfUHg10cN8Es6ipkxU3s7mTc8ydWUOYP1surxOFZr0BAvtCw0r8//zvczXLGdZM4e9NFtKAVcXTLmXrRFRaqUiCzOWCoJ872muGhKtIQUpOQCMUXGa6GfeqAI+XdQsjS+C5PmhUqZ6nN9HJjeZTEPx6T3mFQIfFXW6d4edP6csf6UPA45JXK2pdQ5w7QGtJ4dnAQkA5XN8yaRrFVmagUoHhjClWXLVzGRKoMr3NImRdRLf6pgqAboA+EwdyQLkuThW/kbh0k/Us+n+WA6DUWvEHSiPq9Z4Ply52fhM76+EqpMpUZmGJdx1xahk/1jagFU56J20D1kXkilEqyrwrcstQ1D87tWazmt+uIcX6oon469xWn3MN/g6J5zSqy3frU/5dIDf3gf++gIuGjFVCJm2CNxvHH9p+Iv8MLzkN93fYmXf55v132RFhdUfp8Zak7bkQTvSOzFBaBLgn7vxZGpLnz5j5+EFO6poueOOr+p7NCbQWp8EvEkjo0SgbFQEQ9HVZc5+sbhMOoEYhR2wtIGFDaW5VTbtkGpB0g2kObTQPumKAndO+PxnlTjf9UGhlj21DrRW1jGrI0sjAWh2Y7J6ogorlXU78MWuYl15vnW54ddfCCVqxEkyUU0df61KPH+mDP98/SvGDYhWz6pQesmYo7lY1o0y/6akS3YuzEdgWr/ntM1cWSIe1B4O3ntu3xyZmk3GVH7ODoJv+/EniTH/LB1vNfCHI5EkP5vq88cpK2WwH5mXotJGq1LmVB1OvuLpTXlqChIEZPwshXsGSHmyze0Fj0G/nP/02sNNdaL1vOlQs9fo2fu9/r2njSOqrElI/uLpPEXcVHHnKj5cRNa256wKPGzu+IsXWwA+2T7gezfnvL/oeFAHjPJ86+Sazlv+wvkdv3L9iK+d7qm1559/8Iz/8uUDfrw7Y2mFWpOz7zvf8GJYFApFBhxiOTi5WgQ9t7eLBdhk+8lahbJ5a6T5zpmVJiybFFQMQfPpvsWoyKO2p9Y5KxETXWAoWcoQNb9wJoC/9zWKSGMGApphrDA60JiBxgz0vmYIljFYxkRXOrMDrtVsvS1AbQhZDzBbVJnoMVnkKsGJYagFdIFsli/6iuwtfdmKMDNb3uVGMpLhiuxdlOZvQQCi1VJZWFWShTqrpYTuKlU4ykYJLzhnyffZCz2Q3GgUNkWZEkgcNgiaxtkE+rM7TaPFVk86U05c8AyIUSJ8DmngFgHuLBM91+IoFamAoCImZ2mZUUqYfNaz+FcdnGOcbWF5Y5t/jyl4sQn4awVtClrzudU6TL0Q0msqNWkvAoqYnYCYgm2hJcm1PrEjKzMw2TVmbnsS2CqPMUJjkmZQE0DNHXW7kJoCqUlgPATF3lfledndJYtOjQolSBhCtiQUbv/SJs1HMjjInWvz/Juvs3NHnQysQpyoKpma46Ol0Y7WjGmeTEkLhVAYckZ2DAatJ7pPpT1jMAKy4+R4szBDWvMy2JoCAhdNmd+RLO6VDPkQbKGG5cAwf6chaR9yF946Ww/PRodKYD/f+zxmY1QsjZvpfg6mBlnEmy0nbRr/bjYWc8JJKfBjbgYo60MJHKJkzfcpOZAtXa1SvLPqaExF5xf8nvsxRi941X2f323hXb7ER3zEST3yNav53a3mbqhYWM+Lndgk346WjYd1upRfN/d4h38RRyREob85IkulOE98/nwNGhtYqilrDpT1yUXF1Tg5G90wEAgssHxoLzmtxxLMVsm4wEfR2Vgdy1o3es15O9IlOk3W4jXGl712XbnUvEu6Fuc5kLsPnzeS8d97jVWG2o6stKNShquh5pWzDMkNaJEsQd/Ue+LVIM+bu63dDbZcj5PK83xf8btX6xTUTkB4r3pMbLFKUyfQn+2fJ//+Q9Cfx1mu2sKhCHgurJXXUl6Tfz+s0sk4m59XaeqlpiTMMcCf055jPNK9qFz9iAc46q0+fp7xf/uPN4H+uVD2j3NI2XZqwT6fENZMWfsMGHKQcOxVXppOkcQ1TJMkL0IwndvErXv9O8wn5PT8eVbyZ3+fY8D/Jo7/wfPT+Qqoy99FXj8GhU9g7fNuyf3a8OX1M676U+HF254XQwvAT3cLzuzA+6uX7F3D4+WGzjV8ebnhYXvH3SjPe3fRc+cq/j9PP+IvnF/RGscQTMq+BzSOUSt23hYhnQhnMzw7LKdnWkMWwg3k7KVkfIeg0NSc2GHy7VaRi3osjYhuXY0CFkYs4owSetGFuWNMVKMfbi953jd0XnNRj3xpecfCjEnfMFIZR2t7mjjggmEIFcuo2bqWEOHE9oUnPATDPlj6YArfOoOohfFcVh03ruHM9jxXC/becL/u6YLhx9slDxrhxL8abRGrLa1sSp9tm9IduA+Tj3bOwK9qz8pmv+opiM0AOGfBYXKOydno7HYTgX1Q9INNvFmmChcUAKm8bJJNOjexp0wVG6NYG8fCuBJ4jUEfZLizhaVQgF4H/HmuxJSZzOPXJPAXUxCQKVhSxRFBp0cVYeecVqfeML9kDZgqAfk65CAkb4oTRVAdvnh2TfJ5VCmzH4AzO5bgp/N2dg0kAKi1L0Fpob0ooYrkzP/LoUn0kdSxNU7vsbZy7+6cLQ4otRZ6gyLRVGwowTZWml/lbrWVitgmcDXU7L2hD5GzypUKW76+WYuQM/4xXfs85oW3PG+emDOcHhRTD420+UoG93B9HIOh0sLnl8cVjR4L6DcJMNbJZUirgEtOXaoEhCYF4Kacu1RXwCKA0HtDo32q5ByOh1xxHIJJa1YsAUg+2y5YQtEpZGvEeS+KKCMmWQfn7LfV0uhJ7ntO0Ey+/Z3XuJnQIld3Tyo/9ZMIiqu+4i71pnl31fOXt3+Z74Xf5lX3Ey54hz0dj80pv72pONeab64HsextPefJxnIzWF71FXtn+HxIQJRUfVMaR2StpP/DVW/LGjR4SQ40RtbXZeVKh/MxaL5wkT0de/YMdKw540tmLeMtJQVAY6ME9SULndYeaXQmwYdNoHKIit2oRR/lJXg8rcdCYysaglQ1aJPewAWh8tRas3GGy1pzr5Z986IeOa0cndci4lUS3GeqXRZnf9HVfL4Vz6qTWihF2fUsJnBuVBQNQmIQlGARTcceT0MXHVbZdM9/dlLTh1nXbkVp7jkFCFPCZKKoxQPQD9M+XxKZ6eNiTgyWxObss44SoUFP5hHzgGB+rlEJnn6TRenPj7fjeOuBfy4/6qOBfCic/aMjyzz4bdpAqzSAi7htDspnwB3AZqHbbIMPs8GfvYXhsHQ0d17JP2daRp4Tk0VWPs+jbP8s43TQL2D+3dTP+vn1bGdIkz43MlMZAEapYOSAqNJRgOfmQcqWjTw8fcaXuhs+2S340nLPLz78fQCqfkllR4zxfMN+xpPd/ZJJf6/dcutqPt/X/MPbc757do1VAjBAgPvzvin89LyhGnMoMMpb4j51pPRKuMiLVHYdA+yLW4kq121MAOx2tNxvRioVWOjAEA14uSZ7L+XT3tf87uY+P90t2DoRzoWo+NzUtCZwbntaU9Fox9L2LGwvlRwdqJHNc2F6hlAlIC5Z1ypY6iDNwrIoWO5vpNUOowJnVho+XVY9sYJbJ6DrK6sdXRDIeo5jaUICDQKcL5tR3GZG4aGvGs9NL5mnzhnWlXTq3IxSkdAp6Ng7yRjWOtAH6WZZ6ciqlqxl7zStjcUxxEXoYqDtK4yeXGjyQi/jS8GR3Wc+MujP93caj2mspwpaRBFUCrTRJcA4KGdnkB8ntxuXvPJzZS2DzDKXDubVdA45057PBw41OaWJUgksKJSeTD8DmZuVmnztjVK02mNVKFWqbF9ZJepTpo7kz5PqwORok18To2KTBIUL49l5y97rkrSY21WKu5AEdJf1iI/iRJTff2lcsdlcaM/CJJFxyooaMf+l0Y6zZcfVuODl0HAzWk6s4tQO6T5O2pMM+PP1zMGL9A+Y010kLTGnWVVH1bf8WL5GmeaT6UHFACDImjS/V40Z8DGBe+1wwaTqyvQZk65huvYGsXX2UbEy0uU72+qCBDh16v49CdBDqd7kjL9LOh/K952CnhzseyVuTgoJtnyEKlnn5teI280ExrL7Ta4YZIAtlR3pJP3BquejdQ/A3Wj42sWWX+ze5+8/+xa/Eb+Pjx2f+h33zTd4Fgwf1+t0zUJxvNmO9iCL+4xrAp67+JyAZ6XucRHvYYNhpSqqoAhR05iI83J9G+vZO0PvDZvRsA9wy5YNN5xywYIFZ7QFrI4BKg2NdbRGNB3b0XDWhJLVNwoGHWltCp/S3/fOlPvfGPHlb5L1pwpynaRiH0sFM1vyrirPygrt7c5VLLSfqKPRUqvAwggtcTvjAmYq5+1Qsa6c9GGJ8GTbigkJUZpp7Suu9k1ZT4TuFNBKc8IJlcrGDxR64vwoXdljqj6mgDPPm/l6mH+aJybnWOng8XhIB5rmb3wNuwCvJTl0flOmhOW8wd48MHj7D8XPffzf0uO4vAyHWf7jUn4G8HOHg2P6S6WmiLlJFoeG+Bool/ebf/a8VJbz0fHAq1npiZMfjiZA/lUCl2kjmmzvsjBt+ux59um1bsV/yPHaQqJmrj5HlYvIBPqtDkmERhL5ZSrJHpM2/AfNwD/18AfFT79pOrHpjJpdt2JpejpvGYLlrNrTBUutI69GAdJi5xnY+YpaBy7qkb2Xb9enkr1NAH1MLh1ThjywjaqIxDI40EfXyiUxpUsAamUz51nTaM9CyyZZ6cCLYcmn+wXPu4os2DypPOvUvVGryH/98gSj13z9dM/77bZ8jvBRp74EmZ+6901xHmn0iGLiNY/JDnTuOb7xFU+7Fh8Vl/XAyjjO7MAQp06vkpE05d7+eLugMhEVxI0iIv+64EsZfDcanmwaBq+L2HYMwu9vjIDQzWhZVp577cB1J1qLhc2AQPL6Lmr20fH98RV/tboAO3UqhQmwaCXBloriNjRiOK2mTH/m3hfKjTrk1RfRvZINO/u4zI+QSudKTbQwx6QHyOM/U3/mh1JROLbTDCgc1wziJ/3PdPgE+iOqUEBKBlsHFnqcXQtNo93R95rea+rNMFUmZL5ZiBO1Jx9GBSql0FoeyyDFRakePe1qRi9BQxY/aqYmcWKjGnh3MUw2w+m910lbkCtxMK1LN65NwYJn5w03oy3UHpvcX+YZfbHH9LRmINtq5vdzKehVUYKBPlQlQMjXIQdSYzoPnypSGbz7qKm0vH++bgudKD/lvieXn2AxJhC9zHmrPJV16V7oRAG05fxqPQjNzVepQhNLIFRrlypoAvZbM9Cn50kTJlV44lmPsg+GWoVkcapQWhWAlcesWKcGXMpk52Pvdcn4n1au8M/HoHjeV9x1htYYKh1Y29x/IHUGTln0pfW80w5863zL0+59fvdqzX+yecrn+7/NWftd/ovrU/76ReDzTVtsNM8auQa2r2iMYd3f479y/zkubOR6m45bPuO+/hjiKRfYtD7kDtAT91zOQ5Ic9+Oac5YslWYTA20yAcjao3w99k7sg/ukY7poxxkVVhIZRouQdRg0vROHq8t24LRxqTKgyvOjDkmLQWnAlRth9SmrP1XlZJy7ZMWr8nobDZWKbP0ElcaguNcOpfnmT+8WnDVj0lDJd3nQOp40A59vFnKvAa20JNjI1J7k6BShms1JH4XaVJlYkiO5cZc6Wgv/qGO+ks1feajTOsYKR4mWN7wODoXDufpq0wv+TGD/tEf9k3i81cA/D8q5FdWbsnP5OfMjg/83BQ3y+PR7pSa7UKVeB9zw+oSLCaTr9HPm8prZc2s9RcMT6E6fX97/MHCZfJ//WJfo4PvOBcfl77OKwvTZsbgXve4sIJNZWtjL3755+oR1s2GzO+WT/Tm/fPE5WgUWJ3fEoAgJtI+j2Bc2ZqDWLZ92J5zbnkp5vn16x5Ou5cZJFmTjLF90DfeakZepScrKTkC4NaFwtxdKAoAc5F3UY6HMdN5M3GiVfdqnbHC+jG0pKSdnjyAc/B/ulgxB8WqQTey0GvlouWPjLE+6ls4L7Wg3ajqn+aKruawmYGOCAAGpMEjVoDYj2sdUOYrlLrdqTMDXIo6RAoJCVJzZjsVyTALEWCgTrYq0tYCy67Gh1p5TO3AzNlglFoI7p8v5jEFxUgsNIEbYpc20Nq4AdWmgk4R2o6VKm+11VxUbzy4FS5XxgKXzUEVNq5ZFkAuT13Y+YiQ1y5k6Ww9BrCiF5jDxwd+0ifnZu+WsYDyaDAqKNV/OVJk0pmdn8tp7v2m850MyWZN4M4PQHEBU+ZxV9iDXBdStzJAAqwhYcza8uNuk75XfO1Oc6rSRZ0cVAcSWMQrXO3vUb1zN1ptiIfpsqLlzht7LmPzsbsFVX/HV8w1PtwsW1rOwjtYGHixGWhN4vOg5Sy44Y9RFLF3OL05iZR8VV0NLl9x9FsaxMo6nfcOdq1gZh4uGSEhgN9CYsfDtfQLWWnm0CozeolSk1QNaWUKqBmaQlmk7rmTrM8VncrEK0SQAnh18pMoW0NRqnLL3yQmntT0uGNr0/VrbE6NiSFW4EDXKxdRLQwKaPtRksXCdqjWZxiR/9zR6pLW93KukoxhDTaUCmqn6k2kiO29LQACS8R+RilGbri1Q6G9DMKyMzOcumHKfTuyIUZG19Wyc4WlXs3WGz7cNZ43j5b7ik9slq8rzzcs73l0OpRP0e4ue80ee90/O+I+f/A95yk/5A//34Pqv8L6p8VGxDmIdPHrNTS/c/wB8ZP4i1+YLGlaccU7PwOfht/gi9nzhPuLr/kNaTWo6KLSWpQ2F5rTQkYWWYF0TOdcRpaagMTvT1AlshyiapO0o0OS0cSyS7mRp/UFPChBO/73FQJ37lxxVvxWTDXKVknKBKIFyAvvy3o5T2zMEw9XQsjaj0DO94cUg48IFzZN9xWbIOhXFTW9ZVZOLEEilYQiKr1/suOlrtqOh1godNR3SMNSisbNzzftuNh7IwWzuKlzWqSNQ/kcdc/pP6QdSrIBff5+MfxRT1eGYNpSdC2OcROfVUXomxH9EAPPf1vFn5Tz/hI+3GvhDUsqTN+1M5JgB+NngzaUwGbyv8+kPloxZVh0m8Z2eHiK7eRwfEeEAH2Tj1fSaY2FX9mueP+/4mMpm8/OdApqiyo9HnGKywPDo8/Lf5++nJv6eLCrTe4eUscvfPwcKvTfsxpbTxQ23u0sArHZcPPhCAGDj8ZuKvm/Z90tWiw21HaiM4841/PbdKR8t9wxRs7aeq6HmohJaTC4zX9SjWE8mCkVrAoZZMx8mHrFHqF8L7TGp2dQQdBErZx/xPGaym3utAtbArbMsjCpOKl9d3bAwAxvXsEz9Caq0GX91VfPp/pxa+8LZ/2R/glKRja8xKrCyE+iv7cjgYDMuioNJBnu1FjHc6G2pUFjlC4UgZz37ULF1NWPilc4rWms7UiufaAIjp1VFHzQXdSpJO0NEs7JC7QGhc2XXEhdkExi8lpb2Xq7tmGg/L/dGegck2lVbZS6+SmDG8N22nVxlOLR6g9zhVFGnsWtSMHLnKpbG0WrJ5FvlyL75ubOuVhEds2Vmpo/o1zL+KqoDu7n5/HmThdykg4nEMNEqcva7dHYGcgOcic4xCXozzzuPydEbzuxQMv/VrIKT7+dUBaBUgOYgL1NHxuSeFFBUKhCU2NQOMXLrJEh9NVg+2zb87tWax+uOVeX45HZJpSO/9PBGKmJ2y7125CRVq4TzLN9hSLak1YzqlK/73BWnC2J7u/OGVQJGAen4u/eGvbcpUz99z7m4ttYOowNDsrzNIGaqqAhtYUhAP0aFQ6PTz3Pwn69lpuv4qMv7BhSV9gyhQiOOXNlnp7F9OR+XsrUxStUkN0VqzMBmXNDokSFYlmYoAUR2IrpLiYp3FzfpOih2rmVM1YIsuKwIJaDr0nnnNTk39eqDmYkhhWZ3We/JVsYgvRe0cilxQZm7+bO0irzb7jmrRm7Gio9WHc/7Gtc4/uaHLzivJ7vc7D6F1kTr+Wjd8d97DE+37/Fi/2WejvDUjdx4S6sqvnTSsa4d75/s+dHtklrBR3rJl9WXEh0SAjUP+cvcxZFP4u/xY57xoX/IeTUl2nqvqNKXX6dqQhaFbp1QCnPFuzVCD8rUrr0zjL5KvQaEwpj1dZlSG6IEKY0VfUJrArXJDmgy12JKNGSsMBecGgBDSpwElsZhCFKljgalIi/Htlz3bGnbR1hXAYVjMxoB9CawqnwRzoO8750z3PaWB8uOcbMgoLFRQdAMKOqCX8owTfNE9ozcdf0Yg8z7+fys4zUsETnohnycDBW66vSYniVc83ULREKyY81V27m74dwVSOZafC1IeyuPnwP/t++Yg+icMcjlUuAAFOff3+hqw+tRcn5a4dbPsn056j6elKYA7+Rg8jMyjHnRnWcXj90hpr/Pz3MC+q89d4pGRNzzpucwLQzzgCh/l0wZ8TOgky29MuiPvL4YtbZHqciy2vNLlz9m0ewYtkua0y3BaYI3PN88oNIjul8C8HR3yRAM57Vj6w1Pu4aV9dyrB07sANTcjhXiXDF16a20ANgMPiE1IopCC5iDZBs1CslYZ+qWdIV1xXu9SraAPlE0TKIo5PfaOsnaXdTbEji0tmeRGoK9Gpf8eLfmaXdGjIr3lj0/3S3Fd1sthRJkHPtgOLEjD+odAHexpdKBs3pLdmwOaCrjsNHTmJHW9AUMda7hzi2kDJ2qEQBLPRbu80LL97pzKSuMgLGNmxjsjZZmUreDuL1oNXEuI4oqcWAzsDAqloFUG3nWWTMUO77fvV4jjYfE0WNIQrkxiBXo1PBuqiwtTeC0cmkznMahaDMmW8o55SeDT6sktHPokgXL1yLz59MslSx6yoz75JtvmDJUxeZ1Nk+Pm+jpKELiPB/M7Ofs3JJFgkKlCSzS+JtTi7a+YmXG8rdMS8kdoJXOVcApwyz6kooxCif61lmhH+Zu02kutzrwpGv4jZdrnmxbvn6x4W88fskQNN+52LFzmpMEPt5pdjRagOPGN7wcGpbGiTtPCjxy4sAwZbMznBiDNLWqVORx23HnxFJ3n4StC+O5dZbLuqNJwS1QsvWtEUctsclN9qMIRa02LokdqzLul6ZP99ZjEvjzSRSfNRBDMIniNgV2WdyfdQKtGVA+ph4cIz4YBldTmZHKjGgd6McGg8czUZoW6fMz7afRI591Z+W+fvPsc1ww9L4muw6FNB8z5x+mtXXnLZVKGiJE25IDxhxQxDTe32nviiVwiOpgPEdUqkJLdSlXPJ/3NaqRz/6dmyWnlaMyka+f7vj6+hVbV7O2PRGhLXXBsnEWoxQuiObn/ZOO99Yd34kCrF/u4LN9xU0v/QA6J65ie29ojDQFfL8exUc+iEXm6DXvDt8GxLp0Xbmyd7nk2x/S+RsVqWygMoFlJY21lIr0XkD95FQzafpCVGxHy96BXfaMXsBwNhdYpgz70noqIxaelYqMUdy0jAJmwDRn4+W+J01ANRZDg0USql/1DVeDaLrWxpU9/GoQq+rrrprWDhVZWAH+c2OEndfsRqkU5wpqo2XNlIyaYogU8G/TvpWd13o/BdFTBfKQ15/H51zMW75fwikTxonU5hjPTLipSo3mfhbtx6b9NRqw8XV6sziQTYmX/A76aK39+fH2HG818NdKuIM+UhohFWA8y1ZX5s18tHl5Kz82d8uB4wx8jiAOuXFzioBN4pU597hUCo6CDh1ff+w4iw/TBJKfp3OdnVF6/tRWe/78+cfqN3zXuXBYKznvQpli0knEqI6un/zWpuxZ5xo244Kvrm5QKnL7/B6b7oTONTRm4Ddv3uWdZsPVuOTl0BQ6zqNGFtizyrG2jp/s1/xkI5m0L3aNbESLnquhTr7IAkRcFO/kGBUL4w4ycpC9uKFLXs+tnuzkvJo81c/1ULindfJXn66HcN47X1NpJxkZJxnETzYP+fVXF7zoLFZH3lsOfLjY0GjHZ92a379b8aKvCncUGl62DefVQDULLpamp7XiBiQbXk3nagZvsdrT+4p9+m/nK7HMnFENcmb45dhwNVT0qUvsRT2mjqxiTydZYVM6Bmd7uNoIoMr+0ie1S7x+qRTsnC0ZuTptzrkfRRcoJWnZkIWLu7SuAH7ZOKbmW6vkEJO70ubAuzraVAqNRocCEuV3j45TN1cwB4+TgBNRuppOXu4SuGXv7zymj4Pw+dzRKXM8t9vM1UXJNE7hda38GzmuisiZ7QqIzk49lfa4aGYUlKkjuIhC9UE210fF9WA5raRqclmN1Cpy4yp+dNeyGSz/nfeu+KfvvWBpBlw0PGqyUDx3AA48WFzjo+GHd4943Ox4PkhA2Wpd1g/po6DRqSHbdC88u7EqVYaIwhh5bAiij3mv3bFMAL/zlixEfm95jVG5QZ/cjyFYvBLe/sY1ZS3K1S6rPbWeOhV7TKJGCnB1iTYklZDpXDMNykehUPS+otYjo7dCyal6ajsk4GzphhaNBKqda1jaPS5YAvJaqz0WzxhEGL/QI592azbDkvP2Fh8NLjkMjQG2ri0BXNZzdN6ytkMJqjPdNN/jSgWi1ugo432TqgljlF4gGk9AMaSOwkrB1ll+sFnwZNPwZNsyBsVHpzv++qMbPj6RjuYfLbc8bISHf1lvi37BqMDKDNTKczU2bJRk2686w0ntGJ2A8nU98qXEtxfqmeW89TzdNnzaB3wP97olj9qRxnqMjqyqgbN2oHOG1vqSfMnf1c2yvXleuKCoLbTWo9QExofkyS/OQCIyHp04i501g4BRc1jBjnECtOe1o9G52ZmiQ97PluTCtJ8Oab08sY6Ns5xWh70ldt7yZF/znbMN2SZ24ww7r5OOJjnXMHVKr1K/FaulmnZRjzzpar7YZdcmx3a0BAQQGAN3Tioo57XDZF0DU6IhY5R8/sWPnz/c2OQYgxgdU6+eCesUTKIPscb8yPgn92AoAcEswZMtm+dUpJpYwH+Ikbf6iD/n+L+Vh1YC/FwCpC6q0uhKk2wpORyYpUIQk2MHE+1let9JRDvRYg4/+7iBVzUD7CZn3Utk/frU0cSUnT+yD5yB/PznOXjPOoa5A8/02lj+nQcm+fu9RjE6qlpMNnOHC0gOkGAeOKTH0t/3/ZLrfk2lPX2/YEz81sqM3A4rXDD8pQc/YHQVded42j3ki66i0ZGhFjeSrTPs/YKNMygFd4NkfO4GQ1woHjQDv/VqRW0CX1r3rI1jaaV9+pgAwMKMZBeRMdkBnqQMl3DmpSxrvRUhZMq4ea1LdmTeNdQqz8KMVDP+sIuWl92CT7sTNqOmNpFfPL/jspb+BLV2fLC445OdlHBHr7i/HCVoST7fKoHHkMDj3jVs4oKNaxiDZoiGhXaFt+1Txk8CGEeTzufVuGDjKm5cxd0o163WkdY4tIKrwYp7hpusBKvE1RWxmXBv8/qWAbELiYeuIw8WfenWmjNB2fv9W+c7Pt0sGINiqTTnzUBjPJWZKjIaEV3noK3N9BImXny+JsXecyboNCoUDvycG1pAIh6HKYFadmTJmf6S8YoIgNLSOVfH16035/NIfoYqcQLmCQGN9BYwye4xZ8cP5wjFf17GUyQExT5U4o/vxd3pxPacVl3h/Ge+eC6ZDyEQjfjIdz5yNVTpGkqm/WVvS1fM75xuGIPhJix4PizQSnpHyByQczHGE7zmw9WLdI0v+WS/Zu9N6fSdwbM2sWTus/f/GBVn1UirxWV+iKZ8/7XtZ/aakp1v0xwzytP7unD88z3e+wqrAmvbY1P1zkdp1LS0HZ1vCq1HqDu2/J6z/WMKXIwSGuAYxWa01p4YFPtYcTPK9Xhv+ZJFI5W3flygdaBJfUR2w/KAEmSUp5p17d64hoUeWdueLy9D6QlQaSei4KBxqfqQKyUbV5PNEzauptGOhRa9jooKlAYdMFFh4tSMLVeJ2qQLcdEUyo9UIy2/fbPke8/OuHGS8f7G2Y6PTjouqp4PFndCE0tB1cKMJdAUCtk06u/XnTigRcU7bc8uuUSdVVIdGoLibrR87/kJVkfuLwYeLXu+6gw3fUU3UjRBhVaX6CM+KM4aV8C/ZLnFoWcKBFQxj5Asckh2n9N8z9nxhfWslHQtX9VSsR29JHMGL/tVYwIPFyONFr/9nOQxKlczxfXIhZwYIGX2pcKwdZZ7zcCJFeerO1czRnFcOqtF0wJw5yp2znA3mKnalMTyVVrrFiYcVBRa7fnu6Q3/kDM+39VUyTGrMZLN75zmvJq5YEUSl19hUDTGY01aK/8QPv78yOMxu/WRfi8Ux4QWsrmBUrE4IM3x+Zs0k9ny2cfJarVOzcoylsjvk2lBUrl5y4E//Jzq8zYeuURngkIrlf6lLBbZCSGqeUMYOXKL86jmf5tl6NXrWfoDrvwsOj6oNOSHVeIKqon+M6cUzAF+pubMX/+HTeQM4gv4ZgLrk1/368+Xv//sZl/zQx39bMrCCdmlA2JaoG0S7Smcr9j0a3ZjWzIiQ7Cc1xuWiw226dFXga+6huvhPrej4XoQ955HTce7ixu2ruUPtqf8g6s1Y9BcdTWc7Xm33XHxYOQ/eXIJ614AppJuqVdjy2fjim+sr2jMWIDGeS2fv3PNAVdZhLGuCH/z0Whxl6m0Z+9rxiCUjIXp8dFgtWMzLhmDSd0bNY8XA5f1Pr1WspSf7c+4rEc+3TUsbOCrqzvGaKiVLwHE1te8GhfcuYYbVxe7uG0q5TqjWZqxcHf3XnNqpZnYxtVcjS07LyLOQBqLqddCwLBzmleDTdmvqdNv5xW7oKiNZOPbJJrunC6ZyNYKz3pVhRIkS1fMBPyTK9Cy8lw7eFgnb34TWNcOkyoJtRZ+bWukGVnulVAlRxPJYk3gudY50MogeLKpE0HoNI4noK+xTELZiUoTMDHMAI4utKhJ3/GHT4YsCJTgXL3+GBJM5M133rAqn/Mc/INUBirj6YJljIrnw4JXY1soBTkYnY9Lm963NTLe32l6yR6PDfcaR6Rn50Z+sF3yzZMN3zj9nC9Fxc2w5g+2F+y9JSCgY2l7ltWeyjiM8ny4fs7CjDwfVjzpWnbOlD4Le2+odVUyjXmNXGhH1qGYGMiiWR813gsnvQ/SqbY1Ms++2J+XzGleQ7pgqZRnmbp9vxqXE1VPheKOk1/zRXfKjatnPRcoTkZKxSJ4rbUnKJU0FwJG995y6yzPhwXf8jW1HlnWe2JU7MaljDUtYmPSuMzN+FywDKHiYXtbxp8NntN6S+caxlDJ31LQk5MM+d5nao9SkbsUCMwbXOUMeBYy52rFi6Gl1oFV6YkQGbxhiEIV+ebZjl+4uKNNn/tF3/BkX/N3X17wqrf8/vWa99d77i0GHi1GvrTaUanA0oxsXM3TvsEF0XoMQcSsPip2znAzGLbOYFVkaT0fLfc8/rCn85qdF8ecVRVYpSZhkZydVwfUkO0oYNbpPO8E6Gdve52AYmMc66QbihE6QClFY8QQoLW5iaKsRWPQ+CDJk7tBqGNnzUBrA+8sB1odaRN1cz5z6xRkxaip7QR+sz5g64QG2mjPnZP3vV/v2biaPmgeNpNuR/RJEiR1XrLy1Qz0r61QjjJgrrRQTSvt+QvnL/nmSc1n3ZKn+5qr3tI5zeebBc8GOeN7UaxFF9YXepTVskZnM4ZjW/D8XecIwpSqs/QjcgmIS+PE42RHfE07GeJ0r+ZJ0FyFkN4/k7veMXVaA3rm8vZnRdwbw5+N8/yTPt5q4E/KbiqkwlQl8KlNTPQPWcxAGkbk7X9OrymOH/ktj+7zmzKBx6A4og4nDlNm3qhInP0858/P3/dNF/qYlnPs+PMmAH/shHLA2zsC/VPgcARo3nAerwVHUa79aeK73/VrblxLqx3X/QnLRP9p7UATRxZVR9ctWajI2ekVD4cFXz9ppUlQVDxuN9xrbhPVRTKi7yylVLyuXaKqSIfbk9pzYkfObEelhTd8WnVcDUsaM1Lr8YAvb1N2PDffmkSxE99aSvKBhRlmLeEDO9ek1xiaRCVqzcDGnfCsq1IH3JiyHI7WDoSoedze8sHScz28z9LmzUeqAdn7fEjC2hiFsrY2ji5ZeVoVSsdJ2WQiKzNiledpv+JmrEoWq0oNaXK7+hA1W/LmmtvQx5LNBc1yObAwkxe2AjbaoIA++YQblW31ZCHPm5sLihBkM3FR8bAWsFIbOeeFlQxXY2LpPJwb59gEjudAUjNRerIDDGW8hZkF35Q1m7vgZBpPZN4p8pC7b1IlQMauKg4zGZD9rENoJFN1a175nVsDWpX554Yshin6jGAlm66m7HmeR5WKrM2YAkHhc59XewlWE+hVxOJm1JrAeTWUjr4nVqgO59XAo2bH4+VLrHZCYTKBB/aKMRiuxiViR2n5weY+Z7bng9ULrBXwf7+9odaOlRn56X6FVvCyrwiW1MhL0WjPWZWbxTUsrWOhJ2FuFutFDq1P974SkIY+SpLIvfdRczUsy3VN/j9pTEwWoUYFlmbgamz4wWZJ5yVs673mg3XPh4t98q/XbLxoD3L1aJ86ZVdaKiY/3N7jo+U1aoysmy2N7Rl9RQi6dOIOQSNePBIQVDh2Y8vONzLXU3duV7LwpvTnGIJJzdNI99kzJopOYzyvxvoNgNQTg0Zr0ZTlfh43Y8XGiVYpV9723jAECZ86r3niW25Hkyh+jtPKMSw1764GfudqxX/8tOHz+CmP1Jf5atXy8fmWs0Tp+9GNXPtV5bloBz5Y9zQmcDtafrqp+MmdeB/98sMbPlr3PGh6Om9K74HzxskcT3Sap/uaZ/uKxgQJEJwEv+IWJvSXPDaUEg75MtF7YPLSz82oqmTRmSuNee5Y7UsVoNKBu6HirHGc155WR04qh1WTOD2PutyIM4+VnBjLfSwqbTivBvbe0geZfz/dr7gaKhSw86Kjys23FiZw29sSILU2luqmSRglxMPAeQyGT/YraWhmPO8t5Zp/sat5b71n0dV8sa+4bHvRPsXcfHEC+XPQn/GBQpKhWfs0ZdqTOULK9JsonY59FHqTBBOpCqAmgxTpn5LpOXMKsJh/tCYkp8FYNJRzLcDUF+jw+2s99Wh5ew/184z/23goJCuktIKgiUooN+KbHFPpaQLbufw0t4nLP9tZQ5j5+8fZz/A6KFYA6pBak3+et7KXRiHp8QO6wjFQfz24mHy9D33933QYxWvPeXPzr2mxC3FqXBPixE12QRfLvHnAkKlTtQpc1NuU7c+uEyJOXCKlc00oYrkQNZ++/ID7q5c8vvc5F6trvLf4aPDe4KNhMyzZ+4oHTc/1YPn4bM9vX6/49nkSJRrFL1/esjCOva/QamQMFqs87y5eYZQv55JL772v2fs6iWJ1ASGV8oUL3OiRk2onzbZKox/P2teEqKiMozIjMSrGYIt7i1aR511Ft7I0eiwgQKex9Uvn15zYjiG9ZufrJKaL3KtHTu1Ysrv7YGl1oNYC5lZm4NY14uISFWs70AcrAsHkfGEQMNCnLpgqZ1uiKrzS1kw0FKumLsUwiQ4lQylguQ+STcxNsLKXfaPFSSOk0m5U4FXk0bLji13LWTNwUnuxrktgP5fZBfTnqtEh6BfgLmB9ZQeKVWbJ6s4rZWlOMRfbqzQ+IyFm8HlYycmiYJCgIc/F+frwpuM4EyZ82MkJCWCTBOBKRVbGcetEwJmrR/noveGzbonw0wUEn1Qeq+S+A0SleNKd8rRveLqvOas9C+OL806tAxtneX9xfUD7AzipN+ncZAzuhoV0jzYjtfPceWnNtfOWZ31DRPHx6edCdTE99+3AidtxVu25HVtgzdVQoRFR5L06sHEVrfZsvGXjLQtTFSpadqfJQvt8v4dgDrjs2UlqnmkFyv2ec5jz/RXrXkVrHB8tbnmv3bBxNZ/sJVv6w9uWm8FyUUujp1oHgjJUKmDUYcC2MIGnXcu7rWUMFb1raG1HbQf6saEyI8Y4umFR7quKEbRUPr3TbFzDECytGRKv35SGYFtXT98VXcZ4m5qV9cFyWfXiAOQtz7o6BcaaF71odO41Y8mk773hk23DZjD84NWa3/Cf8XX1Du+vBhbWpe7iyVJUR17oiiebBXepad957fiStZy57/CMWz4fAt9/vuefWZ/zr33lMy4/3NF5y51rWBjHRb1lDJavrRZcjS13zvB0X/P3nlzg4y0R2HnN4KUKpjVsIpwm8alSsTQO9FEVv/0+8eC1kqRBa6b1wGpwAXFvS1ojm75PbqKZaYpCIYI+0RfztT5tRu4Gy8IGFimen6rg0zzJrlVBSRCVq+e1Tr0Okm7q1A48H1qe9zVDUKUXRiTZP0fFdW9LF+BVaoaY191aT45ZCxNYaM+LoSag2KTkllbwo61oOQavuOqq0n39g1XPunZyvUdbnHXyd3bJQCEvj7lnQrb5VBFUEJCdr1+eT4qEeVIwLn0Ajv3Rpv1hzuHXWuZQpSddVrYqz8+1CV+MYcJM2Q0ov9exDfPPj7fneMuB/2QvpdXkw96aUIRE4jiiSmMOlyoB0yGgXKy+pmz2MdDNv09+tVO2vOgBUkb9sF329DfFm73x84J0YMv1BuCez3f++PF5zZ9zfJ3y84+DmAz6fZxKcPN225m3N31nyZB7BBwOri4C34UZuRkXvOzXLMzIRXNHpRJHeFhQ6ZEX23ucjLLYVWZk9BU+GF71ayaXDgGzX17tuffOyN1oeGkWxUnlemy4c4bLauRxu0llfVuoNlmg2PuKnWvYJXHsGFUCJoHWOhZm5LTe0aSmPyBuA5pQSv/eG4zxNJWI5YZUqrdKUizryrNO3t3SodMkcZ5kyn64u+An25Yx8eLv1Y6HTU8Att4WwKQR/nRebIHU9CuUICMLWjPw3Kc+AiHKuJeNjmkDyoBAkSgoh2MrL9C53byJceLipnuQx2tI100p6TzrtMynZeX58HTHqvIsrXxuBvtrKw2GqpR5zVSinPXPlA9p7ORSt2PxeD8uBys1cf9jyfDPQb+azbX8vSbbTUqwEMikPYNnYOLnzsX+OYtVxPpRlfFHAqOZcjJGjUEyyyCb2q2reNTsqFNjtTGKIHGhPd4q9mmc771lA6yt49SKU8jSeB60I7ej5aq3XHeWi9bxnbMNtQ78dHfBie25bLZUWoLH0VeFD/+yX/NsWPCXLj/horllYXpe9Ge8GBaMXvO8q7Fqzdre453VC0TErDlp71jVWx4D7/Zrfrq9z5N+yd1oiwZonwSNCxN41tU8bIfirGVUFMtcpJlYk1yz8vUrDZFmgVmh4JFdlWSMAehkizwftyLcFnejv3L5hIvmluf7C353c8mLvsZHw6dDg1EiJL/fDKyMZ2QCHhH4ZHfG19YvuOnXjN5y2t7R1nusHXGuoq33aB0k859cgKQHiYB+qzwh6tTEL3m065FBGwZfC7Aja7RiacjnY0hUPMvWGa56y9/+/AKAh43jh/s8NzW3dDgcH5tTHq86/tq71/x3q5qdv+JXnp7xdzZbLBU/9b9OiCNaVZyZj/gF82FqLKVonADEwSn+pXuaL52+ovcWo+74ZL/k1lW82255f/GKl8OaT/fnsjarwHvtHT5qvrzU/PmzDc+HmleDnLfQRCQBtKwkcx2ZEl4hKnbel6r7uvKlI3hrAieVF4efKA2ztIboKX1tXJD7nnuN5K7TxXeeKQnloirV4dZkRyyNUWK3Ccm4QU/raual57Vi4wxLI70AcnPAB3XHy14aN+rkXrBzmrtxsl5tkn4p26tmV5shSAuu2ga2znAdKjqvuXNrTqy4mv1o0/Kqt6wqzy4FapUW2uWTruExIhLO1C+UzBGbvsMYFK2dKrdwRAXW2eEqN7KkJPdscsvLWEnBgWYgV+eKy1f6DJuSQLlSnBa8YpVtU4JCgL6c4zyAmMYHb/WRXbP+STzecuBPASkinJzAfuH3I41wYBL05kxUfnwOzkE2pSJ2IRbP4XnXXA7e4TAr/ybPfq8muCUTkdnvx9/rdUrOvJNv/tv8sGp67JgSlF9vZhvsmLqB5udn0J+DEJe4qVYdBg3zyToEzZ1bEDrFwvSc2Q4XDWvbs3HSTOp2WHFWb9iPLTvXclpvMabn2e4SFw0n1Z4hdfFtUkbdJRu8j9f70pjmvJJNdEhUmCFIRrtLNISTak/2y/fR4NHJZm9yxMndFVudXXGE77yut5iUmVVEtA4oFQhBBKNVLRlAa+X8ztfX+Kj5ysmam9HyT10846K5K6V+Q+CqX/Fpt+aLrmYMivPacVb1BSDlMr6PJK51WoSDSTQ1GYVLM7IwI3tfcTs2bLx06OyDZuc0tY5lE8tiqkpTaDV53JQM+9FYO85450C2T+XlbLmpyBlvVRx4JOuUukgiY0WqJyFxWQXk5g6n82pW9rTPY7pYPSYhbUxZOjnHZNN5lH3Pot48r/PzMpEuxOn7ZqFl/ptl4v6LjaUt7zt9hoD/IZpCD5T/YtooY9G25PcfY+r8jdhshqjY+ppKec7swD5YFqnTaxMsN2NFiIbb0XI7GlyredzsWDUj7zTSqfrG1XQrnbjerpybUTGJTiu8Cny+u2CXgttTK8LEfLS25137AqMueTEseW+puRosv313ycY1rG1Po0cul6+ozIhSgYvVNetmy/r2HX5/e8En25YPVx2XVUeIQnnYe82nu5aV9TxoegHVEe58Te5WCxTQn1fevCYJR9qigLX1EEidu+OBtaqMUQORUm3zUfOyX/P7m3sl8/i19YYT26dOw5Zfe3WP33y14qunHefVAEiTLAVcjxVXw4oH7R1We0ZfsdufctJu8MGk65DXQxkf62aD0Z7NsCzdhjMdS6uY3HLEJjiq1+mkuSt3pTyN1jz3Nb9zdcIuBvYMPKDil84HKhP46e2Se4jj0p2Hm9uGv3Pr+Kn/h/TDpxAGzpa/zD/bfJMn/ZK/0fwi37i34YNVz4n9nLV1yclM5vAYNHeuZmkdfdIJbJxlCJqn3YofhVPhqatJqLk0UnFUKrJxlo0zvOwqrjvx0l9V0gW88zrR+kKhhpxVjlVQ3I7yGVbHUhXIYLSPAqL3TnQGvZ9MFnzqvxIi7KNYDWcgNu1d8tyzRpIGIL0AzitH5w0n9Zj0DyppimJyRsrBgwQeISXO+2B40Vela2+238x4QtuUWMifH+S7dl7TezkPqVBRrocI14WeZVSkD5qroSpVv7NampBdNo4hKPapWSLAVVezqjyreqIITuv4xJnPYuL52gXQlKppbmT4umlH1m3J81LAnZIema40n7NW5WZn0/vMk0vHBgGNFh2O0IND2XP+OFrD/9aPn3P8375DqcnTGKBSSeCYMnF5gOXtwxVh3yHwz5knMwMJAoTT55RM00SLmXPdc0Zq/vycWZ9z/eeHmT3/GMwfA/Y5yP/ZlYAJ6BwP1fy3DPrlGskxeaZPC4JPWc/MCz/83FmfhHQtx2C5G9tCmelDRRY6LmzPst5R1z27bkUImu24ZGEHrHL4aLi3eIWPhrt+BWqyKxuCKdzoLhhWxmF14MluQR90Ek9B522x3GuMp9EDnW/YuYaNa7hzdRHDZXqTj0IbOG9vqVPH0qrqsda9RgULM+GdUuKKcu/kJf/MnP7jK0ycmhWdVB0forhX12Xj9wnwV9pTR12yx1WyWnRRJ5eXgda4okd41q8OXHuMikUcB9nDefo5c23LYwX4z8fEdK8nXvx0j/Pv86Y3GfxnoZaPilVUE+0ofXYW8J5YCVry2JrPu8zZnuZHoNYjRgdUmmPz5nnzQZ3nbA70RLSrCviX89VpTsbZtRAtQO5fYJR0woXJinPuY1+uD9P9c0GniofQfibKSig/A4liIhtz7ty7MA43avbBHlR3Oq9LaX7jDD8JKx7UQ6kONtpzWYmYdwyidXFR05qRgAjqO1/RB8O9escy0Xs246LoDvK1fLx8wWm15J2m4WZc8GpseD4s6IJlZQbCTkmFILne1FWfrpXQN4aguRobzqqRU+u4rMYSFLXal7Fe60CXuPbALJtPqlQZ+mCKs0p2Pcnnmc0QfLQTXSeqRNOS+3MzSib2k12LRjLEH5/Aie1Z2p4VHf/K42u+/+o9nnQtVlku66E44/RB82xYclbtgZbKjJwvb6TqoyMuWKpK1oaF2QlI8pbG9uQu3GOokiC0LZ2DZawZFkY6ao/pnIdEtaqUL+ewSM4pHzSRv/hox+PFwLOu4tVg2S3ks3PPjB/fLvhxuGJ/9w8AuDz/G/xPHrzPX7r/Bf96dQ/NJyzMWHz/s+4oz+u19VzWO7SKXA3L1N1bXHSyLeNp5ViabGEpgQFa6EouBcpnjVhM7lIndpMCfuH8K1apg65L4O60cmydPXCny9f/h7ctl+3ISe0TRz7wqrdEYBvMwZwcvWZRiZA+uwO11nNSe+61Y6nkZwrNvWZgoX2hoeT7GoMqwSPA0riUTJIg5KIeDzR5OUs9X/+GJC5GZzMEcT+yatqf11a0aLlSuDBC29ulBJRWEawkCloz0SxbE2iNrB23vVB/GiPV1Fw9qY2YKWQaVF4Pc5Jmfr7weub6Td19JemmCmPBpPOadBKUz8vA/xijGCVr39ysRPYeX6rX+e+B18/hbTt+nvF/C4/MS87l+cwRHROAytFxpndkK8XDY1Kgzx/zeaOZjU0BUPKafBx3580g26TPyq18FPFgUchgezK8ev2Q5xwSg35WZ9/5Y/lfHzONZ6qAeFIn0JAt3SaQJyVTXcqnE2icApgcFM0rCKfVlsfrHavFHd978i3GoHnQbFjaTrJn0bDrVrKRmpFze0PvGnbjgmW1p633QqWxPS+2lyzMyOfdgp9uG05qy0fLfXF76YJlaQO3eyuNiazjQXNHY4biUjKGir2rk4d46qIa5mA2cK/e8cHpE4xxaB3Kv9o6tBW7Q1M5YhYsJs67TpuLto571cAwNIyjbOhZDGiBKnqWSYA596HPfP6Nq1M1ypOtRyFQW58sQT23Y8Mr15RM2xhkU52PbTWrbuUKjT4Yk9NmMBe5RVS5Jloxq4LpVGmYglB5njooIeemXcLjl/fOgB8ks7NIHPdpg5jPm0D2lo8qd3r05ZxREEnONmoSTsIhjUea9k2Vg/x4vs7zLFg+8ut9VMVjXZ4bEiityvMcumT55X6Fg+Aic5rntKAMVDpviu3qEAxbX5VM69ZNouKH7cD1UInDVW+pTeSzXcOjduTj1R33my0hJgqZkmu3UJHOV7SpKdjadqWL7BgsP9xKg7wPguVB+0rWo3RvFlVHYwZO6y0X45JPduc86RacWdGh3I0tl+OWy8U1okcQUWPvNWIzCme2Y+8rGg0Pkke8jCmTzsMUikWMSkTrQcTjL4eKm8HKupSywKIFEUBcqQBRMSD89rukidk5U6pNz7uKhU3OQ07A0lnt+dF2we1YcVGf8E6z5bze8c2TZ3ywaLkZWxrt0AgNJHjDzWjpg9zv3jWEoDFGDAGC1+y6FYtmh7UjIWi8t4TUDK61PU0UPdDC9pKhRhOiLo3Yam14MSy4ci0uKh43O3a+YmFGbAwoav6F91/y3mJfuOdr43hqG257y9+6UtxyTcctW/eEYf8jvnn+v+C7i5p3T/Z8+aRjZRyntmfv5Tqt7UBuBqbVVA3LJgaKwIntOau6lGCx5fEcQNfacz0uWJuR1jiux5a6CtyrY6r0VuycgOXsCLTzQsnJmW3JmMu4ybSbDCwzUP3yaVfWr9ws0iixZM7BAFCCAQUsrWdVTeL908pxVjluR8vCeKGhqElTdOcq6cKrPSqNxUWqsmZb4j6IZekYFVVUvNt23DrLzhuWMy1C7sEg3H2BrpOGMCSai1SrsntZbSbXL4CrQSigYbY/Q6ZnhtShPrKynr0fkpZCPmeR5qHV4ryWjzlALXoPNWXufxbGgCkoz0gkU9Syteqc5lvNkkJ5X5molNNhOHQ4rABma+Vr2cmfH2/V8ZYD/yTUmWXIZZHzByUrkzKtc5CbBXpv8vGGrGaXdz32zs8L0JsOrSZ/8gBFFS6i28OqQP5bPnKknb/HcXZfzT6jNP3Jr+VQ1BuZ+M4C1LPzxiRMPKaBlHfS+qCkmCkU079TtliaEElTnMXFLWcv9mxSpr21Az4Y1stbnKtwrqJzrWRAZh1pG9uzOpVMm9Hi572ynr9y75qvnDyj0iNPdvcZguFmbNh7zcN2YJdsLzNgjFGx84sEjIUXeZMAVpsW4st6z+PlSy5OXmLrQbJQ2aq0cejaTapuhdR0gyIGha6TnVxvUc5DHzHe4L3F4BMXOLuZBBZJqHosKO98jUezNokagcIYN+NBCmi9GtviKnFi3cE9yZn64+rTvPKUN6f5cVzhKn7tZQzJKMqAXapkCvOG0mytcxY92dSl18h7xyLwrJP1YzjYnMLBuRk9AdOYAvVDgB8ISpfH57NQKEjZs3+W9Z85/+TAQyEZ8NLQSx2KhHO5Os8GQ0TN7CXnguMiVk4e9rV2pUOtIpL7SvTBcpJoCLqObFzNQtcl4ZCdWhZGyvxWRZZV4KPllrNKhOEKoWoMs67NKzsmT3v5nKUZJs/4qHg1Wr60DAcBl/h0S2MzQ+C03vIV5bH7C552LV9eXXNWb+h8w/PtPe6vrjivdjztV4VD7KLmalzwzZOn3I4rGQvG0Xup9N2MTdnsjQrc+orroaJKoCZGuNeMJbGyNNLd+jbRTowSbcn1YBOvWwBk56dVevS6cMxB5sN57fjaesPvbtZ8tm/48bblu2cV77R3DMEmzrlcn5xpXxixxl21HWfLV2V8bfs1q2Yj3P70fSTBFLDa4chZ24DySdBsJnHz6CtuhjU6ihuXaBs0z4YFCy1Wrr0X29Q+aJ71LZ/tal52Fd97sSYAn/OSh1zwafiMXzZ/mb/w7vt8uP7zXNSvaLU4aK3NwCK5QuU+EKUCricwT9Jl5U7RtXaF6lan4DcndEAar+Us/8aJXmHnrTTASkD+bjTUJqbOrYoTKyL0IVUjXciuMXIOLuZKt/DLzyqhxRTnvaiSBkDmfRY354pYtgae63juNY4PFxvGaFikim+M0CXK5I0XPYIIUUWv0aYAf+MtK+NYaE+rPS9iw+VC6F0vhjo1pJvWAgU0yYgg06GGoFNALAA7C/GF4uILK2Flpeq3Tw0YfVo/KhXZp8q23ItAjazdPiqW1tN7zcYZXErgLexcFJ3tSLMWKa+vWUvFG49cfZmv1xkPzCvG8r3nTIL8/KkfTf73+MjrELPHc3CbE2Jv/fHzjP/bd+Roc/57tpwyTOWpWkds4laWMr6KqHjozjE/svgsA/n8svx7BtrHArVqDqKjcP0yuDgEPukpTLZWP0vc+6bJOwf9k9tIfkzASoziwNIHU7ibfVrMMuCcu61k20ijfFlcJ1CY5ZBTdkah+MH2kl88/xQXLOZk4Fsf/wY/+NG3+MnuksU4crm8plntGK4vue1Oyvlbnbu/GrqxZT3U1E3H/dVLntw9pNGeh+0dz/bnQo3R4l7RGM+9euTzfcOrwXCvHuh9hVIWEwRMtrYXS8NRQPFF1bMwIw8X17zzzk8JXrO9PZfM3nqHrjzKBlSVgsiMgr0iOg06oqsAJkIEZQIqgRBjPHXdFT2ADtLXwESPUUktosRtJkRxBNr7igf1hoUd8AXMaYZQA4k65STAyUK4Jm1OU9t7zdZbhjCNlaxl0Ulwlx1l8uafZbEoDhxV5oGclhs78asDGH1cd8qCOl1EYQvjCr0FZNxkP/4MSIKaj/855z/SZH6//IGgpGonXy2VsZmATUhuKdm+NAN7P5uPk5h3OqQyIZ/TmrGMeTknuVbZpcWnANLma5OCl1wZmLy5Z5WKdI6VDug4aYqm8xDdBkgzpy5RPowSF6R7rQR47y/2PGw2peqXr9c+gWurgnSUjra8fgjSEXjjs2tUckgKemqMlRy29q5lDIZaOxoz8OHimr2/zye7c77b3HHW3orTVjCct7d8JVjggud9zTvNHqMCd+OS+4tXDK7CRUulHd7XrO3I9diA9mx8zfO+xiW/c6tiAXRZM1LrwI2riu7peqhwiTbRp+xjYyJ7J9nO4ypOpSOb0fBbr5a8s7R85+SW50PL065JbkLT+OiC4c6JTiYLEL/oFyjgvL1lvbzF1gMxiqA3U33y+YrY1wjgR37XauKeRxSjq3DBJCcpsXA9tZov+paXQ8Vn24YvNi1XfcWv+N/mtv99TuqPGeOW3r/E908JbotCc3P2z/Kvrn+Jv/7uM76xvuEsaZny580boeXKmVHSbdqlNUmaVonrV4h1GUs5wSCGCjZRKy1XKbmS/fx/umkYvFQ5nm5aftQHtmqPxRIIvKMu+NK65+sXW87StdqkDL+PU1WwOGklVDGmDHvvsyZHvpOLCjubk6OXQGFdJdviKN3Cv7Lec1l1KKDVrjh9GS0VtitXpaq30OVqHfiib6RpVuotclmLdfJZNdKawL16z0/2J0QkKMycdh8pVKepIp4pilMwkE0NaiXZ/nJOhQIW2HnLmR2KG5bVIQWDmtxwsE6i2yFofLZDjlPzrLzXZ+APHAiX52N2vgJGcgb/dZedeeIxH0ZNGf15cjRXOvMxd+nKVQaD9HXJtN38uukc3nKqT0pA/ZN4vN3AP22AOdN9nN2cD2KbXF8y+M8tvUml/HzMG20V0A8HTbaAAoLnEfPcmg5SYEKeiHmiTJ82z0zOj/l0mGf5M0d/en0s10F40EfnoKTcmsWgi+T0Muc81yoUkOdCzhSk64BOXOkpyLCJWjXRfhRWe+HJO0V12fGl/Q959uNTroYl7wZDt1nRNHv2dw9pzEjvKx62L9NmVFEZKaPXyz3dq5beV3xt/ZzL5TV13eG95dndQ1Z2j9sbfrJbcjMYPj7puF/37HzD/eaGZb3Hakdd9xjjuOctX1KBuu2wyx5deUiLY322l+tVh3JDlYpQRagQ/NbnCxXBpQvj5aYo6zFNes1QY1LXS+0DNjiMEvqAjw4fsr2okmx/lI1472oWdkBHKY8LiFY86Vclu6mIaRPJi7qcUiAvyLpQdXLQ2RSKTSCLD8cweaMf9oeI5dw8Cq2nRRvAmAlMHzvejDELi6XxVObtuyigZ2qkNjnx5EPP5qomFFBVxn22mMUcWHfm767jtMmrdB7Zzd/FCbQPwRwlB6bMqECeoxJ1uqZBCXM9X8M56JfNfnJYyptYpT0m3dssSlwkrUbuNAsz0ZvxB1z27CmukMBu45rS9Va+k2aVOolmcXp2kMqByVIPnFjZaE+rjjEYnuwvAMrvubGWVjDqqVlYFg73vk6WlpM71jvrFwzBAid8ul9wrxloUifcdbVDxVhcrS7rXRnjd6ma0XuDS81Udl5zYsUBpjYh8Z6nTrJKCX98DIpGC1/4YTtyWsn5ZZpUowOblM09qx0vuorr3nLVtrzT7NEp63k7tuReAJXKlIapYhORJmqrzUMux5b7p8+xdmQca15tLmiqnmW7wSTqkjEO56qk/zFp7HpiophqHTDJ99876VQ8Rs3KeP6zlxd8umklmDeBb/tv8aV7H/N7G8uv3P2fiGEKNCKB65u/xb9387dQ6n/J+gNHa6R/gFGhNAsr1404GSSk8Sb0q2nXyMH69Jjh9zanvOgtd4PlxV6CtBhFTFubwOA129SR99YZnBppqNmzZ8srhtjz4zvP379b8wvLim9ebso6JdaaQoFpUiCQKwHXg+VBO1LrSO81fZqmtTrUF+X9ujGBm8HwlZOOMztyWe/LPjQmofUYNTeuPuj4m7/31Vjz+a7GRYUK0CMNDh+2g/QHILLxNSd25M5V1DrRg9I+2hIYEhU2B+Q52ZI/LQcCWVQN0p+hNQOvhhVWBS6rLq0LCoJB45MjjiRzImrmkkUJPkpNvty//JmH4F4fBcbzNW7aA+Yub+WJszrqBPgz6J+qXtMeMO/JQXnd1MhwkfaAPE5dWhsrHV5be9/G4+cNvN7So9b+APjPBYPHXeIqHUozmcIrztl4crML9cYSlY+KvHUfN98yKvuRT88NzCwZstewRAABAABJREFUmSJiZtm//D460UGAIgSS181oCkxlNWY/v4kzN7cgzIKhnFVZ28lXvM7ZijyR9STKiYleMb8Gx7SiDG5+9eojvrl+jv105PSDZzQXWz54/oK/+/Ij9NVHfLh6waOLp3z8+AdcXz/gwcmWuu6pq55hbOid8OS7qyWfbR9w5xo+OH3KcnUHUbHdn7CutjzfX2BU4GHTc68eqbXnrOp4vHzBarHBGIexjmq1R9tASJ1oUVFAvwKiQpkAJqBsnEZ4kxYhDwwKXPrCJk7/BorKX+mItoHoA7qSDG4NeO/w3k6LZJAKiguW2+GEratRTJm6EBV7X7PxjVCnlIjkctBapd4T8+xKQMZSrQ8DsloH1qYvYLHwwmOgntVu35TZyUBNx0kPkG92qTipuSg48b1R1EoqMnkxr8jgWDQXSk3dko/nFemzjh178hg0ykuWerZHGCW6AAIEhIoUlWQJIwo89KHCpvM6Pg4pdNNakSl2tXbUmrJZFRF+yajOyt1qskLN99QooU7kIMAosRHMtJxCxVAezCSwf9FXPF6IIPGs6jmr9mVty1nrfP5zsFdrX75HpjtVOrBxTalcaBXL71VaM6XnhRZxfLCMUfO19XNa20vVKt07AO8Na9vx0SKgOOU0OQZ93p2yHlsetrfF4z5rHAKZ9yzryKtBhLyVFvrGGBXrpFkZgnjYSyMmcXmptGT8z2vHzhtiFPrHe4ueWnv69N36kMBYlEptqz0u6S+uxoZGezbO8qjpaLRnbUeMnyiAQ+p/cTO2XI8Ldq7lvbMnjF6SEtf7M35085jHy2vWzYbFQtav/X4lyadk/2mMK0GAUpE6yByJiFPZT3dLvnGx5V/98BkbJwDvZV/xD16c8Iodqjoh9i8Px6quiWHg3/3s3+bZ/t/kf/YN+Pr6JTq9LyRKR6o8rKpdsnmsYGwFuKSxPARTXIVuXM3LvuI3Xq75/dsFL2PHl6uay3ZkWXnWtXtNkC2OOy0/7vbc8BwrzG1uecYl7zHQ8/vbmtvhnHvtSGM8F+3I0oZSZTZKgtYxKB62QlHKVBmrcq8dEbwurRc6kZYqnVWRj0+kg3utfZmLVRpjWZ/TYwhKpb/ptN6qQhVqZ8m6WkfWKeDN2og69YFwQTqnDzG78eQeLdIXZL4Xt9kVLgWbCunQGyKc11uAQq9a26FUYqRSJ+9vYqYIq5RY0SxUpFKaQevXgpmJonhI1clgPsIsSIkHrznWfU16xGmNnVcD8r85YTNPIGUdVl5PM/CvtS/VUNKeQLCgxNXtzwLw/znV5y08sh/41IVVsiAl0xmmcDygkif0FH3mcn1MANkkAJGPLOTRRwP0wPKKGaiZTSriBNCCiiVoEAnn4fsdcORmQQepyvAmLl2Oto/PrRwqU6Fi8dxepvbluYpR6ynbP312yrAcvd08IDguf92Olu/fPqIPFX/u7Ibq4Z4P3v8hm3HJr1w/4rza09xecv/BEy7vfUG3XQPQLHbUTYfanKJU5PO7R1Ta87C5o656iIqbu4vynZ8Pa35/s6ZSkYdNzzdOnvPp7oIL11CNI6tqoF7v0Y0TRkteKKNw9JWJwtlXCOgHsBEappHeQdyrXPIg9qZcG1UF0BFlA9EL39fgDjIhOmiM82jt8d4SnZT+O9eg09jLYDSi2LmmZKABblMzKEhdEUuZNXHxZwu2jwqvddEGrO3AabUr98mjD8ZmoaXp+NpGoKNGRzAx+y8LlUTpQ1EuZC78NOdyFjy/p3B0A3USnkIuOauUVVIHfwew2r3GE83X1ShPUJN+ApI2ZeYAlA8fDTYBr6wFUCqW5kqNHkuwPPX7VQfvO2mF0ndKFKD52UmAkKhHaqKTTHZ58nPnK4LKmhOPjppGjyVb+2pYcpME3LkD9INmx4ntmOtDhJsfqZiqFfPrJH+bKhM52zgXL+dN+dY1vBql8jQk0PzLF095rD29r+h9xVmiGeX31zqwrMSud+ctG2f5cLHlneaObGMJsLQdTcxBwRoFpTt37pWyTZSfwUvTryuqoln5Ylfz/qpH61Rgi7C2gdNqJHut14n2dlH1rI3j9zcrPtvWInjU0ljp0gjdaJ+sGCsduR6FpqSZmtUBwrmO0tV4TNnyJzfv0JgBk11IFPzO7WMAvrx6iVWO1vZ0rimBElAsQI32IvTXnrN6w8Y1vL/Y89Hyij5UdN7iomFpGj5f1ry4+4yqekR/DPztijgMnJ79NRod+XzfcL9esjCO1WyMtKbnbPUKnxxjwiAdiG26pwBWWV6FBf/fJ/f5ey+W/E74VbrxKQ+bv8iD+JCN0zy7q/jqytEYz1njWFfT/pAD4G+4c0K8YB/gJoz0auSSJUOy4t16xXZbs9DwdNuiVeSD1YBOWevJgCCvAdnyVJbdWkVW1iVXOVnD7jVudh6K02pP76spiNaeCmiN46IWndk2NcmKUXHrpMr1qB1KIizr8J4PDQsjtsMrM9BoaQ45KAHkC+UYQk0WLE/W2ZOmYwgGqwOtmmw3FZHLZsfl4prr/XmpHC5tJ40lQyXJRyOi9qgUNfJ6F43I7ZDATcUolcjZ3nu48pE+Nxz0hckUz7xyjmkvMMQZljhMthwnFedZ/Yx38l5UDA6IZX3JP9faHZha5PM73k9+frx9x1sN/FGTMMnOslPl4XlWMcpEyVWBORjKJah5Vi0egYH8t7nI99ClJB4EEgX8q0T3Sc/L1mLzY545kB8mcO+Tg0T+jPnk+1nHPAipdeBxO1AnL+N5JF+pQ4FliCqJ/iLJh2BaNGYLTiifISXUSUSsefX8IffPP6H6cMd36n9A91u/zG/c3ue/f/EpygS0CVTDQH2yw6wG/K6ivbwjDJZ3XYXWnuXJrXx/E7ionmHbkXHX8I1o+Hht2I4LvnfzEJCGYQBN3fHi1UPOxlesLq/T9UyX03p0k2g+BgkA5hffpv8CxGuDu20IzojQNyh041AG1CrAqIge8Aplg1QTgJj9p2NEGaF8OFcRoibbKW5dy52rObGwskNxj/HJSs6lbJxkbEIRiZ/aIdlizjP0kwOHItIax9L201hVqlBgssg1A9wC9hNAhUMKTHmOBhPj7LnTGMmfM6+yzcF8Bs12nnFXkqE/dKDwBSjl88jPzWAqV5+imoJOnd28UIUqlx+bU4ty9qwxIw3jQak6B8D+tXOahMKFvx8PdToHn/GGqZiDooWJ9KGa1p20Ce5cw51ruHU1T7qWndN8sOz5eHVNo8dyHcv15MiGOG/QaS3qfZXugwRiMUoDub2vqJKeJgcqKzNQpQZpfbDCMTY9Pho+685otWPva87rLYuqwyD3qLE99/TI5f6MF0PNyg6cN5vCcb8dViytpzEDZypyOzY8S85aGydORl9Z73FR88m2oXOa1kZuR8uTrWSb//rDa85sx41reTmIS9HDpis2oeeVok1UNh8V9+odJ+c9X1q1wkn3lldjxaMG3mvv+Mn+lJVxnNieGydVtUZ71lq6Yg9BF+cuSGvYuOCs6jA68OnmrFxjaWhn+LXrx1xUI+8vXrGq9vS+LsmmMYNs7YrDT6VH3lu+5EGoaG3PGYHNuKL3FS+GlvPG8S8uvsb/7eV//do4CoOsZZvt9/jV9Tnqs494uqtZV44PVj1fXQnvXxoNWmmG6A0h6ToIsHFrfv3mHt97fsK/8+z/jsJQ148ZhicoXTPSYVDcBset2vEf3v0Ol9sv8S+cnvL+ScdZ7Qrtplr3PFoOuKA4q0VI+2RX83Q74IPw1XPn2azF+Mntku1oOG8cj5cCvEGoWtmgwR/Mv2m/i8BHq44xSNVk6yyuzhS7UDQ5WoXSVyFEwQNrI+u9i5qzqkcBT/sFQ9AsrS8AfgwqMQEUZ6suvV+kTVUSSP7zUda4zPWf78tWS2fmRruSeT+p9py1t3x296iIypeml2aRBqoggvhsRpHpfCD2wsXtLUAm4Oqck8rrIIc4Z07LgUQRSs8NkGo02RFuSoCU16deB3OMNE/oyNpG+jfOKi8z6qaa9pID6rOa20PrPxMBwM85/m/lIQOnMVOjmnk5fO6Qkzm/uYPkvMNuJFIrTxbmTUFBdjmYjgxwj+2rMpiaBwy5nJY/W85revx40uXXHOYWM93mMOKeagIc/Hx8DkDh7s5Bf3YimTsVzYFgSNzqfL75e+jZ++dAIntB/2h3Rq0dJ8+vaM9uMe/1/LL5+zz91X8e7y3V/T18GartnvhEEweD/XYPN5HxD1rO3/mCF5+/x0pFlI7s706oqoHBWbTxPH73JwzbJXfbM34x3SdFpLYjP3r5ITtfs2q2jJsldtEVYF7Gho2yUlayIdClsogDOmCA8dUCXXmhC506WKVLskNA/6hQTSTuFNRBgohUUZD7JJtVjApjPFUc6ceG3ldsXE2TeMJjEN53dtqoE+Ugj5laey6rThorpfHtgimAVDYB+f5V4pDm7NNUeQozSowqnOecAZ+P3bzAFxFooa1MIDeD/nI9yd14pzGbwWimo9j0t/JfmNlupr8ZPYmgyzlFhdEenzjUIdEmPKZUnfLvWQMQ5pOACTDDLHDhkN6Ts+PTmNYlM5evTJ47LpqpNF42Qcly5kxdfg8Q7UujR5pZI6jO1XSh5uWw5LzquKx3fHmZEhJahLiHtD8RhE/CRxkzYlWrD0B9zrKNicMPFFehMWh2vjoQfC/MKAA3fbbF8257y4t+RR8s18Oa3lec1tuDAO6rJ894PIolYW3EztIoz0m9myU+PB+tXvCgaXHR8PevH4pHejXy0fKKr66W/Mr1Pb7Y1XzldM9F7fir9z5nYcT9aLNtOLNC51vokUoHlqbnJukKTuw+3U/FmfY8XlyjVOS6P+F3Nxc875es7UijPZ93LQ8aCQpMFXmvueFZf8IQNBdVX+gvmTp4PSz40e6cB/Wete05qfa87NdcVoGXw4JNqPi8a/Hxgu9ebKSaFAxGi7f/NgmnF2agMWMKzGo6X/PT7SUPmg21ccn6tOI//+ySf+g/KyD/TUdwW7549R/zHwHqakH0e07O/ir/g5M/z1cvhEry9ZMdHy1ueDUu+PtX57igeLpt+C9vIr+3+fdlTLk9gcC+fybzojrjmt/kKv46xpxg9JK++zHVcsXv3D7gpq94d73n8WrgohbbzDlN0EfFg8VIn1yWMm2r1oFV7bjXjuydEcpP6Sbu+aKr0Xbak2qNmBnk+Z/Wo0UyNti6mst6gEr6NIRZYK6QDu0umrImten6ZuA+BMPV2BR9SLaphChGApB0ITFpabrUm0HmSqunviogjfQyLceQjQxCyXIPweKC4e88+xq1CjxstmJSYVxJiFR6pLU9Phj2rgEPWaM0rb2xmA0M0RxQeOEQ+M+z81ljkamu82NuAnJsjpLXtfmaPz/m1p3HSZ855TrPTT1b1yUJJettY8ZSJXxbj5937n2Lj8aM4uASVckmCvdYQ5yy9PMsn4uZqxcTP26iKcimlcH965+n0hA/nhAZOuVIOb+XnoGEgKKaMelCKrmBDLI5uM/H3KNdPoeDSPn4PPK5HNCO5hkBZFE8fN0UjsTZ80r2P4NJNdEnYFY9QEqmkpERT/vhxyvqr27RD0d+6fIT9uMCVUUYIK6S5eVXXVJ7QXXS4bYNF5fPUCZg1z0LYNgtROy3X3Jy/yXaOtp6z7LveOfyCdunX2czLBmC5bza4YJlGBp0JWBLGQSYjylLswxQQ3ylCdsKowfYQthawmDxowx5+3gvwUEFdOBfNvjeYpcDajmiqkDsjFQRlGgIwmCJQaN0wDY9aohs92t2rmUMlrOqK4DNRZMcb2ThdGPe9CIL43l/8YqTWmg7Avw0c9vK7Mp0nKnPR3ZsyZQYMxsXWQgn7dp1ApBuCjjVVMKGQypJ4azn6tPx5lE2oVCeVwC+8qCZLE8TLzmDfl1sWXUZjEZ7QhRv9RC0OPvMhu4hDWia+zY1jDk+Xuesyt8D0yJ/THTL2al5lWP+b74Gea2plSvXWnj9AtwbM9Lagc7VvL94VShJmkBAF/CoiAU45Pu181WxgAyIbWCMim6UrPjKuJLUWJiRJlmLWuVZ257Oi1PUzdikzKN0gx6CYW0Hel+jjtYeob/UqDFykihkgDRaqz0+mpLhDmiM9ugMSJQEqqtqT2Uc/0KiZqyrPUZ7VtWeB+0tz7tTTmzHWbMRQbH2vNxdUCvPuu4LjUwCqAEXDWMKBms9UhlHW3Uyjr1hXXX88sXnPNmfczU2RBSX9cCpHVgZx9Zbnvdr7tVbfL/m+zfn3DnDh8uOd5o9P92fcll1fG31stDyGjPwaPGK6/6EB00ksGTjpJLxk81D1ran0o7gZNwOwbJxNXtfEYHrsSm2jT/eSsDwjZMtV0PNv/8HD/nPrv/3r41TpSwnp/8UH6hv8Vs3/2dinAKv6CXoubv5u/w7N38XPoX16V/mvv6YlguexB9wt/3b6Y00ypyArtOr9yhlidGhlEXphhC2KFURwp4QeuJ4x83+e/zX1adYv0bvK+6//JhvmIcsjOh6Kh05bwbeW3cEFF9sW36813x15fjy2Q6jhLu/GQ2rynNZC1Aeg8IYxUXSbWTve5lPsv/FqNh7zdL8/9j701hbliy/D/vFkMPe+0x3fHO9qq7qrm6yq8mWmqREUYYGi6JlwzI8ALIFw4ANCBIkGAYsf/AgfzAgQF8sQ4ZsC7QsG5RlSB5oUZZpk/IASyQkkVRTzWZ1d3VVdVW9V2+645n2kENE+MOKiIzMs+97pe4u4ba6Arj3nLN3DpGZkRH/tdZ//ZcU1zq3fQa6L/qad9qb/P6V49UH2Ls6FpKU+3U1Nuyd5WY00aEySWGmn2J4TEIIvRdKYKMHdk7eryYzC3yet1M0UDzfE/XraX9Kchuc2oFH9S1r21FHB05lBkkAV8kIN1R64DA27F2D8XMw7YIoD1XBxbkbhoRhCmdgHjtIgL702OviepNTJhTbp7lscmzEeVBNjj6r3Iybn45drgV5jBbOzuTAqLTLUegymvr6tru05t8v7bUG/jpazkb5yMMNGRQYxBvoijAuJG/ctLgvPfdluK0E0OlvrcR4SN8ttcnnIaxwxwiYeQvzIhkWYGYJPNTs5UxtvkxPCT2ZY7y4Xq1CnhCTPno+P8mDTjEhpAqq0bsL9GGepJy4gmNMUPq02/ArP/gF/sAbv0n15IB6w/Hg4gnVZg8PgS4wvtVSPd/DFXCuhGdfXP/28oKLh59gQ4fSnn67xtqB66ePqOsD6/Mrzt56yuHFKQ/bKz6LSb8PNy8w2lFVPdo63GDR3mNMkukMhK3Gv7AM2wZtHXor90M1DtM47OO9uFFaQENYa9iAcR36ciQ4hXsqi4GyXjT9dSA4TfAKUw8M+5ar6/vs+hWr6sBZfcvKV+zHBkUTE24nT/sQQ+RJCeGd9SX3Vpc4XwCrNJEqoZ2k5wpMoDoOAheNirRNVo+KqiMhhsKN9vjgsUFlLnN+5kHNnkkabxn0xwWiTAAtx5FWUeqwAPc6cfJVsSAttJxFLlGMYO8lqTclSAalpqhGYZQkXXpC8vJP96KcuJNjIIFtFz2E+X1ADN4EoHOfCg/XbD6YRczEkNJqbkA0UdJ08IbdKNWkRYVEc17tc8Sv5L52rooARFTI9q7iaqyplWcVo3eSpNoRUDzr1zmJVZ5zzUFbVnrkpOqyZ67WLkcaquhFTSoxKdJgY/G4MQiXOeUmpAiR0ZNjwyjHdb/hdmyotag4rSPvHKC1XR4bm8px2ngGV6HxVNWAGgOP2ms6V7Ef23h8MQp0d5o9qPLsFC/7U3xQ3GtuqfVAbXua6iBjM2jxotqBfb/icXtNrdf88HBKoz2HgjZ2NdaszMDXzz7h5y48+6Hl4/0FCvi5s8+otci8trbjZH3NoVvz0c0bXA0te29zYu6zvs60i7UZMjh1QfP93YYnh4r9qHlxqDnEAnzdqHmw6vnOyw1P9jX/gfv3MhD/4xf/BD2eXx3/3/wR+/fxqHF81hlOzv4ICs3t4TfwixyA1G6v/wq3/JX5u9Q8oK7fitc9MI5XBKVR9TlGb1C6IvgOgqeq7mNUi1VrDuYErSqMaqjUho26z55r/sr4KSt3wdu8hUbx4aHh169WrLXkIz2wUtn6EPnzn9y2WB14vlecVFJptnPyxtUxn8UFSfD2QaKgHjitxEi4X3VU2nFwUpjLqMCb7UGcD2FSzJGf4pE/i+PdBc2nhxO2zkj1YWRdKyvOplYWHuy9YW362Rxg1eRsSGpaIgs8YrXjpN7SjQ03/ZrOV5xXe3aupveGVaTttbbLFeLNwlGjlSdoxao6UJkxRnZNjrzqOI/rMN0z5ct1mgXwj8BcTdTk0mmhFVT4vAbBNGenKMA8qjnN7wnoC2ticoDIP3EGJHpyWbtFE7KwgIpryPI+vI4tBP3FG/0nsL3WwD8NrmOtLBKVCkPNE2Nk4JrIDUyfwRJgz48/RQhSxb05OiqpM+nvY8cRIB9mL2XJpyv7+Xmat+mlLxP6ymtRMZVYKDkuV5GdirXM5UunRT31KeCDmbR5VcARFS+DqGiokI4vKjMf7k954/oR41jRPtsSvKa6f5CwRiNKN/5Ni946+i+tqX9ji16PqIPFNiMbHdj/8ILVG1fYewfMaqC/WhOCxtgRgmK4abm+ucfgLW9vngFQ2Z6b/RlV1WFGI1V2lYByP2pUJ8N52DUEr8U42NWYTS80oE2IqwNgILTRaKu0JPaagDIBt61F9z+AMh4/GAGqzhC8Zugb1u2Ws5NLmbydRCHSMxq9ofc2J3cFNCs9RNm3gXurSxlrXjjCGp8XpsQbToGj5CEGcsKoIsw8LlO0S3ikIrMphde0EvUIX1B/qkKKrgzTpqGegHM69zK3RqvJGCk9+jLhczyaUEQZMn+/3K5YcMpty+OUXvfsMVMFL59JCUXGuMv3lJDGtsj6lfkBMzpeDqFPi2IyolWMOJT3qTQuVqbPakM9hu9sHwBIkqrtJknC6Ky4GZtZYl6SALx1FbfRm/z26pJH7SUH17Afa27Hht5LAuyqoBidVDuhyFR7Dq7Gx8hAdkgUz/B+veVFv5lHlbSj99VM+sNoKQB2Wu+4HVYM3rIbW87qrRhrRaRVpC91jm7oILSY794+4mG9Y22vWVX7OI5HrHLsXcXLYRUpOQcetZL7I1W6JV+jHxsqM2Ct/N2sdpybZxy2J7iX7/DAVZEiIVSwEzuIEpV2nLS3NM2ee8C7+kN8NH5MNTB0jej5e03tOx60V6xth1aew1jT+YqPDyI00OiRzlue9W2W5d05zXYw3A6GbtS8PFRcjYoDnmf9igOeP/H4hp92P8+D974OwJdPPsGowPP+F/ng9oZ/80lgZEBTcbP/VVbtV9mNu+zxXzZtNwTXoewKP9yAH+n7TyB48fyrClWdzowBZVfxXWjxYcDoCqvXGfRXtKw5RXPOmWol2RRoleKiEnpsWhf2o2E3aq66KgpHBAanMTrwwU3D/XbI8p4nZmRlJO9jpaWg1cp01NpzFgGyVY7WjFxUuxxpTPSQ5GFPYywl9cv4cXy6v2CIlN5UQTop30zv/7Q2l5V+d67OUror02eAm3zkjZEIWTJAdv1KaH0F5ThFgWo95AKXScAgRTxdZh5MynpGOYluIlHM9M6FVBMGUQMqHY93Abr0wYe74D9hjsRMmIoeCvvhLp8/zNaCjDHiOYTPP87m6nl/JmNYFc6iyoy/J4D/79f2WgN/mIflk6UPcTFPn2ufF+gQJHE1gf60n5eYVn4hliGyyasn3nRIairzpL/0cpWfzSzfxUs6/2wOXBKHvWxLQyFVQlxGCZYRjWTNp9/lPMf6Mu2f7mUCBloFggKTiIReF/ZMBGVaPIvfvnmTze4+9+otP/XOt9l/dI591uMGS/uHrzn83DnKefCB/mc32Jcd1ad7wgtNtd4xfNBy/eFj6naf6TNKecahoj7d0V2dcH04pbUdZ+sr9t2abmh5ePEEZRz9foX3BmsHmpOtJBLvK0nWNQ6Mw550UqArJftulfD/FbBRUMVnOnjYKIZvr/FO0zy+RbWe0GvYGYbtimqzx9Qy8a/sDYdbkfqrT7e4rkIpT1X1DEPNtt+gxoaU0GWCeFUbM3BSbWfcdq18LswCMaqFJD7Ls/GTtz4adyaCKnn+Lkv9+SBKHwIu5dV2Xs/kANMx8zhK46pYMMsxqLUn6fCXIDz908WikQD9cjs5jsvelckY8OiCGpRAdebjx+qcuc+aXDMh959p3Oc8gEVLBoFH5/oFkhydDIbi3SoWvJLXqtUUXUtRyESh8pF+uB1XQiOwAw+aW9am50W/ptEjByeF3RLX3MWfisDGDlyPDQdvosTgSK0cb68uuVhdUVcdFypgzEjXrdj1a3bDiv1YZ6qKUiHTxVa2ywA8OUdm85OSugxCMXCizhQ9nEmSVamUJyH3+LTaHfXiJTBdVmW2esTqkfP2mm/YPcZIsbu0zbPbe3zz5h6nduR+3fNGs2VjD9lBo7FF8uIoMr5mRGtPfSqqXroe0S/f5lFzS+8tO1ezd5ats7TacTms+PDqLd7YPOfs5BJlxItrm55h34qDAeK8I+eq9JAjHBvb8057k8Ul9q7m3PY870+47C2XnWU/SsK+UnBSj3gsrZcCVO/V4mU2SvHzF7ec2Z779Y7GDFz1a95fr3ljtWEMih/efI0/+3LDjfuQqn0X525wh0/vjGM/Ctc/DDciAzpuUXYDSoMfwVT4/iW90hh7gVYNCoNWFT4M+HBg5z5jY95mxSk1LRs2eDwrajQKjeKeDWwd7JzJ08KDtmddObaD5TAYBi3FFnO9F6+46S1WDbzoLXWbdN7lfX9gu1zwbx/zodYmJVVbGjNwiHNaowc21Z7a9rHewEAfKaaHscFqx3ubZzT6gsuhZesmGFN6uJOjSt7Z5CDz2UmW1MlSHo14+WUMyD4C5gdfcW/1Et2dEFAyhxc1MLTyVLGvpQc5e8i9mc2Ls7kpUhnvOPVi7kE5v+X3N+87bVN+X4J7HZP8E5ZYevrL4yWKTlorcv2VeExxmrhs0JRN5g+ZS4x2ef553dtPqD6veUuLjgomLmYuL2pWpXCxyBMmntlsXyY+XfkiLUH98rP0+V3qTMigHLjzct4F9PLTh7l2bgkspnMlzW7uHPtYS/KMZcKOHEflCEbaLimUJMpSShyUqo9R3jTEJCLtJ752cT6jUkGqhqfdmg+/fY+fu/iIt979Adb2oBTNB7d0XzphPK+xtz3uPODOa4JW2KuezeYZ7BTDsxUffPhVHp49YxwrnDfU+z0323MOruZmWOXQ6Hl7jfeaoWvnL6wOhMGAV5jVIIm5QeE7i31TqAKlpGc41QSr0DcRxBzku+p8H0MswCmonQcPq8dXQvUZtUiJ2sDY1TGq4LGbLbyA3c1ZfoYTz3GkMUPkKwt9QSmPSUq00UOUQr/pOS4paBlo4/FKYyMnOCXJAtS6F6pFDMsa5bBKZdWhNJEvKWWplZzO1DeN0HmWXv+s36/nalvlvuVn3pu4bTxXMNFQmLz8aXFMKjKl51/GoIB/Vcp+Fh7nO0bAnTlgMgCS6b9sL/sTXFBcVDvh6FN6xubRkYliZdmPTfbGXw0rus7iUXxyWPFuC7euEvUmPXJqDzlRsdKO60E8yRszsq72OZHXKMcYQY0iYK3G2oHz6iWn/pphqNkPK4ZYV8Jql8E7gA6ygLuoU16201gh1kRgAJOUYLnYl+3Ys833NuZqSHGriRtdWVGrKg2D7++EdrOJntrbsS7UVZy8pyPUdkArj7VRQrMWT7FqPNX5nvdvfsCzy8do7Xm+P2frTtHA9VizMSNP+xM+7U75hfAD1q2AZu8ixWKoszHhnKwpu7Gl8xW3ruZ5v2JtR95qr6j1yHasuXUV14PlZjBYHahMwAfPSeS3X3UVH9ysIMCXznbsRknW/M7thrOq4Y/VW1FEqiXqdmIG/vKz+zxa9/yp4V3+lad/Bd89R5lVpgfle4wG00BwBN8TfI8yDYQRbe9FDn9He/rzeN9h9Qnd8BlKaXm2fstp+wdx4cDWfYzXj1ir96mCxipLqzS74HnGC6x7QBtfsUp7TisXczoU99qePiqc7UdDbcTzX75rp9blWhVP+xVj0Hxvd0JrPOexPsTKDLkIYWrn9a2M+zh+pMic5PeZIEpGSVrVec1FvWWXc1CEhpQr0MfIYxU9/aI57zOPPakETmvgQOdqduMJjR54uHmBjZGmvm8jRVGzsgeaqsPG60h5S+V74ZzFOSsRMOWzdz+1UvlMBBpG0Bb8FC2dHHtzh+c0HkpeP7PvS/nzJd5Z0nnKlmieycOfPkvXliqpWz3mhH9LQZVMCmmvyL967VpQuW7P77f22gP/0msIJX9OC+BXJdVhCvWXFIDyWEuObwnqE1hIHO3ZvjGsVSbHTJ/PW6mKcDf5ZpmUMwdhpZygVvPowKuSfk3htZC/y3Mna39SHZJ7lDyWIimW6URRxSQQK70ylxdrYuETDTHRUBa979+8wfNvn/P1d76FHQ74E4uvNPiAGhzDvRZfGXQ3Mp43tNygbh3V/R1ffedX8S8qDs/PcJFOI3xqz9Ww4bTaS/g/hogTbaWuBdT73uI6RbXpQAfsSQdeodZOKvLWQUb6AcKFQvUBvgOskJc/RQSiPBwe6CDcaoYXa+H2NyPKOsKoUdaxfu8l7qbC3BtABfSVePy7oUWpwEm9E05yTPSCpASUwsGglULpgFNG1HDClMCeAWfymFNMwMFTmQkUlIosiWdq9cjorXhgcXcm+uTJX3plSo68LiIN6b2bU3f8HQ5/uU15zOXn80qo8nv5rmcDoJD4zPehiBKUx50Z+0Vkbt45cQxAihDMr//U7iVptkjMBVmsy2eQ3t/eiy5+7y3bWLVZE/i0W2FU4K12n4tNyeI8LeLJk2yU541ml7m3AFVcXF0w1Kqnrg8YE40sFQABJS4Y8YKqcaI0BpUX5rSQLxfi8nqWz0poFXN1lzRejj3fKQfkuJevpHBdH06ptecr61tMjDyMMeHSKinAqAiYytPYW+r6IM/BjijjpTifBTaw+WPPqX9ty+HqlHW9w1x7bsaWb92eczVYWuN5q9nxW9dvUd863li95Gx9hTFjLsrlHHRDy0lzS+dqziqpSvzhcMLT3Zpze+C02tOakUf1js35yPVY8eFuxWVveGvdc78e+OxQ83xf83jV83jdcdaMXHeWdzYdv3B+yeP2eqLFEWj0wHubW/5LqyueHk75lfoeSv0X+TMf/q+PUn1UtcHUj3HDC6x9Jz6TFUppjGrphieE0DH0T1C6BX2CtacoVaGpqPSXsapFYzgMH3OwhqcaRvU29znnEDwnSlOHB9z6kZW2nFaitd9YR+80t4PN46iKgL8xU+7KbjDcbwdaI4UiGz3ybnvD2oqSU0qCDyha06MJXLTXWDPSjQ3OG9rqwK6XImuN7dCFU6B3Nfuxydz421FysVKRTpEhnpRwpJ6DYxWVdtI6WcWIXZobzpsbVo0kt9/szzhpbzDGMQw1SvW07Y5xrDhpb3OEK80/3oswQTIik3CC1o5haLK3X2uf5+M0nyYFMxuTYpOTZlxENY/VWVmC+yQAkWg+CdzPJJzz3B7yHJbez2VOVynckPb1cX2q1AiI0VbSNpMIS6Z0Ho2/vj4t8BOP/2vZhHs6zgZfCjOpSF9IvyfQnnhmhCUAjr/HEP9YhKtKLlxZ/hyWcp9T8aPUSq+/bD+n6qQUz3lyzgTGl9+l0KPzupB2LHoQssUxMyqWIcHUksZ7ojgJZUHF60ja/z5vm/oyeKE6ibEkSb+pKI4LiiYmY7mgsIgn5WZs6Q8r6u/v6P/Qiv58RbCKUEXd56sD5rZnPG8JlUbvBlHU+WqFfjiy/ugFtEE4+L8BXZzY769fsl7fYtsOP5oZt1hrj3dG6D3ygEXms/ao2sdVAHnLG1AvA5xC6Kzo9q8CbIEzoZ5ggK0ivDRgAmbVE6LnjlFIIaGzVI8PmHd7GCDcaLrtmu3+FKUC63qHtUP2VMLEgU5gNy0OIJ5Zr8Trr4OfgVq4a/yW3vvBVQyuorb9DJyP3lKpIUtpgnBOk6HpE+guJuclz78E/JMR4Ge0nmQALFsKeTtnZsZB6cWXJN9oqC8NbTWnFh0D/6WRgkIqAHPXALjbpuMaHIOvoipPj7EuH2PmcMAtjhDYjVPkqdEDj2pH7y0f7M+4GQxvtD17ZzgxA2+11/l4Pobn0yLc2k7Ua+yBfqx5cTjntNqxrndCb6kPU9TDTpEenAD0xvQ0VUc/1gzOsncNg7fcjg0ntqM1PSvbzZ0FxfUk8PCiO+N2rLkda05sz4PI71cI0AlK3eH2p/GVHS6F4ZC+L5/Hbmx5VG+5Glo+6da81ew4qw4oQo6C7Fyd+dS2GuSdVlJJW62diAVY8Cca87cPnL54Atdwf/tDbj98SP/xH+BXri44q6TY03l9y+ArtsOKB9VTnLPc7k6oChUWgLPmhtr21LuBF/0KF0Rb3mrHubnloRnZDy0HV1OpwMm5GNn7GAlImviVkorEph3YO5FVPWtuUCpwGFqMcqyaAxrPut7zYP2Cx+01760f8+eu/1NcXf3bR8asZtz9QGg91X0qfYZWFUoZNBUdYMwZWtc05iEudGjazOXXqkJjQMHbzR9nZKBjyxVP0Rg2QXIBzrTmjUqxqXoGL9KdbogFBKvCwWCknkRtPKNXHEbJgzqrHGsz8k4rhd9ux4auj8XfTM9Jdcg0ksqIcXvoGq76E86qLbt+hVGe02qHD5rRSa2UXb/KgLTzFZ2vkAq7PhbYU5EbL31NQhspmdUqFyNijiqqRTWxLkqiEVk78PjRR5h0nbHKMIAfNeOhyTUhSuUyFf/lJ5XnxQNdt8qqZHmeCgaHmc2FSWUPD0FLjRYTfM4/Kt+xUo1wqVpYGgR3HDBMtUEEP92tjZRpQCrkYnXOmWl9YsqlzA4iM5/fk3F0jBL0k/Z6tNca+H9eywCfiUuXQvc5ATcO0JkXKgComZ65cOIDSbc+tbuJuSpb1Kkl/v0x3lxJDVry9tPLWSZQJjAXe4gK88x5mKSzypaSkspIxjE6R/KA3k38mcsXBhROKTZmYAiGzhmqBNaYPHxjVGnQWiIgKz3w6dWb/NT5FatvXjL88ZbqxQG3rtDdiBocaEX92TZ1HE7BfDgQLjThfUm01Z852kc33BsqztZXVFXP+qef4y8t402LcSNDL54fawfcUIvSTz1iTKy6W8XnOETUrxFAP0hFXnQAF7+Lkp6A/P4ooHYOetBhZLw2mGakv16hjUzyoVNy7EHhDzYDe2tGmmafOaAJqPmoPJHAfpls630Ezw7GYKnskIF52RKfNP+NgCEfdPbUpGdTRy+b92YGkPNYizkBJTBe0ovSOUsjJf1dJvIumyxmKZFXza57RiPSvuD9e7w3+dhEj7RXd42gEBQ6eBavQTZSyn2WRpRsN1X+Vkqqoh6jBr2qaSUqVwdXU0WA25iB62HNN2/u8Z3rFV85PfBOe8NFvct8Ze91rgSbr0N7attRVT3NZocfDRfDC5wzVE2HqUZ05Qgu3sdmxA8Gd6ixTUfLZKRUzYDzhm5bs43KNlaJYs/gLXVUIFnSBgKKF90Z10NDpUWTXCsB4s8PZ5xEYJ7kCpPRoFTAeTMD/8lYPBYV6EfRuq/1iFaBd9vbrNoiVVPFIXJi+7iNxzY9IerHm3WPeisQ1oZQKdxphbnsCbVCnQWU8Zx+5Sl/W/PX6b/7S7wcaj7YnfPIVby9foHXiu88+Sker1+wHdbcX7/k5nDKaXtD0+w5aTp0NPzuHy5QqkUROG1uJa/DjKwiRerx5jn9WPP8cI4Lmp89veF2rPi0a9iNGqsDP3Oy56LquN9c53u0qbeM3ubidem4j06f8mDzgv/Z+PP8G9/7x/jXn/yvpvHWPMhqP7p+gHd7Dv0zUBoTjYDT+qvybOm5UO+gleHAlhMuALjghBpNqiq/ZUCHx5wqAdCtgQ/cjo/9FV/q3uKr1ci9duC6q7gdLINXnNUj99o+96s2npPK8Wxf01rHpnK8t97zU5sXWWDgXnODD4rd2HLZr/m0O0ED76yu6Hub62C0sYpyiqIZ5bJClAsm18BwUZ7Yh4nGKjx3lZN3XZzpqgIQJ29/a7qsFlXXHd5r6rqj3dxi2gHfW5SRsQQIxTOAMp5qsye46NDoqzynl3kiyePvnUEDTbNHDzXd0Ob3HU+m/yTZz2QcWO1E0tnrHP0t8xbuRO6y42QeVU0AP79/hJxLVgo3lHNASfOsooz6ssiiGARjjgiX774vnFq/Fzz+8BOP/+vZFFkuMCdDHlnwYUoMnKgSKtN9Su+WQxRsUnQg6aZnK7k4+DLhZpkcI11Ud1+wDN5Ly3jhsY3btLGgTTpHttzNwBBDg2XUQeu7/LkEWkq1kjRhlEbHXPpTVHuWlKTp2sMdIKRJ0RGVjQC518nzAFf9WuQ5Pzqw/v4l45+vWZ1cYR71uJ+JMpmdF379cwVngXChUc894bEGowj3NVwG6s2OmxcPWJ3eEHYa/WCkPruFjzc5IRigag8ErzHtKN7+2N+yGjEeofwMEUA9jF6dLWIAGPkubMVoCG+B+gTUA4/pRwhg2wGz7rP6z3jZCChxmkO3RmtJ8mpOomETFMErvDOi/a+EphEi4Jw8/6IMBGN+DilsmiZUIFMFylZGxUrP+9JjLqHYYX7eoCLFpvT6T5N36d2fjjv3JC3Ps/ws5QCU/8jvh2w7DPViv5Kv6nOOwjJv51WTdrngaO1nMp8zip+ZG1FLzn8OhS/en8FbtkPLy37FWSwQ9b3dmRQtUvAL9275wxefcm91iUKiMmcnlwAx6iN9GcdKIkNNh20HglPY9UilD+j1IFG9XvKWUEhiugftHNp6gtP5GrpuhfOG0Vka03O/JtPB0v0Y4xxa0hx8DOHXeuS8CiTZ0SQHK9crxmNJQTDaZxBVJlz3Y53vk9Dzhjx/X3ci13mIcqYX1T4ndYoc6ZhlQxvTZ2OeoITm89gR1ga/NvjGMJ416IND38bnuAHaQONuePfjS6w642nf8r3dGS5ovnb+EaO3/Prle3x581SMJFfz8uptvnzvQ9rzW8ymZzNe8m634d6w4qTesW5v83uScgJSO6n2NHqg8xVbd4YLijpSYA5e80m35n694qTZ5gigdp4qyO+JypQA6N/z1rc4rwbeP/9v8M9/8P/AdU/A9xn8JwNAKYtuHuL6J6zWb3LwLxjdNY19xIvwfRp9QUXLgS3v8iYjgW0YaJT0/Z6q8zr6JOx46Na8q9dc+pZDGPlo1/AV48m1XIz8vO4qzpqBtfVcdZaTysWoLzxsR3765BkP1i8ZRolCJrniBLx1J8f5+CD5UCs98qC5pdYjnavRylNrUaM6jA2HsaaN0UyPzuo/Js4LqUAnURlNovYmj+EkGbu2B9a1GG1NdaBp9zHfQ2PMiBtihd1GjNvgFWHU+PG411rpaZ0pvf3EtVHFSDRAVfV4bxiVzeD/TqXyMopZzE1pDXBeZ4dGGXF71Ry4dCQey9mZbRvzwqwZs/hEioQoJUnPpVEwOVsnh2dtO0LQOG/uiDC8ri38HkhA/nG01xr4a+WzrJtXOr80x7x4iXqQE/jUZACk5qJnFCa6jUdkEBMoKCuXJu/qMS968rpbFbIsYGqT9Z+OM/f4a+UZnM3yjKvqkEPkkuApL1XSm5a+m8nq1hMfPB50Mg5UQCXAWITfU/8zJQpJLMSbWEeg4D0H0YEPStGNJodL5bpTETWPVULRCPHe4sVg+OYnX+cPr36F+ju3OFVx++QBPIFz/QnDH1ihjOyorx04CK0sqmrvUYeAPzXQKZ599jZvfOkDAJ795pc4f/iU+qe21G/sMFcD/fWa/rASmo8K4umvw2QYjnGSrIIo+qwD6sxPuFIDewmv4hU0AdVBOGj4HrD2hBdaKvyqgDo4qeTbSC6AbQ7QKdx1TTc2rKo9VRU9YkFJn4KW8HCaoGNkYEmX0dqhtUi9JWCRvOE6+DsgPifCxkVnmWRbjkU5tp+B9hQJmCpHh9nf5TGPeW8/72/Zd1L4MYmGFRfJfD+KaEJ6p+cGjEaF6XpLw6JsX+S1SSF2mKIBS2+UZ15Rt8yzSC29P50z3IwtH+w3vLi6yB6vv/XipShbaMf91UuaRrjaK73F1AJiXSeewlQEzrYDyvjsSdS1QzVOxmwtBmbodaQdxHC/Lown7cXwDQrvDXXse20HGtsxOpufxehtBFNNVixJDgihGE5Uw0SHCEGhXZ2jo7m6tFf0zmLHVuaCmJNQgo3BV3RdzeArrBrZjQ0Pmmt+a/uYSrkcbT2JMp+dq/K5V7W8S8LrD6jaSe2NIaAGj9YKe9WBD4S1JlQKtfOog0ddeL72/m9Q/fBrPO3fBuDTbs3+xft89eQJXzv9lOt+Qz2KtO7+5jHfffE+v/jGM9Q9RxO2POifYq7v07maerXHR2A4DAIWKzNwGFqGWLDPKsfOiWd8bTwX1ciJneQfS1qF8MGdRHTqgeA0rq/R1cCZfslXdi8IjxUn1Z/kn/nuXxTwD6hYpCv4nhDGrPyz7b5LU71FW71JpdYYasZwkIAkB77PQMuGWjV8ylNOecAhbLHUcew7ftn9dZQ33NPv8zX9Fhr43s2K908PtN5zUkuF4tvBooD9qGmt0D1P6pF3Nh3/hXe/RWsldFpZyW1qtHjV+1hA7kFzy2W/4cT0tGZkYw85+p4ib6mdxGToq+6E1vYMzuaaGWIkirZ/56ucKOyC5l7cb/DVjFYUgqKpDrTrLXbV4Q61GNHGMfY1tpmiGQSF6+WZB2fy+wYT3c5U0/MNC0wSvJZ1Kb6P1g6EITkj5/lJGfwfc2qqNH5k3S33PdaWuWG5PwunSWkYiFNoFEM75lsNXTVLSk7rjAhUiLNSLRIhk1iD9NdxjAL6erW7EZTfL+13Bfgrpf4U8M8hDOl/MYTwzyy+/7uAP4fAKYA/G0L4n/wox04ebhOEfxwWYLYc4GUSpUYMhNJKTtU+RX4syapM2unLZOBlwaIZXafYLlVNPX5vpvBa2RrTzzyRKgLXxFPO3L+syDM/vxgsLhtFimkCMSpEvmC6xrnHMvctgn9dXLsLZC9PQAoJjWEqXZ45jyhaNeKYEhVTD11QfPbZu7z3M7+BaQf6lw37YUX4G4rNz72U81zUqKHDbwzKBeih/9UT6p+5ReMYu5Z7955yeHlKc7ZFqcDu6hz7WQ8qoFcjNTuZwLsKbTzDbUttd6LJLzddQNVBC2B3QKcIo0KdRz5/G2CnpLLvpaG/WeecAW3c5AmqBpp7W9TZSLg2qBMHjxQcAuGlprEdbbuj3uxiqFdPwD3xsr0YAalWQXr2yRCQ5z5xzH26DH3Xq77koL8K9CeQsQTNSS3j2HuU/n7VMdOYCkW/Uzu2wAAos+DIx79DTI4TFQw120eqXUc1HqXu0J+W92Iyal69OL4q/Fx+Xs4Zd66fSXXjG2fP+eRwyq2zGBW4V++wynF/fZlVP2w1RA5wyAoSCWDoyolKVBAKj3wZaWkaOMhYJSB1J1J/FOjG4ZxG2YCxniooXC8AfbOakhAr22dnyb5bU8VIkhjqk2ymVNl0GSilgj2JHpA8/mW0oDUdWvsIfqPTwkhUygWN85oxWPZjzdomOqLmaqj50ko0+3tn2cTk/dYKSGyqjsr2mLoX0G896sRDB2osDFMfCI1hOKsxtwPaOcKnGtUE6ne3fNn8Jptqx994+T61kqJlv7V9zM+ef0RtRj7ZPuBxrKmxHWt+67s/y9c2v4paeerNDn/9kM7VDIeWerXPY24cJXHTaEdrpaDUwTWc24G+1pzbgUfNjkftNVf9RuoemBHnbE4stk0ntEEVUPWIttGpoHp+yn6bL3Uf8AfO3+DvePhL/IdXF/wP/+b/9U7Sbyy1iDt8yr57hqpOqaKGv+jvV4Tgacw9tjzFIkXULtT77Kl5wkdUtNyGJ7TmPvd5hxUt3wmfcC884JSaj29bHq16bvuKi7an22t6p3m47hm9YjcavnTS8fe/8VtsmtuZYwKiwk2QQpudq3jeb1gZiezcjjWn1V608At548vDaaajNqbntN7Ru4rG9PR+Mg5Hbzm4mpXpc6T9zHRsYqLu4EYGZ/NYtkbArV118u7Zg0RkB4NVAWUn1TE/JPWnahY9Vipkis/sWSxEDmZ/O4Mxo+ARP3nJSyNg6cFfevWTQ/NV2vjHkuqzpK/X2eE4qbFN8s5SFLMr5nKfqT7d0GDMVK8lKbyl4o3lGpLWGefmY+B1bQHuYL7fL+13DPyVUgb4XwB/H/BD4K8qpf6NEMKvLTb9d0II/7n/6MdfgJ4wqZhM4WqdB7EiZAMhU4OYvHhpUU/SU+nz5OlO5ypfJKvuegfLdlQX/RUtaQeHIJ7Dykqhi4AipPKi6Zi6MHAovJ5h4usnA6C8H0CmR5TnxSfwPykFpWNXelIbKYuS1XpEB0MuThUCWktRKBDlhjEaDrVOKgKGJ7t7vPOJxb5/oHrW89HNG1x2p/zCJ5/Qv79hPKsZzxrsdcd41rB6cUn3m2v4dsC0A931Btt0BK+xX9vz8Gs/gCsldJ1odRk7oMcRi6j4YCJo6pV4/zeTN3t41oJXDPsW7wz2iVT/VdpTPdyDDvQ3a8ahyglbKWSrgmLoGsIzg76SZEO767GbCAaso646qvYgfOxRx2q/88k7Af9yUTgevZrTuSbVmzklp/TgyzjWs33S50uqzavAftkSJSf1NfV72f87Cx6Ihyx/ED5/UYwtFWgKM2+YcP2Ped/Ldqw6cLr2387ikyIEiXeb3qvO1blCb2tGnvYbrkfLL158yptnn9G0+3lEx46SKFgAh2rTxXsSpqJxbYxCdUpmZE+OVmHI9LWcqA7QBEzVS8SsNxgfaVzR01gmIYqU6nSPGtOzG1t6b6mj5n7KVSilVOUZTEl+2lU4L4AhFeMaXJUT/xLYX1UHbg7n1HpkZQ/cDi27sWHwhv3Y8LDeszI9e1cLjSEYPFKZt657TARouo6RttrHsCLQKjHoB6F3BKMkArBzhI8UoTO4a1nWqrf2vNl+nxe/JtLAp9We/VizG1b4oDixB75/+4hn/YrOa27Gmq/cfAt70WHPOpqnHU9293hx/ZAH6qkU/AqK290Zl4czTpst909eEIJie/UmLij+gXd/lXvvfMLtkwfsDhsa0/P44cd5PNpV9JYqSRjVtUNVEfQH8L2hOjlQbTq+dHHDvacvedS8zZ/8e3+J794+4M/85js83nT875/9fxm236Vaf4VH9R/G43h6+GsM3Ydoe47SDbU+xegGQ82pesRl+Igz9Sbv1oG9axncGxzY8TW+wZmyXFSOh+ueN9Yr/vInNb8evsd/9cFDPrxe8+ZmT+dExrR3mt1gMDoQArzVHnjZn/Lg9PlsbtHaReUkeb5Gec6rQ6STCQWninknJhqQe9fEYll9Tv412nEvGk8h6Chm0NGPDRtnWDU7vDfcdie01aGo9jzx0q0ZsWagXu3RlZvRQLX1aOvzexqcEseNM5mHP5tTZo6az1/v0z5KhUz5cc7MDACPnoC18QtMMo9Elj/LuTw7AWNuVALlBHIegTVjxkkJpMu1zSO741jRjzWrZkdV9bk/yUkVgmIcq0lVz0/OShCn0k/a691+Nzz+fxT4TgjhtwCUUv8q8A8CS+D/H7mlyUPaVD0ugYNMJSjUTPLLEKKe7MKqXnr8skEgmgc5nJYSa2HuzXdBZ6B9xwtfTibFd8trSp40rT2N7WbZ76UVXVIUYPJEzjy9fvK4l1dmCgnH8qdC8hqM8vjEMVTEgkLjTDbURw+eCz4mVcl9VQRqJWHeSnvR/UeSo33UDB+D4d/55T/BT59/xNt/77f52r8/8M1Pv874aw39H25xqwo9egkXKkU4NTQnW4bdiu52w8cv3+He6pLH3/g+4dygPnPwIMAIw7fWHG5O2Lz5An3qhHoTgBq4VVAFCasOCmXA3VQM25UAzui9R4WoEGQZP5KQtzYOHb39JYfTO4O14rEZ9ytsNTAeKvTHI/r9Ab0aOXnwkqxMo4NQmey0wASnjgLeY5720oOSPlNFASSAEPxsfxkzodh+Sh4FZsoTaUgtw9PyofpcsP65oD9dy9K7H42IV54vNuFP313olsf6UcH8kha1/Kw8R/o8GWK3w4b9WLOyfU4qHIPJ1Xd7rzm3B37h3g843VxhjKPvpgS+qo7J1U4Lb9grlAnodhSuPqBWKeqEJJcPwAi0gbCP98qJZ1A16d5GI8ILJS2MQptSipyQaBbPZTi0DENNW+/Ro9BytPb0Y0VrOwZfYbSbJeX2Y52VodL9SoW5TKSOJRAAIj9a6ZG2OmCU8PQPY83jsyfc9mt+a/uAr548Yzc2GBU4rXe4TufqpyEourFhP7ScNrfUdZH75ArDTzPJmnjQvYeDI1Ti0cR6jJFifrtvP2D1xiVfefR9vv3ZV4WaFKkioxfJ1hPb83JoUEju0g9/8FXeM9/GnA6cnb9A37zBs8M5Vo9cnL2g7xtq23PRXtNGzvgw1HxyOGcIipOzS8x7PWerz6g+ucA2PWbV4wcRCCAZfF6JinAdZBwA9DGfK8Tn7BTnbz/h5N5LXF9x/8UVP3f2GX/5+bsM7u/lXwueYfc9Pu2FCnS6+Vs5uGeAozVv8EC9x33OeWQVrfF82D1krTSNHVhXDt1tMGpNCIqVHfnavS2/dP+ab9+u+fLpgW9ee37rcsNZPdI7zYNVz0k98mzXYHRgPxhWlaPWnqfdhrf2J5xurvKcI3KYgcPYoPFY7eh8RWOktkNdyGr2rmL0hpNqT1sdWDU7+r4Rzv5Y0bY72vObGWhX1gsFzCm65yf4K401Q6ZbOmdRdnrXV5tbeQZB4cdiLorvZhh1dM7E4xtHZRzBTQW4kiGQDYJqyPNaduyogIrSu74wHkzcVo+Tzj9+ohQnmqNSU66Vnjl7inonC05QyoGs9JCjHyEoatVnHDU5f+aOyuzoKpwFte0n2iqTAyHRNpUaZnNo6WhKUYHPi7y+Fi18MU30P6ntdwP4vwN8WPz9Q+CPHdnub1dK/QrwMfBPhhC+eexgSql/BPhHAN49W80GLUwARx5YaXknS7awmIN47JIBsGylNZ0sZgmDm0zlKQ0FF8xMFzcZEikCoF8BVJZa4OkFTC9p8vijyEbK0iurVMj64+X3RE1zOc5khCjlpQps3CwlNYcQPblKipqhYigxTT66LCAmfbFB5E9TEnTvhWuZKiDW+i4lygXNiXX88PYxq7+0496f+Ii3/q2H7F+ecfoXn7L7uy8Yzlr6eyvsbYf6vsf1FUp7rq/vs7IHzs5fEN5SqOeOcKUJzyTBd9itqNqDeMlsgFPF+FaDvh1RFx516VHXMD5vGQ/VbGIuf2ZqSORcEyfnPEGaCeyGoGC03GzPWYctbTXgdhX6JhZyqUeGmxa76eK49ISAcLfTs9TzCrh4navHll7hEqyWRltJGVLFpKsSUC/Hn5JcjwTiE/iWndLY8bP9QtFPyn4V9+xzW3EN+aOFoZC9ZckQUBNlaLko5f1Uor0drxr5hd0qvFnlZwBX3SkX7TUv9+dURqgBvbcCUPTAzSAyhzYWuko84hPb86C9pLY9+8NGqClmFE3vus9Gn9IeHT26ykSJ2SYI2K+LDqV0naAkHyWq+EjdCA8qRgW8/AtDQXmyBR2wHVDWEwbDuKtnER9rJ1BkzMgw1gLiR89+aKnqITtRglHFPKomDyIwOovzJi/sokwzFV1KhZau+g3DUPPOvY/56HDBo81zrg+n9PsLAO631/io0mKVSBib6F3VdpSo2WDkPpo4fg9BQHGsus0YwMbfG6EMBqcnqsa+or1/zc/ob2fDzMfExcvDGfeba06rPS+6DV9/8H2e3T6kuzyh1TeYtues2vKsO5eohNecPHiBaUZ8bxn3kSMfpY8f1XuaB7ewB9UG1u+/lHyhAHo1ohKNq45jsYrPfUSiPcuhbwVA2rXD+gNvPb4hDJo3P/mEXzj7Kd79+E/wa8//M/x/Dn+NXfddbg+/geueoMyKanPOpfqUG17wgxHOx0e85FN0MDzfvcPAyEnQtMryc+d7fvHRDV8/uebLp5/xZnuftX3Iu6cP2A1bfutyzeN1F2UyYWVHzuuRh+3Ae+sDt6Ol95rnhwsqO7Bqt4SgOPQrdv2KMVhW9kAVxQtSwU0XDAfXiLdbiVrMpt5ycnaZPeT7/QYstKe32PNOKqpvo4f51BEOGr+z9IcWox113WXDo213s8ibrlIumM7/lBaKz8wQSPNDmgeNgwj+pVr8KHNxWpsXoDlVhe4PbY7MajtKJK5YzwVMT+9VOS9NGOd4W6qhaSN1ZFIUOBVMNOm8MVKRKKZ+NucWjp6gJNoWqa55/nAGE+a5WC46xFDDLBKc5vNjNV5et1ZGmH8/td8N4H9sdC5d3b8MvB9CuFVK/QPAvw789LGDhRD+NPCnAX7x7XsBpqSRED1bsp3OXs9ZZwqPnvegNRxTOwmF516OVyjhBH/npUsGRGplNdO8vZqONfPKp+0WlKCy+ukXGSnpnOXxQ5C+ps8TzzZ5x0rJ0lkIdhGpWN6feDZ0ySd0qTrwVAkwKTWUnMVllKPSjuvdOffGj/jS3/br3HzzMYcPT1n9xSuqXzqw/9I5rq3gMTQ3W55/8A7rdku7FmUc9VS8osPLFX40NO0tfd9gnKG9uIYLxfioljyBlGncg7uq8INBW0dwARW1mX30KKuUIBlU9PAXzyt5tyPYCMYTRgOMXFw8y/sHrwnXRs6pwLRDPE7c3ivxLpVe7OIeL8H6bMx5nXM08piOk+vM076g3qTtZ4ZjsdiEaAzA9OJmWlOxHYXBIcNh8a4Vx5mf/HhuwPLeln/rDC7n7+Ox38soXvkelNde7lP25dhCuqn2DK5i72pux5aAYmMPnNUCXjpX03ubJX8VgcYMrIxUENXO09Z76rrLkaSkyOFHg2kdunbi2a2ioboGakWolBS4C0AfoA1CYXHTW5RpIAYpRlfcPqVDVJiKNIVIMcNPHk3TDAIKVgd8NEK9Mxg7YscB5yyN8lIHIuaDAKhe5DeVmiqplhVHM8UgggOjXAQeUa1Ij7SmZ9tvWK22/C2Pvs3Zg2fcaz7h9Idv88ObN2n0wKba09o+coqFT23MOB8nKkheTggwgNp5wokWys8YCNZIku9jDbuA3xn67ZpxrDD7mmrT0d6/oeUG11mG7YoVcO/eU4au4XBY8+b5p6zvXXL/Zz/C31r6qxWH7QmbZkdlRg5jw/XtBe3pLcp6TNWjrMPta652F7y7umRT7cVQ83Eca1BrPymKtchzrJQkUzmgA/YSnWSM49OEibqoAI8ojTmZq0/ff8rf8u4zvvGVFbvrM5rVjsPuHn/105/lz33wBv+7z/7v3F7/FVanf4j9za9Qbb5KU615my/zzd3/iV88/Yf5yB34Ht/ChZ7/6U/XvLl5xvnpS6qTHe9uvs3XPnyD/9v3f5FvXa35u997wXU0pKwaef/0wMp4Gu348vqGl0PL6DV7V3N1OOPmcAJI5eXaDtRIojkIXc4Fw6baSQXeoLOQBURaSj2IfPLNitVqS326w947EJySRPeY8K46hbuquXn6AO8Nq9UWXQ340QpwjXNmOl7wKqr1mEKtx0NhBCTpWCBLu/rR5HXT1n2e43L+i1d5fqyaDqV9zA3TWbBh5kgKkp0hlDyXgXg5X5UyzAnMz+fEeb6TtQPNepffzTv98xoKYYWEX1JkQiLgViKD6y2mHuQeJadT7Jc7SJ5IcpC5OJeIoV4YSsmx81q3nyT3/k7aD4H3ir/fRbz6uYUQrovf/7xS6n+plHoYQnj2+Ye+y02ewMlUyOZYSGl6oHcLWUibPPzJ+s5Shkye8oDCLTiyRruZ4s8yUx+YheiAV9J+JjqHRydOf5BzvErG0RWpxaV3OOkBH7sPSQ4tqf8sjZDy3i5DjFIFVIqJ6CylNteAN8XklNQ6XNA8Wj/nzZ/+HuFE496tOO2fcvPtR+y+fcbp8xfYf7jH1Zbh3ZbqyYGze89xfS0JWNbjn1foc6F51Rc71IUXr44d4aDgRcB/yaL3I3oMqIOXolqjiV78MPE3kahMcFLkqwT7oSjdXRoFwUdjU4vMYXDTZKrrURb2TUBdyTnCEBUgVPTuFZSf4NVMQvLOuZNXhgVALj33x+g1S2APMw9t+k5AYWGYZgOkoKWVUQFPvkeKMLtHpQGTjpG+/6LJ9FV0nckInqJ53qs7+yliPQMV+1W8f/ldKd7fZTLdbMGMUqhvnzxlcNXMuBeQovPY3tj9FH3QnqbqWDU76nY/GY9xrtK1QxmPWQ1C5agj4FcQWgWVIliFGsVe5QQBhAFUF8dxj4BGh3iHIw8cUS6WZxDBiXJMhq8Cu+nhpBewNHjhk6vAeGjY3p6xWm0xdsxzX/YQGhepCU4U1eKNVExJ6K9SVsuRqfgM1/ZApSUCcP7GE8xqgDpw783POD1/yd/44OdxQXO/vcJGFZi6PlCv9phmZNzX2FUPQ/TwdnHM1vJ7qBRhZfCtQR8codXoRyO6n9aG/e0p2+sLrB1Yn1+ha5fVWEwzUp/v2PASVXnCoKEO6EcD7b2B5mbL6cFy+/Q+dbemMgPdrUgJ203H7tkFN9tzjJaE7tp2En0xCN3PIFGdShGMmiITCtQBMfY6JV7rzkhUqHExlyO+d0YAPz6Ofx2jHxee+sEtdX8LwKq74u9cb/nb3635R5/9DJ92v0QI8MuXP8/bq55ffbHhG/dfMvi/jxP7MRvj+OH+MX/P4w+AA+enL1m98zKPn9XJDV8/ueQ//da36Meav/TsKwxecXCa+/WAUYGVdpxayfWwyvG037B3lpUZafRA7UZOmy3rekfT7LndnUnieExqbqqOwVW0qsvvpPc6K1xV6w5775CjJGpEojoO/M4SnGfc10KZbQ7UZ1vCKNS6EIF9UEE8/TCBfhcVckZLtRKeen53Nblmhtz/6Jjwc5CYq0h7BUqB0wKik1a+HWkiACYoySdTAYxcf3IIJUP8VXlKcNeZIb9P9CBT97KuLBw6+RzFvmkNmXn5Y6tWB6rVoVg3XY7KKsjGki6OIXhFlI+0cdm48e6uQ+p1bD8B/r/99leBn1ZKfQX4CPiHgP9auYFS6k3gsxBCUEr9UeRVfv5FB1aKzItjCWJiAptiekkymClCWeU+MPcETry9lAgryYTltoro3S0CG1r5nMCSLPOUFJe3KShHx17cOehPwHvi98EUSSgNnwTwgRwZcH5K5FVFiDBJFJqcK+Du5CLI9cwpFsuIg3OphkLa3mXKU5IylQhGBGMhRPDvuTyccfvNn+cru29hf+qA/+mK6oOOw2HN5dPHnPxLl5z80aeM76wYv1HTmBtufvMx1ml2V6cMQ83m5ormzVvh+F8pqpMd2noOPzyjP7ScPngCjUbdRDqEkcS5XIQlyFiSSTmgSrZI9v6rOzQVVEBXUWoxloMPhfQiwPCkpXpvDzZ5YOM90A7XWdFbj4c/1kIge5yAXIF4GTXKnuQ4vu+0/PzV/Pfl9ybEReoLPPgqyLblKYq/7/QgqMmQ8nffs2PGd6b+GEcY7WIfZuM+fZ7vDWVfJrrc0sBebqeVn3muyyhaquAagqJ3NbfDOiqLiK78SbPF5m00TbPHxiJbPhqaygQxCK1HWT15bpt40xolj3CQGSVUmtBoAYZEm3HvUJVH7bxw/0c1Ja6nm29iBCFSfoJT0TMeAc8oXGVl/GS8Go9tO9b+Vjx0xVgq6VApmdFFGyhJ82ntOfStRDq05AoY5XAYRm8l6kYsaFaJh3ezuuVme87q7CafR7cDFvja/R/w0dVbNFUXKRQxidgKYKo2MRHWeuHFVxFM90AIqL0nVBrfCPAnBMKpRr8zUl0dGIY6GzTOGS6fPub04gX1eUzKb4QfrjaO0Gv6Z2uGJw3t6S26dgSvGLaSHyERDelP8Arfy3i9OHuBqXvcUGGbHvWGy3NQODX4VqNcQF+OMAYx9gKwD3CAcBBHhF6PMBaFBxWyOquASgnfdZyrDHKOlcq1HbCB1VcvIcA3zBO+sROZ4b/rUFE/3jI8WzHsVrQPr1G1w+9jQcGTUQxLI+fwe8v++Tn1es/Pv/Pr3N6eS8Er7TGxQu657Wm042cufsiq2fHJ1ZsM3rLSI3svcp9GeTbmwGGUQotNs2ezuqGpDjmhdBjq2TuntWN9ciM8fBUwG0ksVcaLkyfem3Cr0Y2j++yUw25Du97Gd8/HYneaMIvgBvwoc6yP0ql5LFZO5mCvSAucicA37Yt1Anx7K4A/fV84bEqjPx0jgeI0L2SpbafAiCMpfZ+2nTpdzGNpbl5E27RxEslwU99BriVkp1VatBPYD3ePH5u203o53Tu51uAkf6EqitwFL/lyvpi787HivPOT9nq23zHwDyGMSql/AvgLyPTxL4UQvqmU+kfj9/8C8F8G/jElbvo98A+FEO6OvGVTIfPiQlB3aA3LZMXcp5hMM/NsLkB46bGaA+vCCxwKlZH0/hRZ8PL3XXrCjDKRjzMdKy2iKYy3TFZWau71LPuZtpNFm5lBsjQQdPCzhOBUBVG/4n087lmQpL5xbFAq0LkqU4XK67QxOXDKD5hqEigV+OD7X2P8LctXvvwtqj91wPyfR7bdCW1f0/3VM+zjDr+ysOmomo5PP/kSq2rPi/09+rHhjfs71N6BDZjVwOHpOYfDirruUM8C489aOLWYqwF1iAvAF008CdyqIMAo5UQsQK+KxZIkQVdNkvwherpfGNSZQzURZKUFJHFZD3byzCbPeJqYiZO6mddjnvU8efxVuDPB55ZBt5r/vniewBRyXgD9WYsL2zHKzPJ8JX0o9b5cZMpoQRkZmPXpDsj3hGBmSWOlEXzM4/x5yj/lNkfpdPFP5w29q7np12jlaYzDqiiB6U02+tt2G+UmEy3M40eD1mNeKPVa9mMdz5HWbq3EOD2x+MaAglBFazQEzCgcRXXw0EC4VahrJGl9G6/bIJ7/yBtXtYde4w961idlfU5cxIn3ztQ9wessS1hSptK/9EycNygfUGq6/wn0KxVygSYgV/n0QVNXHaf1gaoRsDx2Nfa0E4pG7dFh5OzRc7w3bE6vGKMUqXMWPxrq004M6NrLPjZI1ANyFETtA1QOXY8EFdkWHsKppn64xTvDfnsSgacYAsOhpXnzNit+cVAC/ltP8+AWfZUkVifQdv7wKboZc5QwjBq3r1hdXGM3PWol1cLdVS0FAe8jCcguRGMIwkboSGgFWyf2kQXVCsccLc+XOky5HGmIl3rpCfQrhC5UMdG/KrLHnk3A3O8wvgMD1Rs7qnEXo0oBc+iFZrQBbuUY/ccbqZ3y/g/Qq5GKHebZQLdbU2vHifbU2vLu6jJXn25WO072Oy4Pp5xVB+4pz8buqcyYK4NXZsgUmSpI7QI3iPFYb3aMXc3Y1zQnItvc365YvXElzz4oKawYlES1ungPVKA/tEKxi9WEg9PoeiBNqROXX2XaZfJ0K+2xq04kPJNHP81Lej6PpMR5FelIKr7fxGhMMrBVsW6EUKjjlYA7Op6Ck9ydEEClOTTN04UBcXTujnN8nkt1yH0MXsnzD8V68ap1sDRuyusqvs/TpBEKVm5hmvdDEAMgR8pTX19zpk/gJx7/31ELIfx54M8vPvsXit//eeCf/+0cO3GmWQKQIxZr3id5GZdfFJGDmWFQ0F6WIN37OS2h5Pa/quJp+m5aTPXMqCiLKck2yRiZKpSmzydO7ZzvnfqqiFVeX0VpiHSNbKiUeuVeH59g4q8pabmK6gtjrIiYkncTyDdR+1t2Dbng150oifJ853s/x8995Zc5fficlz+4xycv3+bhyTPu/+CKwy+c496taT675eT2BqUCP/Xl35BI6rYW+cz7oBmxNx1ue0rfg3vaYN4c8Kc20yKy56cAnLlQUpyIs0xi9IbC3KsdnJLZIU7sOSqgIrBL/GpTALKgwHqhbCgBBOLBIi/KSepT7jsywXqmiVjNvS75sSwGdCgm5rS9MslbTvZ6zQDxKxa3o62kAB3pQ9n3ZRj8Tt9LQ8qI58u7+cpQKsWU4zwZAeX7laT9pB+LMLyav7Pz/k90obKl5E0XDIMX7e8kKRiCcP1Hb1m3W5rVDl2NMp5Gk2lPPijMakCvnMysidffyo0LBoje/bAyMpRGT7BaFmof0AeH6j361hOeaNSZF373VuOvDMNtizZeogrGo1ejSH6qgNvWcVzp/BzCqKdclTB3Tszki71mnjA4PZsU3RydcPBTciaQpT5HLyolzWpP163i3CLGTLPe0u9XmOuB6vwg70YtToKLNz8jeEX78IbhumV7eSG5M6NGrR2cB+HMe8iSnunfOag+zl+NwWuF3jkxmB4EVu0V1dOO/mbN6o1LfG8EcKkgFJwADEHqfLQB1Xjqx9ssqRoOGnPWTXKrg3idVRfnChvf/b3GdxbdjHIs7wkWGGXb0GjJQag0qvewQ6IWkA0AyuiaQ5K7Uz6IY5o/DFM0wJMCLNJC8XOI+22KCWIPbGUsDS8kab1+awd1oP/whKvnD1m3W8wbPeFGw6ioTg8MB0mKfrO5ofMVna+ogmi8d/s1zhtqM7LREklpTM/J+galfK5d4J3BVAO6GoXypYNEXlTAPhChhrDXDFcrbNtF41nlAnZhjCUy45wTBiMF0CpJAk+GmuRHSOQrOH3Hex28ycm+eV5WItk8JdbIefxgsgNJ1o94KxfH1bX0oQS+6hXzT+5LjN6qeDwVVI485ET21JVYQdg042xulbFMdFQl6qqeridtt6CxLp0w6vPWgjIquDh3aibWKvk8TPa6tmP1D34/tNe6ci9AybublclOg7AIg2UgUYCGvA1MRYNS9KDYv8zMT1QhAK3VDHwnsD8HJgG/qGI399SnfIJ0TJcNiDLHYGkslMfxfn5+Oc5dbx0wozRUdpjVOXCF5m6uqJruCXMQVcqJGiOVPkfvcrEVo6as/zIKMHH/Uj/l3EY5VraTRelPwum/fMuuX6O15/aXH1H/xh7+HnB/1HIxfsZn33+fVax0Wp/uCHuNehoyrcEFwydXj/ns5jFfr/4G5p1ekiafxntnfVZHuTO5lfNyQLYzr5i4dBCvYFqMojGqdPSolI739bQS+32UWrTiiQlOzwFw2ael9+V4T155CYppgk/gXKEmgyAZE0e8WanNFsmlQZG2y9Gz4iDJQFhEGKYw813DI4HlnEScqHuzqJYA/jSmjhnc5XmELjC9n8vIVe7ugqOeDNTn+wtqM9K5KDkYx7ixjrP1FU1zwLbiJSQ+z+AVphGvsz3thM+/imC/UqARGo+BYBVhHb3s0fOfKT6DJ9QG/AiVBudQFZnnrxqPtgE7DuwvT1E7SaJdndxQnUsdCj9q/GBJBcNUzGUJTkBM4iXbyuF7i3eG4AzOSag+AfxQqJ0lxZ487xGyZ7+8/0na0tY9zlnGcaqHoesRO1T02zV23Qug99Gbv1f0Nxu09dh1z9pdU50e5oM7ecANk4dbAzsI9xX64HDnNb61qO4gu64UjAH75p5h1xBGjT4ZJTJSIXNQjCCoKnrOz0NWTcKJcZIHK9EREFV61DpWHe8MrrPicbUxOvEySAXxVo7D4PJYULuYu+GE2x9veAR78XqTFHFyBiim8ZTuR+pY+izek1DJdas+CL0MCAZUnDNZCwCuN1sYFf7aEkbN7vqMgOLia5+Ic6IJ0HqU83z8rXd4d3XNveaGztU5egywO2ykJkK1xaNp7YHVaottOuqLHW4vN3ncN5hWaqCoymPXnRhSAcLeZMeLPT3Iy+Hi+xW96Im6pivh0Y+HSjz2iVNfj5O3u0hud12Fti7TWHSsV5G92yqgGy/homRcOTmOjgZFmQ8mQNllmo5QsfwdEC0JtarYp/gcJnAfFMnxWCq85e0jbWkSjihacmCZaZ3Ozqxigk4RhpLumfub5IFT31TI60aix0pSOdNnxuMBFXMlEjUvRSPu0JZe17ZwGP1+aq898FcqiJFfcMZmHsUiAlAmTs7oBAsQkEFEfPGyDFXMShfOfpgNjFC+oEcs22UyznGO8yKpZnZsCmATSDP5nIs8GQaTYZLA+5wWVKoQ2VitM/0OE9hJnk9HqSJQeL0LL2u5X2qVGWcLQQZhFMXSijoLFQO7b92n+dqW83vPcM/fkMQ+4xgPDfavHuCPaNQ3PO3He24u7xNQrJ2hf9KwObuiOt+jrWezuuFirOlcLc9qE3n+QeVQKKVFH4qxUz5DxQRO9bRL9sx7sq62kLCZPDwp4dLEyTwB+zT5BUSWz4nhGeKikqsuqFcYJqlfsd/5EhYemkQbkuvSMw/Nnad1jGJTcmGL4+XF5xXeoqNtEWEojYfS8EjeIqUlqqXgzvt5932dKHHpM/CFMTx5/5dUu2PHnN0DAoehFZ3xSF3xxXtX267Q7J4iibpyqHaYVHtqL57kNYRaSTKnJyd3hpXB18L5DlrGQbAa3TkB/qMXlZ/O5zHnL+30jGxANyOre9f4wVA5zWF7IknEjeQZjH2NNk745hGQJApAiLkdKdmx0p6xqyXS4URbfLrf8q+qupzw65xlcBW9q+P+AyZS2JyzNM1egL52WCuRAtOM4hFVOymQt6upT3dy7aPCnkuxLLzC7SrqR1tJmEc87nTI+PfIvU2PWiHv3BDwpxpfacwuZkqnqfgEeK5YffkyevXlvqbonHogjgG/NejTcTo+zN45HNlQycnWadk58egg9BIcuOcNofOSiOrF+6xaRbBMCdtpKUmgPvYp6/n7Yi4ZENAfSGXVxViM90CFCPYVMEhSeKi1JJAbUH1AjfEFTK9PFe/lIaDNQLgxtOstF1/6RIxWx1QbJcC91SWbapffh+Qcujh5ifea3sUEW9Nxcv6SatPhOgtBMe4b7KqjPt1LDYtUsC4ogmeSrXXi1dfNiO8M7mAlMb6NeTNhBBsYX4qqjK7H7I13+1qiOm9dkqlOsZlmyGAVpjkuefN15fNzkGhpuqlpiQiz9UHFCtSpqFyWaPVM865HaEkJXCsmrGES+I5j3FPknIUZ6Ccak6oSI6IUgUjHUGkM3cEkpUdn+n4238e1K8S+l3QkinUm5wmlAYfkAyg1kuius9OGcHSt+Ul7fdrrDfyjta8Icy5c+lqFo0ktwPSCLaks6fsCqGcL1RfzRvo+qaykfV8VziqsdRZguaQnJW1cICctL/s47Tsl+84lvXQ2BNJ+U16AbK8X17csr72kOiTec0oUXkYI8nlSIi8Oo6ZiQFr5mcRi+huYqRI5Zbi6vo/518559LM/4K2f/Q43f/0xbrTUqz1uW2P+/QG+ARc/9Qk/+Js/R236nPR6c3mfM/0cpT3Gjjw4f8rVzT0++u5XeecXv4PaeZmM3WLSWoDWO972NDzKYkE+PgsTvX02erZ1GnuyTVaBKCMGKqDPRvyVjQvuYuL10ShYTJCvCrtmsHyHijQlcKZFI6nczq45qFce++75w+LvI98nA6G43nSeWb/D/Gd5vUsjQhWGdwnel4Zz+jweMO8/5QMcD9+W72Tp9T+MLbuhxZOoc04UacxAUx1omkNWsXBDlT3niUOPjaB/g3hZk4JLBKfBKPw68QSYgX6UEnA4eNAmVqRFitY5J9KVnUjGjtd1Bu0p7J8S7Vxn0SYWFjIOZUVGNGv8O8/QVeigGIswvTYO702u0DmOFSEorB2ivGecB5xlP6wYo5hBbQepWWAmDf8k8WerAe+mZ+UHg25GKrcXQ+PWohqXQZSsQgE9OPzOohknUJVAf4iWY6K91HG/TsC1vRlg9KL2E2+1ckoEAW4Qrn2n8Ds7efINcBqkRsjzCLxrBGiXQ2uJYTTlsJuaAX064K5qiQStBvSZGCMqhKnwWIsAYBvnndtoICYnA0yJzAah64QgtJ4UpTj4TPMRCVhiZWO51mDU3HhJ26RH74Ae/IuK3dMLQlC0CfT3SnINVuCfG5pmjzEj+06SVZQS3n4IitXmlm5oOVlf471mf3vKYXvC+vwKVTvaN6/FuOqMzK3xusI2GiJOoqRhnJwqc3pmIPTyt7upJ0nj6OXWJyPjtslKTcR5UFtRssqguwDUyiDGupoiLSVeCFrN6VWpydI7m/slkTuAVmJgxcTunHRd0EXl5Z8PmeV8O42lODbcNM8mkB8cM+NgnkNw1+kJKtcRgWktyd8V1NP0ua7mTtQyMpA3W+Slxa3jMyjm/Ne4/cTj/xo2xWQZ41UE5ekFnW+b+cZp4On5dsl4OH6e+EXi2iXdW5jTg9L2n+M9nB33iOcy0ZCOFbw45qFMoL4EQEuQPzu+3Ky8bxm2n9FwZtsn42eKCOR99FzRyDKiiiJKiQ4B0bOvpn1NkficJP50mADXZ7/+Fd78A7/F6uKGqyePaDY7oSz0FvMbPepLgXdvvsuzj9/h6vo+bb2nGxqePXmLtt7nMu33TqSipn4xwtXd51ImL82/SLdLZdCuVJgv6oX3f0YHTPfOF0ocQYyDbD2GgD4fo9eXbCQoFQjRa3hH7WeRmCvHpQD1BZA306KRvDd3fi+9ODCFfI+N32OfZ0/VXM3olQtWOo9X2dv1hQvAq/oDd+g+8++mz/wxIPYjNBcMz2JBKavEmF3bA03VUdtOkseVVOAEhH8MuSiXXsXK0ZYI1BShVoRKePsoAf3ydzypUQIuADVEdaw2SuX14rFVg5fjBXjy/S9xsr6mPRfpxsw5bhw2eizHS+FhtydboUQUErb+YBl3dVaFmn0HOeLmncm5E8Y4xqjWkZJu2+rAzeGEyow0tsOaIRdMUsZh6oHxICDMNn3m/aZcA92M1M0ooL8J03OPIEc/GBg/bRmvGkw7gnJS2Ts6ZaiAFWAhtFqq9e48qvcSFd4JpSZUWsDwwUsS92OF2nu4RWSAPRFYK/zb4lkefq1F3YA57eClQr01rz6dkqlzK8F/iZlWHtseCDstoM0pKTJ2mPpOzzReIl5NwEuZAG0EfQ2EjRawOSDHGeJ3CXRumWhLBlBKIgDE7V0oACoyPz6aDCi3r9jtT7h48HSiU23iOQ5weHYGQNvu0dqzO2wyrUtrR7dfc3ZyiXOG3eGE2nZYOzDsVvhB4EXz4BbduKl4nQZ1GukpPUL5SeBSB8xJL9KqCqlvoGC4buV9T4oyo0HpEbXxvHzxmMdf+UGmBy1bMiDu5B7ZuYhDbuVmBQVLJWWtVFcDJsNUhSnCp+PfhkxTTlGESQno7mnlJMVPpxaAvOhHOWeGuYWSnT9F1FmlyIa7O5fLTnPjYTamU8KyY3J+5igzdyMRpXPoNW7Sy9e7jz+u9loD/9ngS1ns2fO5sEgV04tQFrXJG6nPH4hBCc8w6vKWOQSh8G7OPJCllz8dI/d3Ci3CXcsySxkeKWiUIwEFJajk8udt1ZQA7AvPfPpOfrrs8U8JfHcB1JxWdCyBGCYgnyRDj4GxMnF5Tn+S30VeT87TmD27D+9xefVAvEeHBmUcdtXhDxb9wYj98oFH5kOUCfSXa3aHDTf9CYOruH/2jJPzl9Tne1TtcG81GNPDp+mkTCC8AMNTp5g+i9uJNBp3riteuDyLQYmCSm8w9/uc9EdQQiPIahxxt9bLNrYwMseiX+n8SX0iLoDCI1cTrQheCcxn1xOYX1sehMyiA0uPfUpOyyAk81KZLxTL8VPwW/N22TCdjJuZAXDkfQrhSL9+xLaMaH1eK7cZXEUVqXAB0ee3ehRvf3PANp28j85g2y7zlPVqRLVhAgGWzOcPjRb+vhIQ6tdV1OwP+SYoH0GZQiQ9rVBV/HmFvo5oMIb4Ly6e0Ty8FdnJg46eT5XVTZSRBMmwN/jOTomDOQclSG2MtsvzWqozcLg8xXuNjUo/1o4538LaiSIo9EfPptllcKe1l0JJMVlSmSC5OKnacAQH+mQUHneA4aZFDwZ7r5P7NzEVBfxXTipgn3cT994VYLeSJOnQanBBKFUAVoP2ZBG2mFArXm5FWGmh1zXTOYOJuGitqd7YE24NfldJ4v4HI/rRMFVXDkU/YZLAXNgH8nAR1aA+zhWDijSjAKfRKTUg/yJoVHUcR00cSwHCmYwjOi8VixWwA1VFg2CIXP4UGQCpbVBHRSji8XfIfLOK/UuJxQeFvTjgPjP52sJZlBv9FA4fnaLtSG3HqJTnZvO+94a6OWSZxwent7i+wq56oez0hYOo9lNCcqJUJSDZCk8+dAq/rSRJetT4g4lqWZGiFnOlhGIXb3wN9x9+JnUYelPMeRP/PQNlxeRYUcToQzHfpOhtuWakZ+7jWpj2T7U14rHEkIrPYlDTd1XIsrszAwBmDsocAU7fpX4cmc8m7PNqj0r24qsYWUpRbTuBfyBGh9VxAyjNxdkJGM8ZnVozQyQwGRtFH173tpQ2//3SXm/gD3EBkd+DV3dkEbMGe9q+DIGlFgelSpZ4se2M/hFBfsqwzwktXuH6Ch2rv74qY3/qz105rhxJKNuy/kDqx9ITD+D1LDJwx5A4AuZ9kcg7/fSv2E8KiKV9jwHfUgVIKanoWSb0LmVKE/hXSir8QfL8C3XJxhoNm9UttzvR7F+fXGLaEber8L2h2uww9wawgaa54VE10n30FZQKXN9ecL9+IpSaawtewvxhZ2XcLCeeoljjdAPmm+QJML0Z6T5EVQ+/NeLlPfPobQT7vSbsNPp8IBxsBu0ohFYwqJkXKPFa8wKz1GGOnqFj3p6SqzlRmHiFB//43+VEfczLc1S/Pxx5r8ptlvx/FZhFM1L/dFQBisctDYqyXsexiNYXtcmI8Ef3C4tjly2pVOlYxXa12lKd7DJVIHHkAXQ7RppGXPzSv0pFsC7A01davMpVBHBE7jcQdFw/TVT0GbwUotqNAlR1dHacOdr1tSzYBhQe4wbG21oA5UakIJUNogB06aYoVeSJGztg950og2iPGyOg6iwvrh9yuroGmOgSkOemJEnYRKOqKmiHidqjrcsGRkqGBCYJTBNQZ3Hu3AZcV8FzhT3rUKduSqy3oN8cULtaPmv9RLlokfe2D5K4qxW4kClUqnMin+khKCV/68L6DYjxFfXqMxWwT4AclHYY5yWxtvYCzBPwX7alxzfft+nvEBOBhasvADcYhTpEg0YjOQxn8fdU6EsjRdz2XiIFLYSVEvnSU4V7WMv1VRDWRBqTlzyig1yPGoNQi3bEImEK5X2cx+J1rQPcKEZv5d29UXARx17rse2AHzXjvpWIjnE0VYdzls3plRiHTS+Jp8YzbhuaB7dCmfIy90mSc3wGA5nek6mVneTMhE7BKO/YuK0nig5ErfoI/k+dAGkVwfRzTXWxJ/PcowNQQH8sKFWHyVufaDqFM0S800wfJhCeIgJpLfBMEd3EtD2GbS2UkSxADICUJxaNiMlhyLRmpDWhMGDmOWvp82Kf1BZ9yUm/CwNmKgSYDJkp0fkuWA+5PwGmnILifDLv312Ljqm7vV5N/UdaX/6T1F5v4J8AseJoomHW5n2VtQrZCzkDL3mbCQRNVmzBBw8qJwNZ02cg5uMkNFMt8YqsW1sm0BQv+R1AVQCQZVXUvM2CFpSjAAuQdAysp3oDJYgKs33mBkYpMQpkpaHUjJGFuHd1LoLUVB1KeYxxs5oGy2asSLql81g7Cm/fOJT2nCCyf2nicYMkh5mrCv32IBzcJmBPOu5tXuK9wXmDGyq6H55Q39+hn3ncwwrzVo//pJqqYKZL8AkMlQZVecMQrqkhUsYA1DRxelkQaSIIS4leG4cKougRnCYM0StVO0JvCL3wWPFKIgMRqE0ANH3mJ7CviyBkIEvbzZKzCgqTcGSZFsC8b0LzYfF3MYkf275sKr0gr2iBWVSs7BsQq14e2c3Nq+gq7QluMlbTWCmjUZ/Xvmib5fejt+wHIXRLHQrPaXPLZnNDtd5L/yArgvjRYILo9CcPv+yMgLBaZT5/qDShMuKB1grlPGoM+W+9T8CUSOtR6N0ovwN65wWcrhF6RxrHrQAqi9AhlPMC4CJAVQ8iWDwoOBVgxzpMRZz2LX3X0vot11f3McoJXScWITPNMMuVSq0CvDP5HRaln5ArkmZJxeRptV4iYtZLwugI1FCd76WmgIpjung38YhHPCi6ZydUhwOqchOdKm1XqZgAHQi1AF81BEIlURXJl0jvkYqRAVkDvCZGXgSAqS5I9OBCoZwTRZwEDtviBijuevg9d1+LwhmrNo6wjxZeXGnVwUMtfWLH5BlOEYRWiYc/BIIVIK66IEYBQBMj3l0xccW8EKkEDGoXx80Y17Y6oDZxjCRHmQtCEwLO1le8eP4Gb71/I5QiF2ScWYc/VDhnqOseP1pWq62sC1EHf5JM1lTne/afXbB68xJ16iSiM8YoaF/MO2sB4xhQVcDfSOglRE+0glluFgr0eohRkQLEJm96pMSoys+59HVMJFbM14HZAst0vET8KKP6eczF+5dAuYGFD604Zhw/pVJcOo+RuVT5mEvgl9+RHT8EMjD/XMU5mJxJqX0RhSkZBOk8tviyxFplhCQl7Zbg3xWAP0cOwiuMiJ+016W93sAfjgKduxuFz/3+GKctJ6ykvxOwMtOxymz3EKXxckJfnKiktLWfijLFeTXTQqKHEwrv/9ISjvSi6XKm6EBIlJ8QJQ8zj26iBJXVR/MxFkaA0CCO5yaUycBlguSyjDiA9yIDqoPHaBerbU6e/ulcaupH/DzRMZJCSmrajrTVkBMVhfsuak6+s+jtgDrzcILolv8QuqGhrfciHXh7iutrqus91c/tZEFpiqrI2b00GTz5/pjCCFqHyYuTPHqFd4o2Jumlybot7rGOSc9nvYBwwN3WmNOe0GtJKjSyoGdJwV5Br1BNOekyTdBFGHgWyTo2zH/kd2MOyI96eODO+3JUw7mg5ZRJxXeSwBbRgGNybyEoUnn434kU3FKq81XNBUMXi9IB1Hrk3uqS1UoKc6GjRG0EIKZxkqy5cQIC0nOoyJxztNB8UjVZsVkE9OMjkAP5vSjYFWoj2yDAUA1BklZt9PRWAuhKCplae8JNPF7iildMXG+icfIoTkibQKX3PPmVdxl8RdOt+XT7kPcvfkhztiU4RbWZqEB+MCKhGJ+FqQehlsR5R9txqiStpQIqOgj4cko4/XW8VxUConvABPRmJGw1blfL/TQh9zsYxeF2w+XtfU6316xPr6nbrczLq0jzaSKHXytU7yfjoVCuCRoxBurEkZ+MgWCTwREE6B/8BPR3TJSbpJkfOA7ykve6HG5pu7ivWnmJRoYoOtAiwDol0YYAp5IXksYPWqIWEgkK+HODvpKIRsCjh4FUDCy0Gqp4fQFyhedD7MOm6GsZgoucf2UCZ+9/hv/eWzJeDiFTgfbPz3HOUlU9dt2jraPfrmlPY65JrImQaqa4XU378HoChgYx+Jb+oDh/+mcWVXuRde1MjABODgllBciHUUvktCrmqtIQ09FRYyAXO4uGQTbQ85zKxMNPxwlMhleIx/PxPo7FcSKmzYYEZMWnu1EEJo9/KD4r+pATictxk/pUAvp0rcsxmPpSXkf6vewjkyNldq7yPMsp96gztdh+8XWOHHxRXYDXrP2E4/86t+ULdWyTcgCXA+8YXYLJws2TTBrPWc6wsLbT9oHMMSR6uNyuKs4/WcqzsFfyzJYJOGoCU8FJuP9u8uS0T/CF2kni/JfAfOHBzx8f4e2Xn0vzRwyCaXace/0TcBYvvwD/CfAvz6WiRz9rtJdgUU0JV8mrmsKTdt3jDsL3dM8bzKNOQtc6cP7OE6onF2jtGYaaq+0F980zDi/uE/7SQx78wQ9Rp55wnfJBIt/RLAyiNAHXHk4RT1wIcJUuFgFUhruLRznp5hAqkl/iAjiFWQ+RTxlQtcPvDf6qIowae+8gCY5FNGH2sxzzSx7okfehjFLN2tIALBUzCkB+TCO6PPYXHrPw9hJDx8fUlI7m2aQ+H+Ozqlcn5R/f9vhEfuzzUnlKqcB6fUt9us3cYL0eUU2QRM2qMNhKcFcx6fXH11cf3PScgs5a/blyq1b4pN8fAno/og9Oik91gXTBwSqwMVmzlvOoGwcDhE4JaNbMPcepP+chJxoDqB6oAu/80m+y+8596pM9u++vOLm4FA10J8m3OdE2OiMpErRNFXMh4jyVaxhESk/2wPowzU11iJQULYpbqWKujYmaKUciKfEMgbM/8hmb713y3e/8HI9VoL63m2QtrRIAnJJ4Dy4bVar3+d1QCChO8pb5+UTwG6oE7lRUxQmTMk5govgsAWPpEEhjoPQkJ/CYhlsF+t4I42SUcAB6cJc1ejOgVtHYi9V+ARh9TFSOnw0BtkS6SLxnp4D2qCs/jxyk6Em5ui8LdnhEdnavUDZw9uZTMXYOxOJfk8KTrobo8FI0Z1vMaSeRTKdwh0pA/Khxh1pylhuX+xM6lYuRqUrm4TBIdDxJdaJBmZHQacJoyZrw0SMtFN8wgdnsbU73O0yflaluad5On5XPMBlzTfGZpqDByD3I6koWMb4dUqthFe95Om8XX5g2zMdEyuVKYyPlAlgFI3MHVJFfNlOKS2M6yY2W8w+p/4tJsjBMVB2yoZHPdQQvHMsjvGNsLKfRmDCcv36VIfEatsCPl+OvlHoP+DPAm8id/NMhhH9OKfWHgH8BERz+PvAPhxCu4z7/feC/hYyU/3YI4S/8OPr2+gP/Ihy1bLMw2LHnlxdfeGXoKR0/bjfzXMaDlgB9VlXPeMym58UP3uHijSeTrm7ZvzCnOWSVoeKYU5GkIsFxea0mkKudJmAdFMom0vDCo5qaSytqyOAsGwmlEXGH9iOJw3dulxmxVrz1qUDPjH6U+qJk8U8ynDl8ukxmjh7DfE+CEvUAEEnC8wEeKLiG8H3NcNVCUOz3G6kI6Q1X/QnhWnGxecmT64e8+Kv3eOfBD6nPtpiTfpINLJsu/hmk8FelJEyeFv8ygaucbFMUoFyE9GIbE1CVE9Co4fDJKaYZxGt8f3KBuStJJjQruae+s6jKief02CT7igT1Kbl28X2idiWFiKBywlzmrDfj8nCv9NqUYD6MEnGaJfaGcPQYS3WfZMi+atzOo1ei7POjtFdq9R8xCkJQOK9zld79foO2I83FFrWOKiQG1CM3eS4TsKqZxk4KgSslUooqgkpAOYdvDCglBbyUIlTi4VfOR44/YiyCAL1KTx7dKgJTHb/bSPXX0MuAy4Wf0lj2COWjhtCqKam4C5Lc2cD6D70gPNes6z3KOlHZUYWxkpICY22IRKsMxKhdjKDqKkqG1pHWUYdiviVWL5ZoSGiF8pIiG9wUCiwVk+e8D1KP44953t99l8+evEv1ac/avJC5xgfUabwvnRdAnCIAyX6s4nF9jMQAIRZLkzSnkCMGDBKFY8sEAE+Wg4fsCU7HnYHH8t3Pg6sYH4rJE58Sen1cT1IeQ0DA8T6C8nRPEjBNILcT6ozaiLNCPRUHh3rLx4gKWdbzTksvYDFPqXue8EyKm4Un8bjxGM1KtPtNMzDctJhmxGx6VBsIQ4CgMe2A7w2+FwWocV+LIag9bAvQ34RYzyRIvkOSM+3le5AJQo2TVGe6b8r6iepF8RzSfU7PiOI+pbaM3KZxlox2VTzL1NLzrYM8r4OaNjAI6B9Vpm3KfBDmhmFqanHMtH0C/8lI08V8WUYk4A5Azzk8BZDPt6OMtINEDaOS3OyYZWTEz483O9/nTLvCgghzf82P6KR5LVp49Xrxu9RG4L8bQvhlpdQp8B8opf4t4F8E/skQwv9PKfXfBP57wD+llPoDwD8E/EHgbeD/pZT6mRCCe9UJfrvt9Qb+6eUvE19SW3DnsuRUaRGnfYvvj56j9KjCBLrGu97TJSAKo2Y/rLhnXaGCUngwVUAtEZyatrtTAXVBC1ruVxYyC5D5tTOvagRUIdKD8u7phU55AwmMp91iAvGyBkD5+5TIGzK4z8dfFDFLesuSp1AYFkmOUHtS0lJKis568ypgrCfcGhQOalAXjvp0i/tqxaPf/AG7791j/bUXhP9Q8c0XX+an9UBtBED/5qdf4xv3/vrM2zPlZMR/aTLUEBolIf9bplD/gbknqVxkUpj/VRNjBAVqLWOp/cr1dG7IC4F5r8d/VDFcrXIBpubsFvZg2jFTlvIxi8SsO6dMaj0gz3/UuM4SnMY7yYdIzyYrsVgnlA4QasbieLP3JhSLUxwXvjc5+gUUsoQ+H+MYzedYom1ZPbuk7CTpQB9rTHyeV/9HSdYKzKloLua+DK7CDVHVpR6yfGRolRTk2YZ5gmLyalo1GQAosFKkK4F34fOCGhEqRwjozgkod16oQa1BGSWgNILTnCTaaLm9Ebya61gptNdQ+0lONgGblSI0auK8H8J83ClQZ563/vh3xIvZMBk2oyJ0ZNqj75LDw6MLipPvrYD+VTSQ2ul+5H40EfTX0/WpSqMvR9y2luqqrgBVY/y3CjAGqj+xY/1v7ri+vWDVXcHzCLrakI0hlJK5RaXnoOQ+pSFitej7B2SfyMUMGsmjGMIEximuYdnSO19698u2pP2U4K0cko6c76CbUQqLFZrpeRsnY0C5QFiL8wAL4VouzL2sUFcBfX+YwH7y8i+vIUeciv4U16see/xHVt711O8q5PlB6bhOxLlCjeKgcZ1FV45x1+TCcdXpDn1P5uCQ1IzMNM8K+A0TdaYNGQgrBWozFnlO0s/Z/Slf/ZJuk+biElyn6Swwn6e13P9UB2F2P2zxWTp2MmhHMVhyrkS6p2kspGhgSRsq6Eh3aEY+zKJd0lc1984v+nfn87It94tNzShSaQ0sxkQ5Zr+oJd9ejE6EUEQpSuz1e6T9OKk+IYRPgE/i7zdKqV8H3gG+DvzbcbN/C/gLwD8F/IPAvxpC6IDvKaW+A/xR4N/93e7b6w38U1uCf1V8fqx93kA85p3J4G4OcpbRhmMZ7bp2vPPV784Pl5N0kttnArWz7WZKLir3QSKXixc4eUhVyEnEJQUnKRZNVVElSeqYZr/00U2e2+R5TR78AlwpjhgES8C/pPBoPwH51IcM6oXrOpOoLIyXydtTGAp7DQcB0eNnLerrgeEPtVR/aM/Vl9/i4eMP+Pr/0/LWH/4O4dYwXLfsfvCzmNMBHgXCEy2Tb5mQCeJ5aoIkst1KaB0VZIJP4eO0eKRJPXB3IV96c8qf0bt1R1EonaNH9NhVx7itOVxfYOue5o0bQmekoNF6nMZApA4tuf53DdLoUQ1KEjJjYSeCwtR9VMpQs6TMSYozgv6C3uY7myUgQ0oIMyFHKpZazsu/gSN5Nnr+++L9WPL1Z1K6HDeOX6Xos2whKFzQWO2wOHZjO0mCpn6mhNl0a9NhLZI8WUWAWQnYRMnfavAi62kUoTHi1Qd8pfPv2ftvtQwXpdCMAvQikFXlLdFiFGC1yDw+CYzXLdW9vXyfAIdH1G0OAZWUY+JYDK2eiju1IS/+6uDlmkYmT6yDsDX4waB0QCcDNM7DmqjYk4zn5EGVh0Bo430JQAhi3KwsZjcSdg7dDhw+u0etd9M7FtN+1G2ARug89975hO98+w+y+uQR6/MrKvZiTHfAKYSaAvQtQD9ktR9AnCpRRlXoeEFoUunZ1szf0zh1z7y25WvmF78vQenSCMieZGAvNFHbONgJeOIGeQ5RwYn91J+wUqjbMElQ9oZx21C/PWQVHdaLfkXDKFN70mfL5oWOFLbREKsDjGBPOnxnGfc1fpR5SAQMFPpkRPcGc9pjTnvsdYM57fB7y/hZi/3yYfKEp7lTASNTleKcj8IEjj2Zmpk48K902mk5Xk4cDmFBb2IyyNJ9Se9EpabxGhbGXxN/prGRKh1XYXr+hinCckjHZO71T3N0ec9LNaglbz8Z/GUk4PPaEeB/x9hM0YVlS+t1uVbp4vP02cgkw6qnfbOQSREsVipkGtHvNQPgt9keKqX+WvH3nw4h/OljGyqlvgz8IvDvA38T+M8Dfw74rwDvxc3eAf69Yrcfxs9+19vvDeCfB+fnTACxHdVfL9vnDcjSKMgLbpi8qwuwNZ10+jB7/V0MbZv5m30nabJIusx863IBSVShoh9K+xmgnwPrMBkNKtqzC/rQ7B4pNcmYplOW1J/CIJj1OyeN+smAYIpAZDrS4pnNAH9xjRAyjWr2fUFlCAeNfdjBdwKmBg5QPVwxvtXy1t/6Hfy7klBpf7XnSw8/YHjRYt/r4CugnntROCknrIsgi+sA9EjIvPHCjy5500U4Nv9depGWXv90q5zC31rxqHuFvejyGxe2egaOx9sGVODB1z6UzzRR/1zncem2tXCtYxGkmfJCkv8M8tN3dpaYqVTADRbbDmR5yqCistTCI6TklvvOTrkmsVItIF6/I5Kfd2hGMEW0Cq+/L4zTMl8leD0zVmfHV0HoKPm4MiheRQ/6UZpRHhcMRjkqO8Y6F5NkcPayKqBRUr/iTMvilrzLMANVmbLTGkjKHSHgWyuUH5DETWwG/0TQLxSVWA1TR0929PIHo9C9x1davObWYSPtIgOoEuRkSoMibCaHSYjguESpAU2WgOyQ4w2gcBgnKj9UhdqND5NjJCU+ykOSqrmVyonMqgsZkLt1Rag0dvSYdwfW/nIyWBQCrhJNxQfUAPrdnua3er734kt8OXzIvTd2U+LqgERT1umaiqnOx6TdMZCGTTDINR5ifzsENFZBaFAlWC+9yMfWjAQqE/Ap54M0dtItXgJCA+GgGLsavRulJsQqClDsVJZ+DINQxxR+Mq7OpP/dhyc059vJYxxlQHFhDvjTC1guO3l+in1MScB7CL0SBaBBoc8H/BMbZT1FdlWfCu0t7IWemAqxWXOAKqDNiL+p8B9X6DcGofuUHmeLCDUs50wdb2JMLlFaDJyZA6yMGqQWEEnQ+17m7NLAsvEaD0wVmctnXBYZSc9ZUUQ94s8+HsMpUcpKraT7pVYxTaeJ33/nOov7f6ypySh/Jbg/Zgwl8YAfkaozbbM4VgTw2TBI/cjv/6Iv8Pm46jVtAfU75fg/CyH80hdtpJQ6Af4vwH8nhHAd6T3/c6XU/xj4N5gqaxzrzBcA2t9ee/2Bv15YknwBuF+ExbJk1tLTr19xnCLxJVuupYf1SOW9Owktgckzynx7VVB15PPp97lOrwD54JFEtTA3ImaJwsmgWHr1k2c03YvI755tkxKS1XTNd2RG098p4qCSZJ/L64vyapId1VHD/YhBdKeP5b1TdyVPc0Gr0gOBkhB9Deu/8BK/tTjXwFNRAuouT/j+s/d5uHvJ4/YD1NeFKsRFBCw7ZBGIzlK2SsrCK2SR6pgW1HTepXpHukXHJu90CSqgz0bp88JDojZz+dX6fMhFvuS60xcRcFVg7wliCUHF/kzjMgx6XmjO+vlzDGBX/RRZUXGbRFGLf+djOiVSjIqJXhSbrt0sCZ4gxgB8saf/WMXIMlKU5DzzuQojd6latUxBSdsmAyHVsUgqU5MxK9vaMGbamsYz+GqKFiSVmVoLDSzKPvrzSqgjLoLyakreVYMXsF9pmXdSFMAqXGtxq0q4tYn/H6JKVIigO3qik6Sn3M8AxkCQiAEgC7wVw5DNYpFPRmr62ASC1RkIKo/kChSe8YkmGVBtkOjXtYo69FHNrAqThrlTYngmL39MPJb7FkF/vC+hDhKl0ApfG+HZnzfonUO/KS5+91GDeaebONeeKFEZYKX48t//a5z92+/gnBVgmkBIpF2p3kedfCV8/86jth6uEU58L1x6VQfopRZHHjOPxymR9xXe8C9ceo9Fkcvvjvyt6oA2Trz2tcv67uLNVxMFoQqTERLnobDVrN69RN2LADrWjhDgqrjzYryqv6r4G6bE6wHx1Guwjw74K8vh6gJ70kk0qAZ/Y2RceOT+BaSuRBXQGxE1CM+NUH0OaqL7JAO19DeUOVOJ/rJspa0ais8MhIMR42hQ8j7o4vs+9q9mPremZO4Nssb0hQEbmO5nG++Hi8/iKs4lVYCTeIykqEWxXzIa070uk3zLCMjS2ZifTZguuPS6V4FlZHS6R8sJsejTj7L9se+TAZCaX3yXzzWNQbX87jVuP2aOP0qpCgH9/0oI4c/KOcNvAH8yfv8zwH82bv5DJu8/wLvAxz+Ofr32wL8ER1/ozT8yAc8G4asG42K/V/HrMuVo4SSdJbTFhRGYK/sU42vOmw53j5O+imHPVE+gbCXIy0bBIvFTLWhDS/pQjixEkHiMYqSOaHqrCNBzdeTRyOVrP30OHE2oLg9V0p/KbUs942WzzCed0yAJwCsF+4D7Yc04VJxUewZX8cPvfI13+Q7qLBAOilTW/eWHb2HtwMnj59LnlfCVAcKtnhZBmDxICQSUC1VqxTydrzMtZCl0m/p/rC3DrvG82Rjzi/fATgaA31v8YGbKSCEVb0tVXGHSxD5WWKUc23DEC8TC8J0M2juF6VKUqujvJEMrRtxdEB+/Ny4npC8NfaXCgvrjI86Rz7q+RSuPtcOd45c/AQH6VEXEDIwualEYRJe/UaIKowL+RLz2ZjfiG5UBf/Lk6y6OHxtBb6L4NIZghRutB0ewGl+Z/LsZgyT7+kjD8dFoyKozntCYmdHAQ0R6MY2ZwKRAlSgNMbFWdYFwImgrQE5+zd7xIJ7xUGvxsh48fmumCrylfrphAgzJq2pkfIcqGUABt9Hyeke6k6+NXLM8WNnfy/7mvY7wQksNgghu1RhEXasC/27FvS9/wne++fOY742cvfFMKmabCLw6xNmwj3PPAcK1xt3WE00lyo/60VDf20JQ4pEuk2BNBM0JpJURlNT84vcltSIPuldsl59PwDRjzsFhkJyNROOTWgcBtQpzmmEN6pGPKkfqbp9gmtizVya9q8XvOsznG6Umz/wOyiixvhhYq8vI15dnphuHP1jC4KdaNVGeNBWOE7qhEoNg7QVsl0o45U+9+Cy9quW9K+9nag76qzXt4yvp/8AkxeqRSE5YHA+mXJ2kppTm5fRzZG6k5HEQr+8AXMbObsKUI6OBnSKMSuhMSU61RowQxVwpbnlN5bhJVYWzt31aK1/ZgrqT/3hHierzDNVjLRn8qZ/HkqHL/v0e8v77HyPHXymlgP8N8OshhH+2+PxxCOGJUkoD/yNE4QfE+/9/UEr9s0hy708Df+XH0bfXG/grJgt3Sbco23ICXr5QRSh+9vmx33+UPpU/l58vPy4kQUvpxKNSh+lAibaTwdf04uXCYsVxk+RZTmRWTEB6kWicVF2m04Xp+0WBtJCqzzL3rqqk262YlQWfqbgkrv7s0sLs2vO1lfdwkYw9A3/l89PFP4WAIAv6GyNn+8/wf9ngnMXaAf3WQLinCVahP3RwA+uTaz579g7Nekvz+Fak5m4NvrOYsxh5K5O0lhNdOd7K8VN6sb7IMzOTbCuMmbRfvL6ZMRbPFZwstGn8pOqWvjfomlyqPsvigYyTQedkzSXYvyMXV7ZUQp6FB780QJfe/Fde+13ZuDvgH0hF6srtlkm/8lPqW7TNjhA041hhzFgcWx7YlBOjUSFQmclA8F6jifUodMie1FCLLj82gthKKvL6tRVgHzX5gyar9QBC4dFKOMouEJRQhabbED3xQLBKjIPWogeP0g6dvP4R6OsYTUhUIn8iBe1UFwS8lI6HBpHQTKF/QzQoisRhraZXv9L4tfRF70fCSgvn+1aLl7z00CbApMjvQWgLQyUQi2lpfDSA0Aq/smLwAL42jA8arO6lNsATz/iypXq0i8BQTbQVg9B1vuTZ/OYO7w3jrpaCTioIRW+v8XuLbpwAzBFCb9CVo672Ep1QyHcnTN7Tsi3nlvygmDzAZQv86ABq6eG28s+se8ZDJXOO8VGvfhRvch837pQAL8WczvWqisLlOV0B9GG6rzDN9XnOCULLSbr1CTRHhSgCjC8bqrN9EQWP487KOxbQEz/fBFQdJGpkgtBxGo579NPzKCPzS9A6o5zEezkCB4Vpe4naOoU69XNalUbGbGAewU3HMcX9WeLp5ZgoE4g38d6UhmFSYtqESUkujZOuOPcySrDM/yoVo8p1YemQLJeXcGSbZVtS0UoQX45Ptdhu2bdj25R91RFrHKF+/j5rfwfwXwd+VSn1H8bP/gfATyul/vH4958F/rcAIYRvKqX+j8CvIaP7H/9xKPrA7wXgD/MBlVqafODzw0rLrPk7B1+0BKyCeCqyZFf6LiAVM0246/1PxTYSIA4qe0RTNcsMsmKhm1cVUCpnoQTAszGQdL5nRkA8bimNCYW3Z+FKyVz86bx35oxy31xFcfL2J3nTDNQWE8fRkt2KuyoWxXfAbJKfSZzFfs/UG9Ri+4N4cC5+6eOol61i0RygUXAC4aWm2hz40sVv8tn33+fNN28Jh1h0aB2TVQ9aCsvcaDlukXCWPWNDce5yHBD754oP9OeMtzRRli0fd/l5XJz93JBM2wotQ5RWlrSp4JCQeFGobv79oo/Zy1OA/mWJ+FkmZUEjUpNj95jWsy+NhATgWUQCUl5JrBabb8Ei38SnGhGIEVBVkuA7r2bti0J3xZhSCNfTa4xxmGrINT6CjYBWK7yOMpyDn0A/5EJcykMwOstG+saiRk/Qiuqmw/Rj5PYzgXnnCUrhjSZsalQI+CZgDgp13UPk9TPGqrQBVCeJw5iYH+C9jGuY+OyaHI1IcpbpnMFEQyRx4k2iK2lU74Q2E40HhZ8SJ0GkaV1UavHAOuTCU/gghbU6j98Y/MriKwNqKmBmb7tocMg7GowirA3maU+/XVPtJJsyPEAq1L6dBl3APaw4jA1X3SkXb38qwCpSR1QQbrlSIUcR1MoxPBOlrOb+FvXQTRzvPHCYz+3pPfpRAP3yfS/bMgqQ5qg8hylYB9To4AWijlNHQ3UUxSFVB0KvBDCfhLmXtVbz48Pd/n6eYXPHiIkHjkBdNUG82AZJGL6Ra/C9zQnkau3RjNm7j0fGBQgVKwPswP7jC1ZvXcZEXMSgKNty3i8/W16DYbr3CrCBqt5LIcT7fjKQoqErwD5Mie/p+pOqEMg8fcsk45q+T61UTEq0TcXc+ErqPQ4xoDbRKNopSaRPBkAfj5UiTSUAT+de3pPyeZVr3tJQKrd91e+ppftUnqu854dIaTopdkyqRulcrthvZkCk9+hzjJDXpP04qT4hhL/EK4Em/9wr9vmngX/6x9ap2F5v4A9zC9+HwruYQPBkXYY+FvrIyWYLC7kc/GXCUfo8ejuz57EuCls5MrA/pnEehqh3HYpjxRdBKv4WhgLxWMf47OWxF8BuRhsKzKhEGZTrMB0jGwoUtQmYON3HgDkLQJkSb8toQTp/KvP9Re93nsTCq1+DOOknGssdwFvStUrQX35fLhxrJYo9Pnq9ku63Bv3egL4d+PCv/SzP9heMf9Oyrne07Y7V40tZbK1nvFzJomydqOJUDvvgMI21enH/lmCgHHPmiAckVSz1i21LKkUZORjJMmrlOFOVgDXd+OkepHejOJ6yUMpElu0o6D/msVnmfxxpJaPgaIu8+juTbkpGh1mejTIOltV4C95/aQhIgq7GRbrQMZpPKkCXbpYPGo9mZXeSB3HiZPwklZjI2Q9W4esK3Y+owQn4T6oruSpvNAKUYjxraJ9sheLSiZ5/UAo9OBKFxwwO14ohkbj9bl0RlMLe9FKkanTZU+/XJhp/XiJxCdjH8ROSpze12K9M77E608ZCqhfgAso5zO2A2nvUkyBOj/PJycCo5F8dpsJTPbMWKo0k8dpMZXKtRQ2B6oXkp6iUHxGTb9VB6BC26bj9jUds3nsOj+Q69CECyiHglQCRT/bnPProLe69/al4/W1geNEy7hspMOYVbqjwzmCbTqoRn7k5SCujwCw+X7alH6YcssfA2dLJVG5fRqONglXAtgPjocJ1VoxlLSBVrUfh8B/iuXsELKYk3s8zTDKYPPIS5rVu4VAB2DBRHHuyElrYavqrlShvJZojEegHNQHidLwY1QtbjdtX1Kc7+mcbmndvJYJRh+PJvaUhltqxhOm0TUraPUWkdtN36V+lJBJcHiedZ0Tooen7s/jdiOR+KcQQKKMPMKn/tExe+XS/krpPGybazzoeP1GceuYRpzIP4JjnP/1MoHr5efpZvosxD2RGV31VW46lQ3ye65hY7abPRfggYpyIh8IQnWFNOP5uvMZNHt/vgY7+GNrrD/xLMDXEcF6pMJGTLgOqpZh44udxHyAX5MkvbAmsPJLgCRmAZxiS/k665oqJg5kKFyHgep7EquZUizLUSLj70qUEKFL/joDFxItPk68JxQ2ag/myENldFZbSEmAyFu5ot4e5gZKRGYVBljxQ4e73pWO3AF/HONh5wl7KVZYenhLglx41iPcybpgk7DSiNNJ5iQak45zBe3/nb9D+u1/m5f6CTXNLe/+a8bZh2K1QKmDqHjdU6HrEND3mfJCJromTYhxfQJGXEA3R5JlahkqXBs0S9KeWxnZ8/qFXOT+hbKpxk8RfNCbDYV5obnauH2EteFWb6fFnpavCwKA0FifwL4bAgtpjfFaTmhkAC6AuNSD0HVWp3BbRgNRSkTk5v54bEirERGAx7L3TNLajqnpR9NmAX+vITU+efeHlix6/6PIHq3OBLDX4DK7dyoJW6MHjWkt11cl+RqOHMXvIzW7AbEe43wjFJwL/XIAKRI4y1gcIjSgF+UokQEM05NTgI39aaElq8OJ3iMdRcSj4VqRFvZX8A+XknGr06N6jrxxsgyhJeSUe6QTqRkTlyfkpERckcbdSoCMlSgcwCrMfMVcd6ryRSIIPqC4aMGNA9R71ws/A0zDUDC9W2K8fUF6egdqLBr++Hnlw+pxP9ve42p8RPlKc3XuOrkdun9/HmJFuv6ZuDqzeuIrrhEede/FaH3vHjlF+ZmMr/iw9xUfVaDjuiX0VuE2fN2AuOsJzhe9tdKoYKahXhQj0ueslLo+VWprvYr5F+X0w8bX6oqhA2YrKxaqR+jFkeiACLvdagKCfHGaqjsaACajGY08O8vcz6D9ZUz/aTf1bAsVX5eIdiezmPqbE21QfISn53ASJLKSobBkxKWWdEz3HqEhrUkKtSsZBFReftG/CDAnAh+Kz0klZGppD/KeYS5iW3v10DFP8Xj6f0sgs+5KOkxKs47FS9GVWYTq1UOyXjpm21ZCU3fJ2BzE2VboPLkaijDgIgmEyEgon1cy5+lq2u/mLv1/a6w38A1MRrTSxNGEadCUoDtH6LD2d5cSdQJorjpWMBw0hAbjymNnCjiDEhKxeIi9FVN2JeuelZ1uV2u0OqXAXoxRl0YtSRWh26VmNaLrOO9KfC8C0jERkKs9S5aEE+uV1Ftd6p+k5eJsBuaVRsQTySwAalEwUy4lnqQaQwDPMDYljNJ+inzPdahWLLw2F96Kafj76E9/n4RONu6lFs9x46tMt3fUJ/tBi614qlK5GWAXC1oAuKCRpckuL7CBUF+G+FtetEe/q0hA41jTyzJOHP92CokCXaot6Cx65GR7xJCd6Wjl5J0Mybzfvw1E5znL/RbtTrA7u5G3MxmiSmS2BvhI9aMXdY8FkHB4D/bkGQIwSpHfIGIcxLnv8gZwDUI7ZEAxay+fWjDhvqJpOaiasFaE1ortfGZHdNFqScb3Of4dK443GjA6zH3FYQqUx+zGHPdTgBKgPHrPt8a3F7AZU59C9AHSzGwWAuyCgePAyZ7ggFXeBcBpg8IQ6FlAqqDugBWi5gNo7eVdjVVrh28s16wP4FoKVXAS9HyVyN/q8X6q2GpyGq0DoDe5gsWedeNhPPJwqcEGMniFAjEionSPUYpTgR3mdb3qhJzV6Av0uSW3GMTYqhkPLoV+x+3TD4/MPUT5gnnRC+dk6UIrTx88xT3+K3diy3zYoFTi7/5zN+RXVxV5kMDdeilIlMFUVY8owzYWVujsvlm1pJKe5pgRdS29w2i+9e8v5rfTCa8S4uvCEp5qxazDVQCq+iFeo3gnwTp5bvTgHzMNr+sjfFNNv4Qy5099j15BaHTCrXta0UUmBNWK/OiUGwMpL5DHVLdHI3BgNF7MexPFShQk0l2A535PivMeMp3T/QjGXJk+7j7/b4vOyKHnFFDFRiLF8SOcMUr2ZCP4Nk7JUpWJkjAmUg2wfmAy0sg4ETEbbQU3qW2nMLO/5spXGQDpW7F7+e/kcl/cqGUTJ4Ci3LZ1mpWpUG5/ZIIYdvZoccSA5PyA5cS4aeqVBGwLhxsh8/9oDfybn7u+z9noDf5hJWZWAMgQlCTMRgANxoo+TWzQE0kQySw7Vc8988nDJMZIHIw7qlFycitsk+k8qO16A3gzCIr4qy2YDedtjiY3l/spEKgSKxGNc8q1nyb0JyJfVjV8F5uOk84UKSceaZq4uY6bnMWsJZKaJe+aZyv/NJ/zl78cAfTbEmD3LabFdLPLpu5T8WC7IRUhYvemxjw6iBrLVqCpQvbuHg8Jd1vhOVHOs69Grwgvq1HxxT+MhRS2OedncBN5n96u8lgT6E12sKJiFDnnyvXPsNNGWBlO5IJTKQeU542ciC/sjToRpISiT11+R3Lvk+2f5WZhFDErDVXIFpvfiVcnAySjI9mEsNveqd0yOt4iaIIm+0r/5NQYbF/20vw/42pIkOG03SBVejVB4ulF4/zGBVg9eQPbtIMo8gwBuobtIv9Ug6ETfxFX+Mp6rV3kcqxiUDieBsEZAfRcIJ0Zun9XQjwLEFRJVMAp9PYIHf99KCLDWmFu5VtUJ5SgYJZSgLkgxO+3ld6cYt7Xw79/YCx3CId9pUNcChlSkMaggOSbhxOd3THcxP+Eg0VZ1CLCPfbTgPmnwo8Z7TWUGvNagYDxvROP+ysXxGtDNyNcffJ/1yQ0g8rT28X7ioqeBUD7DBIRLUPlFoCu1crsyxU4tvl+C1Vedo3jX8t8tVI92HL63QWkvCkRugH2NuvHYdY+p+gy2Z8eNxoP0Sc0/Zwo+5j4qNc0FQxpj8e+au31PfVWgVyPutkb7cZLIjM9YJYphKj6WnDSdknWpCqjKYTaTYtYsOrKk86S2BLLJEVb+nfYxTAYAkOtBlNGeBPphkvOMNSvwCLWnZ7ppuRJvvKZSGhQmuk8CzyU4T1GFmon6syn6EpiPBbg7NkpJ0GVbrq3lOphaMh4A9hHAG2ReacJ0z9I8mSpgbwvAH+WkQ3LAJp6/ZSZWkL/zTMbAj/qe/aT9x95ef+CfwrGJQzbOJzhVhcwzC0FlmkMYVOak5hajBMGpPJGr9GIkveQEog2xsmncL0kyakRqro3nSAWZdnqeCBzb0doDhZezfFkz8Ela76YAL+kFX2iqy4bFd7OTM1ukloZIBl1lKLvo4+z3bHQV9z8ZU0sPcs1U/GQ5sadt0uRYdvkYd7/sS7moJ6CfJvBFf4NiKkjEYr/l9aV+VUhxmUKuUzcjqnJiCCbPmwmS06HSqlgcY0nXKlffrE61uMD0PBxzoyBtWxhY+RmWUavyPinm9zQUqDs972M5MAbZuTRWFsMpgfwZwC/Pd4z2k8e5fJ7zR6L8bJihk+KwxVhOR0zUoGPnyuo/xfuW54TFO6iUwzmbFYKS/r93hrAzqG4gUWgkIV+hXAItiuqyY7jfojvh+gtfX7Z3Z4IKgtXY214A6y4Ccu3BTNtKRDMm5O7jQrwFf2nzuFGVz5V0AfHOd0E4zendsqIehFIwRkMoafZbJepEkX+vIqUoVBp9JV55hoA/N5IkrGVuU9cQBrDrnsPNSTQaw1yBJdEkEquql/lWxQEUWgV9iNfOBHgsAqI6hTtUfOeDr/Pm2WeEoOjGBvu0I1SG8X5LtduhonqK2ngu3vt0Sly/WAC0wOTh3SGgzzL3dqbvvyjxsOxvOQjLphbblp8f86TDfK6M/HLVelZnN9y8uI+1Aya+17bt0KeDeIsTHWVxrFyUrGyDbKv6OKZKmVIW13Sj5rUgli1WeVajh1vxAqtTN3mFh+iUaP1kRCTK7cLhFG4N6tzNz79cG8o57Ng9HJkScZNs55ZpzUnXn45XOnn6YrzskHu6Ln4qNW0DU2Ve4s+WaQ1KSkHp7+xkYlo/0jU0zMdPuT58HvgvGAMi31psoxb7lcct5aaLnIy8T8nTr5A1dFCygYtOlXJtroIkfKdjlMZk5PkDGW8pJYnpmQb7mrYQ+J0W8Po9215v4B8Q7XWFlK+PHnyVvPowJZdoARPhoDMXP0TDILeUI5DAmYbQqZknOXsSqzCBCw0zGbJoBKSqhQxHogMwAfwMXMPCDcNdrwbE6n8qe2HTAv+qiqaw+C5NCAkjFdd7B2SV9Jqy2FlJ10keDY58Xv5eFsIpcynSuVP0ZnkZYfHZ5yV+pXs5Iot3Aj/ppy7w4BiPveRUJmMgeQldsX0yIgLQRH3/1Ickd5c6m8vbJ+NJzY+Xrjl9vpjkZxGiWEAsR5TS50cUeMJQGBvpniSVk/J+wEQ3yt67z1nkNaIlnyJNSzpdHk8R2JVFvIiG6itkTJc0tCQ/OytEl2yUVFU4j7UghoMKk2cz0sX8kcjB7LzRAEi/h6Ai2HfxM5UTffuupfG3cABzOeIurADvmIyaEn3d2opmfwiYmwG0Ev58pdG7UcCSC5jrgbCKScaDx5/YWNjLTZ7vBFIUjN9f4UdJIhc5VvC7Su53un/XsXiW06gLh9p6VKUIo/RPBcQjHyCsFDQ6U30YPTpFGoInnBjoPOHcwhjwa42+9bALMvajysvp+09zQSdMfN4Vsl0CJOk6doqwFTUQFcLEvU7vYZKiHGB81nD1/CEPNy/Q2vPDq8d8+cEPUDee6uOdgNeDjxQM4DwWxCvHY+CuxGiPzPWXCvUwvggeGVzXcXyeF/Pyq1oJpI6B+5nBzxwIcmQfiu2TMR4TaHUzorUoT1Wrg+QVnfRf6PVV5dxVzo9JCjV5uQ9F3xJ/vI/Og2N8vqUDa6sxp32ORrKKhike/9LiPq0laqqZ9OrjP39pCYMheIX2ogqVOejl/XzFufN9TGjlbPF9AsTpOSTNfJBnsmOi4RglBlfLRPNpmeaVFPnwTDkEaYwvaTzluEh9ToZmWGxbFvhKLXB3TJXXW67jKTKR1tbU0rNM5+yYj9shXkcT7joMUz2BhIuSWhcqR39zXmQ5llM/B5Vpy9nA8MgcZ+C3xSr4j7n9hOrzmrcwxIIYECf7CIxTVdfksW3EsxHGpPAz9zqopQJB9KJKFCBarDNd9QXQjZZySvLM3+VzyAJ8J7Elja9jagrHWjp/Qc8oaTbLCq8zznw5MZQKOeVkdawP6ZzpWj9vYVx6+nsl4egSfComoF/yOXtixUTm3oPl8dPPmFw4S8ZLC37qb0pqA0pN8Zk3vbyeBPKXCXylpy897wikw0Gh2glE5gJCFMdYvlHxeLkIVzGBZjrXoFAnjrA1ElJN6k5qbuQC0zgNAoZDMoRLQ+zY2ErP8/PGXRq7aUFSzEP3ZUsYfCktu5Sbne1zXHpWrkvfoQPNWpKpLaYAOGL4FkC/PC+Qi4MlT3+5XVUdCEHh9jV8CiZIbocKCP/dQVhHXfqov5/59J1HVVqSV4eQDYUyuVakLh068dsPIQIoMmAzmx51sCLHGnMuglcEb0QCddQileqU5CI4BBSbMNUe8IgiUbo/h/iSuti3yK0P50bA4RggRjXkPjPzXmangUeA0gqpZHyIEYtE+TioTAcIvZmAXYjfxaqu2Qs8KoZtS113fHz5FlY7Ptyf887QyHkuFOrK5QiIvjfO319XDILkgY1e2LDTotl/reX+3C/2uZjG0izSeczzmm8id+dC/Yrfk9c3AbXlvi5Mc1oB6M29gepFzzhWjIeG9dtbyWXb+DlYTy0JFaR5tqTfWATsVkyAM8/FKnOxqZD7U0Znl9eD7BcGHSkcQTzY6Tpa0PdGxg///+z9acwtzXYehj2rqrv33u94hu98073fnXivSHGSaJKKLDmIlUiOZQXRrzjKnCCI4NhBYscInARJYCMREgeKAf0ILNOWgziwYtiwACuIhkSxHMOyadGUZNEkxenyjt94hnfaU3dXrfxYtapW1+79nnPJy+h85i3gnHfv3t3V1dU1POtZ0wLDBydo39kUcJrCKLvzgPFpg93VOU7feS711OtQTc7YPUzX/gEyNmyEnKXpa6Cw2ArsnXk+/Zc0Ufm6ExSNSINCDLWEnHTM9k+JG1D2ij3KXmc1UFZoi9V12tf1+NPpu017/4KLgMI4HKsJk0yEAl3DrbbLtlexRQreMSGXkrkzqY+GxT5NalfLYu4D02/OjG2HVzcb/btYvsf4v67FG9ZegauGNNRBlsCYMqQAid3h3rzUgBKX35hnkI85pbvUQeVetpD5S5LavjAD5v71dzuu2NRhF4NQ2jNh4K3ph5piwJwHYJLNr44VX2fwA6aTuC7aBmuDme8n1/CNAy1Z7ACbpAJccbb7O1DfkqmTMQULlvFw5vx6I9UFx4KSaOobUR5oJ4sRr6gAIXUiVFvOhal7LJfmttRCQvqNlrIA53j+1kzKYaratgJQYlDUDIg3DmBgeLGCX4xwJ0Meg7yT33jvQW2UxVPBvwkBy4OoNnhPkrgIEZPwoNbmtGYmtVjhxjxHZv31lTR8qFEiFCYemNr6WyHA3gslYR3V/UsMm586+yiSqROYCABsBQnVZhyL/qO3MeAfQHYGJmJxriRG2LVw6+RwexIFRJ2iOIqGkAC0mOmwBxxGSUZ1EwUELAF+g+DuRrH/v0226i3JEqNM+A7gBylGf5ei7KSQvOQYLgbEvkEcU+QXx4IDbx18GGTTXnAhOJSJ30HMGE8ACkEEJgWPHgKqF4R42UBDvFKEaAceEGgd0zzgMtc6eVZuCYgOFGOZiw6gjhHXHrQIYnJp/SzUNjhKmMe4a/D0+dvoxxZn3QardovV+hE+un2Cx903QOuQnSd5dAWkLVXoTW16Xky54m0L/6DH/qNzAEBzskfzKBhAReV56mJJCKDMHwvK6rmSQbVpUw3yLIGhXv/2tx0ESHWMk7df4PnXPoOLL3wErNJ7PZmpT++jAFVZ5gZiBnOCYm6z5+TIrM8P4JoziKQHsQDbuhjnHPd4BN+KE+8BCbAE2odbWZ90jdI1dATQMPx5j7MHTws4tX01s9YC5jydK3uU/lChSt/LLp33mIAbToKBjjlMBYuepa7sOEvi86AANr1X9umV6bw5JuypdkOfea4v6zGnguuIeUDvUMKeqgBn9z6bAIwg2mgl3vR+lgyye3tEcrA276nGJAsupjqWCAtAdvat8yhZsg8A7Wb64XvltSivN/B3KI4ihCJp6uBXD3SPAu50YY5UIgcAAqyUGa2ckGhpFrMe0wVpbpNQEBuomFjkSZHOqUE/YASP6TNaBkojJOTnAswCpQJFBcIcivCgYbT0ertRwbTJMsB2Y9PfRojgpFoNncxJ60KXobQfpg7b5lodqu09Mfeb6+P8TOazZTW06ELDKGpbFehGFuCgz6TMkG4kap/MEFvV3hUH8FYXtmn/SfZJLtEr6ihEtl2Tv1xAhb6nAPzsr/4YfuzzPwfadOjeWOe2jutONpwe8Cc9eOcw3om04pcDXBcktKITkAr0oMGBTkQA4N5NE6/oM9SbQs0w2eIwYcQnLLqanUWYMal1l6zSk6g++udI5J/aSZjcYZSqErsfyNGucrtonu0312VzoJQXQB2DNUKQa8TExrUB4bqDP+vFPv2EgTuJ0EMa29sKSgxgDCIgrCnPP7dJc2Vv+4iBE1cE5QXESXZN4L0TcB9DTpJHrSRK0n4BgHHX5mdyi1FYewB0GhFfeLjTIMLpKoH3G0z9bhLzq9l8ZWNnIHBpqwoISxYb8LS+UZ8ST2nROd7K+3DnIa9Bdk4xCHHTwJ2M6J8Lelu1WwyhwS9fv4sfevR1eGLcjivgioBzLmQNk6z9F1wAdgBwJyYK17/+Nnb9CifLO5ziCt3lBuN6geaN/cvXcv2tZtS1D/Q3JQ0sSL5DSgrGU8BnAdqkTj5sR1eO02XAoy9/S8aJakVbKmA1mE1lzpSSqDiStgAvHSiNQXQJxN+irH26XygRY/sjpuciAcWayHDiBGyuoYsIvvKlj1SbugFy0jdtN6q21yDV9r/mMThFIX+sptahjG8H4AWnjMOQvVm1ApnU4RL/vwFwSnJMbdpHgJeUQ+DOgnhLUqE6xzDeR4vuk2qOZM25dD4Bhzb9dums73lqBEo1u7HCjhH6J/Wo6XE25TX3UwJT22fbpkXNXeuxvpvBOq9doe+Z+rzWRQeXMvuRy2ROi0ZOWLEn2ajtor2nYprhUVgAXaR0QEfkwZoBOHAoiUcUEG/t3+yiNqDYRzsc2mDrRM4ChwBCWiZwMqIAy5qltXbUutDozynRDl1Wu9jcxmcXBwfJGqkmVGmhVuZOwwcWm28uz1FvGupYp8Xa9lv789pMRhczK6zo82o7BwigvzDXaZ9GFBOewRxvYCLxmPrVESs9swIrQpTxNsWoQCCEFw02Tx/g9K0XcGfjlOXX558ruqAOCUR3wN/79/417N6/gF8OMnaXAF1HuCZi3HQgHxGvJc1lDA5+MYA8I/bJbryJ0DCudCLZerO/iW2LHZt6vB4L1bFJSFZb0nuiyCXkrD6fAnJ7KGIqqFbrrOahyJmugWTfHqtQoYAKEwTKuQEAw/xHPbe0gSMlsjMdS+A/2/27CE7RVOLoRcZMQke4XYCaILbNPoGIWxRWywquA8RRcsky9lU7sOepmZqHgDFdc3YAX3nR4CRzHgeAvCSjoi6KMKf5HIJELeLgMW4ZXRuK8/IoTq/hqhOB4BQyFwFpk2q3RojWy0EEm1BCfrIXcI81Cns7QkJ4AgKSFEjofNZnWYgAk99Zy7LujQQQMNws4fsB3cMN7t5/DO9HvPPkWzjptmjciPdOn+Lp7lLMNNUszgFh1+LmF9/A5Wc/glsFxE0jWoVeBuditcHpoxdAFGdh141oL7diXvTQCDLAPOtfzwUjS07CIeo6xCi21MH8A/Icn9h126KgU9eggGlG4RvCJ7/2ObzxuW/BLQdholtCMefhcq5GiVFmnrkkrdrI3OIlFedfXe8seLfrdN0XFiiGNMEX5nclZNI+Sg/Ngp7MiHjtQQ9CqY9xuKfpb1YbYOvRc63mVn+LKMm39Pl6FHOfa0zNqgIk4Zfdb9RMtE2Cji3JX2fSfsvu23q0PYAh68zvexTBUfeoS2TNX2b+J/c351sg76tza0LMtlfbk4M64BDEq/Bo910t9Ti2gk/DZX5YEyjFRq9xYeB7pj6vbXGYqpR0cOnATQIAXUQZtJoqGygDXFNmW5CqE3dDOT053zqpB8KeTcB5rTZb8lQ9ZkGWntfy9FplfmupWZ1DtQ4F8gtMJ7yW5FA8sXlPtvy0EqYtL7DaD8oSzLFeedFI9ZpFJIPIvNBUgNBueJZd13vOsTl2o6yfTd+LCk+T506/nabvdiOxfWrb1Kd/CnaAqQCQo8FAwBcgUQx2kHesbXeysXkOWO7v8K1f/TLeevNbWLx7h5wlN70XzSDNY0p5bjeuCMStFyfFJdCeb+Hf7QtYWDKufuktdN0O51/5pLApS4jt9m1iZ3oCGkZ3lgbLMjFdOy5M0jGGc26ty9oeBiygB6bCTRYUEzgjmGRe5po0byTBHWUBZa5wlOhZmnAuh73NWaepAHaTrTo3PdFzaj40TRTGoJrxjygCk4spetYADg6uieldRknmxSSAHvLeckQZ1R5uUYTQ5RQYMQG0SKBM58sA4IaKxhIAj06EuI5B24g4eHAg+NWQ5gILm96GwmcEj3G/QOc2yAkG905irnd9met9upeGb0zghD1JToA+5QZQQK/AsQMwinMveqTcASgCxKVoDCiwRBgCirNodgjkYqYBYLc+w3jdYrncoFttcfv0Erdb6byvb97B+7tTfOXsmZz7K5d48eIJmAlDaMXp9aMei4s7eUdAziK+eu8a4bpF3Dci6I1O3mU36IBANnPR59RiwRGq4xbYqQCg+4EFwHZfqIXs+vqI4vzalr4p4JRxenIL92SQNX0H8AmB1kmD8jAeRilqOGlwUnM8sh0+WU2F2sZrrPua6bcgUdfaXRm7krDJ1Ge1JCoMA5N1m07iPOFUl2Mg0RJrKmC3mAJi6+/hUSwDVFugv2kfR4gAv0CyGtA9LwnQ88tUKfq7vksVpmDaFM05KpTsUMywANnHFPQ7FHMlFQ40i7A+lze/AdOIdYZYAjB1Jp4jLlXIyonfMBUI2ByzmnZf1aP9WxOftWDympbvMf6vY7HvxC52OgkU+Co4thL3mFZpO0n12pwUjItQgCQ81JNErz0GUO35lhFIjk0ZhNp2kKlDTT9ULabhFomnpgzKujRsNlXDVJj+oTZO26uLkX6uGXogLxjZ7IlRNCe54pl+0GKZAn0+y3bY41z9TpguEnZhmiu6GOlnrcv6EViTo0CiKmeUfkoLHO/MIHOSp4G6KNfogmZZKg+037fBe49/CVe/+g7C11us3rmSCCjBZcY9+430NFXDLhnYEMLzDv5RQujnBFwxxq8u8TO/+BP48e/7W2h/bC3xz6/SBraAZDL1kvUUkVO0CjPGU3XcJzMWm6FS+zU/K6aLer1B6Dk14283YQUEaqJj4+1HZEGXfJi+Ky0MqGkQw5BtNkIPGQFABQyTFAx6XbqGObXH+gRU/gGosx/7lLi9DaAmJuGCcsI+BdQARCvGAPYOsfdwJ6NoBhemrwgCujQajQpuDPCLcm9yLOMjCTc0AM1pj7Btk1MvATsnz5WAPwDQYkRz0gurr4w6gLhvgJ7F5+MkFkKh5WLTfAnAE+g2ghckn/uYsulyMVey73Mk8K0HnQaZAx1EQ6BsaAsZo94QBbomL+XdECJCyrK83pyDNmcI7HG9P8PtKEjovdUtvvTWV3Hz9bfw8c2b8BRwsbzFyXINIkZ3ukFz2ov/lpoSdQKEfRzgFgHjXQfXRNAqmNj+SfiaM+epgZq+v3pdB6bzxM6dgBJ5yJpUWWJIAavNvgvtn6SFeA7QUmz9dS3jC3mH3DvwNjlN233OhLbM4Yvv0ppjnU31ORglvKTuT1ZwsZ89JZMURtx7+C6Kj9eDWPYxb+rRNvWpko7TvDT11oRQXWrAnPxlsvmTRuexc82+qyHd19rAKxut+4OOy1cpGi7attuW1vyme5LtCwXyJnpXNgXaoghRCvytOSqZ56vHqENxRFY/AUD6R7UJFiNZ86taMNV26n6h+4neu9Zs2Ovq4zbc76egfI/xf13LCtOFY4EiJVuAt0+LXQ+J6uB56kSqAx8oTi0am1on2gpT6VaLnXg6SXvzmw5+y8BbVbi2XVWVk4mkYIQSiFMpBOWzflf2F8isZWY/alBdqwbtRmWldmtHb8urzAcL1u3CPqdZsBum3TAGTM0m5kolnEz6r16kgGn68g6ywOqCqgxb6gtaSiZoaJhXmHrrTIxG2KBVxMMf/nYy/2kFNDHgTkeJe+3EUZdOg2yWq5hZIfdwEOfoQNg9v8Dp1VPEpy2+8bUv40fe+SW0P7kBd17Y1AWABcCnqSG+fKYQCgOnzFNqW96IdOOx/WiFNNvn9p3rgl/natAycexKTJnaKidNgJa5xFsTARg4cA7Opj5q129Y/4kj8ESTwIBGB3JcfBOtgAAAvgxOFRrUpl4d13JUoTEx8iq8+BTmMs3/uGngT/spO8YQpnZj/Ir2kHUnQnKPbB0YDvGuKeMuCThuMcpzcgLzKtBQElIaMYVSPyVluMNezJWa0MMNAe7xMF17fGrHTsaVuw7lne4AXBP6T07QnPa5byfRktS8MaJk3gXKPFHgAkyZ4FMALePBex9i9/QCV9ePcb0/x1m3wdtnnwB3TxDY4c2T5/jVD7+MN0+f4Z2H7wMA2uVO/FragKw1bWVtpzYCG5K8B5DvzZm0nZaxmLSoqQYwXZss6J0rFlzaYomJNQ4ZXwugyZzrgJx7ZKJRSC/3nEWg33EJIZkilPFGnjE+b8UECKnOCwhAv03XjASccQF9Ouhvufg52Wy2ug4TCsGV11vdmyCZyyHzFzuIsGH7acK6c6nP7kd6v7qovbtdt7WfVVubhUjTv2zO03v0EIEvRTWKVw3c22MB/dou3Q+I5ok+YMqGWzBr9xwydelxZeJPzXNbB16gvF/NJxBTuzU/gJIFVmjR8KJqCbDHNEeAJb1UY1CTk/p8cwSn3nduTtjzm+q47jO1VuBTAv4/TYWILpn5+shvP8nMP/Mq9bz+wN8WnVga5mqVAPyOSggzJmG7VHolCIPlUJyBNTGHhqqzILk2GwGm4Fjr1E1F1aa6MNjPHtNNwoYStZNEF38tVP3VyazgQhcQu9hovbo5W7bAMhUWIEeIb4TneXOOuYnL1XeqfushoEUXfytozAkDGn/YskB2kbXPadnpuXapMOar4zY6gm4mWodn0AJQJ8e49cJo1VmJtW3ahsyaMXzTS8hCZaTN+OE7D7oI4mx347It//jBAu0Xt7i5ewD8IjCOLb74g78IfF+yt2aWjTcLegw4Al3F0oY1ZWEw3jRwF6OwoCpkaDss+2XHQf0u9XnzxsbTeQHMX6OmTnpNFV0qh5pN7y6HMQXKuDdZpxXIZ7MeQMwXGBK+1OlfvYANSx+F0VcbflD57FjONYnAshMxlTlj817QckC8biWcYdKy8ZaQzZgiCcM5IjGcqZt2TljaHnAPR/CNh5jjeNBiBJ1GhBcaPgQSepilH6iVh1bTszhI54fg0CwHuJMhR5iCA6gZU/jiiLBrEHYt4uBByQHcn/cChBWc79L8HFEIkTR32sudzAkVTiLAg4dbprG1CWX+aMQpG3FrQyX8IFDG3Qng3h6x/9YKH28eybAZhKbchAXeXj3H33j2RZz4Ae+cfQxmwvLyFu0jCQ3Ce5f++qJZIH3+KL4Po5zjLocCTOu1woaz1HWlZlKPgR97jhY11wDK+q625grWblECGizSO4C5BiiakwjQZ9L7b9IY7VO+CmLw6EHPA+hJBDoqPhk6v94A8CLV+TDte0MC/bo32TXNrru1lliP3yaTxZ3WR+JQXq/rltwBDvtWAWl9H6DsA8B0P1atjZJm9j62bkYB07cC5odfW6F5sCv7TNJKZUfnmmia1MfT57J7rh6zWmXbh5a1t/1L5nqH6brsTJ1q0qwmYbYfLWLTPUh9Giy5p3WqTwlMXVqfJSqtUGOFQdu2WjCaEEHmN4fDvn0Ni3TFp47x//8Q0R9i5hf2IBH9AwD+DID3XqWS1xv462TWMmHXuTDG1q5/4PJUa5owRBOwrRMFKBPDMgK2Z3Qh0smrA3ttzrWe/A5lQtdStAXvgAGg1Xdb5o5ZpkHvowk+tA0KlrXUTjqMEm1BHfleNg/sol6fm5/RbAr2HCuo1Ay/FZRQHQfKgmiPzS1GQGFcFihOeMqAjOZeyaE6q8VDYuznVKH1fetjmrwtbYzMEskirj0oCGv3wc9/H85Pr3H27jP4xQjsgZPlGv/+N38X/gs//v8FPQmIywZIWVc14yk3BG4I7iPRHgDCGo9PJXIJ70mAcwvQEwYTge44JzLKkbBsmQM8Oi4ty3/fNbZYw1ibg0L7yOSdmIQGzZuLEQD0XjDgOgFz0h+pAHetJ+cQyOZxZqKpZsCl9zS6ciyD/fTcDSZzwV0OYuuenFQ17rWAaZ7Oqz1lwZUcl3XKc3ZGjbcebhXgVqPEvO/U+VGEHwX85Bn+ZIC/7IGeELatCCody5gdIRrO4DA8P8G477BZn6PrdojRI4QGi8UWi3EN1wXJAquC1MgFKASAt6KB4tElhjyKILMjuOWIHDZ0h/wc6EnWW5eY4HOz9up6q0AjaWlPH1zh4eYyb7gOEQs34MX+HDdjgxdDCzz7In7k8a/j5PE18IDBT10y30gvZKDiML1iyXsQQ7nvsfCUWrLNP5e1QJ0rgek+owDO7hF23XGYsv2W3FlQsZHXtW3PZX9QgsNq5TKATMnYAstnH7H55AGaxV6yiSNKv1vQeU5iHnjKZS+wbdVEVpbhRWqbmgfZ9bpNgsWScxIovnJAgCSgqzWiNZtv2Xl7bO58u6/URfsImIa1rN+FXtvJnGs/t5F6B4BfJELkFJUGSNcHKmB/jg2vTWV1bJP53Wo16n3JAvgOxa5fk98pllHfEZvosjZTGiDkZ8PTaHVz960RnhVKbJ4J+5xWqFH8tTS/AyVaEuHwvWu/fArAf5wbb693+RcA/NUE/j8BACL6rwP4EwD+yKtW8noDf11IgSK5Oogq074wRjF5aQFcJ9ZJmTvdDHTA20x/wCGbaTdyHcR1jHpGYboUzA/mdyvBz4FcXQisE0xtnqNFJ3QN1II5NwsbPF1k6k0M5jeYdjQvmQFz7deiLMPcQl+XgBJ5qTYzqjUtti5d6O+r22oYtI0ay1lBjt5vTCB9ZfpLmfy6X+21wKHQpntHyyUqUoocRcsoZj07RmCPX/r4y/ihrsfqS1fgrcN2f4Jt8PjWr3wFn/vCL4KGKMmenicBZAPgAeA+CYgfN7j74DFWD27g2gB/Msj9ApXxt06QSjVRnpPNLU/Hoe3HmoW7T/CZEwiOlRw+M/1V0JkEg0mCFysARJq0T8E5zLTXkOhFO1YkygOfAAP6s3BgBFDNjEs5NC9P+2UB0SIOKKynFjN2+cYDBDENWgQJeZt8TMgz6DyAdwQexG+Ag5NEXBAwrYy1mBZFQB2Jk3DanO0EdLcMbJJWYe8x3CyxW58hRoezyxcIfQfnIppmEJv6qwfoFju0/S4JE73MQY1gduezUyyYgADEfSPhTJepDepLohGwdl4ckiHtQBcFDGoscbsWApmxdW3Aw/NnOHv7ObafXGK3O8FjXOPnrz4LR0DnIn7w0TewWq0Rew8fAHocZSz3AO1SNB8LmHWP0Hdh83TUJYO+BPJUgFDAbskHu67bsXbU94gO5hKfOhFOgrm3T+daG/Q1F1Co5kBaJ8vYdS7CNSFFE0v1XUHMfZZIfiUsZMd5eo4rLllna+FC1zVA3htQ+lTBoCPRlKtJISCCZ6CcPC6z8nNrQ71e12uN3q/e2+wepWZAQ/Wbvm+bi0Xf3xIizCxkraHTKKa8+vxsznWYCgP1mme3Rqr+6jlzWgyrBVAGX4VM65+oDrwaYnSN8q5UqFQAHlFCldr3uUNJilmTlHqO1fhYoVY/231dr7NmTCrQzkEFxS58zzmvXfn0hfNk5n+RiHYA/u3E8v9XAfwjAP4AM3/tVet5vYG/lpwZDsVuX+Ptqw+AnXiPeLqo2Umgg1Mnd3KcnEjXOqHWkI3wjKfgVAd5bT5h1ZV28agnQS2V1+ZFlm2Y27zmJOl6ktvF3Qorx7QHx4pVZx4rlnGZA4d7mgoWml+BqnNrpsD2gzL39ne7SauvgAJ0ZSTUsXYUgJIjjqj5jzKSc0KRbYNlmObesX5Px1jBXjJrobOIED1O/B7dhcRY/OgXv4iv37yDwIR3Pvs1iLMkxPba+DPQx2J2sf34AZ7fvoHF9hyLdoeHX3k/1z+uO8SrE4x9h9WjG2EFL8xLs8xUPb7su7ivWLOfOSFsboxYTUD1XtW2/UAA0OhXtn4216TQgtZcpz6RQwLPWmey4y+ahcL2T0C/aqvmBNkOMm5s1KSREJ83WaiIew8ePZqT0USRYpkDCfzmyEDMKSuqaIcoxpI3I61f3LtiKoXkbLsT3wHyjM0nl7hdX2LZbUHEcI3Y7cRRfANC8GgaGUxhaOBiBDYdaB/hzoeUpVyAvu3L3HehjGXunWizRid9H5xQZqrpUq2hZSAVLOwBvpYBdP7Zp+DB4ebuAe76U7RuhCfGD198jLfPPsHFo2fwyY49fHsB/5m9RBtyXOaF+mdZ5t0mdbpvLNvxryZxCs40gZNlTHWXvIEA6rm6NTKMJsxKc4tCnPqkZT8yGeAaDAwdir/AjkuIz/Q+3Cpg+eQabhXKmhYgJk3p3uxJxhBSXcuqf4AixKg9vRJIdryr0Jb2Dj51ktBtSAA6ALxx4J2HuxwlYdzLnGXnCCFGMc/RskYB6OmdxOct3INBgO0ahRCMpg51nM4EGGTPWZOce2EEm5rwi9XfY2PHCn71HmAJFYtHVGBSc2M1ITWCFJYoZnf61+5HjJK5mDDVtOiYPcWUIKyJEft+LfifIzHmnisLSOn7MeT4KcLRzPhUOvcy8/8tgf+/CeAbAH4/Mz/7Tup4vYE/o5jr6MAGiooMmErb0XzXQa0DVe3tbB1Asb0ECrOvG1ZSbx6A0bmF4RgY1Hrve0Z7b/1uwbRZhCdCRG1/jZnfgCkgq0H1y4oF48eusc9nBQVrTqPF+iDoeXMbgtarG1EN+vVaLZa1sHkDVKXZQmz3tV7GPFCtmaf6XvaavGuXQj6Fr3SYmLTwY8nee9ZtQI6x/eoD/NzzLwAA/r63fgntD4rhL91GYapAEokIwsjun53h6uYRLk+uwEzY9bI7cu8Q9x5x9Li9fggixvhxi9XZLeJTj+WT22LfDRzag3YQUKrRK+roWfoItUA0N6bvHSOG7dRwoZUAAEz7LJdaw6Qp5Y2ZD4xWAACI4iFTl9hzieFfxgJpMq2ckRKHc9xu7CsUkzEwaBGEVSTJqkuXg5i96ObOyA7k2WSGksnOiCJ0aP0KzAAQouQU0XMSAOAdYf2tx+j7BVo/CKO/2mUnZd+OCIMs764VtCy5CgAXRjTLQeZiEoZcG1IY0SIwWZMj3jlpv/Y5E8LOl0hDPYE7gLZcALV2cwRwDpAP8C8AehJA1xFP3v02Tp4/wLPbx/jK+YfwTnISjPsOzeleQOUIMS+5AehCACb1fJgbRPv6VaK1aLss4EXVZt0/iFJCqJk9aG6sM2QuucTUaybdMxTwr2sjQcz5dK85h/gDWN8cJaseMVwYS3QmxtRRNyTu0qd3uiJx6K1Zbmu2ZEGqAdHj+0s0T3YS1niZsqAv01rXEvjbBIyE4XaJlnbibD5EGfPKyNdF124riMTUN7oHMKbvLwUsiIOHc4P0hzrAWgdlvcaSfZSOL7iY0tRLy9xeXu/jNXiO1V97LtJ97kg0KGoKs4YQBkoEaHuUzFTMYbVkug4rLqiJQTURsvuz4h09Zp/XCgJzeOEYLtDvKjAFmGhZ5ry5OufGwffKb6oQ0c+hvMkTAI8hpj8EgJn5R1+lntcf+CsoqFVrNZOh59dqQj2/BgF6rZ3IW8iiaMHRHEicA6pzLPHLGFSta24BsvXZhVkXsGOT1z7P3MSrJ/Ycc2uPzW1uc4DZ3tu2z4ab1O91qQ/V2pL6ey2IzT2nLoIqCGo/z11T95kFu3PtVLOVCGRH1kpgIOLClDYAft2ha3r84ov38JnwVfz6B98HB8bv/9LPYvkTN5JlcxfTxsyF3TkFKAaMH3RYDyd448kH6LcreB+w/+AcIIZvR8SxwcN3PgSPDsN2iTC0IBcxXK3Qvbs+fGcMMXfaQTbHAAGC6mRYA5z7hF8rONdjENVnAJPEdMYECBHZRGpSqrHOKnDVYzeDeoBnzMZyZmZfYv5L/aY9QGET1RnQEg1AAeYJbNJZzCCSTkIBVqvy7NTEEpSg42K2qCYmNuyefeZziB3/SIjbBv5ykLFFwv6fPbiCXw5iFrOSKD6xF5MjjxG+HVOeCpIb5c+QkJg7h7hrCuAnCWeqZjwgZB8RDpT9AMKuhWuDhLBlSq88gOFE6LIEQAptzE/EBEpYXpY8CQAWvkdgj8eXn4CZ4JoRsW8kDv8lQHfSTr5y0setaj3CVAun9s7AcQHUCJyT9dSMk0mx5jn1mmvnAYswmgEc0lg7L+w/PIvpXraXZuBFIkJ0nGn7rbmhjgsPAf6q9dbxqT4LqT18mvIy2ORcWo8VbupnSGvlsF7i5uM34FzExbufSM6RS87R0WgZwXfSGbQICLcdPA8S7tX48uT+nAhSKCy17c/0Lvi5K0SFF81C82if1qb0rHMA2faZltzv5vf7tJX1ulbvNTCfraBuNeoexf9G612Yc+3+zeaYnqv9VAscwDTqkSG04CDjSk19CIeWDEqg2aAPtlhthn12/az3nytz2Kr+/JqWT5upD4D/0nejktcb+Gu5qL7PSdyWEVZznMnmjumCXy/iugnXk/yYiUvNDNR1zX23gNMujPXYm9tgtNTMyX3MvdajwsvLtBGWKeCZ3wHMgmzbjgPBIlUwlxUlg21zTs0YHQPp+rl+17qoWobCMiHAIXuii+LE6dQAS9t3mlVZv4ZpBxHxYdZbB4wvFri8eI5H68fwn9vj7heW+B2X72P5Y9fg1gH7CO4IdA5h6rRdSRjtTrZ4h98HM+Hq7hEaNyJGh67bY3N7gdOL65y1dPHgDtREifKzdZnpRkRK0FY6lFnixwvoSKB5nRzh6jCg2ndzoD93AA5NgmwdB+dzEZ70HJsQrU6+BRyEC83FzAsNLZrvl7NWpgZZgdTOqYjCyHEShBgpHKf5/RRl07VRXOrkcnpc2Uc97lHMSqzt7IyPED2I4E98DqmISwYNjMXFGs3bYiBMVw0QCXHfSMbnkcDRwa/6DM5zN3WjhAxNYJ4aCREKBmLfACmUas5psPE5qzWASUblfCw48MggH3KksLhu8vyhJoIoFOB3ArhFwOr8FuvtGQiM7fYUi8UWfjHAP9hPzUAGwnC9hGui+Ch0aTxo5KsWwkoD2eE4FwvulRxSgMTmeA207iM96r9J+5PXmbzu8JTBX8AIdwS8mc7doDhtnnJpk9btIc7Cj7QuM76jOdmZpGqqBTnX+6GsZfrZzpG0bq6+cIXF1Rpf+5Xvx+5rK7z5+W/A0SDnrhMx0KUEeK04oEtwA0znZQ2SNSa/Da1d+VTQaVp3OgA3QP/JKRbv3U7XZjWz1fXdai7sOfU6H6tzju3vNZFxX7FYxJrBaHQnFXKAEs1Jc/zY9VHXTavJUAuANQpgj+n4LQpmsWOOUQKN7DFl51VwqMsccK/ZfCXPJnuh+az9FKrrXvNyH3x6HQszf/27Uc/rDfwJwprNMfZcHbcqKcs81mWO6bDfdcBbW8DvRplr65za2H6219Sbko12ZBe9uec6BvrrhdpuhHOCSQ36Duozldn7WWZci2XkdTGriwoFub94ulHosyWHxEmys4hkC56+K5Cv67TnR2RTE9IxZMOcGtDPk7ptVZTZ5cww90AcPX72mz+Cn/zC3wJ/5PGsP8FP/uR/IDdKGBc7Fkarh5jfXHJW93efu0O3WyOuG7zdfgNwjNg36B5tcJLa4y5G5IRwDQOPSLQICZjynRN2mpFNW2hM4C8ymJ2027NoA9qZXcKOsxo4zJVXIVTmhEI9NhGi9BiKtqA+X9tjo39YoVCLA7AhCYPZsbxnZcQGlAgyajusc0OZV0ZRtXsIOWH7wgIb2666TXOgH9U1HUDvhMkayFcOzRe2Ahj1lil8py3D3RLNqhdS2EVh1LtQsiPnqF4AD04EgtSfPHgghcqMowOiXMujg2sDXDcmgUDqioMH+gZuOUgCLQJuP3gDq4sbbK4vcUkfid9JYiLpNKBtN3iwf4ahX6Bte3QXazQP9jmrsYIlNTvKaU40UpUVrNgcs2GV7dpO5rMVCCywqcHL3Nqt72xufKtQYUGcQ9HyZKCYKvUkfmSABD1Qcx4bec6GXpwLRan30DqXKNFj5oCafZ762ZaAezDg81/6FfxHv/CTWH24wcXiI4nucyttpJbRPtog3jYSCc1qK2ryTN+BhpFllDllz99A1p0lA2uAt058PVpkh/aJVswSOVbIsCw6UJyDFUhb/FDvl1rvq4LWmlzUonH7dSwCZe04tocquHfmOtWYAUV7oMdUAFKnYdsmq1GwoLweC/X6PffcB2TezPH6nLl+fQ3LrGnpb4Py+gN/y1IAh5u4TuL6nPrzMSGgZjxsPfU1v5mBPMcs6MSM5vOcwGHH5pwwYFnWOfBhwX+tJTlW5sBSvSjUbOyRfmYWYDkpswsFAZELYE+MpALpbDerfaasbL4vZQa2APjChCkDNmHplbEF0kItQJzT4klHniefb9lPZ9qW+krNI/abE9yMHXw34Pbbb+AP/uBfkxN6YW/z+29J7EMjF4aohfhKLBjucoDbDeAbj/0+xZdfBGFmdy63izoAG5Ywdq0AW1JnP2Wo1TwFDO4l2gytzEDVc+ZUvDWAhXnuuY3BXqe/1ZvOnAZvrmTVvQH79tzaT0GLPWcEwq2cSL3Y6dOCk302BIABZTNWls7WqeyaOhVqsefNPW8tvJM599jaY+sglARVAHAtoT4FhCe2PmVDduqkGymbAlEXChOfknTxXsyDyEfw6BD3qW/aIHkDBok6xKMHR0loxkGyF3NMoDwSht0SC75D3Dfg0WGx2mB/d4pxbLH98AGW4Rrus2PuU0LE8vEtVv66aBIcZLynuUpehFwRNkLKU8HFHM7asTsU0wp9R/Xn74TUOUaYHLveaJ2m/kDVMWuLDjOOgXmAGCFrwpwm4z4NxRLTjLC2vvo57N7SAf4ze/x4+FmM2w6333iC8888lXVkYOBUSANYh3Rl9HWeaSQ+FcIvebI25n7ZpL+DgH5+5mTNfHoG145ZCIpXrSSl06J7v5up0woAXfW93ve0TX7mdweUTIAz5b5xEDH1IaxJk036Xd+hEgvaHm0LYZr7wTLwEaXf7e/6DHN45j6MU+OoWoiyz3asqDD+2xNTfyrK6w38gTLo7GCbm4MHDDOOA/5j13F1vL5PvfHX9RwD0nMgp76GzLG59tm659Spto1zbHZdX10sG27bVmdufdUNE1NpOmdrPVZHZtqoPId+jQA7ktjj9uFnFi8ONHl3DDrcHO17zcJRSsClAoOXE/P19ViwgD9v6lS0EoAkHeoY248e4BvP38Ojdothu0TTjGi/uAE/9SVaEZCuk8p45wAGeO9ls1txYZlXAMWABa2xf3aK9nQvsczbAvIUJGR72Z5yfGsMBN6RAN0IoIE4j5IwwhiQYrZTSZJ3n0+JFgte9X0yifahBie++mtfbb2J1+/Pbmopwk++r26YFvxrojNjP807lzLgJqFIk9jZd6HPowycvb/ey5oH2rFVHyPg6BrxKoSChprUvrioqmiisPMK+iPBdaNk+nUMtEHMeQgF5DeSZ4KD2sunsd9GcabUkgQNQkS8g+SlgAD9OHqEvkOMDn2/wHZ/gjeWO7huxLBdZqGgbXv0/QKLwQM3I9ABfO1EGCUuPgYd53VHTJQgWhkfRQhZhRJ6UkHlwdyc6b9ja4+yu37mN/3drs1zoH+OcII5BlRAv/pd55ddz461dWJahOnYObaX1aBff6/3Rz0WIIkHHwY0n9nCX/V4/stvYv/VFd74yjfkN47i/ItYwOFA02AYyrLXz2tv+cxEWvMMvhUzsfG2w357gvPLp5IBexnhngySBPFhnNalz1EL1rUJaN1Pc4KZFs3roKDf/s3XHBEG9B6mP3N77Viam/cRxcfQajGseZT2t44bXS91ylphY04IvW8PP4YVbHuPXa/PfJ9W4zUq8no+XdIJEf0UgL8I4K8w8+1vtJ7vCvAnon8QwJ+CvPJ/iZn/D9XvlH7/hyBy7n+Xmf/GSyvWhe5lTNhcqRfjCjMe3AeYMu520agH/dyktRv7fRvBfe081i573n32//rdbk6V8+SEkapZeGvKwlPzj8xI2PvkfqDJs9Z277PtsyX3OyHHcdf3paY2UUA8zUp9SbCYLG6mDseHv6G0g2MC/Ixiy5zGXg5rCHNu/lI0Hjk0pFY9EuhMbjoMHb66foQfe/QNuGbE8nM3UvfDIDNQWeUW4IZAOwadS/x/amVT5Ds3ETzVVGPxaC1gz8R85wESBvImgveUs7DSGLP5jmoBMJKEk+wisHcCghsRCDgQaI/C6M0VqzFR8KKbUpC6kdqQi9rXWzMKHTP6vgOJ0KlRoLTU7FOEmAec8HSjtGyo2kzrGE0OijlGfjYrwvSv2szWw7meTxaMqdBx37y2z1EDEmUYd1w2UM2UO+c4eU3gvcvOuARkUxwOrjjqpkhIPDphzxejJJjbNRjWC7hk1++6Ua4dPagJcIswWUNdJ6x77D3CtkMMHjE6xOjA7LAeTvBmMgHi6MBM8D6AiDEMHe4+eYTz9hO4hyNuv/EEJ4+E6c/aiJazoEhdzGPJd316d0YAPq36g8xnrn6rP1vhzc9cc0zQrOur945j79QWP/N7DczmNMR1G63Tqi31nrBN59aOvXPXpf2BHoU8t+kk4sm738KLj95GuOvgL3vJTdKJyU9m2JdcwlESynit55DarDvI/F5B1qE9pbwnHnHwOHl4JeePRasbt42Y/6yqNUmfq95z1XHe9p06xc75AejfiMTIp4s8DkH/ywBwvQbk+Z3u31bHYM5Xcy816fEoYYRbSOQgG5Ja16o5Ia8W8F4G4Oeex7Z/rtRj/1Xr/rtc7pPdXtPyLwP4BwH8T4moB/D/AvCXmPk//k4q+U0DfyLyAP7PAP4QgG8B+Bki+vPM/AvmtD8M4Cvp338GwD+f/r681APoO3EYmWNItI65jeHY/evF5BgDrgt4rD5rW+bYoJoBqIUcBeMOsnmH6not1uYfwFHTmznArqWyX1fGPrPe6Z45coo14VHQb81gAMwy47ZQ+Y0jTc29ZwDhgZkOUISG+j65b6s24RDAc6DsBMkMUGIg9X5qO61CQhYWSMInIoVRBJBDevLO4cWvvYuvX30WXzl7iidvvI/ll2/EFMGjvLMB2TGRRpaNepcSURELY20EI954eRTHcKcBtGLZFBK7TksuDP+OMD5fiAPeMo0ftZ8eSdj+MQHgpBFgFgGLSBKSUb3JWsBjQVO92XECchNtVTWG83yuwXf6vqzuXZvu2ChRNWta+73oX7W9tjHn9fpjAvgckJ9jEZWVtw7mFjjWz2HrtcBCbXc1+omu1BbI7IDh+VLAveMsgJKP2WGXRycsf+8lMViyzQcx4toj9h7ORzkGwLUBtAwAj0lwcyn/QBIcQhEyXBvk3z4g9B2IGF9685cQB49+s8prQd8vwEz48OYtAMBbweN8+wxXd48Qo8fZ4xcytttYspEGlOgtRhOW+6ZOwviqQKPW6Gip66k0ji81mbD11wJEDZisCYd+V62i1S7q5znmtQZvcySRtqfOumrPsW2bI616ApaM5nKPR/QhXMoyTasIHgjx1osQTSxkx5KLoD7H/2xR9saURI63qQGBwFuXE8n55Yj+eoX2dA+fMjP7R71oHKxJ4j5pWm2CKn02dZbW/lY7eV0D9Fybv4fMZxXCblgEzY4O0WKtEdWftQ/tO9Xf7xuvmjuiXouWKPv3yqyrKkTZaGy2zO273wnozwSaOVaPZ1TnfCoK4dPG+DPzTwP4aQD/NBE9BvAPAPgniehHIHH9/xIz/+svq+e7wfj/HgC/ysxfBQAi+tcA/FEAFvj/UQD/CjMzgJ8mogdE9A4zf/DS2uuBVC+awCGjUIP6uTruK3aiHFPH2b/1cf38sgluJxBV5zIO2XoF6gqKJucnhvQI4GemYu9+5BmyOc5kE0ksPKfPAWL/npqjzqyT+wU6WGxssqXJZzWvmXPw1H6oF05t00BZYKj7ITs55oRPpR41IbDHJu2BrO3ce8CxaHlh1vtIOUQiuQT2XRpUIyH2Du404MUvvYv/5zd+F758eo0f+33/oWxADUqCnxYlgs/CvNMNCWPfFcFDACWDdyXCij/tC9A4Tc+6xYSBp9OIZrlHNtmyjLTas89okRhJ8LDCqxW05pzJ7RggaW92wtUY+ajq0GO1qYUK5yPNh4CtwU09f44Vba9N9mbvVz+rzQpq22rrs/1Rs7cW9Gsbj60pLo0Fb8arsrV1eGHIseZij/FmUWLvJwdcAGJ/HxwcAbQKoD7mqD9gkhCgJ0O2659ou5LgEgeforeEXD+ltSmODnFMgkMjSGp7dY6+X8L7EU0joUed67HdnuLp/hwAsGr2iB97XO3Pcba8FadkH0E+TPtM1xULjC04+07YOh0jc30/Rw7p9zlts7Kr2g7g/vfLOMxFMkcc1aVei+vf6jbX5861p56jc3NX54FHcqoVs0C3HLB7eoHVm9di47+MomHceLBj0dAAx00D7T03BCxSMMUx7U/nAXzrMa67HOq1e7CRoAU6ZzdJU6plSwgvWvjzZAak2bI1Y7sSB5Zgs6C/T78pqNbnt74YI0oULzbrtP5+Q5IgzApqts9r4a9m97UeK5Su0z1V+LW/RZRwndrXNrRn3b65MjcGj107R3DU194nGLymRfb0TxfwtyUl7fq/p38goh+HaANeWr4bwP8zAL5pvn8Lh2z+3DmfAfBy4D9XJiwZjpvw1Oe/7Bw7ae9blO0CS9WxOZYGwIEj7MvAu/5WCxN6k3pijbYxh8Wy9PXEVAe/MuEN8DC3zGY4B2YZto1UwPVMsYy9/VxHIzm4ZnS5z8ixMJFHJm02u9H2KfhXIYEF0HAkIVlNvQqCgNRXwRgXJabfOg6Tw8TMJ+49/OWAcNXhZz78Aby93OH3/NDPCHPuGXzmpJ/bVMc+TFloQDZV++JVy7IA6GRIyZRQtEAPCPzNZLOvNtLqO+Ahm98e2WEyhxhU2/8UIYXalJ21ERU+D8lEZ08SdUQ7QhmzORX2rNDMh+dYTYHH4UaCdK5mfK4Fe+tPYNth2bY5ltYOS4+SVdrOfQsSavYWODQDnANfyi7aiBu1D0T9DOp03akAgOK4ukYRAPT8PYBIaC72cstVzHOC95SZVB4dKIQ8rgERCgAUR9/IEn9f16WhaLXcYsjCtWsD4Bhxn+qODuPYIIwNvvnsPTw5fQaGzBHnAtrFHuQilkz4/offwNeu38VNf4q7YYVt6PDhzVt4M3pcuGfip7KKU+2l9q/DNOrJq4D+GrTPMdvHAPTc7y+7pwX/tv11m479ZoHn3O96fT0uX1YseTIHyo75HwQIQlgycEugNmJxuUb/4gSdX4OWsmbQqeSKoGUsseRtW23bVROm2sco9yCK4BuP4WaJ5rSXMdtEyQ2g2i+gmCwBIhQTw7/Xi3ZxCMb8iQsTrvfVOdeYdgAlH4JqDGptjyVM7LOkTNy4TOvHfaB/rn+1zI3RFhJBCSgaG1uvCjYK9vW3PYpz+9zYtu2Y87Oy12h77iNC2fy1Arp+/l75/1th5p8F8LOvcu53A/jPvd457uFl58iJRH8cwB8HgM+9sTguPR5jbl5V0pwDDHMTUO9lF9v6aWpwMLcY51CTR9jtbNJD85tFDTR+g1I1UXJYNfeYJLHQTQLAJJQlUMA/MBUA7GOoCcx31Kj5HfWgLgU1cz4EBrxn0D8BpiK0kOPM1vPoMQ4NmoXsKuwYTmOXR3EotOx+zKZACbR7yTSqLCiP4piGU8azn38X39ie4EcvnktUlJSYioYkgDkAnsDn0ki6TexZRyBm5EQ1IWlqHqSNcmveXcvAaRpSj6JsdGvzm4L/zJrKy+UbB+pKgjHsyWgWBPSPTxcp7GOSSNYodqkKalVtXmsArCOaFmtSMzd2a6bcHgfKuFS2tal+16KAeU4YqL/3lQBumc5606zXBwsC5gR9fR7ra4Dqu90c9b7K3tVAo85Im/qQThJYH8S0TLMCw4B8aoMIysonDGJD3Zz2yE7tMQF9UBYQqIlwy2GiIaNlEOEQQBwajH2Hq7tHOFve4vNPvo5Prt4CgbHqtmiaEYsHa4CAdtzDXUW8sT/FL1y/i5Uf8WJYADjH2xcfZadk7AiTpFm69tnIUhE4EATrJUGB3stYdVv03JcBNBw55xirW18zN/5rMG/HVG2Lbkt93lyZe/454cS2qRYWPIMuGA4DwtUZxquA5nEJNUOUkqr5WBj0GjAquB4hAvdS1jhZewggoDnbS/Zp9S1xEIdfHdfqp3CbfJNOY5lLKhjb/A86r+aeX9u0QBIizPXO/NN8CLX2r2bIX9bPQBFgVpi+u3rcdJgCc42QhPSs1m9J1wyLE+ZIilr4qzEQoYy1GtO8bEu3pM+nCPC/6tLwn7by3QD+3wLwnvn+WQDv/wbOAQAw808B+CkA+PHvO+ej4NZKozrQ7GC2KtW5UgN74HAzqc8/VpeVoF/GCh0zaTm2eDSYagk8inBw36itFyXbBF8x/HWpAf8ca6HxmC2D/6qg34L0+05zSqPMaxDEBt9N60pRdSZmTT5tLhqfnthEPIliGqFRRIjh2picExPbHwT0x7GZPB8nkyIeHdgx4uiEfV0CP/vJl+GJ8cOf+cWc2ZVfOOAFJCpFYsZIQU5im2hkcSpLIDDHK9cFmxikca0vIM53V1xU0hqLnnEYLlJaLaYkEVkYUSCHVqLbcJ+EHpvsKkDU80hq+S6WeTYX7jOb6mBqXmTZfmC68R0DU/p7LdjPAZY6c6tu3OnRJ+vCgnEvoLdChwKLuv0w5wAFzOtf2ze6OddtAabPbrUVlnSw69we4BsngmF6F7x1QGDQaQCdRrg4ggefzXtcF0BdAPe+vF8GrH9M3DeAY/jlaOanmVujCAZEgGsCqJffnIv48Pk7iHDwFEBgtGebImz0HnfrCzzfX6BxEbvocepHfOnsKbb7Eyz7LYBNevZKIKuFHu1nHTP30Upz+0DNQt9XXsb0W2HB3qcez/V6fJ9Drv6m/RCq347tRXMC0Fyx19bPVgsl+mwdhHQAsHx8g80nD2StU21qjhgGWdtqUKv1NBABYRkn9+aNhzsdi09QRF5raRmBJcBXSbBIOUgmxFOEgOrbpMHUMJk2gZaebrWVO9MHS4BPCfQxIzwT8zn39lCuuUMxEbR+JvXaVM9XXQeBItzPjalaSNE13WGaI2FtPlusU5tfuuq7FotXLGaq54itW0t9niVJ7PoEzI/R16x8mk19fjPlN8AZH5SfAfAVIvoiEXUA/hiAP1+d8+cB/LdJyu8FcP1K9v3AlN22drTHgILH/IL7KsVK+ZY1rAf0fUVB1nfas/bejflXJzLSz+rM1MxcqxFb9JyW5Z9xGMqReubab+ojzzmpU46CYvvFCAnqYHhYpxwXO95onBFR2qk24HYjp6qOuk4g1wlATDZq0K9lBmCRj/CrAW45wp2M8Gc93GrMjpF1RB9ysbD8TIjBY9x3iKPJbPpFYe1vxgZvLvZYvnGTNgYSVnbrkz0mgQYGe5KAQg0VkOoAvnMSOcMKYQHi16DvdYdi23mJBLIpb3Th2ULAoIOw2wDwAMUWFygq+vR+49qDe8kS61Yhawt46xBuupTwKpaN6IpkI9JmOsgGvIbRTFTvomb+LRi2jJX9rX6HCsbHdD9NetZjap+r1ylgt5uZbTNS3+oGbjdazSRarwv2WWrSQNl+PUfNJhQkRHNerK7ROVDXUeRgMfvyDDoPWWjkwSOsO4yfLIUNdYcCtoTy5OwHoOx+tuVvouSU8xFoRPOlDsLwkHwBo9RBLsK5iN24wFeffR7P9hdo3QiXkte5RoQLHh22N+fY9is0FLByI3748ts48QNuB7Flcs0oxIEFi/Y9zJUalNv+Oca+HhMAgCnosuOQjtQ3t37qGJnbm+w4j9U/YPq+XxYZ7Vix48gyt8fKsdvU4JCRHP0jaBEQQoPheplJAx4TKbD24KdO7N63pj6dbwGgi1ju0ch67c7HtE8hr188UBIqAPRJAFCN4xLgrcfmVx6BP3YYv7ESzeVoyKc5IV3nn2XTAxVthCPwex7+zb2Yg1650hd7mq4pg7QLO8z7ieg70HFq1w/73i341venOSr0ulsUYucUOQle1kJElEzBQ1W3dRR21T89Zt4zgPlcEnOCwLE6MXPea1bmpuF38u/vZiGi/woRnafP/ysi+nNE9Pe86vW/acafmUci+h8B+MuQofIvM/PPE9E/kn7/0wD+AiSU569C+Mz/3ivfQCeFSr414D/22X6vo/jYiabH6mJVX7W0zEe+27r12mMbUX1vZfPnyjHJXSPq+Oq8STHMmSbB0ltGuaeVerNAkIWtxKyowKD22oSiNcg20jRh6dMFyL4Brjpel1rTYJovAU942vf+sN450D/Rbrj0POn+tAiFVddzKdk7s8uOvbmuYF6SEQBckGyodBWBU8Jbiy1uxk7CcbYAIoN8EAfGEwhTumXQs8Tcb1EYnxVAQcJ5IpCoda8pM+289iCEsqizCA70GBIGcid1+M/sCxDWSBtraXfcNCXqyyolr/LisEfLCN6UwcRbB0SCW45JrUyyuSySAMIEDDw151HWzzJEWqUFuLbY+QqU2PV1xAzLgKqa26M4AVvBwAKxLZW8BEbIQpf+aV4DBeqEAjxr518tc2uIJQoGyCatbdS6ayfVmoXWa+13Ldq2Uwb6BMjSuA/7BjEIiHfLMQFvAeocYwLXBDRR3psKB0nIdRrvv2N5z8kEiPceFCJcGzBuuhy/X9eO02aHxo2ITHDEaNs+Z/wd1iuE0IAhv502Pd5681v4ZPcAp80O3gfENK9ypLBIYgpiGcVj5i62360wpyDFgrV6Ld1gGloRpo77TGy0jvr+dbH7lQLAmnE/et09qH3OZFRD4Op6Pcl6jcMxVs9Ly/Lqcf3NJ8DeA9Qwzt/9BB/+2hfxZvtN+MteTH32CSQHAg+QML5dYvYbU/ekrxPhM5DsTYEzKqGWZU5uE4uvpjwAEIC7Dx9JFYND8+ZWiCpA5riy/Uh/baI9m+BNfRgCgJu07j5w4MeE5nwHXEGiqi1YQnuq0HEihArtGbjissYce5+KB1Lbs2BfmxXa6zXjsEdJjGY1XaYv9B3lOnTd0UhhzMhBAzSIgF5bs/Y1xpp7pnrMzOGq173wp5rx/18z879BRH8fgP8igD+J7yBa5ncljj8z/wUIuLfH/rT5zAD+se+4YitdWlFLFyQNbbfHoYSqqj9AJs8eRaoHpg4tcwzescF73+C2k6Z2mKqFB2B+gtm6ayHDVcfsd6rOOwpQrIAhgHgC9pH+qrbBAzmMqNkEEAEy4C2b0tR7VQZz003oKEDX+9fvpBYK9Jnt8eqdTOrTa1Q4IQYcZ3OX3Fz1gZhUJCySxiXXukPwog0JXqKbICB+2GL3/Bwf7Vf43Q8+TEw/8qbFFykR2cCyoTQsKmQ1CekhG91Fir/uIPasGpUpkNh1qzkPIOY++n46AtYsgoQC2ogsRMR9A3/Rl2Q4iCn0p9RJgSV/wFL7CEAvqnkeZLxo/9AesiE7ZL+B7HBmnVotyGdzbImp2l3HYJoHvHNTkyKd49YGXoF9rOquQ9s5yAava4ddGxSIkLle66jD/M2BQQvoLKNo22yF85W5dg7012tQLRzo8RYCrpJ5FkdCcypMZewT2M+RemQMuy6UsLXJgZKT4zznELYONEhEKXWCd00EZ4d4YfR9O+Du5gGG0GAfW1x2dwAA7wL6foH49BHaVjp6uz9BH1o4injn5ClePH8TF+1G4vuHFr4dkCOSrfjw/dXLhSVY7DEt1uxhjoHfQsafgsFae1C/E/3Nvov7iCPbnnotq9fxmvkFDkH93L2yKRCZfcmAfu2DWqCeKzXor48DRUBaM1wT8OZnv4nrj97Eo9W3wQ2y4M1bDwrJaXydiAt1TlfzGN23de6qiY/uoSeQNbIv9dr1hJ96DMMCj774bdBpQHjewT8c5F56Xu2Ho+y79qeuPbvUnnO5Pz2Lcv8NRKPRk4S4JYAfEOgpS06UDsAtwG858d1aVwKHfe+2LfruLfs/pGMdio+CXSdsiNs1io+AXftC6tORJBjDAGRTsQEC+JemfQFlHVyiCGcWxGt77fizY8RqTmos9anF1J+KorvQHwHwzzPzv0VE//SrXvz6Z+61gEEXcR1s1sFPN2jddPVYSGzBAtOBXNev97BlTiCoj9/33W7WNfABUoImLpFLdIOqJ92xUtv02fNrT30rbGjdnpH9BfQzzG+TvqmkEJcqT9dkc4I4D+CPAf1sPoRDbUK+ZmbDmrL4h/XPOwCjaB+s8++xolWoqZITljQEn8x9pDNjdDLkkvnE1z/+As6aEZ9769cBz2KLnbqP1gy8mRhyCJtOZ3EiHOCCJepPELaL906SgWlUEw/gDCIwtBC71D5JQgMXB7o7EubesTC2TYR/0JdEO6P0AzXimKfaAd57UDfmTYIugggHDomZK33NW4e4aeFOZTfhPgkTnO7NAC1isctVAUc3Qht72wqegKj27Wu0wNr6DSiLXgvJer51yrPzWG2T9Tf9awGTbqhap627dtSt53vtb1CXGvTbZ1Qhw/oFzNVzysAO4LXPEXe8Y4Rtm8131LRHM+NSn/qVWHwAei8JvVJ8fnH6RjHJA1LWXwZGhzh4ycx7dyLx+XcX+J0Pv4kX20u0fkSLEWNswCNhHKUThtCicSPG6PErN+/iC2efYDMu8OH+HL/r0deE8VfgoGYMCmj0/dW+IXb+WtBoz7G/AwX8KZOqoAjm97lyjPGcK/dpYHW82/ZZbdJ3Cpw0VC4ga7Fl+bXP7J5Yax0ygVLV62aO6blJiG4WOzzwH2L9wSOcfelpmbdnEn5TiYIsbNs5mggJOZbarWaMLYpvUAfwncnWC7mOg8P5o2cSAjRl4Ybnkvui5m6uDImgJJVWeY5pUrEtIb7r4TAKwFcAfgaE/2SJ5uFO2nYN4AmXsXqa1l+PknRP16manDPPMiHUtH80mIJ9DwSZG2fp+968D12rlpD1Wb/rP4uR9F1sqezzOgc04hEwP35rnAEcYoxPUTm2NH8KyreJ6F8A8AcB/LNEtMB3oGt5/YG/OufcUvFkt5Ku/lVWXydKZqgNGlAJV9Vmdak3DvWkn9t47eKibawX8PrvAOToPQ3m4x7bqAL2nlbw0bbq5K6ZwZohhDleAx9nrzdsCWO6WKlwUjue1df5BOBtPoFqM+bEIFthAUjnJfMduk9Nrc2t2f6XMW+6ODkB/VnosNdVdVAT0jAihMT45/CnAJgdmDkJMXLxGD1++PLbaFZ7EWJ6J0z7KtE6N5UQxCgM5x3JuHuQ2tZwzgCsZj3C9AL8hgPdRZDW5wQE5nM9A/vkn9GNiLcN0DMoPSMHAelMEC1CfjdhEjuf75zY9kaAHSSzr96jTyZAEIYeLPUK0GDEbQPXiKBBymad8vSd16pqIG/6uX/0t5ieX0OK1j4uGs5uTqDXOl2qY8mT5eGAPdbV0Zrp6G9zYD9C5lREWavmnDHnmFVb6nlrj1nmUudcl4QkDfGnP6V1QEPYilNuzOZ7yuDLuEy/pxj/HJwIz8m/x4YZJmKEXYcQPK52l+hcwLLbYr9+A+eLdZ4bkR0cRWiUH+8CVmOHPjbYjgtcdGs8Xl2LEB2SNsE+qzWN0ueZrFfmc63dsePIgn5lS3U91j7V/px7V3Wx2gELvOprIso+ofNyOXOenjt372Nr2jFfKr0ukxYo+5JlvIGpQFu3/xhIBSbCu3+7x2K4Q//RCdrLnYzD1BbyKBl2bfIpbZceUxCe1mUhJZD38VyntsED7o0B3ZNBxrVqBueEM23OaZSIUY5lbeup7Gkb80wAcMZwn4wyVkJiz68Im19+hA+evYvtr4mt0D60+NzFB3jyO78OnLOMp0cE9hJaOUfw3nHJx1FrYXQMqDmgdebV96X7dosS+EH9C5Qs0vdL5q/u3zoGdC6pb+Aq7Rcn5jo297JFx3wtDOY9FfParNe8HGj3Pz3lH4bE7P+TzHxFRO8A+J+96sWvP/DXcs5lUA0okzUDURRVpCbl0AQYFggTSlrxuYXVjoNlda1d7HWjsJ73OrmsGhEoC14CQ4gJNOtiUzvoaLGmS3aRtmB6bpJZZkbvbzUByrLkTbMC4HU/1GyFrmgemKQut7kK7ts8WzFNABnwnp+L7t/wtHlm49NMs5OFXm3afQEsE4A2J+wg3Z/luYTlNKZBycRh7Msuoex/ywQ6CeCNx8IPqY0CpDkzr4lNDYndWiYQrll2z83LtMJgIBn/unAriHgA0Qy8APgdiL+ARp3oExBXdguAOx0lo3AvWgCN8IIoITzRctFApXEi7ReNBS0EwPNIoqXgIryyatZ6yfZKgUXbEVwyMRI/CHQsG2GHAoq0O1WAVsdly466I5/1vKU8swpFUP5DzYKWKKDfAsk5xl3/jihChG7Cc2NTBZAlhPHTjdvWWbf9VbgZC+7r5wbKRu0BehCFHAEQ117CIQIieC0C4q5BHB147eFX/cTxNw4lyo8AfpfD2XJwcs5eIlrZpKXeB7z94ANcLm9w9vAF3tydQqP6MBPG2KBNc6FxI56tH+Hj3QVaF7HwAzbjEm90L+ApwDWjONafxinzierzHLM/12/aPzomVEt0YX7TYtfz+j1R9b3+zOZYXXocCogaNtKb33T+23dttU2WjNEyd7854cNeU49bC/Br4Pay8Wn6ov3sFrtfu8D6/Uc4ffe5rCP1uXYv03ZZP5paUFNkUgNQbZ8JXezOg4BYjxJUwL5LpO+npjPqiF7WHFHXDTV37QGcMFbvvcD3feUZhm+fYHN9ib5fYN2fYvu3fwDLdodH73wgfgGeJCzzNoI7h/jQAW86uI8GWa9ac6+a8VdMM0CY/WsUcA+UdS1gin8syWY/6zmWXFEA7yGgf48ikKrZdJ8+n6JojwBpf0zXadHf6nH6mmNqBiF+Sm38mXkD4M8R0ZtE9Ll0+O+86vWvN/BnTE0BlPF0kIGqKrXajtZKt7Wtp16vC1HNjivI1Y1+Lg24w3QCNZCJuk0sQmvqDBBzjpYLyNQFaDB1WWCubbAStv5eM4D1YlpvTrqp1L9r/PaRAK+RXUxdKezlZJPLfVxJGnmTNCDbXMf7dCyBULImHzGBYWV7tG1qdhRRwr8hAcyBCuBUzQKhjGZlkTJw5gkAznUfYc3IJyaA0gbmGM4xXBsQ9hExgf2YwiDG6BCGFtQy+tslPtpd4kff+mW4xQgkTUAcvDwnkGyLU/vOGXxG4JWHuw4yJi4J2LDY60MANDapH85jEW7WMTOYdAMZs6cQEyAk4cezOKV5ZGAo4yAJOInR5YEQr1u4RSjvqBG2TX+XfwIE+U5eFq2isMcbn/tTNCkMOo3w6MUvwXNODAaH5N+AMjbV1l7bp+ZKduO3TL7ObQV1bM7VcZoZMBJArgzjy9Z6XWes4KFripoS2N8IEvFjzjYdKKSBZc2OCRxAmQc1cWDXBf1shYNzBvYAbRn901M0p/sE5CVCVVgvElvfwjVRxicx4rYF2IufZRJOmR3QN1kYAGDyWXiASRJ3hQYERnOxx9n1LTa7U8RYFqUQPLwP4hNAARftDoEdxujhKWIILS4ur6QbT+O0H6wTuF2vtU/sGqzH7HroMbWTtsTMnEZI+3xujNREyqsIbjaWvNat91NHcw8BoXV9CoBt3gztB/s8Oq4UrFrh1vaRfba61OPN1mnbU5tamXYsv+8G4/tLbD98gNVbV+AmrQMLCFjUuVcvuVYAs7+11TnWb0aFBjVzUs2tmsdY0yZb6n3ePoM+r22PCm495QSMIKD98gYXlzuAgDcYoLuI8OsLPPv2uzi9vkV3uoFbjGL62TDcRQDOAvjUgUI81C7Zdth3Zdl9Xc+0rXU+FT1+S7Leqw+YNa/SPh0goF73SwX3qnGw66haSEQUwskDeEGSuCztNdmfDOm8Tyee/tQUIvovA/g/AXgXwMcAPgcB/j/0Kte/3sAfmC7qutnpoL5Ki2dXnaNFBzFjOnitBDtiCubrhXFusQWKjdwplxBkalsH5MnDdympk6ozdUG3JgC6COiGZJOJaDnGOM1tdlra1CaY823W3SWXOPI1WFGQXD+/LfUi7gBENn+Fvac2CnPcU2H4W07mBpTNTPJ32x8tg2IsyabSIsd9Uu/O2OQyU8KgpoFWWItVw2c2CIrJyTeZRWjiL9dESfiVmQIBP/v9Et2HKyzevcPlN7fwfsT1t99E1+3RnmzF/jr1K++cMLRJK0Qjgz4JSRAg8NLJfVsC7YKASiTGXdlrLboR6qav2SQdBFTr+N+gbGKa+2AV4JJ5Em8d3Mkoz9pyErAgGgmX7h0BejCKwLiXNnIvQq0yzLlZC+njcNfljMjZnGiXOnwPkMa3Jp4KbtpuC27sK7UM5Ryg0fm1QInWA5QN1Drt2tJWf+vf9Lg6xWlfq9mAndtabPtjdZ1ds+bAh11v5ogAW1KddBrRjrsSirOTd+4XAxAJoW8RR0bbBLHlT2AfADiN89C34OhSmE0n/i0AYvA5Ak+MPjv6hnWHphmwHZZo/QjH5YWE4LMwcNndIbDDdX+GwA5DkJe+eOOurDWMYuOt79CCWwU7p8As6Feg1KfP58ABaL3DFJirwMbVeTULD7ySRnJS7JjRdd36GNXrj97Xgq66MIqpR/LVyedaJh047rcwx4zb9mg/1ut8DZ7TuGw+v4P/ZBByoAtCbliNnhY79uu+tMLHnDbbPIsk8OJCEjiIOY8Sa1ZYU5B837uzpILW00MICwXoI4m55EdRMqafOGBBcD864M2v/DqwA+KHDcbbJT755lv4ZP0IX3jj61he3qL9YopvqhgEKCy/jjOHEqZ5CWHWe5R1XYWaYK61YT5bFvygz6nn2XXP2vFboUHJVT22MHXoPNR+1r3oNJ2rTscqrDYo+QZe4zJD/X1ayv8WwO8F8FeY+ceI6A8A+K+96sWvP/AHki0xyuBVifIBTyVnLcFcp4y8dfDTWLfWwahHmjgo6ixb6s3coTA2GjfXah3SNfQgFkl5bkG18cJ14amz+lnGUJkOZbV1M7Qq2rkFD+a4tY23G6ct90nsuijPnRMIvKNsOqKLt5jexGmUlkZAQ97wlWkeKLHj6Uaa0r13yOE7Y9JWJCafA+XnVNA5tUmsBJl6g7f979N9tc8V/Psoz+IifNeDgs+ZeMexxc2zN3CBp7js7rDfrxCjw7ev38HnH38Dp28/h1uFlCUVxdSlAfCJEYBaBvYRWLhiNqJx+7U9uvj2KOrgcwDPUr9dpDGnoJpRolNcBuBOnH0RRLNBJOw8mrSYa3jIBuAdAV6Yfd66kvwtO4UROAtjxcRExpNEhdF47lnoNA7C49UC/mQAIRa/Bt3w9+mfqpV13uhnCwjnilXf22OYuWZuB7iPHa19cep5dAxcWAA/58tTgyB9Pmvza4Udy4QnoYF3SVD0Yq423i1ATRCTnZD8VACM6wVcNyah1E/MeJwPBd8FDw4erpEB5ZIQ0DQD9vuV1NcEDEOXzHtGRDgsmj3G0KAPHTZJIDhd3GA7rHDRrnEznGLV7tCebKVPLGgLEJClc7nuF4Y4r+9T9tZTSKzzBYrfh0btqfsfKIBlj+nabokONudbcxQLXG2xYEtNMWyxYMsCPR3vuq+p8HeM+LHCrybzs1qh+nyrAZ9rT120DXaOWGbazZyrXx8EEELZRxX8qYnL3DPVc6Bem+eKhzj8qh9eA9k3VdjQMWLDter6aefPMY3Dkovmx/axXjsA2DLiIwcXWdbYzklOgu8L6DZ3eDB6hOBxu75ECA3i08e4ePMp+ptTgBjLN27g3hinTrf62TL6uvbXJjv6/jQijwqwVvBTzOTMZ9OHedzp/W2/6/qkbVI8NSeAOFOHrrk2bOprWmoO8FNUBmZ+RkSOiBwz/1Ui+mdf9eLXG/jrS6nZ8ZT1NIdB1EW5jo2tmyxRYeQsQ4pUnw1xZTOfWtDsUSZIxDQMnE4A62xjAaYCPHVagqlT67B+AtpOLdoGRgJN5r7AdAG3x+cW++a7MNJrsGWftRN2RIB4ApDJzIkIyNGB7Aalz6bfWwbl98MpkVURJnggaNZROguiTUjmQNTF4yppW7R/jwG+lCG3RKZIwNVphBTOoB8QLcM4trh++gRvPfk2/t1f+wkQAe8sr7E4W8NdjAKoH0VgReATD+yjaCYes8QuD5B4/DsGdqGMKXWKZYBvvQgIp1yySeqYPC1RWDAQcuz+BBjpTOqkTpx9JyFWj4AGBfzYlQhM1ArTL2EhIWCfID4RLPXLxQy/HKSvkgkR3/jc9zw4jFvRCPiTfh5QWJbVrgP3MXc1g26ZdJ3/xxh5LceECXuemtrUwOXYNToXAyGH1bXXzLVjTttoz2kOj1PH4CFF9ukbjPsFXDMKKGlHkIuIgyyWwubvM+jn0WPcLeC7vtyDGOPQwjMhRoemk7jtse8whBa7YYnu48e4+MzHAIBdv8J+WGAYC8pr/Yhls8cYGzRuRHAeb6yucH56DVj/F/DU5yngEPAoM0ksY22JotXVPgHKmjr3XvRYb87VdUwdgG1gBy2W9KiBs4KoJUSI6bjc37bBCgC1GYsVJOcAsM4JFQx0fZjTGmhbX6XMCRZaLFFl663n2d60/VZIiHDdAUwSNWoVpialO6OpUG2IAkg7T7V++zz6vBrmsn4GBa4KnHXu14Df9rldA3VuLlACiyjoVy1GD/irUTS0keXfthBZy69c4923bhE3Dfz5gPHFErurc5z94CfAjkrkOavJAqbCUR1OWJ9nb47ZeeJQxoOaJVpBFuazEhB2ndT3XBMatYbSAn6tx0ad0/58jYt0watOkNeuXBHRGYB/F8C/SkQfY4ou7y2vN/C3bEhWKRKg5ikqAFgWUK/RCdOlF6uJLGwSKcsIqqSsAEGPqfOgAvqaQdIJosLCDtMNfURh8K1ZkQolCvbtM9gFVduZHYKUeaDE/KeTbR21ZsLW9RspdqE/xmhOJH0FsomBZghQVyD6Km1pOZvT0JLBO0oOh8lOfESOHkLLWASMuUWuBvlzoP8Ic0zJL4NT0i9yLMmPiMXfd/RwLqJpBjAT+nGBYb/AWdPjl+8u0VLA96dIKXHTwC0G0XQ8DyWzJUEy74p8VCJAaMSFDaD2rPQwCQQ2EoUDcANh/TOzxoWB2RN45/O5pMLTQOIzkGxYdY5RAiy8J9CSQZexElgZ6BhO7XTq6DjKuPaAWwSMdx3C9Qrd5VbGQxPBew8ePfxiECfSTTIPsPalOtdsqNO8DqAI67VZTg1K7N+XFR0H1jl/rliBugbvr3LcmXXs2BzVzblepyzAsgDUPCu55KibksyNfYd2uUsZdQM4+aXw0CLeCpsvx+VGOTLPWLYINdeJY4P2ZIuuHXHKhJvdOb7x/LP4TPA4e/gC6w/PcLa8wxBa9KMM0taN8BTQOBkz+3EBZsJ2e4qTJ1elf/R5FSynjLBC7LB8V2dq9UG6SkKuhritBVkLbjTym/a7RjSxJkS63juIFmGJKXsKFBBW54rRfUTjyVvSRssc0x6r4wrc7FjW+2od2lZ7jdZlCSX7/HU9uqbba7QtOu8s6FaQqtpymOss6GyFGPHDgO1Hl7j78BIP3vgY7eUOPDj0NyssHq9lPdtBNIcp2pvsFVWb7edamLPzo55Ldl+yQlZdl9ZhNTW6DmjSvxokR4gvlhIiPZdxdAbwIwdqI/xnBsAB/ks9lj97h/HbK4AYzVvJFEDBdi1cKZlpSZALFM1QwDSx6RxpMLe2eBQsUgsZth7VatZRzWrMNRe2eE7j9RqWTzHj/0chSOGfAPDfgCCIf+ZVL369gb8OeB1AnpCpKQvQVZ2nA1rVXgQ5f4OprSSjeLIzpoPXTu5aLWbVvdoGq/4L5j6a7U/ZjA4FyOik1YnbmGPqCKvZcGu1spouuVccsb8RwH8faL7vPgcCB4MccG8GyvuKRgciBq04p4fXjYG0UT52AnEAAQAASURBVBHTcKp67Fh5GQtYfS/MjAgzSZIBEeAaGSTMBO8DWh6w3p7jC+cf4tc3F/ikX+Fnfukn8HuXPy3x0mmQlPYQUwytmx4lxugqPcDttON5IGHdu7LRTBb1gSRrr9pxakzsiBQu0YlNvY/AMoXmjJTYy8ScBpJEUDs3NQcDCmuWgM0kFOpIWeMwUSt7AC3DL8ds7kMOmYkmLwIbNUlTo/NQ34NG5FJHyAUKKLTxqPWYnjdnn6/9NMeM1uNW69PNWM/T1zE3du4TsCdMGxmgpdo7S0YYFlCP16CmNnGydrzKuu0B14bszxGjRxxaOB/FVK0V2/2hX4AoonURcZT2MRPi0OYkdWraAwDOyTsbd4t87mm7wWZ8iK9ffRa/6zMf4aY/w6Ld4/z0Gs+unyBEhz62aN2A55uH+Hh3gbNmj89efIiLR88y4y/20wbYq6mZ9kFPEkp2wcUueoDkvdB+WKGAOAtQrPbMjhlGAfY6bm5QBJDz6l2mvp0wv/qOVYhQ3wI7R5XQGZLAZ52Oydzbglg18bAmbnPjzzK3MM8VIeNJo3TpuRrwoR5XtbbZtknn3H0A3ALXdD29GXDy8DlOti/SXi55JBbLO4CB8GEHtwjgwSH2DTz3wA6gx+FQo82mfksK1s+Mcv/cxlscgmjtW0C0DxdcyLg58sA+cwTi5xu421CEsJbEwX4EeJkE6FMCveBk9hvQfHkLNMDtT7+J8/d2RejQsayITMeEvgubENFiBts/GvxA22jJbItVtH4bztaOQWvCo2uKFsvo12SGJR+tJuV75bei/G+Y+Z+C9Pz/FQCSqc8/9SoXv97A305yh8KQ6SKqrOgpivpLzz+DTBAF+MpU6OKl9mcq1epEWaNsKnpeXiwIOd21AiyH+UFu1c3AdJPuAWxImFLrMAOUsG662GubydQ3x+AcK3Ms0MuKxZzHgM5cicBBKnn72SbdqtunEYH0/JmU9DlEp+YfqO9dmzXd1069x9xvps9yMjIGkNhQiUDEsu6lMJ+uGeEVNEUHJsKbix2+vjnBwq2wf3EqYGvtQKcRvE4hE08ieOfkcVMCLfF/SIz7PjnQavjXVdqcdJFWbQBgbHmphA1dCtj31OcwnuGTRXK2DSVyhU8PGd3URChUwnbqZx6oROiZMx9LmwARA6sAtxxE89A7uCj25uNmkfu3aXagBsKgnaLMb5/qt6rwpvpdhY2UzGoC2Ot3XrPwVB2vN7O6WCa5ZiRtqcfisbEG01Y7PyKAJmn07D0sw1fXpWsSAHgxSYt9A+cihsFhHBv42COGBnFsMA4tYnRwDhj7Dr5JZkBRxluMTgSG6BFCg7bdw3c9Qt9hsz7Hdliha3osux2e4AUW7R7jeoHPPPw2vvr0C/jy8qt48vgDPH3+NloWu/9ne3Hq/YHP/h24JsC1AXHXiqkXIPOpoRxrnU5lfhBxiVZimUwLXoBDokIBvApbO8ia26Ewp5bRdCghP7VPLdtLKKahlgm391WSSDUzVrOw46kDpSZ60n3Ejlu9r2qT9Rnq3+0xC2g9ikmgHeu6x6gpiLZRr7cg0Uaes+PVklLHTE21P3Ru6ntrS8Z03w1ATFrbQUyB+M6Dn3rw6OAeD+BrL+NgT5JccBFK2Nd9EmySwM4bB4wk0cayFoKn5rxWUOoTQO9JTDcVDygQPjbPPOCejsBN2qYaBi4BbghYpYSKQyJy+qSRukLW7q4e3qD/6inan9iCPolT1r7uU8DkPCARRtXM1JX2TEwZ7fvTd2bfj7XHtwSKjkFrPWB9kXT+KNGm2MmSn58SUx/gU23q84dwCPL/8Myx2fJ6A38dlHaRX6R/aroTeRrz104ea55AafLdoKjLdJKrRgAoyV1qVoPMAKkXRN1YAMNS8PQYoQgigID+npIknyax5g2wk85GaoiQhc7aG76M2Ybpj+9kIs5guePnHoL02XPutUBT0EOmrTR9BmCqZp2rw/5+jJm6t47qfvk7HWpCUkQT5yOYWBwgXYBzEePY4Hecf4C/dfX9+OLJGn/xV34v/sgP/LVk8pUcedO4oItYTAa0fQDoiZxDbZxmVtyjRKzyEGBuN4oubax2bLacs6/6pi9RktRcLIijpI5FUrMpdWqzoeACCTur0Zj6JMSmDLJ0HsqmcM6yCaoQlQEZwS97hH0rzr3aHzsjaFj2yKrf67XamlRYU7yXgXEtCmLmfp8D97H6XUt9Xp0/Yq7YcV7PD92ka2GlNgmpfRcioLlCmtM9xt0im6KFQcONEZyLCAE56o5E6YkIoWwLmrDOuYCmGRFSDovdKB3tKWC53KBpBgxDh+dP30I/dvAUsdmeIaw9nm0v0ccGZ80OD7oNPv/m1xDHBvvtCRarjQjO3SikSi/J4rBL68EKJimU6QPtH13z1cTyWB9bjZV+Vr+riPnIcNrvZI5bllzNeux97Lqsc9WCIdXyJg0GgKkvgL5fvaZeVi0Rk3yODoDWaMCwRkey9dr2ap/YoudYYguYMs1WM1b3uxXCamFGS1ed7IoGl7w0gFz6expF48mAOxvlc9ZSsIwV9fnQNUn3zR6Iz1q4y+TTZNcSXd8YoDMuFgOW/R5RovdZcO1QWHhOfX0H4BEBjhBPCBQBehEKTtB+vAaa799h/KUl6MN4aCY2p0nJ75yPg2v7XlSg1TliGXxgGmI1jxuU9ZNNPXp+h0LK2DaqQKdBTD4lWJqBT52pDxH9DwH8owC+RER/2/x0DuCvvWo9rzfwt4ucLrQZ1HFZoGzCHgtykwOOhM9KbNHDNCpbc/0CZZFVB1wNo7VKO6oGuSYqQEvbp5NKN19CsevXY5bZAYodthY7ARXk1faIHiWRUzS/HWMm7Wai12u9x4rt81cpmaW0gpH5PAOWMuisjh9cM/d7+p7t+2nah9l0pk4ipr8zidq1SgA2uVfdP6EAVjWdAJAz9SIyMHqQDxLpJ6XG7ZoeD9qAn3nxAG8ve3zw0efwuYtfBg/JCdcz6J1Y3uda+pIT6KENl0VbI5zsUVT1l+nYFfImp4w/PEsUnmVEDpOaTJRy/7ecGLPUZwsuQqh1IleNmTJFAwtzmc5jJtAG4H0CbWpuARSN3DrV5RluNYKHCB4d/FKc/vJmvEz12s3DbnTAISs/x8pZ8FYDnrocG+81k1bfG5gy+bqLhGo81ZdU440wM1aBkvfBCqqNaYTe2ppEUPq9Fx8UeEZ7tgHWK4SxwXZzhsVim7NPE7HE4k/zgVkqI2J4L5JICKI1UEH35vYhzpa3uN48gHMR6815jt6jZj2NC7jeXaB1I56sXuDxGx/i408+g67p4XzAsBcTo93mFMuTtUR/WoxlXq5YAJeSPQrSgbI+6ntWcHPfugEUUGPt9NUstAb7x7SpNeiy49TuP9ou1SzrXrA0dehcY+BAOFDG3o5dy+Tuqfg01cJnx8W5uN4jVNOhczmY+nVPUxt+bbuOPbu/wfyt52cNWmsBRtuspnl6jdZhTU4gzyPZ4NNtRwZfu0SKsMSTt2SPg+Q9WXvQaYB7PCSgTiX8tmrwgUI05P6DrFeqbT83RISCXh2Lpyha+AGgZ1H2F6Bop2on7xbAnYQ/Dd/q4L/Qlz7cJiKmxdTExq5zNq7/3vStkhdqCaHH7DVI51unaK1fNak1CeIha7omVlRzORWi9Nnqd/0pEAA+hYz/nwXwFwH87wH8z83xW2Z+/qqVvN7AHyiOjieYTmx1fNIJoJNUQbYubEsUaVoFBiK5VkMF7jHP+DQQgLNGUv8WdkIYBhIv/oiyWM7Zv1mWSNtqgYTG7M0bOw4njZo6zIXIskKIlprtZhyClt9IsUCHqgV3jhGdK64A9Ekb7WYb7zlum3Nk4upxspoXc/3kOruZ1X0Uy3kW9APJ5Cc1kBMoUjDVuBF3/Sl+8uFH+IsffgbP+xb//tPP4+0n38LyczeINw3cG8OBQMjKAuq4VqbOqLPRpU3wygivIe3KCtg1ydkZgG2KtJTMc3KWYwXtak7ScRZkuRfH3sliru3sIJFjbkUdT4sAdollVPM1QMKLbhxwBxEIOLWTRIuRE31piNcaSAFTVrF+T3PjLVa/aZ/NlYN3Xd7DrBBYC9lqcpaP0b1jn7n6PT0PHzNdg4xTsrSU7SN1orb9YkmClDNid32enHxdZuZj9GjbPcaxRWTJtgsAzsWstRKNgJj6MBPQL7Dengl4dxGtS1qE6DHGBiE6SOZe8QOI7NCHFiE6uCbgjQcfYxg6bNdnAIBh7BDZoVtIzoHxdomG93BuTPlZdJxCtEk7V8z9dAzPMc5AsrMnMQ+yia3qNUX3kHqdsaaWNr+EnmcBtQVLFjTZvBp6TJM81mWfhHhtT51xVRMqqnZVTS0iBNCqhi8DfJ4+jzL3EdPzGkwZ/4gSbncuhGxvrpsTjuxaoeSbagoA8EdOsn6rk/aAAshrVjqY6y1jHiEBBxhiOkk89eFLcfLpYZhaAWh4aWXVmcV0RiuOQF4UVijmQbr36netU59Vx0c9Duf6pxpj/r1+8n2SD0TXfuuzooKJxva397aaGWAqQOl9rZCn2ieLAi2Ar9cUfZ8v0vuygomdWyogfjfwxm9lYXzqGH9mvoYE8H7lmP1z5fUG/jrwNJyhLgRaapOcO5QoKLpoa4ZfhzTJUeKjn6bjZygqWQ0PeovCNClLEjAVQICy2FiTHKTrtum73kfPVZv9wfyuodlqdRvMNTUTUpf7zHnmmKm6HAVIMwxmhDD7rwr2McOsA4Xt0vu/DNjl36gCPIwc4x/l+ARUZTBH02ssQ3HfQpA23qxVSPfSBFUYBDgxR7R+QOcGLFd7vL16gtuhwfvbBf7Ot34Av+udn0HYNXDDUJ7HC9PPgyvCivqpKLhYi/MtNcLWS5hTpBCmsvELYI+FbVSA4BP437kM1mmRhAAFDWa+kbJguvnbcHupX+OuAUeCXyWVvEYSAmSujdLHcdvAL+LknRAgannNdH0wtlBAUC146MamZgp23Jp9PJ9jmcpaKKjH1mRsGrBlCQF7XsTs2J8d6/nHmc/1eaFMBHa1FkvHvgEJFlC0yTxmT9hfnWC7O8W2X4GIcbpYS5Sf2OSIOxJ7f0CThFZp+4gYHfp+iciCcu5254js8jltM4hmwAUwExo3YoyiPXCIGGIL7wK2wxIffvA5vPve17D9+BTMhCGIf8FqsZGnDA7jvhOTnzWDhiQYLgTk8sYlwoWL9teymMDUDEPXf8tKaj/b935MeNA9Q8kkGzRC/cZq+2k77tR/gFESjQWIQKNYT4UahgjMdi8DytjYpDXM6XhECf5gmX8d27WWABAwr4K89pXanuueoxqQpSEU6jnSVd/VR4hQBH5loZV5HlMfBIhZI0FA90jyr+NiemKBNaPYlFvbe23XEhKVDNVvLWTt9GYO6npmtUUOYjpj15X6uRVk2+dnlHd0k4SuM3NOgPS3Mvd6P1vsO7a4xpqfKZ6wZKIF/za3ixYVNGshoCYkrX+I9p0KRCscxxiAaFhsWxTHWKHNBkz5XnntyusN/IGSaMVu7lYC1sVKJ+1grrELbASyo5wF5zFdu0jX6kRRZywtGgFIF/MEaib2c8CUHbFgXYGDM3XopqKTSBfPGoDXG3tE0WrUtn41815vInW9tZbgGICfs88/cu6EzbfgfHISMGs3r2AcwCRykT1W1w+UY4lRPrhZBlh0cI2GMJz1VaidMhklVKJph0b4cWNEjMKadk2P/bjA73v8bfzZr38fFi6ijw1+/mf/HvzwT/ysAPcgzLyYIKX2pEzBORTsFtCkZvDIORKABLaZcqIj6mLZJEeIELyT5+B9GgyUQqJGIEcI0rGpgu4Jl7mxS32l5wPZPtl1Qeq64DIXnwMIQNwmjYDncm9v/A80WdPcOKoZ2Pp4zVza8V8X3dDsvEomX9ofkzIB7a8m3KqmZzL2Jydgoj3Kx7TUl03GKKdDlH8j8BTc2ec2jHEcWgxjizF67EOXQDzQ+R67cYHAHp4EuLNP2iomeD+KYy877AZhIiI7hOiwHxdAAzRuhHMBIXq0fgCDssCzGxfwLmLVbkWocCPccoD3IxarDYa9oETvA9rTlNmaJeGbP+tFKBxoAkjIs6zLN1TC1QLyXhRoK2hcooSZnRPudB2evJ+Z8/TdKMDxOHSItdfrMQVlnTmu5+j1qtEDDpOV2faoE71l+JW91t+0ndqWgYp2UOvQuPlKbqnp4EjAyFMNhoay1j5WYLynEhEoophBNlz24JCOD+n+A4k5YstFw7AA1LdIMw/zlTwILdMalnIp8IkD3Upn8JJAtdZbAfrc3Ne2g2R5z31kBAHNat4hkXXmGXVuKTi3JFXCF7xz4hhszXCfsNRbr2Pajxo0RIvFABYwWzKsfj61OtBobva8FsBdet/2HeoYUsHY3t9qBrTMrcNs/lpBSb97HIY9fw2LQq/fjuX1Bv71W7HMisNUuoyQTSGphXGCwsJb8GmjgyB9XkNcI5QdqhN/6CC2INsOelVF6j8rRdtYyHaj1o1B68sLK45nyFP7Op2kVirX6y2zNTeqrWBiy9y56pB7bEEFpklIaib/6EU4BP16PKR4/TXA11Idm4B2QEBtHep0nKnHXm/B/eTz9DwF/Pfd23d9joriXYB3AUvs8TsvN/hPXpziL3/4NkYmvHHyAuen11g+vEW8c5LE6rxPgC6Z6STQzxsHuoigMW2cyYxBswBzEEcyqLPuWrQHtIrTMduJ6Qcgm5UIWU7A+IKF/eohG9YDFIGaUt2RskBMHMWOXP0czDjnOwH8YdsCTmzFNQdDNvU5DVMTCG0jZr7PaXzmzqs/W/B0rG43fX+TcJtHCtsxYs47MB+zwurceJ9Ues/xeh4EgCPknTOKMKYbuq43iZnfjYv0M+HF/hwLN2CIDfZBQnZ2fkRgn1l75uToDWAMDcZk6kPEiHAgZtEWNEBLPRo/gNlhP8h9AnvRLnRrAMAQWpws7+BOA1Znt+DosDjZIAY5jwjg0ac5BmQfqbMC3Kk3wqUet74Nur6qaYbVjlozMbtmv0yDavpbTEVQ3re+L0sEWeDTmPP0XrpvZc2jOea5sOcaMriFsP1qAhSRQXJpR2pAzbha1l7bqdlodV7oeFHzKRVulDG24Ttv07w44WkfOEj7rGYwULGLp3RMhXzLoHdAjtTHyP5IeQ/V/owAnzogMigA3CY2XUt65jogHBOQ/c1i8nnJ+yMJ+Neppfs+pfd1Adlvr6nkjNAoSPYd+hQKWa9LBBl3DnSVhFdr469jtY7WB1Ov3cPtGIc5jtQ3StyoEKljvEExx3GY5v7Qca8ClIZDt4JjrYVXDGK1acfCoNvrX/MS56Kt/TYorz/wt1KpDnBdmGpGW6VylZx1ItkB6lAGPKVFk0nMf3TBXkAmg7WpV3vEJclGbrNCWgbCa53puzoOa1FgD5QNzqrjrO2kZTdV7afn1eO1VlPex34cAzUT0ETT+8+UYwDooNTApQLUB8CLE4OaQGUWBOw1tp22TqZpu47c96gWwn6thII4uAMNACvAU3MfJvh2yFFSWj9gHxf40YuP8NXbz+O6b/Clix1+4fnn8MP0Nex2J9j1S/ztF5/HH/jyX8fi8V3ZpAHgDKAYyxhJGiGNb85DiRDEa1fi9xPEufc0sWeegXXSLqSwntRwsSlNDoFx7eHO0y7iqZgBtXIOnxEoQPwGmijCBQC+chKFKAB0GbD95QdYPLgDtUGiEhEKkwYUobqO3Q/gAFzZ43Pj0c6Ll5V6zNo6rena3KUvM9+xpmYW6Fs/ER1TRkA9FD5Rxmc6z16XDsvYY4By3PsCovhKxsJud4KRGwzRY4jyd+EGrIclAju0LohtfqJCGQTHEtIzsM9CgwoEkSUpWCAGjxK6dtHuEdmh8SOG5DPw9qMPcoIuAGjaAbx1GPcLhAT4nYvw7SBmY6MXkzknyd0IsQDJDsBDLoEaVBtr1/8EPOKzBtRF0IM47Us7ba35l44By7La/lfQb8G9Hm9NHcCUqDk2Ru3xWkusdeh7jCig37YpCQc8aJAEi9hm6teie4gKD7oun3Jpu2oL67brvFV/iREF1GoY4gXk3dxiClofGICtGsQTlL0xANgD/IBAWxaNjgo+VwAhglcEumLwo9RRDcn6ZAQANmBz0hPpnDzFXBEuiCB9vEUh+FRIaQG8xcXMK/kOYAfx1QCyKdrB/hw5EY9ctCADldw+tj479o7t27WgWY/PrB1Kn2/M81C6r/a9ana1HmsuafMD6O86HmwuAb2XFsVbwHHS8TUsn5JmftfL6w3863JsU66ds3QgpyQwWcIGpoNXTX8uWH6/IdlgGky93kcUJ8yWC7jXQig9ueMp86K20XqehmC0AEaFFd00rJ0jTDs06cscA6qLUz35qqZOrg04vtDM3OfAnOFli9Qxswc9zQIehoD2dIy8RH2Z2OrX96j2uywg1ADf/D4RMoACqoADUD+5XXCT4A+IVPojmelQiulPLsL7gHGMAphS1Jz/7JNn+HPfeAffXnd41C3xtet38fH+FE8WG3xju8KzZ2/hMTEWb0pyG2whZmuPADxLoDSwhAM9F40AnzgZY7cQsHMtGYKpiZhkMt5JTPT8zmN6n+Ci1l6msIoLAC2B2xTbWufCCWTT3AqQJ8fijKzjuaPcPtcO2F+f4uS9Fwg3HTg4+PO9CAZnZmBZgVw3MWujbOfJnFbpvu/5uKEAZ35nfXf3Cbi10FGDejvm6zlnx6qWNH4KNTkzxgGQmnYxCiOubQqQeUIEjJLkDg7AVpy4w12D1WoNWj/CEBv0sUFkoI8NRvbwFBGZEIngwclRV7RPIzcIyek3QsC+ChCeIhwYQ3LoVW0Bg7APHVbNDt2FROrp+wUWvJdMwdsW6434CZyubuGaEXFshPl3Edx7+K6Hx1DWQpuoTddVjeJm17gErqiLAmyTeRsWXNYpuzYqw1mDdDZ/9XUoGOLqeuDQz6AWYrUu3X9Uo1FronTcG1DOgzSAloU55iFFevI8jWgGHF/P7fzxKCy7ag6UVBhRzIDWNI2wpe9BCTEFetreXRJ6CbKfqlCv9vk+rQ1bAA8A7mjCxksYbZKEVypMEIHfkONwAD8x88MZ0J/q4SZpwbTO1CeU+oU95XfFDYEiAZsofaCRyBhTRnsEcJnM4BDl2AlEqxpIgiisYhVxMGmoADEDWnDBDiqEBtPfda6E+9a8uWLNyFQwU9/GXeqLJv2mGCJASEzmQpRuUca8XqtmWTpXdPxqu3TN1uMvI9e+V16L8noDfzvA7KJbm7jowLN2bjpwu+oaO/At0PYQxys1mWmAnCnYbkIDpDF2kdDFk02dugCvqCy0dsNQYLODLJpPzAblq3PmipXG1dRobpGw/TZX7ltU6voipuYMc20CUNsyHzCaM9fV53BwU7OdOQBfJweDAU82AsbMvTm4ZLozFTbmzgNQQH96NolJT4jW9AcChkkTeo0BMcrLJGJ8+fLb+IknZ/ibz87wyb5DQ2e4Hlp8fbNC4xj/l6/+CJ68/wP4w+/8Ct5+5xvwixHudpToFBcsm+4I+bwDsCDw0slGkzYwZpLwmICAhbSp8EiSIGwlUXT4zomj74bgngxlPCX7cG4FwPLSSSKwNUt0njFmcMDBgShl3W05bxzxukGz6jFuAd47DHdLuHaEDwS6SG2zAMVufJbVtEwWqs+MYhIx9ztQ3ntEatjB682g3o7rnFF5ZvzfB/BVgKxNzSYaq5rZP/AhqeZOwMSJvB77HDzIpxwNTOBbAkZC7D3CrsX17UPsQwuNke4ICMnO3yeU5Kk8JJnoVI4YgQmegjjtggX0kziFO0QE9gijz1F83rr4CKuzW8S+wbBdYhxlwdvtTrC4WONkdYcQGjRdj363ApEIyWARFgEg7hu4mJDyHDBXIseuk1uAbz3CusO4a7Ho7kq0KFss0FawUjOXNmeGNcuwYEzBmy32Xmx+r8d0fa6WnvJY5b2QCdmnKZ2fcxq86npuhd3MGhsh1wrZNnDGKRdgp9mTFzwNbqFkGFL7eip7qL4btUMHZD89Z4Ao+yhLXwiIJ3W05bS+7RmUtJV84kq/T54PGeTTwbNDiAsWYo82DCwJ8dyLxuBGHMmxTQKi7unpublPEYhi6jMVBhJWIN3Xdc/X+dxwAfaBwHuUZIf2fDXD0WeyWoNjmiOY83UM2rVbi75LzXmkIchVOLT+MXY+1QBezT6tsGw1tZ0517b9U+LYOyHzfhuV1xv4A1MJWBd9W2o7RkAWJGXWrURqryFMF2SgmMtkO/00KmxYM2tzx3IvvnKgh2mTOYFMtMyqHHmmXfp7ClksFeToRFYmoI63C5SJrv1RRzrSe+jf+1j9uXLMznkOCNXlJSz/4b3uEQxMBJ2Dn6J9gQUUZfMJBeRcPbwCJnNPnfw8ulxXvr8FdjacpwX9Roug7LGw/sU8oh87NG7Ej1x8gmf7Fh9vW2FNmXDbe7y1GtA5xs89O8OvXv8ofvTjL+H3PHof7zx4H2fhGdzb4xT0AMAtw+1G0VQl50BaSVZgMfdixJumAFmSSCnxppFMmZ6BLp0PCDu2iimbNAvrvxDhgfZGeE3xt8lHASa60SsbS4A/GeDPeoCAZtXDLcbyuupNQceVfdU9lcglevyYEDs3dmbG7yxzP1OUYT/UJtC0HXObRj1m7Xgzdalgq21XM7H6XHIQe/7sUO6SNszLWGsiXDfk6Cxx3cItR8TBY3d7hk2/QudHDNFjTDH6GSQhN8FoXICnCE8BRIyF79E1vbD34wIhqpAgi1DnB0Qu2q7ODXAkzumPLp5i9eAW/d0K+90K49iCiDGMLfbjAqvbE/h2wDi24ODRLbfw3SDPHgkcJZs1BypJk3Q9xpH3llhO3jjsPjnHNz/6At5+8AEW/VoireiaatdhxjSjugWqVotgr7UAyQIba4++q44rSNpRsa+37bbtsV93iZlONui8kUAC7jxMBV0VCGpyo9YmmOPy3iDjhdM+ZYkqfRYLQltOUWrMswGigbhzIlS2KcP4CDHtmWg2Uoc6ZOaficy+y6AdF3MbjxKgwyFrTMtzcennkaePr1oEl0B/Eib4qQNvPKiNcG+O4Acu3dOsM0omJCGAKD3HwMgRglTzoYngdB9WX6iI4gvQwwRiiCVhoqv6XPu79gUEDs1r7HZmBQYrBDuIuZVG/rHhY61mInKJ6KRzwD5LB/F9tEXngZoqWf9HK4C8TEvxGhQGIf42VUu83sDfLohWEp1b/PW4lULnFtp6E7CAw2ayU/WZzZAKHMYU3kBAv5r0DEBOFjb3PNoOW6ctNk6ytb2rNR/a9vp59Bkt4K/V0VompgtmArzEoXdSLCCa+3kO1PM9v5nrDpx09bfa7AYooElZYAvarZOl1SrUv9s26/k4BPysZhq1PwGTmCykY00n8c4BgMDYDis8Xl7hDzxh/KWPPotfvVlhjIS7vsXNsMd7p3t85cEG68Hhbz8/w9fuvoQ/RhGrBzdw+7HYxauWSlW7QBEADbClhhE3HnFP8KtB2EIPARAjgCUjrsUR13Wh9CMl0L/yoJsRdMMiDOwhfgMPo2yYyamU98lUJo15WgUgAnHTIGw7hKHBoktIa25e6GZhgb06rNbDw7L89q9GHaoFX301lvmc25SsMD03nmeGYnb4nrPR17bPjH0dXzqurNO41pXHZtZaJVbTR3CU6DfUhPzd+SiCQBsAx9jfnOGj67fhELHwPQhie5+zoxLDZeAf4IjhKOb4/V23Qxf22OxOsRsXiHDonETnAZAdeAHgbHmLs4cv4FcDYt+g3y8Ro0fX7bE4WePqxRP0Q4ebuwd48OApum4P1w5wTUAcGgFvxOAU7x9OTVo499mEpLFrYQT4ziHcLBDHBgvfo++XCNsWTQgFSDGK6acV3HS9t69pbozWxI/VGNTnEQTsrxJAdTw75njtxD8HEGANXb+kfvWfQRKyDgQfBZJW0Dyi1dJ3RZoDACjzh83z5YvSX6vdsM6+BNkvt6l+x2JqqGGx9drMhrPMKwXy7VSI5mUKUwyAu2rziQx1zs3Krt4QEcwgZbUhIJ0jBPTfAPFFi9h7kI+yp1wRaBdFa7kn0ENOJkxJCNAxcspiDtMz8FUHXAYBwj4JBzvTT7bPmFKkHZJ8JSm/CW/Tcw0kpkBntcRX9Tlw6AC8RwHpKhTY7tIxohl27e9q5WCLYhYF63ovO85t0fp1LtlofzWumt++X6vyPcb/dS3WlEc3gGrhnwBqXXiPMd2WWbchp2wdloFU8K0E85wdHqfzdBJESKSgpf6IMkk1cgMwVbNqqfMB1It9zX7WG4+aTdjratBvAVauV1dgerld4UT4oKMTnL9DgaB22uU5oaSya82g3JrpZBMPZfQTq2pPOaZhmLCtFcC8D/TnZ5gOOvIBbduDmXDmR1xtHoCI8ZMPX+Bv0gOsR4/N0ODj9QLr3qPzEZ892+Ot1QYf71rcDStwcOi/eYrQt1g8WMM9GoRd8yz2+QtGfNqAgrBK2YZ+S3DLUXIDXISSFwAMHhzCswVADNcFAbFdlI1vIRsT7UbgKSQjb1JVh7sOnvoCNlyKCKQO8iMwfHIyMXtZPFynd0Xz/IoVUC37aufknMBfO9seA/3H/EPqcVyf87KiY7QeB1q3AfmzAgLKPFAAn8efjl0VVivTNmoCODiE0cN1I8bbJfyqh78cgI7hfEDrRjiSnBKOYjZnUoYeQAb9hGLiw0wpW6+EpA3s4SJnoYCIsXB7MBP6scN+WKK5PcMSd4ijR7fYwfkAchHN6R4X4wv4uwuMscn3HfcL7G/E1Ofk7BauHQE3ChtNXAAxUAC3XdOVlFkT4l0DtxjRrnY42WxwcnKHcduhGfcC0GwYRq2rN5+1qLOunlebZswlUbTjxDKdmmTPjk1rigqIzw1Qoo6le1LL8q7zUsLzGthjmlmYNa/2A7DXAlOhOUeIMWNN+0gj/1iTECCTCZkMU98La4Kie7Yrt+SBAUfZvIdbErt/ABPbfY3Gg3LtpDhgYvsSGAhJELgG4lWDuG8QRwfHBISAuPegMYAalvZvkMA+l31/CfFZSuw+vRvEYfYTkjj2qpmwz2pLEuRyX400fRcaLEQdgy3OsUWPWR8+/aeYw5oiWzMcxUF1fVp0DqlAF1C0BPdZVth20szvn6LyKVBM/JaU1xv424Frwb8tFiDb82wdavqjQoIuUPVgtfey3u01sNBjKlHXk09ZWJWwbbINoEjt9T3sRmHbbEsN2udA/hxIstfOlYnTK03688De2QofLwNIxxjPA1tm07lWCEEllR/zFdCIKjaCSn0PBezWFtvcy5ruZOfJZLZj66rBPQdf2m0AGiW23zUjOgD7/RIn3RYA8IgdfvjSY+lGfOPsDF+/W+D99RKBCUN0aN2I0ybir37yDlo34jOXH2AcW7Qnezg/SCKcWwJfe6DhnPSLByf3fQMC4reAe5QGpEZ0cAB5ceSlpTL9EIdhHXNrYbR4cOCdR9wIqxcHD7f3oFUo2Xg9wDei5ucEYqzpStw34jRcO9fWc9YCfj2u3/PYm46NXOp6j63oWndq50SzVAsDmAHu1WeNQmWvn4s6ZYWP2pmcGZLvwF6mz5dMx2ISDuw5fjEi9j45wTP2L86x6q5AiFg+usXJ3SXGIMm5Wi/JtkL08C7kkLM227SDybg7LEBgMCjH4W/ciKYZst8KM2G12OD80XP4U1FVegBt3IEWIQuHqzev0Z5uEfsG65tLxOjRNAOWy43kDTjZSxz/JOTQIsyz7kABNptkEjSKuVPcNwhDkx3sF4/WCdSirMu2KFupQoAmULRZZLXoPlQnY5rTttoxXY/BYzxIisIFj6Ll0DpqAGaF3TnAXyUsZEeH4F81ugryDSiXdprz1RzIPoMFuhaM6jzVvaw206LymRhgjbbjUezl9dmAAsRhvgOAmglFudY2mZcp5n8S9twqiHnj9RLDZgHyEe5kAC2TVslxyeGzo5R3AAlEi3ACIllLLwDcsDg+j3wY1UkjLZ1E2Yc0aWJPZX8igBbp3po7QZ+5HleKHXQsKvjX8ajEJFA0wPpOatLEjj07HBwKKWk1AvW+XpOdr4JLjvN+3yt/l8vrDfwVWNrFxoJOZRLsALMLjS5wlomxi7ddWC3wtqwS4XDi2Gt0w9gT8MiwIhoSdCDgsWFPgOIlP8fa6+RSc6U6UsNcu2vPepjPNfMyB9StE6zGhjfq4aNA6p46J0AeR+6rP2Vm3rTnZSVOGXebAOvwBgXkTa7J9vh8VDvBTOJAWWsaFPxb5n/ubxIciBiLxU5CGFLAqt3hrN1gjA0u2y1+4Mzj33v2Fr56vcKvXp3gat/g4XKAJ+AvfPA5/P3jAoEJv8NFPH77G0BPiOsG1Kbwhz4irmVw0xDhVkMKhcjFBGhLwtwlds89HmSzs9ki9wAGBt86iQ6UNisePeAjmpNenkmjp6xko+TegwfGeLdAc7oXTUAngybcdrLhNUVQyEVZUGUS6w2kLvU7rsCRCmyT3+9h9m1IzTnTsmxbb5j9A5Zf58BLBNRJDoiZNnEluE6eian4BaQ2hdHLuyBG6Fv0/SLHLuivT9A2PbwLoGTCc+oCmB1C9BiDLP2awMuy/dH4xTiK6BoJAq5zYAgyzhbtDqeX1/CnPfoXYpTtGul82gcQQQSCltFQDx5HXCwH9DeSvdd3PZyP2VdEQlOyMOH2vdqlZF2i3cjaLn3W357g2dWb8BRw6pLmSpOfWbbd1qWgVcejhr3VuWDt94HpOju3XwD3C5y6Hs+ZXQITm33ukxmYxrbXuu2+Vt+i1oClzwwN+4ls8kaqRaiZ5rngCHPPVu/Fc0X3qmxqxcXEB0ByG5niQ50Yet2sFo/zPakSdOgqAtcqFLqcaJF8hPOiJePeg3sRtn3bAzfI4ZGprZ43sAB/jQj0OLXxFsUsVwUFDfDRpDbm9ybtCXcdmss9MKJkZz+2Vun40+8OU7POetzpGLflVelsFSRse+zYtgLEsfrtZ00CuXnF+/9dKgwckIO/XcrrDfyBw8FlVUx2cNpFdY7x1kljo+oM5traadeqNOuBr/dW0x5NNgPIYqDxiU8gaku9TpmnOWm53lD2pq01uLbt07JLTJVK8HaTq8e29pUWXWTS5wnoP1bmwP4x056XVJWbRRUgqquphYmDE8ymZY7Fe67j2hnzmAlPBn3u3nNyeE/bpszsSkZUIoYPI7pGkn3d7s/wYn+O3//4YzzqHuLf/tZjPN12WDUBp21E4xh/5aO38OZqwE8/fwP/zejw+PPfToCU4BbCllIjdt6xb4CPGe7NsdgJAzm8Z7xKzr0PIuILDx68OIk2MqDV2Zc8g7oAHhzccpANTAFyB2Gw0qZOPmJcd8LYthHwjLhp4E5GYaqbKCBGNxlgCqj0by1k2s3f9uuxTUe/1xqqev7Yr3Ng+8D055DFz/bJrxAONl9aAf7JWJlkguaDMcbBCegfTSjZxL4P+wXW2zM8uHwf4ZMOftnjrHuB0EuSrjg22YSHQszMcoMRISXoinCCqQLB+5AdeqXdDjGKac8YG3RNj7PHzyX05+0SY9+J0y4ThrHDarlGtxLtlpoxqWDVrHY5qha5KNl6HQNdLOYvtaljAry8I/DgEPcN/MkAHh366xX6/RKtH9A1e3QXm3Jt7dRbjz0FbTtM7aFHmmbFhbm21nzeB7Bq0siCOXu9mljqTwpALei3rHD6e29uCduMIOCfSNaAYv5oSSky84YO+88WKyBY/4A5oK6/jxCmvE6CZUttEqX1tVQ0D6r2skICALxghKcdyDPCroFfjgibFm4xwqd/NuM6B4fx6QL+JEU161iSJbYs91IQnxKUcZPC6UYqpk+qve/TnFxycfzdcwl3OjjEvkG4AZqHuzSmCZNEZPZZLEGijPyxeP9zmiH7Tqwzer022mKFBytk1jhLz60FFW2DRhq09v+vaXlFaPIbKkT0HoB/BcDbkB76KWb+U0T0uwH8aYjB2AjgH2Xmv56u+V8A+O9D3sT/mJn/8m9F215/4K+LwNwA02Lj3uugm0uEBZT4xDrAa+bdbg56nZ6rtoxa9H42w6mqDBcsDjYdgBckgsFNskd9b5hnNu2k1HtZ1l/P1d/scynorwH9XJmzx9MNxJnNYK6emqk8pkEw50+A0ZHwmkeP23u9rFS2+HPhOefaOQH1KCY6k1PTb/nvDMhXxtR+BwBXmQoRRTRNREisa+MCFn7AZlzgRy6e4vKLA/4fX38TN32DZdNj6SPQOHy8bfH73niOf+ubP4Lvf/F5fP7sY7zx8CMsHtzBrUa4sxHhus1mNnxlEnhFgG886GGAOw2iCdiUvuLeI3zcZOHLtUEECtNPtAxg1QIwBCylpFw8CpBDEzBcrcCR0F5uxaRoNU7tYe+T3+xmpUVBxj0byYEgZjfQlwydOdZ/klzL1mNlylcE/Acarcr3ZHpyeh+2bUaQjaGMQz2qYzLCASdAHDzWzx9isdrAd4OY0aR2DOsVmugwji1C8PA+IAQPZochtIjR5XGsoWkBoGkkGs+i3WOBPZbLjYCoURza2+UOYd1g16/AnBKHjS2a7QDvAyjZ/Lvkm6Bzk5oIf9kXu3YLeJQp1rGzJ2SHaSYMVyvE4NBvV/m+XbeHW42gliV79RIlqskcK2qPjZRYacj6PedzcvQl6wuq6tZXPEe+zNUXce9aN5s08RXGuF5rnXw5ZcnNa9ne5b5SDcGsf9XEtyD9rvN6zglZS8DUIbXWwNj+sgQcIALDgipuJ7UjmQTxrUccPMabRXpGebY4ePmcwqMSiTBKPiL2HsP1En45ZOIDALCjLCxhLW2jjoXMQ3q+HrLH7wHepL1QHYLXXLQAvbQhDIK+M+iKKIKBftfCZoAQCllXYxTt69rkuS4TrU71va5LP9cO33OETC2oLJH2FRwXGl+Xwody13e5jAD+SWb+G0R0DuBniej/DeD/COCfYea/SET/UPr+9xPRDwL4YwB+CMC7AP4KEf0OZp5DbL+p8noD/7kBrgPSmu/UYFxDYc5JujZzaG3mY8/TydTbFZULKLcA3aavZojzzzrN0ACJux4BnDPcxRHQr8+rk9tG9AFKOvF6obTFMlHHFt+DexqmaUaFPAtOTIbSWbA0Z3JTm8FgHjjNsv73gX4uLLT9y0xinjJ3/hxbH93EfEdNdJThBwqwZ/Nd/+qGau2fxYZasqDm+zAhRg/nAppmAPOIduxw0uyw8nu0foSniM9fnuPXXpxi1QTsnMOqiYgg/NLdBX7g7AZnzR43/SnWH38Bn8fXsFpd5fCOcddK3+4b0DrZtK5iiS+9YgFRAGgVxDx3FO3BRABjCLvayzP5RRBzHQDxk2RWtBQbWloGbD56JBFhTjfo3tiIMHHbigBBfBilCjgOEPQ9AC8VCicRe/JBTE3RKhv72UzQVvtT+xIcu/2rqopnBMK5c46Zo+XrdAzaMRWdOOMiYvfzF2hWPU4ur7G7PZOwsosRIIZrGa69Q9h2oH2ED140AMQgCvDR5feiDsBEjBAajMm8x7uA1ckdYvDYXF/CuZCdfiX2f8RuXGLTr+BdxD50eO+Nb4CDR7PaizYqleakh3swTPvHah91DdP1zLOYaQTC5sUFQmgwjB3G0GTzoxCavD5NMlNr3bnT0t8JuFeWHYdsfrUN5GN2j6rLfSy4LRMgbQ7PjWtbNOystsX6qhxpT23zz6MIU+xEgLeahCx+5ue4Zw4GEsKooSlrDMxoTVKEm0GYc/Jc7OABsZFPLDsAeTcNitOu1ql79QAJnTnIjZrVHn4xIuxlbI/bBZpFX5owOlDKFs0x+UQxScCENoK3LhFHLMuI5xRBCWV8attaAB1JQAUb3hKpTXtC3HuMm4WYGkWHcNuKEz6QmHFKtvtmrFI1Fq01gx2fA4pztuYiAA7HgLXfr8ejrpX2e/25Dhdqr4f5vsOhcP0al3vzEv1m62b+AMAH6fMtEf0igM9AevUinXYJ4P30+Y8C+NeYeQ/g14noVwH8HgD/wXe7ba838AfKwKsHJzAVBOpFvQb1c0DYSsqWNTkm6e5locpxmdvqHN1EBsiGc4vi/Y+q/rmNpH7muWJtVefAzrFnehkzf58K8Fg73TTiQi4K1JTtPwJ05gSFGvQfNe/haQQe/XzMrIeTM+N9oKu0IQGstClYgH/I8CctAUmyrvr3GBVYTR9MrpPOPl3dYrXYYBg67MYliBg/eLnGt++WeLIa8KAdsQseu+DwfN/g190ZfvB8wNL3aFxAu9pJpb202y1GxL1MbWpDHn90GoWhGiEh6jyAjQN1AWHXwDWxhJj0IkDFfSP2sSncJw8e/Z2Ydiwv7+AcZ9aqW+7EdGP0ovL2AXzX4MD+HTgcZ/VmYUGPOw6AjoJ+oID96t4HPh1HmPeDOun+8XxQxUyuiINzcoK4BHpy3H9XBE8TttT6k+hnYewJi3aP9z/6HD73+V9Dc9pjfNHC7aPkUWijtD84xODQLHqEocmx9rPwytKWMYpTcD928C5gSOdFdthfP8YQWjgnEYM8BXg/JiDeYh86LJs9QvRY+n3WLCBSztLr21BAf3o2APevQR2kjsHDuYhxJITosRsXCOzRuQHL07vsWyKx6nHIrs/tA5OXgum6GarvulYerNvH2PF6UasE7DnQ/7J8KGZO1RnJKb3r2RJnwI4+Y247isBlBAE9J2sD6iYlQeTATPSAUaYMpnkQwM2jE6fuKMnLKELMbZamjgDpS9UMaDbaCOBWTAxdDLkv/GKUY/sxm0WSE5o3r+VK2IwOvkn91jCIk+DYcgm9re98Z55tDwHcnsTkl1nabcZMHLxErQIkfC0OBXoak9BU+1ToPQnF92TSlyhmR3OCVn45pr7aNGvC5CciUEmifNx8ttoCLYQSsXDu9/90ljeI6D8y33+KmX9q7kQi+gKAHwPwHwL4xwH8ZSL6k5Ce+n3ptM8A+Glz2bfSse96ef2BfzR/dTCpBAwcLlh14ZnjtaRrgfbEJpQmCx8RC0thI/RoGZNHf8sm1i4fqsTUbs7hcHLcxxzZuLr3ed5zardGRLhP3aZ9ep8tXi2kBMoOdXNlugmlTYJ5FsDnhThtgnPg6D6wbtn9o2WGoZ+2wc3+ljcGNf+ZMetRdh9ANtvRIiYTktmWmXI8/2kdcr1zQcwjxiWudufYhAXeXqxx0lzibvB4shjgKOC0cXi6a7FuPT7pT/CsP8GPP/lVDNul2Oi3QTZ9AI4EVFEbS4x9htjKNpytC2mMYteafATyv2UE94TmdA/eObEt7x2G9QL77QmcC7JZJiffcLsQJ2bHaFZ78RNoUqjQUfqhIBW8nC2ddOb8eZMIJvkgyti0wCj/XoGu+toaJNb3mzs+J0QcG9MzzsUTAZaNsKAmPKGaxAeaJ5f+EZbNHh996z185sd+BZfvfIzhbon+5hTNcg/XSWKvODbgKEKFmvDI+JSFYIwNGie+KF3TZ5Dfjx0QBDiG6BBCh924EOBPMs7GNCdOug28H3G9foAQGnSrrcwDH9A92oBO0yJWhzS273kmRrn2VbvcIYQG280Sz/cXuGg3OF2s4ZeDAR9UgGJe8w3Ytvd05R6y5vHhuo0j18wdYyrrqgV0uqe4dCxU775uG4CcwRfAXPQyGUOpbibkrNLJMb/cAKUOoNRjx6ie72ayV6e1n1FpDazwnbQK88+BYkqalkvyjLAWDaVP2kTSsKJAIdOUsdY+Nn3PTyULedY8JzMyDmJXD0rJBuGyxsmvevDaIQwtmkUv618XcsQdhATO1UrAoZj0quZS/fVuUUxtvRH00vhV0zZyLJG4Bg/cSqhl2GfV/XpCyJmXMxlTKOtY5PKbFUjnzK5eJvTm3BDmnlrXJFeKEdTtmpl9Uo4soq9RYfymm/mUmX/iZScR0RmAfxPAP87MN0T0vwPwTzDzv0lE/zCAPwPgD+I4gv2ul9cb+Osj6+AbUOzhYH6rN/Jjjql2gll7N60nQuxCFwmM1qAf5vraxj6F7soqtw7HwxO+TPV7rLzsfL2PN5MSmHeaZLOoH2HZcjIZLYkNEQ3KdNPKp9hNaPLD9B0dOE8SgzAP/l9WDjah/OUlsfaP/K512t+suY7cp/4+L1zoeSEo+C3HyncRIobQgEG4GRd4e3GDy8WIq32D3crhrAlgEM67gAjg4/0Cby/22PYrLPodOhZHSs0K6U6DqK7VoRaQjeqKhfVfkMTd7xjxue7CAgR4dMAWiL2Hwwg6DeC1R1hLjEXvR/h2AJgQbhbiUDx6xODhEOBORgzPV2hOeoybTiIBqaNkBkY4Pp6PASDbv5YQ0PomJyJvSDlBVj6HpufZw3PCwlzbjhzPEQePUK4H43PGiXgy7sayRNsxeZ8we9Of4fyX38TiZAPXSMSecbcAdguE4CUsbNujXQp1SUlolRj9AxoMWXB1Lgi+iQ5opA0xOmzjEp4C9qHDlhcSfrbd4qTbYtNLbKHlyRofXL+Nt07WEgp29Fg8XhfQD8yvTcAUVBvNqgiSXsyEtnL/9djhYXeLk9Nb+FXSIuha3FCxE7fF3E+yqwLcO7hVapsz4MehCBBH6rhvzObfawG2FvhUNo4z4zOboOFg3a3HUA47CxyCf3utFTqqcMqU548RODhdwwL+79MqHDxHFjIY7I0ZUYOckC4OXpxwV72AbUIB2ktDZgHACwLvCHHT5v2ekbTIjnOIW/IxO5LHvRxrTnoxA/IRjevhV72YMAYCq5M3QaKlteOhYGr3TE7n63W6zp1DMp5vpQ1h14nm7bSHU1+DJQtB4qVPEEyXGu1I/mzHzggZow6YROKzC1qgZEIl9U00NRaDzDL0Rphz1XfbLhWSDzSkxwbH61V+q8UTImohoP9fZeY/lw7/dwD8T9LnfwPAv5Q+fwvAe+byz6KYAX1Xy+sP/GtwOcu60XRSWFtEO6B1A5hjcaJh9HRSpfMmNrapHgKKRA0kh1suqkdrk6ce7ra3rdpNm5sldRyyj7UpRICYWKQoDQf12ue06uaceKm6Zq7YxQ2YZZvqcghkjm9M2abaAPeXRfYpJ8pic18ozt9ImQNUNbuvpRYG5NyiQahBmdqnMpOwZiix1AFx8l36Hh6SbOm90z1+/sUpNsGjcxGPugG74PDuaof3t0ucNT0aN2Icy+aHSAL2HcSu375DgmQL3bEIpw2AnsQHoGPZgO48wrYFjy38apDNr5NEN+1yi2br4NcDyDHCrsWwWYCDR0is9OrBLeK6RRylntC3aC92xfwCuF+AnTPdQSV833e9ZTBrEE8Q7UNzWIGo48N3FqGnHtc8/zkfm8kALeea+TARjt1RsB+NJkpLSBqkVbPH1599Dr/z0c/Bn/WSdG0xor89wX6/Qtft0Cz2iEFsnLulCI2+G5IpkMfYdwihQQgNvB8RY4dFK4LCrl+ha4aU0Vfs+hsnAkbrB5x0IhyGocWbZ0/FhpoY7VkaB6F6x5Ztz2ZN5riaZ4ckjC5GgCGaCmKcNXtcrm7QnW2nUayAA21mdmSt7eMZGO8WaFOejYktc5B16cAOuy5WgJljWe9hXolYmPJj2lxtp/5s/Jmy0JnWdkr7jpqyaEjePB9yvpKqzkCFSPNcBABzTwB5D8n1ZkdgfTbjK8MpyEIw10aAI3JSwOYN0RAO1ysM6wU4EpoH+9LfAUJYOICvvNjyp31I+gE5m3tz2iNsusL62yAPThLVha1EnyIfEfYtPBPirs195ZZjfpa49mI+BKQwlfrM5p3o+FTTI81q6wGsGO2bO/hrGYjUytrLe5J+6xi89WLm5FAciu2YqcZKXgur3/SYCrKACC8l+tsoewOknTbEqw3ocWA+ydN1pm5XTYK9NCLga1TutRb4TRaSDf/PAPhFZv7nzE/vA/jPAfh3APznAfxKOv7nAfxZIvrnIM69XwHw138r2vZ6A39AzGd0gI4kSU4qhvfge+Tp5KjOUxWmnqflQCI21wIoG4a2C8gMK4CiCQDE3toKBvX4Yhz6EswxX7skWS9nQE8zM8HmbOuIj/9+BEQdTH5CYY8U/FvBZHIxHWwqxXyhbBp2c2DGJDlRaW9KgmLAUX4mA/5t3aXNM0wEUGynj5SpTb+bXRyUEb3v2oNr2OUY6ToeHSI0cdKy3aFxIy6HFSIT3lnu8O9sHuGyG8Xc1THuRo/bscUbiwENBVyev4BvhxwLnQNJSnh952ouESCs1CjOZs6N4FtXBIIBorHqxFQnrr1shgD4muBWI7j3oC6kxFFNsUNPoL9d7nLYz+6BhFRszveghW68dWelPrKC+GRDmY7BWUcsO/5UMD2az8H8rUCUa0OJk/+SzSCDrdoBuC7HzNDmQD/mx8wxEzQdl+pAThThKCKwz6zf3dNHuFh8DDBh3HZYr88BAE07II4Nhl6in3TNKJl2iQEfQUngaJohM/zeFwTtXEQIHgvfY9lIBt/GjVi0ezTNgLbdo2nEofj80TNpYxMBphziVd/tBOQAhbRRdtcha1fjVSN9N0r/LZZbLDd7DNFjtVrDn/QT08XJmm/Gkmp/Nh8+hG8HLN64AxhoL3aJTEFpAyDzQ/47LgBYUwhgYhZGs4ukOeeAqDHn2DVN11wy611eFw0Qzxenu0ccEiQzhEwel+zAKXSmmgDW15EreydxPC5YQIRtOC4O9YnQY5f6xjPoLKA7XWcBYPvtJRYP14i9hz/vETeN8T+Kcrs0b1VbAADDzRJx9PDtCI7iz+J8lGSFBMTRIaagD44JrgmSBC89i2sDwrpDHB2as30iQeS+rgugMQppwihJ5gjFFGmBImxq93YMdz4mfMDAMo37vYyX2Ht4HyeJGHN36/u1vn2YwTPAlORRB/c2gtqIuJf1nMYA/3AQAaGnaZ3HMpzHNP6PWAbUWtO8Th/fYn+7lN8P4L8F4OeI6G+lY/9LAP8DAH+KiBrIrvzHAYCZf56I/nUAvwAZRf/Yb0VEH+B1B/55IUlAvTESahr0c5KoDrw8AJPzIXuaMNgFeKKcr4LFWJ1j69PvRigpdpBIUQi4fA+YRhFSwF9NGMvM5rJMi8xRFTLKwgNMNxG1+6s1DXreMfOe++7DLzt2uLlY8585kK776yzT/zIwT3UnVqff4yNw1K7/SNFxV4N+ve7YvRiSFKmOAsQssdMjOziKOTpJYIfWBWyDx8Nlj597eoEvP1hjiITTNsCfMPooWoPr24d4/Pgj2aCXUQTOgYoUFSDqZ4LEmk7gNq4l46s7SQM9EGKf7GQXDPfGCLcP4D0Ja7T3GDed5ABIghMzoV316IdWnET3jHbYg9qQfDvSK9HxV4+3GTbrAPTPjbF87sy7qh2+Z0zOcjhJkroPEnfdA/6VWZQv80m/jhYj/B6MvWPZoE2Z1zARmCXBnEt29oBoj3712RfwpehwenGNGDy6bo++X2B9d4HAPtvx85YkylQ7JMfbEQ16M64l9Ox+WCJGhzE28BTQtgMIjMViK7kpfIBrBzgfBXA1AX45ZFMLFdYnILzW5GSNpRGsOoBfuCyIAsC4axFGySfQhQ7tyTb5HpV67V5Qm8xwJKyeXCOHEJ10alq39LgRBLIA0OJwnFREUd5XLHFUEyrKzuo4OgBf1XgGxO48t8n8VgujicHmkEK/6u+2ThV2zf2YMRmrGI39vA3IkO/lJj4IEy2EcajNmgHVQliiDBAB4M2Atttg/7U3sH//BGdvPAfvPeK+mQB5agL8ckx2+BKBLSTH2Tg2cBoulsTELKZkdxq9zfkg2cT1mUdpc9iJNgBMGK5lnRAzzQTK9wB6gB4YPFYH+dAwtB3KPpsAPzbpfWt0QUbOR0E+HGReBlDs6O0xQDREk7GEaTH5CsIuOfGHBnTNoJMAahhx60FdnAf2tRCZE+cxaj+qyTV5LOO1LvfBqu9K/cz/HuZAiZQfP3LNnwDwJ37LGpXK6w38geLYFAA2lPBkoNq/dvCq5Nvw9BxMf1d7QAAgxMl98nl10XHfp3Bgtm4bArQtE/zAIfm+UVdPwvSdd07Cnen1drG3x6wDcf3cwKxD771qL2vvr3Hc9bn0o1kM5lTQh/erDlhTIt1g6k3zWHnV8+4pc+zrvHBwCPoPrk+dFWd8Aew1mbUhQmCPwA599PjM6Sd4f3eB77vc4u+8OMUvPj/DwkX80Bu3wvoPHj96uUXXJD0ziRqZI8TRPKvWE1AAhGFdBSACw/OVRPHphRHiUZIiuW4s6us2sZhp03NtwLhdolnuMe5b7HYnWI4SjWgcW3TdHuOmQxhatKsd/GqYNauRdtHh+J8D/XZM3DMP69+ORYMS4FJMJDS5VLmwmk96OJsLTX1RvlMzs9nzZ4SA+4TVY1ooIpawmoHE2RaMX3n+Bfzui/8YrhnRspgIPb97BCLGqt2la4TtD2MjMfcXPfwyRVgx4WzDziMi3ZsARxFt26NpUwz0BJg4EvxiQHOxFwawdxko8OBTYrhonudQyCuhIVnCIvYecZS2xNFjtznFrl+hHzs8OnkhEVyWPB+owBA8B+PinuAAbNj/iblKTE2tZbNkqiHgj4qGVMd1HQ7TmhvN2e1PAHoS2pnAulepCUteZ91Uc0qS7C3XYYY1Eaaag5f0h/KORPz/Y+/PYq1btjQx6IuIOdfazX+62+fNptJFVaEyRrgpF0aWJZqiUfnBAsmmkRBIluoFhJB4wOAXhGSpXrBkIR6cMkggYWxLUHJJGIzLkoXobVBJ2FUF2OWsquxu3u6c8/9777XmnBGDhxHfiBEx5/rPybx56+6b94Z0zr/2WrOJdsQY3/jGCDAXvt2fYcGrrLevi3oc6nVRB1kK9OTeJH0Q9zOwfu8eMRbcf/IDjelwMUTMGoYc1fN4nbSf635Raq787XJGOqls9OeySP07zpsCH6eMsgWsz/c2F1PK9jmmjDhtiFPLfBYf6onnqzR5wYBfBiPP6E/aZXIFlprCM6DW/UXneEil0qzctaYvjPMHTcnm7w5s83M31sMduXZ13Ophi5awww840MWT+Lq/L+OUALLG3xsg8hMsv5+Ywj8M5XUr/lL/cyhNSOImbL2Om8YtC3MLnZuwCxAWNMWfGxdPOZxKv7BYfFaENWimFNah5iS2FHmM2jdF5n3tdUrHwH23eIM7p/TnWlePPnkU9UuaszcVZb5+DDY7UF68e/dWysPx+47Pz2dy4xk3wpsov/v6Bt/f8jQbChV39dvz8WXH6yfar5l64uF9gCr9+SAmgNeXustFKDUj1oFathkv+QxBwPN2j8e04j4V/LGPXvBvf3qHD1PCJgFLiXgzFXx4elI6RlX2uvdU9F77w02EOmfIZ5ct1v9SRWRhRkCXHWNN2K4nnD54xvZywsvLI5btZHnc7++fcP7oHQClTNga5cFMvhwo/YdIlw8ovFU8KnuA3FoJ2BsJQXbopF3s1mKjKHwJJf99iuQBvWd/zbHB4jn942ZFD5QZk7WBc8x4t5yxXu5wenzG0+cf43fffQ0iAV95+BRzWuthcqvl61/XE9b1ZPMK1VgQiYroS8FWtw29JyGsM2Q54+X6gBgK7u+eMMsF8SVrvvJYOm9TZ9Sb7K59UhWQjlqzAuGUcfmdN/XgMQ2Cv65nzGlVj8PchL951BB65douOJBRlJ8H9K2QSt0j0NDqVZVXRCrDaLLXyzSfW39U4JzxuFOUBs9pFzxu8zV19EipsrmMoMKRjPLz21/Ha0cvQGlezRClsojEDAFIApy8MEpsrIYylf9KO4LUWboFhAnmBZdFZdP91z/TrrpOakCkghQFJUes17O+97NgKD6gSL8i89rRJSvlh9QekYA0KwWNp/jm66TxSDXlbCkR66ocnmlarT/KlhByBIrKzXjKCOesYEuOCKs0Sm5AA954YOgMPehLQjMIqsIdIAiPRWlEEyDPcZ/E5JYMvGEw0iPDeZUeFu3LSnOTF+0T83z6g8QcyEePyvj8Xdl5kgb95ZWWH2ce/9dcXrfiD5f1gsJuG4KFxs18KH4hqNFQs6s4yzjyKO8tGOqp1+PmgvOuYLkEDY6sp/eGWTevwDRbDPg92tMZ0GbvoQKMFrU/0nOk3kOOJPvniDrBcuN723xHTwmwR1ml//emEDhwT5sLuatT6NyGP2qgzfsysXSxHESAcuN2MsjW0yk0605TqG7x+n3Jkm5utH3sQDDPUkYCBNhkwtN2hywBl+2EpzzjF+8u2L4S8Nc+vce3Hy+4nwo+XxMeJ93c5nlpCvol9FQXUloo1HNdT47TrvNeA17jeUNIgnJNhoSXNSEvM9brWVM6vrvHcr1DkYjzfEXOE853b3H64Fld7qkAQRDPRVHdIwlzpPTz+xvde4u20/GG/bXus5007JaYZfoZrutO2ZXgEEsX3+PnsVfuDiveGxCjd2E3Vw6+O6L4HHm2xrkcILhLmwbybgm5JKxlwjcev4+70wtSUq49c/lTAcw1WPt0utrvpSSkoHQgAHi5PmDZTtjKhPIS8bRqJp+P7z5Xg1lqvv1la1lStliV/wrLV+9UV3wqSnp5a/fy3TEWpLThZbnH0/qA83LF+d0Z8/yidNCCIYsT9gae+0xF1Pp/UMRtHam225TXXK1Nf5gk0Cv2tzxVQ9nFl3jkthZTmGlLBOxk6s5rKcHONjk6S0QNpEH2ujlL2ha/LyXWYGcxxT9EgQRBoJeDxq/UCqaCQMvcK6WABuqG1nnlpQEOhQh4CdVbUBCrV2tZzorIx2KnUAOaVvnh4Z0ZrzQGIuNYpox8nQEJ2C5nMxLm8xWSUz2ITtv+8vJo75jnK073L9XIqW241ly0Uucps/Lc1TnhgtJtrmeYHJYtIr7Zdl75ck2aUtmfx1C7D3Dz94j26v8uTX8ymtjUxzIxoLs7BNN5bzxNLwyAaT+ZDva8W2fwvJYi+GnIOvpjKa9b8RdU13Bzx3PDbmikV+huW6aecyxrbAZBndDmNkUV9O4wI31AXVR+7ttGWyCXupA/VERBLsk2rw6VBBpKBGjOYCLcp/1BT+/NsQ/0nL812LM7znlBt2g7msnoHRgQ1vedctq+dL/dUPr7A2uccvNFB9XcKv6Z4T35/A8QPPsp5U75B1rftf6rt/uxHgJ0TaG/gR54pb94Q0IiiigtAwCmqhClIDilDVuJ+OE649/7/B4fTILrlrDkgPup4O/7+AeNo00Ffo29cjnOpSQtID1QOVI6R4xZ3ea1P7fnczdPSqmnvG5qHD3cv8PpsQbwPiyqTE9V2edGNnPNhL4uB4HzVkbjE19kYA7KDK91qO6Ifu0e4+b4aBCUjUrfjQB0r+jcKg4x7cqIkt3g8I9/62nQyX3X7iPP37xIJeHtp1/Bw8M7vCz3mOOGFPLu2aXm9D+dNjuTIucJy3KuaT4Lssx69kMQrHmGIODt8oAUCj5dHzCFgo/kLUQC8jpr4OTLZIG9kiPKFhGvyeTuGAhqQaBDKmHZlJcty1kPuqspQyP0ZOyQCq7ffYPTx887pb3vQOwMAH9aczMC3Fy5hVyK/meZWHw7/DVHtx4pb2N8imuD1ZXGRNx7fgC09JWUS0EQ3f7Z4g+qDBpOgB4Rfym9lc5rDPGPRQEuZwSw/l38RhA1NGxsglGEgLZ3k4sOAIhiefgBIC+aeUfR+Xpg3Brteqaj3bZ2irNSd3RPnqrSG1MxL8C2nDSQ/bRgywnvnj9EihmpnqyusSubGpvzhnSnz9JAa7aNnQOVX89BA4DJiXfodzgJZAHK8wkIgvKuBrtfEuIHG2QNiG82yHNCeZn04ETaTKMcHPfgQYH31xHEsfs4XpbZB+33tWYCqs+PFcyBBKS79Zge+fPyU1Vet+Jfy44vHgSyTc1NxetyMMHXfWf8v9RZtQCU4iClCW8vvDZvYERbQACaFUw0sd4r1wC5TM5SdwoHuXt0ZY970kt1l1beI1NsdS5xoKbiwi4av0vP5dy4Aqd0eEPBB75xrxs2HO1/X8lhkXuB5DbIbqMa7tuhS0AnsKy/3ucqdBumF1KHHP8jNOI9WX2O6nnkEdi15eD+TrlySr8G/OrnXBW3TSYECJ7yjGue8Tee7/FvfecjAMDf+dW3+M7THf7m5w/4D3/tLb52fou3yxu8yZ8j8Zk1Y0XL8iA18E004HYuwKQHcXG8SqW55XrSb1kn5HVWLm1OeHl5xJpnDaI8XfDwyefKGa1eMqBu3t5o5XwZs5ZwjjjF39IYjvzSL8mdPzJEfbaow3sGZbAFLA6Bjl5OmAHYfhvjUI7eEyo94bjue6VrRGz3iv9+/nlDoEisiv1sqP/3nr+CX5gXCAJiECyboqFUjHjQnJ/fpUTzBKx5ruh+whQzikSsZdJTfMuMU9zw1fM75BLxg8tHCEHw8enaPEZv75FOld/AOVCq8jiCIr5tW+w+0/uwFZ2rj+cnPF0f8Vjz96e7HiUxZXeYD91+4tBzbyR6maYxMnJYRzvUyhRm3MwsdYiAmiJ+oNj5uvviAml9CUmMFnNkRHilfzevhvnHuRnel/2sRMsApQZGhpR+//EgSogCTCMftz5/Kia/IEHnS2kKatkS8jqjlFizSk06R7Mq+UyQMKUV63py+19BKUrdWa53uHt4Ql5nrOsJpUSUooHx1+s9Utpwf36u92lWqzhtSKe1Zaaih0MGehb3UP55cf2W61gZHazSLc9ZDR3u22vQwxBdOtL8Mmv62jpufNeRV4qlHHDs6W0zT0wQxCkDIj1dzJ8kfgCI5avGOXig1O49oqy94iJw8vxnrPxUKP5ewVO+ZYIIELkIXTCLuXgdaNMpKBJMGQLErFe68mVLNXCrdEbEqMi2TaXytSfNNMDv1GtQc3DRoAjouXsjvxV1s6tIiExogTc5VLO88rJprdOToa1R1PdU+kCyWwG+aH3Eehyiq/R0OOShy84zoEj87JWk9ynIVIyMSkFDJjhPzIgaHxTbXMr7N7muaUeegGHTet+13X0O3rudgaUibab0K8e/IGLJE7IEZAn4958+wd96OuO3X2b8ypsrsgSsJeDv/vrn+NbdFZd8wtfuf4hpUtR/ez6bss6sFXxnoJAHNK1d1Bz821U3xJiy3VdKxOXygBgLYqxu8LTiZb1Xziugea6BZnhz48r9nKPhWt5NqjfNxc4Y6ChmXSeho0eMKQhrR7vv+t9tnQ7GaIcu0809Uiks93d9rs9U4jbMEJRXHFBuGplEPA8Vtxtz8ouU/lL2NDIq7iKhN/ABRAjmSo9Y1xOu+YR36x2msCGtuaOeAcCW524Ob0WVq4KINU9GY6MScM0zznHFJgnXPOM3Xz7CpUQ8TBd85GR2nDfEU1YFJkmldzTF3p/e3SHwHnSvYxNjxpxWiAQs2wkf3H+O6f7SrnFy3+TWwRiNsUXi50GnwfkHuvtJ9wFazIqX7cNtt2mI7vf3yRcDNpycHOfCSJsS52k6UvTdc/m8LwI2jmSj0cT8s4BOXtMzEOtn+P0DlP/RvBMa1KtezJKjgREosZ4vkZR+FjNypaExTqXFYglEEmLM5sVar2czGngt5RrT1m7b3ND+eesVXc4H7oP06Nd9uCVVUPnBgF1xe5zG/QnWd3e4Pj/iIXymrIM6B4wu+WZD/vSsrAcmSRB0zxoLg6o72VZlmacr0lOsv2mWtpI145EHJCyYGskOAxQBcAvMGL1nr7oElJ9z/F9fGaeNLb4giPVoaa8shlTsIB4VOuT1wzYVe7ZTArqDUIz7FvfxBVx0fnOviyQvwVLhmcKw0bWmgqO4jU7RA+z5wZQrWwSK5uG1wswOgKX/6qLuk7alPE/gCYYhVuOgBJfys0c16RUh/5ttGyk+XpDcTPvJfvkDWPMiAWEwJgA4F6uOVYhiCktx42OpA3+P7/TFU39+vzEIDOb1aH8MglKfmZE0IFgiXvKMX7n/FN+9vsFli5gC8Pl1wjVHvGwJXzuvOMWCtSTN6FPrN90vKGvS7CeFxmo07muMxdCyVPO4h1gQU0a6WxBzxHY5o2yzcmi3E6a44bLdYc0TzmnBw4efa650P7Y0XMcBJz87AmEqKJdJT+bEqnSgowD00Qg+QkBHVCm0e0el3wdChrhf+ztUzK13z5+WuhmXZcJ2vcN0vupmfqS8Hxm575k7RwrYkdH4RSXGglzRS5GAKWYsRTCFjLUkPC8PWEvC2+2MGAQPpxel64jOO5GAKWugdgoZU9osdadAA9KzRFzyCUtp28ZSEtaSsEjCD9cZpyh42u7x8vKIx2nDfN50zqD2e1WURq/sSLY9AhbmR81CdH15gEjA3d0zzo/PSHfrfi+gohQwKF4aeLpThkUan9wj6lGAuheQ+6wyur1Pnx/2uATl7ntk4ZfJCtVQ2PoF6a6jfHOKPo3TDsEf5Gf3+/DvPh6gGZg8O2LMLsXsULy/e4YEIGVNx1kbY0aE3l3X16kmK2gKrEhAnDaUbcJ0Wmq8kR6qeF3Pdq4EAKSknPtY4/hYjxgzRCKW5Q4pbfb9y3qP63pGSmpQrtsJU1rNs1YI4Lk4D/UMwvZYAAaadWmM696aLydD1UX0cLs4FQArHu8+VZ3lpBnQZNUkCyEpDSg9LFg/v0MK6zHY1o0RepCtDLz8SvsqzhOZr7OCRJwvNb7He22UQtXow4yRC6m04O6hBASU0RB9heXniP8rLB2wt1PMeyG2C9ZzbuIvQlLK6hQBjwZVBcCKE9JewVRkL0Fy6oSrutICQIWf7kKpm0cQbU6HmrvGS4AsqbOejRNJii+FDNCET5RGa6rvNAOA7fDywBs+rq/HPrbfDj4fPcfeFaU/hAuOkuOEke9PCp2SG4fTOIfs1+AEYVcRORzz8cCp3e8OzfTftc/vR8N8YK/P0++NhnwjODiXiBgEidQsBFxzwl8pv4l/aPoG/o6PnvH/+cEb/Htv7/EPfO1TiwvQinglJCsqtk2GbIlEQ8BCEMT1VNG9pGjX86Oeglo3x+flAREFl6JK/2U74+H0ogHBzG4C9FzPIfuDXgCTrGHOepugUo3QqG+8LffzT2+U43k5alnjNePPBwqWp/bQC3h0ncVRiBr3IuoZNO4rx8Chq0fUM5t/Ttk/QvB39bxlNNg7VAmLNYUnc5ifSsIWE562O7yZX5BCwSlmzJFKfcLddEXe9CCvLBEoutFftzNySbjmE3KJKAjYSsJSJmwSESB4l89IKNgk4l2esUlEzoLP1zt8G5plZXsRpIfFGVW90q8N2Pe9/+xl3umjZ8xvLihLNWjPW1OY+CyXL97TM03pL7Ez0Mh1tnp5UCM3H0gobT+Ip615ircKEsUm1yFqzHSxI/QkWSOHv8fxPZrLfg/aUos/Geg8VOoPKWRlACKcUs/+6E+h9tdRNvfP4Gev7NNjqJ+LOfcK3wHuuVL7qgb11nmj/VbMk7tdE0IFL7z3SyRgnla8LPfIooDIlvWMB9LDRIKdQr2sZ2x5wpxWi4VJIeO6npElYd2U2lhKxLnWWbMBBUhJBjCm8wYUsbSgpP2OgdoEEWisce4yljDdrRYHAwCyJZRr3TenRkkOp4HKJugMit268nEgJVifR0e3ojxDnSutTyNy9oZepT6lDKnel4RVqcmVLuopZj8t+vRPSz3/oMuPpPiHEL4C4F8E8KsAfh3APyYiPzy47tcBvIXiPZuI/Kkv83yRYKfqhSB2QIeUqBxAZwiEWIzjyCCVI1fTTX4n4NxgvvLuGREWqBNTMaoEBZa6H1UwhZRR1qagmKAriiBEPttTdUaFB2ht5KYyls6dygah+65U/nb0Ke+G4Bzj7jHqH06Rh5MuQf9rQXmuLweF3zaSAlP+iVZ5Ko5xoL2SNyhOFD6KSrB+fVf4Z2obD+g2QzDv+z5/UQYfu/ZgYMbN8ui6LMm4/pq/f4IAmELGrz8/4jff3eGt/A5etl/AuzXhT371Lf7Ehy/4ncsd/sjDDzBNK7Z1BtZZ00SLBlVqFpaIZTuD7vuCiCluVifypLHUjTOtmNOKrUxYthkpFrxsZ5ziijlpQGhZE8KUe05817d7QxHMGsF/6xiXeihQerO8HxXt1nh/2vPu0oMAyO45NjZtMzZ0P+9/H8eSaFfZJsRp69YGeb8jT9pq4JWvA4X/NjXsOGd/80I5t7zJDFW0TtOKpcwoG7DkGc/b2Q6Hu+YTsiRcqgeg1GcuogfIZUlY84SlTMgSkUJBlohNIk4xo0jAh9MVRYBNEi5FTwy+TwVzLCii3qZ0WnbG1JisoRmSPTq5G+OqADIDlXlHvaIldWCHW6Wir2VLu3FCLL1ncUSq+XHToGTt/6kprfydQeSp1RWAo2o646eE5j0+oEWoN7le75R680A6DwZ/0/tiB3AcySF//ZiyuM9qdgv176/vUf5y+JvoASMt3Ifv8IHBST2Q16UlFkjzium8dMaKT+kaq+JaJGJOK7I0j6emG67egO2kMrAo2k9ZR2DmeVF6I9AQbqUOaR/GVNQ4CcD2dK4ggBhNTTMQiY2t7U1V9pmxCdhc434boiCcso1zmLMdVld48JbTEUhTPqTbUF4CRo3WlzUvEf+OElouhWHcNeanyT0FhZpxkNcZUqJ5P/1c+f16xn9e/vaVHxXx/ycA/Osi8udDCP9E/fu/e+Pa/4SIfO/3+gLL0Zv7iVnWydxTIQjSnSomUoJa4kDHwzxS+O0d498uJiAgoLfeG1I9nRczRiwIqUQsyxnncz0cZ9K65G1CTBl5TQhr0YChVBDc0ehWT/3GVShqSrQhmFk7JrT7nJsxnrJtiiFqEGd+qUcMHgSHKXUBkGok7LIaAUanYn2l9H1zhBJBqrAj4j9ShEbkNtQ0b4OSpOhQqf/pu8uW4A9n6bol978dGQE+N3rXzsH4GN3bXftquZW3/6h4TwCV/k0SPl/P2CTiOZ+xScBfz5/jMXwdf9fXPsfHp4xffnjBD5YT/t6Pv4uPzm+xrifj4q/XM0pJhm5R4acCJxKwBuVpvzk94bKdrT5T3LCsD0ibGoanaUUKGS/bGdd8wpw2PC2PuHt6xv2cLV+3dt6B4ekQSP5tH11MjJTQDq15b4e5OT7+VPw86d9hOkhFvo5yngNVCRmMGVNMXPtK9RSpIhKQlxNiTTFpho3cQFn5t5tz5tXyQb5O2T8MVHfX3Srk+kcUnNOCx2nC714+BABkCXi33uEUJ7zd7pCC4Ot36kHaJNkJ01tJuJYZL3lGkYC7tKFIQICYIbCUiKd8wktOeM6TZh8OgrVERU1npR4dZqux+t/G3Hz+fNJ1ZAsd3/noET0tETYfqRTbGLniZ6DPTtMZIKOcGOJIgApGjIYH47JIBWH765xtee5VgYyn3O5zSj7z5xM48Up+q1P7uwMdus97xL9d0yP//H6UkUCbt1uZ1NskYsqiL53XSzKim7uq8GdTiAPl2XpSSs42QeZtt/+LBKXzALhsd3WP0OfenS744cvHmOKGu+mKlDLWGgRsstElWkghI6aCFDO2PCm9rbaZ/H9fRIJ5naVon5dlsvip2juAGzt6tEuudEfzYrW92DyZdV+lLlOWCYVeJd93NKAHWeBTcHa6TGjgBEE8A9bcHApCgyp3oJuBmKIHm3Xzzu3t75Nbr6kIWqzdz1r5URX/fwTAf7x+/p8D+DdwW/H//RXvZq+KftkmWCoxPyFjMUtbeZ7uJMED5f5Q4fCbVI6dAtApo/W6WE/5S1U45ZoejPUtOdWT/2qqxqoomFCt7uOyNTfykWtXJDYvwbDZaNsb2jD+3rvQY9vlRmSW9YoD2hacG94LEjNW6uY17g1C6hHMWOL3Xd1HQREaNr5zUfOUZNbL31ff4QWZcVvp9h82nXHzY/FI2JEg83/703lHZI3FU3yyVFcvWuxAloiMiHPMWErCbz+f8Bm+i2/Lr+CU3uHv/+R7+NUPfwffe/4E372+weP0iPv5gsfzO0Oq+CxuXB79SrEg189vr28gCFhrG5+3MzZJptTdpRXntCIGwbvtjE/XB3y1vqdsUZ0+fo7YuA6K0RBHAzSDkf/lS/VGTcWyZhyi+R4x5Xc31vY4rjQAfADnzi2+9X+PXH3zOEkw+hmVfr2+xVXITpE/aM+N7/mb//fWd1qv3hgl+gkocjlJxv10xUs+4bP1jBB0LgoCTjHjFDf1/sTNAsw5N65lwufbGaeQTalaiyL+KyJeyozP1hOuJeJ5S/hwXnEKBQKdgzlPPR3MG3ASjpF/j+D7gMai3t+OV80SpXptYAq1Kk9oc21LKDmq8SaestLGzyvMLd1s7OS5oZvVo7TzdGqFdFyqMi+Ogmkyuhtvp/xPxTJsdfQxoNapjvHWrrHP9sBe2fcKvQICzRNAOo7/nWMdRJqXUmCKtp+DpDdSpgG9sUyufYpAzqjvF3tvjAXIqYF4dU/n2RE5Z2zbjLmeKcHUssY/h8akPG0PEO1FYHmstLUJwFWDdkPu6pdiRoDgst0hiwYH59ovEcXes20z5nlB2ZJ6xnLE5ekN5nnB6fEZ8aS0H5Ggyv+Udf3XuWKplp1cWC93Gls1ryhbRLpbIVkNPlLGbM5GUa+AB9VIMfNeIWucIn+dkQl0CQoovyxf/wEYF6KGvXbB3EwaMYA9XpYqpbj8/tN0/20uP+f4//7KN0XktwFARH47hPCNG9cJgP9D0Fn0z4rIr916YAjhzwH4cwDwyx/fmfUaoIuubC2i/3T3Uik+bYHp4V6wxbM7HIpoRizvzzazU3wbH9j46G4B5FUR/el8bddK4wQDLR/uaHA0pLK+M0pXN0PtR/oCqxdrAHP/7Z5zHzVMr3932G0w5rqtXoaAFuzY5az27x/4qyG0NIYjWmPvHb9zqeGsz1nPEdkaFH5T9kdDgZtZiZ1CeEvp5ybZ/32MlAFNeT8qBfsAPI/kEm1gYG+WgBQL/urbj/G/+60H/D3TfwD/8K9+F4Aqa995+iquZcZd2irqmrHl2VApe67jam4lIZE7C+V183u+dykT1hIxx4KXPOE5z5hCQQoFL3nG18/v8JX7Hyq9hWPpUs3SWDwMVCxBKXLWh0cdFTStXSyWuu7oTI6dUUulv/Trxvd1N163Muz4tebmoFfmqZCIz5o0GJPjidAWZN2Nfzv5eVS+jkrvDbhNPRsNCf93ChmfnN6hCPB2O+MUN9xPV8xF59EUN8QgyAJMMdcA3oTPtzOe84R5KlhK0kBeCUCeMQfBKgHPOeGzNeFbdwseklI5igRMcdPMKDULm9ap1TcEKjCo6921pX6fX2YDQ8KUjc/OPuZhix26zjEZgJ3e4zvMiyH2gp5bfh5BC2tGbnMfoDFZbI6Gqd3zvpSxgG6QYZKWSx2D8emVeCfX3hcI3uRB6k537kALZwS87/BBAB3A0CmE7zFiS2j0khSBUmAcff8s23NKRJpXhEs7JT3nBLne4XS6urbpGirVMDulFdcaeM7kCQBw2c5GU5vThjmtNQ1oPdgLBRnJgoPnadU4mViQUst8RQ+ySLDTreO0IRUF/GIqDmwKyPV3zVKkeovvt7y1M1MAqPLvT4cOwPJyh5QXxFR0nrPtRpe9Me5jshI3hl5Gly1hvdypZ+OsfasURl0PBDFtnEbvuoTGeOC7a+Ym/eP1a9Wvv4Y/nvKFin8I4S8B+NbBT//k7+E9/6CI/FY1DP61EMJfE5H/49GF1Sj4NQD4e3/xIxEJlsNZcsK2TZZ7V0pELhEhl07pKxJaAAsVBvQCy4KTBsPgSDFt37trKpoPwLKjAI0OEICGPnfmerCNsDMCfGDg1lAwCn/JQYPLovQLSoLxTneUlYHS0xk//tqguaoD3PtKBKqwYxovVLTN0nk5JFffP2zuB8qgtdEr4L6PPZpww2U4GnH+byJ6o1IWhj46Usbfly7R3/NFSC3LuCkb0n/j/iwBS0n4m09n3IcJf+KTd/jqacX3lxm/c33EL4aCv+tb/198//Ov23Mu6x0A4DRfDXkTCViLpmYsiAgi9n0MglyiZRC6lkmzCyFgE1Xw7tOGa5nwkiekIPjWm+/i7u7ZkMUwGGEYuM7s507h/gI6D9PGSYkai0IjmZucp6XBGRFu3WjUYPMYjOv+1nwcDUzfki4Ql/PTK/r+Pqfoj3PFK/oiI696TxMbkdqb/Rakfx+CURe2rOdCaNB4xgfzBUuZ8G47435a8Ob0jOf1Hu/WBwAaW3ItMy55wiYJWQLepNXmJaBzdJOItyWiCPCdy4zvX2ZccsSvPFxwnzI+nC84z1fcf/DWvKaGmrtzERrFBQ24cEoyrwOgKQ3ZDUEV5LJMBk4Ae/SxnbjL3Os3tvlhDsB7CznPq0wRaXz0Tt56Pn7NOOfPKihrk0va3l5xEwnN63RgjEruU6mOc2w0ClUx9ki/m5twXiEU+0zltyBa0Kv/vObZPh/J5ha+6/sWiEIvCRCD1oUZgERS149E88/nF7x7/tCojKVEvLw84nx+ae8rUU+jrmloA6SeMQGc6uGGNABSKFhrSs8UMrYyYYob5mlFXpO1c0qrrcdcT/ItJSLUvYWnRpsnqKjHJS8R88OLzSUqzjgtpvQzuNg8FykrV94BiZJVzylrwrKc8cGHT9ovgxfeaHC7/nZyp66tHijpZeJ8vtqeSZ1KqdTzbo8E9S0nB0nJ4pywjD815vLn5XWWL1T8ReTP3PothPCdEMIvVLT/FwD87o1n/Fb993dDCH8BwJ8GcKj4D29AWWds26RpurpnVtdTtVClUmq0Xm6iD6h+Q9H3iDGATgn1SoFN6CPU+EDB7Kg2R++sxfiOVFSdsjJebwbAqOAfBfjhADVlXfw7h3vavaVXbCT0qRYlaCBwpSrBCYPasLpr90rS2K+oLkW4vvTX+fqMrnmmpLRgNrRx8hkKrO9uGBEMWOs30mGz9M+qLmW/gY7XeDpPcc/1z2A7IQqg57opf+fpjO/hLT4+F3w0L/jm+RlLSfj2ww80x37d1AsifnD5EN+aFj1ldTthzTPWPBm6v5W2sc7VvT3FXD0GgnPcsNW6plDwZloUsQ0ZUyh4nBZ1dTujKFT3vKHgIrsMN7tDq6j00IA88LYR0c0VyY1TOab4cBoM7mvrT7h57rxJneLHMfZo76HC7uZgEEP6y6YZk4zrejTGB4p78wKwvi2gsN3TjIXDoN8OHoelsvXz0eorBRICSgg4xQ2P04JLnvB2vcenyyNOccNaknL2MZlB+FImRACrRGwlYpWIa1X2l6InTj/niN99PqEIcM0R77YJn8wLvnr3Gd589EMw+NkCn4HGOQ6iwEQdJ39Qos9QYik2pRqPJaDUk1mZIjkUd38ZDIfqCbYAUifXmIihk4lubvjis58wGNgj/37MDUApqU+oUAGTQ0DG5uOg8Lu4hCMvJdelB5i0XQQzYneNR/UpQ/zzGPTvvZUS9tdzDEfkfyxMBVsQLdd+qoGiTfn3Mj8h50aru65n3J+f1WshGj8nogp/EU03e8lnBIh5M695xlaUmrOGCXfT1dq2FUX6U2j8ddZL0xifzWOaUsbD3Ts7CZgK7t39c6Psxtbn2+VsaUcpd/JycuPTpwAmkCKiNLYIoCwJeZlxeX5UgDOVGjjs+tTLVuftNBDNK/eQxhg4CAYOsZhH2M+1ds5Bn8qT4xSjyvsYM5ZF06GGUEyfydfz7l2vrWgyqdugyh/m8qNSff4igP8agD9f//2XxwtCCI8Aooi8rZ//MwD+h1/m4VTGvNIfgtgCzESkj9zulkO/ob+339Pcp/ad+w1wSD4nv6PwEHFnIfo/Khf+fj7bT7zRoOgUclrjRxvVaGTYxuF+H5XX7LwOY91GdLwKDs8tBGC5jRlPQZSrbO6wD/YDFZ76NwBNPYl9IK7vC/u7IrEdd7/eW0pEHDa/EQn1zzyiW4zo2Xs3sgNl/32oLH+3OlVjQDfShtTeJ1XMP73M+Abu8Eff/Da+Mj/jOZ9QEHDJZ7x9esA56aZzWdS1vebZslQ8rfdYayaWpUzOQAFSENynpQZmtrSMU1BDIEADM5cy4XFacIpXfOPhh5bqk8oEs1IQ+Q+x7AXoaJxW5SgSgR2NTa9gV3pIQUVxaU945d5n0Tmg94zP5bU7wxPYZXriO44OM8qOTx2rEmkBo8Mc8vXp5+Ee/R/nZAMiemX+qI2KbJZuXvp/VbkpQNxwlxa8205IoeCSJwCTxXYIAi55QkbEUjSDz1oCXrIeargUVcqXonP4sgXMUXA/ZZyi4M204aunZ3zywfeV68wgVJ+JqTP+YICBtl//lnUyBTiQ6un5967dsiWEuWUi87xn80AypiCKnWXSFOe+b2kI2Ho9MLxIY9yBE0FMHlI/ZlpllrxO5o32wFGnlEnzXHranr+nU94rjacpaRHFxSjoPhMtcHts96jMd/MYwWKDun6qgMUoz/gMa0r9LqEZEHpQVsYcBB5w8fdM02oBuWG5x2laMMXVDuJiutmRLrmUyQLVQ/X0PG93iC4oHYAecBk3PC/3CEFwP186j0ZBRN4SlndfsfiAGAvmtGKaVpSXB4SgB4bRWPrg8TOslzvkPHX0vZSyGZls3/V6Z4eEbdcztutZP28zck54ur5BChmff+drOJ8vOE1PjgEAtHjAKgM3L1+ccfG+w74GY9J/v20zllUNqnleqoJ/h3m+tnttvkQsy1SvUxAkDbEAr7W8/hr+eMqPqvj/eQD/UgjhHwfwNwH8owAQQvg2gH9ORP4sgG8C+As12n8C8M+LyP/+9/vCjg/olNZbAZwAID746UgJPpj4R6UTwA7B9v8CMCHYCcAawIQBXXwftUhYXzSF1wd13SzvW3Cu7ZZuLaeuX4GmlHsXt7bDvdcfllUpiGVLVZEfkKADZeR9HP6j773ST7cr0DZrPl8F8hF9wm98k9XD818BdJvk3rsyIrpOyGKP0HJjsnz+bpOkspUlYi0Jc8hYJeElJ/wD33iLp035qp+cnvCdy4f4dHnEu+2Eb5zf4lpm/HC9xyfzC3JJ7T8ePCMBa9GNrnkdCt7VlI5LRcRSEKP0EMNMQfDR6Qkv2xlT3JwxJJVm57wvjuJCI0A7JzSXsO8Pp7x7Kpsv9tuWlGoR2xozpQwN4QpJdob+YSrXG8bjrXLo3bNxH/OeH9NyOLfafQNy64Inq3rUKftU/DwYcFSvLPv5zt8iip3efU4rvnJ6xtN2wn1akULBc+X0Fwl4u52wSMRLTorkl4irS3LAcs0BP7jOmKLgzZxxnwoeU8a333wX87kpBwZ+ZJ5HUur4DHWt2boYx+XnEtFzrvvpzj0fVbkf0lqOn/kc/9uoqFKJ5md+T2XGrqn13SUXiEXrUYMbdwhs5YKXegaE9SnXiJcnB0r/Tt4Yks/rosaBaWXseqL8R0boeM5It2fhNjBVJCAG523yc1CqMVqVaCYZoAJdQjRjwxusgNJwNKhXU25etrMdJjhNGSlt1m49tyLgKi0zWqpnWZyYurjGYG1SD01EQKyyg0G9gBoSMSjff4qbaYQvm550vZQZj3OjGT0vDzhNC56Xe9xNV/UmbDMYEAzM1lfbpvECyzK3s1MAOyGY+xg9CzEWS71MalAXIF90XLyX61DejTLYz1XO+fd4k2Io5pUpJWGer5bqVNOc6knH83ztsskBMG/oay8/D+79fRQR+T6A/9TB978F4M/Wz38dwH/k9/eGvVIQY9lRf7ywHI+bHnMZd9djb/USOeHnW1YxsKfI8D6vCPjvfBtYRuHunx28p8ItqLENYxkVhNE48c/YIVa8r26+WuHSoaW9e5epvuqmEAURuSFY3UY10DG+QPGy9rC+PvuDUwLpzvbt59/+NMmjfuI4lRJN4Wrf3x5zVQD2yp8vPBHVX+eVfir+gCJoL3nC33h+xA9zwVfuWsaYv/X8CX7h7nOc4mZ0oL/58iGmUPAmRbxb7/FSFXo++yXPEISOw89N+lomDSQO3AADXiqCeYoFv3j+DGue8OHpSV2+IdkmruO/V5xCEDMCuNl4JXvn0SkRJR9vTCJBf6uKVEya71pPUa3KpM9JDXTzYRy19x1ixFLcnPLrwM+VsXB9E4X0Sr7WqcDTdUyhl/6Z3iDYv2Mvu46U25F2MZYIpfxois8VS5lwTitEAl7yjHdV6bgUpew8bckUvKd6wOGcBNesXoApCL56t+JxKvj4tOGX7p7wRz/4XXz45lNsywly1VznlNMiwRSBo/qVmhdcJHTy0cv2du1knk8FLiLKOmmKZIei7+iNB/1bHBVulIWKrJbOmB/3nd2hbFG9VfRqBKg3jLLcJzwgPU6csQPA9qz9WDd6mA+ONTlYAQvflvHfUWZFFJSw93welXF+ku8d3fdZ9CBCqTLH+nkwlGlQkHJjz4/QmKR6wNZn1w9Mpn2Ad1pH6LkjgNJ3TnHF86axTgHq3UoVnMgSLZEBagxAipt+JwElxqrYT9Y+DQjuldatJHz/8hHu0oL7Sh3yJ9w+np/qvjNZelMeEiZIRlUKEDxfHjGlDTEUrGtECBd8/u5jU6oB4IcvH9nnjz/WLOg2n0vsDIFbe5WNp+93lxGRz2LA+ggwiIRK92nflQJLG80+2PKMKa3msRhl52suP6f6vNLiN0WvqOUMTNNwkt3osneLYof+SI/Q9QptL1SPlLpjY+BIie8pQvw8plEbr2nXtsNEetTmyAXdUwWaAnODZjQEFfbGiZ4AG4KYd8PaTUOi8vMFMPqH5SveJk136I0X3FZgYiw7ZWzs49FL4DdknjpLQ+p4vP08it0zRu6rbja3g3HHutm9A6ffb7TcCIuFojVj4BQzLmXCL92/4E2MuGTl4GeJ+CMPP0CB0oLOUTOxvElrzcBzQpaID+dLbUfExVIyVmMGAVtR1V1520HPoqubAtWsFNrJwee01LpGJOSuT8dUp2HYvLnZhCDN0+Wu9/Eg/tpurHywbCkIVJTsIpoxff/vxsU/p74vol/vx9l3bivjvhB9HLnW+qym8DNVoH++p1hoP/SGpfWXKxEONCBqirJ79y2ZpZt3wF1asFaj8D6t+N5yxtttwlIisgDXEvA4CWilcKU/TAVLCfhgyniYFOn/hfMz/uRX/gZOFfljYfY1UjNL1pNXj9rmARCRYCe0hpQ749DORVlnmz/ptDQvzzCPWpujnaxO/rK/bq/0sy7JZOgIfNj9Nk+d/AoCja6sa2br14xer9mLSCM1YOOgjr6u/tRcm3cOtDiKCzlC9kUCyngK4o3ilXvvxdTpoWMUoPSfpkwFo9YUJ3MBoMTKo4/JsuigdpmEJn9Vnp2MpnN/etEA3hrLtMlkBshdXPB2vcd9WswgiSEbzYftjkEwBQ3+fTi9KNJfkh1emJHwtN2rnJ1fUBBxShskt+QIKRY8b/dY84Rp0/bneoidtreeL8S5X5IaA4yhYH1E8HJ5xPN2b30zxw0pFsxRlel0WjuaY6npQceRO6LvAuiMUsrdrWbsoTFOI0ZPe+/1gufLo3lHTpPSeV7We9xNFyyDkcS1FmMBDubhz8vrKK9e8QfQCVymJosR2LYJc8rd5u6Lp3t4Ze+WUnhLqR4DP0cl3j9n/H5EubmJ7JWMxtHslfxjw+F4c49tk+uexzoX+/7I6PF/2wnELk840fMRsVckQexMA8lJqULs1wOX9VFfjt81RbOhsR5V9adE9u1pyOHoCRjb6pV7v2Gae7zj4/fzIoWMyA0Pfa7+7tmDMSDS/iYanyUgoeBu2vDJKeMv/+6H+DO//H18ML2ogBbg3XaHT9c7/GA94xRLzdqjaNjTdsIp5prKDshFs6+wXuypAuAuZhQod3urQb6nUPBRRbLOabVsQIyd4ByN0aWVcwasbxt/6z5zDJ3ROI67fR7Xs+sruPlnGSukoVrdM4fnmEGX9yjv0fzcPU8aWNAbiT2t4haizzm1e/cQrOtRKD+/QhBk7Ck9GcnQ26P2+PqnUBCD4JpJ7VFP0VdOC75zOeNhyvjG+YqlpGoAJLyZMqYgeM4J9874+vrpiq+fn/BLH3wHp/l6uDb1uz0K6L2qHsH2JQRBzFnlUP2PY1o62UP6Y745rzyKTmXZK9a9t6c9o/GyWwKAQEDEySSP1oZY1MiRoP91zx4MXJ/Jp8rKdT3tjDiPwPr6UkZlZ3iWQwAKdm3AntZBpN4XPw/HOVkkmMLnQRNSCxkXUM+oN2+kPa9owHkSzcOfuAaiZgEC9OTda56NhrZcJtyv9/jo/BZb0Uw85nWoY3NfAQuV/xkpZEwhYDLZWHCalk5ZFWgfT1ETClDJ3WRSxb6eVP04qRGwlBmp1nGThLfrAy75jLt0xZxWo56eJjVA1u1kCRliKEYJzdWo3Mqkgct5wuP8ghQzvnb3fYgEPH7wWR/MG+lh7w1dytadwm9zvvaT85R5T2WuhzxuecZWv+e4FtF+LjFihnoJp3r+Bz0v+qyt23PHhCyvrTRY42evvHrFv1fYuaA1pVYn9IfS01n2mTV6RffYMu02bh9k52ZLDP1G4zmP9pwqmHl9QG8MtPf1SirvLRLtPV4JODI6eqVCOZ8NsWK79yjlqOQ37tuIwvfGSfteDE3jZllqznO/QY7t9hvcqDgefd/Tr3rUXj+3Q6v6I+NbXYm68HuvlKm7vEfs7TpHlwGATVou6FsGjFfyu9/RDtBiWSThhIwUBP/n5a/hH05fw1J04wGqEhiAjypH9L4K3RgEi2uT8fxBRaDVKUtADmoULIXBvYJTzHjOM75197ZrIwvT6o19SVcw0DxOVOS8p8n6h/fKQL1wYwwcBF1KaLxvbnw5NC9A3Qi79JuHSj2NwtFgOUb9x2w73rD2ihfQ0xl8G0a01c+x8Z2jcSnS5lYazuDorwu2VI+8Av49c1zxjLPNk7/58oBzLPhg3nCOBVkCPl0nnOr5KQ+Vv/8r95pa8BQ33KUNb+YXfOXhhyCvuZcH+7Xcz4cesKDHzteTMqqUhBizBU02eZJsPAAA64xpXhFTbnnXB0OhjU2yg+4oJ+a0dnKlGSd+TCebF5xDrCMNYaM38Z2heSzEz380GemNEt8+jqKX17s6mYHfZJiNg8WM+P4OPT2nKqEcm7FQvtn8P5i7fEcMbX/KEnfHzmS3h5YQkUPBKbq1YgZE1qxkkrAWjRnLkrDJPd5td/jo9IwYisnGEAXXPFdFWrn+p7jiXINRieqznzeZ7BCvUd6pEZCBAmSc7LnP2x2uZcYU9OC7c1rcOSiK0D+kFct2wmlaIBJwXfVUYe9ZEakH3FV5scmEtbb13fqAN3jGmme8efi8SyKi9DXApxJnYhORsFP6x3lFudeU/1IRfqXKrnnuUrpyHNRLUg9Wq/Ke82HZ6unxTi9gXML7zph4LeXIQP5ZKD8Fin90ipxO3vP5ZUDF9y5yf73/npYt7zkSdJ2i6ZR2/uaV3vGQJo/sj88EGgp8dA3QDIkxA8OK2QQw/xsDowB0SEZvqCRbnK1/2oahXumm2By1VcRldnFeA254OSv373S66mmMQ9v1nb3rXP/Ou43Nv8Ojg54ScGSA7Man8iq1G3qPBtCUMkM10Hiy3ISIcLEO7ENmtiih8bZ9VoixqBKuCH2pSrg+B7jkCfdxgyDgVz96wicv38ab6QXfXd7gW+fPMcWMh3S1wDUeVLOUZAaE5/Nnaf+lIJaSUep8YPrQKahisErEt+/e4lyVH3ozKPibUrIPqG7tI6LdaBJ+LEevlV+z/NxTPvrNMhTNBkJkS5HVRrP4MqfmtjWVnBJ5HJQLwLwDuxiSG3xqGot+/um/bS75e4Ced805al4kpB2YMMqN6PoOgGVP8X3r+zhC8DBd8YPrI5aK6BcBPpo3pBr4yO8A4C4W3CdNBfqQrphixpvTE848O6LMplSZbEIDKthfAbEb935OjAZPk339eEy7GAAPmCzXhHle6o8B2+aNfE+R6cfuSBbzvd5L6utMkIF18sakBQRLgITqDa11Kk42MisZn+ff2UCZ/Z5k90tDj/Xfg7k8pOz0FEMFA46BKAAWCNvmWFPu/Um+yq1vlBoAdnBW9zx3TRY1FopEzNWTaApyAn7r+SuVruOfWyCI+HR5xDmueJiuRksUUS/EFifMVek349zRhyBN+Z5iTxdW74HGw4QgOKdFFX5mGEI9FyMWPG93mOp+y3/fXt/gnBYLKgaA5ObFliesZUYuES/5bBna1jLhaTvho/kF9/MFp+p9PQQ2nbFqiftqPGNryDETIecJOTdKzhHllf3Avz0tiR6ZuWYkEgT1EHgH7ResqddUbkMpf7jLq1b8+5Me1ZJsKMuI4PRu5pHK4tHt9vwDxWBIn2eC4wDl8H/TbQfBTQT4qIxGw7hp89lUKKiUAaoUeJ4voILzSCmz32rWA99ekaAUAhmyLEgNvqp9kiRAhBvcnqtLpdBTKcjx1bY0IZN46I7zmOi4+fgKCrLGXe0R/33fivTeGZFggpcGnDfCuPGxn9WF/H7aR4AgQoVuDOg8QEdUDD6HwbyCgHfbudJs9G3PecZ92vC0Tfjuyxl/LN3hB8uGjyZFlU5hq+8TnNNqJ6ymEJGDBuiunVFZY2GhaRi/eX7G95b7agxEq/cmETMyvnl+wuN0MUUfQGcoesWRY+jbdpRZqRsTd1BPjH3MwN54P8qY08Zud6aHQ/n7d+7XKf9rRufecORcPbzfcanH/vBGpE9vyO8VBW3PGkuW/Zoip1g/tw3YK9e5PjvykfUdIxhiz4Zgjis+Pj2bEviQVjxOi3GyH6cXZEmWA12VsxXztCLVA5XW3DJ5eBpTCtkUJyKtLIYeoqH+vh/Jk/bKvda9Hwfe5w1G/k2vY84Jy3K3MzwNrKjZjvy9/TvaeEar675fzcPZ7THbHiXn8908HPPs63NbsgH2CceAiKxPO0rlzCP3HuXP437mjEujMiIotY/9KargS+Xt+2eSfkYPKANpqaSPtMaxpFAMrJBKKVTqUAW26jPv04rP1jur77kq6aeYMYWMh+mKUwUqQhDcR41zmmXDFLcORGB9zBsWYJSbEciLUPoRovb53bTg+XrGB9MLCgKeN81R/24748P5xdbjNZ9wTgvWMmNd5k7hZxDzWlq2H0DPHJBqAM1RPRjLdsLj/Vv9Pvf0QLaDwAVHdqQ6d0lOAmm+Ku88+Ml5tW6zesDqGKs3I9mhZ+ybE9ZubR7GLlWA6JbO85rKz7P6vMrSBGMIxfhjo9vYb9ReYAPAkUseQEefeR9yN37P943KNTcIoCl/3MAiSufu79BOl2KOQZQ3PREIgPTKJdtFZDAEUQFe3+kLjyfnwvVek4YgDGi/O7wFUevrKTteAY+xoVZHSqIXskxl5t+1a++wGQIqaOhuTDGrQVKNE47lOI6jEkl0jFxUovw80dZTevwGau5xATKUk09ccwx+s3zRRrdpKFuWiBc7KCdgqf3zkid893rG0zLhP/YLP8TXz4sFtTGg7GG6YisJ17qB0GtQZ331KLQ5Ndd6PeUTvn33Do/TBT9cHrGWZBmCvnp6wn3lo3IcUih9/wXYGvTKcRvj3fAdjic3HpYjb9moqOrzG+Kbc1av0qBYHCnw7e841Lt07x4V/tGATCF3XOajetpacoqwL94gOGo30OhZTdl3XhJnYXplK1TlrI1dpYZVM3NEYfnvOS345t2Kj/MJKRbcpavxoMndZf08pZGpY0uJpixQEYSg42mvaMG+WqdiMQlcw2wWZfLoZWW7Pd8eqOhzlySBXgS919OP6I1iXalgvm/+kArEa5uCH7t6HBkiu7E/iAugAjZ6tkymd7Sf2FEUg3h5E2ugtqYF7tpB48Gv1aFuvZepya0mW3rUfXVKJb9PzrBKbm9O2KP+/j7WjYCI7l2CUwr42t1nOKcVn6/3dsjcHAse0tUMUrafYFtEAUID46yNpV9rvLYg7g/5DM2ApdH24fxsB4QBUAomgS6JiLXe13yy7+7TFXPSDEIE5LIDCPjOl3wyz2ysc0TPTjnIbuXHTQLUC7/35HNetVibRu89eh4PfOR8u2xnTI5WN6cNlxoPlPNJsylVOlNK2Qybpr+8fqX/Z7m8csVfC5V5Khc60fXzSOfxk7vdi8ONeHMpvPRZ+0UJ9EiHbewHp+Dti17nA/SASj9xgtsrrdyULOfxQCXi5jpuMirMQ0Xp90q/f9YR946BgUcGCgVkzi3vsf1W0buGcpUdghWCuHzADbXfNs//HRHisDMiSonY8oQsCVEKeBAMN0n/To++6ki093iXODeHXDQPNNEvHY8RHWsbmylUQuV1zBHtNlrn9hUEPG0nPOepeg70dNQ304rnPOG3X06YYsEnJ0W3fuPlHg9pxVfP74ASa4ae1MUHaPo6AEXjBHQ8G68417MBnrcP8Ev3gm/d/9CC8LxiGDmeRJtvOEKtj7uYjZGq0d8z0rZ437jW9F5P7+K7qjJXJiDPyHnC+fyy8zS0OdN7/d7XDn7u8u07ZJ/rYpyjWZKtDSoeRWLnSRrfZylcvTdz6KytZjPxnGkA3d+WshDixkvMWNe+Lbs6bxX181zsOW26/p3BO6Y37ehLiFX5bwGKIsEUpVDiTv6MaHGMRSkVtR+pONAo4HvtrI6aVnNUrMug6LZEBo1WaP3qFGfyu/n+IIJN2kmqIYhdrykZCXgctUsNFspQrX9vXHJu+rXTK2bRnudpU1TimOHGvbjb25i2kvOr4+G7vz34RYWetMMYdO55NJ9zLYvfpxoQogprMVnogROfVrMbM2nAiA8qZorjXOmUU8x4M7/gzfxi83wb9vZl2MOPqJbsy1Qz/NgcD229s2+n2OKYCLDpdwumqAh4DEq3DBB8//qmxhNoJh7f7y/5jKXMpjjP2Gwd+bF8zjOmoDz5KWxVoY7I2Xu3/RxvHnadV4JpWrs10bwdyWSkfe/mrI5Ha7tAuf9q+DX5XiTilFYUCfjo/nM8XR9tPUZnXNC74Ov5WsvR3vOzUl694s+Jr5+5UHvOLYDOZQr0XHo+Z/x7HHh/ANPoHi3QNHdegfPK/FgMfYAtg24TH7m8PgUapAmlo8BQ0jRMsYbofV+iHE12Cl9mHqBwTTXFmnkB0BQgMwhC24w1R3LuFG7mLZfKkfScylzTTuaSagYENRqu67lDBM1NmmelFyC0/TfD8lC3bAn7sTNFwnlC2A9bSVgYbNUh884bE1TxT6HUjUvapiUAgiI+Y19zE2PhhkjKjR6cpdd+tk54u6SaXx/4bJ2QRTeGx3zCFHINdmuba5aIKWSdEzFDCqiG1joAUw3YFDQkH6EZQ5Mz5jg+YyB2lqR9XfYZkeipYlHP3KgoJ6NMeKPS9xXfRwWrQ0glGsqcJWENM4pEnE+XXZ9r/afub/3Oo139SZreCPSGRJ+xpKbtcwci0dNWqkqxVpS4neHgvQftX6BXhqnEc8Pl/PNzUPtc/14Ra/rVsvMKpFA0/WCdI5RDVGxJTfB9lqFxPmk4ubZW1MaG8mEtM0r9HIKje0hBRluPADqPJ5+TpGXEEgSsMpkS6ukiU8w6J2PllA8i148b6yoSzJto44u9vKdMAZqMoxHHa1PIWPOsSmMNYhypXmYYQuoexFiABrSMtLK2jzQO9W4eFj8PW592IBBQUeTQGYw6t9Bdty+hMzrJuWfRudUbA8X1vyCYPBTEzoAAUIEU/XyXNkwhV2ND5evR/hkg2CTheTvjFDdsMeGclpqprA9i9uPI+mwHB9mxL7eQqjHS1nFEsTkfgnTUFoDerrbOikSE3PbKOWZ8vp3xZrpiqZ5oD+BliYjQ5655MnCIsV7XMuPXn98AAP7UJ79j7fGGd9fWaoD6JCHtIMuW0roHRH0cW5NdjBss7jnecAqleQE4NkDAZbnrYr+2PGFKm1ubavT+NCjVP+f4v8IyonAsPsiQxdMHjMpxMPFG65nXeySY7/PUEL2ubeb+mqPSBUVJU7JGCg4FDze7hqr1/cC6A/3BKR4FHD0Ldr9TMAB0m2vbTApKVco2meomVmk00iN4KeTOq0AFbc3zzmsxoj1LOWGeVts8t6JZBZQPmSyVmO9b8omXfLK2l4q8eEMkl2SKF/u6c/dKwCKzjSGpF9uApnGz6o54t01PFe1xM+0C5CR0RoCfbymUuglqVv0iwGPKeCkJ37+qMnWeCh5SxqfrhF+8V5f2JU+4S/rvRlTMkCtufDq2pPv4PlTDBfjty4eYYsYH8bm2NRoCNw2pOjn3SduQuA8U1ba3Piane6RR+L6gsmXGXRgy7NSxSWjoWxGlOhjfuVLO1m3Gw93TYV/r33vqjtW/NDSLRoUv40nMq1Ql0fWt/9ejeV7pt3sG5Z9zaikJc2yxN/yeRoD/3pcsAiCZggZ4wzIqKhkEybnd6Smi8gGgKTWIJngoE41CEZRCqMbNjCVPhs6mUBCj9iOCKlk96twH7Uc3N7wSthU1JKaYlbsNRXg1viib8s37+LyEnoaVkYCtD0DvkiVU7yUpMilkoEyHtEwaS4wZOIrhMbkMVSRVmW7I6jgvvfLf0Fsxo9Yrsp42ZvPG2uHiSdAOBfTy66iM3pfxN84jfZ5+3zwD3oPd4sGim5regPBz/SE1A5fXJxT73QNYVIqXKs9J7WE8QzNEWn+kg1SunbdVAjYojYjN3iRZak7fFdYPzkhOIdfYmM3ooW9wxSkqIDPFDMZ+0as3gmohqGGz1GDelzLha6fFPCcFLXbGU32IqlNOEXBrcsylFM6TsRnoKQPQzS/Op3E++/10ipvtCdd8Qgw6D57WB/s+BsF5unbzyHv3X3v5aTBOfhzlVSv+wD6Il8UHC3r3FVAPjnGBO6Ni4YWrbfy5IT68DuIRz0YP8cLMIybJGSPkgGf3nlT5rVaXiqDn3BsFI8Vi5yqtvMSWR9kbC8fKVvu9Kl9C6kRqSkLnfdD6c+Nj+yMEEgNkONnQF/ahHkSSd5tp2VobOXZe4V/LrIiGiAk6ZkLI0rKcZGmB1ESefJt9X7dNMbrPoSoyPa/fFyo2RYA5to3SI1c8ul4FN5HgPv+2L+e44jFteJdnpKBK+WWL+MFlxsOc8e3HKz6aV3z77qX2p264S2kG6KUkRBDNB14yA8CJt+i/PJQrBU2DmepcYh5sEc3JvA+mbB4UxEYFG6/Z99fttID+Hm9QIMHN5Ya6myI1GBGlGow5CJYyI78kPJyed++8heQbmhac0u7kjKG/Lg7EF0Nd+boDRas4eQQ0WoQqUACqck8v01LavO6pDwEBwe5nL7SMUIJNon0vAKbKhQaq+17CToZcZTKjgpQMHzdQavtSCJ1CtFQueZZocSIpVAO5TjqfLWanZEqLT2Dh+G4lIVW+su9zy/4SIk5BM7hkpE6ux1C6cWYWF2/s+bGjwtwCpNXo6bIoOZlAOtIYA+XlGAAsohxvtm9MreqVri7RgqCrl60/97fvT+8ZYh8dUXqOUwm3fuXc4rV+VPynLO0dPgi4jRH/9dSd3uB8wYy7tGGONd2j+70BLNLdJwh4u93bvKR3Q/u2rRMdg/Z959Ha9VVPv811/npPk90r7X2o8SoRUsG64rLyJKtPgODFuP4atLuUhIe0YMkTXvKM5zxrAHPcEKtBZP1dDWHJTXeQ0JJUjPs/EurhYvTYTwbCcf/lfWNs21gIRFoGn3rvnJon+JwWbCXhfr40BZ/5FcQH975+xf9ntbxqxV8QdjnXPUrolQHvwhpdgSOXn4KXn8dsCCy6MTRk3AtfX0egZUjwopMCifSKW27IUL0CMVR3cYiIjp/LTYCfrX6OW8wF75/ZufEq+i1O+K1lwufrHeZYUNKCKWRrHxEGj/QUidjq5yneMsgUZZljxpJnhDJZHfn7BJjSFYJgy0ndjkMw01rzJ3PzG3PqL3mqSHXGhn6z41wh+mmuTomV1hOsXRyxgMY9HTc2Ppcn29IgSGE/3iy2AYUefcoS8WZa8C7PeNoSzqeGXl5zxH0qdvhWCgXnUHAtE1DqeCAM71WEf5OItQTMURX8VQIKNAC5VGrI109POjY1ODiO62JQkLLoJoOolB7Osalu3qy3L0yTd6RwHhWPrI7fj5Q9bW+yzSsGwWU7o0hU5Z+br82bPmbH1pK0AFQ+k4qdp/uNdejoGgiHihX51iNC72NGLK0nxAwAGpDNKIUp597G8PNsFQa1AnPQg4YWae82uo9TdDw6fIqbIZAAMNeMKXa/IfKNunfJM0hV03s2kxtbTmZMqFGtwMJcOfUpFGyVYgHXFq5C7c9o1BmgT1FMmZBC1jMcSEOC0gJ9Bhz+6w07m7PVcM+DYajztVFY/Drz8tXG1KXyZenmmzvPgH3POVMk7cel7kVHVLFGAYudoj8q+ccmdz9vOCfE3cdnsu1tjra6Wz2lNzK4/5HGGKCgA8GKggApirC/mdxBXwTrXB/xWfocXR8/XB7xxjJMtTZ7hdmM2uI9kG1ecY6al4reFhmy6dV+ZR1936r8RTfPp5BRQmuLrqdke8+WE04x4yXP2ieS8JDWutY0PuBkGYtWm++jV3FMK854GGS0z6gxXdsdAGAqGnvgPSTMXkcajzeUUgjN01+aAU1vWHZpwUMQnKYFl+UOl+0OU9yw5hlT9TTeAn9eS9G5/5OuxU+mvGrFH8BOebC/yflEpSvcCsx1Gz6wR0LGjX3cyLNXAhA6ITeWI8SY976vJDAwMBh/f8zf7QMwu+/ddb54wTCi374/PtvO+NrpBe+2sz1njiqM6LYEYJ/N8zG039dBEHDlEeNoaEapG4PFDnBzRkQW0YxBB8qnKWTOxfuD6yNeKt//K6fnKsjdfKiCG7H1H5X+IorQ+E2PGRWIBhWBKfZeOR7jNPx8OXSd+98h2BCNWqRCXze4Z6bpq9euJeAcN8QgltGCRtgclBYFAHdxAzNCiGgfM0vQHMUE+xQK3kwLHqpb1tAY176R2qL9Uoa/m8F9S7DTDTyuWxZDXYMarnynN/y2SsHwLuMIza+dQnaeG16fcM0n3KWrnsxZlcBx/fs2johXxj4BQBckiL4dRB8b+qtG2XqkIDplhYX0GaU97LOpGO3QKUGtXj2dLKJlVymiXixyrunx8QYA/wY0BznDHteS9ETVOu4bEkppFA+lYPTtW+o9J6OK9UpUlgApkwELAIx+5GWJlxV+3k1R20UjJFb5j9zoYn6fAI7BkhE4ACpAIvtkCFRi/fP8mNSLuuIRY6NhDhd5NL95uWoefodK8/CqkRpGhbt9557rjDyW99F9OKeM9om+jWN8ifZha5N6rFXezBasm8xYSigOeGmJB57yjPuq7NLY9Qp66ytAY+OAIoqinxwdUef3dNjm7PqD9cnWxmAnllPxs4w6TkE+ytSWpe0BNNL1/mbIFgm4S5sa4UWNXl1vuka+fnqHc1rNIJ5CLy876qQoYMcU2VPcOg860LL8+QyBAXqgWQ4RoWigNGU3ZecmCUuezNuva6xl8yN4SK9hCZrSN0vCXFN0v7u8wVJmfHT3OdZtxuP5CU/XRw2Ifw/Y81rKkR73s1Bet+IvexQSqIshJwvqHHmRwLESfguh8793fzvEBfCISr/Aug3ixjtu8e9H5cmy86BfyCwtZ3e/yfn6+GcfLT4K7ADBR9MVn2/nSuuJOMUMYENAqjmuR4RS/75UV6VHR0Yl0SM6VDRWKMXgnPrgu02mnSvdb3jsU6ZLi5Uicy0R37m+wVfmF0MV+V4imVRYyH/1myGVIo/EMlh23FA8zUfHYqCACOw+/j6OgadW3NU8zFnUUMoS8LImPOeEDyTj0/UOb6bF0DNm71EUWA8EIkXkzglvord3STfXuRpx5MBm575OqIF2g8I/8tf9d54L7jcrorhHKP+YM9u8VOLSQZaqiMSWIWV8xqjcsSySMCEDON80OEY5wXgRnQfF5pxfQ0S5fOyP1mUPMGQnezrvk5u/PmYEgCk1cNePxSPC7d0a2xEhKCGYQuYVxEUCrkXRxhQE57iBAepUiPy8V2NXDOAANHWjKedmDJfuPVkScoiVciRGM8oScakB/BMyNniaXqOuUcn2AfP8LjpktqCP+8hInWd0LP4MAW/wvW8f4Nz0cpjj5r3EwF6+ZumDb3nNSPch4LExxaKbS1759il3PU1lVPZHI7B5ib5YqfGGpr/n6P7VDFH1MG1Gpa1eKrtO/51DQAj0fDY6YgiCrZzwZtLc/Nl5PnQ99HXk3xoPM3X7DAOLgzQ5zv+aAdMbN9aXHYhT6jNaEPNIOfIHLrKP9G/pvPlMwuCNx7VE6yfP+wda0D0E2CBIxZ+lIgYkRBSsYdrpEqNHSdd2ximpIb/lCZd8wodzi4Vi3xXRuDHAA37V613nQKqyOEhL900j4gfXDzHHDeumnrh3lzeWCvinQvH/OeL/uotXCA29FpcScCfMjycdrWnPexsFq/4unZv1CLFj8d/fus4jdiOSlInUQJxyFW4uHH1Oo6TcMiiotIx1zS7w+aP5BW/kinfbGVKYaWCyf5eSaqoxxxWvz7mWCam+fykJsWZNGPuiCLDUeqQqgItokKylT4NzubO/pWXFMVS1IuBFWi7oS4l4iTPGIEcq/63PYH0WKy3Cv68P5BWk0AKh2zjvN8Q274IhQsZrlv69pc6D+5oabSkJS0WopiD4+G61uq4S8JuXR3xlXvDx/GKbhtbFz4W2sXzz/jOc4tqNtXHWJRpKvdZTfn2bA5p71rtqvSIdgiro13KyuacbeZ9elGN2dN6F/5dt6BTxgg5x8kWIvIU+/SQAq0PYzj3/+gDpZb9QcfRzzsbVKXEcOx/Yb3Vy8sN/3vOgaeC2Nav/9uhy4/aPSGZ9rhsncUoflfDOWIs8HKnFGPh6NrpONnQ2oFeSvDLI3/W06WTIqXpeUjU89XmNmhKQQzA5AqBTagMEOQScYnYry3H8i5iXEHVNBsrHCPWQWiYy5TTH2AJPd14cabLGgw0+reievtZiYkZ54eeB1pceJV7TK/geMBgNRD/+fgzMAKhGn7WF4x/653mDgPeQzTJ6IXxdGp/dr9l2TTJZoDuQ7A7AaiVWutZWjYKNHo0qIz9bzzgnPbE8VrAluaQHlOXeECjVU+x/I4rPjEIEd5riHnbemSLBDFVtE6llzWi9hfxb+4a91+a2zSc1hjk8XGNzzLjkWQ2GknfgUgiTrXHGNQA9SOjPSpiH+DyeLm/GUNC0pzxgzBss7K9NEpZtQkkBd2l13v6ApSZjECi9dooZH999jmU7YY4b7pNSsH797bfw1fO7nyrF/31A8B/m8qoVfxVEfUo4oEdcWPZBOXtUxiswXiHm5usRQgZn8ncukJ1XAF8mbVr7/SYSI/rOGzJ51zbBfnMar7Hjz+FoA9LHKXBzmWPBc6bwVo7iS1Yl5T41Osmberon++ySJ0PaKZR98QKUz5gjeZYJD+Hqrg79fdxMqPBKy0AyxwIpAQ9pxRQTPl3PeM4zvnJ6MXewV1y8sGNpHou2oXl3b3bde+SKHt9hm5VQmSWKxXv7mImrxRpocFyKgo9PG6Yo+N51RpYTpiA4xYKHNOE+rUBFPK9VcbfPAD6ZL91Y+xM9GWxK44EoD/v5nBYLWPOUOq948zsfAMpNZhxzEuNa4P0+qxT72VNjopQOPSM/9ciL4F3ti38GlPd/Tsvunm7jdvExDHYfFbOxRPdOX4+6ZQ+/cexVsbAgVWcYeDSfyopHbGkAHMmd9m7vDQAgpPcI5pBxirmi/qUqYsnWIwBDIkdDQ9F+j3pTFvZr40IlXgJONTj3Wk/AjlWxWkrEGloAJJVRi5WBYGWstwtO1n4qCEI6W9gZpLkkLHnG03YHxi2c04o5rrbGR3DkaD/RerXEAzuPlaPiAL3Hb5Srdh/pjNLPj9F7zL1lNCBHhb9gv3f4s5LG31vih4AoYtd6L0F/Ujk6g6HP/tSU/sWleVwq6DAqehkNkGBPiWvrKgGrRCwx4k1acZc2BPj+Dfv5bf3T1g7l6Qi0jKWLuTMjJ2ArrW2jMcd9x9fD+ktgcq5l72vFDAHKszLElpSIIic8TstufrIuR/tODILNXX8Ns1GGQqiphf3BoDWOgGce0PjYLKEA+xQ1Tky9/ZbFqz6Hc3jLCd97/gQP0wVfe/gh3l7f4N36iHPc7AA5Zlb8eXmd5dUr/iZMjnTlQXiy+OPjIc4IwG3qC7NmHD3/y9TzCOkfN1Je612ro6D5soUbdZYmrEbFSogaOaRy3IhYTnHDFGYskjCjYKnI4SoBEzc44UbS+PtE4G95HuiaNqEhATmroZFCQV4j7quCBtBT0Xtx/IboA+JIYYhFkJP266UejMV+bsLeISKmCITd+HgXfwu27O+hkj96elQZlm4TiqHGcDiBb/dU4y1LwMsWkWsaxLUEXLagJyEH4PN1wjkqwn6qRtYUMiQEbHnGKqEJbMAEL5V8Zm6iYsmzAOaa3//ddodNEu7SguSEdYq9xyjWzC2lxC4IkXPPAsJRnMLhjU8cfu7GWiabqxGCSbIFcxrvvLSDdXhAHoNGN0mQogjXmic8VGPIz81b8sHmq1eWBqODY0ZFb0Rv/boa0cIYVGFpc1n9fORqe241T76MEGTsN9CRZ02FjQr/KeSKMOphQ0abgUK1S/U8cJ00UKKtEyK0XKs0GpqXQq8vYBwRLL6kxQZp5qkIIJcwIMLtUwgF15LAtLNSAiaKmjIpBSIUTDHiFFdIaFlM1jLh7XqPdzX3exFNA3mKM+a4YYrZUFHuKR7l98UOEvNzpI79GNNh4z7IKvZfG/dm7DdUf4/0+/u8wn/EtffzQAga8Rk3lHp7b1DlfT2YV2Px83sTn7pW0X6Ae1p/3yYRUx3ta0kIoKHbkHyVh0oBWkrCvBXcpw33yaUVHozeUfEnLUzQshTp761vx4xvvcGGCorUQG5Hg+xtCKUtjcbXVoEPGlURbR+kh01ET2V/CQkpzJhDsXFNQRAzaXgNRNS+ibv9iY3rdAtRmRiDZsMjHc/AgSAWb6HrtNH3vN7TYiH0JOIA0XSqCBasfIq50kvViMiXhGv1CJC+y1N/vwgI/UkXQjI/i+VVK/6oCLJuOMdVFWkKGf8+ohOQSsAyWtJeOfb3vI/iw3LrGq/kA3s0YUQIbwUXHSnUvn1UDMTlHPbu5lvuZRoPLKeYsVQhzHSQAuVyav2JdrasD3TNqhBDV//s+qWlNdXnXsqEOWQsULrAQ1JPgqeM+Dr39W9jp0Iu4M4FfV3LZO3ipnt1R6zr91rXMsyRsa9bW/q+P0KFt4qEFWh9SJNSJEs6/r9UZU2qgjUnwUkKLpsaR6ckOMeCKQouOeJvPd/jt8Id/sjDC95MC95MV3x0eod36wM+robXg8t13WIampDPogrx5sZdfxM8bScUCbifFlOo2qmhTPvpsw/NnXcn1nHQz/288oZb17eDgs36sL4BzGCkB8XloNx/njPBjE6ABotyrtEAYizDfbrueP+C5l3zyppX/AFYWt4jRY//8d4RvfUUA9J7qPhw/nBeEF03ip9UbyVGRPa2LKLRnFBqrEqPGNJo5rptXioqHPvAYl7rlSef0cWoYqEGntb+XIsLLJZ2HkYfX1OM+rdm9RrMQTDFglPIyCHgJYfOY8H7z2FBFKa/VO/ZJhF3tXvUqzUjS8Qdlk5Z96d5+2LBj46HD2l7hz/kj4pXhwSb8R+662js+fM3/N4wyiBvyFHJ5hwC0Cn1Rx4Aj9L7wu/eZ0gA9Ij3Rhrvi/VeMwrDmDFG2zDVujLVLBVxv6cxc5kGwKpXbN1OeMoTHtNWQY7j3S9XgKba7g3sOrh2lYS0a03fJ3ymHHzfOgbdeLCvYHubVO8GPVK6J3Pc3m6zrYlTLF0GNh9sD8DW42gMjPXx89DT7abYgBKpcp/nDIitm1436cER/f0lKxiYJeAxrbjkYMH96l1TgMGSRiBYxrijjGyvqsjPqT6vspAGkELeCVngeNCOsjMcXed5c0fu/VsIDgWX37i/rGU7KtpEK6zuAgi8sttSit1S/gFvADRFg23gAj5Gtvu+jNUlz/ImrXipB6gAityRXqEbGeCRHKLlHm3xLn32V64b2gZVCNaa/uxNdXn6PmFArm8TkXR+z1HaKqLtXd9UglQpaVQDVc97oa995HOl7xGBI86nuq2jKRdzbdMUWkrD5gEQEDkFgIdpw7s8YQqCOWo9T0lRos8WDeS6S4LHKeNxysiiGVte8owPJeB+uuKNy7RzS+nnPRmx44RrHu+mWGk+6oZkZ4m2YShPVN3Kfg6NgeajYjHGq3jl3meb2a+3oB6G0PLN81nMDjXHbGk9E4rLLa/z6JJP6jlwsSQ+JqOvd8SRvOCca8pNHyR6tP7HtuTBI8Z5TgVKUOetVO60OBTS+i1YMDgLf1fUMaCECgQUoMg+AH+OxU5qLgdjxXa19nEsNBiXc5njTmOFSg+fufB8DtE6TqEBITqWAoFmZaLc4W+nKJhDQq7XT6HgPmXcxw13Dg0WWVEQNXuJ6NkWYZvxOK041RSjnG+AynzSyhjwbuMRpBt7i2eRliTAU7G07wumAV1taYLbevT96o0C9h3fB7ix9+NR50Gu490lnBjHTkjR++JydO+RR8Z/R+NuLZVPz2uq0k+efRbSuBq9h+eeAOjktyr9eg8/v8szHhBwqnN1lA9H++7RXDZjGrHbF27FOfjxKEBHYbo1Nu0PXeekNmkd1QA4xYKQBT9cZvzwOuGT84ZPTlvN2qNzgml0e0OwgVP83O/l7Swho2IhIGemm27n3Fg8YWjeEsrKPOyxgOA5z3jKMyI0CPsHyx1CEHxlvtTYngYsMLU2y1LmnwqO/8+De19hKRLwbr035eCUNuOxEZnxHOSjgNZbiP6I+gF9NpZR+Wyf90rBl2mHf8sR57vVoEfSfDDdWE++/7Y7tCkm3FRHD8O4+X84LbgUDS6KQfCmuu88EujXSgte2tOaWJjxwSNG7aCpiChADgHLknCuCmhDMfr6mgEhzNG/V7zINwaADbFDYhqaljpkTLnbofvbF290jnQdKjqzewcAU7L5JH/vS66B01EPB3u3JjzO5F5qm64Z1RgAPpgzvnZaLP9zkYDvXD7G59sZ3zy/w11abI57Lv9aqLjomphDBhG4AKV46UnC7Qh2bg6lupr5HQBDXb1HBYAhr/r5/QYzM8XQlT2iTQ1R9YaedPN5k4RQxE6n5XwoQQNoqYQAwDu5QwyCc+V8+3npPx8Z//XDQbv69TV6mPw6yRJtc6aRPH4GYHOFfa3eICeHhnlOj1V0/dxQ4dQpgFMsSPWaEFt/emTa17/FJjAoWQ1HcruZIpaeq1zlCM+SIOoPACsC/OnBMahBwPoWdz8ALEXAdLUxAPcJ2IrgbdGTTh9TMipPC/bX+z/bTtWDqFQ2jgXjWrIodekh9fJdaXTqmTPvjuihYjz3w/c758MiCTH0IJCnJ/qAar4rW52aEtkpl075o1ek3d9kWy+H3Lpxc+Eos9sYL1OAQyXt6IhGpnT27fHF08dynb/nSilsmdJ0dJMtr0Y3KcIA3YDP1hlznHAfc6WLeU/GgcEqPVLvE3SUACT3Hq6lW5QoGtIyjNGX85Y0+Uphm6rx+mbKWCrSXwTmGSkSLKWuLz7OoXncGj2QfU7PEgADxix+JgyHk0nPPmiytb33kid8d7nHJUd8Mq/47nKHOQreVE8271lLxIqIGFpa1feBlD8vr6O8asVf3UZT22RXFaIPacE5rUYB8Bx+3uf/Bvao4xFaN6baA9oiY7ml3AJ7Xmf/Ln6v3/hrvsh44AK7VcasAMf0AyIxPWKlx3Cz/sohn6pyx60/ALaJemWmF5aNDuNRdlrUpFhkwHjtzEZP7mgEKpdQXDBiq4On+FBp8QJMN20NYqPySj7lVqIZG7VTe/qGa0mBKro+wA3ojQIq/BGafYfPzRLNrWyBdNLTAABNjbdKAErEUiKm2HJKn6LgWgK+cb9CBPhw3vCrD+/wZrp2QaznuOHrJ+VvX+uZBr5v1CBJuFSvzclQby1zzMbf1npGQ540U4hSr7ziYXm5adzIl0O9LVDMBftKvX+tKVd9SUEwQfP16/u70QMAvOQZ1zLjvmaq8EoePQQAjJ+6lrMFjQa0w4VSaLQDIuM7tzpU2WdgbEMgR9qO2JzlfGAQIaCufxZvDFDGEfXPEjpDzPdpKzRuG6JKBL3FEdXgPmiWFaAZoJcyGY2PihWViDmWrg9JbOL4r2ieNcrWVVr+dNQ+aAH6wWhGWWB9x/MkVPkEpur1YjvVaNc5sJaAWBKuOeGcMk7VE6weQ8avRLxkRecZD8M2cy0TWfVKazD6YvO2eGS+Xdcoe/x9KbGbAyZzbY2gjr1X/CudptuT/KjWuJnahyUI4OTNuIZSnXcxqMIeoNdD9hM5gKBLo+yMtFI+vzcE3bhVeT/V8fR9xGBfQJV7GgBB1OgLIiih0S1j0OdI7atNoinES4m4ZKUCvan0n1Vu74WsR0RT7hnwPhaRgBXap0eJMizVr3vurRTZ/G18Fr2TRP3vU8ZDijjFgg/nDQn0fjVQjU9viv1+X+/jzgDSngikZOGemcyw5b3+PhpkYwrV71elf5OA7y0nvJkyvn56waVMeM4zPpgWrCXZ2Qxci0WCxRa9fgPgeN/6WSivWvFnobJMIXEtMzapXLaQcaL7Vxofc0Rux8U6Kit0Z4+F7yTl5NZEGRfO+yZUE/bHAmxEusf7ds+WJrDHMwWAVvd+Uw6W435E68fnc3NhHbiJ3soykZE6TZo1arQqv3E1dI1tXyTipSScQsE5ZTMk1tIHO6nQoidDn5lQ9Ah2FLvG2lGNDdbFex8E7RCmVu+2gfsAKP4tEnCh0h/EDAALzBTNsT4qfTQYUhBcSsJz1s0NUJ78FAUfTBkfzisek9Jw1hLxg+XBDCKe+Kh0lnmniJviX/mZ3jDx1BpF3091bPWauR6Y5Oehjz+5RXHZcZXFf+4Vfl+OjGkiYFQUBckFSev1PA1zKfeYQgZTVjLexBcqaddt2r1D+6cZeVRaJoeUibueY+vXnKd8+UJlb0RVvZKQ0M+7MUaJ45ClUST2fd8UTK4JjkEKre/f1WxOI2/4JJqRh89YpHnJ+CzS2Vi2Ut39piwCDb2vipVbN3BjL/Wata4jU5YK/+EaApag8QlszzsknPKEcyyVVhft/XxEgcs7L25tBwYvNmPJUxa8p+zI+NO+a2t6LREvziPgM9iMCuBKhd/Vd58kgIdJKZ2mhKp8V9nH2Ak/D9QgQ61/MAOg1B4ZdxKCLpujUTY5uUecta6h+4Vr5KWePzLHNk/MUweCGc0QVF47cK3eoFMUFJdVB2AQPGujbVtKxA/KCQ9pw10sO0rSSL9Zh999SmheYzQlwPYCGtxpkEkRQAmiRgCOPSRj8UYA5cpH84q7pHLsLpbBOIXVwZcj6qH/nJ2c0L3aBVNXb2mqY8E5TaAjS0QpWgMCfu/yjB+uM37ncsIvP1zx1dMVj2nFU56xFKX85fVcs/1FnOOGzzbdQ+5TRs7t0MDXXLj+fhbLq1b8i2iWFk6go1RbyjVvudpHLiAA47T64pFLLize1xBQh1hWW3wU1Les2hGhbxZ3s+kpwPV7Xrd/rqcX+OLrznf4wM1b13lhwSCpW8Z5j27eDjwDnKISWqzAKEBDVQAM+d4dUtb+zkFz3J9j1iCyimh6Xh4PfWLd8rDZs42sqyFCrq5eqPt2+Q2F39FzoM+tbbQA016xz3W+cAPwFI6nPNXxCriLgg/mjPukwbxTkGoIAC810PpUJ8bTOuFaEj6YVqR6LDvQp5XTNRENgaXL3/qs1muja3kwHGkEUyHKosiPD/AcjWbOKSLm7T3t+i9yk/vSELCKRIrmelcFssmCU8x4t52wIhqaz3dO9XVsw1L5/57rK9IOItqGNeupMj5LjVfa6fvwcRNeKaDCv2s7lVEJkDo+NFyI6HJe05ihcj+65UcFNTtli89YSi+7GqCh83aViDU3xHE2mav5vBfH7bf74U/gbf9m6deJCL16qsirB07r1FDNOk/8O0KjzoAKVG3rUjTzzhTa/GJbQwS2AuvXMQAzS8BUmrLvPYyrBfG2vWD0HLAPL2XCS27nESQIUPvriJ6TRQ9UIz/eo7i+X9mH+j7YIYoeoeTvZpQVWKAoPYxtrNt4NpS/7T/eSOS/7OeWDU12v9FISUHwklNFmxt9y2O+nvJHjw+vo6HQ+kuffYpi850en3fbhOegCuap8tf3MUW9Yk7PchnAHrjrOkOhGkajQcGSgo6zZTe6YdADTS7QCE1B8JA2M6rZJ1b3A0CltWsPtvFwNB621QzQUo1AmgPFDDEvl5scCPhsO+O71zOuRT0uf+zNCwDg3TbjVIGVre4F9JaGIFi2Ey5F4zmUZlc9Gb8Hef+TKj8NcQg/jvKqFX+AG0o7Lr4l73KbtBOC+qef1NJ9Hq1noOfZkzJwC9XkNfzdp8DyzxuL5/H7Ip149Mp9r6j3z+jLiPYetY/3e0Hs3d8+hVnjDFKZbsr2UWYIbmqGnEsbBw3ya8/0qpVHOLhx+5SXQQQLmqv3ni7E0Lj0ufRoqinyAI5yCvj3W6wI0cjBkBn51U2JbdzLObZUhuHgXmZmCWgbyVIiXnI0VO9S1BX++Zrw4ZxxPxe82zgH60FYEHzneodLTnicNlMGx03H6svfEcDtK6KdpAk3JskpeSMf2R84A7TTj/n7KebOk+SDSb+ojG5nFs47AEhSuu9EFJnySv64Pprxw+w+mqffcpTX1HsiuiEXoKYn1U2NSrZXqBt1oWbhGOo8Grg0Mm1e1+99OsRscRcFkzvoTBU5vWs8QdT6wgEFVMpav/I6wOO0oxLGvvJP17WqXgL/LP9uUjsYkO6zZc1RD3jLtqb0e1I9SAlkPwPVK8JKxCbHI1ThH+XwWpqk54peCpFuDSSONcvQMEwIItgQNebBjdlLniqw0HsgSJcjBVJbIHi7nfGUJ3t8qP8rdkLrfv7nGv+w3ACFlNLREH9vAFBhmxwNjUYCy1Ki/U5ApSn2PrsO6vv6facHhFjnYL+3+vbAVAxKY1lKxFaY7U1/3wYvrZ97mfuRNL6/r4t6QNv+OEfY2nzJCUtQBXW+gSxnt/ZyNf6OjHmg7R8FaijM9d+RAuT3mRZQ77x3g8Kvz2y0UO5d3e9+Lz3QN2wM0OamGR0IBoT43wlwpOr3KdIfrsl3kTb0/fUOP1g0kPfr5wVZlBr6nCd8NK3IiHi7KeLPbEQAMAdBihlvJrE6tv7/MiHmP9nyun0SP77yqhV/AU+HLZ3CYhvDoMh7PiI3AQ1u2R9O44tHXvrA2Nt184E2YzmKC/A8Sd8Gph7kdbfq9L7Ygi9yDXp3rVfw7TPcZ1GB608t9WjnUTH0xBS+poCh/kXPQrBrPS2AG3vLnuLbofMAuISIxynjHHN12e+VX7pi4f4dqRMYvqf7fexjT7Fg8YYJg9AM3aFC5wI7+UijVNV+5Kb+tClnfAoChIaWvZmyGUIvJeG3L2c8Thkfn1YEaG5sb8ipwtAj7aY0BFVcRFrAZwoFURpFgJxuopyr8d/RZXLxVIVR8VhLssDjLNE+89pRxbc4EK+0osVjzEFPnQQUcSZtJEIDe9uBQqFeH3Cu71TleZ89he9gRajYZTcXublN0RtIje5DZJNK1qgEAb0ixXFMQSz9IBUYANhCwsQsGWgGA+tDJY5vSU7ubQKIxEGJae20E1Yl2JobaSK+7jGIbuaD/nG0QWrwsSCF0CmsZng4pZ/vW0pAqQ8Lbi2hAg5baV5QkxEVJaYcoSGt41e5zNX4noDKuW9jp8/iOFSk2R0sRSPNsrEEsRz1XC+XUukLKHiXZ3y2ampGGj6CUD0mzWicamBuOx1V43n21A1U6dcOR/OgCBHyIgElolvzLCeLjYidQk/aW5G+H/r3B/j9ro/B+GIDfq11PEWxQPOnLeFhyjVJADPJ9KXUua1KZPNU8NrnnHByhmUyj0K/d1yhnPkp9Dn9EtTLmt37zDN6oy0tExRlZFP0vdLPeAvz6KHtPepB7r3ONhb1N9ZFC5+rf3UJIob9jecncD1uwqw8LWHpDCBEzQy3VYOPvtPJATOUZ795eQAAnCuYkiA4J/WyP+cJqwS8bDMuWefWm0lV+qke1sdzEL6svvDz8pMvr1rxL6JCPIQmlMfSWeTS/0t3GjMjEN3cZ8hpivVoTHj00iPnY3kflaGn1bQ3j88dfz96xpdBUk1xRkPc+Ldd0yEc/aLlSYNesAG98BtDLY3GAo849mgRBfVdOkIeOGx7tLhUxW6DCrr71AS977Mx1SEkHCss2D+f9WMJaGNKlzZd6tw8G6+2bhZoSL9XrGJQdz2Vv8/XCZ+teoDSZ0vCNUfcTwXnVOp8R+VbB3zncsJnS8IvPCyYo1jGFNaXddPsP9G+Z911UxAALqUoNA5hlWgC/E4248m3Q3AC3m1nWz9GG0LG5g7vSqFUxTxhyS1lqhTYpi3YH5K3G2eo0n11KTlP7t2NQqVj+1LfT8Qvh+bR0LYpsn90CJJP00dFXA3MdiYFkVmpSg2RNCn0lKl7m0Grbd54o7WtH02H24wDr2AF6Jh7xblRfEgp8B63pszzvXxfi+fp1y6vY6wAx4VFT84NWEOPBvuea+lDAVTEk2kmieoLgK0oZYmIohmhBeZl9MZPkaBsnMhYC3pD92uTn7l5CRpCLaH3tHgZFEMz+AB06Dnq+6ZQjBY07jdbifg0n/C0pVafopTEa464lHafzkOdH+10aP5OekZ9L8eKjRnkNMceAHJmMHSwYOhTVdjO7tCk1q/6vH72N4oP+6oZqp6a1MaqeUOagsrPa1EFfitixjIAfLpMOKeCucqUnjoJS2pwLf3+7lHttUBjtgLc3fuylIjlwABIVRawEJjKuA20NZpVbP0mzZsZBCaHfDYliPZzhqOSujbRKx6HNQnUOVMnJ/dj7r1jPIPpE3y6NAob6xWEa4znRgAFyeQTy7VMeM4J3zpf8dF8NZ5/loDnPGMKpHE1Shbj0wDs6JFHdX6t5csatn8Yy6tW/AWVGyc9YgqgQ1lHa9wCGYG6E1Pk3EZ2+Xzb2Bz6wnLLIGBd31fGFIjvSxH6ZYpH7kfOsv99X48BbZL3GCzoBZtu8n2ApnfFFvEbiG6yrc0NUfSGATcdb9jQqMiubbkqGDlH42RPgYefiCFrqli10ehdyz1945aBMv7N77hRRlcnX+wo+tKUOaouMSjN4G2e8P1lQinAJSd89+WMbz5ccYqCr5w2PG1KSXm7TvheDeR7M2ue/kuOO6WxpVVTxca3YSk8VE1Fv9GtqvQ3SkIGipyQgnLm72LGfT10jF6PpSo1RJt1bSYkCUghDghWn462fd7PM264SseJtpEEqEKxYLLxBYACR+VyvOUsESKw01+5lmfnFchORngvkCrdgq0q+GrcAaeKQCNUZcCMXtJVVHGB9HS5PhtUbWdotAciulvpPRFrCQ71g7Wt8eGbgXxE8RqVRG/0h9DHNrBqno/Mn31A5jhWVBRTEORQXf3oqW5S2xtFPRItq02o6GAzxii/ZDCCqBhPURFlKltWfQE2p0x6eajpFHXlMW0oDR4+PwWl/PQ50EOnoC6kulWE912eLNOJxfyIxis8bQl3qdGHOD/8vkBPQIB6k8bjpjpaVpWJI4ec/asGP5CkT8nMdd+e2drsgQid49HJi9b/W2lKKgBcS7QxD7VufG4uoV6vaVsnEcvI09as7gVb31zrJ84NpXFy3pIOp6lgcxDk0LL9+EIvrAKFCSloWmgaROO7mleuGefs/fft423PDtjc91TxpXr0DJxA80YZQl+SzQNPf/XJJrTP+nG3PZF18fpHgMkm9Tz0rRjTmXpGxJtpwR9/1NYQ3FokYSt6LkaWdsAa5TDP1wiy763RW/+qi+ypjD8r5ZUr/k2IMVOFBR3ZcuXGi/o3jF9BNMomqt+Z0JRmTyFiNLpPY5dCS93WB7t+uTIGRP5+FP3ueeiR/DHgp3Fne2RhVBa8MmR8QTRlzG/EXtj5xUIE5SglGODb7CkRx+0X1qNuItxgxraXqoQtaOhZcsKMSLyPVfD1HgOqjxR9rXOjdRRRQ9C3i21qtIweAekySYgGm4Yg+Obdguct4d/49U9wH4FvPlzxuy8zfuvphI/Pm/X5kiPezBuuiHi51NN9o5iCEWr/eyOVbbiWhv5PQYBS+xRMndeMhKZYK7rznCdM26kpPWhzisYCOdIxEE8axsmhrj3jtf3uPV2k+HCt+rFYS1A0v7bTL+OGiveKTUCNv6j8eZ07/tyJCiw4TwxQD9pBqPSUgHNSz8tS4t7IrvcTTaYyZteEhpYapaT4APm+bNKjZ1l4om+vxHslt76oq9PoSaSh5wfBvDJOaahV1t+lRySlrnOWBTqvStR+JtDrkewUBFMEttwQ5K0qikAz8ul9iUGwlQoQVOOpFGAqel6LR5pLrSMR5hZcXVHqQfbdkjg+A9JaYIYm5xVpokr/iiaf2sGE2i7GnDQFfC9POplRtD+nII0uIt4b5JV3KtJu/CjDar2VEtvWk593ITSKDNs57kE9lS8YPQtoiSpy2BuXXfsE6vmov01RMEuTDtOBLIEwCxC6uCx6MqcoeMmKh7+ZMi65nT7NFnSB0LXeRfRE+FNsOyP3qPftU35Xb4ZaK954MONHSD/SMe3y+Etbdl5WWfvRxrLJrj3QCeBmGlNP60xBqUT6vtgFGTNCcjRvON+Z9ph1JaikWYiavPNeQjMGu/oQGD2s7qsqewLaz0Z53Yq/NHc7lQweTgE0hdQfNiMSYBH3oXE1gT0y5jN06ISvLsABnWdav8ZHPy59Xugvf6LvfiPvv2e5dRT7WBqHnDtl7xXhd+M9BfREND6wXW5K3HHh+46uaQp3b5z0KdwaxYqb6la9BtwcqTzRlc5rIX6za0FUo4Ob7/FV7FGfYwWhKXb9xkVklBvl6AoH21gN060+/3lL+O5lxh95vOI8FXz3+YSHOePj84a3S8LbZcYpaQDrKUVMUIrP86YP/vi84eOTO8EUe9qIZtqIYJaNrSqvEYKXQXAbr1maq/+DOeMcdbP36P1au++yRduk7twBOzS2MqIhd1dbw0154ykRXDNL0RSuY9aQcZ54Y80QfLRTYDkDUwAuOQAJ9XAvRdSaUqfPvlbOtaFZbiw971vnGmpWmmZEF3tOdbMHwRwrwoxGVmnxJu1ZpHiMlJeCRokx9B5tfImOR4eQemU/1HFpIEV/L71vvSpf39NZI406deRV3GKAFO2DKZKuoG3lfLzmiK22ZauUEK4To9jVWsy1o8kLZ923otx1H09BZdEDwLb2/A9C2hCsf4BGhZqq8k8Kn8YU9IePCbALyGX7KPMa7Y/j5emLrF9D8KmUX7Hfl3yh/4tJAgDYc6fAmJEhYxlgA+u59bzvCI3Nbs6Xeu3TlrBk5eDPSeXYVgIum3q6zo6yyXlIub3maEYdoEHfj3O2dho1pWrHUscq11auNQZjqkZLOxVYalt6ue2LV1KLxBqHsb/SK6dN8e+Dl0ewqN3XH6q5DX16JMdueZZ9I8aYG8olr1yP+7L3mJMiasYV7/G7oaP/AH1Sh6Wek0GanjduvMzlvKeR0cX2oAExr7mMOs7PUnndij96fjyDe5qS5tS10LwAhrpS0BIJHBYnucIqhOpBRdIL4hQK1qA5xD3lwAtQnzmIk/19k/4owPZ9ZcfpG4rfkiybyNBWv6kc1W1U2CkA/QLu+bJDm6Rvv7/Pu5O1PU0xoTD3iolvc9/+Blw2F6lve6i58wHvBfLBRqOCL0DfV6HvnbZJjgej9S7xzpvi6tYQQJ2FT1vC50vCkiM+ulvxbtFsIp9dZyw54pT07IJrVsrPZ9cJHzgl/24qeDP1B3H5vhIJWJzCKqJc2yIB91PGJhHXEnCuSOmKNoc5HqaETqju8tRlb1HUMOJaNNXqS0nINT88D+I5hWJZNbj+5uC4u9I8AqdYLMUgUVEvkDeJ1eBvij4V9ImKtogd/kaXtgYmK2qb7QCxpuAIqpdBgCui8c6pFIY6abhFigQ7LMvPkq0qsggH6wJEz2EIMTcc8veJ6Lff2mr0Sv7oZfSH0vksNF7H6altTZm2FXBj4xP3IaDRA1hCUONEAswiT1VLoNzOosYX5yfRfqKyn19nPMztxOgU66nSwnVeA3GhnhJADYzmgaMMbYWKTlOC62FRrg+AZlzQSPExEayPnXUhLcA2OgPZy8VNmgw9Aoe8Uc1+9cGdkVuWtH2hSJNToXqP5tSefC0R19p4KsmTUTJaP0ToHPUG/li4b7CdRPnvUjHPC+tOhX9MxWw2F3p5oilzmwG/ScDjVIA6F7nXkE5Hg2Cpnj6m9txIXRy8ExxnvxekWg+9RmXMLvPWgXJK+UMIwcd28Z3ifuMe6RX7Ng/aXMjSw1Ck/O1L22NUr2gGCek2fp55ecXD0jRGSjOu+THnQZkCnU9SzyLxhuClJKP4sD/GfvK0ss3N57Fvf15eb3nVij/QK9fcDJgLP4C8tEYXYCFC79HmfbaDuoBK7Nx6etorJ3syRW6qB8bQA0Cu/peh7rwv0NYXr6DfioofA2z9KQW36sL2eKSkT9G2RyyAtvD5OR8s9HGb84qTN5AELXMDoNxdIrGso6VxDNLxmnfnG4gf6xpgiWocSXVfujrxDIDDkyxDU578r03s9ooBedeji143GoD+IkMnAT2IRwRPq6YnzSXg//LdO3xtmvBHP3rC9656quycXFsDcD8VbCViTgXfuFvVdR324xyhGyXrFKNUxVyDhkUUfV1LwMNUcMmxU3AMbYXgnHQTvVoqVmDZAM8e5cbEUzo9LS8F4OJmLxG0JYgp+KTSpKDUJb+5UAGB63+gfRcD4xeq8UKlsHo2PPK5BkX1efql5wNLHXPU99GV7j0Nek4E69UUA9JVvKGaQ6UrBCozvSIwcvS9wp+lKcVH1DwzLobS6C89BYNz2hu6Prh6K8eZVoB+D/dKHNcZ2x1Q11sBQkRHwVCkvp5SW5qBM6L9L1tCikpDuGwRd1Ox9kxRjcet7BU7jtOGXqHapK1bngOQnPLPPiKXn21lvEWsah1/U+51o2HZuIPjF2xvgpu/AAwtZ3+NynzpUAuxPaLr/+BoT7UvxjgQ9leqWXVWt378cwSCXJMH+HmiVCuYgk5K01QP1ypubfgYnzE+I0VBLgFPa8J5anTEKpLx+TLhVGkjP7hOtvZJCfPUSDtIrgScIveCWKmXjSpHA6cgmLeK8tF78chT96lnbxWi2TE0xZaJRtp6as/v74XNSO59XO/+yn1ig77Eeo1fozwYi0kAuB9v1agI0LgVCFCCHgYZUc8wgI8bCmagm6FRQZAndy7FURkVepOj9W+/3/80lCOZ+rNQXr3i7wsVheZq61Of6TUVqS5OAQgtsIWFqhnTrPXcO4r/hlbGAITcrPxzzLivp8oeLRKv6JtwvLGY3qess5CPPyI2GXuhYfc49KD/vi1g4xUfLOjbJ1eOCzzsFj/rPKYz2waUiEgQNzOm9KNQX0pFqwQ1IK4pYUAzLkaXuwlDUjXEb5gDZUoAZigZ5QD/ptLCvi5uvozXmrGJRvMItQJ3U8Gn1wlbifid8B3k7Rv4lRLx5rQhBnWfn1PB45ybARgEH52y8Zl7hL/2j6Ok0I3+kLJdGyp6NEc1PmKEpR+FBCwFZkjruFaUyKWb7c8A8Mhu6JSQDc5QlzZeWYJlIeGGmEWDlo/c+Js9W5yC2+rCvhWokrm6+cXgSV0zWr85lvpOh1qJP1gKVUkYzT9+qoq7e0+bH9ohHtkcn+CfSnlD75xX2kvZm/xe0aIyDigSzkOvqFSzf9T7QSuyKmxeKRzkQlOi2rt8NicaZ33QMIAIJGmePACGxnuln4YNy5R8G4BYPQK8hCk3WbdAQynyrAGA9LujGKMEpXsGNE9gB1xUo88bX5r7HCYPCEZQZjZEGFgz59qB/C/A7z6fMUU9lO+heuksWUHpPQyA9t0U+7TTVLrZ53Ns65BNoZG3ORCCgbQGiogGK1vbWUS9fms9S2T0OFw2HiCogMPzpvKAa5jzPYsagAJ09b/WQ+FEgDk1xZ7PW0uARCBnRaGnKChZPSC2HqRRhq41qxH7bopi8RUW0+YQ8VgV9BICBAUltDn1Pq88wYeG+PdzN0Pl1HYAFtlnt18Arj03QT/9NwTUtKBiBoa2i/KpnRVh3v3QKIwAsFTfl6RiVEcBADffPEXsOU8OEOnrFwYZONKYj/QLtv+1ly/DuPjDWF614j8qYXRTN2tXF8PmFryguSWpjNJlRsUmBuYn14NAKEQ8J1Hf5xa69Nlsnir94T5l3MeMU8w2icbDO8aGjAfEcPH6U/9GY+BWLvpWv9sHpbRr3PPQZ/MZqTncF9v1++d6xe4o4Ev5tr0yotc2l3Kw6/pUgVGgB6PUFHxZAJT+8BJfEVJrmH+9oe2hNcT+GTKc1LpntE30KIjP98M4PkX6MePBSiya+UT/fpwz3i6aDvKX5gkprEAEXrbJuK33c65IeKhxJorKkZrDLBhU+oG2DqZqSBW0ID1BwH0NVGVaULrX1xxwSq1dq0ODW0BcwBwVRRoD3Poxb/2uXOF97IfmnW8KfaMMtHHx8T36fTMKePU2uu7RlHqivRy0EIAgiv4uFYn2AZDcSIvA8sxLasbHmkM39nlQ/K39aGPEcRo3/y9KDHAL2TekNvRK/nE0SzMuYmhXHL2fMnJEiUW4VsSoChE95SgIjXV9EoeyVIOOyuSSm1QkSs5Dn7i+UtB+DbH2q8AWY4htjHKGKouhGQA+eQCVE3rfbAIM7eMc6PjMouuUa3mfyc21IRIlb2Pkx++bD9c2p4Q0oR4F7vob2k/6rB7g4XrMwpgnNWasLUA94XfwbBft/xRgp4LzXb5uz1vzetMzdM0Ra1Z5uhT9HANwSs1wT0Fwzcr5f1rVe/O8TXjAZryrFBrQEsxTHnDdIh6mXL1PwGWNOKea0ra6a2MAXjalHM1J38Wg3xAE19x4/DpeKl98LAhlZKp0XmaDszmMphd4g9yPS4s/a2O8ItQg7R5RH+fBUWYm9gXcfbwuoclvSDPCeR3HDq5e9Cg0ihXwXHUUy+qGZkAAwFKNiK0eLDfKBL4LTr74U5b9+RIstwK/X2PRcf1J1+InU1614u8LJzuFH4sHW3I9IMWy9ITm7vYTeXPC9ZrV9XmuCMY1RzxLwCkWyzfv0ySSN7yWgOcc8G5LmKrL8iFtuE+5oq9qlRwp4LdOA2RAchq+/6KiwVzHJ6Y2hZ1/91b9GIHfBzFVVMOMExg63xCRAwTdPcCnNqQiTRc5x1JKMJrGqJCra1M/k1NP7npz5yqaazxRNKWUbaBwB3Co9JvbvRoAdCV7F63vq72Q7AUneaKkmGSpyr9oloRlKvj7z9/A81YPjMoRd1M2If+yJuQS8M3HBeeKVHsvxlSPs29KReuPl1w3UNSTVKvhdK1GBTd49tWc+kN2otsUfVs3acjnaNho1wVFlNAC35qXpyrvBUi1r8kJv9YTP/l+j8jxWSI96kZ6EgO/AbeO0IIDWQdVTpMiqg4R1CpIx+MG6PrW52qAanP7e8PQ5oBfN+57e96wwYzxQbeMAc5hLzJ2p36637xCbteHvo4+boD30DQYUx17ehwNea1Dk2PkypfCvmkKJdM9rsPc8/xvAh8pkgrYnsuXJenju7YSDEHehIqxzy4W3BxlL/agy5ipyBQBCZ0c5NgdcbI7T+7wOxUx/36CHAEAk1CMHjyuZ47XFJqxtVVUncp0OHgvDc8ukD40mTRy0J/X6FBk3Uc5LvQyigBnF1/glWYRBQ9S5eFPgd6A1rt2CF0AMg08tLHP1sf6eapy65IjrlvEfLciVMrXNUeIqCHA+tFLJ7aumvGo81r31g2K0vNcDmuDDsfOy03Abx3GKA/r1esHewMTx0V0f+A5GP6dPk7MEljUd9PYjUEwxdLF+rTEBEoNeolJ4xugz9GzXNTTf3EHznmg9H2lBw8bsPFl4xV/Xl5HeeWKf0X1A4wHTt72GKwFAM85VsWBd9fFUnmCRK64SET0eyo6RP6ABhB5S1ff14JsKBSKBLzkiLXMmgoxFNzFUt2ZAxKMXvEfnfpSN1Gg0VRuIQa+0AHancbbLdJe0fffe4SDKt+YNSFC8/euEixY0fMr/YFCPqWmpS4ctW00hWOtiB7TXjIlYnI1F0BPI6QyKC2IkeguXbP++d6gaeO+7z9FB1tfd4F4vr7Sx2D4bBu+8E4qIUTnH1LBZ1mRp7lSAMZ806xfT+1xfSoN7eW8XEmZggbCobalVCPVX+fRK25iazW+GDz4bkm4q4eKsY/ZT2zXUVyIrpmWP71DvOsmv9X5sVRles2h81awMI0uOcD+/YAqiORueze3BjgDp9jmA/tg2Vr6TiotqlSRjtI2MBqaVPqNz88x6AatjV1T9vf9owpdu5OJCEbD4JC6Usf1KGXsEXLFtUIl2N8DtPltHO+hzrsly/UGALHG5gRV9qQiLN73wD6y7D3WL7peifSOfOxQDTJL/TnpylV6pxjdCbnRkahE+dXItUc5YIeWyR78YJ/z75YeUUwpOsy6E9XgGbn5vv1r7qW8H3//PI0FavEMu2BUPrMKMoIEvkhtpzeyoq2dRofk+QOXHI0+k6Frkf3rlX69n56/psj7oPMExgy1egYApaaVpDdjpkxBpQKJgg+XTSVwCsBlC+bhOqVSKUNMLlC9mxmHQdERghiDfd88yG2Ml9IyUfle9tRhjjdli8/C5ammPfjYj1lPiekNpujmq/coBzQ9gAYA0Lx+aghwXXuDQX9bvcxfgQ/mlh2IFOiW5a3JEO5lI0WXfWHtQNNbbho1PxUl/FTQkX4c5ZUr/s3axYEQBJpQIvrR0n5pqjby+5aiXF8WqQLQZ4yw99XCg6IUCWgKcUOV+3zCABdwxOdbixPQjAKazpDGhVfqR/qKz0Ftm6XVe4/qsy63gmpGWo+2owklj/56hb95IrySMDxbemS8CDElcbENanyNGxnQDs65loBTbJSD8T006ChYOb7+iQyc8wHB5IeyXt6oGl3p3OC925NGx9h/HDvvnfEZVsaWck7yiPXHKePrDxc8rRPmVFpu82okkB6x5oCYOEbtqZ5mE4B6cm9jX362TPjey4y7qWDNGlvwZs7mIg+1rltdX21j0M3lzSlbvUl9ibHlXNeMWK19nhNeHAqkfevGCACDaS29owtqDVHHjGtvjvXUydK/awNQoNl66OZnfX3ArlfQuXlvVSH06hgDbT21a3VZaIbmdgq+fefngltfLKzJeNqlf6b1k1NiGi+c73HPfc/G1ag6/QZNZNO8gKFfB7sGWf21xCBGcQioSG/W/qRM3Ioe+kbjqatXfRJRXQA4T6XONQ3qFaihs+aIlzXhlApyFCTLbAJI1LasYBBtC8z1a5ABlx4Y8Mq873NvFFEpHGMwunHCPiB37LM5FZvjlBl8q+dviw5Gd/qt1qsBEZq0QDcuXcPSXcd2SGxGdKmCiWt8LRHX3AJ0ee9ocIx0Ntbxs+uE+znjUk8wJsAFNEqSes/Va3lKBedYzNgAatC3EKzQ08W3op7K5y3WzxlzagG0NBRZ3w0AMRNdp1U5RkAS0vhIm6ERokvGxtM9r+tzNBlgfQoasDC6mri/Wy/t9xc+cwT+vBfZpxEFYJ7Orf6WS2jxDOCciA1cs7lSKZ4Z2GLCUpTmaYHmGKhMts/3oKivMz+bjETv5ec5AT9tqP8Xh3r/4SyvXvFnoWLhubmcvFx43NwU3dfPaxXgpDkwCHKtC+comj4E2KmnRLe7Q8IMZes3zKZgtrKU2OWAJoVoCi29WEMWiLxUQ8Mhh1SqgYbkNUSvKZYUziMC6ANyjowA62f0myFRBOAYXfJjwLoxqJKcQkWyekoG6+hpRksJmIIqBKR+dO+DR+VacHcABWaw51EgB7gNs9PcQqc8+7GkITRmYuiCr2rbfVdKHbKRcd1QJTEXvohm7FmyKv3P61QVngDU+UGka07ZlBff/tYvbQzIR99KwLcfF82IcsYuj3XjhjYFzBAzaQpZl4mkNMFOakDnIRPU4+YdgiU9PUz7Q+fHy5bsACx9hqbes35GgOSAuyk7o46/Kb1gC40aYmnrKmovofG/aVhRGYixbWQ+mNGjtEvpA1l9uRWDc6Twsx8yojWACtt4hocflxA4n1j659JA5HPGY9I8BaX3hDUaE+vMvhltc7bFc6ZHWlipKDGNeAHMaGJmnybr2rv4L9PVZgTMoXSI45yKKv9bqrnjM3JQY4OIcqoxKyWoAVwCWuA62N99/wIOJHJj0afBFATLINPuY79/kdLviyGz4nKsO6WfvPcjk5DtoEKNus7U+9Hu8SlHGet0TtWSr5qlP0she/qaG/gl70+3B1o7T6ngaZ2w5YApSQVX6InUSRSCjhVSk8GkDoWgJ2pLZtanCNl0HJfK4UcsWLJ6ee5r6k/AGV/g3KwpV2mkOE9EDIJT0tTCvv4EgUrQB3r+vC/sK99+Oegvn6Fr9DgcjmW3H7XrOkokYPEzrHO7RttOLzKfMO771GMK9PC5OZaOrqX3NPnd1dHahj4o3q55v4JPQ+Q1FwVvftK1+MmUV634U3mLgKVppLuL7nefhtNTI7hRrSXieVNhck7oNiG1kPWaWNFFWtcAlZaGJjCHcEQwZYnCn3mWKUR8Gq7GWUYNpgkINfCGwUZ7bu0++Faf0ZAFVbGd29+h4fYdGOjab1x0Vx55Cbhg98pNfWZ4/8LuDZT3FypbPr87nxydUXBEfRhd9N5zYXUe2nJ0OAvryu/GUxn7cW4P9XELLFEEo4HkqS6Apsu8bDqHNomIUvDhecUpKdJ5qoqMbny60Z4SDYimio3t4zw7JcEpKWI/J27KDenx48i1lIKm/5yC8mC1L4JR2wCdu1RQ/GbuD0XjqavsSzNaa3s8IkzlkG1IqBzhKN0aGhURP7/1Hv7FlIf1nQH1tFHsSqMvNOWNn71Xj/1g96Eh+qzLjj7n5oQp8E4pU0783qgYaQHR3X8UuM9qjX+HoOggqUFH83QsR5lOvCIzeg6CqKLGudCQdI2hUgM0Vg9ML0tYnzEuwqPxVI4YnFygwaCcH3MsSFFaFpigHVZyyxLmEcgxM9R40rlYPYLdm6uSzWKelwOZOZZDL5Frq84JDljz7B5RLEZPEOuitChA6pza6phrIG87LI+Z65juknPRUwYZbGsHZ0UqhLpW6aVmTMIUClZMEBEgqKHcqEHOVK2ouKq0Op5rTribcqXgaHai81Q6L00KgnliIDCTI/ReJ9Zb5xnMmPH5769ZsE56bsA8UCqZnlelct/vqyhLYC2NcsR+9/Qg76nnnCpQobAP8m1zkUKMnmNfzIuMFtfl962WzKRx+s81xg21n2M1bBLUixtjPVhtbeNEQz2Aek0fiG1FBjnm6s1/M/pzc35aKDQ/bR6KP6jyqhV/nXAD511gJ4EuRdHNAqYJbKiu8oxVsDV+fw1YCn7DbojgpaINVBxOqX/mtfKgi9RjrKvbNAWlA5FLSA+B563SPe2NgEtVaPj9XLPRxNCOxn7/JtPQ7VGBJ8/eB1reQiNdd5tg776XYTFLf8/+OcGE/FHmF0GvdBMFaS56KlZe2ekDkKIbQ8/lvclPdIoJhZ3vF84Vr9h7NNhvvt775GupcQTHQr82UVFFkLNe8Ml5xfOmef1/eDnhGw9XQ5qzBOSccM0FMRRDkki3YTuZVeOQgwxgcYIbcALc8dlFNMAdqMZpCTingin2Y0Xqi7jP51RMyaSBrJ+D3cPsLQUBmcGydY6b2hWBOTQqB/s2S9CYDjeGdLWXAFwl7sa+LsFujAM3QoTdxKXSzwO9vIHkL821zjY/3G9+rnilyn4HY4Jqc13djgr7svOgdMaBU7DA1KV9hemF8Uo2M70AMOqM74ddPdje0uYQAZEAsfztiLBgXlIOPIXEP897J0YKDefnJsGQyhQEMVWayhawhFgD+hv9Z6IhEBrlA2hyrQEEUpUd2O8+2Jk0qxb8DbswoNEqR3qlV1p9kW7uufe6+WqpKEfPHJrxDLQxn2q7Nb6ltUv7oYA8fe95655bUXKpv11zMg5+87gCEDXYzykDEjT1ddHDAM8pY8kRIbTAba5nygO2TdDP3bXufSkqZXPsj7EUwGJKfMkldPKSbSZNacnA85rwaUA9HLFUIKUddKZ7ZIt183FHHDvu0SnUNKpufR8pjz4jj59fAUAJoQbC9ylZfX/t5LiT3y+bZjEKLr6BcWB2fWDCBhjVKVZAY9mixoE5NwdT2PLQUzIfur4W/1l/7M4Q2vXCz8trLa9b8XfF6DVu82ceZS7I5s5XxJQHJT1MGVkUaT/HghIDLlkFH7OeTNV1/LS1vOVbEayx5z0yMn6rqBQpCOTjUV+lGy5XT8AKIkl9MeUoCJbS0oqVA4FxJBKJ3JCTyEKhxBRuR67bsXiB4xF9T83R5lVk48Yje4/D8I7hvliNJaBtei2LRhiMllZaXdqmSepGx/OlgBoNI8DQc25+WUKn3PhCb7nIsfcBfHdoQn9M68r0e8rz14C2O8n47DrhbsrYpOBpTZhiwefX2bKcfP/lhMd5w+OcMUtTbKQ0o1fbuK8TM0GwDawnv6NSJtLoOwI9ndM8a1VBsEDHOk9CQD1MpkdwOW9pHJDCEGKLozAFxqFwc6ycfmfss57qCepz/XNjY1xBU/513mlqwIblUZn0feHf4b1g2RkmfmyPPDzeMPTxQjYGN4z3L+NmvnXviKilaqAlN+ca+onuuyMPyC0FUevZe4ko/yjPVCkRo/aY0TrErXTPRDAEet+49i4qkOz3RE9rVUj9dab0ov3NcaY8SKFP8wr0Msor2CL6Y2e8gzLZ98/Ql51Prn7n+PLdWSauH0ell4Hl/v3eOCGtxc/fKC0+xq8LvY6yENWb2M6xEYEdpBaqTLhmja2YY8E1JzPAphqTRA7/UmDG/1az+4jz6ng6lZ/P3jgwg1o0nWpyWXfYRsoAphPdinopfKFHKMXmneC6X0rE89rmBHtGBmCHv8/1DAYaWFMskNjv4e+jejWZ1P7ugaXq3QwqRxio7Pdg1l/nst7fUpdS/4F5B6w/uSf6VLNB9YFU93ZSYbmfKf2pyV9b8wdt48nX/ve2dvTfW+cAvaZyi8r5h7381Cj+lmnFsmA0FIsIRUPpavR9VVg+Xyecoga3FKigIr1BRJF35L0bEaiuNoHRH5Sq0OgIgE54L7NHygmvHAN3+D7Sh1IQbJWzOSryY+DVGGXPtjfFytXf9SONJH/0udatL1Qs2T6/ufnUa8cblj6RMm70OozliMvvn+WDjnywkQ+KPuJovs9bMiJIilJr4NxhHf290oRux/VELyyJtHqlmJvgIgFTVK/SH/nwgmsOOCfBZ9cJn1/PuGRNt3aOBSkC7xZdql9/uOJhzjjXYC3m9z/yTOwMGMfRFzc/iLCPbVGPtHon2DaOaXKKxfOWIAILxJMaq7K6+ZOC2NoFdBO95oTPLjO++nA16hwDuz2C5/vVK+JqqAXk0LK9xNA8EUtNkWq0Bdc2ryBzg17qycZrjrvAtePzONqJpr1y6Nam2+T9fLSD5fzwYF88Ejwas112jRoTs5WoShOk9WFoaP2hYv8eL8XYHkijpaQo1qlKvWx90RRdfamnHvEavs/Xq/MAoSqOCDa+vvA+EWDLARvUEwCgzYf6LMrOWD0Dc+zBkA4hte/4on2/7RR4/5u0a8bnH8kkEVhcAguTTnhDstohjebiDLs8yHl+5wOTaUgw0FjfQ+XReSnrd6dUOoOLcVsZrY9REfsiAeIg38V5s3MJNoasd0rSz+2gGbWyKBinBqqubSrfy6bUMU8Z5DO5xjXmR/dnBsOH2ANAZii5FeiBMkD3LL6X3pWqO2u/Ha0jaR7pUeG3791+pvWpnqrQP7QDE+r9amSrgbBkPSnc4rNcDJPFW7m26rgBDB73dKJmAOnvLNYONI87M0aNdEdfjrz8r7EIjmXuH1QJIfwygP8FgG/VV/2aiPwzIYR/EcB/sF72MYBPReTvrvf89wD841DM7r8lIv/qj6Nur1rx95OOUezX3PL0E0ni5pYgXb5d8pF5zQQBpNE6LjkhoqUXo6t/DNpti70pmTxl1VviVu+iucrHVJ5jlpxQF67nM3t+pb/Hmw0xaHAU02iOfeZpMXRPi3sWXcI81KUL/OsUx0op6Z7vFaJG0/GF7SGiNAYN8iNdu14h80qNfx5d2lIlIJF9FguAC9jdf9y2pvyPGaKAXlj3dW73i7T+GBVnct9NWZaGBNIg8KfMzkkQggbxPswZ79YJ1y2ae5ongDJgj1l8IG28fTvZ56wTDRG2JaBtDEud83wHoHWzXNiu3YKGnBZpwYHnpDQGxiUAbUPIRZWyXJ9JFH6OBV99uJpywOd7704ZxoQHSLFNKfKQsz0Fo4iePHo35Z2h69d4EaULXLdo6KcfY6/cp9g8JF65LdLmcxuH21Q979VgO6n0jkYyvYkZjf8L9MZutw5dkCBP0KUhMJZcmuz6IuOl9koX0A2oTPZByb54utKW368o69OphNT4rfpdlmY4mBLv9gE+h8bEJvt5SCTbqDdRzIDlnOY84jvGdX1U5/cVH8jrlUHv/fWyyjKnSKNxigTnze6BFF+NFPcUG09b20rL18/nQI49nLfa6o1EoAezOH/NWHGGGdcN65lFBXCsoBfnKulhPp6kiMZxFKmoe+2PU1K5yX3oZU0GysQiuJuUIlkkIMWCaz2kbEpax6mOO5vf5oPbj2P73c69uDH2Xu4c9iOaBxRorAAaOHyGX4/eEGX/l9JiqTxdE4D95kFAZ792e31T7LUvBNrnVNxH3YJxBrdi7dhTPt7ntZcfc3DvBuC/IyL/rxDCBwD+nyGEf01E/ou8IITwPwLwWf38dwL4LwH4DwH4NoC/FEL4EyLyB86i+pEU/xDCPwrgfwDgTwL40yLyb9247j8H4J+B7lv/nIj8+S/7jnFgqChngWUfISpRqmHQKfujIg137LcoGrDVwEMKZi8IqVz6fMX85ZqjCVpuIOQO8mAq490Ohe9qJ4K2ILkp0rPg69G470Uirk5594dWUYHghtFtKvWPgtgUf5GdMBh5p34IBlb2YRmNgUgvBP8+6Au+730WuEczvmzxiKKnaTAItwzoyPjovZALHWLsN/IjLwDbZ4o2mHe8DyoEFCG/mwqmIHicczfnOI9Z12udr15h9kpKo7U0JXm8hgggEfIYAu4n5cAiNCWKdWAf+fgGutpfBkTXnxvAzC5Tza7hN1Pfz6ORfERXUMOc/dr4xDbvbS2IbZrkvyq33BmlqJk7asxBF/A5KMRUFJmf3GejGr1ODWXdp/X0a238ja3s6BA7b9qxluY9AavbvNuMduvRGRaxWqV+bfm23XLXh0BFvr/A0wDfx9k+avfRvYzfAVSemrQMKmIalYec5zb/fSzBiKAWCdg2rte+HkqnKCaDpxo42bwIPSDUt+u4tODdJou4m1NuZLR9wdZcabz6FFVuxNpHzbjXOlqWJ44vetoajVqTt95gcgbdYjE4LbkAKVLch3zpDFR3zZJ7qmafmla9AFMSTCjYSupi4rgXZgko9aApjpHOqZZggyeu38/Z2tPTp/Q556ngnnVmHxzI9xD8IZoehGgyYRz7bo8MbQzjsJfa9dKAGNaPegvTjAMNZAR62p6PYQGafsLneQOE+sUUmsHFOjzOfcajXbpuNAO0nfrcP5t7CxkA+UYfvbaiOsmPT/MXkd8G8Nv189sQwl8F8IsA/goABM0v/48B+E/WW/4RAP+CiFwB/PshhH8XwJ8G8H/9g67bj4r4/9sA/gsA/tlbF4QQEoD/CYD/NIDfAPBvhhD+ooj8lS96OGk4huIO1q0vlh0GDWFkhPq7VY8GB5T3L9VAmGvgrm0IVYnyqKLnFPt/iVquW2wodd00mXGCStYU9+gBhfp4cic3CKK6DYHoF9JW0Vb+DgA8yfVW6Wge1WDIOZh3gqUZO61v/WOPhBjQUieyDW3TbUq7vcMpKj4F4ynKTihTsPM7v3mORpUh09LanKwerf25tjJK45171+gYLH2rWz2vncU28gEF9XQfoM23AFTOrCL8EmjEtQBxoHkINmnu+k7hRNu4WHweenJVmbVGqS16N2kQL5uit8wwxFS0fiMjTc4bMrEqxlSYiwDP22QobwhASpp6swX2tRiLLkjStYE5731fduNYoioPoXkrSAHoAzZVCdQTZlWhoWKj/diPtzcwvbLi0f1d9orgYiAGpZ7lffSz8fr3m9fDvYMMAhpX1xvaTZmGXR8HazqAgEKPXvrMIqN3oMuQ5TwdCXDxGrcMgSYHOsPf5Iivd6NoelCl2nadIUBFM0BMafGghh8jLy+A2nYEQNoa8HTLRjXpDYL3FU+5AdDWcDcefn9paTe9UT2CFzRMipsDlrUHGki7ek/2kN2G1z4xCxO4jhoPv9GG9vFT7NdmCFeZ4gL+1aMIE5SkpInIYQxInzK1Kfmtb2CKMtDPx24/rGNH2dkdAAfs5EQLmG4Tq6Oz/h70RKl7tI6ztrlRygSpzqfRu8yg6wBAgliyhRSknlbdMgz6NnMu+jLGUtGQmZNnMsA8D+P65DU+zS2v8MBgy2ykffZ7Aed+isvXQgge7P41Efm1owtDCL8K4O8B8H93X/9DAL4jIv+/+vcvAvi/ud9/o373B15+JMVfRP4qAIRR++rLnwbw74rIX6/X/gtQy+YLFf+CgJcheIdop6bnbJs9v6eQ9IjdQ00dxkCpLAyqEVuUFH4Auok98jgb3j0GnrYNI+dku11E45XynV5BpkGg7/NIT+pc0Zb6M+qCJ0WFAYk+l7NXWLzCbHzX2F/zZRcr+84Ue4ccixDxaSdVst0xtKxHKUjNn1z7uo5J89iEbvO2dILSt2cMzsw36u/R6RHRJyWARpgfd3+a4e6ZaAK1pyk0ehkAU4qbEtT6iwqvIlrN2KMyzzSGgkanOQoQLKIH2bAeamT26KYFWbrvGITJcfJxC0tpa/qoT1MQ85qxDoBURFbrR6WfbZ+C4LrpZj9XRcWjk+w/PwYe2ef4eiMGqONbAhAjpIhtcJ7fzXG3QHhxzxsRa2fgeK8H62E0ukFxDA4sGIPfR6XSB/Br/+/7+H3fG1KP/TO8HAJU8S5uDvvDAf3zKM+8sTEqY74ceTzsNwldHY8OBgKwu2dsI4uea1LpIEBHkfJUII65yjTrkA4hx6DYGh5qMriOa2jIdTd+TnHX9ztaUGhgj5dPVPCPZNQRTSnF4XCkuk+RokmDwx+WRXBmlEF58GSRiiOoCqlvM+qJr2CwuNJw8nDNuP+FIJAhfkeq3PFy1NODznVP9v3K9ernXZMhxWL5YgiYUzsHx3tH2BenVLoxMMpj6L2efdxcu/59c/+Lio+r8GWqtERe4w9BTFXe7OVcjYkIPU2tAMbrB6BnWwQdnY4uBL9f1ZgL0SDwFKQzMhpw0TwmDPK1fcW158g7T3BWhnXyWsuPyPH/noj8qS+6KITwBsD/GsB/W0Q+dz/9lwH8r/ylB7f/WEyovx0c/18E8Lfc378B4D966+IQwp8D8OcA4MO7TxSVA0yhT0FwV9FIIpdArxSRGw1oyk+qxUzbuZWIqZ4keLiJU9BL2CkGQFOymfYN6Bc5Bbif+Mw9faqZRlqDW3aiviOqoRI0sHgpze1nSk/9m3dz4/OIEEuH0DmlnwFb2j/7jalb6E7AjqnsrD/cJs/7zcBBny3ZK15UqHS0qkBn36JlQ2Cb/OE5R/U2Ae/e2FO1tHjkvG94FYB+A+Y97jIfaMxMT2xbCnqt0YgClTJ0Qlzb0+glfCOVdnJYRfqDqFh/tomZrai4Uinmd54fPMW9yKOhAuwDF1kXBvpOUczA20TjA/y6mUIBUoRk3aRP9X2bW6eMURhTGY4KtdG0pHd37+ovtQ/jftyLW+NHCj/vN0XfG5Y3lCRmeUKtqT9pd3xHz9evaGS9votnGao10pr8ePTXHfeLrm9XgjhDv38Gkwzw81GdRmT/Vs7uI6NlDG4GnJfVGTIMIuzvdd4DN1+kGi16WnP1XoCUkKoEO/nB6/V+B4aEFl+RHLqsboRqOGBvxB0ZA74cUUlG2UnF3tpa9vEM0wAObRIMVGL/MQ8+9zTyyenZatzrYOdokBLoeeeJaSKhHjqp8RJ+rofg9gbpY1NI+SBvHxVYoCHA1Jl+jXqAxlNzpySQHHDdEq5wyPWqmdDYJ162nVzMnlEznXIv4HpCnTNuXRXG3vTjM8ZkjJ+9J4mZwWj8CttXZTXb4OdMlnAYB8f9iQBakdbxvIb7nCAAQcyzILU+AmAtupdZ8HKpdY+w09rHQi98kZYtif1wTCHuAae1HK+J11R+zBx/hBBmqNL/vxSR/437foKyZf4+d/lvAPhl9/cvAfitH0e9vlDxDyH8JWhU8lj+SRH5l7/EO35PVkx1lfwaAHzro18RotvM+bg4NDkoEGDBukvl3Mcg3aE/14oaXLNugadYjHfsqSPtgA0tR2jM7SaNDWyWfYFSatYccc1SM42QaNcQZv90S3+GVkf7NTulP/Sc096V2ZCC1r/2WkPhKYA86str5OA7vfa2EqYIbOUZ1sN1pqiCaHMCrnGKnfJ+o2tblqLY1cvXgLcyqJaILetNwct3eYOBfcbndUi+q5OvnioVfEcwpM2Ug6CCP0vozoPgXOI4+4B0CDruMtAM1qVyXYn6+baLBKPFBYi51bWPWtpLbU8ftDi2PWCvyLDvKMxZB9KReP/mkD81FEqHnnnO6y2ajVfySXOjW3ws/pAqVUaUNkblYuQxs16si/eI+TXuaT0jOEAlqNhnZ+xav5Mq0xtmgCpWIxXtixRloLXFF69wjRQef1XoRvfGdRWFVN7/qFy7p4WWTevWQT23EFPe2xINtHocBRTTCzH2z5gVyfjFbj2PhsBxCY2Wae9thgHfrYp1sXnANTICPizv856akj0EvI700ltJF3Z0JKCmlY2dck9DmAoovbW5GgSr+xcAzrEFg2eb372B6BXdya0fzw3vlP7ap5wvCVSuwyH4kGJPJUxBcD9tuOZksgzQcXm7TJijnhBMjwvHoRlEe4BqVLLHNbGP0WrKNmOCODf0elhiBA+8AC3GiddS8Wa/+j3XU8f0XY2GyWQLQNs3rfZmcAFMD+tb5DPY8ZA3EQUUY6mIfmhe9XFv5Jyg8j9Sb0n/Ybtved9fWxEI8o8HUAcAVA7//xTAXxWRf3r4+c8A+Gsi8hvuu78I4J8PIfzT0ODePw7g//HjqNsXKv4i8md+xHf8gVgxowKqlJqAHFXJb8pr4xoSnWR6PioHDOSzzZcoZP07xWFiD9k7vnydXX1r3AEKcKkHcMzu4CMWj0x0Ll0ZBFJoAkyCoAXT9nmhS+gRlDFGwfqgLl6vUI8HzIzuyxBa4BhT5AENcanV7Kgknt6UcJwFYeRmU2k/Qua7zXG4n0fSM4XdqPp0r+XmNNTFu9Qp1DgunpupSq9XGGDCMECNTxqtd1Mxw4SoHONAbIyk1ZFG7Ujj8KipZaMRnfeb6yhSFoq0OBO/IcaKagJNkPv+8f3C+30diC56NJ2UBdK0liFbDmMrijRPnlEr0NILWt2dAezn7BGKO8di9e1OXK595ZVuxvOMdJ4xQJebGbmwDJwE6mFKdU5wzvmA+1Y7dOPH8j6D933lSCGmkkcqkdZbjLrVsnY0hXZn5IlDhw0BbcUQ27BHzLhefDt7BXavhI3FP5cxCJpzvFGkSEEBeu/EKK8aDbIHV/w7WtBwm0PNkxqMSx+6vlWjVOABIydnncHpi1f0x+x0o2HrDeJR0fP7Eqx9sLSZ/I3Kvq5LGNLPeXotwCbAQ3ULKdWn0Ug5Br7EoAq81LWrB1EFmzdU8DlHmL2GB1QuZqQFCxpm4aFwJbQ94LIp7ZX7CufBA7H5naI+ABDSr3mgAQV8Xt++vj6UE9xHm/Lenr9tCYy3sH4npaoCQyn0lEoPfFBujgYcDRpx48F9s+2R2oojIG5MOgDODQc+WIY44AvPsbnmFqfg9Qdewz3up0Dv/9tR/kEA/1UA/+8Qwl+u3/33ReRfgWbv8TQfiMi/E0L4l6A0+A3Af+PHkdEH+NtD9fk3AfzxEMLfAeA3oQ3+r3zZm7MEvKwJIdT0XGioTkbAZWuBS3qwB914uliuOdmhIiWosTBu8izcEPvcyXvhN1ITDk/aA3CEiHGRSlGkpU8pp/q7X9QCGDpBnqtlb0BzW7a6odatptELAcwVPFJ8gB799HEOlopLWi760T1N4yRFovYwIeeDkRKcsl1RRSnosoB6znyobWrCU8uYas0rpqTP8BlbiV0GmKMyBvaxb3whz9WUeFOY28bhA8f4PF5PoyVWA6xIqKddijWA+brpzvWFbnnP1Z9jsQ7lb30/Nm7y2B4T/oMRbYaGhN1Gqm2r/QMMgv8YuW8oFFFD9700TxbbH6POI0+BEQEy4oGSs0eHPT/9SGEa/+XnLA3ZP8rGk527ey1xt6F5hJV82U20TtPQ99H1Y/tO7PAtHPx+VHqOeo+WH6H/m6i8abFEagiMbaEnIwQPEDj6jQEnte2x3dP+ls5zQMXzyAPwRSDK2BfKQedzW1+QnqTpG+q14pBu6zfvzXVKuilO1dCs7TV5EpoH1Xea8fvrPeUgLsbilUIL0u9oQlaf2wNPY9XTA7t5DFJnOB6jTAAW6VH+peiJ3gWCu1rJtfbZVo2EIk1x5P42BTrfQ/2swMYsGreDqEo/6X8A+5InubPteq95mNDmgwgPINM+JU2GXkuCRV7RZP+Oa7/31LcxqWJy5w0YvYBaL/VQrKUfx904SI/SM4aECj/QUyhH41BEUwd3B5sJK9sMnux+a/K6UXxiu0XbN6bsRr/vr45iGkPv4Stc9+g97KpbRaP9egrQ0b7zWsuPOavP/wk3IB0R+a/f+P6fAvBP/dgqVcuPms7zPw/gfwzg6wD+tyGEvywi/9kQwrehaTv/rIhsIYT/JoB/FSoT/mci8u98medzgt5NGUVUyRfpXYRqfRfbZMhl3iTisgTLHpBdCr5b7mkqHUAv7EZOm91/4zmAptTTNrRF2+7nxuUDZWHXjcbAzCPYA3nSfcDzSN3gO4qp0AGSQ9eePSdxn840uGd5+kVwQkVQPSqiSLbWj4ZRRbThUN3qnaABQAXe55zmO1lo1GnmgkYx4T10r3oet+8HoEd+byn6o1rXkPKmaHWKszRFmYKR3g+vFBvNqRoAvu9DEAtGZ+Baa/dgAFFRloBS/x69I2Obm0IPQyg9J3fMzkHFwZRoaYiXxQ1Y3/cIv69DG6OuS3d/23uhufTZJm8YAHsjfSzkdI8eNOPWDs9qbQ2tT6W9x/4WRUbHV7PHijTkmQq/tv+gjh1CV5VqBAQRN2a37x+L5//7YNqs4RVG4aCibCgwWt50C6iMet3qjMCxLQ2RrP1XK2u0xKI9472rcyTK2ZBXbxQSBR6R/70y6NrdXek9eX2MwhH95Ogd/ildX9aXWuCwk30+cPwoI9ShoXOglI5lpKZ4kGo0XsfgaqbPPDoBeC0Ba4lYRYP3FxQUACdoDN1SnMIPwQbBKhkl1EQSQXDGhI1zAsECxaegCuuZiTZQ59+WTAFuWbqCra056l7gaTosW4nY3N9TLAgVLDIgqjTK5pF+NWYd2oFwaDKadfTz5CiAXtd7U/xvlTH15lG5Jb/Hazj/mBQk1To2/n9vDNCQNVlcxPZP89DWdWjxP6I9SBriNUcsNcsc04tyTl8l4rJFSxAxVW9Mbo+y573moprjj0/xf83lR83q8xcA/IWD738LwJ91f/8rAP6V3/vzVdkH+g19VHxVOaopEbeEpXLqeM+6RbsO2Lv2WPxGsLpL2oTukSu/8Y7f7QPieMgQgNCQsqY4MRit0iaCIAcxN1yqFr3RIZzCxeCvtaK/p1gQgmDJXuFGbTtqvmgeBz9uWj7NWI9aF9FAzSDAtSgOMNV3wSG/LWtES9lYBJDYDvNhkN5RRgZfTpUORSSbqGtHSRmUUKBHa0TM/Klt7DdxXs8Un6437F+ezaCIYFOMBRo8Kew7x9VlvyyOaoZ6P+s7uvizmxMM1B4V1xH9JmqtNW1K1LjhkGZlbbNNfOC6o22khppVJXXL6L+X/Xv82Nh33Ztb3xFh9Yc7eSX/lpF+FHx6K+YkViTQDEO5TeNp9Iba/qN31++pMGwCpxBVzu9Q7Vg3XPVM9RQdoulfthxx/Tsl1tau0pA214ekcATRvN6cSqU0ZXYfwCud8u9lnD8Zl8XHLPgAv9HoY1YRygRSXhowsleqiy4he7fn4e/6BM1IMJ4z9gZY7bX9e3byPtR3y3vR/fcp9d2zDvrEr5v3GbuWvhVw8rZ5enl/LuqpIv3sUoCLbLU+ERtKnb8F17BhkoRrWFFQUEJBcUfaPwE44YyzzACAZCBZxFRlOcfT88NiEJxjMZnG+XjJsWYQ0kbOUSwjkMWR1PV5yZN5x06WLpt7Ib1tvYeuvb/+6+TpGJTL+ZTiANI5ueqzGAHNe8TSxzUEAyNMzjoFn3JzDOz2RrGOM4b9u3oPpGWKCvXvY2qdUj8Z/+iNYcZa+HFaSwsKF2mnJNNLkiVYUgeg0Xq30gwY6mc/7sDZP4jyc8X/FRaBIvcR0qWuAhoaC+jkftkSntfk0CY9oGUUAoAq1z77jX3vJkGHBA+bNEu/QY6ITl3k7jt/kp3P/sG68NS9ObYNUd8TwQCiZMJHOyiEHi01Gg+RzAJ3YmvY1XPcuKXoKYI+x3ouwYKr1upBIefR88s5HhqMpDSNKAVw7llKwZHG0w5sai5HXsexH9F83/f09vi/xxJDU/49P/xIKQUGY9OUBm52bRyoOE4DZcOCwAI0uFtiNZRanUZUnp6LKRZkhN2mMNLUKKCtzkGQpW1APsgN2BsNbJs3jPh87afWd0elCLM19dfbcwZlq7bk8LOnzN1S+P1dtv3caJvFRHD+uM9eSaAiQCOUFAdgT8+hgq/0CWBz+HNEwFTHswTg5DSDLMHWwfw+NNjmQsuu8kXF8+29ITY56gMPOYO0lKtrNQDo3i+hHy8i8kVgfdQXMU+Brwv/zcO8bLSXdl0X+O2M1lE58wHUBDNGueyVM0uX6Iqn/LR39uXmgWNOTrzPYzjGi7AvGCBpzxvAolsUu/H7Mai6Ibz7Z/vvqfQvKIZYZ8nYQkZExDUsWHDFFhasuAAAEk4gjhuREBGxYcUW7jBV1aG4WTHLhKkkMwimEM0D4yRmvU+wSUaG2PX8PYaIIgVTiJjqfQWCaM9I9e/QjV9T8GFzxRvhS81kQxqeKvsKyKUgNbZBOtnent3idjgc6n1w89cZ9iIt1q6tT2cMoMlk70H3VGMzFBAsJmqqlfNBxKPXdfSWlsL4AsGK5jXnOz3g5o0bMisYcEyPNn+nHOOrxsMVb3l3X0vR4N4fMaHnT2l53Yq/tJzwowVfpJ0wqC7MYAojhQ2VNUET9jEwu8qBYjh81xQ/sfoAbZM+Mh5Yxu97Ba6dItq9v7ZrdVkNpKhrMQYGXtGN3QsNK4IO4RsLUQarJ5Gr0gsgKY2a41OkATUAiwKoHtZCWs9UFQVyX31dea/PksJ2+5MwBTq2njc+ohgeCR+VYJ/xo4/DULTd2o4jCgCFbgs0Y/Fp/ko1Hj19YSnupFBp7R0zIHlEUCy5U1NALZ+/6yMioZ6utuPp23tbGzw6NSLNxoEuRNjioeId6poZ+4rXLAfzbae4u3HZBeMNyoxvzy001yt26+YM2eFaT9/R+xoi6LPuUNn3vGbv6udv5EWr4lIQg6ojk1NLeN9SesVjzHox0pKsDU45OCoj/YUIf+ubep2bB/xXg3tdjAZqPwAGFsTqqbL+kxbsGYCazUVfspbQGRhjOw7THde/KafG+1e3ZtRYa7xpHzDepxBoypnnVAN9PzOolGUXOWcABJWaXkHne4LbE5qi3RstvhztOdKtWf2999xUeopbO95TNZ42XSsMEcG1en83p/C/YMGKTT3OKFhwMcV+xQUrLsiyQpCRcALw7OoSkXAy5X+Cov4FWb0DyJDqHRgSyOr30O/5WT0KGUVWhNBksl0zPCciYcYdJsz2bj5nwowzTjiXCRmCEgQrNjVVJGIWxgHoGo3QPo2oBkAduwJ6vnrZp0Zbn+ZUx03XiVHs0Ly8emE7Y8fO7QmM0dM4C1LdtO0ts87okeY4M3YO2IONR9RKlg09XY37lKeWhSofAmp8hbR1SCq1njfQ5EcHpEjo97ZXrvj/LJdXrfgXCXjZkiFZY/o8YI94mAJ066FO6I8bdUavYJaqaJMTy2tN8UJ7l1fib6FGY4R9lv47f19z9QlSVJ45M1kE7BWzsfhgR73mtqLBxZqG96sQ6gMzafHzd3/68BTbketmmMBtiKawNIVE2+nRh94zwXf7E2Rbpoqel81n+tNC4a4ZgyIBNA6rq5dXdOHGXlxbIejcpJ4CYMLQ9Rvd8S0QuL6/tue6qXfgcc6HArOjALh68vNIQRMELBkoiJrmE8B9yp0ru+ew9vXyxdBFu+qLEXlfDyrvPq5j92w/nyHd3B374MiNz++8V439aAAAN3c3H40K4p8JBy5Q6a/Kvt5PJCxiNN55v++DDTD+M3+/tRaPypFSD/RG/0gXOvJmerAhhj6NrK9NHxvQr2Uq4/5E0xFoMEQ/uJgq3ylurQJKG/Qo7ch75nuJnpaqIJdByBv1KB7FPNTn4YsL4zooB/a/95SMXJzScwMI8hl8bo0TDXBAFcLZ9RnXDteUGkf///bONdaS7Krvv7WrzuPe27e75+nxeIxxeMXG4hVDgkgiIAQQSkiIhESkEJIoQUh5ECmREPgDKJEVkkhRUJIPWMFSkMiDhDiggDAYQghvbAfwY2w04xh7ZjzumZ5+3Nc5p6r2yoe9d9WuOufcvt19u+/tPuvXat3zqFO1q3Y91l7rv9bu9jufLGuuQcufDP45NXOCR9/TsGDGggNUg8Fe6yGqTTzDG4QCL5PwPn4uOJyMcDJCKEIEQEZ4rWhY9I9PdpTb9WqDp0LVk+7OqvGK0vA9gEiBSIlzk6VjKBQUMqGQKaVMcRR4GkZMWTBlT8IAIadkRCUlBY5SQzSiFNdGWmeD/k0VjbqBf0hiLgWk6Qa96bs0SG+ftypL91Afz90kY8oTgIf33hQRTjLgnHael/yxo6uj2ytzZjSXgfblRgD5TMK+kd7zdxILp9S4rEre6ip4eYT1vOMfiFaePufb8AcO6+TxXw7DD1+vW8eqahqQPYuyG6jPLtxwbSdDT5YeSOE32noLXLZsvv5Vp1Y7QUtmDOe6vnRzSRKgNjGTzrCVbHurPKlDVumxIelCc8MklloU6VkEqaxdwiOMnG+Tj1RD2cZSfKaj7SfcrpOTaFbuMa+3PvToDx+yeZh8UoQVLJrOg7GkpZa+cSgavCHt+xhCTu0v3LIROrxhpnMh5WDkuQfJU5dPAJUbFCmpVyREVdLNPX+YL/dXulGDy0rLtQNi7QwD1SAtqVS4WRc4ghGae/9zuVcq95gfj9RX6cGWOC4BNe/zlIMDtN6uVcu1x3fwvsouoFtJ6oa5Abmhr/T1+MMBhEvfo9RpvdHIzyUJPc9h/Juu9eTdT+srsvMkLHvr6xTS4Hb998nrnfY9967eGI3qAAAuFElEQVTn0p9E+i7fdjKR0vlaD7aXqveUknk1c4MiejeHxQ8qL21J1XAP65+juRMlTVCXEqirdE/P7qHJ+5i2l7YBMDxEAjjfRZZSP6Rrf9Xgv/1tHh1Ueud6fq9KzqaUNJvOqVwelm+jFBhJMBpHUT6x6nxN7R3O7Dzcdv67tFySZlVeggRNg9F/k0NmHDLngIUe0rCg0fnAEIehMV6zTxuO7HnkXc8ozw15KBBx2TrDetM61VeAj997VKuwjXb57ghKsYNIibgRTsp2HQ2HiIwoZNIORDwVCznoBiSE6ESIDIzweIrYKw1Kow1HUsct9p/OTVzW4ZhoFBppiOiNBSoRSukiXzjiSRgmJoPOa57Lznw8d1dJHxvt5qAYZpm1x5l+lCnYQ1liMuvllt1n2aBElSR3dJLZNYNnbhvVbVxro+T37K4ISbivV0rvGX2eUczwP5d4FY6a5KWLn9E9SNrleh6UvnOpJd0okfZBnXd5KVmCXmb8lMMbNMsRhlUPRUltkWFboZ0VNjO+fGZUpUS0PBEwXEhd6b9cz5j/pifFiG3tEuakZ7AOy5Yl470h6uW1H3JsDYRo4KaEn/z75DHQLCE1l0b1QufRYFH63gXIbx5RZhAN5LyOetr/dEz3Kxdqquc1srXvOelN8NP2VFxXds/tVT7qGZrx+JO8kaH9oe63xlwIWpmNRt1jz5gdPLzTJE7Jq1fQhYYLlg3F3IDpPOohz6N0HhVp80RSkvrCw1VdpA3yiIyZuk7bmsqLtnKQ9pqS3rHqD6S4bVZ5p9aRR/qGn3frc73rODeM/Kq/2b2ivbaBhfr2dfh9Z/BDSGTMDf5V+mI3+Dus7LJuUqshyYO+SjvfMqj+dJy0cBX5fdITbo9p0DKsTpSXJ82TlvPIQD9aCOpd66lPn4W2dsZPKs2Yvm8HZGRRF2jv3U123efPg95+aTRkgKG0Znh9rzL+h86kYaUbr55KGipqPJ6aigUzaoJEJhkSDsdIp5SMmeoW2zqmFMeYgu0iXXcBiVGUEHlMNdqX29/fx/5nw8H0gVbsyT4HXGemezQ6w2vV8+qHbXeGuqpHtQ5eeq37G+gZ6jXdnTc7i9THQYIDV8YeKNrtKU1r6KtfgDat0Z9vT6RE/QxxY6TYgWKnNf5FRog4REL7NcYwCh0j0jf6k/ff4WjwNOLbPqupsj3rC77KKGmaMwr9SMlIHTWOsTpwYSAXnDrH5+Lkcsq2r5B2DJvmQyB71gydYykCmgYIw1nV86hB+7sV99kg12uPcjw2kCb2gu7Zmhv5S9EDuopdad6GOj73knMuSQPPN2qG/3nEo+yrx2uXkOSl31kp2O6ykyxPFnIyvCq1ffjnWj6v0nsQxtsXNQPPmfYHFsnjkh4k0vsuGZ+y/L6VmHTGf/KG9kttdoMEZOD918FNItt++xv63q6hDrANgWeGfvp9+m0y5lPN5HHRJaimOr/99WYDoGyg4WXVzajTBQ5lPPmNJ9fN5tGf/NiVaX+zagVra9JH4zZVEknHZ2jEDL2n6eZbZfvqAFw3WAnLRQdl9KrkxyO1ocvb6Go9j5y2N951hO249vhMC8+o8EyKhoV3HFQFF8Y1hQg3q5LfrH6Zqvosl7e+jIs8yQ19mR3eypRYKhSQ7BwdytvyiJjewo2T79+tWEpK1C6KM1zHUOLXHot4DHKPa1p+aOgngz19Vq/4LpkzCwnGf5IGDJdpfyedTrgXKVxB07vHLB/HPEoRll+zolt8t6qiTE6XNNi9bzX1GqQN6b6X5zwk6VObGCmdcVyrMBJ6e1VpuC+n5fKopcR2JrlVmxOTL5Bvu9237nVKrM7lV0A/Stn2XTZYGAzq8mdKUqwn3Xr6WxMkLbUEA7/WGY3Og0Ht53h/1Hm6tUb9HMQFQ9WNKcvLjN0lLsiTTJttdvUCBcJUSrZdjERCL8pQSDcpYr//lj5qDa19r+wxZ09ucsB1FrpH7Q9RGprmgKa5icgEtMbXN4KR3cxbw1ukBBc19M2cViBWTNpBgjZHyw04RVRraGqk2EZkTOG2cIxiOcoiyo1Cv45kJ/wmSn5c668vKBnFYUHov9SPmvVrkgsBOAqKGCFIuQyOgjrKhSY6ignLQfqS6/NzyaFGUz15/vN8pfQ3dxa2Az86OU+f/qBu9THrVypbVQRjlXxSBfCsNPZzoz89XwvXPR+9xrlN4t9V80CcZxRoxAz/c0eDcpNDvKQb/PIkZulCR7pBQLr0IchTwmfdQzU9yGu09yDOE/TaB0zuAaKrJJA8exAehMmDs0q72/h0IaREme7Bm6bSbm/muaEqOpACJUNWMgMsGbjhRJbkYYjfJM913yvQ6XaTJyJ5+2tdMemVdkZJ6XxvAJOvd/UkPV21nRQlGJa1SyVAk9Hf+GVdNtCG1dP7MjPIFz7v38wzqZ1GON+hJKPKEwULScZOGiglmQBt1CHdCIdymFnjeoZrGED0vR65PCPdJENkIHxWrDD6PZ1X6LX5iCMP13TBhIJtcWw5uLYoeGzS8JlZwZu2K16oaj689x6a+ZVwnLaeAb9gr/okR+5VBMdeMWfqp+153N7+0v4RPKepJXlSfB4NWTJC2gHVeuM/P7+qWFI2XTd5hZ32uGWGKfQHfkBPapE8s/3t+Z7nvsycAf3BQv/+ssrDn0fakgE8ZF1Z0d72jjHOV9bzbr+7xXqz5fJ7VDK6k8G9ipS8W8R7DBIN8cE28whAPgiaZ41oo2J0TpR8NY32B2vD/eob+N1AKfVtqjEPBO979gDve3N99jr2b9uHBXVb0T58n4zChgW1zqj9IY3O8TrvpCp+0Xq/1c/QZr7qcPaPGS8wA/bLHdzoEYriYitVKXTCRC6yxS6P66NcjN7ymcJUQkW3Lbdc677yrp15d4ZnnyNmHDHjgCO9zty/Rl3fxNfX8NXeynYp/bYno7u/jIfmaIXZeG/xi2tocYjqgrJ8lJG7QMoxSAnIKTlYKNpqRKHNTZvD0L6ny1lQbdqogRAiCBKjBXkic/g+DCJq2Yn6kBGucTQ+9EmZRcWhGxBrvF8m6WbuzV/l3MgddUNJ0PDZuqqc66p7Q77+VYOBfO6cVZMVCl1uWPhcmGfP5iTRSxWTFtrNAVHLPZl01jgFzrXhr3hmHPY8L2kk3xFu8u0AINKO/KU/GAgSmiZ+lrT5Lnr3fRsFSIl8EAyHPJGv1fZKCPml2fxSctlQQoMjaOegZ8Ck9aUqPquNiPgiGu9pAMBA8hOM81DGVOmiB/kAID2Ekx6UtBxJ69dtM9eke+2X0EuVBdZ6H1bchFJ5M5LxGG+OyZs/lPEMddkzn/pE8w2RSigmIycv3dbzGHtp+yv1TaqulNa1iNUfun3tvB5pqvI0uKt8d+MrBzflFAJOx7fbXudJAZZ+t8rL7+LnC+/Ya0II/zE3ZqtQLo8rnj8s8MBLsyOeO3gPv3H9xqAtJd4fUYyfZLt8A2PZYYfL7DAOx6U3sO1vN0l/kkYa4jHNtNYpCXrVgHf4cBtK5Hrry49dFvpOtarz30j8nxvhQSeuLLShiiH9lMyXKn2EfVRilfL423BPGEYJk8Gfzq32mLTLLO1utt+d97xbXtca3NA3inN5Umhz93n+fhW9+GbWf3V2rxhJFzHI+8bFwUE+WC0lDag6735XCYXWiO5FBuifV+11mbU/z7UIn6V7YjfwrKOjpY69FWQ28UkgnV8+kQz+8LzonhlN9PamRNQkefGxgo2qj4b9PLRAClSrYOA3B/j64Jgjfnv4OqxvKKQJspYJL7otRuMnGbtL1P6Qwk25JE/zlH8dlTat5GxOzRVe5EivU/l9vM5Q9TTNHr66dqLByIOANnOa5mUaXmYOSDEJkQA3IfRV9lSWgpAk3EmXYCBRkhKtD0A9bvxoL38BHGW5i8gIF20MJ6N2gHATRylTCsaMmq7C0JgJBSEnYCwFYxGmLsw3UA6e67k0OK/J30Z86Az5PFm4NxeHds/Y4xLKw/Y6m2TVsnluUHrmJwlfSDCPg+ssZyxFl9L9YKH9JPK2YtOxd6rzgEl9ziWehgOuoys8/UmjmBv8aWQetH0VucZvOBAYUXYPG+3XEk4Pl0RJEW4UsS5xCu8noz/3BNYa9O1tcm58uI2c4nzw9M59CKeTDMk1g4ali1S6B+QqnWfSig9JyUW5hjx5EhY+i3IQJgmr/HJlgsaDc31jf5hAONT05V6JvCwdpDKX4TdhgqvYhsybO/Ph4T+URZS4ntY490Dm8oRUCSlFasYEe7WbVKhrH0QDVkBUW08/sS2VwohgkPp2XoGUkNhPySoBL120KZ/pNN04g6SnP+Bb5QXKj+szWzUgzBpPIcqLRyOus89z+/91pXEixRZu9Ahlucvry6/gGR5jmj3nhtIYt+bzThJCiID1Hl70jomL+94ZnSGxOK9qso5hGUSfGfqJ3AHd0+/HD5vsZt5ORJSt1WV3g9CeoEsuVJYM/vwcG+rDh5/lDI1nVrzv9jH+pTOs0zmfOx7SvhVrjt+ypDEbvKWIhXbX7NI5R2eID6+tZOgnmU9+vdT59Ta4TlsppXbSoe4+2R/Ie7qci3xPcqM/79ualJzZGfjD0pIVM+pM297oDNUKrzXqq+Ct9/MTe+3vJeoXQffOHn7+KovJI5Tlo0zcZQA+wcc58q/S+MMg2Zm9dKbtPSu0md+yr8SNQQrw1YpchY4UEQ1SphFSXqBpHEVxsb3p1HqIb+aMiksIjrmGbaeIQR4tkCgVKnRM0YxwTcE2u1zUbbaljDlVtHlo0FUFCkUVuihwHklPSfZ5MYt2X0+QN5TPFdM7lirhOSXdNVy1DjJt5/5IeVRJmpcb+6lE7CJGjobX4XnnQWjjveCcG/41C93rhecUT1dWLFxsLlYTyOsEp89TdCDp9Vz+wCcYAgitIVBRt8vm36NF9GYFI7KUoWSlb/wHT21uRGlsVywNRrdsSQy50c20W7hggC5NuHWMp3FoRPbCfNHoTjPkFq7zJqcycalVadIeHWw3SZNSxGCdDj2PFAzbndegTjOlphtKOB79iZHSjJLtenB4PJXWjCiZaNlJtzQsn5O8vSk567DpDKEg7+qMfwdsF2kfuvZXKUE389gP9eepeksuocpvqvkEY1tFKl0Xo0LSP9Ze+xrQNDlRqlZ0WDs+6xc81/wGR3u/v7IP+r0BB1xnp3isrSqSR1aa2IbcCFy5pvx8zo+B5mUiaSeFarQz/lLOwLHnrwvSti4aoO0xSNtP8pA6niPzFZKPdV6cZPSPKFsvf1uHP4/orWlj+1Am86Kz3gOfH8dVUpzW2Kcfqagyf3AYmHTtX7dfxeC7XvQzi2gEOaNQqiwNZlqDQ1qJfW8Q0Hr/o7G/WDNA6QYhsYwhrj1f1g8S0nXZP14eerKBZFKkpNqKGTO9zqK5QV2/hq9udNp0KcEVxxqKUiyXjTxrFI/Or+LdDjUzrlR/QFPfwNd791xf/zAQBlC3sTw+nDPNPJybo0tU4sAvkPISaYg6chcp3DT+xrVnf5cc3cQJsroowT5XuMoYx4iRn8YIwTQ6KF07C/JIujKkSWEwvJ66qH2SHAt5km4e9V6Vb5SclHWuOtBQACI5sQqhfUbkSbq1hij6It5z5xKia3W0l9KcEJryKbQ690a1msf/fOK15mjx6TBq164agbgx4iYUbisY+DE0VzKlFqLR7mliQtZwQhHXiwx0D8mUAJSW6cmHBAoVkIKlBFBoE3Ub7Ut6kuSmTb4hyRRifoGk2uChBF7yjCa9nRs8INcxlAoNSyhCMPZag9ILdRYuzEtf5uUTh4OHYVmy0E/97a6iicZCSgRK2sDkMUwG3YF2+ty5VNRSM5R6tdvFM5cFZQy6AnjxPaOnS9oLEq9JvMG2AwuCpzEN6CTuJ71jpkxcOJ6L2N6x63I7Cukf49ZoSXMPxPdCuKnmnv6g0cx0/lniVDhuwrVFwcSFAcPLC8dH9f9y88avrzzOCcEh5Tau2GGnfIY38+ZwfrXBDg2u+Sj1SifmUGayFFXSzvDNjf/2iKfPtK+Jh5SrwNIAIPdipWtBszbk0pDkAU4a77mE0HIaEIa2uPZvLvFL+v4QtVvO1VlHOh5J3rJOl55YdcwSNUEDm8LibYUR6e4/6RzP9cnLbeo/sIrB/ax7XVDKqBfpaCVQqu31UOLah8HCr85fSIZ76/VXoQbqOGip4gA9XYtOhYkULPDhWMc+znMw0gytaSDe6frDMaqoOYzVaY6aV6ia6zTNTbTev6Xnd5VefWmZe+DpD8+nUWyDB21u2xgF8P6Axs9omr0gQ/LVrX9k3DW+utG9iZHUBhgefXHj+HdEMXkKJxMKmVD5fYo4DwKE2vcAs0FOQXoNINq3UdDsuo+XS5jHYBSkRnHwMOcAjw/vdcTj+ihjKXAIY+lXKyxF2lyf5ExJRSqK6OXPZcCrDP4jmVNLSnoOBn/Dop38rdbDGFnzcM4N/03mXBv+6ufURy+s/b7GIaNdXLlLUezg3S6OLuNfW0Ng1F5EKXknRQSKGBFosodulyTczVRYM6KRCeiYsZYM/UTpQQhdmbo6yltCWzp6yb0EQ2jisthAtvCwRvfdknvyh4OL3AAd1vxvpQorvPzJsFk1T8Cw3v7Q4IdgTM+05lAWTBhRS9MaRTPCjTcvQRdSr6YrPbgNQi0NaSru5AlNHoo51ZIx6CRcBnta4fyIqROqJgwCGg1Vc5K3fizgXNfHPrtJpgTv5FWBboDXK92qaWCYH6jwJ4Va08Dgt+cvxw6A7WaXTxy8Z22iXg9XMh1/Ds8UX8rTcoGdQtuNDA1WIUYsSN5YWp+z752LfemFE0eS9vcSYPNmZIODrrrVcrXqtJmedCQ3/PHUA413Efu+3VavT/uJuUjnFWv3J9tWzvJ77b1O+7+WNGhD23M5lXxs5SfRO5Y7JfKyh60GPUY50/erJkDK66OLlKRJkCRGRku3zVh2mbDDlO0YFWnidTTpBkjq2KIMRkOUBqUBwFAelM6ThTbMpW73MQ1WttnlAtMuAicuHLsVZVLzYzvXhgM54qp+moP6BarZp85chnM7uHIn6MbdOFTPaQ5Qv8CNLsWcgZN77Eej19HoISJj1FVIMUHr4wcyxv0jDebUL/D188cu68aPUIwexckEaBDJBoZproNeKVWfNtJfUSyXmiosOTcBcTgp2S6eZiEzpuwwZYuRljjfOTzmvuGG3GTKFheZtqsscWy7eJ3HpN5k8NcoR1pzIEd4SVWQQu5lxYy53qTRObXfw2tNU19H633wD4bRf96jEveKc2343wrFo9UNfHWDBkc1voQrdnBuq/0+vOgePk5CWTLHqBeSy7P8VRucdAnERUyEHMs2M7nIWB9lK0vgS2ZBbxKsVWUk6WvyekbIMYb93Rr9Q3lKkKaEGYELuhrBudE+nPyqbUtm5K9sn/aXzSUlyYvbeW+D93OfGTM5wuE4lP3Wwz/ngFQ6D7p+cDJiyjZbOlmrea6pW+OmpGzfQ4oI0cZB54ypqJnIuL3hzTTIgJImfuR8r2RsaEeX8JzkPLnBn3+XJjfJEzzzWSDTMqkCkwOuVQWfyxt4ctzwWlXwsu6fyOgXN2a8/WbeWnw1l51rk8PyvIV1JA94K2FZEQVIpGTD8DvXDiBrH+RZw8TZJLvyeCZa0hA8zmOyHI9MPpKMxOQRHkvBeCl6N+j/W3jwk7Y8kWvMc3LDfpjzA8tl4IY13ZOB3/hZDHt3s5b6GMHs2hxbrCERsT8Bkg+f+zlEbTq+znzjt0akRMaXKMrLFG6LQqaMZRcnI/LqJ4WMGCWzQLeY6IgdGbXXQBoopcmhkgzviKM2WpFqoHs8N+WQfa63kdcxO6g0TNhpI64TxuxTc5PXONBXWDSvUc1fOtng9hwyzLWRYgttjtDmiHLrmWMdWRAGDqHqz07IR/BzVBehzx+gAZDRxy+u4RfXgHB/Lrfe2F9geO1HhQMp98P351ZIJVbTXUDEcUNeIhcEgUerAygmrfwtR4otHt/9Wt4inxeu6UayuTQ6g38hXbWkOdc58K9wtPgUzezlUzs+Z4OujKZuAg+04Z+jeHRxDc+1Wy6bknnSyBlxICXESIC4cfCWua0wAHAX2mz+XXbZdqsq4i6zygDJJTLdZFLaK2l4J/TzCXKNX3/SrPRdXnknVdy5laF/0gFIMoKh+5tLepIX4UjmvapNyViCMBKv9TAYTW3oMNzgnEyp3YxanmKXi62BmeuAHY6SMhpkndGfDDQI0oqSERPGMdnbc6AVM42SkDgSSgZ5Puts0j4mYzod+zKTbpG+0/75kqReeRSgFG3lRakvHh3XpOoOT01rrh2NT3T81S+Y73+cD46vsLP1x/ki+fIQH5H+AHCVpn2VZzfhoDXSh3MyHGndJdOKZ8EMR8FVPsmsehnfHOCKHUbFZSbucjYomzJhmyk77bqSdMshjKQgacK75M/l83Cdnn7VZH95siiQVfzJjfFwHg3Pne510xr4C92j8ns0zUE01Obg+1677qHdeevAB8+Y+t5DOcX4TgvVOmjG51dbucJhrI5CGoRICa7EuS2KYgcnU0buAiVTLvjH+ByebCMv86i5n0vw8s/pZk094DpzvcnC36BpDqIxk+97SVFcCMfQH3XVc85Jku1pk3v466MXKLc+B5GCevZiOO5uhBtdQiTKg1JEpDkCPM38yh3JhIzzi/oF1cHzYUBe7uDK3XANJCPU17jyUrjLRSemr/eCraJxADiYT6H/fHHZ5x4GUSY32mU0eZoL5ZtwOJ7V51vlwza71FTMOaCWoNVf6B7z6grN0Qunel86a5RlyeSm8NAY/rdDSuYJrwMpEQw3RmkoinAhFDJhSy6zxUV22Imh8M67v65md26IrJp5FfpGFmvWc1Lyij7D8mHJaA/lPjtJTvo7nHnwJGXC+suG5dIAJhnFuad4psHYT9KHmRzESXHixCo6Y+5f69abJsWJNbOlnSbeof4Kc+Cw/DTXR0+zLY9xQS6T5wLkk7WkvzlCQaoBnYzUKdtsyRaFBqNzoUop0nrL02HKS6vNs/kDlsgSnPN6+XXr+RfGLtTonqvjI81nONDXuCRP8bbRI3RlT0M5zxtcCRPuHFOpotc3i2vsNx/kQ1s3eF35Nrb1AhMdMYoCqDLtUeYFdysqQKzzkOdecS/ayqrCoOsCC+bsyBM0xYwqhqMVzyz2s9dZHMQ9yk1ebssSlm6XibvEWHaoCB5zJ6PWU5z+Txj3pD1DGcnS8YjRhgbf5o6EfekmaUoSnP7+x2mAooa19od4fxS05tXeHSQT3ur7e/8wWlcdxQO+3EGKHSo3xrktFsUeYzeNkscFXsLxmOkePpXQ1Kqn7RUZURYXWSw+01ZPSTTpvBO3NOh52KmPPgXAaOfzAKJMKwzOfCwzGT6oH9ioh3EyVOtWsTBk1WcJkRIZ7cYZjKNkqN5rJ2K71fXkqz3m1ceZ8/FunckZ2lQbdD2qSX02GcH1wu0iE5wbM3IX2HFPcIknuMw206xkXq7ploEnOP8b1tk3oFPt8/R6WPrzuMonq1iXAJx73vNlugmj+stCJ+EZGv3DMmJhmcH2Mn1g7t0/oAqafal61TjyzP/K71HXNwla5TjzpV/EBL2qHZlLsdVuvfEL9pubHBUXuV7sUMo2IgWNn1H5m/jmKNa0Dh4PN34EiR6UstyN+5siCSNG7kKUQewwYsqYKTt+h62YUTAshbmqtGlr2EcZ07Ayw6tc45q+yMLfYFG9wnT8NIVM8FpxNP8kzfwK14BPjS7x9bvfyWf9go9Vv9RqQ93kSXx19cSeUW3mzPc/youTV7k4/WJ25NG2qsSIknKYVJb2L6v6kN4Py2IGA7D7rIgSjzzRdsyUafFo6+VXmnZSJJERhUxoYn2YJK+rffAweX8Q9KJNBa4ECdG40eQNTIpHQg5OevDRtNKtJF3pJ4I3vepgoc+L9nVYR9TSp+VoUK2iJ/8Imtmp1nQ/r/j6AEc4ps5tMZIdXuNF8gmRIOUkuOAVrK/SLK6056WbPE5ZPoq46dL6lySYG0jy+J50EG8YCdUaXaxWNtzpOZU7Q42HHzP8oUud9Q2MttvEuLELCXHJ6E8zwubmr6czjtLkQ2kgkOu9oTP2U2LcMOmzk2B0nvmw/Cppg/a+S7V6hyKBPO9AtfPy5wONVd79oaG/7hHdk7TQr76SqgAsmFPHZN1W+xwlPSJ9w9M3B0Fy5baQYjfc5IqjbKIWwoCgPkJF0foAz1VqN2ZRTCD2nZ+/uuS5CBrLcMP0xQQpLyAyChEFCnxxhHNj5jKikCmqDYWbMpXLjJgy9dttGbacAsfEl73qJEn/PJdFKy26pi9SyIhaD9synAdZPW7B4SaPIRQ08yv80o0foxg/wc74c6n8HvPqM/jZlTvyyDTzK1ybX+HwwlvZKV/PiGmsiBUSpXPSbKaehkpm5FVmhiVxGxbt4KlhQSmx3J16aoLGvdEQvYEQyYm9AcBCK/CLGLqer3xoiZRBK+1n+OoG8+oGd/qIagf54uJAIt4C1bcVWELzbk9H/zAhxRYUU8ryUQq3zWHzWbw/Cn0YtciS8gPWRDyaWZh0yViPGf3GaWPn1O2RO342CTP8I+nhJVqjfobwCLXOGMu0V60kmcK5Md8rT5jNEDrKpC95ZGBd7e98Ai+gnSbb5Zm0pDq8cRlJ1TFCG5KmP/f2D7ehGiad6pXhXGPkD2cb1d53nec7TRvfK1Moy979kOTYXWyNn+EJSWwiBa7YiRUO5mg0NFJS45KBkbe/nQDnZKySOmi5Q+PGiNvCFztBo9wccFjsBCkYUBRbSJw2PlVL2WKXUsZR4hIkKEisK0/DlC0WzJnKLjebF1hUr1BMn16ahEfxML/Wesu1OaI++hQ3F5/lwoWvwLktdHxprbfnJMz3P0o9fY3R6HFGbncpkT1VkwFifkXVJhmCxzcHYf/dlBCd8W3I2blxmF0zHp+0nmAo5p6oqE+N71WPT1xMIfHTQPHxnIrvN/O+fywpGXUxv3rWTTEMw7gnWB1/o8VXe0hRU0cpyKKYcaRbQMmYMPtr0avG09XwB5a894j265C0hnr8vXaed99LywEdGPyJcuDFTwSvu+sl7Q5p2ghBtg8rSo6mtuX7Mqyr7nVQ35dOypMqeTQa9PWtEYnPjMmjVkKx0rC/zwQZxwFwDZ8bqpnRuc6fIsWEcvoMpbtA6bYZyXbrVT/gejupydQ9ii9jtGPrGXx9A9S3EpJVXmZt5hwtXsQ3e21liLuhmb1MM3uZxWgXaQc1DucmUTMate8xv0K17mlIT4q4cZggyY1DH99FTXPDMAzDOE2sqo/R4Sua6jUYRcNf5lG+UeLVhcmbogEtEIz5TPJyqwmBYL10pl9ucVCN54TrO85Lv/S7zJhf9R7A+2js05XwSzMc11R4aVrZRzJwa2ZUfg/v58FzXt94oPTRtxsy1WZOdfB8WzXFjS5RjB+ndKGCSVVfC5EkN0b9Yinh8VbUR59ie/fLmbutXt7C3eCrPaj2kGILEYePyZa4ceuNB5e9vj1uNwpjGIZhGPcHS+41MkJC6SGUl1lwgOdy0DyrZyGAd9TSTWdfDvXxZJN0rfC6w60re6ziJKfosNa6H3zns7/he2016anOehWnaQpVTvpVchqJkh0NHv1QzWNO4w/bmtPaHB1bleB+c9rlEY/dVvRyjyZPUVfXWMhByDeIxrMUkyVZy0kSstLETLeT2HtStDkalIMLg4pN1bgbhmEYxsOKGf7raOKsmepZyCzUihcXLHaBsTpqghd+odnER7Ea4ip9PfQN85OYVUMv/9AzX2dGfPLIQ5h0KBnwnfHue4mbYf1BdNTEJNQwq2g3Y6hq0uVXUfoRJxKJlXe0OTr3Xt37acCqX4AU+DVefW3mPUGXlFtrIyFSbCHFNCS/Aof7f3BfjrUZ/IZhGMbDjLK5zzoz/NegsazkQvdYyG422+s4VM8RoYyJu2VWyjGv9z5k6G2HZe872ev0eRUzEPM65Olfqj1eR009AsOyixDq1oeilEWcdtu1s2ymGTQdjmcXP0+zeCUYnNBLrt3kSie3gzZHVIf/b/332THUY+RPKcnSMAzDMIzTRK2qj7GM+iNqv9da8p3vXKizCY8WuU6i1chru0w+0VGS06T1VTFddJhdngx6AC/9iYaUTlOv6ts66NCVp2orqtDVI08VWDTOJBqWzerma43GGUe12rPSYIZhGIZhPISYxt9YgVZ7VFqz53Zx7o2t97xoK+Moq2YyzWcOraWhkWUveU3dO+mS4Z/r6WF11nlaNkxg5BB2OdBXmNevxomQSlysp+51hveLWC4zj0es8NyrD3XN1aPOId7qAhuGYRiGYTwsmOF/DKo1rtjFyQhPQ8mIihonDqdKgbQefI8HoZXhwLIXP+Gyf2mZfGKoIv5N68o/3+MmV/0nUG1Y1FfxzR7ittDmAPUzaCqk3EKKHXy9Z1IRwzAMwzCMAZsqXTbD/xb46irN6HUcues4KZiyDYATt9awz431RElJgaPUgpEUjAkzAafJvK7pgj32qFmwp69wWH269dIXxQ6l26X2e1Tzl1dUzOnXdtf6AB6g0pmGYRiGYRj3C1XT+Btr0GZOo3NG7NKwYIGjpqIkzHbqsum5krGfjPyKmkP2KBm30p1aFhzoa1QaDPOx2+UiT+JwXGk+xrz6TEjqrPba0WgNnG4BR8MwDMMwjM3FPP7GWqrqs4zcBRYUHOgr7ecj2cHT4Cio9AAlzL2bEmsbneN1jm+O8ItX15ZifC3+LSZPgjgQh0wegXr/1Gu2G4ZhGIZhbDbm8TeOwc+vsj+/2vtMiq1T18/f7myuhmEYhmEYhnFSzPC/Qyxp1jAMwzAM40HFpD6GYRiGYRiG8ZCjK8ulbwJm+BuGYRiGYRgbhap5/A3DMAzDMAzjoUbZ3Ko+7taLGIZhGIZhGIbxoGMef8MwDMMwDGODULBynoZhGIZhGIbx8LOpUh8z/A3DMAzDMIwNQmFDk3tN428YhmEYhmEYG4B5/A3DMAzDMIzNQTe3nOddefxF5NtF5CMi4kXk7ccs90kR+ZCI/J6IvP9utmkYhmEYhmEYd44CzV38f3C5W4//h4G/AvzoCZb9OlV99S63ZxiGYRiGYRh3x4Z6/O/K8FfVZwFE5HRaYxiGYRiGYRj3FN3Yqj73K7lXgV8QkQ+IyHffp20ahmEYhmEYhhG5pcdfRN4HPLXiq3eo6k+fcDtfo6oviciTwC+KyMdU9VfXbO+7gTA4KMcnXL1hGIZhGIZhnJANlfrc0uOvqt+gqm9b8f+kRj+q+lL8ewV4D/BVxyz7LlV9u6q+naIbl9TPWU7wpmF9vnlYn28e1uebh/W5cfbEOv53+v8B5p5LfURkR0R202vgGwlJwSci3SDKz19bNMh4SEh9bX2+OVifbx7W55uH9fnm8SAM7hR/x/8fZO62nOe3icgLwFcDPysi742fPy0iPxcXex3wayLy+8DvAD+rqj9/J9t7EE6k02KT9jWx6mGwScdhk/Y1YX2+OfuasD7fnH1NWJ9vzr4mbHB3frkrw19V36Oqz6jqRFVfp6rfFD9/SVW/Jb7+hKp+afz/xar6zjvdXvn5b9+4C2joKdk0rM83D+vzzcP6fPOwPjfOHJP6nD/+xNveAvQvkvM2irwXF/BwnfVz7z93+32vWHVjPG/7bn1+ulifd+/P237fK6zPu/fnbb/vFdbn3fvztt8biZrG/9xTP/f+Yy/K40bStzvKPunyt7u+49af9m/dOm/13e20a9W6TuOGd9yxv5PfW59bn69b3vrc+vxW393uuo5r40mXsz4/2e+tzzevz88n/i7+P7iIqp51G9YiIq8Af3QHP30cePWUm2PcGdYX5wvrj/OD9cX5wvrj/GB9cX64m754k6o+cZqNOS3c9IKWb/qyO/599Ye//gFVfSBDN3c1c++95k5PGBF5/4PaIQ8b1hfnC+uP84P1xfnC+uP8YH1xfrC+ePg414a/YRiGYRiGYZwmCugDrtW/Ux4Yjb9hGIZhGIZhnA73TuMvIm8Ukf8lIs+KyEdE5Huz7/6+iHw8fv4vss+/X0Sei99906nt5oCH1eP/rrNugNFifXG+sP44P1hfnC+sP84P1hfnh4e0L/ReV+epgX+kqh+Mk9h+QER+kTC31V8CvkRV5yLyJICIvBX4DuCLgaeB94nIF6pqc9oNO9fJvYZhGIZhGIZxmsh0R8tn3nLHv6+f/8BtJfeKyE8D/xb4O8C7VPV9g++/H0BV/1l8/17gh1T1N++4kWswqY9hGIZhGIZh3ANE5HOBLwd+G/hC4M+IyG+LyP8Wka+Mi70B+HT2sxfiZ6fOQyn1EZF/SgileOAK8DdU9aWzbdXmIiL/EviLwAJ4Hvibqnr9TBu1oYjItwM/BLwF+CpVfRCKLT9UiMg3Az8CFMC/V9UfPuMmbSwi8m7gLwBXVPVtZ92eTUdE3gj8OPAU4fn9LlX9kbNt1WYiIlPgV4EJwVb8b6r6g2fbqlNkfvje+vkPPH4Xa5iKSP78fJeqLsmiROQC8FPAP1TVmyJSAo8Afwr4SuAnReSPAbJiG/dEkvNQSn1E5KKq3oyv/wHwVlX9njNu1sYiIt8I/LKq1iLyzwFU9fvOuFkbiYi8hfBA/VHgH5vhf38RkQL4Q+DPEzw6vwv8VVX96Jk2bEMRkT8L7AM/bob/2SMirwden+uigb9s18f9R0QE2FHVfREZAb8GfK+q/tYZN+2BIR63/wm8V1X/Vfzs54EfVtVfie+fJwwC/jaY1OeOSUZ/ZId7NGoyToaq/oKq1vHtbwHPnGV7NhlVfVZVP37W7dhgvgp4TlU/oaoL4D8TopPGGaCqvwq8dtbtMAKq+hlV/WB8vQc8yz2SOxjHo4H9+HYU/5stdULiwOnHgGeT0R/5H8DXx2W+EBgTJkj7GeA7RGQiIm8GvgD4nXvRtodS6gMgIu8E/jpwA/i6M26O0fG3gP9y1o0wjDNilY7zT55RWwzj3DLQRRtnQIxQfgD4fODfqar1xcn5GuA7gQ+JyO/Fz34AeDfwbhH5MEH+/F0apDcfEZGfBD5KqAj0d+9FRR94gA1/EXkfQQc45B2q+tOq+g7gHTFT+u8BD4827Rxyq/6Iy7yDcEL/xP1s26Zxkr4wzoz7puM0jAeVoS76rNuzqUTD88tE5DLwHhF5m6p++Iyb9UCgqr/G6vs9wF9b85t3Au+8Z42KPLCGv6p+wwkX/Y/Az2KG/z3lVv0hIt9FSKL7c/owJpacI27j2jDuPy8Ab8zePwNY4QHDiERd9E8BP6Gq//2s22OAql4XkV8Bvhkww/8B56HU+IvIF2RvvxX42Fm1xWirmHwf8K2qenjW7TGMM+R3gS8QkTeLyJgwYcvPnHGbDONccIwu2rjPiMgT0dOPiGwB34DZUg8FD2tVn58CvohQveSPgO9R1RfPtlWbi4g8RygJdjV+9FtWZelsEJFvA/4N8ARwHfg9Vb1nU4Mby4jItwD/mlDO890xvGucASLyn4CvBR4HPgv8oKr+2Jk2aoMRkT8N/B/gQ4TnN8APqOrPnV2rNhMR+RLgPxDuUw74SVX9J2fbKuM0eCgNf8MwDMMwDMMw+jyUUh/DMAzDMAzDMPqY4W8YhmEYhmEYG4AZ/oZhGIZhGIaxAZjhbxiGYRiGYRgbgBn+hmEYhmEYhrEBmOFvGIZhGIZhGBuAGf6GYRiGYRiGsQGY4W8YhmEYhmEYG8D/B9ITZ7j+pfObAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1008x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import cmocean\n", | |
"import datashader as ds\n", | |
"from datashader.mpl_ext import dsshow\n", | |
"\n", | |
"\n", | |
"data = cat[\"luk1040\"].atm2d.to_dask()\n", | |
"grid = cat.grids[data.uuidOfHGrid].to_dask()\n", | |
"dwg = data.merge(grid)\n", | |
"\n", | |
"fig, ax = plt.subplots(figsize=(14, 6))\n", | |
"artist = ds.mpl_ext.dsshow(\n", | |
" dwg[[\"clon\", \"clat\", \"tas\"]].isel(time=48 * 30),\n", | |
" ds.Point(\"clon\", \"clat\"),\n", | |
" aggregator=ds.mean(\"tas\"),\n", | |
" cmap=cmocean.cm.thermal,\n", | |
" vmin=260,\n", | |
" vmax=310,\n", | |
" ax=ax,\n", | |
")\n", | |
"fig.colorbar(artist, label=f\"tas / K\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "1a0e434f-9dbb-4757-88a2-7eefda252847", | |
"metadata": {}, | |
"source": [ | |
"### Scatter plot with map projection" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "fd24e8e0-a264-4996-a4a5-dc42cd656da7", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.colorbar.Colorbar at 0x7ffb1234cbb0>" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAFeCAYAAACyzBgaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5Rl133diX/OOTe9WDl0d3VCN3IGGMQARlGkLCtbVnK2HGbkWZb9s7VsjcPYyzOWPaNlaclh7HGQlQOVKJGSSIoZTCAiATTQ6Ebn7spVr1684Zzz++Pce9+r6gZAEgAJgG9zgdVV7737br777LO/+yustYwxxhhjjDHGGGOMMcYYLy/kN3oFxhhjjDHGGGOMMcYY45sBY+I9xhhjjDHGGGOMMcYYXweMifcYY4wxxhhjjDHGGGN8HTAm3mOMMcYYY4wxxhhjjPF1wJh4jzHGGGOMMcYYY4wxxtcBY+I9xhhjjDHGGGOMMcYYXweMifcYY4wxxhhjjDHGGK8ZCCEiIcQXhRCPCiGeEEL8i/zvP5D/boQQr9vzmX8shDglhHhaCPHel2vdvJdrwWOMMcYYY4wxxhhjjPENQAy8y1rbEUL4wGeEEH8EPA58H/CfR98shLgF+CHgVmA/8FEhxA3WWv1Sr9hY8R5jjDHGGGOMMcYY4zUD69DJf/Xz/6y19oS19ulrfOS7gV+31sbW2jPAKeANL8e6jYn3GGOMMcYYY4wxxhivKQghlBDiEWAV+Ii19gvP8/YDwIWR3y/mf3vJMbaajDHGGGOMMcYYY4zxdcO73rvfbqzHL2oZjz20+QQwGPnTf7HW/pfil9wmcpcQYhL4XSHEbdbax59jceIaf7MvagWfA2PiPcYYY4wxxhhjjDHG1w2b6zEf+dz7XtQyFsJfHVhrX/dC77PWbgshPgG8D+fxvhYuAgdHfl8CLr+oFXwOjK0mY4wxxhhjjDHGGGN8XSGMfVH/Pe+yhZjLlW6EEBXgW4GnnucjHwB+SAgRCiGOAtcDX3xptnQ3xor3GC8r8mri41x7GmeMMcYYY4yrsWyt3fxGr8QYY7xssBZegDy/SOwD/qcQQuFE5t+01v6hEOJ7gZ8H5oAPCiEesda+11r7hBDiN4EngQz48Zcj0QRAWPuybvgY32QQQgjghlq98T1htfpXkjg57FfrHmI8ufLNhLfee8f2Zx58bPIbvR6vFIz3xxhfDXTcNxjd8j3vDzfWVn4J+Ky1NvlGr9cYY7xUuOueafuRz7y4qOz52q8/+JVYTV5pGBPvMV40hBAe8NaZ+cW/E8fxe7xKrdK1vq/DGsIPv9GrN8YYY4zxqoPVGgZtGkob3WnFYRie3Nne+tk0iX/fWrv1jV6/McZ4Mbjrnmn70U9/24taxlz9N16VxHtsNRnja0Lug3rvzPziP6hPTN6rapPhlvUUM/sQubo99paMMcYYY3xtEEpBbZIOSBtOV3rp4M5opvLfK3E7np6bX07iwX/qttu/ZK298o1e1zHG+FrwQj7t1yrGxHuMrxhCCE8I8e6Z+YWfqk9MvV7UJqJNEQlHtsWYaL9CIa5VQ/1C1p/idWvcfy8Ai0Egsbzwe8cYY4yvDkIICCrEQUXE1enIZskRz+v8m4mw+i+nZueXk0H/3/W6nV+21m58o9d1jDG+Itgx8R5jjGsi92y/eXZh8afqE5Nvl7XJyqYIJTO1Mdl+leCaZPiFyPRz3A+dqwhHzIUAJELI8jwYPR9s+R0GzEiNijVjgj7GGC8CwgvQ3jQdpkObJYeDoPOzzbDy0zPzC+e77Z2fjgeD37TWdr/R6znGGGNcjTHxHuOaEEIcnpqZ/fv1iam/7FUb9U1Cxcz+Mdn+Joe1Wf6PXEkXEpuT8F2kHOl4OQAGhMmJuAEUwlqsGdeK7cWu2YlrzUrs/Vu5k90AqHjdJn1s0oMswerEJQgICRiECrA6A51iTYZQAViNFSCEwgoBUrjlSQXSAz9ASPWits1aC8kA298BnQLCrb/OsIOO+7cF93977jLXuukoH+H54AXgBQgvAM8HFSDkN08xt/ACUm+atDod2XRwQ8Wr/Te/3/oPc4v7vrCxuvJ/WGs/be1XMG01xhhfb4wV7zG+2SGEqEWV6g9H1do/mZhb3NdW1cA0mwipxmR7DGBItksCmKvewzdIEN7wdZOVfxdCOrXbOiIuhDck8q9ACBmAGCWbTrn/Wta53G9uwSDUCFGW1yDUe6w++b4DsAjIYmw6cPs3izG9FnawDQiEF2KzBFGbQigPiwUpQFiwYLM+SA8RhghCsBZrpftpDMJYrNbuOBntiHG/DTpFLt2GCOuQ9d3fswHWFJzOum2Kau61zpZbZz9C+CHmyjNu02aWEJWmGwxg3aBt9qCzUzwPTGsN0oFbptbYdOAGF9aCMYxyS3nwVkQQXbUMa+0Lfs+rGcKPGPiRsJWpSm/QeUdzMfxT3Wt1p2fnf3lrY+1nrLXPfqPXcYwxAIS1iG/ScI8x8R4DIcQ9swuL/6o+Of0OU5mIdvyaKNJIXq2PKGs0ZCl4/otW6r5ZIZBO7dxFEq+F3X8Xwh8qrxJHlEyy23pi7SuOdAvhgfSH2zoygHBx9LIsHLYmwdoUbIbNBxdiz/4ZKvzymq+zy7YjESgQ3rA4WfhYm2KtwRqNTXYA0Gsnse1VCCqI6oQ7x2t1xMyiW17SR3gBQrnlfyXXsBTebguQzjBnHx2uamMe4VcxFx+HoIYIKyBzRVzI/EuEW8+ddYRSiNoUKM8R5N6OU6azBLtx0WnaU/uQ0/u/grXLEXex7Y3hPpMKrAazR8wNa5jVs8ipReyg674zS0bsTiN7RClEbRLRnL36+LyKIYSASoMODWWj6abot/7XiTn1Y9Nz8xe77Z1/ksTxb4/jCcf4RuOb1eM9jhP8JoUQolGt1/86iH8ex/GEFkqQOCUMqSCLETMHkJOL3+hVfV646es+Nu5B3HM/rQGpEMrHpgPk4rFxrOE1MCTWIlefzZB8iL1j8hFyM6pol8tSQ/U2f7+1qVNkbVaSbiHdcq1JnNXhFeT1Lm0eKszXc2SwUZDoQn0Gym0VshxsOLvN6D7IckKrc/XfDJdbku3hfhOlTUe5Y4JB97dIn/mIe70xg81S0MbxR51AVEPW5pDhBAgPm+1gsh5Che6/sIq1CQKJ8GuYtP28+8Eag22tYDddt2Q5cRAbt7DCgtHIuSOOeL8IWGuc2P0yWULM5mWwFhHVwA+dFWVkAG51hm2tYTubiCBCzl2HUOplOR+FChFeHaWaSFlBiRAhdosBxqZok2CSbcxgE5N18kFLD5v2naVG5bYaqb5m1d6mMdWsa+lu9cIw/L2N1ZV/Ya195qXYzjHG+Gpw911T9uMffueLWsbUwu++KuMEx8T7mwxCiLtmF5f+TRzH92WVuah/+cmr7+CVBiKoImrTyNpkbg94ZamTBczWFezmZcTUfkSlAWFl1wPW7Kw7sjC58A1cy5cG1/T/Pk+h4i57wy7Vf7ic51ey8/d+BQkoBYF0KrAZEtXyPTlZN4kj3V+jZePrCSE8hApBBjmxdmr089llxSgJz/eztRnWphjTL4l7sb8Koi6EKvfz6HG2GOJn/gSqdcTEQkm4bJbAoIvVBjGIsUkHmw3ApFetkzpwF0QvPOtjsxSyGNo7yMo0tlpFn3nArefkAiKsQbX5qrVq2O42Zvl0+bu//17ExD6s7WHN4CUZCArhIYIJfH8BT1apywVqTBIQopBoDNpqur3TdNrPoG1MpXkDO2ufJe6cx8TbgAUvgmwAQRU5eQCbdp29KEtAZ26w3JhFTsx9bSsqfcRgQD3dToSOr3R3tn4qiQe/Za29+gQaY4yXAWPiPcZrGkKIIKpUfzCq1v8vwvpCx5/3qTYQNsVmydDzKZ4jAeOlXp9rxdtdA1/Jupj2Bra1ipw/4rykBTEx2ilaO2sQRI6MVycR9alXLHFwVgeVe4tHCxXZnUIyatm4CiM+4vK9eyIBhcfV6u3I50f8xMPPjLxv12uFlWJoqdj1/r2fMwnWOCX8laR270U5GwDlupYDGekjvOoIeQ5KhRqcRaS0pNgUYxKMyRBCOIIHJenOVp8GrRF+hAjqiKiJDJogLNZqjBlg4jZm9Wls3HEDqEEHeehWhL/bwzynXs/K6V/A6gHSb9C86Yfx/Am2W59ARovoweVd77cbK5jti251oiZCVRBRAyNTZHN2OJvU3sR2tyBLkAdvQQQvTu3+RsJai1ARrF1CTh+CMMTq/JiY9EUNBoUK8aND1P1D1Jkhoso0NSQCk8cESQT9ZIMvn/y3pFmHaPIGUtMl3X6W4OAbwIvQrQuY3iY27btZEiFcrYGQrqAU64piKxOo+cPlDN+uWRMZIGTozk3pI0U40l9BudmPXHXXg238/imbbZ/t+p73C1vrK/+ntXb5a9/LY4zxwrj7zin7iRdJvCcXx8R7jFcYhBD7pmbn/vc0zf6yqE/Xev6EEJ7vXnwZI93EqE2hLAh7eXKerbXO99lvu2Iza3OCl/s5a9PISt35ZLeuQFBBLR57Sdfhq8Uu77QM8kFPOELWcltGTpCtzXbtUzdNnw3V5VH7wvNhDwm/lnJ7zYK/8vtGrCh7Pl9YSIrPSVXLPcq5sm0zrImxZoDV8Vext77+eKGiTyEDp4QjETIE4SFliMh/Snyk8NE2Jku2GDz5u+Vn5ez1eAs3FL+hV59Gr510y63OlMdGBg3Uwq0kJ/8I/ApC+RDWEI0ZzJWnEM15Z6NQuTXMGkQCev0ZVwRZX0DMu4JFr3YUa1Ky/vld22GzBLN+AbrbhEfega01yLafwbY3sEnfXUNegAiriLAKYdUlh7zKIb0awkSkFx8gWHoDhBHG9LFZz6W7fJVpO0J4CK+GHy7S9K5jgjlqtsKU9AnzyyW1jhb70iJx962tzmkurH+W9fYz+NEitrEP2dhHMzpKRkps23SSc5i4RXrhC6BTvAP3YqXBxl0QFlGddMXvqubOPRkgRVTea8tZF5zdydrcApbD2sxtu00xSRvV2yCKt2NfyYc3Vpf/PvB5OyYJY7wMuPvOKfvJP37Hi1rGxP7fe1US73Fx5WsQQoi7Z+YX/0NzZuGebjQbmunpXPWQjFoAhB2NeMuRE9cXo/xc67OlGsgeNVXIF6cyCYFozkJzFpvGLjkhjR0ZUT70dzBx16nhjVn33q/pe3KrRK4SDS0HZkj22b3tQjq1qcQuy4I39HnuUZiFAGs1jnSba5Nu9G7SDWUB4y77yC6S/cKpHM/1hC0GC5aCZBdxgcV6y9LrLGSElGH+PYbS722zPEbulY0XPB+LJJdyoKTRyQ5CSLIsRQiFV50FPOILny+VSrLYqdZQHjs5e52L+5O5pztuY5MOunUe3TqPWroXs3bSebNby66GoTYLVmD7HdAJ1mh3PgZRuX9NZwW6q8iFY2QqdCrvXhgDOkVUGqR6FTFwg1e7swa1SURj2qnq0nMEX71GipRlgBfNog69g/jCp1GNfcjZY1jfx5oYYUM3C/gViBMCifAqSG+CUM3SYJpp6kx6kqrS+bUMdQlKWPeftBgLk9FhDs0cIc4EG50rLLeeZP3iF9hI/hgZzpBEId7McUx1Frt4B+nZT1OpHGXnqV9xRaXKdz72PMWmevsPARqLxtgBWvcZvbcX9QaAu3/o3YNgISSmOkW3MhkS975lcn/4KdPvrEeV6j+KB/1fHdtQxnhpYb9p4wTHivdrBEIIoTzv2xsTUz+PXznYDqZ9UZlyFotr2QT2EG5rMnczfx7Sba1x/kKdOZJ1jbiuXeskAzd9rSqOVORKkpBRPhDwUKKKJ920vUU7ldD0MDbGmnioROn4BR+CJulDp+Vygk1WTssDoDzUkTvdunhVMBlChqVqXK7bVRYJmSvSPkIUal+hSBeKboI1MRRKmQzK14UMGE4Bq5xQu2UI4SNlAChAY2zmbBh7tnOYbpGrxnrgjtXwDcUBetn8+KMDD6GiXckl+UYjVQUlK1hrShWt8DdjMmzWfcX7ur9SCOFhhcDubGBby2WRKsqHuIs6fBcm67lZlsR52kVlEjl5EFlxdqdhJvqQDBXXgcvZjhGe72xTcRu9egb6O4AF5SMP3eGWg3E/0wSzfh76O8j5o5idNdAZ6uAtbp1VWBIt01rFrl9ANGZcfYQ/VLKtMZC4QmW7tXzVYElMLiBnll7+nfwyQcgAGUyjVAOtu+iNs+iVJwGLt/9u1NSSS60x/eGH9swSlYNbGSBlDd+boqoWmGOJWao0PEukDL50z9eCcHuy+HyepggYKzBWoI0gNYLMWHYGG5y4+MesbD9GZeoWbHWK3uoXkKrG9NHvJ0k36W08gkl2MEkbWVvA33+3uxdhMLqPtfFw3W3m7nHFl+Z1GM93TxVIrNFUkx1rOxttKcS/29ne/Blr7fNX544xxleAe+6YtJ/84Ntf1DKahz7wqlS8x8T7VQ4hRFCtNf6qF4T/StZmprrRohJhffiGIlFh5PerPbr5Szp1ubha50KlAZ1g4h1IulidOtJtMojqqAM3XrU+MphC+dMoWXEeWNwNXMmIQDTwiQjy/wA8PHw8pB36rjOh6dIlYcCAHWLTIk7XnU3BakzWhqQD8QCTdNzDJB2AVXhTR5HNRYzpoJNt7M4adnsFsgSCCiAQ0kPgIRuLqNljLvIOUxLrgiA7+4AEVEnIJU7B1jaGfOrWmNg98GxabvMwFs75n5WqYQpibkHrXk5cE8JgCSXCcrkWjRIR1upyXbSNMTYGazC6i4nXv24e6b3ecyErpbXCvS5RoooQyg2aTH+3xcSmWN17VRRUfqWw/Q5m4wKiOoFsLrj4ve6GaxBjtCv0BURQQQRVCKru2K2ewcYdhPLxlu51vu6R2RNrU8zOFWzWx/Z2nEKe9BHVSWelyhLwI/dTp/k5DSgPUWlity5DWEfWpl12t5SAQOBjsx5WOIUUazAbl1x60fMQabO1jG2vgxcgm3Ou8Fp5zv9ti9meIo9bDr/vFVpHMQoZzhAFh+g+9duYwRYA/txthAfegC7P49GZqNH0GZXPWvl4skogGtTENFPM0CCgKqHqGQJpULm9xH3OPW+1FWTG/TU1jnQLYZHCkXQpXHBNP41ZbZ9lo/MsW51TDLItajP3Up27F5Or24ntoUlcMoqNMTZ119yumUxTRlNeZVOz5urtHInTFCiszvB7K8j25X4YBL+1sXr5p6y1l162gzPGax5j4j3Gqw5CiGh6et8/0IafrEzdVqdxl8APyeyA1HbJbC8nhFmpspYFYNZi4w6230L31zCDbZeIoDyn3OVNOaxO3QNeSEcevBAR1JD1WZduoHwECqlqKFUbIaU9jEkQwiNQU9TkHA1mkEj83N0UWg8pJHl4GtZa4mSDXv8iWndJdI8k3WFr53Eym7goMyGdiihAhA3XhMNzlg0vmser7XfTrLlSrpM1MBqT9t2UcFhF+jN43iShnCZdfphB7wLR0XdibIoUfhn15RG5hAoUZmSGtXjYaRuj7aAsnrNW5/7lrlOtc2VY+dOYrE1kpmhf+Ag26yFkkCvsrkOfCibw6gcIGofxaktIa7FSou2AQDaw1pDaLrHeIBtcfNk90sMiwvx8Ed4uL7OUlXLfeLKKxMeQkpke2vRKlbv8+TV6Z1/J0KcfdNeLH4IxjmDXJrFSYdcvIKeX3CAjTSCNsWmMqDbzbpIpojnr1HDlBntq4UZkfQYhfNKzX8gV8iZy9iDWpNjuFra9iZo7iulvYQc9N4sw6KDmj2LTAWbjIoQ1ZGUaMPl+L2RV7YiY1s67bS2iMoloTu9Su6+Fssiyu53PJlkQ5ORMQNGB0ho3WLfGecOjOiKqQ1R7RRNxawzShNjeJqazRlA/SLT/W8hE7O6huVdaCIkUUXmf8ESET0RIjQZNJoiIcoad5bPoUgxn02W+C7w9u0ICSoAUw2exyv/tCYsQjqgPtGRgILGWDEtqNX0Rk5FiMCQMSBmQ2QGaxF2f+Tp6DC1vBuOIev7TWlO+35C6bUURiFoplDh5xMNaTbv1ML3WJ2NPmU+urJz9W9basy/ToRnjNYx77pi0n/zDt72oZTQP/8GYeI/x8kMIUZmZ3vcPrBU/uTB1X22y+XZhVEifhC5dBnTLm28BiUe8eYKsfYG0v+KWE006z6ZOndKdOUVSeFVk2HTd6cIaMmiAX3U25JHiutEpVyH8Xeq2EIpANGiIOarUS7ItrSAUigBJPLjMeuthdNajO1imF68SBDOElSWsV0GokIGXIesLpDJ2qrmISHUbKwxKhLktxVlJlKyUBNCYGCF8tO7gec2y2A1rEf02WXeZpHMenbapHnwHUe0QPpEbRKCQSCQKD7/8HSAhvurhlpoOxg7IsjYm3cLq4fR0UaRne23s+iW8Q/dggwhhLCbZdJ5vFUHSJbv8uPuQX4f+JiJoOOIb1CHwof7yxrjtzfRGeCMWG0e8pQhRIkQKtz9D0cSgyewAQ4o2AzLTcYVcprDG9J3a/QrL7H4pYI3GzaAMLTf68klX7FZfcPYokyKswLTXAIuoTruuj8pHNufcMtIEm/Tx9t3oBpdxH7t1EZvFCL+KaM5D1kWvX8Bbuo3s/COIqOYKIKMGDDqoxeuxSrqIwd62Y3smby6jFIQVdzyldANvnWK7LYTykQvHYHRW7MXuF2td05pBxxU96ww5vQ+C6iuagAMIr445/zimv8Hs3X+fTCRkplfOGioRlep2nQmqNiDKZ35GjVe9fGYnEIpACDzhCLexu0m2hF1Kd6F2FyjIu/tui7YCbQWxFqRGEhtILCQYUquJRUpCjMEgkQSEhNYv77tyz+7PLJi89NIA6YiFrSZ86gp8YRH5dxsr0Ba0tay3HmN5+0OxkOknr6yc+dvW2jMv5bEY47WNe+6YtJ/6wH0vahmNo384Jt5jvHwoCDdW/OTSzH21A5NvF763uylMYiSJcTdTaw2d3jk22idY336IoHYQqtMM0lV0dwUdb6OCCcL6Yfz6ErI6TSAbZAzV3UIlyUhzlTfF5K8XDyMlIjxR3aWOSCQePhUbuuAqIQmQRBI2Nu/nzMqfEvkT7Ju+F6Um8II5wnCBFEisJhUG30pi4R5effr0aJMyKH2wxqaktouxrphNCt8R7NwWIlAYHaNbF0jbZ0h6ywgEYfUAYe0Q1fox/HAWXwSEOMXPKUCGjKwk2z4enlUYYTFO12VAj4yUlAEDu80gXUanm1jdL1VdGc5gYzd9ba3BrJ51BIui+NGphDZPXxH1aVf42W9j2+vYJG+NrXxX5NaYfclJyy5lW0a7iLZL7HA+/FGVD8ATEQE1d87RLRUzi0GbgfOY2oHzzyYbuwYjr2ZYayHuunboJleOhXAFiF7gjmfmZovQmbNdZCl2M5+RD2vub1qDnzd0yf8TzdmrEkOKLpCusZXvmtaEFZdEovMahriL2HeDa3ZjjSP9QQ0RNLDKqbRWD8oBtmtoZPMukil20MY7dC8o+bzHqbAVfS1WIdvdxna2sEnfZZE3pl/ZBDzV6OVn3OBy7k6a828mZeBmuHL1W4mIhphjxs4yJX0C6e67oxhVuv2cbBsrsLj3Fkq3JyyBMihh8aUjuWpE/b7WrlLSoo0jwqkRJFqSaElqBQPjvtsTEEr3vb60BNKUxLuwvFgrMBYs+U8LBmd9Kcq2xchgwFinvgPERrCVpWy2H6PT+nCiZPqJMQEf4yvFPbdP2k/9/ltf1DIaxz44Jt5jvPQQQngzUwt/T6D+2ZG5+2pHZ98iQhUhhMXmN0Cd3zy1FTxy5tfY7l4kzro0qkeQ3iRxtkOndwYVTFFp3oCoL6LDkFDWCKkREBES4FmnWisEGovJb84pGRkZBo1EYXL1x8PHx0NjHEE1ll7nFGmyQZpsYK1BSkUgJdb0SLMOm52zfOsd/xAh6069MYIsfxgV06iJ1fSEmwotplDBDQBiuthcZS2ngFGoXHW3aAJqSBRbZ36XzuaDBME0c5P3onWXg/Pfis62iLMBRlVRqobvTyCCqZJcA0ht6Ow8QRRMEfhTpecx83y6dPNJ2gEJXTrpeXTWwmRtp2DnKSU26w6LHYWPoono76DTNlTqGJUihECF85isdZWFZGhJeQnPp5GuiS7O0MsLxCq5qj0k2lL4ZRyZIiAQrgi28OcbNBkpOh+MjU5baxsTp8uvMeJtMBefAkBOHXTH2mTYeAebxbnfWWCzPqJSR0zMu+6Dnc2cFHsQ1SkjPcvlOoUYo8EPd3dYLFqwe4GzthiLCCoYKbCrZ12CjyjZlFPSq1OOSBvrfOBFXUZ9GhnUAYXtbjjyHzXdv5WP8CrOMuN5uxN7oDxXXqjr5fPuP51ht65g4x5yZsnFIb6CMBp3qk8/WP597o6/h/KH61rcBwuhIaJC1QYEQuEhkAIC4Ui1M5NdbSPRVhAbgS+g6umy+LJQvUVO1IUAmWcNXYuAC3aT4sxKUi0ZZJLMuBc8OST0o9YXoHyGuO3aTbQFFosofxafKz6TGmd/2U4l1loG3ce4tPWhxMrkY5eXz/41a+2Vr+1IjPHNgG9m4j2OE3yFQgghKpXa981O7/8vh2dfP3V85t1CKldIlRhRKiKZgc3ORS5tPc7q9hNstp/i0P7vIUKy1XoET+0wMf06Zpa+m0jV8a1EComxhpisJNuhUEghEBaSZA2RdahF+/BUhQyfDIuxZte0anET9wTEyRpPnvmvNCv7qFUOUK8dRkmfQCZgM3yvQiWoUQunCbwaYFHWlvOzFkHVQGbzqLac3FkriE2TgYG2TemLmAE9EuHIuPMeBrtU9lAoIiEJjv0d5DFLd3CB5Y3PcXL1s9Q8SS2cIlARSXyZTrzF2dXPcsvRv4FQDZQKUTLg3MXfolHdT9zW9JNNrDX0kk1m5t9Bbe4NGGTu946IvHliIdEyAlyih0m2duVBm+Vn0Z1VR3j9CFZ7yIXjqNkbnS88J93Sn3BEdSRp5Ws+h/Y20ynIdlE4lSvcUlbwVLP0txefKwY0PtGu7nvgBmMFfDxSMmfFEc6Kk9DFeDNYk2BeI/5ukXdwpLONmlwsm5QMC+48jEnRrfOYK084tbo2gaxPQaXprFwqV46NBiFdZnZ3G3otR4LTPt6Re7BkWGsxl55ChPWhwm6tSy6ZXEQEFeS+4+X6WZ1hLp9EhBHW87HLz4LnI/wQ291GzRzGrJ52zVfCKrY7AHPBqeaNGazy3EyLTpG1KZiYQ/r1PFEo2RWk8zXtP+UhZg9ikz5m/QLCCxEz+11G+SsARSxgtuYGVyJsYuMdYruNshpf1HKxwXmenffZHc9YOKe1tAJlBYFQRLnFxN0nRUm+UyPRFkJpywLMUbL7XKR7lGQLsVswEziCHWDAg8kIsrxo0+T2FJ0TcTcgKBaUL5/dCrsrCLWl+q3EbpuYsQKVr8yEFaRWMDN9O4dnbg1WWg+/T6d/+Oy+hUO/sLx64R9aazsv0SEa4zUG8U2q+44V71cglFJvmJs58Buz9WOHjs9+h/S8KVTOnbSB2LgUhPNrn+XM8keoVvZTrR4hzdpstp9CqoCJqXupTt5K6lH6lZ1neehiLpJEFAJpNRsbn2N5/eNUgxk8r8525zRCCN5y67/kwtonOXHuF3nzLf+MRnUp78CXUPEqrLef4Ynzv82dR/8ik/VjeMKipLuZaytK/yJQKvV7pzoLFAqLFMP3FlOhxfYbhooLUE7fAsXjBJkrR760I9+v8UZMjtYKemnG6ZXPkmR9kixmoAcYPWDf9N3sn767fK+xgkv9dZ4+9bMcu+Wn6NGhwwap7WFsWkYg6mwbm3UAifQnMJ1NzPZFTH+LQv+SXgW8EL92APyAzLZd8ap00XB8jSR1l5rtdvZIDKBXdrJzBZIhnqjii1pu03EDMHd+BHnyTIiPR2g9vHyZI6ndeLkhZzDiLx3QJ8H53we2TWJapNkGOtn4iiIhX8mwWYK5cgp54EakV0F4NdcoSIZgIVt9gmzjWbAaVZtHTR1D91fRqydcwaOQWGEcoetuuuM9aBMs3IVMUgbbJxBhHbnfNXjS5x93ijYgD96KCCJsZwuzdcWR6WSA3H89KB+7cQniHmJyEVFrYrau5D5yl1tvW+uY7SuIxixq5uBwQNhtYdcvOAtMkVSiU1cPMTGPmD6wy8P+ku1La6G77balMYucnH/Jv+NrgRAekjrJqT8FQDWXYP4gKpxGygpK1QjkBJPiAA2au4rEwRWK7/5JSb6L35UAXxpCZYepJ7niLXPiLXC/X8uQM3qvk2JIzK0tCLG9SmUv4NJUxFX33eJ+C+y6Pxe/w1AptzgiX3xfZlxCS+FH96TBGM3Zjft5evnjHWOz/2Nze/Xn7Gsl0miMlwT33D5hP/07L07xrt/woVel4j0m3q8gCCEO7l84/BuRP/X6Wxa+y5upHyDREp37+AAub36Z08t/yiDZYqJxC0f2fw/rO49z4coHWJh9OzNTr0N4dVLh/MgKiWdVaR8pUNgqkniDnc2HaG09wP7p13F83zuxps/p5Y9zZuWTzE3cwXbnFP1kA4CJ6mFnH/EiPOnRi7cw1vLO2/4+gd+89nZhy0itwhaj5LC4SO8h4kA+3Zq/Z2Qq1VrnPbSliuNeU9Ld8IvipNQ43bb4nmK6tNz+3JqTaEmaP4iy0rsIPWuQCJpKkFnY2H6MJy/+Jov7vws9eYBetoqM+3TDAZ6sOouFHeTRehFYQZxcJj1zP3LxeoxIkEKB38SjhtSgkxYm7WKSFkJbTNpxmbyLR5BBvSRHpXINV3W8dC2l5UiutmtFrlTFqdm4uLNQNFG5SlcMvQpiXS46L371kGUxWDGz4dYjf9/IQzk2gh3jDkKRsjCgh0HnHvg2qWm7FBjdcZYak7zo9tzfCOgrpxC1KWRzpsyol14DJWoMznwc4VfwtKR57HvKxklVU2faNEBFxCKlHrfp984wOfkGzvWf4tzJn0N6Fd5++8/S0wmPPPOvYeEYJlTo1kXM1kXQmUs8aS4gPB+jY2itY7PE2VikhKCKd+BWwGK1U5QJa8jG9MgGjFwsI7BpjLn0lLObRDXExAKkA2y/je23XTv7xgyiNvGS7ctikGjTGL12BjWi3H+jYQddtz8KBBFy6ZbSly6DKSrRMfbJW5imXhYtGgsZFjlyxY4mmfgCKkqjRprpFH5ul/FdFFfaUvEurrlrPaVLF5DYTcL1yD3UFP8u77/u/ZkRiHy5diR9pXh/oEypkhffPbo897khIc+sdO8dWSdrIcn6nFz7mD23/uBmu7v1l/qD3oe+lmMyxmsP99w2YT/z2295Ucuo3fRHY+I9xtcGIUS4OL/0f2LUj9914LuihcnbGGSSxMiSQAJc2nyQh575T9x85C8zP3MfFkF75xHOrnyUO479bZSq7/LwFcU+o5XsnoA4XmV58wFWtx5GqQqL06/jwMwbqfgBXz77qyxvPUwv3mRx8haWt08AliiY4o03/B0ma0tI6ZUKdqt7jkHSYt/0HVc1oRpVukcLjQrivVdH26uGF1OvxYNkVFW5VsMrf6RBxejDp0BBvItlJnq4j/ta0MuTWjxkWekvcxf55sanuBifJ9j3euLtpxlc+TxBOItOu2ibRwNag+9PYYxTzRPTRjb3lRnJyp8us399WUeJKCfrqiwM7Ww/SnzlAcTUPkRUQ/pVUFHuX3dPMyFDpCwydocxZ0WecOHbDwgJCfCtxBOyVKhlTqq9kQf23iIqd2zPcH71M/STbbrxOqHX4M6jP8xkbT/GQqIlrUwwwORp5WCsoSeSMlnBoOnTRpOQ2QGZ6ZGZjstINknZ0dKmXbfHdYZtbzhPdFB1sZWvkEI8s7OO7Wy55ku1KdTc9ShTIdt8xg2A0hhhJdXqYdL+CpE3yRuu/zvDbGaGRXFZng5xofUkvd45bjvwPowVdOMtPn/yZwiu/zYy+mjdxgw2MK0rmJ1VF88nJba3A9VJ6G0japOgNTbpo2aOIGoNbDpAXzrhrDGAbMw877ZZY66pbBdRgmbzcs7YUhACObUPUb32QPsrhbNVZWTnvuQKRU3mIggbM649/TfwuJvlZ0EpZGMftruF6bfw5m9ENvfh+9NU1QLTHKBpq3h58bgcGagWPwUQKkOUF08C5T2qmN0rSLefq9+OlLv1SHIymxmJEO59oyiu31Ery2g/LeCq1woCXi5DjCayGJIsRSqfJNOstS+jjWWmfhDf80v/+ejytR2S+MLasqtBEIJOf4tHr3xAt/qXH7u8cv77xhGEY9xz24T9zPvf/KKWUbv5j8fEe4yvHpWo+mcatalfOr7w5qnjs+8QlsBVqRtJrJ0XUAl389bG8IWn/z07vYvsn30TnqrQi9cRwB1H/yKwm2iOwlqXlX3iwm+x2TnDobk3Mz91N1Y2SIwjYVuthzm7/EcsTt2JLwNuPfgO1lrPst4+zfHFdyGlx7UmPwv1uOjSVpDj0eKcAqPRWKO+xnI9EbvUaG2dn91aJ9QVr0lsqVD7efFQoXgXyykg9uhFRfOKRAvinHhvG4Oxhqrw8ESeOiCgZVzhYMOkfPnc/6DVO0O1fh2Hl36Iimqynl2ioWbxRIAvFGm8TkWFtL2QVS6R2ZjYbJURi6ntokTEhFgkzqMfI5ponL3EYIgHK7SvfALTW89Vaxdz6LKTPYwZYLHUF9/C1PQbqVIvI8M8JFXp9klhtRmeA0ObTjGlPVSzh/utOG6/ef+PUQvnCLwa2iZk2YB33PZ3aVT2kxnBTqboGVcMO5rJbrBk1pSpNBpDglPCUwbEdgdtY9Jsm7RzCdO+hOmuu+g7rCNeyoPejovMs9b5o2uTiOYcbpADBNHLTs5skXmtvF1/s1tXsL0WIqwhKk1EfQ5VmcNuXiK98ggAzYnbmZ17B0qnVL0KC/UF6uF0Gck5SmBGj8vZtS/x1KUPEk3cjJ7ahw5DMrNDmqxj2pdBx1BpYNuuaFNN7ssPYohZPQ1KIqYWsXEXc/kkWIO87p4Xta+sNZAMXH2CTrGbl11KSViFoOIKJcOvPq9bejWQgYs3HLTR5x8avqg8pzR7X38PuO233b4DZ8+ZOIxeOYFozKPmj+AFizT8oyxyiAmicnYokMP4PV+67pWeNLk1I79fKYMvDd6IxaQgtEpc2yYiBKT57BwMFelUD/e3r64WM4aft6XNRO0h4eAGzXEmeeryF/jC6Q8R+A2kEEzV9mGtx3b3PBbLTOMg+yYOsX/qEHONAyXRLuyASgzFj8ICaPPvNQgubDzNY5d/L0bo/3Jl9cJPWjuSezvGNxXGxHuMrzuEEIf2Lxz6vYlo/x237vse5XszrklCJsuUj8S4G2JDuWOkpCVNN+kM1kmyPtoMMMYw1ThO6DcAQZhHklnrChUL24Wwhqcvvh9jU24++CPosmwHjMl45vIfcObKh2hUlqhGC9x+5IeZiIYdMEfVi1HSNmrhGFWni4YPPe0ybVPhCo984crzIiGp5FFXYfkQGirZiZHlGgZqxCIz4jOEIYH384fY3vUd7m/3N20FvVTlGbgiV2nde4rGFpmFgbW0idlio4xVlCgGusWcWsJg2GIjt2xE1KjRIHCkE/cAXKdFQEhGRodt6kwSElAhYJMWCQMWWSC1GiMscd7Uwu1njWckDVF3hFoMBzSegG73DE+d/1Xefvs/RmJL90ARCVbwH5VHlfUzRT/tc2n1T1GqRjWcQXlzSNUgNQnWJhg1g1IRdQVVpekn20ghCP2qs7Lky7M4i08nU+wYQ1bMFIyo6hmWbp52Iq3ACEufAT3atLsn6Vz6OEb3XF58bRZRa7rYO+GUvbLLZZbnUKcDzM6ay7YusuSTgdtQz3dJIF7glNM0dukgleZXTc5t3McO2hD3oNqE7jY2zlNKppcAi22tIqb25Q1jtCOIMkCoEGQFu3UFvfEsNr26pqwezfGdr/u/dtUtjF434I5xpmMubT7G+fUH2Omv4zWPks4fQNs+ur+C3jqH8CPM1mXUvhtcQymvipQN0itfxPRaqP3XY5MBdnsFG/cAmzf9iVynSz90+0n57u95Gg9xD9vfQdRn3OvPsf8KMm7jHgw62KSPnNr/VVlShPAQKkT6M9jBDsmlLyLnDjuVvbWGnD3o3hdEX/EyXwoIGZBdetKdSzp1xxkQfpXopu/B2D6e16Sm9jPHEvOiSkU6gaQY9Hp5fF8xO1TMfFT9DJmr154cId75d+/1du+1eox6vAfaWTx86aontBG7bHwiX65laFvJRvzZiYaLm6d58tKnafW3iNM+xxbfypHF9xEpQzdVZFYw6J+iO1gm8Ks8cf4DbHbO8aNv/qc0K7N04hYTlWk8aXO/tyi93jK3tUD+fUZijObk6qd4evnT291++690e+3ff5kO4xivYNxz24S9/zff9KKWUb31T8bEe4wXhhBCLcwe+GcC7ydv2/d90fzkzWS56rqTSgZ5nF5HDPDxmBMRoYS6P4wUcDdgymYKD5/+Bba651DCx9iEKJjmyNwbmJ96AwbFTu8in/ryP2Nx6l7uOPa/opEYcoLZP8+JM/+VTv8C05N3c2T/99GoLJVWhKLZQzFNXpDuUSIOQ/IaKksvc6Q2s7BlE9ZYBqBKg4atE4sUH48KHnUp8QVMh2mpbu+t2LfFDXtESYdhIU+xTwp+UEy9us/uVhZ7mUcnVaSjhUX5sjILO8awSYsu2wAktkcoGkTUKBrr9GgTUSUgpEOLlKFoE1IjyfPGJ5gDoG4jJpVXEntjXXSiFM5LHpMhrSATGo0htD4Kl4xQl6JU9EcV7Aef/XW2uxeYby6x07tInPZIjUQKn3o0T+BPkGR9MhNz69J78cPDfPGp/4fXHTpOL6uy2d2mM9gkzrp4MkBKn3Z/DW0F043jLE7ew+LkcTxpy0KqYj8Wx2mQW02yPQWTHkUhphu8xCR4eGRk9LrPsnru/TSPfCdpxSu7Xbr23BnWxGAzd1RGC0Vt3hHRZq4zqLuYXGReFoNOXFdIC8ILsGkf2+9g464rMg2qEFVdXnqRLDLoYjsb2GSQf2bgkl5qk4iggt1Zc91apxaxnU3s9kqeCqMQ1QlMZx08H3TmOro2ZhBRExFOoc99CZt0WDr2N7nOn6YeNgj8Kir3fo/edovryf00bnZKuPN9o32WB575f0l1G//QWzBmQLb8GOH83ejuCmn7Qt5oqYK3eAteZZFk+SH0xhlEdcKR4OpEblGSTlnud7Erz7qBitGUQXJSOp+3HzhFvdtyLeUrTWd9Us8fgmWzFLN2DuEHiOmlr7oo06scIr30JUzSdvYZIaDt8r/l/uvdQOHrCFt24rQIEcGVU0zNvInpxfeghKJJlaqQDPJ6kEi4e54noKacdWTvrFI5MyctoTIlAR+1yUlxDcUbtzsKH/aorcPLhQsB9DNFYgSetFfd+0Y92wUJP7lygkfPfZQbD/4AfniIraRF4DWoqZBAQqQMSbrO6Suf5Mb972a9/Qyd/kU86XNp80l2+svUo1kyE7N/8joOztzEVG2eWjCB70VIsdsTLoSzWkkBO4MdHrz4e3q7d+WBK6vnv9dau/wyH9IxXkG459YJe/9vvEjiffuYeI/xAlDKu2tmavGDS9Ov23ds9r3Cz2O0TvQNLbYJiFxRmunj99uY9imybIc7j/wASkp8aenHm2y0nwEU+6Zu58rWQzx9+RO8+eafIrGSQBiUXeaRcx8l1X1uu+7HyNIOf/rIT3DL4b/I1Ow7WWXbRfJ1LtC+8MeEwTRb2w9zzy3/ionqgXLaFNxDIFIGbVxkVGKcGtwlLRXsqnDFeAMD074jDq3M3VxXbY8enTIrvM0ODZronKw1iTgUGSLP7FL+ruUlLDBqXxl9z7WEueKzmXF+7kHmmky4giBKW4kBBtawSYdNLrETP00lOEhNzOU5H05xq1FjTkT0rGGZdarUdxWw7gjXXKdBgzkZIBnaPkZnA4yFjnHENCUrO82FBNTwaSpBVWkC5T47Sm0lznu73TvLXLRNrXKQ+VpIN/PY6Gm2u+t00w5KVICM+0/+Jktz7+bC6od57y3v5db9t3OlG5aDk1Hil2Z91nZO8+TlL9KN+8w0b+b4vvfiK1FaInqZJMxzgRPj2liD248FCS+88RvtE2y1HkGblMHgCp4MmT/wvbQrgti26Zs112gn23aKd5FZtyf20B1MR7yxpiTkz5crLYSHbq8iG/sQOoE4Q2+edWTZaucjn5hzVgmtXZvzXPkdLWwt8uIRPsqfQRpB2l/Fei4GzkoPaUL0zgXXUj2N3bKEh016KBGgUBydfzN3H34v/TRmkHSIsw5x2qYbr7O89WW6g7WyO2wUTFOvLGFQnF/5EyrXvQ9bmyDdegqzeQEhAoS1iKBGtnMBb/4m9NZZvEOvRwQ1TNaBpI++8qRLPUl7yOY8NGcQQqCvnEJOH0CElbwxUM/FH0oPOXtg5Pqx2LXz2PY6cv8Nzns9kjO++1qz2J117OYl5PwRR56/SghVhTTFtFfcsa42XaOffquslfh6wloL7W38Tsz1B/8ClfrxcmYnki4SEPJi7pGaiShXvst6FZxI4KlhVvco6d7bNGcv+S6Id4FhnOzwj9oOCXfhBR8tzBf5+zMraMce2go+/dQvsTR7H/XqjSz3dzh18bfAJNSieWbr1wGGWlBnEF/hwNSNTNdnMMbw2Pk/JjMpR+fuZaaxhDYZq63TXNk+wU5/nX7cItUDwDJRnWdp+jj7p65nprYIQow0/5Gc23icL1/6vb4l+yfrm8s/a4u2yGO8pnHvrRP2/l//lhe1jModHx4T7zGuDSFEdWH+8P/b73Z/ZKZ2TN1z3Q/jqRqZEbRTSSdeYdB/llbnNK3uWdr9VeJsOE09VTuIEMLlaPtNZhuHOXnlk9TCaQ7O3MHizNvoynkMliklCZVhJ5VcWP4g3f6zhP4Cy60vc+jY38aGDQyartmke/FjDOJl0mQLf+ZmphfehSciIqp4+Azo4eFTo0afAR226dttPBGxyCEqeUZGJIcRWVJAL5OlhaNnDUGhsO8hZQBVCTNRSsXTuVdQ7KrqvxaKaVLYHad1rfcUUVfFlGxmBakd5o8nFjomoycStlkntm1ag8dQ3iSRN09VTOMT5UnWdSRQFZKeNewwQCFps8OmOctheQddugAcETPUlHugesLmxXQiJ+KG1LgBwGi3uyL1oJh+LqaKr95+Z5EJleHm6Q51z9DwMxIjudgNWO0HCKDqa3qpYqW9wYnLD3Fw+kYOTB0Cocj0cBBgc9VM5Mew2J+XNp7kk0//Bv2kzW2Hfoiji/fRyyRrOqUmfCa84dR3MZBJrFO6AXZ6Z3ny6X/L9Qe+i8n6cSrBFD1vmk1aDOgxYIeAGpqUVnqKLNsEPQAZDMl1Hq1oTXrNLHCBBBUiPNfcx5p+3hCohhAKs3URNT3aEl2Qds870h1NgU3AJE5tH2lgJIQH0kcUJFznKrv0XGKJirBZz2V7ew3q4Q1oOyA1Lbdf0y42biONJDAV2hc+Qq12hMD28VWVwK8S+Q1Cr0ZnsMby9lMsTd9JJZqi3Vthp7fKgblvoZMk7BAjFm8iNtukZgej+2SrJ7Et143VBgFiYhbbuoKcPoysTuezBqA3LiFUgGjOoFdOuuY6tbrL0a5O7C6QNBJ9+QnU0s27zzedYrZWYNB2CrD0XPfJ+tQe77vBrp/HDrquSLI24RoGvYBSfi2ocN41ylo9gd3ZQM4ceNHFnM8HoSpOaTceSlQx8TZ2sIMd7BBN3cINCz/ChKpSzccco+3di5+eNFcVKQ+TloYRqeV3MrSVqNKecrXHey/pllieazLhuQSI0dfbiUcvkyRZxm8/8G95313/jAfOf5ZOtkMyWObQ/HvIdEKv+wyBFFSjJkpYji+8jqCYLbKWM6sPkOiUw7O3Uw3dscnKAUhuQbSGrd4yq9tPs7LzDNvdZSaqcyxNXc+B6eNMVA8Qa5/PnfxNzqzeT70xcXFre+U91tqnnnsrxngt4N5bm/b+X32RxPuuj4yJ9xhXIwyidzTr07/bCI9NeqLK5a1HueXQ99PpXWCrc4ZBskWzOsdc4yizzSPMNg4zSDt84dRvMVXbz6HZu5ipH6abevS1YiZKkALOby0zV1+k4ufpEomHLw097e7IVWWo+ZonLj/Iiuljpw4QiQaJ7hJvPk5n9fNY5aOzNv51b0f4EZ6sY+wAYzOk8ACFsTGBmmJKHqbOBFXrPOSpMMzJgLpnMNY1hegb17GtVIGsoKOdCj7Qcpfy2/C1e0ABYd65zSDYOwUPVyveBemGqyv6wU3BJkYSZ5K+HtpKjB12ZyuU7o41dBiwxkW6+jJad5EywJcT1OUiETUaNPCtpCo8agr6BiLpFP7H7QlS22NGHOGQmMFYqOYe6VGM2nOykfX3Roqqiodvmfm7ZwBS9zMSLemlCiUtM5WE480+gbQkRhDk+3114NPPJGv9gNRIBO6Bbqygm3qkeWON0WYcFU/vemBnWmBx+3V1+xkeu/AJEmM4tvQjdII6ofVY8B0LKVINYjM6e5DRsjtstx6hvfElamqKY4f/EtsypmYrXBCn0DbFExGJbWNsirUaJSNS0ybLtlGqhskJpMzTYNz5YMiybaSqIJBIGVJ2LZUTGJsSyAaxadFfe4jK3D2EcgKBopOdI03XsVkPFczhe1No0yPLNksi7XZKrrbnHUh3RTsqH6GqZfMcISTz4evz+MRtjE3xRJVA1Jhigcvnf43W2meZmXwdE9EERvfITI9BskOcdTk0cwfPrj7A7Qffx81L78JY2O5e5svn/xiEZKe/gbbQqB8nTXcYpFv04lWi6VupL76Z9voX6Vz4KHLiIP6+u8DzKBLXbT5DYHUX3VnHbl5EzB8u88h3dclMBpiVZ11iSX1q1/mrLzyJmHSWGxHVKJr/yNlDiEp913uttTDoYnvbzv+tM9cRc3r/V2QXKXzffrRE/9mPIibnXnaPt/Tn0OceIGgcxlcNvGgGUZlBRdNMigUmbYO69IjkMKmk7mfU/IzQywerDOP5hKBUnwsMiw2L7Ry+5kk3QC8iBUftIKMoZgJHazjKWL/R7WE3yS8G6+DGTgbByeUnObHyDLcd+iE++uQvMjn9JkTzCLPUaSi3jZ4wtHoX2O6cJPAqHJt/wy7Pf5L1ubz1JP2kjSd9ji2+Jb9vOPIda+Uscsq4mHhrafVXWdl+mpXWM2x1L7E4eRMHZ98Css6JCx9gs/ekrteqP7uydukfjbO/X7sYE+8xXnIIIWr7Fw7/T2GD797Z6XgHZu5hkLZZbT3O0vRtHJy5ibnmUerRpPPfmatvs6M35tHDVFgtnOdP0E0Va7FigGFaSabClCCf1rzUiXhUn8HGXfprD9JrPYXWfUdSpm8inLkNHUjSbAMpK2TpeqkyBpWjLKl7mKdZqpgAgRDUlCuKzEbsE2Gu5PrSYHBTnMYKGn5W+tGNdT7wUGlCz5QT+cU27iXVe2Hs7qzYoqJ+V9vkXOEeaFm2ofdwD55AuOSBzELHGPpkbLDGln6WJF1DCI9qcJCKmGSKBSapEIhhs4mqcqkFfeO60j2rd1ixz+CLKneIm9kxGZPKK6060UixVVEylebJAmpEBVM5+Z0IMzxpqPuGxDijQxF5uFBJUcJypRfgScuBalJGMEZK09OK850QbQWRMmwNfLYGwa6YxswUXSmHPvkyS3hkHYsaguLv2gqWt5/mi6d+g0q4n8Wpm4m8GlY2kZVjTPk+fTPMMm4T08/LKTeyJ0nXnkJ0d2gefC8z4Q14eCgkcyKiYw079PDx8KxiRbhO0wldpjlAjzYzzNGmTcsu080uomSVqlqgwQzzTFEVQwmwk/vmW2yzsvphwrlbyUzP5a3n9KPbfQwVzBN6cyjhss0HZpPMdJzaDhjdxZrYNYvSqbO8WOOKKIWHUBWE8PC9GWbUcSJqeHhMUin9vhnWnT+6j06XicSAyA/zTq51rBU8fv6DeEpy1+E/g8G/qqW3toLWoMvGzhl8fxrhTZJYi1UhvgwZ6D4PPvp3mbzrfyHWa7lKbzAmdkq+jXPyPcB0NjCrpxGTC8gJ17RGyKCcTbBpjLlyCnXo1t3X3do5V/CaJYj6NHJi3jUUuvQU8tDtL1jAans7mM1LiErDWVCkAv/qwtei0FKqCr5sEl/8PKneREwuvCyNfMrv1QFeN2bfoR8kIKJpq2gsFeExoUQ+QHYHxlpBM8iYqcaEyrjEDisIldk1E1eIAqN3sWEfguGAtcAgk2XB5ajnu8jpLlvJX0Pxfq7ZseeCtYK1zhp/8Ngf8Nab/zceu/ggfvUGWoHPPE2qEqqeU+uLZJbOYIWzaw9xw763E3jVq5a53XWdgA9M34bAlskrxSHO9NXniLGay1tP8tSlT+J7DW469ENstU/x+Plfww/kylZr9V3W2ie/4g0b41WDe29p2vt/5UUS73tencR73DL+ZUAYRO+Ympj7/SOTb2omaUKr9Qm2OyeYrO3jO+7+u0xU54eRThhSO7yLjhYIFkpoZtydt2xKoAWd1Cc1ovQWLkSaUOldSkMvE6xvf5nOlQ+x03YzdzKaRE0fwV+4DYRloFuYQQvpTaB1G+VNolSNhjrIDPtoEiGBeu459qQtI/9g6AX3ZXGTtfnvrgC0KAzEsMvLWHgQY63KhxS47SvIX9FhTVtBkN/8R4n5aI6szZXWUu3OE1UM4DFs3ewLysSYLgmX7WnayTNYmxH4C0RymkBUmWWfs9IIwSAn7i0StrTBs4pMaBqEDOgikGR2gBEwrTyqniE1go3McsUkHPJCqrmHXQpQIyktZeyYp6n5TtwJ8gLVbqqo+a7tUc3TVJTLPDnW7JMYyWTgiHg3U+X+SrRkaxCUqrab7i2mDkSZcgJupoR8n2k3lCvXsdzHOJNGZiSLkzfiqYDN9lPsn7qRXnyFbvwEm5d+j9cf/zFQsyQYYqsJ8Rgg0L1lwp0NdL9HartsnP41evP3Upu9G0WAZw7RED514VTTDNjvHaSvBZ3cppRRJxISY2tsoan7h7iOG5mUsrQ4FQKCAdASrEdAhEXTTy8TenN4wqmmA72JtRlZvAxCIkWIJ6tI4RN583hEpLaL8Bfz/dojzTZc7nhuZRHCR4gA35siktN4BOwXTZqeoeppRzpGBtNKKuDAVSlAFsG9131PfjK4Hb43p95YqPh1FqfvGNZPlOk3lkBFvPGe/4wEnhaPk5q265ApfLTeAXzAIPwQMVlF1KbyxksCu7WMjWoILGbQxrY3kdP72QsxewgGXYRyhZyAyy2PGgghXEMhr4bVA6zuu3NHZ5D0XfFntYmsNLDtDWx7E5sOHAmf2rf7e2SEtTEmy0g9qB54G+nyw/Q2TyPyhJOXHMYiWhvMNF7PPLNUhSTKZ60aQUKgnKBgLXjK4gkzLF4ENrsbrLdXqYUBB6euy22Bln7SIwpqZDrji2c+Qab7VIM6tx54A4FfR+WUvCDngTJ5r4JhTUfxDCj+vZd0P1d87AtBCMt8Y5bOYJud2LAw/UZOXPkT5uffA4IyR3w0jnSiOs+dh97Fk5c+xeLEMaYbR8v1B5is7Weze4kTF/+Uo/N3Elan8IUrJP1PH/0JjM2Yqu3jwPTNTFT2M1nbz0R1H0vTt3Ng6jZOr3yGJ87+Mq87/jfY6a2y2Xl6YXpCPbI4v/TvV9Yu/eRY/X7tQXyTCr9jxfslhBCicmDx8C9VvOZ3v+nIn/ca0XTpnU21LBWMAkVxCQxvoDKfZrS5faL4N0AvVbQSN91e83S57FFleFTRbCU+f/rUf2Bn+1EmFt+Bmr0e7SmUCDCkpX85y2PfFuw+QqGYVJJq3mFtNN+5WG5BzErldiS+qp/JXZ3ZTL5toWdK+8Le3O7R3NdCwdZW0M9U7sV2qrgvbdlwovg+ISyJllgEsRa5dzq3PNhhM4sioaXwdw+sZZlNtuwlBnqFNF0Ha6hG1zMrj1GjRg1nq4nzdugJMRUqVAjoMGCVc/hEdMwKU/Iwh9jHhGepesX2uH000NKpRvmAo1CZi/WveJp64GwkiXaqVz3I6KaK+UrCZKjRFjqpQginjPWzvKOplmWR1vbAJ9aqTA4YRXHMQqVR0tIvybos17V43/L2Sb584YMMBsu85+7/e1eazXb3Av14naWZu8pz4tLGY3zp9C9w143/FBtMsr7zGN2tB+n1ztOsHWG2eQsr/cusrX2yTNK4/rZ/SSRC5mSAn5PnYoYiwyX7bIs2EoVB06NN326zTxxnliqecPUDmTXlDEORwFOQ9g4DTq/+OrpRQXmTNPwj+EQMbNsd88FFhHK2CSkrzuqi6igR4ssGgaih8Iltm4HZRJse1mZIWcGTVfc+USOkhpd3BV2kyaRvSrWwKKgtvL6jlqO9MzZ7Z25g6MF3MzmCvlbEZmgrcB1WHTwkl9lg05531h0MxqYj9rGQLNt2gwebYQdd9PLJYbOaoIJoziKsYXc577Vh1i8halOIilM/R5VzyDt9SoU1GUIq134+t5rYQQfbWkUuXPecyxcyQIXzVL3DbJ/4BcTkLNQmv6p4yOdCUDmO6O6gO1ewnVWm59/ObXPvIVLQDLKylXs9yMqGNnsVaAsYo/nZj/xzrlt4G/2kRat3jusXbqcz2GG5dR5jLWC4fvGNNKtLbHUusLz9Zf7c636MyHf7zYyo4CbvhyDLe4Xd5fHeld7ENTzjYve9dRR7m45Z4A8e+wDzE7fQrN/F6bWnQE5TqSwRSmj4Welh96QhUAZfGQSaB579Ey5uPsO+yetZmrmV6cYRBEX3Ss259UfoxlscmrmVucY8ncEW59Yf4YlL97PZucJ0fR+LE0fZ7KyQ6JjQq9NL2szMvw9P1eltfZJDszdyYeMJrmyfZHpy9vLqxuV3j73frx3ce0vTfvYX3/CilhG9/k9flYr3mHi/RFDKe93c1Pwf37X09pnb970JX7lpxiyPcNpbLFc8kEftFRZH0AtbRpzJMod7dBlFAwZD4dUdxucNfzrCfqnvl01gFAJPSOpSUpGjBHY3IShQDAp8acp0DTFCJooH/mjb48zIUsEezZSF4UOhTPcwecGhGBL80eSPfqaIc2IZ5dOWxXJGvdCDvLFEYWUpohKLmEA/J2RpHnGYWOjalC2x5awLybOYdAvpz1ALjjAjDuLhU7FhGX0Yk+DjEVqPQCgyLH0S+vTZsBeYEIssMc+UZ4mNQAnnefaEKx6N8wGJsU7ZKgYj1kLkaSLPUPM0k2FWPnzXBx6DTHGgFlO0eV7p+3QSj8hzhZPGCmKthvGSRuxq91zMMlR9XXq924mbLQmVKUl1P1P0UkfGH3z212kN1ukPLhP6E4Dk6MI7ODb/+vKh3x2s8KXTv0qcdrBYDs69g+r0m9lJrnD6xL/h5oPfz+GFd+FJ8sx0OG+3MBgWmS733wQRBktditJ/v6kzlsUKMV0azDDLFKus5+kyIZNUqUvJRdNhzZ4jtV0C2WCWg9RthMbiC0WHASdXfhFbVQivjlLN3H4RY5OWs4yoCJu2nfqr411FlSqYx1NNAjnhGhgBE2IRz5li8PMJw+LcmCAiEDDp69L3O3ruF0kVqZZlAV5xnY52ay2z6ktCJvLjCT2tEBQqvyAeGWCVZNxYznCWgW1jSNFmgLY9tO6jVAWTxzamlx7Fxjsu8aQ2hahNI+qzTv3OuuyFaW+4xBZwtpPOFugUdexedx/IjWMFbG8Hs3ERMTGH8KuYzYuIwLWfN5tXkNP7nV/8eSC9GkHlKKGu0rvyWZL+FZicfsHPPReC6o2Ys58n010mmndyqHk3jcoBGmGD2Dib0s31lPlavIvEmjwx5Fr2t1/9wn+l1dsm8KuE/iQLE0dQIuTQ/H10EsVWMmA6rObKuWB584ucuvwhFiau477r38ZEdbacISyuL0FhV8n3w0iK0950k+LXvc3IXgjaCp64/GXOb13h5oPfTSeWPHLhU9ya1xkUdpfROMRAGQbxJT746H/nLTf8IO24w6XNJ1jfOccdh97Ojfvegkbl9kl45sqnOTR7ExMV1zk1UIZ+0uahsx9juXWed97yF5iqTtKJ2wxSQzWa4bMn30+mU15/7Huoh252Zbt7jvvP/EZsyP7FldWLP23HxOVVjzHxHuNrhhDC279w8N8FMvpb773xz/uT1fldN+cyc9WKUvF0fx/mcBd+v53YZyf2XEGccMppkdFqrFOKiwd6YRMofYTFw5ph58Hie671AM9ytV3nRDUxkOCm9muqUJkpPdpF3J/Nyf6oej9KrotCRyGGvvWC3I0S56J7ZLF+MCx8HF3XWDvFr+JpbO4bH53+hDxFZSRdo5gmLQqUvPx49I2LQwRokXDRPkMnO4/Otp3FRrqbvC8bZYxgkbxRZ5KEAQaNRDHPbLmu9TxOEWAi0LRTV1BUkKLZMNulKBcDldAzVL2MRqBpBppQGoK8EYa1jmQNMtfxrfCKr/QCNgd+mf0Ou2c5CuJWEO5mmDJbSVnvOzV8Jkpysi5oxYEjBp1zCCFo9dY5vfIpbNBk/9L3ERpoejXirMcjT/80RxfexnULb6ESNPnyud+nEi6wOPMmlwtvYcMmxCRc7j/I4MyHuffwn2e2cQxtDZnugJrlqa2HaW98kenaUTqLLj3joD3MnOfhCUs394HWPbe9RYRhkBOAYoBXKPbtVLGSpayJVXbMJVLTwpcTSOFTFTPEa4/Rbhp0/2JJCqXfKFvUgyN30p/C92YwdgC4KENjHMnUuotSNWb925hihgUZlQp7cZ5VlaYeaPqZouplNMOUUFlasedmIRhatK41cC2vpcJylb+3uA4KxdvgZlCKa7tAcU0U10dXC87aVfq0yewATUJiWmTZDtYmWJ2Snfkc1KaRUcN52fstbL+NqDSRjXls4JfqsjXa+bmnXdSgkB6oCHQClQagESp0qnfWL4tRrc6wrVVsd9slnQR1bNwBz0fNHi4V8r2k3Q2AFEJVCcNDVNSsC9ocxFw68z+wi0cIGsdJB+euOUh4LlTldfgblzh09C8zJQLmQjdzGOSKbsXXRMqUTWZCZUpRYrQ7L4zce4Gt7ga/+Nmfoxvv8Prr/iw3H/h2Bibk0kAiEQT5DE1hfeuZBL31SeL4JN9/718s60CK77pWAeZeoX+0Qc5e0r135uS5sNbZ5A8e+wDvu/Nv0UsVD537DPum7yHwJqn6ehfpLmZXpdD87gP/mnuOvJdDc69HYukMtvjVz/7v/N33/FuUiki0dMKNNTx6/mNM1w+wNH0TvhrGJi5vP8vHT/wWdx5+N3ONg/za5/4V1aDBbOMQrf4ard4qdx95L2849t35QDPmgfMftJd3Tj95cfncu6y1q1/xgR/jFYd7b27az/7PF0m83zgm3t90EEJcvzi7/2O37HvdgTcefLvwlcy9erYkZUXOavFALNqfF/mqcW4vSI1kox+4YpaccO9VocPCm5sTLU8476E24qqb8qhXelSBzoyzKRRFkQVR0yNRflGuyBbK7Gi6yKhVpCDcw6nP3eR6NKVkV9OdPOavGBAkWqKEKyIsVRaKtvHDDRtd5+I7iv1o8oFNsV5F0WZBXlycn/tsR7towx0G7LCFJmGCOXbYJKHLQG+ibY9ATeOLKtM4stGjnfdldF0sp+wUC57PVJiijVPo+0ZwoBoTa0U3V5B9aah4Qw986YtXhtlKwlwloZKr1IkRtBKPyDNc6YQ0goytgbMXVXzNIFPEmcskr/sZvjKEyrA1CIjz/WityBt0aG6c6hEqw6lWha1BwEJtUA7u6kHGTuzzew/9PL14nebUXSxOv5Vm5YArCkRSVy69pZu22dp+mCurH6EWLdCLV3jLLf8YIatk1qmsXVJSHOFa7j1Cd+NBbG8TX0RIFZL0LlOfuJX1tU9w86EfIZm7hwYN9qugTIqJlCNBFU/Ty7zy2imKvIrW1rGRJfHwhHXXTwZP2kfKwtjQ+rTWP8PS3DuRAk7Y07T1Baw1BGqCSEwS2x0OiptJyTiq6lTyNJpigGut4GLf4zxX6NMuuxR6AirS0gyykjgrYakFGRNhll9D7thn1l3nAFsDj8xIuqnnWomPDE6LZkXF1L7ANUQpBqgyH8ymeR1DL5P08v0WSkvDd4O+4jrua8GaHbDBKikDjE3pd86QDpbJts8ga7NYJbBxFzVzCKv7WJNhNi6AzkBr58EOQsBiV84wLDZxdhFMiogmh5aT8NrpI9Za6Lcx28vI6jRy9jqwaZmn7lJklPOKS0fgQaJUnZq3jybzeZfYENNb55mz/5Hqde8jkV3S3plrfue1IIM55LknuP3I32KufoBIuQLvejBaY1E0sskbV8nhPbsofBxuV2EHsmz1VlneOs2ptVOcXHmKP/ct/wYpAxIt6WaKrhZs2AHWWirdZ7m8+ju8/fq3c9uB29zMXH7fK54boyJK2f2RYibP2RDVCDFm5Pfngh55nlgE3bjH//jsf+f73/D3sUAnNjx89mNMN46xNH0DSg6FnYJ4K2ExpsMfPfqfufvIn+XA9I08cfF+rOnwluvfVSrwhTBgrGBt5zJnN04yUZnjyNzt5YBBmx6feuq3WWtfYnXnIgBzjYPcuvQ21nae5ejcTdy87263jfl19uzqk3zmzB/2heKvXl65+Btf8cEf4xWFe29u2s/9wutf1DLCb/nYmHh/M2Fxbt+PBzL4mT978/eH+6cOEsjhSL5QqCyFYuVu0FLmqlWuXhUNXWLtpuYyI0uFu7jRCoFLKMmJ+Ki1xEJZQFco56MorB7FAz3TxfuKZefqWkEIrzFV6andkVh7Papyz/tHX9dW7Ppbsf4FgS+sJl4+bQ7DB8twHw4HLqPqPQxVvtFp2F3rlm+P3vXgcAONVqryZBOXQrJjTNkIKDHQtikbYp2UAfMcoE0bD59NLmGtYUYcZEk0afqOJHYSj9QKVrKUW2qOSA0ySTv1qChNJW+2Mlq4GCrNYi2mGWjW+j5zlZRYSzZjj0AaLncquYK/WwUdXUZxXmRasL8xIFKG1V6AFJaFakrN07QzxcV2hLbCkXXpBlWhMmzHHqc3NR978j9y243/iKaULo0j/56KdPGJRd64b2NM1kLKgIee+Tkq4SzVymHk1J3ooIIvnC9+QLesHZhklqoNSPqX6A6W2dq4n9mZN7M4/S1MB85iUxz7OHMENTay9EkDdFPFE9kmLbuMEJLYtBgkFxEiYCa8nb7d5ji3s89XpHlahAVOr3ycew/eVyrlodJs9AMaQVYWzYVKUws02ojcP7+75tyThvMdRygr0pJaF4c5GSYYRDmYjjynEE6FKY1A4wvLVJCWtQk1lTEwCglspX6ZQlNERFZ8TWYEkWeYDLO8WNaR9p3E33XtFG3I26lHbCDM25VLbK7WDgeb23k31pW1j9LbehxZn8cGIaI+TXrpQRh0UHM3IOqz6NWT2N4W4BJM3IExqEN3IPwASR1XqNkg9BewZBiTku6cRW+dRffWUAduAOUGnba7jVk+jVw85jpoAnb9PEgftXhLGWcoUEhVI/IXkeSxkWgEikg0aDBDSIBn3fvT3gVOnfsFkqkJbBR8Vb7v6829mHSTuw6/j4rnitKLj492gVT5fViQR+vl9xsvH9gX95niZ0Gat7sbfODR99OJXS+GejSB780jvQWmooTTy19i3+R+7jt+H/snFsvGO3B147Bht9jib8OZPRjtirn7fv58KD5vEXzh7INs9ba5+8j78KVlo5fx8RPv5/ZD72O+MYcUlsy6wtLROqRAGX73Sz/H++74q1TDJn/48H/j3Td/O7ONhT1FxbZ8tmkL5zdO0016HJ27Axh93qWsty9xZes0H3/q9/n+1/1tjs3fXO4Xm+/3wlrTjTv8ydO/bfqm8+HTF059v7W294IHfoxXFO69uWk/999fHGcO3/zxVyXxHqeafJUQQjQO7z/8oaPTR9/8nTf/WVnxA0APCTZi101S26HqnWl3g+xliszkmcp50aUSlkqQlu8tCsXCq4q0nNIRSEec2olXKguj3dAyIwiVU8dLFVpahHXqU6FeFOQ5zb3ZexvTSOyuRBVw4tTeRg17ybbbV45oZ7ldxFfDqWQpLELa8gTU+WeLh5d7DwjhSLnOf89wnm2Ve7bdZxzJKCK/vD2DCOdnzh+UuEKpqUCTGsEkkoGGGSWdcmoFUsKE9NjPYrk+G9kUm3TwieizjYdHIB3518ZZYSqAsT7aZpg8xWW+EtPLvFyZdgRzkCn2Nwa5um9L/3kvk2RGsNkPyohJNaKCFvtE5kRPSctsxaUuRMoyFbgowsVKwtog4FIndAVR0jIZps5epAVrvQBPFTMggkYo8NCE6TIq2p9Ph0NFufWSOFLhlNUA48/RHqzTTbbZ7p4FvgSXfpvZxfexdOB7AQgJaNqQS1d+iwutEwS+szNE9Zs5uPBuppt3UPcs01GCJ22u2Asmw8w97PNje6nn84R9gq3Wx1HhPM3oVjI7YEIeZCI6SN9u0zErCCRPmI9zThzmDd71LNZiMi3YCnQZXVlcI7PVhIqnGWSSZphS9VxaT6QsnVQiY8oai6IAci5yEZ2JkQS5zWoyShG414VwLcAbvmY2TMsIyCk/wROGph8TyKy8vg5XDdtplbmwwuogYDv1mA1TJvLozXbq0dOSRAn8bHhNx1qS5Rn1UjgblZWFdcVdzx7uPC7Ol7qQ7Az6pDtniebuhOYcmelgTYxq7IcJH7NxBrt2CjV5EA5fj9k6h4g7WEBWJ8ELEUIh/ApC+EhZwZBg0RhiVHMftek7GVz6HIPlk4iJeahUoNpE1KYwy6fd9decQ9SmXFOcxOA1FiisPYGcoCIm3XHKC5tdi65ilkmWdSq12nXcecM/5Nyl97PePo+dmcWOpAU9F4Sqcnn9cxybe2cebapLhRso6y6Kc8VT7n5b3A8L8g3sShcpZl8UMFOf5sfe+jcByIyhO2ix0dtkq7tBZhTvfOtfpxnVS7KsxG4luhQzBGXUqp/PIJJf+0YMBQpGluN+2S2WjMJAmXL0yMVHuf/UJ/mOu/5W2RsAGbA0fRfbg5Rq5BEqkzc3y/dJfs9a2zlD5EcsNqpAxmSlTnuwxVxj4aq6Ho2rOzEWrpu7jsvbF3n68iexwL6Jo8w3l/Ckz8GpwxyePsTrr3tXbkWkjFfMdwdSQCAtUa3Kj9z9F+SXLnzxfb1+76KnvG/NdPbQ8x37MV5hsOwOn/8mwljx/ipQjaqvm2pOffRtR985cc+Sm/4qiHahxJbqZG4bKKwSxg4LDVPt7B7d1HM3MmHIrHugjyoZvnKe34JY+9KirftZ8zXtxKMVexgEXh7bVKjXoxFURXveotFNgVGLyChGPeqj1pLRKL/igTBsqG3LYk+3/UMrinkOBWY0waRIbig80DYnmwW5Lry+SrgUk3jE613GceU+4NHtTK1TsCf9YaqIs7DIsktjZl2BZ6xdIopkmL8Nbv06mWTFDOjTp80mPbPGzfINLPr5scpVzX6mmAhTvFxdLWYzmmHKQjUtyXXV00yGmoGWbAw8NgcBU2FKK/bo5ecFOBW14jnvcMXTnFs/wTMrTxAo+M47vwdPWmbDlEBaKsot73S7QjtRtBOfUGnmqwmbA59W7LzhEsN2f5kza4+Spl2maoustk4yO3kn81NvJDYu61xAWQMATu0tOn92jKFLgjKSbvdZAiGJqkcoGtA0peD85fejdY97jv0o/cEq1WgeY9WuNtnV/DzuJB4135GgQSY5P5BcZoUNfYqb5ZuQQnJ9VXOl7/OUPc+OvsCiuoVZJpjxBFXPcGkgWWWbDXuBW8Ud3Dgx4OlLn+LmA/cBsNEPEAL21/uEypbFbpFyiSphnjxT9w3rA49W7OPnOc3FbJQ2gtBzg97JMKPpa7qZKi0LVc9QVZqKyvCFoe451TgxilBmNPwBgczoZhEX+k3OdqtUPc1iGDMT9LAIOlnAThbQ15KBVgyMq8dwxNtZmnqZZJAp+pnC2mFbcEbuQcV1s7JzikfP/CrhxK3o6QPoQJGZtsvztwlCeChRQ1hJRpv0/BewWOzOCnLhRtTUAWzax/a3UZPHIe6SbZxCRhOo6jwymiSgTta9QjR5EwqP7sZD9LdOABaiCgQBtruF3VlHBA1QHsHiPYSTx5HCJxANQmoERJi8y2iVelnAClDBwytJ+HBGpts/wyNnfoNOqLHN+nO2tAewvTaVHc2bbv4pGj7MVBKiPOnHk0MbWGGFcPdAdg18C8VbiOE+jjxT3nvFyPuvheIepcSwyc7od4+imAEs/l20fDfWEVBd3u+f8+vcNuTXcXHPfeDcozx4/kHedetfoZtNcb7vCsYnpZtpWt38AkpVODp3SzmrVsQoKmn50ukPEfoBbzn+DowVbHZX+J0H/yffceePMtdYKp8hRQLM3kJRN6NpOL/xLNv9TW5femO+b5z4o4Td1WjMz/e5l++MQv32pWW9s8qvPfo7aUL68+cvn/9Ja+3u7mVjvCJx701N+7n/9iIV77e+OhXvMfH+CiCEEMcPHf/XNjX/vx+4/Qe8qfr8LoJc2Epgd4OENJ+m1DkxFLjp4W7q0jpC5Qp6LMMp9lFFJfQMUf56cZgC5ZS1fiZ3qd3FdxdFj37+PpUrwOCU9oF2D+xCsR71a49OEe4t0hx+x+j0pyiV2VFLyrWI9rXsKpmRpb2giNkzlnIAoUfIeLG/B3nqS6SGkX3glD8lKQtHi78VD8ddMVt2z3pYV7AW5sQyVKZMUUmNYDVxy+uSEpOwKOqctOdpMo3B0LRVmtKj7hnCvHioEaR5Lq8gs7JUxQuvr5er0N1U0Um8XUWrg7RHP77MgckF9jUUl9oh3dTj4sYXeeLCJ7E25i1Hb+c7bnkbFqjkxHEt9jm/ExFrVR7TSGm6qUdn0GGlfYXlrcdZaZ2gFs6yf/puQn+Cdv8KxiRcv+89IP1y4FI8POO8WRBAT7u4v6oUVPJzta0FA2uQuNmHUBgeP/1zzDev45aD7yNSw3OmOO+LQYkjkwpPuoHOWj/gjO5wevBhQn+BY+r1vHkqYzJKmQ4zHl+v83ttl1VdU/u5kRtYqmREnubRHclj7f8BgPQnqUc3sbixwe1L97nrLD+nBloyU0mYjhImQ+ehN8BslNLwNdZCX0s2Bj6t2BG/ZphR8zSBsuXMQc03TPhZeQxmgricYfKFpaIyqirJCYLmfG+CL7fqLFYSZoKEzSTgxnqLuhfjSU1qvPy6knSzgI72iY0iMc4jXAxCEyOI81qNwq+vraCXqrJeoriGkqzHRx/7v3ndDT9BT01xkSt07Cqp6ZCZDibP3JaqghQhxvTJ1p9Gb51D1OeQs0cQaPTqaUzrCmr2Boh7EETgh66tetJDiRBRnSZrncOv7ae++GZkMEGSbZG2zpB1rqAHG5hBC3RM9fC3UZ25Ayl8PHx8nJUnoobM/+fj4Y/0OAiEKjP5wQ0OfWHzAbTl9MpneWrlY5gDN6H1+lX3IHftW9jZYtrs487r/gZHmwPCvD/BXuJdYPTeIfJZhr0dJEdReLD35rEDZYFwuTx220tKgn/NtXcD4cRIEjOMHZTsXo9iUFAsR+fixrBoHf74yT8lo8GxxXexOfD5UnqRGeZZUhGecLULa60TdOItji+8EU+RD5hzgccM+K0v/jzfedcPstB0ue9XWlf4k8d/iwOTR3jL9e9Dqai07BTb6eoXKJ+RSsADZ+/njUffvMuaKYSLphW4QY03MvBRwpZWmbKQ3GZ8+NTH7ePLj5++tHrp7dbay8+xC8d4heDemxr28//1xXHm4L5PjIn3axFCiNnD+w5/8ujUdTd/+w3vFaGnSiINkOQPwwImlwelhFQPE03SPPJukEkyK6n5w3zYovFLoXIWN99KWeDlyGEoDZ4cjvaLjGjYHQkYea4QzReulXiZIpIXefVyorvRd17KYqq8UJ096VTlUZUiGyHlo93ICrK+N2aryOQeTSEZTUUZXdZen/eoYue6uw2jCnuZ3PXgKgrO+nlUYOHRruUtjzuZi04s1O3hcXUkvq8Fgcx99Dl5r3g6L5aU9LSip93y2hoaqvjeYUfH1LiH2oSvXbOfPCFBCkr/qGt85PLGG0FaznbEmcQYy6mV+zmz8nlSPSD0aqSmz92Hv5X906/n4uYzPH35IwgEk9UpJkLNu27+XgzunLJWsBX71PyMfqo4UB9wqeOSBTY7F3nw7B/TT7aZrh1h39RNLE7ejJRB+eAqzrECowOXOLdMFL7vYXGXUxs9MVTBjXVe463W5zm/9mm+464fx1fDqeKiPkEIN9hKjWS9H1D1DBNhQj/z8kJjwUf6D7oMalL+3MSbqctTVDyL8A5xarvGx+OHSU0bgWJCHWaJJSalzFU9eMg8TKf3OKLTY9/Cd3Grco1aLNDwnf2kEWTsq8dsxx6ZEQwyReTpUkk72hhwqRdQdIc91uxzpNajnfmc6VSYj5yaPeG7RkazQZ8D1Q0GOqSVVOlrn5qX0M0CzvTqPLFVo5N6zEQJ98y0OVxpsa+2jhCWVPvl+Z8ZhSc1O0mN5bhJO/PpZB7auoGLyWfZupmil7qBfKJdrUgxsCuaMj109hMkWnB44b1kVrChDRe5SN9uu5STvFOnEB5ShlhrMHmnS2Nil/dtU2zSQa+dxZu6Dr+2xODMxwiOvROkQMkKvmzkjYZamM4qeu0kYeMowezNIAM8VUcIgcDDJm08VQUvxCeizkTZtVQhSIVBWkEoFBLBaKq4BAIkgaQk4Eq4LrpKwmrrFA+c/hVYvI046GGzDnshZIB/ZZV33PjjHJ0a2rHKeyC7ie9ogy8hdteWPFczzdGZT/e53XaJ0rohhjGTKieVo7Gzz+XXLgh4Uaw9KtgU+wnyZ4sVuz5nraA16PALn/tFrlt4E83mu+kbQccYllnnWyrTpQWn1Vvl3PqXmazNc2T2NjeTl9sft7tX+MAjv8x33PkX2T8xn1+7li9f+DQnlx/hz73+bxCo3cW2wcj9IDOCQFoePnc/tx58K71UuSSVEWW7sOFp62a1CqJd7EvI/d/5/jqxepo/ePID3Xa//UM7nZ0/vPbRGeOVgHtvatjP/5cXSbzfPiberznUqrV3T9Ymf//bb3xf7ebFWxCwa/oLhjey4t+jRZH9zCWWDPK4uwKTUbpLnR5FMZUJeZTVyHe6B4yloswuP7b7vt0KTeFz7uR+8kLtyHLFDHYnrmT5f4mWVDxDO1G7bCZB3g65aI9ckO9C8R71gBcqeZHAAE61AEc+C6It2a20u6lUN6WfGYnOPX6j0VijredHW7G7NAeoe5o0V9KLrp6FKlZEKAJ088nICc+WqSNFkwghoJt4tPNUkkL9LQiZtezKaS5sMe4cEOW6FuqM3nPOlJnNwEb7HF969teZaRzj1oPfTjVwTTVOXfkIK61ztPrrNCtzNKJJlrdPcmj6EPde9wN005D52gBPWla7IRWvz2SY0E5rSGE4ceUcT176KMZqbjv4Z1icPLZr/UZRFOi64tV8X++JvivItwEaypb7t0BYDBqlxSPh44//W77zrh+lUVkg8pzyr3IbUSfxeKZVpem5Jk3FdaCNoOq7af8TrZCLLPPmMORjj/8MKzuXuW7uJt52y08w0Ja1rU+xsn2aueYhJpvvAhmihOVEHDNJBQ/BCU6ytfwRmJgmCg5xl3oLS5WMRpBS8TWBdFYXJSz9TDIVulSL2EiMgZkoo5LbUQob06TvFOxnuzXqnmY+HNDTHgJL3ctYqmxR9QZoK+mkVRLj0UojHtqewFrBTJgyF8bcNXWByB+gpEapDFM0MjKKrFC+taKXVeimEef7E6zFIZ08RtERcOilkn7miPdoMXJRN/Irn/sZ3nbL30OpWqn2r2SucLjHNolpo22MsSlCOJ3Z5EWx2vRdzKBJsCYGIZGqgec1MaunMDahsu+N+KKKIiC2O2gbY63GWkuy8gimv4HQGiUrHLj+b+ZatsrPMXcROsXbo0JAkDu6MyxyRN3eO8NYdKItYh0t0Mz98b14m5OX/4grrVOocBaFQMoIPXeETvYMIpig0jIcCw/zhqP3Usk7je4l3cUV7o0Q79H7c0G8y/tesY7XaOc+KmKMquCFTz8omqGVf8+Jd/77KMm0e4g0XDvNROczNxZRqvSQ2w8ttBPNL33h12hW9nN8//eCkJzpW/YHkoVqjK8Mtfz6uLh1nlZ/kxsX78mb6Dhc2T7Lx576AyYr09x3/XtoVudJjeDk8oM8fO5+3n7jd7N/cgkl5S7Fe9Qe85lT9/Mt172VJBc7nEBBaeUC9wz094gzxXZAMdvrlr/d7/Lrj70/ayU7v3ThyoW/Oe54+crEvTc27Of/870vahnBOz85Jt6vFQghvEP7Dv2Hqlf7a99z6w94E5WJUrmGq/17o1ncxe4s1OV2PhXs56SuGWZls4Rdnmk7JJnFlKcvTekhV2IYtQa7yX5hvRj1OBdo5wkNEhfXF+fqgTFXF0IaC1sDv5y6Lj5XkOpq3r68sMUUFgpglyJU+L0LUr63WyUMCcLo9tuS0NuysK3Yv4UPPTYyV/7dvkr0kEy3taBjMlbFGhkpSywRIcmwZFgW/eE2Fx7u0a5sMifx1kIvdTae0c6aRUOa4v2pkcOosZFYOMir+PMBT3G8y4eGtKRZh4fOfICt7gp3HP1hpmoHRh6MltXWM6xsP07k+ZxaeYiDM7dy28F3Ug0n6MYZq9snWJi6lUtbT3Fh/UtsdS4ghODOI9/HE+c/SKMyw20H38N0fWnX8SlmIp4r670Y8IwiNS5+0uIIwESQ5X8X5bERAp66+CGubD2Kkh6+8pms1PjWW/4ctUDRzzRV36eTKpY7EZcHHtO+OwaVPA2k4mWEnqGTeJxtR9Rllwef+Xdc3DrNj933E2xkt1PxNJu9Ll96+qf5zrt+lDNrJzlx+UEWJg5y877bEGqJftplI5lF+fM8fu4XqNevozpxM5P+HEerujyGmZHsr/dZqKRlVFw3kyx3AybDjDfPbqGE2VVwnFqFxNLVHr6wzAQ9lDD0dEAoM6peTEXFxDog8mK6aYXZ6lZ5XAMvdqRDuRjCchAmDcZI0jTAWsEgcZnyiQ7QRrKT1uhmAef6DS73A1LtioAHmSz9/FLYPHfalsk1/9+nfoZvu/OflqQvNYJWqtjQKW3RoUebhC6ZHeTku0gZkRibkpoOxsZYk2LNAOVNoGQVjwq9U39AY/87CRuHaTBDwoCMlAE7aJvm17nGExHd0x9kduHbUPXF0sdtcmq7vvJRGpWjNJq3ELq0bqpS7CLb4Mj26F2jOB+LngNRPsukDc52ptvEaReLpZ+0efrSR+hkKf78PXhJjOye48/c+ZdpBmm5zL3KMez2d48S6OK1ov6k+H1vg5tCyRb5OVBYQ4rrZi/Z3vvvAnstfBYnnqR2GAULw/vMqMiixLA4t3j2RJ5hJxF84sTv0086vPOWH+Vse4KBgaW8AHm2muRRnpbTaydQQnH9/PFyfxSSycmVp/nYyU8BkjccvY8bFm7h1NopHjr/AMutS1y/cBdvOnYfFU9yafsMD537ImvtZRCSQRozWZvnzgN3c9uBO7DC9ReoeIaZKC297MVzMMxtgAMtqXm6LIAfff4aa/jEmU/bL1146Ozltctvs9ZevGqHjvENxTcz8R6nmuyBEGJh/9z+T9+6cPvxtxx5hxAo0pyIlGpm+V73s7CCjHaNjHMvdUG6J8KsVNfyT5fpFMXvBQqFpOjqGMh8KlW45XrSKdqRMsO4vDxSsCi+LAi6L1OMhW7mkeWK9WjBYoGi+HMidK3KO6mXb6vA5hvcSb18GtDdxDMtdqWjeGJI/ANpnLq9RzUn37ai6LDcZjFMg3GEVdBJJT3j/MRFQ5VGngxStIqPjaSVCbo2xRcKKSR1JjAYYjL6GOZERChd1m5B9BzhduSkWL8iRWUn9l30nKdLlV8JSzV0312ms6Su+LF4f5SnY6RaEmcJZ1cfQpsBU7U5blg4xtbAqdm9eIU/efQ/cdPSd3D90l8isZJOOiS0EjfI2dg5wVT9OG+/7SdZ236cDz3y76mFU3TjTXwZkJz5HQ5M3cpN++9jvnmUVm+Z+5/+Jd5w/PtKhVviOpwWx8qXhiKzXYkhwy6iHZEGMXIuOrpg8KHcX+6cFwg1tCdZBPWwTrt/hdCrc/PR70KJAb/wmZ/G9yKM0Xz33X+BTF5PZgTTvsswL+ociq6s2kKoMsTgfu4/90ccmj7KZHWGnj3OysYnWNn6EjuDFodnb2SueZi55mHedPxdrLXOcnLlcbZ7D1MJarT6LTa7G+yfOMTBiYTUPE57RyCrb8FYQS+JObv2ENnc7fjSw+Kum6Vq7LzTicfTnQZ3TWxSUSm+zDBW0korrCUV5oI+s2EbAE9qpkQbJUw+cyDIrEIJw6Hpi1QabXTqEffd8VcqQ0qDCpxVxaQ+rfYUO3GDfhYwX90EIDMeqfFw5hJLRaUshn1CadhIfDZjz2WH541ObH6MPGHppgpjJVjNqI6rhKWqDOCjdIOKqNCly0B00SJFM2z5LkQNX9RIbRctY7Tp4cm6I+dCMHH0u9k+9Vss3fL3aNoqUtQB2KRKT7SxaDJSJIrm/nezeva3OXjj38XIodKtsoTu5iN05KN0BxeZnH8rfSKausq08kpVtJhxcvdDw96ZmyLFyJcWI3PLhlelHlbdZ+Us1839TdZalzlx5X60kUxO3UamRXnvs3YYrTqKUVJ7LePHC5HuME+gGvUpF3VBe1Okyn3P7thQgXVpJbkQM5pW5QtLylD11rjr0hMWpYoBt4uGLWpXOqminbjM9z9z+3fz6PlP8EeP/EfedsuPsZnMEmtFzc8QOMujJxKunz3Kg+cfoKKuG852WoEn4e4DN3D7/hu5srPOrzzwm0xUpjg0cwNHZq8n1ZrHLnyeX/n8z+NJn/2TS9yx9HpiLenG2zSr82g94BNP/z6NqM6NizfQyJ+VRUyvEFDsovJ+rFw9RlLaeSifTRbFO657uzjYOHT0d5/4vaeqldr39/rdP7nG4RvjG4lvUt13rHiPIAqjt0w3p//ofTd9V+P47I1kOS8Zzeot/j3a8r1A+TdcckkvLw6ZitKyqY5bHuVnR5dZFjzmKoiLOHMpCcVyg5xUOwXF0s78soHMIPfMVdQwOg2glXrspMNKf2OGRYqC3B6QP9gc4XUFf5lxKmDkafqpGrFRDLfdU3YXGR9F0Z2yaE8Ow1zXwnIy6mdMtGQ99tgyKbFIUUg8q5iSPhXlGoQU6nOiXcrD+diyKVrUqDEnIirKspW5qeoI14Wz2HfNvAOnnydQFEq5zK0okWfK5bpukY549zPFUqNPnMFDF55mo3OFzmCbbrLFIGlhbbFtAYFfw5M+O/0VDs/eS+jXefjM7/Bdr/uHKOGz019js3OFR899iG+/9/+hpSM8AdNBRsXTpFmbx8/9OoN0wE2HfpAw2M/q1iN8+cIf8m13/ARp1qcS1PGUzBU0uethP4qhz3TY6bRoJw+7B44w7IBZ2JiKDPHifb40ZXLNcIZndNbEoo0hNSlVPyRUGik0FsWnT/wiN+5/PUJ4VDxFJTxMM3IKbZp1aUYVWolHO/a4svUoHz/xG/ylN/9DVnfO8SePv5/Qi7hh8U5uX3ojk9WpXdtZ+Om9EfKurcCajOWdi5xcfpxTa8/whuu+lWc3u9SjeYxe4+Z9d/Lo+fu5Yf87OdD00RZumOiz0vfLGo25KGUqSDlSbdPNfM706hytdpgLO8xUttFWEXox2ij6aUTFHxAFrmAxCGKiqTZWS3bWZmj3mwDUow5h2CdNAzwvRQjLg5du5fGdCeajhLrKuHP6LL5yr2XGQwnNIIt4dmeRdhbQN4q+VnQyRWfk2i4IajtV9DLF7z74ixyev4/55g1IWRRvunSUnpYkBno2IxZZ2fwoIyVhUC4zZcDAOiItUCjhu26Y2xfwOtscWfphQqGcTURAy6R0Rb9UwDUJBkOy8jAkXeb3fydV2aAhfFrtE5zffoD+wj6Si5/Hl3VmDn0Pnoyo0uCoqjsrRjloz881bGnlGiXK10p1KvZLcU0UqnXxPk8Olee9pNt911Dp3qt4j6K4VgrhxM/Te0JpSg93gVEb1+jnYchFivePFphbHOl2xeB5gTnDGcHid19YBrl9cNgteTiLUGD0mfWl809x/zMf4s/e+cNoeZx63gxqKsz41DMf5xMn7+fA1BG+847vZ77uegx0UlV23S2sHidWzvKJU1/g++79i7uK8Y1xM5YPn/s0D5z5NDcu3sJUdYKt7jrtwQ4guOvQm7h+4Ua8fP+N7rcimaUcjBVpWyOzwqOzrcVzttVv8xuP/WbWSTs/f3H54j+wxQ17jG8o7r2xYb/wH+95Ucvwv/VTY8X71QohhFhaOPBPDs4u/dM/f8cP+pPVaTJr8WQRD5W3bJeW8rZohp3MigJJYdyFH+cEpuoZqrmXdLS1b3EjzUwxVzfyMMCN8kNlCKXJVe38gcrwIVOQ/4rSVBTspB5KiLLYr1CFepmkm8n85p/7chVoawlGyL6xw46Y4JTcokvirsLKvAh0b/Oc4gZvrLOgZNqRbiGcwlwoJEWHSpf4IfPZAcUgk6xklh06IFxm74yI6GGYCXW5vUG+DYmRXIwNO6LHtJ1wh0TAWt7ppS5cAZbFKUJFHrbznSvqfkbVz3Z57YsiqnrgBjraCowWeELzubOnePDMh5iqH2Nx4npmJ24h8qcIgwnIPauZThmkXRLdJwj2MxUaWr2LREGDTz75y1TDJtVwnlo0z5tv+l9IbUBFwnwlxlrLxfXPc+Lih3nPLe/BBm+hE2c88uwv00u2+Lbbf5zQi4j8aFdO7nNhbxJDsf8Nw8LY8sEl3PlSJBbo3BvvPuvO28LbX+ynIinmqtwuofCVwthiYOP88e3BNvef/B2q4STn1k9weOYGBmmP9fYVMpPyz7/r32EttBMf3z+CsZZukjDVuJUf+Zb9NKIpV5yXDwpGydVoUoRhmDyBVByePszh6cPc1Vnm9x5+PxPVRUI1w71H34QA3nnjO/j06c/TG8xzx/7jpEZQ8QwLUYIUcKYTsZV4rAxCDlf7nOuEXOkHLFbq3JqFHKqvYqykEvYI/QFBEOOFMSbzCOr9fJ9Y6pPbKKUxRlKptzGpT5oFPLp6PUfqa/SNxw8fexAAayVSarT2kFJT8ROSJEQJzXy0Q5BUsQhaaUQgfUJp2EkVsXHXna+gnsdnvuX4W/j86U/w5XPvZ7Z5E3cf/fN5rQJUMVSkoGo9EuOVTZLADVzbxKRkGGrUxCRdtklszyWQCBi0z4ENCExGoPzSc10RHqa0k2gkEQZDff6dtC5/hIsn/z3N6gEq+76TCyt/QnPqDahgitb+20g3z7Ly9P/HvqN/CRPVWMsy5jyPgKGqPQptBeTXcHE+ykK82KNAPxe0Fa6/gbCoEU179BwDSrth0T4drm5kU5Duoh6kIN3ue9ztfnQLRi1gxfaNFj0XP5O8iLq4//tymNhUYDTidXnnMh9/5vP4KqST9Hn3Te9mtjaDEsXs7DAGtcDrD93EwclZ3v/gL3Pd/B3csHgPU9E0qRGcuPI0f/2+H+eLZx/gf3z2P/Jdd/4gB6YOl/tkJ/Wcx14IPvHMZ7AiypOrXA+FIqlECct1s9fz6PkvUAsaHJ27jTsPTuIpN5v68ac/zOGZo1gVlL0Ziufn0EKTD/IRuwYz6wOPimfyGR1KC0otbPLXXvdXvQ+f+shPYHmHEOJd1trtFz4zxvj/s/ffAZYc93Uv/qnqdNPkvLM5JywWwAKLHAiSYAYzRZEKlvQU7SfbkiXr+cmWpWcFS5ZFyzYtkbRFUYk5iJkAiAwsMrDALjbn2TR55oZOVb8/qqtv39mFLP8o2qSE+mNn586dnr4dqk+d7/me810dBTj1D238g2e8hRCVlWMrvrqmb9Utb938Juk53hIHD/IkuGLYgW0Ws0ORhVlgmV6R2fm1WZalK/Ji+IGXMS9WQmIbeopg2wTJCHxh1JGzsU8gUxIt8yZKq122jEoji6PPWUBNQdus8zKq0qZBMcp8gluZ64TZv7aNoC5MoMXQnOIDrhW37eysFKaonbRWgo7ULEYOs7GDK2BRaSKdsihaSCRTnCWgwu7SMKdagkQrep02QJjSLWISEmIWmCbU8wB4okqZLgDcLIhjGQNUpHnY9PoJ/eUwj4O2/t7WKSZSknrk0ExcLs4d5uHDX4Kgh8Flb2SFv5qhIO04xvY8WneVQHY+sO0DzhGaucjNg34acUq9sZ+KOMbJyX0s7+7lfVe9nn3zI1xsBDy078MM92xi+/LbcAuWfNDp/JL/HV4ZaCyVFtlzaB/0xfS+pT7Q1o3FnrucUSpss9MhpQ0QLJgQNIGUwC1TD6c5M3OAZb3ruPfFP+GdV7+X7so4FxuCfWee4MDEfWwe20VfdYhl/VdR9tolfnsf5X7JFty8kv9a4XgprXju5FO8cOZ55pvzSGHMysteic1ju0lFP1vHNrC5t8F4qcmxRpVICWpuyrEF487Q7afMRw7TLZ+1PU3eMnaMvvIsQmiCoJmDa60FjpvgdzWQfkra8FCJg5Aa6aWkoUt9vock9SiX6oRhOetxcLLFYEKiXDwnRsqUelgjVQ6TrR4coXKZkJW+XAx9FmInb5T2MltLa8/WiAV/sedjrBt7PaO9W4BsAZvKjobxWJuAqlRDS0Erk2zFJESEtGjkgTYtvUg4+QKti8+xdeUHGejelF2H5nfniIyMBRMqWKJCr+6iTzqcnX6c4+e+yfjYWyn1bmeGKSbTA6SqiRMmhCcfZXTZ2xjruZaKcCnJ9j3kyU7W2UpMbDJssVKTz1fFhshsIW5+tw1+i3OUvcaK90MOrsWljZLFioudS4LMIrP4hC3+vSIRo7O/eTn/byvlsg5V0H7GFK1SIyXzyuKRi0e578AD3LHxZp4/c4DRnjF2r96Vn2s7d9lFrN0XgCgJee7Uc7w4sZfFsI4UMNQ1wg9f914UcHp2mk8/8ynWDK7ntZtfS+C2ZUyu0JycOspnn/8K77n2Zwm8kuk9kua6SFTG2CctXjj5FE+feJDeygB3bHkHXUEVR0qeO/kIG0e2Mtw9ZqRoBea7+NyES91fQiWoZCmjRV24PffPT+zlKwe+NXNxdvK2OI73XnKwXx3/28Y1G7v0nv/8HTLed73KeH/fDSHEymVDY4/dsurGZTesNCL/SJGzanlsedZ4ppUgFW0ZiIBch2ZcHmTWca8pe+3mPV+qjoktzmzVnALD4UtFWbb5QyP7aE8oFnSnWjCfutQTWzY2AMiXijA1DYFxJpWwjINAE0iAtl7O/i4Y3bgB3DKPtC8+2CzIQpPr0g3jUGiuzKoCrcx1QQgNSpBq61Ji3jfV8qmnEKHwMRHtMyqmKjzqxIy5PiQlFkWLhrpIKnvY2+pCImmJJpMqxadERIsmCwRUiGkR6TquKKG1wqNEQsxqVtDtCLq9BE/GxsM8bbPtAsNG+W7m2KIFjYzlPzd/nocOfolFGlRX3oos9RIK4yRhj02xQbTtJ95+MFhrQYkmTM2x0BgQEKVw7MyfsaK6yJbRVbx27RvpqS7j+akaMy2fipfQW+nj4MS9rBrcwGBtrA2WCw9nZ8lDyGquKeyn+b69OOrU1revoeLCEYxcqriwSFK7UDTb8B2VX2fQdqdZUkHPgE8p2xdNJRhg/cgNnLj4DJ7jUgkGuXff5zk6eYha0EeqYT6MOHjuG2xuTnPN6js7wIthDjvlX0K3y/z5OaEtHzD3quTa1ddx3epr8/MXpnB66iX2nnkRP1jNYmuM44sVzjbMgi1UkrNpwFA5YrLloYFtvXVONVImmx5HFofY6kSU/SZJ4pGmLkni4brGuUg2AjzZQjia+nQPpXKDeCFgsdFFIzFg25EpSkuS1KWVBEYr7pjF/qH5FfQHdcpui5LXYqXfwJEp357YxrrqDOOVKXq8CoHs4YIMmAo903iWmCAUV2oCoRFC8rad7+YvHv8oXVv/GY50SdIQ1xtAqTY76GWcsgG3AlKJj0+ESzNzJDG6bYkUDqWhGxnsvZ7Dhz+Ks+Ld9HdvQwEVB6TykUoghYMipUyZXselJDXLBm5gdOAGEg2LKqFH9JE4a1kQEySlBqV1r+XiyXtJmudYOfo2UA4gUML0ajiyrfnWCGIFngTFpVKQon5aZO+3c1ixKfyVRlHj3REudhnOSix5n6bNcueVyyV/yy7il+53u/fEbMEvXNy2WRPVZrpDZXoLWolgoGs5U41ZNgwuJ1WaP33yUzxy5EGiVHHD2lu4bs0N+fGLMumYXWz4bsB1a3Zz3ZrdNKKW6R1wykyHZo6sJylzjWmOTR7kIw8d4O6d72VZ74jpBhGwZnANb9pyC1957r/z3t0/wUxYpr8U01IiPxYnp8/w2NF72DRyJUJ4fP2Fv2LX6htoRE1KXo1HjzzAa7e8AbfSQ5QFepnnlzkuia3KZQsPlR3vitOuBMjCtZBqAQKuHr+Ckdpw3yee/dSTA32DPzY1M/kXr3zmXx2vju/O+AfLeJeC0q0D3QNffdf2d1ZXDawG2sxCsQO9GAUvXmFSd0Tb4cH+rp+xHdZpJA+qySUlWSnUNh5m9nrQ1qblgEcbO8Jmxk5FSuZNlr5U1BOHeixz3++lzibmfeZBFabtppzFWGZ6T7O9WBm/8bJnQldywE2bMbLd8eZ4ZRN2xpzHmY64uGCw5drJls8L6UmsOGGYcaQWnOQgoZql31mbAekqLeZZjE/iyArjzpUsMAXABtaggLqOOS/OEuoFXGEA3SgrUChmmMLFw6dEmRJVPAZco7NXGuZCj9HMhs/LgnKk0Ey3fGZbHlE8xWNHvsx0eJq+8bvwayvyhrNBxljulKh5aW69ZzXP9lqxUd2N1IAPP7PAssE8qRIshpMcPPknbBro5ueufyN15XGh5bNvupqHERl/7wZfe/b3eOd1v4QjvUtBd0eZus2EFdlhYzPXWZHQS64NK7EpXtuWEQtTp0NLaSs2TuHatY299nopls+TrERunWAA5prTPHXkc7iOx7bxG9h76gGGu8e5avVr+dIz/5WNI1dy6Pxz9FeH2LXuHVT9kvH8LerTs88XZBUeq9O1LO9Sra5d+BZL+Y7Q1BOHQKZ84rH/yvbxaziz0OSa1a+nO1B5r0YlO99KG4Z4rBqyuWuRZ2d6cKXmjqGzjFYnKfnNzBrQyfXb5doCXq1F2vJoLdSQUrHY6M59u11pGi2jxCdOXXw3xhEpqXaIEo+SGxIrD6UFtaCOwHh+n1ocYXn1AiW/RZx6TDd6OVofINaCudijkZqwLDtneVLTSCTPnD7CN178NLVSD1J41MNFBro3Mtp3NX21zejsQvEyyVGYOfNEGfsd6xQldCZBUbkzSW8M+w//Lrs2/gKB39txHSUaIm3AfZerc2ZUkc09yrynoY0j0YK+aCwNNaRnnsHXHltX/ii+MAtbT7b7ZYoA3H5WO+c4RWa7wHra68TeI0WrwLYW/FLGu10lyu6jwvVlGW/bUGktAp1sm/a99ufmmryUubf3U/H74mtL709rnWrvv3puNyk4fu4hLi6c5f1Xv4m5MMVzy4RJwu/e+2Hec+2P0F8dyM+Fbbwvat2LZJE5j4Injj7KX7/wGd6+8wd59Mi9vGXHO7hn/9dZN7SeOze/Fim93PL2ocMPcGJ2hps2/QALkYmkr3op9dhh35k9zNbPs7xvjCeP3sNU/SKv2fxmdq25jUYco9MWp2cO04znuXndjXhS5ESXJbmAvHqYnwfadonQrr7lBFZ2rFpRg8+8+KlkNpz76KmzJ3/uVd33//5xzcYuvec/XfUdbcN740Pfl4z3P0jgPT4y/stlt/IbP3Dl+71qqdcw1gXGwd7gxVJlsYyfg4xse9K+RttRxJc6d/mwpVBXqA5Grlgms6AqUTIHb3bbQmiaqcN8bBrALACy77POKbYUZy2kbOnTPjAi1S5PtlKJ1tDMEvGiDHwvHfZ3g6zRsJU6eXNdsbMdyDXbRX0wwKG64MXkXqydquf0st25gdOc5UL4JH3BFWwR6xjwU+Zih5fVGep6CleUaKYX8WQXvqiygXW4Ag7rM7SYp5GepyyH6BGj9OseSsKlkpWkK67iREuwItB5ymUzkUzHDmNlYx/W7cdU/ZSF0OXUfMKxs1/h+Mw+esdeR3fPDjzhUaOUnzMfSa+nMi2rzr2uiw+nVipZVJqabMt+rO7ek5owjnj64G/y09e/nm0jq5lolpho+MyHJlCnlkWoN+OQ507cS8mrsWPlbdgQofy8cHnLsSKrbTXt+bVUWJDZhaQF3kUwkpexC1aQSosccNswIvvXi84mVutvPeGLDbS+DHny6Oc4N3uSHStv5+DZR5FCsG35Tawd2oEQgnrrPPsn9nDF8mvprYwQZkFO9p4LU6fQIKfxMqcGJ/u/Hc4S4NA+bsXFQvv1qmzwqac/jecEuMEQm8ZuwHN7Wd/TpN+PaaYOC7HD+aYBwdcNzqG14GwrYFv3HOt7zlAtL5hKUOrmdoGOF+N4CVoJWvUaaeow3+zBkzGpdvJ7RClJpAwYL7khc2GNLr+BFApHpMTKw3ci4tTDlQmNpExXsIjnxLSiEql2aCYllBZcaHWzmHpMRz6N1KGeOLlEo5GYxEt7jutRytHJ4xw69xRTi2fYtPxdDPVsz6812/thA5RaWpFoRYo2LkJAohWukDSmHyJK5lkz9lZzn1sbTt3uD/CkSXc1vtU6nzMSJWikDvOpZpYmESERLUpUOf7iv+OKzf+KqttNSbY1/UvnUhuAVWy8tHHnVk7Xdkdpg3RBG8AXEx9fCXhfcs9l75GSDuDtSiMhtMA7f98rAG87ira1rlDGttUyu7qdxGurUZq29LGZeWDXY0mYwn37PkkrnOFHr7sb3x8C4FsHHyfVkmtW3ZjLBG1mhMqqu5f7nFoLDl08ygMHv8X7r/sJzs0e5MsvfImxnjFW9K/i2ZNP8ZYr3s7qwbX4MqXRPM8fP/ZJ7rriB3G81dk9qohTSTNRfO3ZD3HtmltY3jvOdH2CgUovWrg04wYr+9fgOYJGOMezJ5/gimXbGekewSZ1tm0SyWQl7X3UtOfGpQ3/lvQyjeCabx2+R+87v++Z0+dP36G1Xrj0bLw6vlvjmg1/B8D7Ta8C7+/5IYRwV4yt+Mx41/hb37HtbdJzvFxXp3Wnxs+6fIRK0uUmOeMQZS4d9kFSctICMy0y6z+jAXZyaUcbYAPEWuTbyx9Iwnaom0k/1jJvgmmkTmYfRc7AF8GeZemlaJfgPKlzSYvOJA+RksxmFlLW5cKCbpOeJ/OJ2M2s0ez+F38GZJOnY1gdqfPEQds8KdH4jmai6fKCfhZPVOligJVigLKEvekZZtPjuLKCK0qs1hvolsbRZEEsEtHCp8QwvfjZH2373RoGboIZAFbLPipOO67dEZrzLRN9PqUjljk+rtAdCxpHaHr9BIh44dQDHDv/OL3Dr2Gk/0YC6SERJLRJEInARVCSbb/g/PjrdupomD34LNgvauETLdh/4mPcvnqU61dfy4l6ibOLAT1BQneQcHS2giM1L51+iJfPPEB/bRm3bf4AnuvnDaBFNttc05e+Zt0L2s477epD8fviaxZ8mJ+bn1nXEru4KDabFZln6GT/wtTIdUzjW8qx8/czMbOP6cUzbBjdycqBzTx19BtsHb+BLeO7MzlU5q6zRB9frK4oDdPNgKqfGECV/Y6f2Ry6hd8vMtyvNIqODq7QjJZCfv0bH+aX7/gAD5w8yfl6wju2XctAEBErwYl6meWVFudbPquqLbpc4/+9mHisrsyxpvc0QdBEZi5EjhcjpEZIRdwo02xWmar3U/UapNrY/Qk0YWpkLb4TY1IyyzTSgP7MrlBi5wZJ4ET4bkTgtQjjEmnqdJzXMPWRQrMYl5mJqszFAS3l0MhSLW2oio29j5SVlwnOLSzw7f2fIkpihnu2Mj5wFZXSaD7faYx2u0PXnC3mIg3nzn2RrtIAywdvysGbXezZYx1kQVaBYxbzxdCaWJn+EiE0s7EkQiERnJt8kHMX7qOruobVY2+mqzSETU8tAnB7/XpZb0lR922uVd0BsIsLOMt2LwXXxXvrbwLexYqLI9qLDi9b8Fig/D8D3kXNtr12IyU7Fs1FjbNt5JeZDKORLVSVNo31YSpp1PfzmWf/mjdvu4P1Q+s4NnORv3rqU4z1LOe6tbexvG+N2VfH3EsmTI1cl11kjIXQPHz4YY5ePMQ/uuGHODc/wX+890N84NoPcN+BbzNVn+S6Ndfzxm1v5N9++d+wvH81q4d2sXnZTfm+e1LRTBwaUci3X/wQg7URdq+9GUGILxICr8TxqePESjNUG2K8d5yHDt7LUNcgSmvWDq6j7Af0lPsvOQ/Ffc1fF53ynqVs+LNnXuBbh7514dzkud1a6+OXnOBXx3dlXLOhS+/5g+8QeL/lVeD9PT2EED3jw8seuX7FNVtfv/5GYab0tlRkJnKpuSmlzE3EAuGiD7WRfJivuWdsxghZrTd2m1lTZFE+YqQIklaqOXjhOBcWLjLcNcjq/nFKXgnrOtJKHeKMJW1HC5NLXizzAZ2LBcucmyAUo9m2tmitVOIVALJpwpLtwAFEx0PFhuRYeUCxoU4K3fZ9pm0NaP8vhGEhm4nDs8kE55oPglY4Xj9ld5RuMUqJKr3UiHXKjJhhizOclw0jJXMtoGUzowIb7xeY5LKbUnJTym6aA8RGFqG9GFvNu6kIzMaSQT/NpAOKQ+ee4OUz9zDafwMrR+4kFT6JpuOcJShCnZKIlB5KOaNuyt3meMU2ulm0XV8s4HYkOds9Mf0C8/MP8Yu3vZu9M11MNn2GKiErqiGN1GHvxS6mFo7zzLFP8oYrf57AdTtAgeZSt5Kl31sAUwRHxtf2Fe4L2vpTa/VowbymXfGx74X29tzcAcWyS+b+iJWkGUecuPgsh85+m8AtIYSiGS3SXeqlEvSxa80t9FXHc2bcgualGtgw8x+3L81lnul+wS3ClcY5x4YqFRnKdj/G5Y+ABTSJFnR7Kd/cfx+nZ47zQ1fdyXPnTnLr+ptwhGZDdZZjjW4G/ZBUCyajgGWlBoPBIrNRhaONbjbXZhgszRkm2otw3Riv1DLgMnFpNmpM1geMh3Rpnjj1sn4SSZR6RMo4O1S8FgLNQlzBkylR6uIIRTP1CZyYvmAex0lxRJpXJBwnwfdDwrBMPazSSgI0gqnQeGvXUz+Pnie7RhpZlcsypmEqmQtdzs/Pc3rmIEfP7wHh0VNdjesEeE6FwO+jv3s7Mgvasefgwux+Dpz+HDds+QV8p9TRXGsXp/Y1G/hlgXGqbL6ApJQlyKbKOGVEmQylLBWTcy9y6MwXGejewmDfNdTK43jS75DuFRswLWlQbIp0ZNv+1C4ki6D7lSwFi+9bev3YnxeBtyVu7Ot5s7zo3CZ0ygId0ZZCFRuWoe37XWS4o6zCZF2srFzExrG7osXzZye4sDjFp5/5NEO1Qf7w7p+lmShOzM3z509/hZGeVdy26Y25s4gF3IboIb+XivfUo0ce4OVzL/H2K+/mE3s+wXWrdvHs6efZMb6Tbx+8j5GuUS4unued1/wUY71rmM/saW3WwWLkorTAocXDB/8SRwrecsW76S8Lqm6WVqkEp+Yu8uTxPVy/+mpW9o2RpCkHLhxGa8Xk4jTd5R62j19h5HS02W9ZOCd2Pi9KR+2wz7Vj0yf59AufrZ+bPvfaNE0fv3SmeHX8XY9rNnTpPb//HQLvt70KvL9nhxBi9bLB0T1v3/q64d3Lt3SwDBYUBTLNb9CUNqMNnUyipu2BHWdd5IFMs4lPFkqKBrCGqebswjQTc5PMNBcy5i5l7eAaRrvHePLkXoR02Lbsynx/ipaD1mmjmUh6/DRfvXeA5FTiy3ajWzNrlgwzADsbuiRKUnbbzZumvCupx24OFoufMy7YV9WyKOalyWlWtmLfZ8G4FAYwPRofYD48gON0M+RuoUYPDRZZxhA1aSLIez0TG27j4e2xDbISsa1ENBOHemq2HWROFn3lmJqX5HHPpoHRaM1tzHuYOMxHRsZhEwtn6xM8/PJHALhz20/RUxlmLvKMzr0AvO0DvZ7CJA0Uin6qVKSgnDmiWKCpaeu5jS1fp/+uFPD80Y/xlq3XMNKzmn1TNca7WgSOopVK6rHDyekpnj3xTWpBiZs3vit/0FvwrQqgGMhDZ+wDpQhs0gwc2+vkch7rcGnoB3SCbWinchbL9dbzu3g9SQGNKOSl09/imePfohr0onTKyv71XLXyBlYOrEEI0/hn+yKKIL74oLT2Y2Eicya8KJspfh7LeruZl7BbuDdsPLUrLj/PFZlEW7E6MXWMLz7/Ba5etoYbN72dsXJEM5UM+RE1N8IVKgvVSQmcGCkUi3GZh6dGGCtFrCgvsKr7LNXyAl4QolIHlTosNrqphxVKbkilVCdNXbQWNDJ7wFRJZqMaNa+FJ2NcmXKmPkCv36DbX2Qm7MaXCd2lBRbCGjW/jlKSwAvNZ3VjlJI0wwr1uJI7o8xENVItONOq0eXGuZwtVA7NDHyrTCbUSCUzLZdW4qA0nJ27yFR9kiSNiJI6Z6afZ8XQzSzrvw4FLNQPs//UFxDCYfOqf0Ql6MtZ6KJcxRVt6Z5dqForOztfQKdziRCaxdjNJXBGTpdw6uIezs8dYqFxBiE91o69ieHeHUbqJ3SWEmwY9WIVpa1bbv/dYuXIVkqKV4r9vgisl14/RbCaS16Elfq1319kwuVlttXuEcoqGEsAeLE537qRaG3cToRozz+xNlkMVTflwf1f5JmJwwxUupkLI6rlIUQ6x5XL1rGqd5T1Q2v5wr4n2HPiOe7c+lZW9K3Bd5xcNrP0frPnEODMzFE+/8ynGesZ4czcBLesv5lzc5M8e/ppdq25k2tX7SLweoiUw3zkEaeSklPn+ZMPMts4S29lOVcsv5rPP/VfGO4eZ3nfahCKniDg5rVX5XK+i4uTHJ88xk1rr8nPn22GPzp5gsn6FFevuBpj69v2NLcGCNC237UjD7vLvtcapuszfPyZv4zmw8WfvDh98eO8Or6r41Xg/fd4OI6ze9nAyL0/dtXbqxuHlufNLhbg9XgxXjbBxFrkbLYd9meO0DSVw0zk5bHlxvbPaKuTNGK6Mc9kY4GpxhyNKCJSZrId7R5mtHuIkteDFlYfLlgMQz759F+xcXgD3aUuti7bhsCUWltRgydPPMlTJ57mX9/1T0gzr2jDQraBUJLp/HypaCRO9j3UM2sxgImFMt1BTNVLTWNKltZmWC6HhcjlbCjz0BlfQiWTU1TdlJKXmjRJ3Rn9bsNxljZzTrRcnknvJ2oeY33tPWxwqxxK6igUg3TR53bGOwP4TnZOsmYulQHYVJsGL09AbxBn2lDycmXZTQ1jmgX52AVC8YFqmXrLdp2aazG78AxnZw5TCQYZH7mbmZl7aMWziGATo31XIYGpuWc4N/0s29b8OOdVRIBLRUjKsv0AbeWgoF0BCZwljYfKgI09+3+Vf33Xz3FwvoupRkDJS5FopuuzPLj/j6gGPaweuorVQ1dQ8UsdzG0RMNjXXomds8OW8TtfM1+XLqKKY+lCM7cOzH6eLgHxRavBk1P7+frzf8jKwR2M961hy7Jr6C715WEYC5HLTMtnrNbs0KC7UucLCWiXg4vnsvi5U22qK8WmXxOX3gZ5RbBUfACbz9hewAA04xYHzu+nu1Sj4tc4P3+OC7OHeMfOd7CsHHJgoUbFUVzZM4UUGlekSKHpK82TKoeS16IeVnh0aiUn6iXWdzVZX51lpDJN4IZIoXKGO/BaOE5Cmroo5WRyHmmY78THlQmuY/ohwiQgTt1cjtJXnsuCdRRhXKIZl/JzJtB0V+Y4MzeG1oJuv06Y+mgEc5FJcIyUmUcWE5840w6Hysmv40QLFmKXuci8FqZmcW4tQidmXuLU1IvsWP1+AE5PPcv+U5/j+k0/SXdlRQe4KR5vW/2x90IReBevAz+rcFnpkL1O08zm0/4+mHswjC6y5/AnWDF0G8sGrs0BvyNMI5/VeLtC5deY3Z8OJlyQy7nsPhX33157S++a4oLRst0djZu0F7F5w6doO2ItJYGsRM02Adv+kES3m6b9TK5j0yvtPW0Xn4mSNFKJSGf5wwc+yq++7sd44OhzbB1eyx/v+RLXrL6dXq/O0ckTTMxf5P1Xv4VUlPjWyw9xePIkr9nyFraMbsX6/+efNdt3a20I0Irm+cRjH+PqFTu4sHCe49MT9NdW0F9byd5T97GifxWbR69k+cAO9p7Zx3MnvsqO5btYM7iOs7MneOrE49SjOtevuQXPLRl9emsOdIsd41vYNrIOV0R8Zd/9vHvHa8w1qWQHi316ZoJ95w6zcXgNq/uXY2eRYmiSHcWqQX5eC++NkhYfe/ozyWRz5j+fOnfmn+u/7wDp/+DYtb5L7/n9nd/RNty7H34VeH+vjcHe/vf0lrs+8fPXvzcYrBkmxuqu5xOXmpuYcBXRllMkWZe4BbdWfzgTeyQZI5FPrjrhgSNPoXVCzQvoLvfQXe6ht9yNltV8P4qTY7Hs2IpDZlsthmq9fO2le9g0vJaL9VlacZOqX6YWVCl5AesHV13y2cwDU3Zs1zK+USYtscB4shHkwNtzVF5W1hoaiUsjS6p8PjnHxeRFxt1drHf6KGWuH1U/Mc16hYdjM3FIlGHW/UxbHSnJ3laTY9ED9Pqb2cQ6ShL2qTMsZ4xuKakVwnQsO2EXD2CAfqJMiIll4S1zZZ8Bgauoee1y5ELkMB96+cPaPKAN820DfHqChGYiOT5fYagc0eXHzDcn+etnPwooNo9dxUjPKu7b/1Wu2/hPEULzyL7fIUqa7L7yQ9S1sTz0BQTSnMN6aoBt1Wmn1EFnCdnu9WxzliOnPsIP3/BTnFksYVM9BYr7XvzPXLnqdYz3beho+FrKxtn//88A999mLNVBvtIw90JbY20XbBYQWxmP0d3LXHpiF042Zt4ymGcXjaRqoBzmD0D7WZfaAcLlNZvQBt5WamVBu5cBNwu+O44dbT130bVCa8GhC4f5+OMfZ9PwWipBjbdf+Xa+9dIXmWsu8Eu3vo39ddOYtrGrQb/XouZGdHkmIEcKReBEaC04vDDKmVaFF6arrKyFdHsJu/rO0V+aQ0qF74ZIqTpSK3VWNdJaEqde7gMuhMZ1EuLEI1EuUirKXhPXjfPfTxIPz4tYaHZzYmGYVV0X+PrERgBuHz5BT2memWYvAOeaPdTcEEcoQuVRT7yscU8yn7h5X0iojB7cSlFsQ2YjdkiU4gtP/S43bflZAm/QOAU1zvLUoY/y+p2/hBQ+NmTGHJv28bcVjuSy57MNdL3M/cImzJrG77ZNqdbGdz7VgvnIRacNHtr/+/RUVjM+eC3DPZs6mGZXarqCJAffFK63NHPLWdpbsLQiVGwmt+MSJxPZueC2DZZWf22fJcV+jTx9E009calm/US2Md+AbtlBbFiiIy404tvKoCO00fArwaEzD3Pw4jH+8Y3v4sDUeY5Nn+Ol8ycJU83P3/wOXBGy9+xR/vyZb/IzN76H/u6VXKi3+NM9f8my3hW8ZvNduI4sVADbxyjRgun6FAfP7+PY5FH2n93H777j39IfCL68/wmmmk1uXHs98805XjjzHC+cfolauY8f2PVBSn6Xmd8z4ihOC45gwpBVgaO4OH+KBw8/xrLuIbaPrWdl3xhLQ4hE4ZicmDzK/gvHGawNs21sI77rozJZk82TsOfGDvt5iguiVKX8+d5vqn2Tx79x4uzpt2nrCvDq+Dsdu9Z36T2/t/M72ob7jleB9/fUWD4y9ov9pa7f+sUb3u2W/QoSwxRA1mUPlGSKKwosB0t8i5WkpSTN1MlTtGzjjhRwfHqCKElYP7SSRGdhMxlT0UxlfiNbV4Gq2w5eiZTM/99KEp44/gTVoIuto+uo+hWzQ1px76E93Lnxho4gABu4YCUhtvHSsiOtbOK1fr5epoG17Ip9+DVjh6mmz3RkQmnO6UUiQub0OVIiKmIAF49tzhjLaq0ceDtSZ3KOtsxkMXJ5KZnmTPQ4m/3XMSB8Gtroo5d5bkdDotknRdlVWK9031EErsofcFHS5PiFp9E6zZkmIRS+TBmo9rNlbEtugRhlOtWal+Zax/nIRQPVDKDPhy5nF0sErmKoElLzUvqCBK01FxoxXUGJMJU8cfwF9k08TRRP4/ujCG+I4WVvx0FQky6+aD/4Wgp63HactQXeRW2/tZk8PfkEvd5Jrlj5JiIlaEWTHDp/komZgwgBd2z9wUtcFMy2uASEvxLwvpyN3uXG0nL63+b9nY2bIq+mOFLTSiSN2Gg4A9dUgVQmxfIdles6tTb6e6WFsXIsnO+lOkzbGGwDQfLS8BIW3ykAc5kxpTmbKNvvsZ8DyJPwilHUzSTiP337P7OsZ4y1Ayu5aZ1pEPzmS19ny0CNTeM3Mhe7OEKzsVanx2vhy5Q+fwFXpkipmAtrHK33s2++RiAVF5s+kRLsHppnVXmeFV3n0VpQDkygTJq6eYOlzGQCRfuzKPHbWmmp8JwYx0mQmd+/Ug5RHCCF4ujscvbO93ND/wQPTY0z0fDZ2lPn5qEjlIMGraiMDeeZC2uEmUWh8cCWJFoSa8dY0qUui4mbWcxJI13L5ow4FRy+8DIPH3mM27f+DGHqohG8fPprCBK2rXxz3mdgzkn7fjA2qG3Qczl23DqTOEJT8ZIcjFlWPFFtgDbV9FFkDZtpyNn50xyd+CIrhm5g9fCNubY80YLeIKbipR1N41bGpbRZ6LuF54MdFswWqz92WOC9NDjHykJspHvxnn2lxl8DQs21YEFgUWpi98kVKm+2tMc4zJrZLenQSIyFqCtiHtz/BebDOj9zw9sRMqCZwv/Y8wX6KgNsGBjgvz32WVb1jXLt8s28aevNXAx9mgl89aVvcXL6BG+/6n0MVHs7GPpUpXzyqU8y25pHac1o1wjD3cPctv5m+vw477+JCk259Sjm8RMvMNy9jHUDy7NgHFOlDbPeEEteOMJICVMtWAhbPH7sMa4a38RI95i5X/NjRt5rVSQ7nji5l28ffpp/fMsHCVwfV6hcAmmf3UUpp+3HyisVgNaazx98XN93/IXnT56buElr3eDV8Xc6dq3v0nt+d+d3tA33nd+fwPvvXYCOEEKsWbb8D1f3jvz0P7vurY7veDjCTOCxNmC4LNKOpjI7qRn2VeZ6sBTD/iRaUHHSHFidnZ/i+YmDICQ3rrmOZmZxlu1BLv0wmmGR20qFStJK2wDNFSrT0jncvuHGDnDtCsV82KC7VOl4HcyEkWoydso2fBbKkhkYVbpdwl/ImlkWIpcwdZiLHHp9w670ZRHp/arMuajKNCeph8cgAI1iKh1hODWgKkplziZZwDPV8jiqZhikj/WlN+fJkn2OpOxoHNlZPq16KRUvyUGVbU4VaBIks4vHOXR+L1vG76IaGNZCaxNjX/FS6s2TPH3yWdaNXGv04I6iLzDb87Jz1xskNBPzOR2hqccujoT+UsRgOaYrY95bqcRzKzjCAMFWAlMLh3n37l/jgYPfpFbbSFm4uNlDUAlrsWZCHUrupfavRd21JzVSw3zjGNtXrQHg6NQij+z/CBtGr2XdyFWsGFh3WZa7+L0dOtsHZ+l1z98eTNvrvvi93UZRx92x/WK5HI1X2AFfKiquIlKCMDEpl4qsCVdnlQdUDsytXjTONPu2IVgWPocF0Ev32x5tp3i8REGSkB3zTt/ydsS8tRF0s59LNEJCzfP4mVt+nH/95f+PycUpblx3A46QbBrbyuee/Rw/WuphoG8ri4nHRKtEPbUBVpKq26Litqh5TapOwlAQc3ShxEgl4nzDZ+9MlT0Xu3ntWJkNtfN4jrGzTJSbA2uhTZNlqhwS5eb+3vbnJb9pJCl5mqxpqCw7CTMLA/gyYXv3DGdbPVzXd4F74zFO1Mts6eplzI0IvNAsaFKPbr9OpDyUljSSAKVdqm7EYhIg0Jl8zshSQmXkC5aQSLWgd8V6jk0e4sWTX2THqrcTpg6blr2We/f+DmtHdlMNBjusL7UWNFORz1H2/jBWhEWLP3LQndssItCqff1Z+UmqzL2XS09EmbHe9VQr/5inX/5NxvquJhUVIg0lCfOR6WUpuymBq/J+CTeTZ9hrx46iu4i93nR2k+TZBsKw2RZ0e7lUpc12F0G7HZa8yWU42TPDLgpktriPL+MsXWTilWjvpw1Ls9K/WEGqPV63/Z08ffQePv38fXzwmtfjCcE/ufFN/NJXP8r7d/4U6w8uZ/PwSl636XoEmi43QeLy1itez0vnjvDFZ/+SetRgRd9K3nfNO3GlQKmEM7On+ZW7fhEQTMyeYiFcJMjIFTdbQPmyXfUrOw53rr+aew8+TMAiV4ytM3OJB27aTlm1iyFLoNSCEndtuZ2v73+A3W6F7nKvuQ5EIR00S3K2x7PmOWweGqfmgSvTjiqE/X/ueJNfi+05w8lmmfdvuVYMlso7P6ke3yeEuEZrPXXpGXl1vDr+18ffK+AthHDWjC3/wo6hFW/6qZ2vkZ4Dgjhb7WoqTlRoUJE522O1j65Q1NyIWEkaysvcNTRB9hCZmJ9m79kDSOFwx4Ybc42kX2A67IM9TCVCQEmYLmsbKS8LzV+JlsSpyEtugVQFcCA4NXuOVX1jmQVXu9zYDtFpPygEoJR5KDRih3rsEmcaWOvVbZnvqpfgS8WphocrYLiU0EgkJ+KEl5pfQDXPU+m5EoFDMznHUe8AvY0tLKuGBE67QXMydOnzU4bLEQO6RqoU0sp2tAG1CoGLyt0KwDykSq5Z/CRK5AxpigXgirG+9ZS8gOmWZ5xmMrmJJzX9tXGOTJ7Ko7FHynFeTRAY1qeeOMyG5vKeCV0WIpfBcshwJaLPTwikYiZymQ2dzHcaphoLPH30M1y96kYuNjwmFw6wavn7CIRpBLVgzbIllYJloP2aL+IEGSAEtGCucYqxnpuYjOC5Y3/GzZvey7K+DR0a5Ve+rs1Xmy54yc+zr8UwEDssiFb5fl3+7ywFB2m2YCxuv/j7VnpSfL3k6Px3kkzqY5NQNbQrGtIw5baxsp142Q7nKf6tIiDqANyF42MXg0vBejEMxPzcRk8Lc34QeJj69WClm396x8/wB9/+MN/c/23u2nIn6wdW8L5r3svn93+TXWMXuHrta5ho+DQCybaueQJpmixbSUBXUGdFZZpYS7q9hOnIo78UsxAbe8WHL/QxF3vs6jtNd8lYBaapg0KSpk7OegNGcpIxoNWgngNurSVKma9CmN/prszRW5um0arx7ORaRipT3D3e5LGpFexfGKCvNI8j0hzQB15IWTRpxSVKTkiiHFLtUHFDwtSjlXr5OWikHi0lczcU6xv9gatezx8+/Ge8fObrrBu7i8B1GO3dymz9LLXSAA5Fy1ONEAJHScCkuNomQBs0VnQHcQrXWFHqYV137Hn2pSJCkuh21SMRZYZ6d3Hy4kOMDd+VfQZooYmVSzNx6AliUwHM5mloS1DMMTYLfdtqKWi7R5lrsX3Pulm/hwHZbTCe/1wY72rzeey90r4OpWh7UIslsrviQrE4x3hkkhYpkRo8zDairPfIyNgcwlRwseWxbfku/uqpT7Xt8yZOkqQJk2GJn7vlg/zqVz+EUgnv2fk648zlJrhKsnNsLVct+0kSJfj0s1/kmZPPcMOaq+n2XdYOrODM9BE2Dq9h89AY9x18hJqzkrLj5gRLcYEi0NQ8wd3bbuTAheM8cvRx7lh/HY5Is+NknnG2QmjvWPusXDewjBcn9nPbumsR0skXh2UnyXM07Lh+xUbGuwb4o0c/w7KufvorNRKtGOsaZOeydQjRThQuBttpLp2H37B2G71+edUfPXvfyxn4Psmr4+9mFJmUf2Dj7w3wFkJ4q0bH77tl5eab3r/lBqGFxBUxTiZP8GRKmML9x09wsV5HI4lVyu4VGxmp9eIKhScNAIy0Q5Qx347Ttu574uQ+rl6xnYHqAKHVO2f2Re2I+WzCkO0kw2KDZs6m67bWUQqT9FXUoYFh1jcMrc0nJMtwp9p4tBqpB5mu24Cck/MV9iezJrFReFQdTX8pouonmabYTIplN2UFcKbp8UyzQYs65+uPwuwppFuicW4P1a4tLO+6ljVykJKjMo2nYCb0iJWg309y4CiBlIJDRMa82OZMX6rcdcIRpvnT+n3b4RCz7/SjuE6JVUPXMxd5tDLJTsk1AK2VSqI4xpUertQMl2O6vSQ/vguxw4WWR8nRDJUjmomxSButtugrxXR7Kb2eCURppZJu3wD2ly7M8qVn/4SSX+G2jXfy2RceYmT4NWghcwZfZZ/PAu/iQ9hcgzpnou1xhuz8xIscm61z774/ZcXAdpb3b7istMRsp9MKqyOZrSAnWQoygUsA9uWirpe+380kT0sB7+UYd/s7RdBtnW2grYUNCjaQGvJAHina4NzPwQz5PSF05h9cYP4d2iy8BWiazga5fHFSYK8uJ8nRHWeGjusPYN3gGn7n7b+BxkUBAsHK/jGuWLaVRjyHxCwozzd8LjYH2NBdYSRo0eWGuJkEZDRYoCzLjAV1XlroJUoFOwbqHFso8ej5XkLlcOvQMTwZZ/ugCFOfIHOuNsdRZJ/LJFUK5SKFwpEpYdZQ6coEIWKkVLTCCloLVlenmMj06HeMHOZ8o58TC8OMlWew1oUlaewKPScmTAIcqRAZog2cCDcu4cvEMI+JT6hcqk5isgUy+Z0vJf/45h/g0y/cz317f49r1n2ARniekrcDaC9CLTiVGnyZEKYOgWPORIn2nBi4poF7MXYRjs7Y0+z6yK6bJCMaHGkWSkLY3ExJrEDolGjxOS7OPE6tNIJbWkVQ20hIgtSCeQUDUjAXegBUPNOy3kocyl7B1apwSVjQbTXarsgWjJocdFcyvbK9pi2ALiZUOoLL3rD5zyC/B2NlUxpt+BBZAFvn/WKPs8pIAVFISa66RgNvGmR7SbTkn3/5v4KG/uoAP3/7j2W2mA695RqzrUW+vv8Rqn6JW9ZeRdmRpK7xe2+lkuW9ozx36hluWLmJaingptXbeebUc+xeNko9anHg/GFev24TtaBGpBxamdOTfc4F0pAySguuGF1JTxDwrYN7uH39dXhSUZKKlgIhRYfEBsxnv2rZWqZ7h/j83m8ghWSg0pPNDSqTlQlKrk9fucaq3kEm65PctHITO8dW0Vs2rkHHps/x1y89xPt3XJ/PQUUW3PwtlT/HLSy/dnwd3X4w+Lt7vvaCEGKX1vrwpWfy1fH/1/guAm8hRAl4EAgwWPczWut/I4ToBz4JrAaOA+/VWs9kv/MrwI9j4Mz/rbX+xndl3/4+aLyFEMGq0WWPvHnd9qvfuek64WUPQLOSTplYmOORk8dIteCa8Q2MdfXhCEWsBPcc2YvA4fa121EIXp48y+nZKSKlGa71snlknQHjSjBVn+GRYy/w5m23501ArVTmrITS7aCa4rAraWuhZo+4LbsWS63FpqTPvXAvjvRIlOam9bdxcXGaI1MXGO7dgpDd+YNtpuUzFzmUHMWxOGJCH+G2YDMj1RDPUcy2fKZaXu6P2hUkpCpjxhOHuUTw9ORfEMZnWDH6wzTEHEJL+pseE5P3MDT+VjynQk2XqAiXkoSBUpxr1Ivpc7bj3DoL+I7KvbYrrsoa8gQzLePS4EjTPBnFszx3cg/rx27Dkd3UE8fYPDop3UGc28nFSiKJOXhuD7dv2MV4OcyOsWAxcagnpjGtP4i50PSYCT16AgPMu72U7swa0XbHlxzFQhjyH+79MK/Z9iM8cuAT/Ou7fpbfvu9zDIy8HTcYxhcOvhBE2b3iZuVgV0C3m+I7OndpaPuuW+bXLJC+8vQv0V0e5KaN72Ooa6wDPF9OXpI/tEWn5tkCyssBYk0n+710dIRzWAD7N9z+l/MtXqp1LTacFfsjnBwkZIsPdenvCdrXScfnKJScX0lyc7khaLPf1kbQHo9iU5gvdQFQdSYg2mZS2wdi/YBbUYMPPfBH/NHbPshENMB05BEpwcWG0UoPlGOu6FlkZWUu2xdNI/WZi0ucCwNOLJYYLsfESjAXObxp7CyDpbkMjJgFsSsTUu2QKIdYeflckGROJIETkWqHstfK9eAGfGdzRhY9nyiHwwsjLC/PUvMb7JlazYbqNFWvlTGMGdB3ohx41OMyrkwpey2UMg2X9lzUkzLzcSmrupnKVJg6pFqwmLo8fW6Szz37Jfqqo1y//r2kePm1YuVu7WvKLKJaiZNLWADKbpo5FRnvei9zIykSEUaypPOegSizDQ0TeOroZzk/u4+u8jLqzVMMdq8kKG1i54pbaKWSViqZSwQjQUqsjBSktxTnZIvdZnE4wuxX4LTTJ4sLImsPOBTEOSjWtAODbJOkZbaLTkK64++0K3XmGpX56xZ451KcAnFz6fWvc+13KZNqNVInnzscAVpFSOnRSh2iTC8/HNQ5MnmCX7/nL2glEZ/+4P9D1fMynbZkIdKECr649x6SNAIEL0wc4MZVG1jePUDgupxfnCXVwjiPKHNv+FJ3yNiijIyJlLG/ff70Pvac2s/rN9/Kmr7BQjVaZE2/5nsrK/GkZrbZ5L5DT3Dtyu0s6xnM2XKlFFEacm7+IpP1GcIkpuQI7tqwLb8WHaE4MTvJ02eOIgXsXrGe8e6+HGQvrfqpJXPZselz/Pojf7146uL53VrrfZecgFfH/9LYta5L7/mtnd/RNtz3vbLGWwghgKrWelEI4QEPAz8PvBOY1lr/thDiXwJ9WutfFkJsBf4SuA5YBtwDbNRap5fb/ncyvu+BtxCisnJk7In3bt657a0bdgLQjFoELpxbmGbP6ZOMdvVx7fL1SOFmDSxkq3EzkZ+Zn+Gh4/vxnIA1A+OM947hCsH+Cyd5+cJJqkEZcOgKSly/6gqEWBps0NbWAczFLlpDxU1zAGUtoYqBNXYEWRiIbd60E+vRqTMMd49TjyKePfUcA13DON5y9hx7ke0rbmcu8hirtjhbL7GYBd6cVouc10cZ1isp18/gqdOkSlH1PQKvh6Hu9cwnvUzECYf102yT1zGtZjl87qN0j70OpWPWyJ2MOT4lR/HsiS+xfcXdQGbZJkOSZI5qqQetXaI8NEVkXfbtRrmKqwzb7iWUXFNSto4qiWozmOfmJjg7e4Qt47fQTPxcn95biqn5Rru9GDk0EnNcm62zOFzk1lWr6PcjosyPeCFxSbMFwEIWojPT8hACRiohjtD0BikVJ0UDC1mz3F89ey+pGGDb2Gbue/Ej/NM7/wm/+Y3/xub1v0QoJCmaqsjABBoXgZsB74qb2UrKdvOoBY2JknhZE9HkwgR91VFc53IPzLbLgj3OS320i6Aa2i4exQYxe0kW0wAvF/98OVnL5Wz7Xkn+cjlwbe0ml2qwi/vU3nY7An6p64h1r1kKVIos/FLf8aWfrWjtVnyU2qYq62jSYf12yWdsg29HwD//zL9kqNZLmISM1WrcuHIzN254DefDKjOhy3A5RgBX905TdmK6/QYSRTMNeGpmlHriMB26rKiGTIYeGnjL2AnKbkiqZN4HYUBpQJgB70i5hMrNFvXJksV5m7+3zkzNTCYSKYcDi93s7jvH0Xo/62pTOKLNIpvmV5eSE+WA3wRwpTjSMOsAqXJwZEojLtNIAlppe38AQuVyuF5hquUZ2ZjULGaVMa0zBxxEnhVQclKaiZV3mdft4i3ImOO2n3VKPWoSJ008RyOQVEvdVD2Tn7CYuTE9eujLKK3ZtfatHJy4F0eWmW0cZ8PIbkZ71+JIzXQzoB47lFyVg1ybAWAXaxWv/Xy1QLXipQSOwhXtZkdHtMPShIDhIKJkG16hvUDRnQ18Nh/CESqrELablIug2pAzbc138X5bqj2/HAAHclcUuz0rEbJBbG33LhgphWjV4Fe+9if8ymvejwR+/6HPMtrVx5m5aWKV4EkXRzq864rb+LNnvsEPX/0aLi5cYFl3H9cu38BiIvjKy8/iugGvWX91dr0a1t2YE8hcDpNqwXOnX6TiJGwfXceL508x1ZjBky7bRlZTcqC7MpDnUMjseLcXovDkyWcY7Rpk/eCKTDZSdH7SmZlCmlWyUzohtXlG3HNkH4tRxDXjaxip9ROlCsfxjPxMtPuSZGEuOzE7yf/38BfqpyYv3pykyXOXPfivjr/V2LW2S+/5zZ3f0Tbc9//tmiuFEBUM8P4Z4E+B27XWZ4UQY8D9WutNGduN1vq3st/5BvBrWuvHvqOdvNx+/11v8H/nyED3sx/Yumvj2zZsAVIeP3WU03PTnJqbYtvwGD+445pcBpJojSiU6exDa6RrgLu330qU6b7tQ2XL6Hq2jK7Pbzo7xWk6J9RIS1pa4ss019lZdtlOorbcboGJyvfBLABKUqOEzvbITBLL+5YTKUl3qcSt669nNnapR4I4XWC22SDUPTwy7XBcP8V2eS0KzVRrP7W5abScZKh/I5uHVzLZLBHIecKkxfMnvkpXZTV1dxmxW+fZ2b+kGlfYNvSTuFQpS5eKFHnU8cq+HRw5+018xzWNLI5D2e/i9PRepKwx3Hc9CphLBHUd4yBwhaRbSnqDmGbrLEfPvYgkZfXQVjwnAOEReN3EKRyfPMj04gTXr7udhchlMXJwJAyWQ7r8BFdqFjLQnSpjUTffOMyd6zbT7Rl9nycUOJBos9BpJIbNrseCvlJMzU8Nw+UnlB1FM5WZ561mqjHHwfMv8YYrf4WXTv8lu9beafT5KGIgxZyXBIWLNNHxwp7/dqncAiLrMZ5qQdlNcoAx2LWsQ/ZQBKWvxOZaMKgvw5alSpBkWyrqYIuMdKKMHVxvKe5wDblc8+TfhlFeuu9tgHTpAqBoOWj33f4FNwsbsTdU0Y1FZzeasaQrSmXaf78IPDqSNYsLl8vst10sawBt7n4LRvLPJmwYkXmjzP7Glcu3UQtqlF0X1CKf2/cE3z72Er9y29sZ7lnHQuwgBBxrdDFeahApB1+mNFKfkSBk0XWJlGD/bIWbhmc5sFDleH2A9V0X8GSCI1OixCPRbr4oX0hK1FMvY7YNGxwpSUkaXWyspZmzskqbmX8cHGFCvcZKLebiMmOlRVqpn8+DzdTDlyn9fp16UsoAuSJRDl1eg1RJnp1ZzpW9Z3CEQilJzatTdlvEqct8XKWe+CTZnLe5a5EzbpmZyCXVpnna2pVCWxduz02PTvJrhMJXL2sET5Wg7CT8yWN/jNaaslcmShNm6udBODjCwXN94lSjdUpvdSU3bvohSq4mjKdZMXAFjxz8My7MHeXKlXdw5crd9JUiXOnmFShb8QtTJ2PRVW5Faa/yvG9HC8heL2qtXakvWYQ6kOnpJZ7IKii0nzdStCVQLhpHihyQi6z+YOSLloTpvHYtOw7WslDl7HpRRJVoibmSDGg1FTqV/56Rwxhgm2jJqamztJKI37jnE4x19bJrfD3bR1cz1jNEqn0cJ0AKmGtMMdtcZPPAALeuWs3h6Yt85sXHGe4aYO3AGI+e2M++c0fYNroWrQUl2T6mlkGfaUUcubCPn9j9NjwpuW7FBlItOL8wyUPHXmCsZ4zJxRcZqPRw1fLtVDwXmxhtbEo1SZowVK1lx0iiRWfDqsLOIQKUQ8lJOjX2QnDHuitoxRF7z59iz+ljeBIaccKqvhH6yjVW9w7iyHYqsy9T1vYN8Ju33V39Vw9+6VHXcW5N0vSpy0w1r47vkSGEcICngfXAf9Fa7xFCjGitzwJk4Hs4e/s4UEwtPZ299nc+vm+BtxCitGpk7Okf3b5r4xvXbWYxnOdLL7/IdctXcduqKzm72GS0VsmYZidvovRlQqKdXMst0bl20bILS62GzN/TOYNYjBTX2fvLma+ssURK80nQsuG2Wc0GD6QZI2KTDmNhdJA2kaxox5RgHqxDQUzZcdix4lqeO/0Eh8JjdFe2EjrnORBNI5OIlZU1bFl7G5+ff5LruoeZM0oM5qNe5hOH1ct+gCRtkdZPMzyjCbpvYqC00gTDODqPaLcPwTWDy1kzuJxUiTyMohE7VGuSw+efQDSnSd1uzotJaqKH/iTBSY9Sjyc5OBcy1DXA9WtvxhXwwulnOHThMEPd4yYKWzmM9mxmzdAmotSWnI1veE8mL5nLUjd9qVACeoIEt6ebZ04+xSFP8Lp1mwjcCs3YyV1kHAFlRxFUIgKn/aD0pWYudqknki43RWvNnz/xOa5a/W6Uusi52eOsH309+6ecrNyrSYTCOtm62UPTNlkGmT81FMIapM6Bk0aQqLal2isRtZ1NSIXXsVIHCwg7JSJFkNsp6RD5Q77qJTmYhUJT4WXY5I776xX2tfj+RBnQYB52GRywQCX7uZPdLJbxTDPQY912OkA0tHXeQnc4SNhFzVKpTLHx1HyvM33sKyxmhGXNL/9z+zMBaEFe/v+Ba97NS2f38eDhR7lh1Xb+6R138NFH/ju/ef/n2b18DT989a24TplAJry00MfaymK+345QdLkxg4FZEPa4EWuqDvOJsRN0ZEqqHMLUZyEpcz6s5CyhlQ1UnAStzfFupuarsZYzdmykUHFMLoFCovJ5xvhxt5RJyZwNY842Ejb2lkm0pOwkGZOucIQi0S6BE1GSinpcpuRGSFTusOJIRV+wQNX1aCQBkTJge2VZMVpyaKQuzdTBWqbaPhbr2681GRBs+943ErOACBzTfBsmKd888CB9lV7evvN9hEnCiZkJ/vyxP8jP07Zl17Bu7A0MdK3I+hQMmx/Gi3SXqrxtx9tY2b+S//HYxxF6kQvzZ1g9tJXBnmtYjCs40rhMeWhSJTOLPk3Vs5bNhWtcmipX8foB8zliRSarEDnrLRA4TprfBzk4z7ZbfIaQSSVsn4QuLDTtnVycF3ILzMK/WcdD/r+lnt+mUpliGz9TLbPrP837IfrHVvLbd30QR0r6Kt3tPiQl+YUv/xe6ghqr+pfx8vnD/Kvb38ZYVxVQbB7oZ0P/IBML80w2GpQczb2HnsSTmi0ja4mU7JAUOQIGyj7v3PFaPrv3QXat2MFQl8E9tfIIr986mi0it7DQavD5vffgOiXWDW+iv+QhUUw1ZpkNU6TTlRsgaARONgfZxbMqlMZS3Z4THaEQUiO1pqeiGFq9nFCtNtvRmuOzs8yFde45fJJUaZZ197FrfG22/4rlPX387h13l//Ft7/4oOu6NyRJ8vylM8mr4281vnPBxaAQorj4+WOt9R/nmzcykZ1CiF7g80KI7X/Dti732PuuSEK+L6UmQgh/9eiyJz6wdceV7920iWbS4iNPP8nPXnsDrjQWXWHq5ex1pByzKqYz1dA8jMiBd5xp6/x8kjI3cWLt7oTGF2kO0NPM1WQxdXPXkGKJ3eq/bWNkrG1EtgHVVipgwUXZNZN1kV0vZ01GiRacbficnC8jBRyYjXni7IdRi6fpX3E3Oyu7qfll+kqmYauZOAxXWrRSB18q5kOP+cjNY9cjBQs6JhEpgXapSZdez3R627hzo0HX1PyUspvQShzmIo/FRLKoFLEKmZh+hBoeQqeUHEVXUGWwayVDtR7KHniOkdCkKmTP0QdYP3oTlaCbniAhzvyBc/cLBCXHWAZW3ZSLTT9nd7t8oxPvyZohA6koizr3H3qQd26/lXNhhVBJXGEai2wjqmVNBXCh5ZPqdiz1Y8f2sP/8RXatex+P7v89rlh+Hd8++AACj4XWOa7a8R+Zd1r4BFS0T7d0cUX74Vdx0zwcpgherWY/dwX5G0B3m1+zrHGn5jvfJp19KMXvrSbZ/n+p7MQ2NFoLLfv37L5een/9zS4rUPTVvlQLbqUn9vNY95KlSZpFx5EiI3q5fcllPBlQWLqPxePbrkBcfhQ9vJdqvIufQ2lzz6YZ8+1KTRS3ePjoozx/+iV+ZNddPHLkMY7PXCBWijdt7Ec4m7gY+izGDhu7FrPAGgPILoRdVJ3YsNJScbJRRQpYUa7nUpFWarS1ls0uRnXbY20lCDo7HqbQnt1nup36ahf1ZSfJvbqPzExTjzU/d/0b6fZT+rxW1rynCKRpRvechIrbZC7syiUvVa+F0hJXGGDqOQlKS2LlEqcukXJpZOmadr5VmGTceurkEgO7/91uYhyktMNUFNBMJb1eTD1s8Cvf+FM2DG/DFRH7zr6M7wZoFH2VEfq7NjAxe5RD5/bgOyV++Lb/iM7235Mxn97zu/yjm3+arqBCIDWTi5O8eHY/4z2jPHniaboq46wbu4vJZpDfM8Ugp5FKmIPvYvhTKZPBBNI0wrtS5T7dUkCPG1PObCKtPl5lzwl73Rf14bbKs5TEiXOAqjuYbLtNJzv3S51Dlo50ye1r5sy04+9drvnY7m8rSTk0eZoj0xM4aP782Xt5/abd/OjVd9AXqPw5aq5VJ29yTLWgnqTsO3+KifkpQBC4LreuvcZUhlObKglxqnl24hCn5y6ycXgzo7UuHj/xLJuHVrKmf4hWkvDxJ7/EB3a9h30XJ1gMW3QHHiu7a+yd2M+3Dj3Bv3nDP8V3HMpOWlhcmFF24nxedYTqkJsYJzHzzooTdeCDSDn5c1kKzWdfepo3bboKV3r5645QnJ6b5lcf/EL9+IVz172q+f5fH7vWduk9v3HVd7QN94N/+8h4IcS/AerA/8X/YanJ9x3wFkK4q0eXPfKeTduv+6Ftm3l6YoIDkxd42+Yr6A5k3qwUpl5WWjU3V6ScDDBb/Z3IA3PsxJgoaRg8jLerDdzxs3ho05BpeItES+YSP9fombKfeU+qDdNjZSa2obKZth/x1vXDMuz5wzJjOFyhc2bIl4pG6jAfO7w0sY+J+UXmI4+kdj0vX/wEwchOBqRZka8Ww2zrq6Oykq8rlQHckctM6HEsjgAo49MkQiKRWlAWLr4Q9HtpHsRgmxsBwtShlUhmEsFxzqBIqdBFl67lATlgJvguP6bkprmuO4oXePrEo1y35jakU8IVxuJwITKVh2Zi9KUjtRYV18hCGomTa8Edqam4KUqLDOyah1+fHzMxfRhkic2DozQzS8gkqXNo8hyLccqV45vRCE7WS5xaMOXSkUrIufnTfPrpT/PaK36JRusYx87fw8TcHFeu/TGcYCXT4QypV6VJi25dQWbyGddWQoSm4qrMb7oNlK1W277nb2JWiwssO+zvW3a7KLfovA9e+R6xoNyC8KXbtu8phka03/O3l51YqYnV9spX2Cd7fVsJjHktAxjZgsDYt3W6sojC51zKdBdB+9KmZMtaL9WVt/287Tba/7d/89J9b8djW924KxUvTuznWy8/yGxrnjgJee8V1/PcxD4+evc7eHxqOQC7+8/gOzFR6lH1GrSSgHpSpp74+DJlOq4wFQXMRi5X9kzjCE0jm7eayqWZuh0OFsVjblMmi+5IvjRzhXWEsF/7PXPPR5mud665yJMn9xqLPwFreqpcPb4GXyaUHEVv0ODIwgh7Z1wuRj0sRi7jtZBdfTN0eyEVJ6TitWhbh0rC1EegWYjLGXPuZGDfoZm6xFrSTE2olSvM3FpzjNVrzY2YjstINB9+4tvMtxY4NXuO61Zdza41t+A7Dkpp/nTPn9HXtY5bNtxKKzGuGfXYIc4STI+ef5jD557mR2/6v3CEzBdg9vxNzBznY498jOX9m7h+00/TiI3WvJ6YRtFWtipcXQspu2mHC5PnGKBdcjXdXpLNz+3qYMVJKMsk++zt5lRoM/2WqHGEzhegRfBrGWb7fd5kmVVlZVaBLfZvpNnrS+9ze78V2e+SbFu6Fr3t7dC63SvwxX1P89f7H+Md229hqjHPqdnzjHb18FPX3kmKxBNp/hntIiCQJheilVVBwDw37jv8BNeuvg6VNd3mchArnyHk4099hYrfzS3rb2Fq8RxTi+c4OXOGG1ZdwbZRw5y3UkmFeb768iN0laocnTrLB3beRrk0wGzsEUhFjxfjCYUk5bGT+6h5DruXr8Z32ouVuGB+4Mn2/F1c0OSLRy2Ybtb5xsFnecfWXVR9n1RLfJmQasnZ+XP8y/u/snDy4vmrX3U7+V8bu9Z26T2//h0C7x96ZeAthBgCYq31rBCiDHwT+B3gNmCq0FzZr7X+JSHENuAvaDdX3gts+G40V35fSU2EEHLt2LJvvnndlmvfs3kHWsccnp7knVu30hOkHat826lsVuU2FMcwBko72co4RWsHIQ2r7UpFRSpKMsknkTjr8LcTEkCozMPEQWfSArJSl6alJE7GTtkHYslR2YTbbra0INw2VEZK0EgcElNhz4FmKzU3f5ebcGbqAMNlh9vWXMVC7PL0BZ+5ue2cmXyOc70L9PubGCvHxErSE8TGSzlxuNgokSqYTyQhEaeSp9A6puQOMyhWUxZlwKXLaU9AvlR5s1GcxUYvZDruPjFAFZMa1+vITAdpGpG6fGNDthB5uDIicBRPHHuQjSMbESLlpTN7aUTTbF52A7HqopkYRr63HNEfmN+1rIgn296qVvOrENTcJAe3U41FxrpM08vxmYs0wmkGymWOzU5z7fJtOAIuhB7ToZtXA/Ycf5onjz3Ma7f/ONXA5cjEHo5NnmLzindSKa9gLgHt1gBNt67gCus2AEHW1GhdDDqb99ost33AvdLoKBJr0fHwJbsGDHAosLri0ibAYux58XvH7FxW4s/2r7Cf9uFc1FIvBfNFJrr4mn2fyvbTNgQXrfxg6eKg+IBvSw/IPmd2iDMGt/2+pftULLsvTf+zoDtvThUF3+fs+47Pku9nZ0ViabNqmp0fkR1QF9i+bAs7l63hx/7q17hidDVfOfAccdoi5QypXsGyUpOhros4TkIUlRBCE3ghScPNWG1J1YmYEz4XWh6H3F421WbxZZrL4BqZZMNWaFItcimYlbVJDVGWVJgoiGW7yTvOXCvmE5eyk6KAZuqwwCCv3XQDPW6EIzSn5qb50svPE0iB0oqFxOV86zxC+MyFMdVSH2V3O0cbNbrcEkN+i+40oOq28KWJvXeFcVcZKM0TZdXGZuKT6hRfprRSNwfappFcZRp4jwth1UjrohkeOvoMveUqv3D7jzBU7UGKhMUELjZijk+f4u3X/DCpsvat0F+KmY/MY6y3uprJ+teZWBD4rm8sCUmYC12qvsD1V/CWa36Zfae+yunJBxjtv4NYCbq8lHrskAhBQ2lOLgasqIYErgBSE5qF1awrSo5EZNkKoCihKMsku8qtNES1qziQ+9NbFnxpANbSa1zrAqudvW5liPl9DPnixxGmebPj+qbdG5H/PKvexlrgZ/errfR6WW8AwN1bdvL06Ze4MD/BtcvX8MEdu6j6HoIUKZIOxt0+Jy25JTHztsJUbraPbeKZUy+waXQHSVKnt9JDK0sddqWmGTnUgh7esOVOXEdQDdYy0rueW9bU+fRzX2OmMcvGwTHuPfwco7Ve3rL5OgbKPqdmV3J06jQHJx+jrzJAU3l4bheBozg5eZiBsk9/ucKXD7xAlKZsGRriipGV+bzqihRfJibsK6sqJNpBYKQokXKQEsZrPttHRvnTZ+/n565/HY5Ismdkyvr+fn79ljd1/epDX3laCLFNa336bzi1r47C0Br0d9fHewz4eKbzlsCntNZfFkI8BnxKCPHjwEngPWZ/9EtCiE8B+4AE+LnvBuiG7zPgvW58/E9vX77i9p/ZuVlo3SJwIm5c3s/vPXI/v3b7jTjSJ1HmIxlwkeZ660Q5hMojVg5KiKzZwsxKrSxBriRM3LWblYYDGdPnh7RSn1bqESqXSDvEOtMcQ+ZFTQ7MS1IRLQnW8TPLKpuwlWiZBwb0uDGO0NRTB1doTtUDWqnkXD1FpxcZqo2QaMnLFy9yfn6W29btBhTDpYibx2YZquzkz84GzJ6/n4VlXUTpOGEimcMjcEw6Y38ppJm4ZnJMWriyQqIWUDrmgj5Etxynh3GEUDmgNf7Bhn0xziWmqbCKR0l6tBR0OWaB4Emdu3osRG4O2C3rsWF4I64MePnsfsb71lDxN/Hw4T2sHbsLT2pGqqFZaEAeC922kzMAwyaZqQyw+cKw6TuXreLM3AUa8QJXjo4yXlvLXx94iQ3DmxjrW04zlVxoetnDMOYrL3yJxajJj9z0swRuQBhPcXb2GMPdy6mVV+UVDE84hCS4QmZNlW1ttyOt3CFjt2Wn/vp/JtOwwz4mhdA5+/1KFnpL3T8o/Nz8XQvAzc9UAYgvBeuXenx3/qyDaaatWV863MLntgsRmQPozjJ2xxZEW5FaZHNd0W5S7Syn231rA+2ijt1uv51EV/hTf0Nl4LL7tuR7RZst19mKKF+sOAFv3XoLV44MM1aBn/vKZ3nmzDSDXRGrqtM4ToJfauG6CUnikqYuJSdkQZRpph5dbotBv0nFLWW+/Ia9bGQNlWUnzRehzVQaiUMmNSj2oZSdlFAZuVyYp8C2JTeGFW9fBf1+QiM13tyeTFjX183mgR3MxSVemOumK5GMZkCxz084OrPA3lOP8MJpj61jV7G+t4uNNbAuKUIbK0RbORRCE6VuPgejoJQhzTQr5Xu5k5Oipcwi46OPf4uFsM47tl5NoOdQsaJc6iJ1BJt7FVeOruLo+ZfYPLYdz9G0EknFVaTaSAzCSh/d5RE+uec/mUWWBiEkiUrpLg+C1lyYP8a7r/tlvv7Ch+mp7aIW1IiVqQ6KxMhxjuoLRIvDrK1FGetttOeRMqFoizHgQaI1knbScbvxUnVUUpQWaNGWhWhBLsWxw/Zh6OwadmSKUk4uc0JYx/Il12qhsuNQmHdEO4DI7kP7dfJtFQOram6Uv7fmaf7DG+7myTOneWbiKB97+n42D47xo1ffwmClCkCQsb7WVcewxFmfFAJfpJQdwYGFSQ5cOM1ia4GyX2EhijgzN8d8LBnsGkbrhOmG5MsH9rJx7AY8qekOEjwZcGFxhrdsuY7z9XnedcXN9JbKlGSCAFb2DVILPBpxkxvX7CbVggv1eeqJZufyHQz4IVPzp3nqzCHevGkHz02c4BuHXuRNGzZScVOsK5A9jir1TEO1MG3XRhaVcmFxliOTZ7hxxXKEbuA5QYc0ZfPgIP/vDXd2/+bj9z0thNiotZ7j1fF/fGitXwAuodSzBNI7X+F3/h3w777Lu/b9A7zXLhv/rR1Dg+//Z9dcI8B0jmsEK3sGGeuqIQQ8euoYf33gOHvPX+C21SvxHc1bNm5idd8wrkxNU6UQ+NJMfKYE6lCSCX4G0P1sxe/LhMCJs1KeyvVsdoLNJzuhCZWDm2ncFIZp8rNQgIqb4GDYnURL4qyhE6CeuvmkXc4i6VfVYKIec9+BRxjuXc+Tp55iLhT0V0d4w8YbqLoRJUdlUhDFSCXiKn8XT/kniFSD/WHIFgIgwZWKJJWcWihTcVMWUoGLR49cwZAYxkFwjANMxi8iPYmbjOGLNkMfSJU3xxlLLUEVAzR7soe61YKjJIGTIkUGmDS5xdzKgXUopamW+plpznFxsUmYJJSciNGaSZGUsh0eoWmDQU8qvIyJF9qAUlNSTOj3WtTKgsHyKlrKMOdfOLCX8b51DHUNcTF0mKj7JFoQJoovPvPfWTmwhTfvuIWyp5EoHj90H1eMbyehm5PTT7J62Qp8YR9ULj6yEC+ePax0u6yfx0TnzzV9iW75csMCa6uHdjJZ0eWkHvliiLYnsv1dew3mwTK6DcStfAM6NeBFEF/seVAZoFwKVpeGzHTEsWffC0GWqNiW3CxlpIvDgkdX6LwyZI8fmNdtQ6kF6hZsFt9n9udSwP03jWLATsfroi1d0egcuDhCkBaYfPveVAtuXHMVX3rxW/zp227mLZuW01vZhuekDFancL0YmfVtOFqQJB5SKkpOxHRUZj7ppiwTdvdPc6pZZTH1aaQuZ5oBXrb9RAt6vKQDyIFZ4FuG08maoiMlaaa2UdwcM5clNnaCnENtKVP5i5HMJQ5nmmVqrrn3R0oh66rzTEZlhOhitPtG5lohz516lsPnU4Z3XJF7YPvSBlilpNrBkwmJas9z0lH4ug3SwN5DipobstpJePjEUR47sZfrl69jTd8Ac61Fnjx9iNesvwbh9uJLxU9e+xr+xdf/ggcO3sPrtr2VNYPr0Jj54MTki0w1FnnHrp8jTjNZRmZNeXZugk8+/lusGNjJmuHr2DfxHGW/j0bUQDg9RjbmmfkyUj6j6SARRrKTKkEqRTvsSQnCVCCFzBh1mI09fKmoOvY5IrJjQ3ZcssViAXwL2l7f9gUHg7J1dt35Uhn5oxaXXKt2OEvvn+zZ5NiyWeF6VbotozQkUFvakiemZvpmRyhSWebmVWu5ZdUaBIr7jh3hX37jk7x181W8edPVpNrr+JymsmHkS6YSpoCEepxy15abGKgOcKHlMdXymEueZH6uwfH5EhU5B3STMEKcpnT5RkpYdeFHr3ktL507wp0bdhtyB02sHfws8XKw0kWYGEKrnjoMV7uNA1CaMhUFdNVW8rYtg9x75Dl6SwHXL1/BJ55/nLs3bWWg0sWp+Tk8qVndW0NpSdVtGalJ6rIYL3BoboYPPfYQh6emWIwj/uUtd/KebVdm6a52ESzYMbqCf3z19cMffv5Jy3yHr3DKXh3F8Wpy5ffuWDEy+rNrenr/xb+6/jYZawdfJygh8WXMR595inuPneK+o0e5bvkQP7xzNZv6d3PfsVP82v2P877tW/BlnOu7XZESKqs1U7mM5FyrRtlJqLkLOVPXSv2sa9+wUY4wzZWJlkQZg2QAqpkErCZTYzrch4IG1lM3K1TjC+N+Emknn1ht5G3NiVkMGzx97EneveM2zrWq3LxyJYNBnHXMm+21sn2xYCxe/Bo3Dd/EJCPM0+BsKFkuHKp+Qilb2c/FDmUJW2UP80kfVVezkAi2sI0jXgUwQKTi5oV+FAKR2Vq5rsodMxqJxHEMW+A7Og+/MGEWkmbiGpYIaCWKZ048SaJCuktd1Ep9gMf64c2M1RJqno16N9KcmDbINA2KBTkFgh4/ocdL6PEilBbMxOW8gevU7AWkDFjeM0AzFTmTNRfCvS99mlUDm7h14625Ht2VmhfO7CVWmkZUZ/uq9xinBSVwtcj9utvl2gzkZSy3BctFoYJN8rwc3Cyy2FbHbUF3sRmzOPKQF1GwLpSWrTL66kSZxY7nLG3Wys6kbmusrRZbUpCH2IWFZa0LmvVLQXj2WezDWrTPj5Rtlt183ss3ORoQ3dngaEv0+bFauviAS8DnUsBd3G/7uc2xEEt+r/Nz2H0oMv+i8NVqu9vymPbnG+8Z4ez8DItJlY+87TamGi4HFhzK5TpeuYVwNCpxCMMSrahMrbRA2WuSKId9CwM0pJsHikxHPlUnpcdLiZSgKlOSDHxXZJprig34EJ0MJ8bVRODQhEwiZ/tOzPs8oUmy//uZk8Z0HFBxEqpOzJU9U6b0noFpV6aMlGbZ1OVystFPtT/iHSvGefpCzMef/DKv33AlV44MIYWmJCKE0FScJjNht6k0LrGvs03vtlkwkIbYCJyYq0d7+Mv3/DhPnDnN9Su34wjNxsExHj1xgFvWXY2DYrha4V3br+e/Pf4VPvLQf6W33M1w1yDXrLqJ5089yYXFaUb7rsBz+2ilDk6GCEv+Ct69+99Q8gdZaDU5ePbbIMr4bg1HmEWLYeCzORpJ1WlXChyl8/sQyNMcHaFz16SFxMqHjEzRLnKgnUgps+eNeZaYv7fUh1ugSZBtJloqUPLS92XX/tLr2PiDm+Fkx1xC5vakc9JICZE3c8qsUhFlCzGBTcNUedVJCsEdazZw/Yo1fPiJB/lX3/okv3zLG+ir9OTa9Ui1BTSO0CwmfiaxKrPnxPMsH7yG6Xg1C5HLsr6NnF98gbR1mms338pIrZfTM6eZnnmIC5Mhc606FT9gsFyiEbX482e/xc2rN7NxcFl2TUGqFEqFpMr4qEfSPAf6soZiTyiaygEqvG7DLo5Pn2TvhbPMtCJ+7qtf4u2br+Bz+57HlcYda9PgAJsG+ugplTi7MMu/+NbXuGp0jJ+69hYePXmU+48dYvf4CqRQlLOGzES3FyqvWb2OyWZ93edd9wEhxI1af5eFFN/vQ2PKP/8Ax/c88O7t6n7Dyr6BP/h/b3yz01I+sdacbsyx99wpHjt1jESl/Ok7b6fbH8BzYnw3IkwiPrv/EL9407Us7+5GCEWUeLgyZTEuY4MpzoVVak7Mquokg6U5GrHRYpqmCpk3V7SypiDDbhtZig0mKWfuAU1lksBSLejzYsZKCzRS37h2aDMhOdnyLsrCKprZRDUXuwz5EWfrIR9/fi93bHodoRZc2z9PlxtiY+8bqU8zdQHjeFBPHJ44/iRbR9fQX6vQTOpcqJc41DAgYj70crak3zeJjQPliOVSEacmfa6ZONTiNfhS0eXFeBkojTMNHrQZmyCTkPSXUqTA+F1nIE4KTPANRtMYp4LpxXNcmH2OTctuYrBayTXbiRJU3RTPSenybPOmCVgQwgAERxiWHTL2FDIfbtO93u2GpFpwqlkz6WzRDPvOvszbtt7EfCqZjlzmQpfpxgxfff7PWDmwmTs23krZS3MN/mKY4Hs13nLFj7JvYj9jA7vRQpMKo5O1UfHW0q/ippTdlDB1ch2xBRUWcFtwXdQIdwJK8vdpyAM8ROHnWpu/Z1m7YmNhUdYhMNIOK/kw72kHxxT9k4VQBqAvmedc0cnk5k2dl5kPL5GPFBhigTaa6oIMQnZ8riJ4JVuGFke75Fscl5PKdLq9dDaMdr7RfCk2pC3d9tK9aDdpirxnpB1ElMlgMqCCMFKokhcQJQ0cJ6HkhNw4coBWq4zjRzhOgkpcZup9mTTJbDRUHt1uwkzsMR15lBzFcBAy4DezRkTDosqMGHCEaQIsOTYNsQ2mi8fNfkZbtfKlws8kbkJoak7CYuqisPdZipcBwvk4oOYKurymOW4ipeI3CbwWSgtemh/hWL2EAN511SgPHHuRh89M8cbN1zHghzRS19gm+g0aiZkLu7wWZadN/nnS6Go1gpITZvpgl2rQz7jnEJ+eyJreoTsIqMdhzm7OJT63rLmaUwshDxx6lFilnJk9T8V7gWbc4nXb3sWfPvzbvGPX/02tvCKvTtYChRBjCAHdZZ+r1rzDXHFaIISiP0u/nWwGhJn950yqqKQyC2cx7LYjOytSrtTUXLMgMvcbGSkiCZVL2TEAvHituyI1PUVaYsOcijKVrB5gjP600V2nwiygbC+IPa824GlpP4m7tBpGpyTFBNsYprvspHlYjB2LqZ/3OdkryqR0pni+4BdvuoOnzxznF77+Kf74be+j4htfd/O7Hq1UUnZMRdoXiqvGlrNpYJjP7D/Eixf2UvY8vIEm79i4lmrlKpTwqbkhV/b1MBqs5+zCPB9+8hF2r7mJdYPL+MLee/jJa27h+fNn+OJLj1FyfSbrs9T8gLlWnZFaFw4xfZ7Rq2st8kwOa5BwLiyzeWgZ9x6+QNUr8ZG7P8C5xTrPnTvB/3vr7Tx0coKnJ87x4ScfJ1WaO9euZSFs8Y5t1zHePcS2kbVsGRzgiy/v55/fuNtUKLRCak2sHGLlEOHy1o27OLPY3O063l8C7+PV8TePf6BLk+9p4O257pYVgyOf//Vb3uZVfZ96FPGJ5x7mxfOnuWvdaj5w5RZuXtmL6yi+evAwXz90kvOLIa0k4i0b1/KuLZtxREIjKVOPUp47f56j09O0UpeFcJHda2/Dq5So+E2aGeg2iYOCxSTInUbKTkwzNSx5ObMDqzpJXqqLdbvJxJeKHi+kmXpEmcuGg9FzJ5keMFKS080yZ+o+R2YCzs+fYcDbT9WJuW3DHazrilhfnaOcRTorbUIvXJESSEE9dWlkSXjnF6ZZ3r8Zpc1+V7yEzTUTq1yPXDypOZTUqcUleh0H33GpeaaJscuPqXoJFdew44J2zLMNgTFAz7A3iWpHKwsBJTfNUibbrOvpqcPMN89QchTLege4Yd3rkLINoi3o7vGNZWDRnSFSgiBj0p1MXmAaxGCkFNFMjW2UqRTA4xMXeWnmHJv7Kuw7d5A3brmVmcRjMXFYjB32n93Lo4e/xmu2vJcNw6soeym+NAyX0Akfe/gjXLfmNgarfWxfcRsLkUeYGkCisnTS7oLFomUcLTttpvZ2SdtIZNpSkOIosrCWMZdWlkGnP7wopDdeAgwLLDG0CQPbMFRssnQzuYTS4DjtZtVUC5TK5CGYJqs0AwFCth/wxWFfs0AbiiC1vZAgO3e2/Nzpf2+aKNNML7206bP4+XJtK/YYXVoNWCoXudw+27HU5zt/vbiQKGjGU91u6rW/nyfYdchzYLjWy8X6NGsHJZHyiJq9jA+eIo095mcGaESmonSqPkjVNTKT82HJgDoBQ0HEfOzS54WcbNaYaAYsxA4nVcCG7ibTiWscjiADXabJMpApgUzyfhWNIBbtvgwJlB3TiNzMFosAPW6UaYyhlPV12NHMSuiBExMpDzcxC+OX5kfYP1ehlUoGSzErKw1+eNta7j05xadeeJgrxq9ioFpD6TJDpRLDQYgnFKFy6fFcqm4LVyaUnRYA9bjMfFSl4rZYjMukWvLwqYmsAqgzS1fFjtHVfOqFx+itDHB8fpG5MEIQ84+ufw+ClGYcEQQDzEUODx26n+3LdzPSPYIiJcyaTgXQU4ppJQ5Vr12ZA3Cddk9FzUs41nCoZJ2+M5GTyY5SKtr0y7iyeP9nVbmM8bQAN9UmwddVCiezgzVN/eZAezLF0SrLkwBwcsmX6RWSoBVaWKBsKqNOBpgRnb0RxWGvcycjhOw9VpJph7uKeW9bWmmu5Wyh4kT5Yg/I7fWKvRfXLV/Jj+y8mo88/QQ/f8MdZoEhnMyT3GEyDCg5KS0h6fFiyl7Areuv5czic6zsG+QndtTo8xtEaq7DHSVOY/7Jlz/BGzes4Ve+9mFuXr0NhWQh8RnpGkALn8FKFd+RPHxsL9ev3MR4dw+f2fswm4dXsm5oPefCEmCseC0JEEjjSPbmjVv5q73P8vHnniFMU+ZbISNVn7du3AjA+z9zkpFaldet2862kTX8+4e+xULYYjFq0kpi3rppS95QnGoHUlBCECqXONO4f+CKOzi/5yvv3rRqzW8cOHHsVy97ol4d/6DH9yzwFkIMrRwefeyXbri7VAl6eOzUQf7oiW9z95ar+Ildd9Dnt+guXeTQzCSHJhf5+LOH+NXbr2KgUuH0rGLH6BBaw0Lk8NFnnqGvXGP78Ch3rL+BBJduZ4GPPfMY/+Ta1SglSbKAiVC5NFM/17q1Utc0jmgHqc1EZRkDOyRmYitnIRdmEjXNJ4k2DTtCGGulc2HAN08O8sTU09CaZmu34I7xfm4c28BIuUWoLuQWUc3Ux8scAaxUxpcJPa5JBKu6HndvvY4jU8eYmp2nlWoGu5bRU97C4dka2wYWqHgpA2WH0wuCxdiw0gvaLCIqXkKiJD1BRNVLs4cMuUbSMt4WWHuOlTwYQDxdv8CBs88inRqpgjhNGenZyJaxm6n5RveZKIGnjT0gwEAppuIour0EP7NPTIXIyrYqf1DaB1zVbUst+v2IqpMQKcmfPL2HlUPbWNPfh06O8batNzOT+MxELvNhytdf+iwLrTk+eP3P0lOuUHJSam6ag4wHDn2bbYMDPH7kHlYN7STM3FUEgnriEEhNl2fsAq3ExrCGhqX2M3eJy1nydV7HnXpuq3+28grzHo3MgK0ndYcFGFwq1WhLQ4yrga0Q5DZkBe/nxNDLuV460UajaoGwbYa0oNwVhrm2I29uFG1pSKcfrv3ayeoX2WIhwCv8jic0KW23h8uNS2Ull4LsywHoDl9joQsLgs7juFRaYrZR+FU0UgjjMlTYjq0gFX81TFI86RPFDnNRlYoT0mpWsuY4h0h5zEcVNvScoRmXUFpwtF6lJRxiLRjwI7q9hHNhhZnIo5EYG82ppk/JUayutThVD0i0YGU1NJpkJ8kXIxY8pVmSpE5E7rLhSdMs7uCRIvN+E6O3pmMeM9Z4KdadBiBMfWbCrtySry9I2NxVp+wkBDLmbWu76Om6lQcPP8qu1bcxVIpZTBz6PYmUJi/AkhZeJsH47MsnmW21AJEzyIly6ApqvGHzdZSdVt5zs7x3lFMLLf79/X/Je69+J4cu7mWyfpHXbdiJ649y/+FneOalLxN4Ja5aeSNrh68AQGuN46W5bavvKJqxQ5RKfEdRLqUoDYHTdvip+QmbuyRTTR+ZWc5VM5ICjCzMFUbS5dsGawpSJXtd2kVx4SqxqYpF720Lsq38sOjVDTKTpmQOKLbXRiR5xfRyZGG78mHCjqB9j8lM9y2WMNzFRX6cMcXGdSbJmnMlk1EFLwtZqrkRgYh568bNfOalz3B6bpJVvf04qaIkzQJvOvJZSNw83GsoCBFCs2XZdRw+ey+p3kEz9WmlLtNxQJ8XUnMjKp7kltUb2DTo88s33cDvPPIY146v4FMvPs4LEy9z9/bbuVg/x1yrDnh8++g+fuzq3fzAlbdy4OJpvvbyE9yy9moqMqS7FOTV5pJM6HJbSKF5/46raSQuv3bf59lz5jRaxwjhkSiH33ndm3jgxFH+n3u/wo9dcxu/cuub+PVvf4GBci/nFhd45ORxPvyUz2vXbmBlzwCek2QSVkUqJE1lpGM/fc1b5L97+JO/Mj48euDMhXN/dplT9eqA71I8zff++J4E3kKIYNXo+DM/seP2nlV9w2g0v/vw1/nDt/w4QdDDROjS7UX8uwdeYt/Fc/SWyvzhm+5iqCYI44DuYYnWClcmfPLFF/mhHVup+NXMb7aJFIpYufyz3ev50+f38o+uujbvMo8yV5SiH6vGgOaKE+cTk2W7wZT62uyAJNIOVZl1iCujfVtMXVqp0cLduWIKp3WWq7bewkTdxytHPDkLcxdcNvU0GPAjhvwGUphml0bqY6KeXaKsRGn/lnB7uWp5F12uKd8+eeJ5JqfvZ/f4DXjS6PgCR7G6p06iBPORKWGXvTRvbAsTmWuIrXWaOQaGqVTKWAWWHONr20pNOe/g2Se5evVbEMIkx1mA7jtpHslsjo+m5icMlmK6PcNYlxyV6brbGkhohxBZOJAoQV05jJcWaCmHSDk0owV6a2NsHR5n0I9w5TrOtgIuhh7n5i7wuWf/kq3LruOube8kcKHHTyjJNkheaM7w7KkX+aO7f4j//tzT3LP3Y+xa9zb2n32BWjBAresW5hNJkjiMBCbYKGc+M/mHK1WHZttct+Zr0cLO6oOF0B1ltaX2fxZ0y+w42HNsy9GW9TXgSHV4UltZinm/6Pjecdr7Z5pgQWV6Vtscm2uYaTcwWshQVLBbkFRkknPrPjplH85ljkUROLuWWaeTvbPnvmgpaLZtt3NpFaBYGSgGXxQb2YqjCLpfqfnTDrHk/7l7i2gD9TAJKXklktRqgB0WW10sRhUqXotEOQbQSsVw73mcecXysMrLC1XKjvHoF8BoqUWPG1NySuybqWQLGEHZUVw7MMcD5/s52/TZ0btgzhmK2SSgqVzGS/NUnBBHKrrcJpFyaWa2fjYQrJF6+TUrRUqsHAKZ4EkDqFqpiytM86dhPFMi5eWAUAM9XkqP18IVKa5McUmpuhC4JaKkwbpaRKoFVSemmW0PDHirRxW+dvgQQ7Vhto6vJNWCXi/Cz1ykGqmXyRvM+882Pb52aC/fePkxPnjd+yl5ZRpxk19+7T9hqj7HRx78r6wd3sI7r/kResvdJuk2yhoTM6ZZ0JZyjFaNPK3kqg6ve7sgTZRgqBISppJ606PPN/tV85O8p8Pe0zZExyYhFn3xJRpPpNjUUnPNqVzukeVFYlGHyrT47eusbSNq0jFlfkxM/1BCpBzDPS+pTtnvFeaGdu2+5fUokVsIFiUmAk3JSfP3JdnfssmtXrYIqKc+c3FALQsM+olr7+RDjz/If3zD3ZSchFhpqo4AozyhkQW4lWXCcBBxw5jGZTO//8Rebl+3DdU8wH1HnufaFdvZOHYFPb7Du3a8jl/71p/wM7u28dRPfZCK5/IbDzzBsekzHJ06xc4V17BmZJCKm4Jq8Zcv3s+7tt3AeP8ausv93Hv4aWbqF/mBHTcyUusCjMTHkFeCRgwXGi3uWLuTOI2IVJVQeUTKpb86xLu2DXLF2FZ+58EvUg8b/M7r72JV30oEmkbc4o+euI8f+PSnEAJuW72Rn7/x9SSilB9/rQVCevzCDe9y/u0Df/GxclA63gxbD/+NE80/xKEBdXni5e/7+J4D3kIIsWHF6vvvWL5j+RVjG9Fa0UpTeoIavt/LQuKyELsk2sFzyrxp42p+8IoriBKPKMm8VLWxb/rqoZNcv3yMvrKREMTKoeRE+E6cgcQSFa9CrDQTC3NMLCpmwwRHOFwxujorGcpcS3esUaPfj/IGFTvh+dlD0HjvuoRKE6ZODh7KWQiNTYYEzV4/YlNXnbFyyEzkcWIh4KXpGvdeCBiSPlv6FlnZFTJaCrkQ+nztxCBXD83TEyR0Z7romcjlfN3McOfqJW5fPs0Nq3dw/6HHGS+F1JUJ+KlmVn2e0DTTiKmWlzOwrUTSiF2iVFJyzXYtcDGR4ylV1zQRhakgzOzN4mSOvkoPvSWjHTdNfuBnpdtYCRYij/5yyEglouoqev0ka0QtdNkLnetRLSiwWlq7EBh0YqbjIGf6Hjl5hNWD20m1YC7xiJRkNnJ55sQzPHrkAd585Q+wun+MIAu3KUnLppuH5hf3fp2f2HULkS7xwStvYl3/ET6196+YbsVsG7+NkqOYjAWjvsr01gUJghJUvLRDd20bJP0M3CeqnZDqybYUxTBKtqHKap7bQRZ50iVt8C1FG9C70viIOwJS2qXupamZwCXMuVnEGU24AXQ6Y8YNsLPXuIWaHal6ogh8Dctuy9a51l23wXaHt7hog+hiWp4ofDUSis55oCi7yeeG4s9F5+uXstWZHtv+7aLm9TIs/dJhj9elr7cbf+1oxC26Ao9UpzRTj2YWghM4MfNRFYGmN1jAd0P8cpMheZ6VUZWzrRIzkYsrNdu6ZllenSJWLq4c5HzTI2lIzjcCRssRo0Gdnf2LvDxfyXpLYkqOkZmcDyv4MsFzEnwZgwOBcii7LlHq5oDNFSqXkNmqmk2stM4kzdTDS31qXhNHKlyM5CNUkii1jKxhxj2ZMh1W2d49S2nDJv76wPPcObYRJztTPV7IsUWPUwspiZJMN2eIU59d/SvyHINUCxIMY2hj31OV8nt7nuDZMy+zc3wbv/Can8D3uphuRjSiFi+eP81f7/0yb73yAwx1L8sIAYUvNWGqaCaSkqPozlJuF2Mn10Z76FxuJjGSnEgJpG6f875SxGJkHKfsdRPYBMuMfJDCpOcWr4O8+Zm2VMwVaYHIUHnVYUm9BgCXdrS6lXWYRUP7QkwzMkgI8EnzRsz82i/sj8I0h6oMoBffYxssfaE7gD4YcK615rP7XyRMYlb3DtAd+KAVXaVueioDtJRDSzks69vIdPPbTLdiSl4Vm5lRdWIS1xwJo/eG8VKdqlPithW9zA7t4N59X+PFcwf5T2+8lW8dO8zv3fsAu1ds431X3s4v3vFT/NUzf81Hn3mZH79qK7/92msZqpS458gLqLRFT22MrePXUHUr3LThTv5i7/28e8cdVEq9vH3b9Zyfv8BHnryPHaPLcISgu1TBd3zOLsziSUnglZlqLHKh3uCBk5NsGl5LWqAGhrrK/P6bfxyJuYbmYyc7Z2V+7Lp38tPXp5yYOcsfPPpN3vKJD7F75VbefuV7cL2ysfdMJV2ex6/c+G7/1x78i28IIXZorY9cbq75hzy+z/Ib/87G9xzw3rRq7R9t6hnffce63WidEin4/Ye+yC1rd9JSTgYkTZnz4RNH+MS7bqLktjILppTAD2nGZQ5PTZHqmO3DA8RKUo9Lxse7EHQQK4f1A2N88qXD9Fd6qQVdDFS6OTl7gZcvTrBpaFnGgks8oRkttbgYBnmIRfG5fXJhgRfPHWbl4DaCoI+Ko5iOXE7OlwhcRX9gwiOmWh4npo7hyQ28NFdloJSwGEsCRzMYJBxvLXBR1Xl5ymHrzDhb+hfZ3NvgNcunOTZXRmlBn5/Qm0k1GrHkxHyFM6Fgz7keblk2Q0sJzjTLpsQvNUpAt2cmv8m6l4Fkmf+84iUsRp6RT2QgVWKYXs/RxKnIy9+tuMGLZ/bQHdTYPn6tKbdmoEtlgDtOzLa7g5jBckyfn1B10/ZxKxT/7cOqlTUyeYXUzHri0O9HSAwbtpg4zLQEh2ZjDs88yrUrt7OsZ5Tnz57g/kMPIkWJH7npZ+kr+aapLNueLxVR3OCjj3+ayfocK3p6WT20neONAE+k+P4QN67eyV/vf5zB7jX0luKc/Uq00YP6zpLybAY2BeRx7K5s62XthGJBtwnXaQd/2EVHzpIVWWMJjtYd4NaTJikz13br9rEzATbtBZNhZhVkrGzOKGelfw9zvnzZlr+gzTY92ZYZpFp0eHV3MNYFMGAYnsvp0W3Zu73QAutiQq4F10IjdCc4gEt18va1pUD70vd0frV/s2Pf0B3/b2u7zX+Wyn06WXXy9widECcRI7UGYRLQUi5+xgY7QhF4jZwFC+MSrcky3bVZlvdM5BZ/9r0CTSvxSZSkN0gJVcx86DJSCmkqs1geKsVUnTgHzBUnpNdr4DkGgrXSgJJjyvqm2tYG3kY+JnNAKAV0ew0CJ0JrQckNaSVBVn1J8GRsdLeZ84oUmvMtj8WqT9mJkEIxXJojUh4lp8Q3ZJwHAJlkzjIff/qrXDW+FSEEVUdz66pVhFph3Z4kOs808ISR8d179AgzzTq/8YafRUqTglhPIPDK3LLhTp4/vZe7r3wPy3pHkVJRzthtCYyWo8z6tB0yVHFSGqnxxA5TiW2E9B1N4Bi53UImhdMauv2E/lLEXORRJs3JgSCzbQwKc0tRYiJp930UrzETCtV5wbZtM9syoUuDrSz4zoC5aPu4p5mk0d67rzRsE2WxudLa4sapkzvq5Imo2f589Mn7mGstsml4DU9NHKcZRwghuFhf5MLibDZ3GbKkGYecmZ9hy1CJmdjP5FiaspOggIXWAl87+gR7Th1EIxjv7md59wBHJo/wX95yC1sHh7hiZIif3XUFv/CNPXzhpcd489ab+Lmb3sH5xUU++8J93HvsNL/3+t28Z+s6/v0jT/HAwZd59uTTvG79TtYt281CpPjivie5esUOzs2e4KYVq3j95pt54exx3rRpJ2VpTBc2DI7TU6qYioGAmVadi40mG2kfGzsMIeuSqIJjUqEisLx3nA+95Ye5uDjDbz34VX79a7/N9rH1dFfHELILZA/bx9bxk9e8o/Lhpz73uBBi/ase30vGq4z3//kxOrTsJ3v87h+/a+MbRaKNBdJLZ4/iOh53bb6BWBl5xXjZsDE3r1rFD37mAb76w6+h7IHjJCSpR5g2eODESX762u3EqeTUnOL5i2e4etkaYwGkHBypSJTDlqExhnvWd0yMnlviqVP72Tk6jK9TwCdMjR6znjicq7d4aeIFJuoOYz3L6PEVM/XzbBy9nifO7OfswmEW4hJaQ38pIlGSZhSxbflNHD53D5VgnO6unXzxtOaiuMAVzhC9QcyBlqKLLjY6A5xPYgKpuXl4li3d5wFoDAeEyqPLbRIqj3riMxqEXNFX50S9xHzkMBu5TIcOMyceQwroKfcyWBvE6+6iES6ShifxvX4qfh8yQ4mxElRcwxqVMpcNrQ3DmihoJYILCxOcnT2GIzRXr7oRKYIO+zuFkYWk2Y3UShxMcJGR5VhZg2lYNb/jZPrkSFupSxY8kbkE9HhGP9fthXz+5Re4WK9z9OIR5lpz7FxxDR9++M/w3YD+2jKuX/cmVg8sI3BUVgZug1KpQ/7gwT/jLVtvpFoex03PGu2fTvjQI19kMayzvH8ju9d/AOGs4Oyiw1AlNE4lSqGdzubQYqBLWx5SkGKIzgbJNH+QtgF4LsHAsshtsGtY4IwFzx72NozJajstQ279xGMlSLDH1YY/FBnfTCYhJbEy/7fg34Y9RcpURSwTbXXZCtv41fmEbwPQzqbEy02lVspU9OK2tpH2M+fLMbGED7wM6DXHru0l/zcB8eL5Wvq7xf+nBWBivxr9cZvpXRric2zqDNuGR2nFJYxDSErJSZgMawwGi6RaUnFbtNKAWmmRRlTh5ORKlvefZsPIEZSShGGZOPVoxiUiZaw4Uw0rqyEXHMXL81V298/gC8V4qUU99ahnTZBKC0pOjKMVCpmDtVh5xMolUo5p/NIOYepk2uyEkpPS5TXxZIwrU3zXgO+y1yJMAgQaz43xiGmlAcNByNmGqaCdC8v0ek1kpt2OlUuahmyoLVBzQ041ewiVw+m6IKHM9pEVDJbMMYwwFnZA7nudapNwKDIQvufUIW5bdxNSmt6WRJvfSTVcvXInO1fszGpC5vovOypfwPpSF+QtIruHyPtJWqnM+hyMM1SQseyB7PS9Ga6GuaNQ2TXzkifNfNUG32kH8LakggXQ5pqxwTdtEG791y1Yt9eg1X8XF4G2+mXvAydbPOU9ENqSFc5l+yXs31CIHHxLsl6ebF4KlZNVBo2DSpwmPH7qID+883ruWGcqi9NxiZnILP7CVOJKc8ysZPDFiQM8dHo/51se5WCUJJ1j7cBKhru6OXPxRfacmeBDb3wnJRfOLkxxcm6S1625ma2DgyTKRUrFP/riwyzrqnB48igf23ORd1/5BgarXbz7mvdw/6HHeN9n7uW3X7uL//a2m1kMNV89eIY/fOJ+Svsfw3GqvHnLD/LAsb1Mzp9hrjlL4Lr01YY510hY1j1A6gnqGlRsuG1fKtb3j3FwcoKbVm/P52Q7Xxfn2qXnWevsXGvJQLWf//Tm99OIFvn8/hd57NTLVLwSd2+7hf3Tz3KwFbO6d+tgouUjQogrv1tpiK+O758h9PcI118OSjevGBy97+aVN3oN1cX2ZZtZWWnxwqlnObc4y5u33Z5Pmjt7JvFkwj2Hn+M/Pv4kr183zpbhGj9wxTrKHnzoMVOemmoqvnbwFJpuRrqGODEzwTu2XpOzS5ZJWEwCFjMdtdAxX3jxYX5o526EcEi0pKVcpiOfl2cdPrX/GOcWn+W6FT9BiGS6cZw0noHetVSpstL12DKwQG+QsBg7fHOiyilxgmZ8nrmjn8Md2cqK3rewxRlmbU+dhWwy86RiLvTYOTzP6mqLSLXT5mpuwliwSKhc5uKAFOMd3udlDgGpz4WwxGzkMhW6tBJjJ1bxFGE4xULjApONOapBF73lbmYacxybvsDOFTvprgySKMOsVt2UyYWTHJueIEo1uT9rKumvjbKifzVSSBqxkzPAUZqJZ3TmnpFpd1MtGCxHOQOVahN7b5hWo/O2PrJRZsXoCJ27LyRa0AznOXzhZZpRnePzMXuOP8X1a2/mhnW347kuzShEa4l0AqBdDvalAaWe0HR5CXuOP8fRmYu8ZtMd/MG3/5juUo2BSpXz9YjRntXcuvEO5iOPVmKar2ZCAyhGKiFCmM8YOMbNxd4t+QNZtqUHFsRawKYyxlhiPo99LCZatLXLog0si+4d1kHBl5qKZfREWw/tZosK6zijNFlPgm2MMvrSNjvWbpS015UFwmBBpvl/mEqTJJoB2rbuuw04X2lYsGB/L28gLQDd4vd2f/IgpsJYym4v3YZ9zTotQCcb/Ur7aYFZp5a9wASqTn/lDtlQoWKTaEmSLPAfvv0/+Pz73k7Va3F4fhndXotIubRSlx6vSZfXwHdj4tTNpUVaC3w3BiBKPFLtMB8b95OJVo2L4f+PvfeOs+woz/y/VXXSTX07d0/35Dyj0YxyBAUklAUYYZIJtrHZNZjF9jonHBfjbIwNNjbY2ESTQYBAIAQI5ZxHI81oNDl07nvvSVW/P+qcc8/tGXl/u/Z610B9PjPdfcOJdaqeet7nfV4rrao5qY3yZXI1IQyt1MrtVlRbjPkLBdhzs0qCnkwIU5f5JGAh8ehkbgvWsSKmzw0Z8OYJnBCdgU3fCdFZsbBUW2mG73aQUtMOqzwzO8E3j4yQGsEp/YtsaRyx1yCzRP3czt2sH17HnBnljr1PMN2eI1Ap12zYQt235+UKm5ye58dERuLLlKZjGX0vqzT86Ufv4cnpFlvGN7FlfCPtVNkxiq57jhSZzroAuCarB9A7n1m7vm7fz3/aSp+iWKBH2tr3xUZkEVJr12oM1N2UiqOpOpbpbjhJZsNnMu22tYpVoqvpBjvODfgLWdXTzPnKiEL6UdZ922uSse7ZZ7uuJ92+nC9+83PJx2iBtak9mdtJN4IlC9mXKzQLqYvKFvhRiVWXWBb7N7/2j7zu1B1sGF5JrTrOTOwx6NrcpbZWtFPFQnaN+r2EfjciTAW7Z2YwuOycOsbemVmqjuaePd/m1170WpY3BxnxFmm4bTxl+/9cVCNMFS/9yPtZOzTJtWubNAOXv7r7Ea7ZdDYXrD2Xg2GdfdN7+dqjX2DDQMDbz99EM6gwVJHcc+AYH7jvCR49skB/dZDVQxsY6xtkvr3ATHuWdqK5YsuluG6dNdVWsRgRAubac/z61z7Gi9edynVbz+9xKisnwqY6Zd/sIdI0BpOysn+QwUrNLuyEzmwybeQqNZJ7Dxzkz757E//jsks5e7LBvYcc/umxR8wjx5/9xNP79r76hJv0fdjOXNVn7vils/5N2/Deesu9xph/20b+L7T/J4C3EGJy5cjYE39y2Svqg/4iv/PtB1k9cR3nTQR89oHPMtEc5uINF9FOJU03YXP9GPtm9/OSj36CyUYdKQyffNW1PHT4EJ20w47xIb74xBHWDda4dM0KEt3PgfmEW3Y/w8u3nlqA7sSoTJPpFBKB6cUZPv7Qt/nZC68izBIt98+HfOrJXTx+tEVoJKcvv5DxvgEGg5j9CwEzoVtoJw/HKU/xIIutx9BpiG/62Uadmchjy+gmLlwZMBrENJyYPifKnE9UwV61tctCYsPD84miouxgv5ioAhylhmLScYVmLnE4FrocannMRS41N6HpJVQcTd2xtn05o1fNyktPh4r7nnuAVHdoRS36/BrtOGS4uZqhxhrC1CVwUuaiblAkznSZUValMrdVyy3rEiOpOgkNL8VXloVdWQsxQMOxri+pEVkxoKx6qLbhzjhzH3jq6HOkJkWqQR458BCXbzidD9z1RSpenQvWvZCxxpA9Fi2LxM/UCNqJXQxYXacmkMb6bquU9373U/QFTZ6dPsxpK05jy8SZ3PvcgyQazl51WlFQp50ojrRdjiwGLMaKupdQd61tZNVJCjAMlrGuuSme6n1+yp65OYeWfydn/PPj7vb/biJmXjYdLLhwhcm06qV9CLLBvsSyQVYEQxaLG5vIVS69njO5vSXXyyC1XG0vfy/fZ/5+ueLeyWQa+etLXR2WJjQqYRcheQJXef/lfS79fvnvpcC73J4PeAu6IM0WHOmCbbt46YJtnYX0/ew5LC9GEmP9it/19Q/yhy++jGV1vwC8DadDK/VwsmIbDa+FwDAfVxnw55gO+2glPlUnRGJopT5BJvl4ZnGwyMnIn5kcYHWyRWqunV1VmaXPa5FDqsQ4We0Bj9k4YDF1aWUVcisypapi+twOo5UplEpRmQZZZs+k1tYxw3VtQRylErSWLLYb3HtsLYdDnwuG9lNxQuLMCSrSDp/eeZxdMy2m2m3OX7WNbcON4jmIjLQRFGGvoVPozAWu0DSckMSorPKhw6FWyOs/9scYDL9+9a8zWGva+2m6eTVuBrRd2QXe+SK03CxDWy07aQABAABJREFULIr+kNuW5qxtHnVJSgynyYD5bNR1Qam7mmpWXbjpJtSduHD5EMW+rIY+75OOsFGFcs5D2UVmacvrR3Sf0zy5v7tosH1XZ5/tfiZvbd0bxM4jZ3lUoezFbxcb9pompW3k1S0f2L+TzzxyGy9cvYko1XhKsqy5jLMmVgBW/jeXOMwn1jig7qSsqLTws74UGcXxyEcbuH/vPeyZPsCbz7mSiowZ9BZR2bU60O5nMXW549nH+Nxj36UTL/L1N76cdtzhb+55hK89c4Af2nYxm5btYDryOHDsAb799F3snT3Gyzev4lcuOhWlEmbDkLffeA/751KuOOU67nz2Md5y/tX4LPLRh+9j2/IzaVb6acdt1jQEMwuH+OC9N3PZhnP4wmO3sWVkGddvPZ+q39czfn9r98N85pFbmWhOUvF8Kgp2H99PzfN50bpTuXDVJuquKu6/NhBph/1zM7zj5o/zy5e8hlhWaQYN3nfPp9Jnjj/3toPHjrz3eTvC90k7c2Wfuf0X/22Y2X/bf07g/X9daiKE8CaGx7571shQ/YEDD1F1Xd60YyPvffAW2gsNlvUNkJi8FLJgxGujhObnbvoagxWfL7/+Ct7yxduouIp7Dx1Ea8OhhRZvPGMdA36D1CjCOOahQ3vRJuLDDz3ISzZtouEHRWzbl6kNtwmYj2OEdLl97zOcOrGRr+x8gI6pUK1fRnXmC5w+5KHSbzMSXMRU2KSRgTMpDAcWKuwxO5k7cjMkCcvUNl6+eR1XrawDUFUtDO1CZ2krnBlcGWcyC02gEyQBR6OAqkoJpGYhdag5KdXMrrCtFZ1UIqWtYjmf2JBsxdGkJrFyC0dnIdjeEHmSMV8Vx3DBmh0IQGtNK14kEgMcbnm4MqbqxhlblBKnklZijzlKpbXXkwJX6R7XioYTs6wWUlFdD9lKdg6+SgnTHG1ahmcxdUgy0F5VCd/Z8wgJFRzpMN9+lBeuO5dDs7tR0uOHTnsZZcs8g7FJUdKWxbaJZV3Gq8+NqTtZ0aBqg+8++zALYZvXnPVyAmU4b9UOHGmoqjgLt0oqTkq/L+gk1qfVk5qmnxBn8hJf6YK9L7tt5CHgnuNbwjydzGM6NWT3wzLYObjLW155MAcXecIpWIlLuTCMEAYXkLJrc5iH4+3+MoYbC3iLSTyblPO9JhlIypm7cplr6Dqo5ImHZSbcspFlQN9lobXpBc/lxLXeBLWTs9VL9dpLNdpLPwNdCcxSvXYepi+SR00XmOXnUQbdZdei7rF2i570VxrMdBao+/2kRtB025lOV+LLBF/FNIJ5AKpei/nQjgejlRnC1CNQIYPVGaZa/SAMvkpppQ4LWYJ2YiQKC8IPhz6t1AIoPJsM6SUevorxVIwiYi6qFUmeYZYXowUoJJ6UBCrCd8MCWDtOjFQpOlXI3P9Zd7XBSqU0arOcJZ4ugFqUeDaRE9v3XrZhhAMtF0e6GKEAq50WUuMZXYTsPZH2JLFVVYwxhi88cR9/fefNhEnM8v4Jzly5g+X94/RXG5gscmQyllJin5WylWWR7NzTZ050zAFwBCSlhW7OGBfVILMEZjyItM58usn+WVY7L+rT9d7On09dkCh2/5KKCguf9ecbH2zf05kUpVsRkSIRUxbPU54bkC+pZabLjrQqHGKA4jpbmQlgyJK/u8x3MSZgegiD1AjOWbGe+/bvZCFc4I1nXIwrNX9z921sHV2JkCq7xpksUdg8nWdbNQKVMuJbB5mZ1nEePfAoX3vqXn7j0h8qKj+nRqK1QJuua8qrtixj2NvE++65ny/tPMjVGyb4mfPP4jWnLvK39zzMpx/+JmsGRjhr5Q7++yVvZKY1xV/e9im+/c/f4IdPWcsPbxvnQ684n9/++qOI+CATff3snZ1noq+PU0aXcftTX2ayfwIlFU/uD1GkrGgOE8bzvOPy1/M3d36J13/8jxmt93PGxHr6ghqe43HH3if4+ct+Gs/xsr6oGfEi9s8d41vPPMSnHvkgI7UmZ0ysYfv4co4uLjLVXkRKS5Y9cOQwLe1zfHGWseomtef4wT93Xfe2OI4f4vu9nSRC8/3Q/q8D75XLVn7k7IntKwinuWbDKRxcmGLtwDi/f8kKOqbGR+7/OrHoxxirQ244IU8cO8q+uTkuX7uCN37mW6wb6Kc/8Pndy07H80KSxCGOfeI0Y29UzMu2LMcYwdeeOUgnmWO42i1v20kdYuPSThwm+4Z4w2kX8pnH7+OJYweJCYiRPHv8r/m9i1+KpwTf2buHR/Z9i+Ghl/Kt+QV0GnI0eZJOtBc5N8/m/ldw7miVLcMOq2shVdUmNbKw7fKkLJgzWQIR+c9Br8WQt0io8/LKuYd3ynzi40jNkJsyn3g4CpZX2rRShz5X0c6s/qx9mKRP5h6x9lzbqaSTZpn8gi4bJDwEsKph5Ss5g9rvGUItqbtW891KZFEuueJoGm5KK7HJoU03KTmUWPbJk5pONM8/PXInd+x9mAtWbuXHznox7awIUWI03332CQ4vzHPqxGakZ10KJoPl3Pjk/Xzx8e/yunNeg6+6SX5pNtALmZc9706inrSMUE2lBDLlwYNP8+SRZ/jDq17Pu7/7FVyR0HDTEqtJVi7ahpubnl24dJKuhVqA1awHShM4upg0iwIwPZNy7vLRtdYrtxyo58AuLxBkwV0XVFqWyxTbzFnupXxZ2XpRCGNdCrJQqi4dwFL7wpxxzLcfG1H0m95S5KZn0dB1G7EB7DKozZMmy4x2972uzrvL0FvoULZS6/q/PH8k7mRygpO1LjDrWiV2HWVMBjBksfjrqfYnbCJq2cUk/9cFVXb7C1GbwcBlwF9guH6MI/OjHGo3qaiYutuhL5gnzvTQaaroC+YJEpvI6MqYmr+IEIZlzUMcmhujzwk52AnYsxDYYjWVjmWKhaaiUqYiB0fYhWfTbRM4Eb6KMkDsFgmVQAH4yFjMptthpHYcmdkbOk6McmOE1EiVIjNnI6NtfzBaotwEowVNNyaJPKIoKMC5RuIRo5VkrCKz6pqRtcBTkCdRWqtAKyWJtSJBEmTj4R99+0t84cmHi/v2kh0/zNaxSSRkenDbnx3VXfx4PW43JgO9veNpzhTnfaAoTiMpwGr+rOXxmXwhqZRdLPiyW1PAl7leu+vsUtZ12/1oilwV8mJLWfVKAZB7qAsLs/PnMl+sZr87pAX4zhetxYJRmOJn/qzaPI20xyM8NbaCZn52+bObRxxyB5a8KE/ZAzx383r9WdfyW1/9AFdvPM5QbYT+apP5OMFx/MIRxpWGfidhKnI5FjoI4XCw7VN3U76962uYdI4/vOJ6JvuaRNpmorRSHyeTFo368xwJG3RSj3d95w6OthZ4//1PcP+h4/zihdsZrdV5xyXnMBcl7J1Z4K/uvpuvPHEbZ608nZ+99L+QxDPcvvseLvvgzVy1YQU/evoqfvQzt/Obl/8YX31mN1978iDnr9rI28+/lLlIcNueR/nqrjvpD6q0k5i9MwfZODzJw4d2ccnaU9l5dD91v87qoeXMddq8/tw3MJfWkKmdK/o92zeG6mO8csdlvHrHpeyfm+b+g8/wjw/ey0ClSS1o0gpn+eFz/gtDtQECpZmJFIdn97B+YJ2XwjeFEGuNMTMnH72+T9oPgPd/fFs2PPITE/2rXrZ15FSx6+hOQoZYM1C1ukTjc2zuOb7xzOMcmDvO1VsuZNxvc2zhCD/7lc/ylTdcyUwLNg7XGKh4hLEdxOLYQ5dC18VgYjRaSA4tTHHVulESHWbAxwLwUCtCLYGAPk/y8lPO5xMP38aWsWW045CjcwEff+wxnlsQ1KqnsuBeypP7HuK59h2screxzasx6I9z3UUvpuEK6iphyJsjyAz285azFbrw45bWEzebCHK/0fx3O/ja4hORtuEsX+gsmYYsecpGBOZiB1dqqk5KpCXDvmWkrDTAhhYTbdldCzQodMh9blIwuTkDnE8GNcdyJ7kFWL+fFJKI1AjGKxEjXkRFJcwlLkE2QS3Gmi89dgdff/ohLt1wIadPbmYuXCQ2gkBG7J6e4u7nHueiNady4apTOBZ5NNUc39nzKH/7zMP0Vfr5xcveiusEdoIr6anzY0x0BjizJCurY7VJW75M+Oyjt/Nbl17DeCMgTmPqrqLpxKTYRFl7nTVKicwz19rrharrdGBdDezkai0Du6x0t+JcLwheqnIoT5b5tRNoAtVliPN92dYFGTkbVQ4T92wbCkYx/47EFOxXamQBwmWxXVEsZAC0lraojekyf2W28ETAbyf2Mug1pf/Lp59rc2XpXEwBELqg2H6vt/KlvWYnnHLpOPLP9C5e7X6XRB3oVpzsyg5koYHPFwZlZjS34cujDb2SGbvf+c4CEBKm/dQHpgnjgIPtJgaBryJbW6A6S5x4SEfTiqookUmBjCJOXZp9U5hs3Go4HRpOnReNHmNV/Sixdjja6cuKesGAl1v/KXwVo3LGM3FJjJONJzKTq2iksjacY/4CyxuHCIJWBrLtdpSboCoxJs0AmDLW5SaVCGXdcXSkkFkVyzR1UNm4maaquO65/7dNesz6m9AkcSUDy7Ygi5NFmcACmceOHmLL6Bp+5KyXsaxvBIREYPcV0I2ilCMj+diTJ1gudcApqjNmeNfN9NQSTYwsZHqxkUiji23l39HGUFHd/IaKSvEKT+7yAiDpkVXZ/nGiD2UeSci13dZWMCVFdSU0xm7BLpqtbjwnB5RICsDe7c/WnSavkGzogm8pDMp0LQm1sfKzOLP76/Hcp5tQnyeMVrJ91JXh8nVbufO5XVy3ZZjrNmzkpl33c82mMzkUVqi6uqis2W/XlhzrOHiZ/ex0a5bXbT+Nyb4hEqMKaYwUdnGTGmn9s70Wc3HAB254Mz/7pY/xmjOv4yuPfYsbd+7mJZvWoIWkz3PYOjrIe665lH2zC/ztvQ/xN7c9wYs3v4jxvnEWog7vv/dh3n/vw/zc+afxB7f8My/ffh3T7XlWD6/nSKx540d/lYlGk+l2i60jo/z+5Vfzwfvu5We/+HeESczK/lHWDS1jw+ga1o9uQmBopQpjrOSwnDxugIXULmyUP8HWFctZN2HPrZXI4nNTocoiNIbx5mo7npjOgKe4VQhxujHm+7Rw+vdv+78GvIUQ60f6+v/6wmXb1K1P383rTr+Aimzx6NE5BurL2D83xzu/+SXedN4Ps3JgHE9qfJlwPDzKbBhRr3ZY01yF74a4bqfQKOaDW6oVUmikyAY8aQfWPh8OLy7Q9Iesu0kGIPJB9/YDx5hup+w88gyH5iVfPrKXhuhjbuQ0drOKI8HDOOY55MFvcd7Ypdyw6TWcPjjPiso8StTQZqYIMebeuDkjYqUeirwUfTmEn+u8c4ajnDizmHq0U1X8m0/sYD0XK56ZqRKlkqnIoSINA0HMZKPNWMVKRVqZtV8ZRPklOUMuRcm3l4OexFjm0RGGqmMHklYiqTpWbjEfKxxpGAsixv3Qhoyx5ailMBxeWOC3v/FpTlm2hV+47K38010fY/PIKIE7ym989cPMtOcI4w5XbzqToVoTIQxj3hw/c+M/smV8Ey/bfhWrB5dlLGp6Ens3Ozl6ji7OKVCWFfRV7rOtOdaaoxIs42gHptsLLK+BIyOSrNqYTea00hW7YciHQa+kAc2ZX7eYdO1nNKbHi/RkwDjfxtLkrxx857+X2WBRmtwLSUT+PbpuBXnoOy8AlduZ5fKXfKHXje9kiwXbMQtAo6QuKuIV55CB0pO1brKX7gEd+Xvlvi3oOtjkoDum12Kwe62sx/jzsdjlzy1t+bUrH2XxnrAzZmJkFuWxDhddsF3W2Gfym4Ilze5Ptj295B69/qyX8LM33cgnfvg60shldNVe5sM6+1sDTIcNxmvHqDbmaC80mGs1iVMHLWUBthaiGpWwhVIJI7XjHF0coqKsfG06bODKpCAItIF+N+G5lm8Xn6lluN1s/HNlDA6E2rUuJSqhqmLWNA4xNHSYJPJQboxyE4STIh2N9BNQxoLdVGC0RatCpgg3s6XMFukiY8mFMKRZRDHRDo5MUCYH27klntUsx1rR77apqKhg41OjmAtjBB1+eNvZ7JnXrOgfyaJkCRWZ4mTjlE3icwo2urxIdURXnpUnddsb3stOO1IXTK4wWXKr1ChjTkikA6zrlTEFIPezhPAcsKqssmPu012WjshSlEgWESh7HdPsSVTkC9cURJacLqzHd4oE011s9Fa07D5f3SI7lkV3hE3uy0vNCwQVFdNJHVJs7kKuS89lKHlyaGpE5uKii21G2uruL1i+kj+7/WZuOOUsjEg5tjhF3QlZ50TMxbaAU4rIEsFTxirWzarPTdA6oeY6lrQQCUpIpuMK0pQjRwJHOHgyJXCrvO38q/n7e7/Aj5/3at737b/nmg2rcYW9PhJLoE32NfitS1/AvQcO8a7bPsuqwfUMVBr88gvP4ZOP7SRwPP7sqrP51ZtvpOoPEaYS3035nRe/gd/82oc4d3KCS1YvRwnNj51xJmct38jv3XoTv3Tpj6CEYTZ2mYlVlnuUkzp5HoUo8iZyW8eFLELqSjs3VhzNfKQIU2uN20kkgaNJtGC4by3nbVxFtOuTp6aG3wJ+88TR7Pugme5c+/3W/q8AbyGEOzGy7JbzRpa79+9/iFPH1/DYc9/h0b0pT01Ncd6q7fz9Pd/gR8+5gfXDkwgsGJ1PfD780MP80kUbWT/YR7tt2STHiQmCtmXtUscOdKLLMIgM0BgjeMmmLfzN3Y/yxtPHEMIwG1VIjKSVOrznzvtZFJP4Tj9H+87BcWYYcmoc7zzG/P6bmM8ARidso4aWkzorOH1wH5PBAoGy2d45eE51t7CBr1JS3U2CsXZfsmByDKpgNwyCdurS0Q4HOxWemQ9sxcusSMvxlsdD85I1vmRfJJijxQKzpEQIrfAWAoKFKi8adFheD4tkzJpj9dh5ImE+ycRGFFIRXxrCLMScSyLylXpiROZ7aweWyWpIvxsz7i8WTMxCZPjAfbew8+gB5sI2rzv75aweWsPNT36bu597hOOtFYw0N3Lltlcy2uhnoXOMP7zpj7hi45k4bh/feep2pLCVy2pOiiIpCl+EugsdLQvVZSBz4FRR1ts8L4v91Z33cO7kJA0n5JM7H+XsyVVUHGGBHaZI8gwzxsgTEGVAwc8LZeT7JLdY7NoELq04BycyvT0SlDycfBLNsQ1Pd1m9MrDrWo6VgIGwRZtcqankBaFMt8Jd4dyD7JmoBaY0MXfD4waB1Ia45IzQ1X+WzsnYhM0c0Fu2PQ/Xiwyc5hrzLniwSaaZzRsgMwmByIBFmdW2xX+6S5STLbq6v3cXK9Bl6/N7lgOvHBwlpYhOVxecM9y2T+SQTcgus29K2ytr6lMj2DgyQaxTJPOksYusJaxZvZOFp3awv93HUDCLyTTT7STAlTHtxMeTMYlWRNphwo2QToLrh0y3+/GkZkP/PsLYJ9GKjf0zHFoc5ngccKjjc6zjckr/Iu2066ntyoTA7eDIeVwZ0+8t0ufPU6/OETTnUZWY5LCHEAanHiIcbRG1wLLcvoFUQEdgYmlfE/aEhaMRqUY6KY6JIKInITNKvAyAZxUCM/a+nfqZJCNbIKuYWDt89endLEQL/OG3vwLAu67/RZusKi2znMsh8n7oStPzd+7G4as0qxJJkRxbLpGeO44UUhBjwXe+HQdQ2QJTyHIkxqDR1r8cCArXilzeZgqgq0okijGiSBrM+2Puc2/7WJI9Q6oA3/nnFN1oJ2QAO2fAS4uazNel5xkAfQJxkz/XnkwJs+RhXybZc6mz8clu25NpMX7k7hyeJBvXQ2quhycTjONS9WrsnV1gZbNOnxuikkwOiaCiMtmLY/e9dXQ5n3zsQX7+gktASHwZ03TsfcpJA5vzlGvyJRtGlrOyOcTNj9/ME8cO84WnDnHJ6o1UnIhAhbSSgLm4ijawbqjOe65ZwS/d/BUmB1bxL48d4PXbt/DyrSsxRvCRV1zKf7/pDm557F+4dtt1rB3dxLuu/kl+9+sf4u19NfsMGoe1/Q5SaD52/03csP0ywCXWNhEXbIG4qmNtJJdW3M3H+Ujbxbyn7HsNL6VfpERaoLUluQJP2yqpxuGMVdeLXUff/Suu6346juMH+H5sP5Ca/Me1FctWvu/SladMbhkY487nnmbP9EFetnk7z0xPM1pL+eTDt/GWC1/Jyn5bLj7N2ImGE7J5ZCNPH7f+t3HqEqUe0cIgzeoMftBGuTFp7BYDqJS6h5GoAhesGOfGnU9w0ZrTMcDhMOCB43XOX7WWp4/t5sxV5zEfOTw3N86XFr9BxB5kcxSw2l2O7cUIw7daH+WcqWuYmFi0DIqyYcekBBLzULDAIU2zpJJMX5dkrFBeZj7SkgenG+yaqdHOZA6e0jSy0HLgpAxVI06XLguRoE8qZrRmgCEOZEWx+sQgESGPTQ8hgKFKTDuRCBKG/Zhcvxpr64/bSRRNN7HHIqwEQWQaRU9advt46NKKJSvrIZGWrG+0GfJCaioqQJ5B8Mff/iybRlfzkm0vRsjA2q0ZuGPPPbxix5WsX3YOFW8ARwKkfOnhL/KjZ19DX1BFiZhL153GTbse4ujcQYaHrXtJR+c2V1ZTa7XO9tqWWTGVhY49acse753exxeffJi/uv7VfOPpB7n1mYf5gytuwBEp2thS1pZdlVCyN0SDVl2Lu/JEmIcZi4RCcSKQLjttQIlRLkkiymxtnuCYg0NJL8rssRjM94GdsGx57wRPJjaKgnWYAJ2dny6Apsgm4jwhrLx/e25WjmIBup3wEaansI3GgmZh6GGvu2r40nWArB91q/l1AVFXLmQXeLoA82U5SukgT3CDKOtby9GBclPQs28hTDaZygIcdO+RBVcW1GVnK3J4U2L1S/vKE9EAdkxs5c/ueJTfvXw91Uii+kNWNg+wu9XP8U4Tdzqmrz5D3V2klVSoOCGDjWMstPrsGBb5+FIzNTPMXFRl3J/Ddzv0Dxyls1hn99RK+txF1lQh1gMANN0Yg6A/mKfitnHdCMeJcfyQBlNIJ0Uog8h+AtSWH+9eVsfYGUAYW1VJ2PsoPArGmNQukHLZiQriLpjMfqapwRcGmeqCAVcyRWtJElvnqDza1+e26BjJu771BdYPLeOi1VvYPTPNWGOgyGlYuuDM7VOt33Tm6CMMFRVTUZZ1zqODOQnQG1nq/q6NRmhVAFOBZbdzBrhbLMr2mbxPeRnwdkR5QZAXP7Ksda7ZLhhu8mRGhau6iajFOCNkN4yVtVyCAjaxWWQLXGMEobYJs/nzXrYudGW3L5fHJCV0pmk3+DJfnJueRbwnrRNUJ3WyhaZdbbmZbGXLyCj752Z44thxto4M8sYdZ/CZxx9gsu/MAqzXVEI7dUiFXTjPxzYn5qy1F/OhOz/Bpx5/jFdsPaWQmYgimmBBf05G1Z0IR6T82gvP5yMPPcBfXHMDO5atZTb2mYkrBRMvoJBxBq7Hn115Ldd/5INU3ID5MCmSgyuuw19e8wL+7t7H+ZNb3s+bL3gVg811vHrHpfzq12/nVy++gguWDzJSFXziFS/jl772DZ4+upvtE+uoqJR2qjgaeoSpZDERGGXJl1Ar+t0IcGinkorStFKHWNtq0FUnZbIWZedl/+W5AjORw7JKxIqaw9EN1zlff+rz3xBCLDfGtPg+a+YHBXT+Y5rv+Zdumlj7hldvPkOExmfV8AZSI5iPHVYN7OYf772Jv3jJWxGqgictg5nbHj1y9DhffupRPvXKF3No2iHRMTfvniGmwbVrh2nGCwSeZb6jxMd3O8SxV9hlmWyQOH3ZIK5SfPShO5kY2s6qgQpXTBzjSzuf5BWb1uF6bb65r8NX9t4KSRvqvecg+8bQs0epD1yUsZ5pwSqarFKYI1N8FVFx2yTaKYpjZHnoxSQxHfs8OV9j71zA4zNVjtHCBTYGsKzeJtWCPj8pSoALoN5I2b8QcF9nnlmO4lPDFw3q9KPRePh0jObR6RqjrYSGnzBaiTNWgUzvp5FGMuJHthx09gDkRSJcaYqBRwoYqcQYIxgPQiaDhWLF78kum1R1XVxpw9upMKSpAZPyjqt+Bk9qjkeunfiAGx/5Mr4yXLRqPb7o8JUn70MIwebhcR7c/whnjF1ApBUgs6p5dkDPdZa53VoeKs3BqC8THj+6jz/5zpf4gxdfz7eefZav7HqCv7zm5biOT64dzYFcLpFJjbTaT6kJgMh0E/HKrexpnTPVuca6qyvNQ5BdF5ATZRAUxRhUCWjk57JULmKwD2vOUuXA2y4kyiA/d2HIIi+p1bPKTObiyrTQoC51VnClQqZuAWIElpDQRljm3OTa8PLKwfRgh17m2ZywcEiLCJQFxjo7jhM0vMU2co/x7n0vv9/riNKrXe1uy/QwojY52L6XRyzcjGXNm1cC1i5k/GCv1l3TDftfd8oL+dNbP8K771jk7WKM5srD9I0cZdXMLA/ODqONoOK3GF22j8WZ/sIxpFGbpdOpMt/uQ0rNQlwjyoCh48SkkUeSuKzoO8jB+VH2tpqkRjAZdAiyRWbgdPC8Do4b49XbyCBGd1zy0ro529q9UBnDLbEstwtEwGIWIcwtMg2WETcglLaTpBYIR6N0gk4lXtBBJ042zmp05gGutaSjbcGvuhNl998QaYeFKGQxDnnw0B5esvV8Nvv99pqXmOIc3OZyKjdbxOUJwL5MaDhhIefrWu/1Svig+/zl8j0ou+/YIijSZEur0ldtAmIOWpPiucsjMnacT0rb740m9uzbCGSPxM8gjQXFeWTW9mGdAW5DalQXIIssyiItY86SPl5uvXkIWdn6LNKlTBbByR6SHKDbQkxJj8NPTqooYXjn5Vfz29/8GmsHh/iVF16OIwU7jx9h9cAyPJmgMuleUxgWEo9jYZ0+N2HUj1F02D42gCe7+U5C9tqNOiIlyDzCrUWlz6u2X4D11bdL7MJlSGgePbyHb+x+moGKtcF9dnaWWEO7tcDFq1aQaCcbH1KkMLz5rK1sHVnFb33zH/iFS17HS085j/OXr+KPvnMjnxsY4p2XX0zFDTljYoLv7L6f9cMriEQdg2DYjzkWukTa1p2IU8FMZImZQGnCtJsPlF/LUEv2LASFu9iAZ122Apky7ksOhT4HWx5rRrazaXbfwB7v0X8Brn3+u/qD9r3U/kOBtxCiPjY49plfPvfFjqcET88HDPkxVWUHz0PziwzX+mknMU0nACDMCqpERvB3d3+V37jkSm586hBznUWqXo3NIyvYs+Dy27c9xRu3rWBF3xg1N6ST+lRTl1Zcoeq2kWiU6iY0CaG5aNU6vvrMo1y/2vDVp/eytuGiTIevP3UfDxwRiKE1dPZ+GVlfjtEpaI3wquhoipEVr+IcdxujlSmm4ip9TogrE5TUOCJhsD4F2EQkndkHVp0OrrSyk6Nhgwdn+/nSs0PsNPs5tPA5KtUtTMptuEZyd+c466NR1vXZRXDNScmLQXRS65d9etCHJ+tMhS7zmYuUlUtAVdqfc7HDXOywrNYpyqeD9QEHq1dLdD4Ii4wBsoU7BNYiqqpSBryY+cTJvhsVGs6cOQL46XPO4XdvvZlAGdYNr+b9d32Fo4vzXLHpAtYOr2K8OUkntZrzDcMr+JvbvsGjh3Zz1YbT+fHTz2Cg4rNvfpE/+NZNKHF+AaDyBCltBHHGQllNpMERdJMIdYf33P1N9s3t5S+uvoq+yhjv+s63+a1LXshQRdNJM4ZEJUTaKRKOLCBToMEYlYWgNUp0r4s9jl4A4+QMcvZ3WhJ7a9GtnAe9gDT/u8zslQE3dMG1nbi7k3IX9OuCkSofW1myZM8vKUBGuTx5LgfoupxIHNIsoaybX5AaSYpEknYr44newjh5W/pa7nKSH4/EZOy1Zbq1MFZykrHM5dqB5euUS16MEYXsJQfl+cIrv45Ljyk/LonpebXhJkWCXW4d6QrdDe1njL8xloUU9C5UymDJAEIofvy8V/Pn33w/50xczBVjCne0w9b24+zfdQ7PtpsMLAziuhGV+jxxJ0BKjXRj66fdSWiHVY52GjTdNpPNgzheZF1EEg9XxczEVY5GHkoYaiplZe04Rzt9tOMKjhPjVdrZwYkCdGOEZaudEuhTxl7swIBPFhoAWkAkrIVkmCVNOhrhaXAsS4kRVvstDSJSGQg0eColjV2SxIUEwtS3TlQq5FDYR0XGOCqlk3pUXPjza1/Pz9z4T3z+sdv5nat+GqDwpYdsISS6ulprYanIPeRzxxhLAFjddq4bNqJXWpVLGMierxz0dd/rygbKeQqqtI3ckSr/jlMsArrMdg6wy4vBvB/n8sdsJza5XtvEToRlv3NTgPIidGmCMFBi5+17oXazxFXdje7QqzvPJVOWfMkkQvmCOttHrK1zVr7fWNsomCcTVvX38/cveyU/++XPc9/BQ1y7cTtffPIBto0MZlFdTaQdDnf6mEscmm5CqCWtcI65sMPRhXnE6IhdBBiDMr2LkPx88t89meBlUkNjBGGaYvDIqy2344jb9+7kvFXbWTm4nlOWDzPX+Re2j/RR95s8uzDIsD9P3WshjUZKzQtW1Xjn5Rfxm7d8nJ964ZvxnUGeOLqPJ47u41WnbOK0ZeO8dtsGHKH59Zv+lh8/61rWja5nIXGKCsU28mDB93TkUM9yniItOdJ2WN9n7YKjTNozFoRUlGXp5xMX6VhJ5JrqAoI6+1o+F6+/kn337LyyWqle1Wq3vnLCDf+ebeIHUpP/iLZq2YoPjXj9zVXNGouJoN9LGPXahFpRUSkDwyNcvnYDv/21D/F7V74J361gjOFIe4EHDz5NJ27z0MHnOH/lamrBBFIY2qnDoPC5bOMYt+5/Gn/fc7xxxxpcaRlaV8akWqGx1ld3PHeIXVPTDAQuRxePMugn/N2932GmY6j5NZ6ciVkzfgEzcpgHn/4dRGMYPX/cVjyRCj17BOKQOb2f48kpPDMXsHfBZ0Ozzal9gn63Rd0PSRKXRDtEiVewYkc7/dw7M8Q9h/v4+LHPopNZvMpqkngax5+gISfw8ZDCDqzfjb+Jnr2EHe48eNZHWmKT/mqOZrwWUc002AdaHs/NVXGkppU4VJ2EdqJo+AmLkcPBxYAojVhVDwGYjR18qTMnF9sEXXmJJzVzscNQ5oySFzlpOlHB2ttqeXGmnVWM1Zu84pRz+Ks7v0Ff8Aj/9ZwrWNbo44P33srdzz3KWy9+M0F2vOes3MK2Zb/Pnc8+iEyPMVy1vOJ4vY+5zoKNIhjHLhQ0RTJk4TghNYFMmWkd5Re/8nFederZfOGJ+3j99vW8/fzX00oDjrbmmem0WD8QkJqEAAgzWzckGZOST5QpSGtxp7XEfiqznCuA71J2tTeZMmdPUyOQxmo9c3BYbmXd6VJ2LL8PueVgnkDW1W+KEiAv+RfnQDVzzMkZvsJKrARiusexhAnNjjV3/7AaZkmc5ydkh7rUWaH8Wjnpqyy5yWU7OQC2rg2Zo0m2Lbf0+1IA7magneyYcra769Ly/Fk65QTRpmOLV+WgxMnuUZ50VgD7DOBZCYFdIOgSQMiPLdcyp0ZQ9zxevPE8/uXRJzh3xQYGB/dRWTvD5em9fGrnebSSAK/WAmmQcYrXaKGqMSaRVLxpdNuh4tskSzfoIKRBqpTR/nlMKjhFJazrq7AYV3lgZoI47doGCmHYfWA9q8efwUkFSAswhdLIILF/59KSwvydPPMVOob4WAWdKERegr0aY2KF7E9s0mWcyY8cY7enrRTCpBKkRrlxMe5p7D0KtUuYWn9pa91opXanjK3irOWbuGffk6weXFaAUiUMfU5EJQNz5WIySpksimSoO53SAi9X5XdzGvLFqu1/pnCNMkLg0nX+yBPrRTae5f223N9zPXeP9avo5if4WX5P9uUeyYk9Lt0F4MUxZ+NNFs2VWKa7RyJpDOWCOgKb11H0ayQSQ83p9PR3VXomyxKtbr5CLjsDZXQxPxVFpbJFjl04d7chheG127fzyUfuYnHjdu7ZvxdBwnkr1rC8b4CpyEZrEiM5HrqsrHX41IO3cuGKlbxg1cqe40B082S0McyFMWESMVAJ+If7H+TZ2RkCx+HK9WvZNTXDxx95BANctf4UNIrXbDuNt5xzKTfteozHDu3kzMl1bBpZyVT7MJ5SRKHicKePxSSgz21RcTsokXL2ZJOfPX8r77ntA7z1oh+lP6jxlrO3ccHKBoI2C1GVV516CletX86bv/gVXrr1EjZN7MAVhpnQoeZq1tXb7G/7HG55dFxLiD0zW2F1s8262jyeTNnfqVtrTWktQGuZDFWgefjg40y1O7TjkGOtNn2VAV4wsVZ9I5n/hBBi0hgzz/dBM+bEqOv3S/sPA94V379o47I115+5bANziV+Um52RPm2tWOa3aFbhBesvxncrvPOWD7EYWdA3Vq+yemAZv3jJG1nZ59JwQhruDEc6fdSdiOnYQ6mAtWPb2LN/P/ce3M/6wQn6fas3bCU+iVE8O3WAQwsJr9p2Kq0kYDEJ0Aaa7gztBA5Fy7jzWJPP7K/wyPw/gNbomUMINwCpQKfI+gAGQXj0Hu6q7eKuGZBuk1Nqr+L6CZeqoxnwEk7tmyLUDvdMDxBqyb75gNtnBI/NfxhMitF2sA4XnkQoa950TN/HMSSeM0Sns4tm9SwSA3vnqtZBpBLT5yb4qlfL10mtU0oziFDCEKZWLz5e7zDoxywmiqHAemw33ITZ2CmcOHInh05mJWaLueSWYFa2EGpJn5Pgq5Qhb5HEqIJBjbVTSGhcmXLJ6hWcs/xHCbXD++66hXsP7KERNHnB+gvJk6TsxAYPHXiCbz91Cz+y42zbR5yIhVaIp2y3zEt7R9ikq7yKnxJW36l1h9+/5bP85Jnncce+5/iDK24gUpMcjVKG3QV+5ztf4r+de6b1KybBVxGecmknPkYLtBCFV64NOeeTm+pJVCwn6JVLugM91zFnhJXoOp0sTe7KQbX93MlD02Vv4Jxly1nqXEbSm0Bmt5fkpb7zZMss18DNwuF2/92f3WqUXQsz+35X356zfW4pjJ6z6eVwds5ElrWj5VYG60pY+UKuuy4nb7p0r2P5873a9668KL9O+bU1dKPwJy4r8sS8jG3P7kERuRBdWU+exJbnYxTLGJM5spBr520UKn+OLlqzg3fcdAcPHjiFF44GOKs7VDce56rFR7nn6Aa2VmLE1hQ37MAhSOdd5NYEcVyTHPOpj0xxeO9KhmsH0LFD2K4SsEDUrtAYPk614+HN9bPdSNqJVzCUTx9fRWIUUaeC0RK30rEyEcCkmXzENVazHRiIsquUYENj8/bclJ+g+kNETUMFWARSMKFABBrTVqA0QhmkSdFR9+4ZLVEqwXctEGzHQaZJTjHZ9YpzS1SZ8KazLuPw/DTtaJG+oEZdxTTdkJrTKUBiki2Oc529EuDLGDcrJpb3rV6JRsbsZs9GOecGKI4hB/v5QjPvS+XFo30/l7SZQm+t8kRho0iNwpFJF1ybUo5HPm5kz3GZ3c3Bd2EzSFow32WtuMjAr0TbpEyRO6J0owHQW21VijwxOpdo2WI1eb8uR6Xy61V+lnIJT3nxnhrJGcsmuXXPU9yzfyfbxobwlODnb7qRd734JeA1+erj3+CufU8jpY2S7Z+f5zOvfl0xphsjeODQET79+CPsmZmiHcdIIah6Aa50ODg/zdUbT+OV285mqr3IV57ayWynzQde9hpSXN76hQ/z1PHDnLvqFM5euY3zVm1lrhPyxJFd3LTrEe478CyujFjXOMy+xSEWE49IKypJQNNbwFUJl69ZTZQK/ujr7+XUsXE+8eguXr1tHTWvRsNfJE4dhms1PvDSa/jpL93EV568DW1gy8QORocu5ql9d3L/vvtxnTqbll/KiqGNnDq0gIye5TUf+yCnjo2hpM9EcwUIqDn2OtdczXwkuHDlOl64UnFofoHd09Nctm41vopY/WDa+PiuXR8CfugkQ9f3Zvs+1Xj/h5SMF0JUVo2O7vupHRcOKneUtcOTpEZk3qgps4lHnxMz6LXY02ryxFyNQGk2NxZpuh3aqdUJ+jImMYoBbx4lNfNRlYXE53hU5VDoM+qH9Kl5Pv3IbbzylK00gwbawK6ZhHsO7MEVKS9afwYCWEhdnm1VCVPBhnqL6djlo7vG+cbUezBGY2aOIIIaBHWcyjI2BNfwdHQLcWs3Jomhs4CoD/Scp3RqbKy/inFRZcBL+WbnCWY7D4GOsC4JPoYU0g7GJJjUss/SbYJ0ECjI2G4dTyNkQKWyAYAhuZbNapSJWocwUbaITjVidb3DTOzwwOE+pmLF9qEFhoKYTioJU6vLXV4PabppMYBqA61UWQcQYaeIxcTaAxoD/Z5dnQ97YVaiWtJOFWuqc9SdsGcwbqceqRF0UqdIQHrs2BzvvetrrB1ez5VbLkKKrid4/jPWgq898W3W9LlctWGL9R9XIZ9/cifPzs7zhtNfAJAVgAA38+UGMmuqiF//xpc4fdlaLl53Dm6WdOPLhIbb4cjCMX731m/xoZdfYa3OMj1s7pvcjgM6qdczgemMuY+0KnSFsVE9CVdLmdVugZLuxJWDayvZEMVr5YmyfD3KoNSXcY8mdSmrd7KwbDFJZwxsDgpirXBliiPsdSszcWXQkp8HUICdnA3scUPJmLGThb/zc12aBNn9Did8dynAzsG1RvQsXPLrXrC75Oz+iYuZ8iImH9mKYjKl7ebbDjIfZkqf7YH4pWO2Pr72X25dl9K1sMsXivftf5q7d3+LT71xC9Vl84hhjT7ocNv9F3Lu+nvx1i2gxx3knsTS/g2gBcm+CiYVxK0Kfv8CAOFsDalSZmaGGRw+bF9brHJ0dpTR/sM8cXgDDbfNfFyhqkKGa1MEfougvoiQ2kpFpEG4KcLTiEbW14+5yHoCrkHPOOjQIZqv4jVaOBMde1wBmCOSdNbDJBJnqINQhnTGQ7iZtk0LkkUfXdK4JpHH1Nwws2GdduplFo6qR7bhiJTjUZVPPHwngeNx9eYzWVGZpe62svugCka/3O8ENn/Gk10ZQmpsv3ZKMom8n9iIjXWsyEG8K5OehVy5z5a3mR9vYd1ZKgfffd3Kt7xMx66yY0hSp9herjWGPNlfY0xXWpIae+3yokS2r8kiQVNjP5ufZ7nwzvO1/BgLTbs5eeJpfp7l57xMMORjSVnSlkvR4oxweXZ6H7/29a9z5sRKjizO8M7LLkFnZyBkgKesnWA71nz44Ue5be9ufvT0C1k5sBwja7QzVyklbFVNsJFXJ/MHv2vvw2wf7We8MYxB8Itf+Sg/cdbljDVt6frCMUempOki41WNqxLaic90VC0IDF8m1N0OFaeDMYJWHPOpx3ayZ2aRN52xlYlGvbhnxfXRmuNtiRIRn378Cf7lsWeIkoh3Xv5Chqoe777zIfbORXhSMtWa5vcuP5tVzRq/dcvD9FeGeOGq9Zy3wh5nI6toOxdX8WTCvzxyJy/fvI6JPpHZcwpe/6XvJHc9++zlYRje+q/e4O+BdsbypvnOT1/4b9pG7Ve+/IOS8c/X1k9O/NkrN24YPG/5OB988CmWDayk7tjBL9RddrPuttneXGR1tcYjc0NMxy5Nt8OoP0/V6RA4Ib4bshDWOdLu51BYKzKJBbaYzHTqMNOJcZwms5HmQw/cS6O+ltGBs5Cqzuee81HS0EkUUSrxlOZYx+XmQxUenH0PAEoNMjp0Lof1vQz0X8q19bU8ueASuOPIeoXO7EOYNMXMHMFU+1Ce1aPrZJEnZj7AE6VzF6qCX10HQJLMoaPDmDREegMobwxjMlAuHIR08dUQYXocx2kihIsjqjgiYNYc4u7kKM25ccYZJMHgLHg8cLTBgGeTIAMJqRbMRg6zoYvE4Cqb3LGQWABZc1KkgEQLGo6VlCxk2u2qsnrnIS/EEylRpne2DHP2vYztdjLbvlya0OeGJFrzzm99g2dmZrj6lMvZMLKO1JDpI7ssi538DEmyiJK2sEJdhkQpfPaJR/j5F1xRMJBSJOw8+hx3H3iOZ6ePsHf2OEIYhio1Rmv9XLPpNDqpJi4N3nW3zT/tepCzJgbxnbBnogFwZFKEHhPjZEmxlgE3WuAIkVXF7AK2HDxDGfCZTG/ZCwRzlhpxoqd1zmgXn6E7meVV77qf1cX2csYtDz2XgbZGWJ9lKMCHZb41SnSt3NKMicut/vJzz1u5wId9JtMeeUlqTg6683NITdfCrBwez4uddK3QSl7inKjJVtm16wUEXWALXWZb9by2dEsU1w8y+UjJSlFlEoLy8ZaZzvyY8wS04k4L6+7S9Vq223OFoa0Vp0+u57FDu/i1Gw/wBy9dRtCcQzZSNvTvw5tcgIawTOekRBzXmEAiWhrVCAmP1nGCkGi+QjAxh6dbJC0fzwkJF6v2vngRk+PPIr2E5vQii3GANoKaazXeUmqrT9cSEhB+UpyAmZeYjiKaq+CJlgXjroYQguE5q+fOr2cgEaMaRYRecDCdbOHmpphYWR25sd7eMptJ5qaGaMc2gtfwWnhpQpi6xQI9v67WPQnOWbmZD9z1RX50x2aGK9MAJNohSbLkuBx8im55caAAvUX/FKK4j93+LovEXbARtVirAkTn/dDJihkVC1LRZabLsq6lbiXlY8l/5p9zVZwdj/XqPvHzGinzvIWuDAbsa7KkgS6YcS0yFrv0XJae3xzAK5EW4LxYkJLlfyBOCtqX5q/kx5tfTyd3fSL3RU+LiOd4cw2/8IIr+InPfYSmH/DVZ/ayYWiEVGs2D/sINO/6zne4a/8Bdowt4w+u+GEc5XIsqpBqQSXbVlXFhbvKfOLRSRwkcOaKbXz2kW/z8m3LGfI7/MKFF/CrN3+eX7n4WgYaq2lm0qR26lJRHqmx1rq+ihnwWhwLayDt3BVrhUj8bA7weO32U4tzft2nb+TsyeWcuWwEKVLWDw4wVvcZqQpcJXnLOVv4yTM3ZTp5S+D8zfUvYP9cTOAonp6a4zt7D/DB+57kb19yMa/4+C1csmZLUWQpLWn4XZnwhh2b+dgjD/C28zbYxGSl+ONLtjmv/tzMp4QQE8aCgx+078H2fxx4CyE27Fg5/qM/edpK7th7lLHGIHUnKYCOIzV1qRnx5xmsTuN5HcaEYc3gXpLEpVJZJAwDCySCNmGngsBQdULWOx2OR3UirXiuXbWM6SPf5drN5/Lhhx9HKYcL1l/CgU4/s7HD1LzLsbbHsVjgIJisxjwyp9hcV7hCcd3IWxirtthz6EZ2rFrLXLSd78wYvrTwLDOdh9DRFP2NC0lqy4nTBDN/HBamYHACAOWPkoZHSufuoLwh4niqANbSaeJUBhAiUxGbGK0jXNWPL/uRwkWbGF/2I4QkoI+AKhVRwTEKZSwwHHC6yXu2AIGh5qb4mUl/nNpCIVVSnpypsqwW0XSTIoGp6mQFIYTNzK47CX1OQkXF+DKxZdfJB4luMk4l03gLYQhT12ofpUGR8N+//g2GGxP8ypkvt0wxphTGz66JPWuieJF79j3Om898PWG8yKd37eKW3Y9z1sQKNg42EUSA5p8euJfvPreHG7aewovXns6GwTpKJNx3sMX6oXH8rFqe9aJN2HX8MH91xz3MhR3ed/2FJaZWFqwTWN2l58S4JkFn7E2c2WkhyZwOsAmXogwie0PQJ9NpO6XJOncQKMCb4ASAnTuRnNxO0ODJrGCJUT3fKRfN0QjcbJueiguGLz/ecugbMhZtyQSsi7sjikStcunxfL/F58sTeyHJsJrNsu1Cl6vsth5Au3TS50Q2u7xoy/d1cpjd3fNSEG2fle49cjMGM83QdH5MXWY9M/YozjH7HN0FjIIsAbNb1U5heP2Zl/OHt3yMz98f81LRwJ9YoFaZt36m2SVMhnzcg21MXSEWNaTCFrZRhvnpQbz5NqoZoSox0k3ozNcxRmJShdPXojPVZxO6s/7WrM0QxT5x7OGmltVTjk2ETBZ8XLdNPF0BI9CJg+646AWJN5Kx3BXsisIH40lwBdpXyPkUpWJMRxJNVVBBjKpH6LYDwqAThdGSJPIA8J0QJ7PP60QVRFRDZiAtT5DURuCJlH1Tu9g4NMygP4fnRESJdwJYzdlaoADNuTe2FCbLAXFO6J/5YtBTCY5ISIzTfW5KADxfJOc33VBK4i0B7rI/d09/K0B6zmp3HbRyUJ1Xu80ZcAvycztGp2df+efyhXBZA07puZXC2OtfRFySYozIC82UEz5ze0KrNBZFlGApEM9dU4ok7KI4jwX0eXNkV/decV2u2XgKP3n21fzzg9/lW3sfQ6DZM32YdhyxfXw5//BDb0CjmE0COglFhMyRVkJ4PKpQUQn9bodBb5FnWwOFjn7t8EoOzx9iNOhj7cAYbz/vAm5+6m5+6YUNWolPpG1Bm0grAtWN4rkyYTSYZyaq4oiUMHWLZNBcgpRf87MmxvjLO2/vuRbrBwf56hteXizMHKkyc4YEz4kwRjBUhY3v/hCudNAm5dXbNlBxBf/lrPV8cef9nD15NZ3UIdSOZd2dECU0FUcwVg84PK8ZrSukTFkz6PMj21cMfvxx+fvAL5zQ2b7X2v8kcvO92v6PAm8hhNiwfOQL775hwv/0E4/gik28dOMq2qktGbyQugRZ1a2q2ynsqPzqIo4XZYO6Q61v1gL12EVn4cKKCkmMw7A/z1xcZV0t5YuP38V1m7ahnVHWTq4GYG9bMRc5xKkdsDqppCrhqI6IWg6b6wk7Rub54TW2lPmXH7uF/3bGZoSzyIGOZq6t2Xf8cfa0mhxmliR6injxIVAOYmAZzB/DGIMQgjQ8gkAi3Bo6nseYBJ0ugkkwgNERJg1RTpN89g3UGCjopIeJjYsv+gnUIB41PAI8Agap4yCpWuMNtLEOAIGw1RqVNEx3LJCfansFgPCVJlApVTelkwj6XKgq63Ix6GkaTozMwHGgEuJsRR6opAjHhtol1gpPJjTcNp4TF6yPr6KCgU20Zqa9yHjDbj8H9eXHKrfeA7j/8G5Gan38w/13cvtzO7l87RZ+9PRzOXPZCI5MePDQQf7qrjtYO9DPn151LXftP8hNu/bw8U6LC5b3c+3GTRxpJfzJbd/h6enjdJKIxShmTX8fbzh9DZesHkcKK7XJJ8tEd7t7buelhXVEKF4nT1rMJnDZLU2da+rLSZaGrlwk/0we2rStq01dCnTL++s5rhKjntuV9VoG9k7+iVFZ8pfOFiJ2giyDEFFwxFlIuxSC7upVs1POQPfJjrVXq53ZEpID8FwOIli6IOlO4r2LlO62eyMJ3e8tBeUnnn/ve733o7udrn69m7jaPf78ecyThqHr8tNz/QvpS4rOtcPC2ufp0jVxhOTqLefzvru/QZhs4azJcdZMLKIPusi+xLrEVB3ibZYd1qsUjurgHOqgWw6DG/dx7ImVNPqn8JptnFqEn7aIOwFCWTDXbtdwZWwdUJyYhVZfVsk3KlxTdOKQhgleX5voWA2ANPJwKh3ry+1ki9GOwCwKhJtFJRwDMeALaIDe42C0wG10rK1gKginG2gt8Wot6xQSCmqNWUTOJicOrhshhCFOXeLUIUw9Iu3w9PQc77nzFuY6bf786uvwVVSAG5EDYtON6pT7i00UTrv3XGq0LjOyXdAucE5IIi7nRRSLuHzbpeTFXO6Ra7sLvXZJApK/f8I+SpWUbb8xPZ8rzlUYILHzmrG6b5Ox+zn4zuUnxXlpddLxwPbjLrlQMOnkUilpn4oSABeiu+hYCsBzGYoUJqvyLE4Yj8DWqpgP52kGNVY1Un7pwgs4FtUIU8V4sECYSj7+yH3snEkZq1etRS0w4IbExhYSamvXlrPXirrTYbA6w6qhvUipabdrjDp1bn5mL6eNbkUIw2hVcXBhjooTdiVGRpyg57fXzc5vYQbOO4mH58U99wLgbeeexc+cdwa7p2f4+u5naQYem4aa3futc6vgpHBHM0bgK82Pnb6N2587Qqpjrt24BiVTXrZlgo8//Ax/+N3beN1pL6LuGjyZUsuirQbBxStXcvMz+3jlttXWT92NeNvZK8Vnn3zup4UQ7zHGPHvCCX2vNHPy6Mv3Q/s/CryHmvUfuXB9Y8OB+Q7rm5tZPTBGYmJmkyBLALQ646qK2bc4xPbGMYyRhK0afqWF0RKdqqLqWxx7zLb7MEZwuNPPsajCiNfCkyn37r+P7WOjVP1BDoYuUsDxjkOYSjqJIsxKp/d71u1jDI/VfW1cqbn/UMT98TM0xGGuXjfC6qbDQtyinTocPH4H159yMXcdGuSzxz/MXLyX5sqX0o72k7T3ZixYCdSgMfE80m1QeDMIB6kaGJOAq+1njNV3t+Ln0DrEcfoJ0+MoEdAU4zToo4aHLX1j6JgEtENd2ck/TCVxBsB9mTIQxMS6a6PlKU2a/Z1oQdOz5XzzwibziUs7VYz7bZTQLCYukVFUZG61J6g6Ib60zJX1JO/gKGtbpY1Eak07DjKWWPL+l1zL6z79WS7bcDoDFes3XFZEeyWXj02DTabGJ1nR1+Snzn4tVcdOAq6Ieed3vsuHH7qft55zHntnW1z34Q9RcSSOguFqjVPH4dEj8/zGLV/jx85Yy69dfC6B41JxDUrlxT00adrVQkqhSY0qJjHoap6h6zxgkyu7yUt2Yu4CqhNLlXchXs7gnpjA2E3SK7O35d/LzQJfXYDwfDsmWyiUPX9zxkqJtGdRZPKJNT8W0T2vcnNkt+S1K9MiFJ9PSnkYPm9l7WvOPnfPB/KCVzkg6NHPYrJCSPKkILt7/idel6Va9PL3u0mi3c/m1U3zVi4oknsT9wL07jXtsvvliIZ9zS1ZseX2g/lny7p7IQzbx1ezEJ7HjU/v4398+z4uXj3A7127imbHwRyUuG6bcE0dpEC7EqOEZbinItAwtHofnWN9LB4eYGpumGZtBq0ljpY4cUg7rnCs3c8o4OuQRDv0+TPF/YwiH4B6YwqkwW10SEPH+nobYd1LgtTOAsogKsay3TVpNd4piNBgqpI0dDCJwptYhJqBECretLUfTCXxXEBlYI6047IwO0BjYAq3vkD7eJO++gxR5NPq1EiMw8MHD/DHt93CL1x4CWdPjhCoEM+JUBkp4KqY1Cik6bKyeZn3oi+XGOQ8cTHSbg9QlrL7fNjoj7Vz0eRRDyvBKctOeiI4nOhkIrHbLUtEpLSJmkt9ussOJeVnyGq8LcOZ+55LmRZVlzFd9rzw284XH9iInNBdG8Biu9kzt1TeVjDypKSobgRqqeF9tshJjSzkEXmzcjGJMAopktIiyHp/P3hoP8O1fhKj8GXMuD/H8ahGaiTzacBLtpzDZx69k1dvP4eKii3ZpiLaqcvxqIIjNWN+q0gW1lqSJJZoq1QWeXJ6JzecMk6fO0UrqfDEsWNM9tVpxzEVF7s4EyCy8b+s8werr87Pzc9kQPmz3aPpNpI1A/38xEA/YGWJ5ftZ7oNuNjcqkfL7l53GbBjjCEEjyJ2GBKeMDjMvV/HRRx7idTvOQKWGIPEzaWTCjTuf5JSRAeLURQqN60b4juAPr1wd/NxN8rPA6XwPtx8U0Pl3bkKIYO2ywb9656tH5KfvOsYLJhu46iiLYY1O6nJcW71ipCWJ9lhIHSbmRhjtP0ySuHRaNZuRnrg4mf1XmjosxNUsXGl9hvd3Gkx6R7jv4BH+67mnMR1LFhJFK5GFuX2/H+NV7aC4a7rOfCrY1GzR5yeEqSRIH2TbspXsGOhjRV9EmFqv6slgirF6hdnIY6LeRkwZhJDMz9pwlE5iUB5udTVGd3pkJiZLqHSCCTCaNJ0j8FYS6zmk8EniYwgZWF23O0agBlmI9xLqKRI1hGMUWoBnOXT2iWOMM2y3KQwVxzLZYSqJUknVTRFJlqyjBb6jCxmKAAa9mKYb03RCDoU1hryQ1AimY59B1w48dRXR77XswGQEnoqLZCEARyW4WRKRTjyMEQROSCfxswHJpeFXbWEXqQtbvsISTuii+tuGwX5OHTm7KLtsSLn9ub189olHWIzaVF2Xg3MLPHhoD6/bsZa9s/MM1xxm2oZPPPwcHzcH+ItrzueUsVqWsJQiMxBZnvTA+qjnDG85VAq9jJQjU6QpW8T1OgcsBZFdYCcpF8spu5GYAph1v5dLSspWcDnYzWUlSyf8MpuXonCziTGXhRQMYAkASnpZwLxSXopl+a3W3F6zFJVN+Cfa8uULkrL+Oz+vrhNI7v3dvUZlYFAGwWUf4fL7Syf6vOVRhvxnUTm01Oz2ZfGZ8mKgHKU4Uepjv9c9XtMDygt5SQmEJ7kFnQAXW+kv9yUvN0/CBau2cdGarfzQtou4ZdfdXPre+/m7H1nL6cv6wRV4R9u01jRRYYr2FXqsgl7lIqMEv7pAdXwKfcD6Y7tuRLtdI4oUzmJMnFpHoemwDz+xFXKTxEa+LIjTeF6ISSRp4mG0xKmH6BALwP3UupcoCj9vE0iMLxChsfKXln3PHe5g2tK6m9QsONQLFowDuM02wtOoZkQ1VehU4lYTqmqG1pF+OlEFjeSjDz/MN3fv5ufOP48XrGyiZBtXxQVozccboW0UIUV1+92SOTr/Tg5GXZIiX8NRNvlSSMu2e058QoKijQqVmPPS/VvqxV04jGS/l8fF/JkWJwHfJ/vdGNkzVuXvG2Of1xyoiyySorLFQ5kkyK0Il24/17SfDIDb80ozmaetkLk0UTM1kpm4SkXH9LndQorl65MncAsMYZLwB7fdx97ZRX7pokuZjlxSaszGHq1U0XBiPKnxpGDzyDhPHH6asyaXZ8eimU/8oiq1l0lXEqPoJH5xnTudKudOjnPL7kO8dodPzSzwo2es4Fe+Ns1LP/pp/sflL+CsiclisYTghCRUGz1MccgkM6bXuQZOHIOe7/6VE2ZzVxslUpq+i8HKPPNKpf0VyYHpQ5w5uYkg6zPTUZVOHPG5x+/jmg0bWDdQxZh2d4xVKRetHmHL6NFTPc+7PIqim/lebT9gvP992/rlo7/35osH+oYnXNqeYXjFs7SPDQJQj6ocj6ocC11c6TARdNhQm+bphTGmwwbrh/cAWNa7VcMYQSeq4KqYihNSQzO7OMx84uIIzc3PPMyL128BoOl0WFsDR1Stl2g9ZMCLORZ6PD5do8+PWdu/iK80C5FgaupWlgezXLl8AFd1Q2hKahTTXDQ2w/DAAg9N1/GDtbTjB4tzFEiMlKTtfchgHKeyHNcZwpCihE24TE2HJJlBCJcwPoznjmBIqfire7Tcdp9VBJK2mWFeVBmmSYKhKgVrzSiJsQmQdS8l1QIlDVFkE0TnI4eKk2Y67G4p9U6iGK3EVFRKRSYEKmFz42ihccsHZy8r/lNxOoXWMkw9fCekFVVopz7DGSAXwtCJAzqZts4WFXBZTDwGggpz7VkGqk1yr+u8yIknUgKVFMDHlUlRSfHhw4f5yzu/wx+8+CzOnhzk44/s4kMP7Oa8lf18Y/d+zl85yGDV4Q+u2M7jR+eZrDdpBBYo5SHAfOITUttSyypBypQwrBT3TKJJtGNZqtIE1vUC1iAdq+3OJAhLB+i8lZ02ygA9tyoryzVyTWUesgYKb2GZsXYnC2uDPT6bRGknS5XJSortZKHP3gVHdr6yxJ4bqxPNpRLQq09NUSdlxe11yfSk2XnkwDR3PskXwuVWZqPLv8OJkp2l8hHZ814uCThRD17el5OF6fPvFLrwErOXy4iW2sZlPhVFMlmXNbd9oAtiRDcSUsRzBEWF0SzK44o82dQ+AwOBxytPPZ9L12zmTf/8cT7x+m1sGPDQVadYZaR1D+0qZJiQVl2iVTXcfS1kLWFgcj/muMQ5GpLGLtJJaFbmONAaZD4O6PMWcWSC53eIwiCbwC2ASyMXITXKT0AYZBCjapEF3JGw9oIAc0AV5IEUM60wnrTSk8yKUGiNbitER0Mo0KGDThRONUKHDiI2yGpMZXIWkwjroGJAuTGB1+bxwwkfe/gBvvgj19JfAaVmbF/QqgCiucuWFJpEOAhtekDUySQhed+WMvfS6AJgIUzhOKKFRGZRL1d1CqlAsY0lMpOiL5YAd5lhz7+XM9bl4wF6QHTeuix49twpW948vwZ6ie44Z8CXyiL+Z+C729fLMpRMhpXZLkKXBc+/FzgRYxkjvfSalPeRR/B+/ZbvsqZ/hJ8+9zKOxz5R9norVfgyZdjrMJd4hNph89havvT4d1k3NErdqxCjqKiEepY3VJawxNrF1QmuivH9NiurgmUzhg8/8gSv3b6KWiXhd150Dvtmd/ALX72ZTnI3127cyNbRMSSKbaNNfMcUIPz5ziHf5765FvOhYd1AhcDtRvHK7jJL5UQ56ZFqZa8puUyxGyVcP1jjSzt3sbweoCaG8GRClMZ8+KE7GAqqNCrjtJIQKQyB2/Vj14nDO69Yrh4+OP/hLNEy5Qfte6b9HwHeQoixzSuH3vqW64cwDcXLrxzjD7+wh5++qMNg4lE7OMuR3afTTmuMBW0mK7P0eYs03LYN4bgRs/MDpKkiTR0cJ840lZKBygxRYpN4lDAs8xfZTcK5k30oOUUn8QlUTJgqtjamaaUec4lLqAUb+lv4hdUafPvZW3nl1s1cufIYQrSJEo9UO0WlS1emHG9Pc+XAXubitYTtXcU5moVpTNTGGdmGoU3aOYAKJjCkuLKBMSmuqLGQHAckjjOIrwZIdAtbrMHFkw3yNJ4KDaqqn4SYmA4dWrSp4eMQacFYkFJxUqJUshhbtxEdK2puXrVREDi21EvF0cxFDo7UDAQxA17MisoCdSdkNq6wmHgYbLn0htsuNHK+snrM+bBOO/Hp8xZpxwGOTBlw5gBIUpd2VCk8o8FqjHN2+NTx5TxyeC9rhlZYBqHQxFqw7cmkYLldZb21XRVz1oSikyT0VxyUSvjirt383Ism+Of7DvD+127i9BWNLClsnh1eAIS9frdSI50uANWp6jJi0pa7zjXeNplH2bBr9l2TAak0H2glhSdw0a9LDHb5tbJDSbmYR3mglgbr/iC6zgd5OeMT5BMlsJCmqgAB+QQgS4xLeYLOFyAF+FAlh4oMvOStnCjWTVzr+gRDWURDUQ3QlKU6pgy8lwD+Qv5RtpEssUYsOWfKFQZPTOLMAUQOmrv70UU12NwurdxOpqvvyoa621Qivw5d54GuGwsINAkSmRWCyVnx1EiiDGwrYUiyY9XY71q2LyXOzmtFs8Ert5/Pb9x0N1cerRGeVme6o1k+UeUVL5lARSnuVIe04WEkFuTOgV7tIPo1vrsAFWNB16MuE9UpYu0y2HcMqVLr350tOvO+rTNNrTFYiUlWxVJ4GdudX6I6iKMaPDCJRA7H9nLEQAB4BumkEApMIix4b7sYLWzI2AiSmQB3vI1oWqcUE0uiToVvPTPPO755O+97yXmMNjv2ec2euxx4dnXPdqHuCoMWMpOd6B6QCV3Qm/9u76UFPe04KJyL8vct8NZIx/Z9h2RJX+mVnsGJGu2yLaB9XfeMIfnx2/fKEgVZsNb5azZSZ4ptLQXf+X7LC47yMeXjVDnChaAHSBfbKTO5S2RgxTXTPlWnA8ICg6X7Xdo6ScJjR47xjouvwIiUMTmPwDAV1Whnyf1TUYAjNcsrMyih+dEdG3jv3Xfy0+een52Doep28FSE50QshjUW4woNbwHfDYt+nCQOV24c43i7w5/etpO3nbeRmr/ARKOPT776Cv74Ow/jSPj0Y48Ta8njR4+wotnHNRvWceW6CXzHO+H487H4d269m0eOTFEP6hyZP07DU/zJlRexoq9u75kQoHt1+lL0LvxSrQrL2vI1WzfUoOYJDszs5/NPSNYMb+Dhfffx5jPO4pGjx7hr39Ocv2INoXZwZYzvdUAYhNSsqDd42emDIx9N0rcC737eG/GfuP1A4/3v2LasG//AO14/FLgrfdJAsVwbrj9zkEcOtrhghYPX32KyOs3edp3USGbjCjWnja8ipsI+Fhb7WIhq9kGMavS701Qqizh+iBCGI0cnMVjbu7nWXk4Z9ah5iyiVUHHb9BvBUDDDdNhHK/WoOwnr6y2ORx7zsbIMWmcn168d4NKJuULHFbgdlHAts6hSFjoLTIdtlHOMbX39vHrsR/jI/r8FwOgUNbYVHU8hkCh/FCEkUbifSEhcdwyhFEPeqbTMcXzRR5MR5tVxKvTh4FIzFRrCJULjIJknQhpBQ7g4WX/cZ+aI6DCsh6xzgR8xF7ksRA6JEaxpLtrjySb8hpeyGCtcqak4mh2DC2yoTVFxIhyR0OctkmrJYlLhWFjjUFhj0O3Q77VYiCsEKkIKQ8UJUTIligOQCRKJ0IZIewW4SbQiyTyvc+u181as49e++kletvU8EBkLKrLCJRlAdWSKryJ8FRF4HTzPOjD82Jmr+eSTj3FWWGdFf8ANZ4zyirNG7PmlwiZKKo1bbdsJO1GkkUduAYbIjkzYin8aMFrieZ1e1jurhpkzXiqzzcsZ38KmT8ieym5lUFcUsDkJo5Iz1j1AM3+txGoXx1NiZ0XGfAhMsVCwLgQST8ZFoQ4pdZGgkwOGYkIvgYYTWBojikmjeC87lJwJy8+nh2XMJBdOlgxdZtWstrus9S7rp3uLk0AvkC6/l7PN5eTWPDHVfjbXZ/dey+zIimS8HGznzklLW1HBr3QO+c+iwmEhO9E9CwzrQFP+jMbL+k+oney4evtEpC03LjNHoRetWccnHvoO/7hlG/6LYWG8zp13HOP9792J6wiu2tHHmuWgFhNMQyFIkVMJuAKzQoCSiOMplYlpRrPFp3JjKmtniPdXcSod6PhEoY26KZWQxC6Bk2KSHHSnNsybYBG5BBaFLbaT980IC7jBfk4CA8aCkFkQQddW0GhF0vaQTmorXM4IW3gnVhxaWOQ3b7mDf77hUlYPdxMPhUpBS4QRWbSqF2QaoxHCjjtx6qJUb8Ji3k4GhCpup5CDFDIWkeKIuAD5ea5K3rcKNrgEUsvPfNG/My/ugn0v/j6RFc3fzx1MdImwKB9vfm72fevzbd+ztoNWIqZO+F65WE/e8sWBFiXZV0mq0v1clvCcLdgbbqtHnvKvgW4AVzl2jM+ePV/FtBOPZ9t1ds8HbG62GPUXGfQXqbuLfOvZveyeCVnT79L0F4pIne+GSJlSqc9TNzPEoY/WCteNUF6E9BJMao9xWcPw3y5ayYfu3s0FqwbZ1DQsdCT1QPOWc1cw39nKkXY/sRYcnDvIzU8/wYcfeoB/eNlV1D2vh0jRRrB3dpbHjx3nXVe9PqvYnPLk0f289cabqbiKsybG2Tw0yPWbViElRWQlNV2gDZwAuvOf6weaPDc7zWSjybnL17B76gCv3X4mgetw6ugI77v7DvbNTjHZqHLp6hHqfkBQWyiO8ZdfPCI+++Cx3xdCfMAYs8D3UPtB5cp/xyaEWHv2qWOXv+TaMeKmj2wniMiw72CHVWMBBCAczUJcYTJocaBT4UCnyoC3yJA3w8Kiz965ZSyrHiNOXQ62BgjcDoN9c6hKhEnsoDnqz1Nz23ziuYc5e/kgnmeTFY2RxKktW+zJhBF/gU7qcrjT4NmpQzxzfDeu0PR5kus2bceR+xDC4Di23LHrxAgMT80c5L4DU/zyRVvx3JQonuOy5VM8s/hWbp96NwZDX3U7s7PfwqC7jib+AKQdlOcT63mORk/juAMYpZFCovDQpIwzRIvETsgIEjQ1XBBWG9rRUFfQn9ZZwGFvaNjmQ6xlUWSg6qQsRC4NLyZwU9qxTXzpJJKGl7KsFnJa/wHq3iJay4KVSaVlUWupR4qklbocWRhmKAt11V0LbDuJj68iUiNpxRVirahnXsGJcbJM92wiz4DWYKVOxfWYbc8wVOsnr4TpSst2V52QmttCqRTPCQmCdsFcf+axZ/nD6zbzM59/hK/8lPXEN1qgY/W8WrCC7XEy9kqYnmzpwhFAJThGkmZsUg6+e/tuF4AJaYCux3M5LG0QODkTvFR4mn+/FKYta7aXum2AHbTz8LirYuLU7SZTSY2LtQd0ZIKjkl67NYP1DDaW0S9/r3yNoMuQLQ0f5xNJnnSV5gy70dl1oNCAQwZckZmUpreKXpn9z5nhE8F1mbHuRgDKVS9z3Xv3GmXVVDPtJHRDxQIDMkGYHFDlGzE4J4lS9MhJ6AUkZevA/F5Z5rv7nimkJYZc/118n95Qdn6l84iANlBxHM5fuYmPPbifn1gzyE2f3cfP/tEuLtjYxxtfN8njTy9y0zeO0CcEl21oUpESUwETwVPHO9z06AyTAx7RIc3yYJbzBk9joHIEYoG7poWZlkT7bA6N53eQKvOplhrpJxgtbNn3/OAU9nfPICIgBTkSWya8g612qQymlYHBfg19BmYEshajWw5CgFOJULUI07Zl59O2C0bwZ7c9xdvP28FEX4Bfm7LXUJc0yxn7C/nzqnvY4XxBmWtpEV3PanvPTrT5yxeovdrc3gXn0sVb14mkC3pNeYFWsPHmhO/0arWfH0yUtd1Lj89xY9LEYPNSyJjv7vNstMis7Hr38Xz77HnOBT2J2UUzXe9/yK9lNzG7nNS81KM/0R5gF6WBiliIAx6aG+Kp2SoraiGn9h1ntDqN74T87T27OGVc8t9eMJrZJ84iZUoUBThOjF9p4VSyIkRejKrECFdjEpkxwJnkScBQIHj7i8f5k5v3cup5AR++5yCvOmWjXZzJlIbbJtGK4dE+doydxZefavLTX/o6v/KCc9kwNEAu7bSJ4ZIoCamoDr6y53ja+AgffcWrOLQwzxPHjvP1Z57ir++5j6Yf4DuK85Yv48Vrx9ky0o8QgtSkvOfOB3nsyAIDFZ+Xbl7Nmcua1AOJlFB1XY62Iu577mGu2HwRUXyIjzz+KM2gxo/sOIOKN0gcHeVrT+8m1bNcvz3g1LUOOlI0PZe3vGSs/t4b3d8Cfv55O9Z/ynbiYvD7pf27A++tG5Z94B0/PurhKmSYohYTFrXmxkdmeM95ayG24ce622ZPq5mpogTzccBw1TBemaGTeEV4UQpoRRXGRxchMER76zQqc8Spw2B9ire9YAV/fOvTnL18oPBD1VrSSX2i1EGR8NHH9rJ3Pma41uTKTefRcOzkvbxyjIrfKgZ9142QMkWqmG8+tI+3n7cJIWKESsmdEF40McsdMxaETB/9Gk5tFB3PApmjSXgcIT0MGkdU8YINVMUQMRbUxnRIiTjEHL7wmGKWgAouDq6RxEKzTx9nzhxiNF3HOH30SzuJzkeCpm+TVUb6OixELoIumPFULkWA80ZmOHNwD64To43Ec6yMRBtJEtvrNOAtUFER7dRjPJgn1opaVtVLCGvyL4QhUCGuSTjebtLKpCexVjjS+qJ6MiE1knbq8uz0QRajFpONKp7q4Gashpe5oQROiFIpgdcmqC5a3XDo4zgJo7WAn/v84/zlDVsYqrlgbBKY0SdOGLllmXK7tlBL7YmE7Go9lUpIErdX/iFLDiA5U1yANvvD6qrBMWlhnfivtZMl6PQCuxIYzyZ9V8U4jk0ws5n8sphg80WJI5PiHsosCcuWgNaFTjQPzecLrDy7vzxZP59mM3doyFn//BrkE61Eo0pFSqyX9YnWfrle3ZRAcQ/4ocvMd/W6prhfPa+XWPDcpjDVksCxi+wcfOXMX54YmzP1FiCnxX3M73V+c4UwKLpa9bKncZ6Umbey7hu6wBzAkymd1EFDkVtRvudeVoEvZ84TA6869RzefuM/86ozxvEieM321bx6+yp++S8f4Fd+dpK3vHol8zMR3775GNGigRoIZcHQz10/QWPMRz6d8vkv1fjYsTv5qYuX0dozSDA8h1weU3eOkc55tKf6LNtdXySNHRwRWueH1PpgF+XkI8DDghsJBbkai8zDVCBq2iZYzsmspLxBuAbViDCLGZOoQQ7EsCiQib32Dx+a4ZcvPNOCzvweK4MwInOjMMXCuizBsH3YXnDPC0lT1QXF5kSwWe73XWB7ot2f1rbXSZlmkpc8eVEW++x+vlejvZTtLvrfkr/zc1n6elkal53ICeegdS9rmi8ApOi6Gj3f/v611jO+kdkLlgiCshStGMOKxXaXlMhlKpYth7uON5iKG4SpZFk14uqJw3S0rTpa9VoWWLuLvHjjavya7YdGS4yWVL05lJugghiTSnSsUJXIJv56xhZrWpSYWCIcY/uqMog05TVnjfOxh/eD0qwYMsRxB1dZWWouNYpTlxu2LKfqat57zwM8eXyaTUPDXL52FZesXs6q/gaXr13Bpx+9kzecdna2uE9wZcy6AYdVzQl2jA1x67N7eNGaLcxHCXfu38uf3P44e2eOc87yZeybnWXD0BhvO/d8ptuLvOaTn0Mbw/nLJ1jZ32QhinnFKdvZdXwfkVZU3UGavsfagRrLGx7GLGK8Gq/YupGqu8A9h5/ia3v289LThtjQ7/PmFw3yvhuP/JQQ4neNMbP/6k3+QftP0f5dgbcQYvMFO5adf/k5A1ZEHUNadRDthK0rqux+usOayQDZTBiqHae5OEiSDaT7Ow0qKmakMs3RTh+DwSxh4qMNTIcNO0GkBunazP0w9ZAy5YtPPce5qxulY9BFiN5XMR9/bA+rB9czObqCYT9mbXWOQFmgOJyxL4U/pxOTqEXec8dubjhtDMePreWW0gw1j3KBMIx647xzx2v43Wd2Mr/vK6RpDI5rfb1lpq3TEWF7F26wHF8Ns2iOok1Mnh/hygaJiPGpEbJIg9VMc5y2mMenxky6ByUDnkvuYU86x7h/LlvVMp7paM4IQElDmCo6iaTp2xLjibZJlQBXLz/KWSNPlRKW8klNkqY2YzxMXWbjSrGgiLViOJgtebfa5MuFuEaft4irYvr9BWLtoI0srOfy0s2xdnjy2EH+x6038asXXUG/36bPn7eLoMQvLLtsieXEMhxVC6CUm2C05EOvOhM3iAgCbPg6yewk067+0xhh2e3SJGOMOIERz7XI0rHbFhnj302a7JVS9F6nLjArKsiJHKid2Mqfz/8+2WRY1mXn/xyZ4Hmd0qSsMwDe1aMLacF5rne0YLwcis6ZOoNSSbHfPKSOpMcXuHw8S0Oj6CXMmMms8jKdY68X8In601zbnl/jpSWnly5soFeaQmnhYiMFXeZOCFOABSFMIRcqioUYK2My6JNawxkjejTs9vQymVL2UkpXWpMDjHKSWmJL5lgpULYPJaw/b5IVNFLCyp7c7JwVVkaRH09qBA2/wqXrTuPdNx/mrW9s8pcf2cmvvfBsXrNtM9+6ZQ8XXz5OLVBce/0YcirBZBZlZqdEpgkmtsd88boGZ8pl/Okte3nT5vNYWOxjxNlbMIVerUUauehUIp2UdNFDNcLiXgthIBWY2DLiBFhNt5vdo8BYj+9IQCzYsy/lrl2LhLFmzTKHqRk4uhhx/Vl9jDZdxGBqwdqQsaz5DNQ9h5mwzXAzA3ZG9NiI5Yy8SRVKpcV4XLxfsMq2zoN9v9t/jJEFm11o9MWJLiPd7VnpRw6iu5/vAvB8f0vbyZjq8ntLn6+lvxev5X9L3ZM3IaTGyRxYSuUFsmOxkS4jRBG5K2+3u1g5+fhzwnVYGvkqLbjzlrvKLG3WQjbm+s3buePpW3jj6S9gLvHYs1ilnTqM+IsMBbMYYt57507GGtalxGiJchOb8JuNzdJLirwD5aT293yXGkRgI2sYKznEgFCGyRGFsxOmwzZudQHZqZKmqiAxXBXju7av37BtiOs2TdKJPO4/NMvXd+/hr+++lxeuXMFMp8P28abNPcqsIW0Okt3OsobHYtRmsCLo8wNeumkzL9m0BUmHu/c/R+C4nDkxgRIpaqjOnT/5BuLUypiemY74yTMu4OOP7mTdgMd0J6JeV1y3+SwePvQ0Nz31AD98ygbizEpSCsElqye5plnl8zsP8PWnjvPG60f4b9ePVv/iC87vAz/9vDf0P2HLn7Xvt/bvCry3rB3/wG+/bsQTKZhEE7mSf/r8AR65e4o7H57n3Yv7Gao57FhX4y+uCli1OIBqDdHndujk1buEoeF02D0/jis1C6lPjQgSkSWSwFynQapD3nPHk1y5tcmpEw100mFudpBUKzzHJuxNtVOm2hHnrW6ybeBhZjp91Nw2c1GN4eo0lWDRsolujHJjDi20+ec79/OWi5bTV5NYGghMKvGqbcaCffbhEob/sWE9O4ffxl/e/afI2gimdRz8KsHwmXhqkHb0HOHCk8T+MaSsIYTCc4ZITQdDSis9zIKJmXROZ0J5uMkIB0TMuBljRI6iEJzSb0u472t5HEsSzh5ImAtdqm6CJzWRtlaCY7WQMLWT0dmDc5w2tDtz9NA9k1iS2jK3APNJkAFsaKcuA561jspBd5w6tFMfTybEabeb5AmYWkvqrt3HXNjAVzGTdRvyXdO0SbACQ4JTeEW7ymqUK5VF3GqIyBh6y7wZanWDdDOpSCItYEicQiaT9w+ddPtKwVA6vX6rojTh5j7wFpR25Rh5yXigxx4MuolW5QksB28nNNHrCZ6zrKlRBSvtqtwmUJe0pymOE/cwYVorXBUXVdHyz5nS8Vh7TVncWwskZE+o3DKHmTcwWSKnykFwbwShxxpNGIS2IV2rnS+dm6RbwtvkDh7dbfXIaER3e/bPE3W55aQwC+hPXpI7r06YJ406pcVFobvNtmH3daI1XO7SkDP7+f0pg3xjunaJ+iTafSkMTkl+lJewl8KyxL6x4NsR2m5VQZhagJS/Zhe2Vg/6iq2n8dYv/ANvedMG2jrm8cOasyZO568++zBvO9JhqO4QDweoILY4TRvSeQ+xqHHdFqajCGoLqE4/126M+e6xR7n+9EFQBhkkGF8j5mKcyEFHDjrJWWkBbsZsSywIjAVmXmGM4dm9kkiGbNqqMB0Q2Wpz/rDHWe+6lbeeu4GqL7h99xz9FY8+3+WqP3uU375+Fe0k5e9vO8Tbrhnj+iuHQBpu2D7GJx97hnesHye7cZhc8pWB7vLCWaq0B4yW+0y5ME2Zle6OBb1a7/yzS18rA/OcZe9us8tyl7dRHoPKLH2ZtRbZ3z2AekkkDugZn8TSxYEROE5MHOea8JwJB5k5meQJ4ifTu5+MZf/fDekvBfTllhrFtZt28F8/9w9cs/lCFozHxsYCm5sHbL6UjPj0E89y0doBzlhVxRrDZ8+rkyKyqqrSTS3B5acI39hFYBaVIc1zBSTC1fm6CuHYLJvXnj/C7964iFOPkFIgIxedge80VUXCqjGSwLOyxtOXDbBtbIQ3n3ku39y9k8OLc7zylHUYkmLsNpkMIp+zhquKKFmg4lpbzMAJ8Z2QqzYMEacuYZqRAsYwEPi0koD9s0dZMzBI3Xd5w44tfPD+ezDOc6yor0DrhKOtCE/aJIqa30Jre4z2/klefvoo84R84GuHmBjwUCQ/LoT4DWPM9P/Wzfx/sP1AavJvbEKINeeeOn7mxWf0Y4BWpPmLf3yW1188wrv/+mne99rNnDM+zEN72/zWLY/h1C2AqzkRQVb22xEpR1qDODJlPvHZ3wlwhOGcgRkbAk3tTToWNjk6f4zHDi/S8F3CVp2njobMRwsshEepBAskqSCMx7lgzdlcvPFOvPFF+nYP0elU6avOUuufQSfKrralYSYM+fADB/iFK1fhVlNEkGBigQkVwtHIIAYtGPOfI9nrMOQd5eHdD/P7F7+V0NT4y/27mdn3ecJjD9IYeynL/Mt5Vt1OksyjVAVPDdIQ4/QxQD8VppRNitzsVZGkBKmDR0BLRNQJ2FSL6Q9ihoI2dx2dZ5+/lzM5B22g7iUYAzUnxVOaxVgxG7qcPTqHENbqL/CsTjv3QI9jnzix1eMMgj63XSSqRdrpSaxpxVWEsMkyVccOBIl2qPsLBTubs6muG1HxW3heyKplMdvvHWDf/AG2LhtCqYTFdqNw6BDCEAQtvMYiwkmtB3A2gRkDMmM9dCKtg0l6YnZ+eQIwxiaVlSfppZOsTlUBUPMqerl8Q2eZ6DpjNcvSE4EppBZAT6XHpc0YYZlxAUpZq78kdVCkxcBdZte6bga97Hcce8SpS60yX0x2ucOB1iVwqFLiWNmCIwUgL4e/dTFB59fBHmg2kWZJZFAKKWdNibTHKSHbnD030QtarZyjF4iXr33h8W2sb/AJoLp0KYtiJCdhEqWwFRajxMVVXf/yHEjn+3Vk0rMQKN8fJ7vPZYjjiKRYPMjiTDIG3ohCx57vL08gtpRuF+Tb69at/iqFjSC5IsVICovJsj5WCkPdU/zwtvN51a/dz8+/ZJKf/9yN/PFlr+L1O17IL/7Onfz1P56H9h3SqosMbREZb2SRuWfG8B91iNoVOmGV5sAxtp8BX795nn3KYVUt4P23HMKEMN9JOXtNg4tOadr7mI2jesFmKci+LDciFXz8mwv8ybd2MVwL8JRgz98tIhBMDrj8/Rs3ozoOQ1WPa7eMsWN5tbi2OnF43Y41/MRn7mb1YMAfXX0qb//8gzh1uPrMQV57QT8v+JP7+aV0mIpj97sUbNooSX7DeiNP5c9AdyFqX+s+U+WxoQxAT2a5V25KWUAolowz5YV98Zyq//+ubj3n+DwLiZMv5E2xwE6Sk7ydfS8vCvY/PY5/BTw/7zFkLX9iEuMU/TfR1j8+1g5hEgOSFI811QVOHX6GR2Z2c/+uOUgdLlw1zCnjdSDuHoeWdjHp5km2xtpVViywFhrLdFe0JdwUNhk4SzLtPqjgNjVvfOEon7jvCK/cPgHSIBNFGjvZ9bey0iR2ASu57CQ+gRMicbl83WZbv0EkKBH3XKvUKIS2f79syyo+cN9D/Jczd5Aal0rmwJaTGEqkhKmHUim+G5JoxbvvepAvP/UYt//EzyDUIGdMnsIH7/s6p4+9lp3HdzFYHeCciWG0aZGm3aRbYwQ6djBJQl/g8tOXTvLooQW2TKpKlA7/Kt8rpeSNsCTA92H7dwPeW9aN/+mpK/He/8WDGCl4+kCLsUGPR3cvcNUpQ1y4uQ/d0kz2+8ShJJ4NqHqWffZkjBKaMHXxVUwrsRXXJoNO8YwlMwHOQIek7ePLmMlmPzvGR3jNacPc+9wC567qoxPHDNeGqaiVHJgb47H5Ybb3H8JbvQAKvMYibrVtfWdjhVuNEY5mLor5m1v38/PXrcCrx+BZhk0AmNQCfoFlkkTCivVP8Rdf38/PnX8aSjzHZ/Zt4EX+dj7buA3TWeDogY8zNbiOwFsJDjiygSuq9DHAqKhSU4Z27NMQLjrTsTcUnO0OkWrN4sK3ifURZlqCPZGk3tGsqlzNbOjR8BN8pXGkoZMk1D07MlectGDBcxlODiTj2ENryWIGqMECSV/FJFrhZwlrsXaIUwdfRTSCBXyvgxCaKAowsWVQK/1zqCBBKI2OFLKaIFyD6UgO7vV57Ogx/vK6HbhulPnlxoVFluuG+PVFpKNtkmxa0ttmDIcxEp1kNn8qxWS+3EbLoppZvphQKu2Z3HJ2XKkUodLib7AsmpAaV1hrKrtwsKFbaXIdaHdEL0/Q+SSX/w5ddtfqHFVR0TMftPNM/XKouyz9KSbyEjOmtaQaLOI4XUa3HLUos31lNrwM3rtAIQcIJ5On9Iakl56rolu2usz0lVsuMylYZi17wHyXQbYgP2fKy++VE7fKtoLlCUiIrjyn6iUF01ccxxJWc6mONdto6dfu/YMMi5IWchWJBTN5QmXZYSXXrlvteG9CX2okjkgR2ZCaCkmsJZ60Fp9u6RqmRhBrm3h63aatDFTqvOOjN/P2G0b5xS9/kt+65E18/vZvsedAh8nN/dn1BdmKEX0aL2ijE4fDs+OF3t30Sd5+yTifvPUYnw6PMxk2uGrlBqoDc3xq514eP77IlpVVKyWZMcjB2FadDC3b/OnvzvK+O57jc2+4gP6Ki1QpqTZIIfnazmO89K8eIU4NNU9yeL6DMTXrly8Myo0Zbgo+/brz6XSq+H6bj7z2TH7oQ3eybqLChv4arzt3lD+/ZS+/csUay27mfdVYCZMxogC1RksELGGhu/c712GXW3nRvLQplZaei97v5WC6/OwYLZEqL6xD95hKjPf/ClOXX6cTmHeReecs3VbpWPPnv3vsVnKSkwP/fyQlPeda+nx3DOleuzh1i+hc/plYu8xFNSLtUFUhUSblXIg07/zWjbx2x7msbywyFOzn7+9/hFNG+3jjqdsAm1sjHWtxicg02jJjuF1tk3x9Y/ML3OxAtcG0JSK17Lf15swkJhVtozVZZVViwdrBKjfdP0eYaNxsPFJu0o1EGCtPjNoVlLL+90JoKq5iIawXFSjz5N2cGMlNGhyZUHEdXrByktv3HeDClRM2kkm3YqktSNYp3KZqfot3Xf4CvvzUY/zYZz/I+176Uzgq4N4D+/nyridYXm1xzcZVJDpb2Gi7sJlfqNPnz+O6EU4a2TkyFJwyWeMf3rKOM375yf8qhPh1k5e+/k/cDD9gvP9NTQgxdMraoave8/atiEBZPYgrufG2Y3zyS4fZ0l/DhIq041JTipkwxqlF9CdHqVfnCMMKUqZ0ogoznT5Gq9PU3Q5R6rB2dDeHppYBYDqK9mIdR6YkWtEXCO4/dJwXn10FFonnAyAl7ghm4iqTwSLrNzxqF72RsNXXOtmDWU0RyvDU0Rafvf84//2GSfwagIEQq2tMRA/oBuwgrQx9fYY7Fx7i5etWc512GPaXs6r5Rr5zpMoDx/+B5OjTLNYOI70aXv0MPGpMc5ijJqaRDHEweYAx91QOxC4OLv1USaJ9uMnd/NCmzVyz2nB0cZBd8wG/e+vNXDV0nKdnAoYqNSqOppNYZq3fT/CVYX19kVbq0EodUi2JYx/P6xDHHvPtPsLUw5FJkaiWyw+Q1hYwX7X7KqLqtelrToGwso7c7aUxOIUzECIqGjOXge6q/b097fHOm5/lzWetpxLYgUxKje+3kSrF8SOka5klk0pMau0AhbTgM2e5bX/q6iAFQK4TThykTLsJlTlYy8BrPlFJJyGNXeLYy+QciWXGjbBsSz6pPs8Eaox53ok614DmCU9ayyxBN+35rONFvZNclkxUlofkIen8vH2/g/Ki4lwAdJonRuoetj6oLmJS1TO5lI/RHntmRUavpZkxXZ10OfnMTvB5eJxCT7q0aSOLSIEsVdtb6jdeJIKV5BzlynnFxF8GxqJUtKMkVymDBkdaZxfEiZGIpQuJ7j3rlQ11rQ8pIgB5URFBnohqehZ2Ko+CZNsqa8jz7/Z6kduESld2bRCL88z2bxBcuHIlY7XreNdnv8CbbxjiT77yUX71Bafzkz9yB//y6Quorm2SBC61+RBzTKEThzSLBg00juMvX4BFg2gLXrFpAlFJSWc9OjMaVY145YXD/NE397PuogGcVoqoGcRMChE8u9fwq597mul2zEdefQ79Fdf2ValR0h7h5etHuWztONJJSs+m9YkvFsWptM9Y25aqH2yE/PaVG/mTf9nP+35kI2+7bILL/vRBXnXWCGsH62SIE5PapNmc5S0D3NxqcGkfz/tqzyI2Z6J1dxwpS84KNrsM4jOAVYwjIpOPSH1CHyIjAMr9ND+m/1XwUN5nHvHLXzNa2jmmtLAuA++l+8qrJ/6vtpM9J0IYIu3iORHT7SZgazRYdltSd0IWkgA3s87727tv5Yxly7l6wxYGvHlmOi1GKoOcOzGJUh2UsmO1dLoSE+GkSGUs8PYs000FC7pzRtsF0TGYSPaAbpNKhNZd0J1fewGnr6rx5NF5dixvYBw7tkovRYcOacciese1Er1c3gfdpHspNWHs00l8Gs5C9nxr4sS17Heq2D4+xAfvf4wXrh4nyeSXeY4JwurTy0C87rt87rX/hZd+5G94710f5VXbXwnAueOC9cOn46s5fGWve+4Q5so4i3TaOdIkEh06KBNRqzi89sLh2t9+LXkT8Nf/yzf9B+3/mfbvArzXrxz9tbdcNRBIaacTERuMC9eeP8ShZ9vo44K05dKZr9svGMMT+zpsXg4ebZzZkDTyqNQWaKZTLCw0qXotGgNTuEMt1i6bJjxWZ3GmnyR1abgtOqnP9Ru28qEnv83lrtVJOdWIaL7C4elxhv15BiqzqGZsM/NdA1IgAs3Nj03z9HQbDVRqkp9/7SQiFdartoV94GP7sKNMJvikhzn78YuXsftImz+/53F+/Jw5bhjax3VhgB+0mZndwI37ruI9d+/i8amvMzdziFkMRhsqfVuoRn10kgeZcWep0UfU6GfnzLf45U1b+MkdYww0d+HWW4zV9rBszziv3H4hn3n06/QHDn0jl9FwfWItOHt0HoCGE7OiMsfeVpO6ExNql4VOnaRlB89KZhNY8WxZ2rlOA4PIrAIVrpTE2ukW0nE7KM9GA6J5hyBoEwwdRtYSOxi0M3CWCkxH8uSTHq/48F2cNTnIG84dAmOKYjFgJzgVxEWhDZPYktJ2gtQghB1UpbGvkwEwJ80kJxlYLem4c5u73JZMCAMqtexWxoxLmRbst1Aa0u6k7pRY9DJoy+UdZWBabpY1zsCjBtdNCKqLSCfNFhK699iWhJhzNkWU2Po4tBEev9qyCXCx0w2rC4OO3SxpKCmSz0zmBtGTaJpN3Dryin2ZIgGye/zG9J5TdxJK0dqUzr+X4csZ80IWYroMcKrVCclauUSlfO7FvS3paE+2yDkZKMiZbymt7MJWHLWV95ay8ieTFORyoFy3rrXsLgroLSpSHKcwPSC5AOk9bi0SJZIsFK8R2i4olZEkRhUyupNtKzUSTIfDi/NoI/gvLxrn0996hLqv+PnzN3LDy27jTW9azSvetpWk4eOubKGmIhZnhhhrHsLxIqKDVbzmIsSCzvEGlbFZkpZPHHuYVCKHBK+4fhn/8On9/MR1yyyVH8LUEcMrP/gQv3HFeq5YP2bPWUbF85b34wK8ytKCWBiQ9jMCDbHCpJJ630xx7Xzp4BmJCRWughtOH+GWXVOsO79qZWZZ0Z2yrOOk4LbURyBjpEtseBmwL5V3nKCfLveRk72Xn1vpWMqLtqXyE7PkOHNm93m3+z85jp7rkJ2nUumS93uPI18gL83dKH9n6XkUh7vk84ETZrZ8mtmoSqQVNSdiIJjP9pXwx9+9gzv37WH90Ag/t/1iXGWlhIPBCIcXDuA4MY6T2IVaZoMolEHHjpWYeKllul1jEYiL9ajPh7HUQNVYa0sg53YLuYnCSlCSLFKq4dQVVT5x9zFOW12z39F2TjHa3g+pNMpvo9y4e95G2KJTaWRzYYQuivbk0UUpAqLEs+OPTKl5ksUopuLYMTsf83L3MJXl7RgjCIxg02CDj77i1bzmkx9j78w/APCr3/wq//38/Vyw/GKk0NRdW8PEcyLi1Dpvpal1fsEIhNKY2BINb3nRoPjobcd/RwjxXrM07POfsP2A8f7fbEIItXZy4E0/8qJBO6lJ0A0HtGUr162o8I4bn+X1W9Znndvwmxedzds/8Shnranwe9evAyNwKx0rBfA6+INzNiQssJ6xGoJgDm++RdLySA5PUPVagMYkDmkrSxg8OsRsq5+K26GhFugfOmqBs2ePK5Wav/n6Qc7Y1OAnL58gSg2+LxEdA5GxoLttJwqksZXdAKShbGeRd5Y1wxV+9vpJPnTXEbz0KGeuqbNiyGdAam7w2pw7NMF9M2+lphL+9r4HmawH3L1vD//1vAvQ/x97/x1nSVHv/+PPqu4+cfJO2Nmcd9mFJS05SJAcFRQMmABRMed0zXoNFxVzDpgDRhARFFEUJYddlrCwOc/szuzMnNjd9fujurqre84ueL3+vvi5tx6Ps7OnT3d1dXWFV73q9X6/5WG0uQG1+i5+uvJ2PnDqsXQX83R3PUFxYFSXW4GQPtLfwbuPlki5P99/6O88c/HRSKFod5s4QtHt1cnLJv35CcaDPKPNAtXAo+g0KTgNcqpJW0Hrs6s1PTDlnUbs5UMIRS4C4UAy0CtBvms8ZrYJiUJIowNnAOO74SU/uZvPnH0wx+2XQ6Mt7ZJQBZH+LWLAbdCtQknou3gl7RdcSJVmvSJvMiow1jQGzEqk5yeTlRAQaId0jmu2qiFXqMZssnQjNtoJcaSKwboKJSJwJgFvGyDaW646JRO+Yd6lpxcE5q/x2pDSnEagIN5ijhclinypogFMVH7phMnkHVjMsJGgNL0UYDFGqmG0sJgESlITbiJXyWrA9XlJ1MMsS2zElea4ka9ooGDLLpxJEhUTpMo+x6Qs+xa7XMzozw3o1v/XbH5WGpO9XsPCyRIb49M8vmckMUElchXj+tAks+AII+8Spi7s4C0+eoxz0Ay3tOZGI1sx5TAehIYqVd7822u57pUHIvOC979+Pm/6yB385gXPYEZxgLd88zYOO2MG82aXCQby5LoqtPkubl4jE+kFMKp36KQTIHIhua6KtpFQwBjMnlPggOVdXHfrTs49qBskfP/vO3j+IYOcvqQX4SRb8yLU2ksRMZOxBxJrgWe/bxUKLR8Tmlwwi+f5/UXuvHGMsL+BW5M87+hezvvsSl52xPQIuAMqWWATksrX5B3f27R5a4cLu3/ZTDLpnbN9pSzAT++mJYslu0/av9k+yfcGsJ8KwJBOSOg78fOYZzPuDnVZJy9WzQ6OvUMVWgtIOzhQ/MzRM2W9lpiIt57TpOjWIg9WiRTjr5u2sW18lB9c+AI8J8SVdYzkzHNq3LdtK3U1hYKXJkikFy2ac9pNIDkFJfQOUkFq4C0j0q6IZsGl9mQmKqHetfbR7LdEX++i58gQyiVJLfTBjXY/mhJCgcwFOEXtk175mtxRvp5/auNlms08xdJ45FbSiW1qzJjkuglQD5TDKfNm8Ls1mzl38Xw8t0kQedkxXmbi8SWSGRbcOocMdnHtRWdwwY9u4I0nz+S9587moq+uwhc1nr3gcNaPDdBfGCXv1cm52qVxLl9DuAFBzdO7BFH77y3mOXJBZ9e6raPHAn9+0kb1NE8K+eQn/T+Y/mngLaU45dSDetrKwiHylkfQ5uHsaUAIJ67o5os9W7jh4Z2cOLOTMHQ4elYfhw0+k5f+8g9cc9dmnn94P2MTiq/dtplfPriT3RWfD54/h1P7llIOdiNzAbg6RHqzUsR1fB0QxW0yXg8IfKiNduM4PlM6dhKGDvlihdzccf2EOVAlyYe+v4HLzp7K9LwHTUU+JxHVEMaBCUFY1YFatPW00iDTzKme0p0+JPEI4EDek1x+7iBD2xo8vL7CnXeN0Vce5ezlvXQ3t7DfaJ7qSAebdq5n8YyQxe09HNa9ih21DfS2ueyZyPOCA0Y59oiH9MCQ15U4ssPhO38dxg93s220zMsPncFftkzBc9YTKMGsYo2S6zO9MEJveRfDlW7KboN66DLu5+j06ggUOdmk4Xu4MkexqA06S7kqea+mmU1XxX6jPaFd1hXbx3CK2q+q09NIJtxA6HDVDVBNSRjAZd9cw8tWzOKYhUVkPtKbBjKauMNISqIIfalBt+/EXkncfD0G10LqOgdt8Q4aUws3jPTkrgZZnq8BamiDWj0BGjAee0YJhR60IqNNAvTkKQRC6eAmWY2ktL5npSJxm3cCnFwUyMUGChHDbRhDXTYLxEvVEgQ4+YAUd2HAdCjiLfVcsRrn6XhNQt9NTbrmHrr+/JgtybJ18f0zkhtg0vb93pK9K2DYN/s3m4HTdRqm/CWHoaNBrMFUtjcUWm+px0x3inHU0QJj8J+pBxuQmKh/Nvi2DTMNOHdEGGvSw0z96WfRoDoB9cnxUIkIuCeLK0eFmCA99i6GEHo72g8dpre38fkzz+NNP/4zd+9o45WXzuKS8we57Kf3cfUZx/GKgw7krRffwQ++cxBh0cFd0qT4xAija6fSMW0nY1t7cUebFHtHKcwehXaQ+LjjDVQoqDzSQ3FihMMOKvPFm3fAcg28d443OWR6J0jzHon7qwqTxZRZ2OlKtXVB5vdEMiJczeyjBFPb85y+uI+rf7aZN50/g/5yniPmdfCbh4c4bm43X//LVu7fPMZYLeB7LzyQfK4FW4seT4whdqotkwagZtwAYqYTkkX9ZJejYvLvNvg37z3DYqfqI3r+OGcLgNt1ZgC6KXOWObfLbMgHu8z2cyd+x9PgO6mzJLS9VbJJC1mYzJabHTnQgblMMjuDf16/mTMW7kfeDSg4dR4aWs9DO3fRlS+wq1qlmFN86vbVHDuvm1MX9yUeS9wQ8hA2HJxiqFluB/CEdorfRHvPcQSqIFFetLgJFMILEHUFVQV+9AwexI/jaE9M5bJk3G/S5njxnEPUJ039CqlQ0S5NvlRBVK0xU6XfjwHeQeDG3qkG2nPsaYzhuU3qfj4+Nyc1ceWHLqqpyQvH8SnkaoQNybFzOvnoM4/m/uF1FFzJT1+9lIs//zC+/CsXzT+KnZUe2tU4rtNM7XDY8kxjjPry49qd+zb2/ydw7KQX+m+V/vvedv7d0z8NvPebO/Dxy45vl5jVqhSIZohoKkQtBE9w9ZXzePa713Dyi+cRhsS+hq8+80g+d8/dfOaPdyMduOyEqTznmCn0lj1Wb6pyWr+iOV6ImYBGrYDjBBTLw/xxw1bWDldZPrOIRJIvTZDrrCLyAWHF1WC9DW24U5CogmR6fx7VUKgS4ErdiWtoEO0pRBDGOjNRsLRkBnNJFWvQ8EhAeVPR2+dxbHcnxy7t5Kb7d/OlP28BD1xXIEOo9TRZuKKX/Y4YYdWmzSybU2Z4tEJ/BU6cVUaoEOGHKF/wyEMFfvbQBq48tY+ODkFtewfNumLznj3MaG+n6ITMKo3S5lWZ1rMZgEqjRK2eo81t0OVVteszEWBCjee9GsIJ6OjcpRljoaiNtcUDba1WJJ+vkStXtGTCCxGlQBu55BSqLhF5pV07NSSiFPCZH9VoL0heelwfKogkFtKSgURbfVrTHRkQRtpU4QQxE67dgYEJCR8nEQEAAU7ej8EBEHlngKDpJoy2AQooDfxde7s8ulhFNwoFTsScqTBxdmdPwmailDKZNAHtCceUVyaTsxnQE0NBWm89R6ydcFR6cjdlEErnjwbubrGW3COanJXSBkM2Oy4cXW6hLGOuqL5jPXmLZDOIrbbUgdSkZBtpGhBgS1mAWAai6y9MaeCzEQJ1Xq0kPfYkONn1W5ISAJ5N9nY8pIPumL9hKGPjSpvB1kF05CTAktpJsICNIxS+da5vhQePI3vKEFf4EShPggOdMHcmR8y8kLfc+Du+e8tKvv7GWYyeEPDlux7k8kOORrkTnHz+HXz308tYvKAN12mQL1YYXj+dQDnsHulkFhsodw3BBLq/ugETO7v1ImlLB7kDKhx6WBe/vmsX5yzrZrDHZctIY1KdQZp51n0CUHo3KXVcWm3PC3RfN/0lFLz5pLmc/Pk7Of+oKczvLnHqsm7uWjvGrkqdd173WJzXZT9+kO+9ZP8U2FSRFMVIBfaWVLTIT71XmWaZs2x4dDDzPTL+m1QZk9//XgGD1TZS11v9R5cvYcttaVoqK4v1Tu4dIoSIDdZNeeJ7Zh+xBdieVOTM4hT0YtkOOhUiuW3jCH9a/wQvOWhFLJN6cPtuLlsxl6FKnXIhoL3cy/fv30hfW56rblnL8w4ZZEavF++eiFyQzJsNtMcSCSpU4EmCdhflSg3ApUD4IdIRCC8yVB9TqCFH+4t30fO3AAI4/YBurntgFxcfMqCZ7zBENZ04+rEBsdLVZI/j+OSdCULf0Tuprg8RKWQWNkqJyHuUiHcJB9vLbBsfp7fo0gw9XOnHCxylROyi1gRC6iiNAnD5EYO89tfb+OIftvGqZw7yw1fuxwu+9DAl507OnbsCz23EQdSECBHVkHy3DjIncqHeiQ/hqP3aEeGWQ4UQPUqpXU/6gp+mSWHFd/hflv4p4C2EGDhsycCiA2e0aYAaRBNrM0R5AtEEmoqf/2mYIxYWOeEbN/DCA+fy+lMHaIwXmZYXfPqlswnKM2n4IRd/9BF+s3IXn3j+XMYbPs2ubbRPcXTwhkCQF+PgKT57yybOPLibc6b2EuzMo8KQfMeEbpxKby/h6FW0Khq2VlEqOJQ7PFQxYuLGQr19ZaKN561BygBrGdVSHm10aY9jZtXuRCjM199POaSbUyAyXFTU6iGf/+0W7nh8jB07m7z+WdMQCOYXtLRFlEN9/ZhgfGMvv165gyuf3U176BKMO3jlGqOjU7hv8yrOXHwIRbdKT34PFb9AEDhUam1UmgVKbj2O7NfTtotmM4cfamY0n6/hFuta8+lqY8Z8uYLbXiOseeS7xhFOSGNPMR3QoaB0qGgTMjqahO99tMaPH3qU315+uNYlB1qDpjV3GiDGfoOJAI4xwFICtxgZW0IMzIUgJS8x7JvZ7pZSr/xNvoYBt8F+bD3vhqlJzeRHBMqR0WQog2TrOALvMag2+nEnxIlYcwMGbIYwYcsieZSwzgULlEb/t5m46PlT/cqNJlyZsHhKJfIVA9ylkxgtJRfra/Sug4SMPjROlqcF/dwZFk+GEduYDl4ENnAWKbCrvxu5Dqkt1/i2lm7WSBRtQG5HDzSAXgP8JFCQud4GHkYKYxu+ZsE1pAGFFDrIRVy+qL8bLbkNnrIGbEaOEoqkLSolyDnN2O2aAUJCqCiwThhrwx0RGWRFzDpAm+fw1XNPZf3oOK/57C184GXdvOfxDbx4+XEcM/VQDp++m50Nxdz+Es7sJrk9VSpD0+huHybn1pGuj7+zgDuzhpgR4O2sMbGrGykD8t0TyE1NVhzbxx237eQzN29hIvS58b4hLj9merLjkmGGhWuMgHW/FxCPAbExnCJlByMUhE0HBBRcwScvWMgVX1zDT1+7lM6iw2ijwfMOn8kJi7uZ1Z3n9KsfZHetEQdRQRlAivbqIBWkokmmk5Ckd56I+pmafCwVlMYM5hYTHf+2D6AfX2vGkX38npKg2Mx4fJ+IzXRC/RxhhhEXKl5o2kys8d1vwKDNVJv0j7KJtrtQ892Wan3yr3/mS2efwdS2ECkCbt+4k3u3jvCte9bjug1yeZ98LmTN0DiXHjmd5YPtfP+u7XgbGzz/mF4cR+g5Nq+SuRNQOYFyBWE5is8QKsKI8VauRDkh0lcaX4QgegPUiEQ1tOEhSu+0rN9cod1x9T1CUDU9B0k3jJh3a/ElFGHd1eOk0i4x490va+cPkoWNH7o4IuDkedP40YNred4BnfGuQGDZBQWBQ1N5kd9wJwbvuWKVT56zH8/67u3M6S1w5kHdXHP5Yk7/1IPMGfA4tn82XluFoK513pWxDvJdE5pAyitEuRnFMxG89Bk9hU9VglcBH/qHXvL/padF+qeA92Bf50uff3hnHgkUBcoTKE8SFhxEHT2510JGqj5fuHULrzhyDrtqNZz2OsWuuh60OxVbRxq86KpHGBnz+Y8LZnLKQV189oYtPPdrqxit+Bwxt4PD5rZz8Jw2Gl7AQLvHyA74w5ZRgiY0fdixp8n6nQ027Wpy2TP6OXxBm+6kDaU7uIS+ssPajRUOWtaBHPJhDA2imlEH81TsSlBLlYWuISc65mZqzDiBaEQDifnNsORNcBGEBRCO4HnH9fGFX2zF362QowVqu9vxijW8sEI44bFl/VxW7djGoiXDdPZNgTEfkQ/wx1w+efs2jhzsYVa5hkBpl4FCUam1UW/m8RyfnGzien68VdXRPYxfz8fShKCWQ7oBstBERpOGkAqnq64HmoaOKhYvXEJQFW1dTTNiMpsO28arXP69h7nmeQfS1h6yclOFdjfH3G6lfQQ3tWTHTChY91KhwC00I/aBeBvSZnuEF8R6PH3AsLlpVki6YayLTrNyhlUyGaoU8yycqCxGEmPYVmEB+GjxYOsU7SQNIInKBQrhWCydKZN1/6cyDRowryKf9WYhIIikDGFUZ5ERZwogRuDcSHz0C0xYQ3ti1rgkLUPJSkbiOjHnWNvb5hqbGTJAPAuqDWNtM3OtpCT6bzp8N5Bhy1u5V7Q13NFiRqXzja+ztuEhvdUuZZgyEM3qu1PSI1M22wNL9EiebNIMPfKqkQLssQxHifhcY9QJxO9zfneBNxy1gt/eej9HHdbOb9c8whkLl3DY4HTe9e4H+cjraxx12iC5bRP0jW6jXivS0Tesd2JK0bPVknc4NtHJYw/O48DGveSY4OhlHRw7UOKB+yr88d5xHcjEarMqEBbYzrR/J80KT4KSQqNv4SRs7VHzO3jJsVN50Rce4dwDe5nWladQhjmFPEOjPt992X66v0VtvhXrLN0wvXDdB+Mc/7dFjxMyuTYG4fZO2T+SWoH9KCmlfxeoSQvr9DUK4kBi2tDc2KzEBp6ZnScTGMtmveMitdhNsgH73vpeq98UAj9wGW+UcaVPtdlkWnsnrtTzxfqRnRw0dQqXHT6NQtsEofRpNhXP2s9FhQIvF/CiIwbYFuzhU7ds5JRDujhoYZuej/ORMWVeatzgiHRMIj9EeQ6iGSBrUTTUMVBjUtt9BSLWa/t1bfy4vLPAz7et5641Yxw62IkKBUHdg9CP35cQesdSBTImNkJfyx6DRi72FmSTCvaumRCKcl7hqwBHBjHglvGOVkDeq1FvFvA8bbTp+x5B4OLmGpSKIddccBTP+eFfmNrlcci8Mj98xX48/8urecMJIWcumkp+6jjNoaJmvys5nLyPU2hoTXygCb6Ljujiy3/Y9e8NvNU/vjj8fyX9U8C7o5R79YXHd2nQWVWotgiceRKnGcYM+KFLtDeT+3bs4ssX7q8tml0gp7jpzt28/UfreNu5M/jeLTs57oBOli0s86X5CwGoN0LufGyMux4f579u3si9T4wzsyfPjJ4RugoejgOuI+gr5Fk+q8TRSwSv/+mj/OnNB+PtETrkcVEhlOKZB3TxxRu3cfDsst7msj105CLG2tSIr42VBBFwb6JZbxcQepGBRMtpCtFA7qL3px2gqaAIwlc8+FgFzxGEdTj1sG6+c/cOfF8H7AiqilcdMwO/kqOrbRcPrV/NG88fhKrQ8hdP8fmfjnPG/GXM6/bww8gYUSi8SLITKElbboIwlJSL4+SLFZxcE6+zhjOhPZFIz9cW5W4kcSiE0NAAQFUcvT3sS9yuGqrhoGqasTLnB3VdMVW3ysVfX8VV5y9iycwcN60e5t2/eYwgVNzzvkMjwxXN/oZNF4kfa6xFzo9YWw3gY5dShjkOSJgzp8Wkj5Z9xMDWjXTh9hatImaw04xXAuJjIOyEqdky3joPIzov2h5NaS0j1lwfJwYaqTxEtEiwJtwsg2Z+i7fJgyhEtFApptwc088bENa9BHw7WmJBYG1hO8kiwpQr1plntak2ix5fE/3X1FHkNSU+xxhkWoy5rSdXau/eSsz5k6UiVr3Ei4EwfjVShimmPBuRNeXbOGbx09IDHcEuTN0nvh8q8cFu6c2zBqBmcg1ifXtSLyaqZqyPjcB3NARqsC+IPZvsdaETpd5Sjl3VBv/17v0589y/8Yw5i7lg/+msmFXiNZ+6m/c1FcedPY1SuIuRexfijWq/+a7rk2uv4HTVoSEo9+ymtq1Iu1dly4a5zOp9WBsBK/jLynHOOagnYl0zC0X7nZidI93008mw3lG/McBdL0hVPIa88Oh+Htte4Uf3bOfLL10YXzvn7bdz3kG9fO/l+0EQTN79iRbuwso/u5DWhWzRnsRkqUZK+y0mX5f1E2EDdfN7Cw+b0ckq3g2b9AwmmbHKGtekUMlCMa5LnZ/ecQsSyRgJ+NZ2FmZbtkVxrIWifSzb7vamFTepFuTwlEQISRCBJR1dt4brNSLj8BAHiePpeVA4ATKvQ8GP7mhQKkm++eft9K3axesvmEHZcyM5CYQFx1QESgq9gxwonLEGYclFOQJKDqIYaneCE0KPzZ7CdWowAvVx7TTg9On78/X77uHAjl6cQhDbE4G2HRJeQNh0UH60eysVbrmuj0VtqtnIEwSO9ogV1a+Jegx6cTOt02VXdQ9dhS6agaeNUmXi2z/v6UBzubx2NOD72k2nW6wzbRC+/qzDePG3/8aPXr2EhYMFrn3NMk786P0cPziTNqlwSw3K7ghOqaF3m5tC69wloGBgSo7BntwUIcQcpdS6lg3g3yD9X8j4fzAJIWYet3ywb2p3Tg/GLuAIgrKHrAXIio9o6kb4jAO7eP4xfdyxZoxie8ADW6uUcw433L2bX9w3xA3vXcYPfzvMyYu6eWRzlRMP6YrZy3xBcuzyTo49oNMEodIpxDhoSCcFP7qzzN0bxjhiYTs3rdrNUL0BHihP4CqFmIgGNkdpwB3lp5S2okYJ7aoopxK220OXyfzfYDs3Gqiiv6IWxrpyQkWQF/zgd9v51Cvm4/qCRdOKLBooggN/vH8EN9BAXYWSv4w/wolHtutFQVEDUVWFZuizuBeEaCAid0NhKJnSuZNqtQwUybkNHMen1DmKjBhjfzxH2NAunBwv0CF5c3ohokYtRiSa0ISjUA2HoOLhlJpJCN+KxGlv8PAan1f8eDWvPH46x+/Xzu1rd/OB36zlNYftx207NsRbzYAe0IpRxMqMcZbRRuttbF2XQkRW944CP9FsGv/pMUMYAXThqnjSjye6aNtbiHASOx6zvrGeUueZkn6YezkK4YV6cDb5ZCd76zqTr4rkNiYZiUzCihO36xj82wZsKWlMom+3depCTtbkCgddCfbWdyjACWNw3XLr3Gx/GxCa1Zta290pII72wGCz+/qeMsWKZw0TIQ3Cs8fs81PbvAYwZwB9+voQpdKa1/R2sQ260zIUWxtrguRAeuvdBuQ202U+DkFqMZBlxKXQ7shscG5LYEzwHrM4mN9TZOeIw3vf+iD7zSzwi0f/yquPmsei/gLffs4KLvjUX/lq2eWQ5Z10PDbC2EQnrvTx8iOM7ugjN1KjPLAbgGK+QjPwqPl5vc0fAZuHd05wwcF9UduwF4nWu8mw3dFDxaeLUINr/bwqintg9Sehr1O+4H3nzo28ImnAo5qKWT0Fbn10hCd2VpnXV0Rg+oyudRRxyHrhkPSvCNRbL5VWSYXEi+ykL6YutM5N97dW5xgXiHZ/SvcbdEvJgm+ziDZ9WSTFts9V8RgT9Tv7mC1BiZIJJW8kVkn7S9q83Ae2mdxPrP+jqPl5POnz141bKLp661gh2DY+TjMMkKF2q0oUBRq0dynhBdpOKKdo65bMrua58qLp7GkGfP2Gbew/t8yJR/SgchLlSt2OTB1Iob9LgawF2h6+GsSgU9UkqilRDT1+OeUGxbxPWHfJqQqnzZrHe3/zGAOdDhcsmk9Xvhh5oPLj9ya9gKDqxbEkjOxRugFBJDux4xqYXTvXbSJlyInzpnDdqiHOXdJNEDo0lUueRjSXhbHxuXT9+Brt8lLfa7+5Ll84dwUXff5OfvTaJSyYUuLlzxjkDX+4k6sumkdXWMIpN7RntZKCioC6AFdFBBU8/4j23PodU64A3rH3N/x0Tv97jSv/28uNGf3dL734sPYcDjoaGqAcgTPRxKn4iPFAr1QlFPMOn3r1PNZsr/HGax/j6t9s4Z0/WM+6oRrXv2V/Vu+oUi5KLjikn6/dsJ0Pf3sDdz02hjIDXtTQ4tIaXaFdegvYzB/M8/Vbt/ORa7fS5xQ4b1kv5x4yhfNW9PCyZ07V53pADkR3qD95pcGc8ecNGpQ7QDua1Y76oRJo49HxEOErRE27PBIjkWbcWGq7AhnAIQvbGRnxI5YdlFJ85tebGR0JOGpKHz/8bZ0v/GU9GyZqHDyrLZG6FOGRRxRPjIzyib/+jbov8UMHV/qU89rownWbdBTGKJbGdXTKkS7qo23IvI/XWyPXN6GlI6Z9O0qXI6orkQuRbX4yORlddgTKVE0QBorP3bCdl3x/JR87dyEXrxhgrObzumsf4WvPOoLvrHyMN546M2ZzUhOXUIlVu1DInI9TbGo2JBfGoBtIAKpIymd00+Z34agEdDsK3GhQjBgQkdOGKLgaPMfXxPIL4jIa/fgkcGFLPcx9rW13Wyto8kklEYECgXafFbPj1m/ZJFTiAcAJk3rLbmebctsfw3xbk3ryzGEKJAiTb8yYR88iEnZfyFCzQ47+az5Oronj+XFUuMl+nsPYP7nRoMduFLMfA1ozPoxtDavjNfWE2SJ4SStAr/XkQer/yffQ+gQRSAmtaxPQa/8/zt/2uoIG0eZaRwQxY25SmJqwNVvuSi0Dc50kEI3jBHhuk7xb179JHZ2zoyD41rNOZj9vPn9YtYeVwRbe9/sHCHyXad0uP37xgVz50ce54Q87aFu6k4afo+Hn4iBTzWYOfzyPCiSe16CnY4i802Do7tmokgQP9tR8utsiXa3V5hLgnFmsRW1YGe9O5oO1kHJ1/xOFEJGP/noqXmDH4D0E6cAPXrOEHWNN7t44HoN0HdEw+RhmEpm0U+PtKO4vMulztuwnC5JNf7GfeZ99OZPs6+1j2d+FWdS3OGaD7idNIuljtmzK7gNZKZf5nsrGau8tb5PKKwLvCGp+nmoTPn37n/jk6WdSdOtUmxP84uHHeNXRM1nUX2TN8Dhh4GjPM1aZtdcSxZyZBdbvrqMEtJddXnvBDMpll6t+tJGhahCD7pjtFkLvHPsh+KFWy3mSsNOBKUK7to12K/w9eYKqp22XcgFuqcGSOSHvP30BL1sxh58+tI5V2/fEdkvCUch8ELcxpQRhQwfZUZE3KjenJ0jPa8SGlUIoPK8R1317rshoXXs2aQSeDpAVRUB1nCAO0mPyM769Y0PPnM+KRS5fftYhnPyfDwBw5SmDHLOgg1OvepDvrdpEWHcIJ1zUHqmD+emXogFIAOev6CLnipc9hVb0f+lplv7bjHdHW+5lZx3Xiep0tKwiB6KhmUZRCVClKIJlHRCK9p4cX379Ql523ABMEPvjrLo+d62v8MYXTkc9LPnNKw7hlg07eM83NnDBSVO49KSpyU1twJIdQ6zf3nTedL77px188XdbeOUpfZTbZOKo34mYmSaJgce4zk8FEavlqcRzSVGg8nqiEZFxB6CfWQIVYutsBFDQzDpocE6gqDUC+ro9fe6Y4O5dY1RrIbdsGOW03rls3F3hTef1InubCbOeB7XVYVahi4+eOo0fPLiGnKNDuJcKE/i+R6NeIF/UURPHxzs1oyZ97t08xv7SJb+nRL5HG02KfJg8VwiiI9R10BTQFHqCcxRS+Mi8H0+wq7ZM8NprnmDFrE5uftUKCp6DChTf+PtmXnTEVJ4YajDYlWPxlDY9OJiBAWIwGQfaMLulEXjOMqKp1a+TTNZCWEDb5GHISKEXOPEOhtRtS2srMwzwPiY6EQFuLVWJmFz7fEFi9AiTJvS4LCq5VniGqbV+M6dKHfjB1rEnFUG0/Z9B6DZjH2TcjTmRMaTNmptFS6y3Tmdn61Bttjw+bx/IwFwjo3tiaVGFFaL7n0lmUWBYP7PlbmtW089jDNCyBqXJqn3ytYnhms2EAylJzKR2qjTzHctGiHY9LO8GSBBhGoAbFt32a24WCloOk2h0pRC8YPk8ZnS0cdXf/k51ym5ufHiUcw7OMae3yHVXHMy5X72HwbfkOXDu42xeN4+RPT0U8xUafp5dQwPkvRq+71HzC7RFQVBEJYTtAs8TNIM0KE3+ZtqlOSSiusiOvxK9mwaRxyERg+w9lYA1W2t0tTsU8oKpXTlkFK70oHllvn3FYg5f0KYBOtE47Ia6/avJ7baVvMzuT4k3FBKDTdJ9zSyGUztgcX57abuZPpz6yY45gLVoaeGWcdJOESSM+L5SdH97F0cpp2VfsKVZk1/Wk9wmYr3H62WqQY4Ht6/ngIGpDLYX8GSVXz6xhlcdOZdNo1U2jVTZOuqweEBLPaQb2Z4UwogAQRMQUugp35OgFIcf0MnyQ7r49vXb6Ov0OPeZ/QhHoBz9u2iGKE+z4bIeIBqB3kUGKCv8rTmGdwzSM2W79njlS3BDZD7EzdchFBQrHq84cg7v+u1q7t/RyclLO5hb8jAywJE9cN1DGzl//6mUS0lbcFQTp+HHdWhsphwnwPfd5LhUuLJKPcjFRpauq13ySifQAYScENXI4RVrqR0VFWivQ4cucehr95hQPm05yeUnD/L84/q46LMPM6XD5YzZA/h78jh5H0SAyEcvSQl6uj16O90uIcSAUmr7P/SSnybpfyvj/d8C3kKI8vKFfQPTZpcICxJZ97WRRE5qcGrYDSkhDKGucHOStUN1vnbLNpYOljhoVplS3uHbt+7g0mdPA0cgCiE9hTzPXjiTY3qn8Zwf3MGLjx3ANf5dzdhixrdk7kylnCt52UlT6e/weM5XVnHT2w5A1qORzVWaoa8TeWJJro9dCBoGv12i8kKz25XopGrUcUraHaGoRM/rRdfkIrmBVTZHCQ3O8/DZX22m6QbsqQbsN63Eht1VOvI5nC4f2gQqJxDjCv+JAs2Jgg4wU4EjZnVx1V8f4h3HL4sGXEEuV6daKTLc3AXOEGu3hzywcydLpuf54h0V+ooFXnjsFPLtKgo2IBJAa5KnWUfVENoNYz7ggfUVVm2Z4K6Ne7hr3ThXnb+Yg2e26zpyAmTJZ3ejyYrBLq6+5V4+87yFKWYaogHYntzMb1LFUctiTITFohnm1rShMNp6NJOmQj+LtN6dUJohUdFOg9ALDOECPpMBeFSOFBhXyW8pnWnMtofWiUxy/ZVKEQNv6zijnJPrsvUSXWcAg86DybNxpjxZcG4btcVgxGi9s9vj1pa4YfFtDa0B8pOSkXxIhYgijwprAG0FLOzrUs9KBIb3EWEw69s4JVORISpIJCYmP5PC2E2iHTgobZCWNexM9NtyEqAx5xtteIohVIkcxXV8RKjlUyZPmWEcNXsWphh3w1aGUWAOIRQnL+jm1g19/PCB9Vy2pI1mTeKGDTqky7cv2Z/nf/wBbvjQ/sxw1uBXcgQNjz1DnYw1SrTnKkzp2EleVSn37Ua4IUGPixM04+E5eTDSBoN78dqhItJkUt2ExDNKzQ/5zK+38MO/7eDBLRMsmlpk0dQSfhCyZaTB847o5/WnzsD14HmHDeixNzDFiIC9Ae+W4TSmvdvyrcBu7y3ant2v7Ge1/m/LwWIQngXH0YJEZXb2jMvUVinuc2ZHMYrQGxuSmqnN9MMWso/4b7S4bWXgvLdk2mcYti5fNmU9+eSdJutGdjOzsyuWQil82ooBP1i1kecsm61trQoTiWF3SQdxMk4NUHDE0g7+vmaMow7ujgP5eG0eL3vhbB55dIyrvrWei86ayszBogbdjojspfSYrkoOoh55S8tpl4Dt5VFyfRMITxGOu9pLiS+ReR/lw6gzwVfu2Morj5lNX6fDrY8P87NVE5y5fw/DtTq33tfgkhXT+MF9m5AOXLSij84OEceMEE4QwZiGJhMiGwrjRebAqT2sHtrOsj6HvFefBLplFEPCBImTOf3+zE5OWNfRXi89bDYXX/0wX3/lAgY6c5TzDt961SJO+8hKDnxbmZ6JQZziHu3RpBy1J19AE846pC336Ka2c4GvPqUX/DRKiv8D3v9Qynnuyacc0pFXnkA0Qs1uRwScqIe6wwA0o0YSSS8+8KI5BLWQVevG+cldQ1TrIY9sq9JRcmE8QLSFuLkqqiaZ3iY4YHobH/rJBt73gtmT2UozjmR13sbYBzh+fjfvrWxg9foay2YXtczDFdppvoPOs0kUQUuDNRWBfOEr7bx/Vwg5oWuqDqpboDpc/ZyOQPUqDcAVsTEpishHuJ5AxJiEUcEoTb5w81YuPW2ArcMNZncW+PkDQ7zogINRtXV68M9LqAXa+0e+gV/PgVDM7+6gpzSKUgLX9RFynG/ft4YN42McNacbakUWLPQ54ehePBzOOqSbL/5lE6LdRxSF7qg5pZ/XAaoCVZN6wgOGdodc/JV7UQpynuDEhT0cO7ebj56zCEfqQUiUAs1K+XDgjDY+eN1aDpndxpKppTh4Emir8ZhtMl4QjFzOsNegQbKDZt1Bl1GQ8pygpEjkECbFbLf13kXEsnn2b5qiE5GxUqxDjQs6GXyngKYgzWrbP9lgwD6Gip9B34OEjY/ZL0sPbrHYQIoFNzr0JO8kaTdYpFOcVwIItGcXFf+elFUfF6nrrGdUKgYJk/TtZrA03moyBmUiFNy3YYIpZY8ZPXls/+PZ8ppb7tX4NGsY5iTgOE5OZhAIZby1nJWMZF2FmXxb/d+4J0x+SwxKbd2sfTxrdJna/icB6bYEBkhFCzXGc4kcxefdJy3hxYfMYbAwhWZzQm9flxrMK5R5+wkLeNuX1/H1Fy8m1zOBqkimypBg22zybp2xiU56B7bgtDd1kDAACaNjIcWcjNvmJDeB2YWhSbLF/63dqLAuuPQrj+C4MK0rxwGzynz/bzu48vgZnH98F214fOzXGzn0vfcggFP37+bDz52NK6QeX0yeZgcK4oWxYQ3NgkA1ZQxqzWJWBS3aqp30sBC9POt4vKhV0VjQ4tltkB71/9QOAcnxdN3ZwD4NuvWujkg04IGlGTfPokTKzWuc61MELrb2e1/Jzq/kVqkHHq7jUq9VCJSWOUqnSa5Ux/FC+nqbEOhgNdLYETkq3UYEHLSgzBd+u00Db08HyFFSoDyHRft1snBBGz/+1RZCNcLzz5yKlJr9FkFIWHJBgVtvaODtCdy+GuX2up6/PJBo+VtY8xCFgLs37+Eva0Z503OmkVMh4R7JOUd0cY7fzffv2YZ0FXOmuvQX27j0iFnsqfn86K7NKBny7CUzqY330OvuQDjaQFMKBZFO24SdP2xWiW/evRbPDVP9WTjaharwgkmLU2nkU4Uwwh+Cgwe7afqKE97/IK8+ZZArz5pGbzHHBy+ezUd/tZHPnN1GUPXwek08BzSBKOC05W1ce2fXq/g3BN6QSPL+t6X/FvA+cPG01552aFkQKBACVXR00BwDuoNoQg9UJO0A5UkEIU5ZsnxZB8uXdECo+NoN26iM+5QdkYSAJWS05nPfpjFef+FifdMMyIlTdtyxiMmf3z3E3ClFls4o6YZajMZjsxKvRf93SGQoeallJKio/KAcwNUTdtjp6meMjYvQUoemghqIsRA6BHvGmjyweoKt230++4fNfOg365moB3z+VQu46PheDn3NvRw8rY1F3V3kvUYy4dRDaIBT8PHH84S+i+M12TMuqPpVhioTbGwOUW/AlA6Hqspz9oE9sX9rz62BF6Iakt6yxy0PjXDMgg5uWzXGfgsLzBko6PuUFYiAB56o8s1bt3PLI7t53xkLUCLknAN6Echom1Zpd2OlRPuJB2cf3MPnf7+Fj1w4NwaoekKJVvS5SNqSJhfTyQQocvVCR0UR50Wk3U65LhOkF1mtDGuNIazJ2xzT6DJmICddYzFnNqs1ya3ZJAlH5v4m6yzoNr9ZQH9vfoKFVPH1qaKacmYkM6l84l0Bw3BnAYFKgIiy6rVlQZJ3anuo0NlF5XMMQFaprX8FXPrT++gr5/n1pYfy2M4qSwZKiL24g7BdThrfx4a5t7XVMWBhMiBPzpFpY8wWAMx4KkgDZiZZ2OvfDGARme37BHAnv5tGmQQP8gM3ZrsNw20z2+nrk/JohjLRnHeUYGm+TL2uo89KL9rGDlzOXjydj9/yOLs76vQ0PYSnyHVV6BzdgxCKiXqZxkQJJ+8jCz5KSsIej+OWt/GblcMsnVlK2qypTyd6zlbNNFHuxNcppRCOgEDw6u+s4cd37uSAWSXecfYsnnNYHy8+rp9f3rmLK748xI4Rn1ccO4MfXjqNwX6Hr928gzM+sZLvXLGEwZ5cxHInDLU2+tZeKFJ90oBeEQFl400ltZi1FrHWbpP+q9jbLowtQ2ltk8Hef2t1XCWLySxQN56e9pWEUDFDaC/ynozxtq/Xi07ThtNtvZWbwYpfZKLR4Lv338HnznwWBbdOLlenpmoIN2TpYIlHh8dY3Nuhny0yUEwWTslfkYsW0pF8RPvnjvpRECIRXHz+dDZvrvLJr6/l7FOnsmRGUb+HQCHqkc2YUrpblxWiaI33RW0/pIbgu7ftoLtH8rrzp8dzu8z52lNYXvGCZ/bBhOBzt2ymMGWM5p4CHXmPFy5dQjO/h+//dTe7J1bz4sM66OtS2lYl2q1Qpu86IXmhKHna44mWiflxXds7eCrQi5L4PQfRexBAmyIXVjkq38GS6Ut4+68e5cglHRw6p50T9+vkPT9ej3hNE/mYJBjJIcvNiKBT4MHywTJjY+uXCCEcpVSrWfHpm1q0uf8tSainZOFhXSCEWDCrZ8+9396/LV/XW0CA3h5yhQaigdIrU1+h8lJ7+gAtw4BIK61oNkO++IstvPbCGaicRO7xoQI7h5tc8vlHeNmpAzz3mL50AeympXFh0vlsoAMEgeK0D63kg+fP5chFHai2gBtX72bV+gpvPnuGBt7dCRBRRc0iiqYuv7H+BzSD7QpUQeoFhiJ+RgAxEer8PPjsdVu45pbtHLWkg2k9OQ5d3M6RS9qZqIVM7c1BoNj/8rs5bVkPHzlxOUM7B5l+9KNa4hIAFaiva8ev65C0uXKFZqVIKBpcu3Izq4Z2U3Jdjl/YzZ5Gg0NmdjBrwMWfyOH11LQLRQdowBd/s42rbtrIucv7WDNUYePuGj99w3686quPMzzuM3dKkUsOn8rpS3twcBNDQDPnFLRnkxjA2ON1UyRMsk0MRyxEPPmYd2azQOZdWaA3NtaSoBoCYUILN4GclYclD0ob3EZAy444am8bR7LaSdrpuMGYthB9d9OT/F7Ph8kstylTNqnoOou1S4H4bNEsf9568ZEA7+yW91NJk7bEDev8VBj1bFkzx+xt/qCpJ5k7N41w4mfv4n2nLWD5tA7OWDYluYe9JrDWA5NcyrUCF1lpCwkgbsUM6mdy4i33VgN+Vqpi5CZZbytZNrsVaAHwfY9m4BEoB89pxi7GHMu4shUzjlDaWC26r5trxO/JLMRlzteeGWraM8NPH9zMPTuH+OTlc2OPT7X1nYyNdtMMPHJug0KhQq5cweuuEh7kUl9X5dg3PMCtbz+I9rJM+nFETkzStYcQoPj1fcP84u4hVm6ZQDoa1OY9ya3vWY7rCPZM+KzeUmX57BLFnDG4izIKYO06nx/fvZ0/PTrKppEad7z7EP7yyBhvuXYNLz9hkGfu38386XqnRAdCkbEhdmq8MQvRiCWO77OX7hC3K6vNp6QpLWRFk70hifRvmeti70aT7i1oyb5HyQ42ppl9mXL1adq0CWiV/sgnBTB2G23lws2Woii0X/uxehtj9SYX/uhHHDi1j5zj43pNBjocFvR00AxDfBXwuhNnEfoSt9xAlnwNCkG/ixJQ0BLKm1eOMji7zKJFHSgJSIESQkeMRn8n1ITXr27azvBQnUueM5OcUsiqj6yFWvJp7KsgcRQQgt9UfPrXmzl34QALBwuI3iCZU6P5kDGhSSfghvt2Ma0rx/LODnY9PgMhQjyvwfrhWbTntvO7Dauohg0uOGCQge7Iv7cJ3hYt8K+5cwvnLZpF0c3FO3LG+DwVZ8L2fR8InJ6GLlsIVAXhhI4Wff8TVd7+y8e44e37IyS87GuP8ryzBjhBTmX39ql0dO7CKTRw2xqI7gDycOkXNoXX3LTuaKXU3/fZCJ5maflAn/r1C877p/KY86mv362UWvE/VKT/v6X/DuO9cNHsciGXd1AREzbJWNqJALgUWpdVchDVABEolBM5ywd+eMtOLnpGn9ZQN3Uo2aYfcuGnV/PWC2Zw1uE9Oj8DrhVpMBVviWbuH313EHz1ioWc918PcfIBnfz5sT0csV87d6we482nzECNOYhcgOpzdLk87U5QRSDPyGjkbl/LRjylFxHRMwB6YTGuDT9EVLDbVo3y7dcvZumcUlIeIWgvJWWvN0Peee4MPFGjP7dRnzOhfw93u9QrJcLQodg2httWJ2y65HI+TbfOKQsGCB2fFXPaaBLw6Ru3ctTCMgsHCywazIEDYxWfK7+wlnoYcNs7DmaglGeoUeOcz6zi2j/t5uyDpvCaU6ahfKH9dgeJsWC8uvclgiANQE0KiIBmIuXQla5SUclS7ycLMG2AGrkRNJIUUQxjrT0CPWiagcpca881HnrQNtpvIyXKLMb086nWbJ7NKkfsWnxeCwYrdUyqSfeK5TJZgO5OPnevzFmG4Us9xz8AuLPpySLzxS7NJoFsw3xboKPFpO9EhnJHzu3g5lcfwm9X7+SS793PRCNgz3+dQM5x0tIBKx/bMA2IDUBjcB5tvydgIy0nSrFN4WQQb/9t+egxO5how+P8VBJYwzDWtmY8K1txHR+pQjynievqLeqs/CVmLyNPMGGgfY4HgRN7dYlBeF6DcFMXTl4HA3GFRDpo3/y9mhRwtjapNov0dAwRhpJGI48QisZEiVJjhNJshzMO6eaWh0c499AeqwJa1wkOXPqNh+nucnnd+dM4aHoZ6QiUUBz1rvupBgHtrktHm8sR89sn91EAD+bOc3nb7Bm8tTKLj/9mI5d/Yw3PPnQK175if37x4E5O+M/7ueLEQZ5/bB/z+ovJtdkmaxa7pi/aY0t2IauYBKwTe4t9eTNJH58EwDOgG5LxMza4NMy8bR8Sya9a3XdvINrYOOwLwO8tpdnxcBL4zi5ugwjglz0PBbz04AWcvLiAV6zpdpr3kfmAsCkQsokTebKJx32FjnvhEOu1j1vRzbdu2M6ihe2IKCaOsIsRRlhCCM49c5ChHXU+d816Tji0i8NmFRETQZK3CbojQ/D1fPrJ6zZz2bFT6SvmUIHS84BxfAAa7XQrTcCUBacd18Onf7qZGcfmKRYnGB7tozHhkZM+Jc/hZcf3UZmAnz20hdFGkwsP7WWgWNIxKGQAoeCIuR3cu2Mnx83pi8F4vEsYtSvhRbu/TR0kSuajRWROPwe+Qhb1sy2f3sYTO2vsqjWZ0u7x3ufN4tkfX81P35CnJ9fFjqFptBXG6PR24KgAPDj9iKK8e/20y4B/K+ANe2/r/6+nf1hgM2Nq90VnrSi6+Cr23qFzihy8h9EHkt+bWoKijM5Xwp56QLUWMNCtGWBqiq/+ahsHvOEezj+8h7OO7JmsJRSkAZt9HOs3i1WdO73AH95zAGcfOoWbP3gAH754Dp0Fl2BnhK5DELsC5LCPM9xEjAfIsUCDbk9o/6ENpdnsCrBTwIjWf8vxEPmEj2ho48vQV3zm55tpBorFM4tW+ax6ijyjvOikfr5z6xCy5ON21pMy+4LmaJEwdMjl6jiFJmHdZTQc5+o7HmVKt+SZB7Zx8vw+2goO3fk8lx82j8UdU7jxoWHIQdUPuPATD/PMZV388BVLmTrFQ+RDuvI5tuxq8LW/bOElJ/TrhYSrEoM8oRJdtnHXVQiT57ABtZHreBEb7qjEq4h5D+Zj+98No+8uicTHRP0sKSs/EhBdF3qruWaVI6frippI7uFZ98pOvEKllpmandDlNS4H4/MtA9QUQIvOjZ/RsZ7baZG3+R67NLQ+Ivl/Kl9T1/bfuB2RMN/mw17+2r9HKdZZC5U+zzyDqyZdk/S5qE1EE0nsyi3lKcJyVWhcI0o4bnEnH37WfP70pkM4a/8pfOv2bfiBvjaOACqtcsXPbOqKxI2bUMSu5UwRLW8c0gmRTiLhsN2wCeNpYB8uDuNbp9wPpg0gbTeF+n3brtwSd4Wu28RzGxRyVXK5Go4TxC7H4rIbXWgEuk2ZpevjRD7TlRL6udwA4QaJ28moTmTO56o/r+GgeWXCMQcaCjES4k2tMtC/CekEuK7PzvG+OIretifm0Fxd4vkn9/Gfv9nAWDVh4ScZTpp+nFc8tLXCp1+9gEOWtyMdAQ788K87OWBWmfa8m267YeZ6cyxafIpywFsvmMYFR/TwvTu387Hfred1J8zkxy89kA4KXPTpR/jKzVuTMWhfKR5/7G0UiL2xWO0k8TyUfFS0CATNjKtAJt+t3+KsbbeEGTeEsQ98W34V5ZlkkAH0+8Af8eLRlDd13X9/8b23JIjceYqAEIdvnHcB773lDtaP7dY7LRHoFuUAWbBcRhr7mmjHBEiNYZ4UBFUfWdWGx7IeaFsqowxzJKEnCfMOSgimDBR444tmsfaxMe57cE8sW8WJsIUDqigZdxWf+M0WXnX+IH3dniaRPBV57SJxoiDRc0AUZVsUHK541jSuvm4LxaVDzDzkYebMf5QZvRsJlA7wVmpTXHL0AFecOJU/PjHC529bz5bxCsZl6+KBIo8OjcduVmMbDjfUrmTz2tBU5EJdX10+oj3Q85cLqiCgCz33lRSiELBiVidP7KiBhNn9Bb70igU859Or+bO3iulzH2dovJfKUBdqj4Q6PHN5J36jee7/eEP4FyfdNcU/9fl3Tf8w491Zzl9y6oGdiEaIaKAlGHmpAWVkRKnMdylQntTSAU+HiB0fa3LDbcOs31rjVedO0+NPBYZGmnzlpq08cPUh5Ep7WQ/YA3d2YLeJKTMWRZ2/d4rHyVO6QMLv7x3hoFlllO8gehuxrhyhyyFCBXkLf/gqNkhU4xJVk8hyxICPCPAgaCqu/fMQn7puM0csbucHb1+CYwaJvfiJevNzZnDMm+6n4SvecvpMzXYXiLaoAnK5Orn2Cg+sbbB6eDejYZVXnT6Vr924U/sBjZguv5pjoF2wfTxk20gTJRUv/K9HuXhFP5ccN6AHIFfx878Nc9X1mxjs9sg5gmtu28GVZwxG0geF8MPEE4cpej5IALC1mInrOCv3sM8RJAMe0d9osEktkJT1u2EBAlATkVY3RE/SbsSImwtCtLFoLnnPkxhkw3zH7UZpPb6flFnY+ZljkwDgZCbTBtoqsIz9HOuYzVbvRQ5l3y+Vb+ZvLElwFZOUfHZxLa30XhlyA7ZblCV1fitW3BjipRY39o2SnROt1VaxVvyAmSUOmN7GJ3+/mZ8/sIPrXnGQNty13dhlDDXjYEt781gx6f7mWUlkCUbCEcsGkoWmrTNUoYzMATL5WR4lssxgornNtA+Iot0lbKOwjUAzTLz2hBBEUV/lPj292C4ljbu8iw4dYH2ljuz2YQzCEY/arnZq1VLMboZKsGVkkIH2HQTKYdUTBzCtfQevPirg1dc8zrevWJy0CRs4Wf07VJrBFLUw7o/f/MN2rnnN4nR7ytp22GODdY6QcPbh3bzme2uQQnDY4/fiuYAT0hQhoVT87PZh3vTjJzh8TjtDEw3GqiH7TyvzgqP6OXFpJyK7M5N1N5ipu5ZSs+idhg0Zs9UoSeBHQU/y/uRrrHfRMilhSRN0O9dsqUpduzcPSa2C2rRiCI0ryqfCHu7tnFYGx0IoAiWZ1lHm0kOW84O7hnhXz2xy3RNJDIYOSw5oxnsjMzTziJGeBoquNpeRsSadrkT40TjhOZq4U4rQ0w1HNgOU56A8h+ecOsAPr9/GXx8c5YzjpzBvoKhJPEcwMtLki9du4vUvmEXJk7AzQO2WoELt1cpuGA6avCnoCV85glLBYfqUHCInoAxOoU6x1GT0ke7I+4geJ3Oh5Hkr+vEb8LO7h9g6soNqQ9FTdukpe/pckjgYMudHtk4qiQcSvzC02+GcjA1NZejrwHAVxYtWTOcbv9/CYUvaIYDD5rfzozcv4R3fX8/f543z3oNg+4Y5sBHawmG6p0BX0ekUQvQopXY9aSN4GqXwfynj/Q8BbyGEt3h2z4w5PXkwum03AtueABFpoAOl9dyuBEfRqAb87m9DbNhSo63kcMaRPQyUPD141zWwvX/tBCcu7yJXsCaklGEaCTjamwmBLV1ohd1DuH31Ho7ar0Nrr5pCA4kiiW5YoV0NopJtMNNho5Dm4faoo5UDRis+F/znag6aV+bad+3HtCn55H6OSN3bLlMx7/DTdy7lgg+s5i1nztAHm/ocpQRuscb63RX+tnGE81d0M7WrFyl9yp7Ll/+8mSuOnUFjvEjgu2yfGOcnjz3Be14wgz/eN0pH0eGlJw2Ao7f+fvfAbr5861Z+9baleAXBaR9Yyf5zi3G5hKMQZT92EwYk0SGzdWv+bwZZm82GRN5hL37MRB6BatI4LWGszTtukrBcfvSOckyWXdjtwnw3bIufydMG3x7pFCQTXOoZoyLYTOCkFNVfKrkWoI+vFfH5+9SAZ1PkEtHc33blpmxdq0mxzjwDvm22PMpLCKWDVoSZ61WLZ2LyObYkJ9Gf24yjmgQy6nU4d/ECfrJ6FY/vmmBRXzk53wBjouimIp1HFpQbo8yWYMLsKBg20wLgQirCKFiG7TEiG6TH5JP2nRxpuiPPKa3C0Jv/Z3XbqeJl7iXdAKMLVWbH0AqRLiKmPxucCqUNsV978jRO/9z9zOrM8cJj+hGlgPxRE5TW7KKxrg2n2KBLbefPDx6FFApPNukv7WJ3tYuz5y7mK3etY832KvP7S8m7N6A7KvtfHtnDrKkFHZ9gAr1DkgfPEQyPN5nanUu3bdM/IwPqltrrEBwpWPmJQygXHRwpaPoa1HmR65jrHhymqQLOXDyV1dvHeP3h+/PA8A7e98tH+NzNOf7jWTN14DE7GelaJqW86yi99R/WXULfIQwcgmYyOEgn0NIeGaIcqYe2XDApv5YGnxAHPQkbju57BjwHIt2umczNxGDcth8QmuPL2hyA3nUxPr2fXO+9741uhb6nI0IcEdIMHWZ1dPHn9RvwGzk8vwp5H+N6V5UiO65KlIGZF0x+Zh4MFCcc1s0f79jNs06IbLekQrkK4aPBtBBadiq19lu5ApV3uOjZ0wkrPl/88SYuf9Y0Hnt8gj/fP4rnSt546VxyjkC5EoqagVdVbegTg2+Bnl9NXA5HRA4hlD5HoNusB6I7ZPDoNRoH5KPrQqAhcIXguUf3EjTgI9dt5IUrZlHIEy+qlRNqUs84GMipWHJjk0EqJ2Lm3pCToqlgWHH8zAE+eNNjbBiqMau3ACHM7y7yw7cu5rXfWMvVa9fzutkOa9ctYk7nGK5X56SF7bk7H9nxDODn+3y5T6sknrQt/r+a/lHG+9AjFnbmqKDBS0loBlEBQhBKeGJjhcc2Vtm0sw6hImwq1m+r8vLzpnPuYT36XF/pYDs12LKrztuuWcfda8f42Evm6rsYcGLAlDlmWNYsYMlqcO1tTfMdfc7m3Q1OmdermaIQHYrVGGiYlWlTnxtbXZswww4gFY3dZQrzRtnd9Dn/qod43XnTePbxvRkAkww2qTJYaW5vHi8HIxWf7mJ0gqMBhZP3+ekfdvGaY+dQnFIBEaJ8wcnLO7n38QpOV51iqYE/kWPmlAY9Gwtcf/cu1g/VWDG3XT9LdN/bHt3Da0+YQRc53v2TtTz/uH6esawrYX5bAMDYK0k2RedXJwJkKMmXRHpQsZiO+N140XWeSOvFm5lzzDEjP8mhy2DKaRZARstqtNJ7A+G27IXMOZC0p1ZAuBUotkE8pJjzVGq1/WsDcJ/EF7lhYvd2P0h8npt7Zn/fW3knlWEvx7PPn+1LrfI2rHmr4wazTnJRCCcsbefNP32Y6688kMVTS8nJgAo0A6pCkC3z1qAciIG5ivTf2WQb0gmZWQgpodnlIDGczAb9SQEboVIeTQRAJppm/OgWILclLql8bT27DFMyG7sM0rWCT0njaSdM/h/LjhSuI/npFct4//Xr+PbNK/n2lYuY/mjI+Em9lB/eTXVhJ854g2Wb19HRPawZOamorVuA5zX4xBVzuejq1Vx23CDnHNyj3UACe2pN/rxqjOtXDnP/xgmueesizV46CmqCWjVgpBIwp7eQsJ2tiA+bDc30IxVqOZFZm3qujC5RXH/XLhbMKvLFSxdw9a83cMHyQQIFy9r353evKfL9u7fxkq8+wnMP7+Nd58yi3gwZqwV0FBxy0tn7rg8aANtuK1XgICN/zdL1cYs6EEvKMM7adYl3tSKPP2HdSe3wAAg31K7o4gxEOi/rr85TxuVUweRF5d7aqJYsBbG9wVP1dtIqmb6iEORkkxDJgikzGa7cRb0J+aaDE4iIOY4Ao5lzfXSbLAA5oT2CGRAuBFP7CmzfsVPn7wjCvIPZFVaOo8G3KzX4BkLPQRR0HTuB4qClHfzo9ztYs77C+14+D0eggWskcQ16XJyxJv7uPDIQOIVmeud1QiEa0TzviMiDGaiC0N0yB6Jgzf21MCE/HKUZ7ACcwOHMJQPcu3GMY5aWEnbfiYZLa8xDkMxvXlQnnsZNQkGYdwjyDs5oA9kV4GyHtxy3iPf/YANfe9VCRESwyGHJJ14+j2Nfey8v/HAfhU11hrZOpzfcwvHT2sUNC6Zdxr8V8P7fm/4h4L1o9sBFJy3ynJjVbCrdkCT84rYh1m+rsWxemWWzS5x2SJd2rxvCV67fwtzePKKmtERDogFUEy77/GO86qxBvvOWxQk7agCRHaVwb2AgC66xrmvhys4PFLKRI6y7WquaU6jIOwdNgciFqAkHoQIEYdxBKCuEr/CHC0g3YFO1zkUff5h3XDSDs4/ujaQ1xINITGG0AkeGSXUFzz+hn+/9ZSevPncgZmqlF/Dp32/ijGUDFLpqOupkxHb+7v5RXnx8H6EbIJTk+w+tp7vD5bJjB7lh5S4O39/jDV9eyyvPmkq0cU5/l8dHfrOe9/xqLUcsbOd9p85KymTJL4SnIjbTYoUgDWKBxzdVOeM/V1EqSB7ZUuVLVyzgxScMJM9rBjoz4EjrL1Fdm/oJrPzNO29Ex2voFlqIjnkk7IGtR54UzZK0caX9HEHmu6kDaTUwM4HY7cyNzrPblB0x06R9TXbmN5NXXI4oXwPApXXcpFaLIzPxtto6Nwx3q2RJZ1KeK7Lst33fVgA8e8ww4VkPE1YxTl/ay+n/EbFdIi0hMQZoJsJpVlqScsNmromAp77ACghkA4/sQsgGvjE4DlNBgFI+xq28hBIxWz4J3CgBNpOdZdDtayz2PRUUyHJZaQy0Us9vrp3kNg+6O1w+/bwF3ProCM++ajVvP3MmZ7ghIi9xR+uMze+hd9EGRE9I2O8it/kMjG4DoTh8WQc/fd9SbvjLMOddvYoT9+vilkdGaMs5HLW0nYuP7uOzi+bj5ARqg15gbFZV5l5xJwDlgpOQIvZCziZPsuNxVD0Xf/oRHtpUIedIlkwt8bFL5jBjSo512+o89+qHEYAf7QLMauvggGnbeOuvbmWwM8/jQxW62lx+fNcO3nHWTE7+xAMUpceO8TrPPbyXd501O31PlbQr5UvCpkPoa6bYLdTjd+sUNCtgM8/mvSQgKwLHUbh0FQicUnPyeSnvRa29nsTXRPdKfH1nmO3Il3TcJuy2GYFv+7ht+PtkQHyS3ATdLh0CpBMyta2Dv28Y5ZRuNwHYEeBWjkSEoWbACzLGBVmppQi0pjt0RXp4K7iEXrQI8iQqVPq71M8ggpAwJzlmRTfHHtrNN36+mUCCzDmEnkSEKpK0SGj3cYrNZB4zO58RoUYdPQbndCA8tyjxBbgyYqGtOlEFqRcW5mg0lwkZcODcAt/861aOcYqxFyClBJLIctQlQVhCRPUU3cONbOIir2hB9PxeUCXvj3Gm181NWzbzrI89xGdfuoCZ3XohXAzhw5fO5SUff5ifP7fMqscPYbxR5tABQaW6/uh9vuCnYfp31mn/M+kfAt45h2efsLBLfzGN2Fdcc/N2Dlveyfkn9EEzRI6HMBwmuq8JhRgNoQoEgt0TTV77rcdZuXWCY5Z1cPaRUyYzJAZ8Q4pFi5M94e9tt6IF6+37Chl4hE0nmQdCXS4d5VDqya8uoKgSQA2oXXoL6faxrbz+Q4/zmSsXcOzSzqfGNmafLbr5ikVtXHvTrhRz63Q26WgTTC92E9RrWlPuKWgIRmtNvnLbFhpBSM6TnLF/D8PjTW56YgenL+vj839dz1GL2/n1nbs47xBdr68+YxpnHdqDlxOayQpJL2YM+Mb6buosq/EGPvXbzVz17AWcflIHx7/9Aeb055PtRWvHgAIRyIwurkVgOS+S+7fy892O3rYMQI1LPUAJpRlwM3DahjzZtmCezywCsvq6Vudnv5s25ZJIVLIpC8TZy3lP5Tfzu9zLQGTAvQHoFvOdYuTsybVFH2mlX7clNXsdCDMsZjxJZ6U8kAb92cia2WAj0TGVoomIt+z35vqxVT6gIJAp8N0qEqMOXqQmy2mychDremEBfmnrxbNSFkiC/FhacukkDLlxFSeMEahMvJQkfa+Fpw0baLcqfzR+PGNRF9+8dBHfu30HH//tRno7PK552X5MWTWh+6QDcqf2azw61k2pMEFxrWTOfiVeObvIGSt6uH/tOB++YA75NqH7QADbRxr85PYhvKZLU/ncs3Wc5x7RywtP7E9enU/i+tNeTJt+2mKsfNEJ/bz7h+tZPqvEd2/fQb4I33jZYub1FPjuKxdz99px5g8UkEJww33DnPjZu/jqZQuZ0Z3n5GVdbByq4zfB8eCIRW389dE9tJUEM3tzcV3GVRR5cNIyE6mN4CIfywBSKKQXkJU1gV6cxdIqqXTwHvSCUZYbpLTlglRsA6C1S8GYPU9PYqlFYwZ0t9Jj2+B7byn5zZZHJYx/9lzPaULgoRB4ToMDBqZw/9YKJy/rji4mAZNe1A+KUjPJofWb1ACaUCGaIcsWt7PqsXH2X9CGCBWhJ1BSEBQ8hIqivVpuBpUUEfg1xVcsm11i9WPjLF/cjnD09Sry/R62RYG/3DCtN88RyzkBaIAgpKsnx3DVZ6DdAykSf+E5DbpVXsVukkVdQVWXxS2GBNGOtpFGiiYaN0j0rrNxIhDVhZG5KCdaFEidb5h3EIHE7y3gijo5WePzL13Ab/6+m5M//AB/+/hB9EzxQAhOO6yH+x6f4PKbHuRz51UZXbMfqtZJX5tXEkL0KaV27rURPI2S4l+r8RZCzASuAaaiW+RXlFJXCyEOBL4EtAHrgBcopfZE17wDuBSNHF6rlLrxX1G2pwy8hRC5+YNdA7+8exjpQa4gWDS7yNiegPn9BZb2FxC7fd0oRwXBnjxB3cXJ+zAhCTd7jI0Jdo3Cl+5ex/4LS3znnYuTTpCVCUAyr9qDtRnA9wa2WwE5AxyVZrxzRoYRWIjeURCIaDAF0e0n1wWAD5XOBu/69aM8uq3KL9+3PzP7LD13KyNKc8zMqsbtnmW4FAYQ5kJijVnEIJxxWCfX376OFx7Tq7f0CkAFlvZ0ceKKAqU2qSeHumDBgOLq323m9IN9+tpyHL2kg7f+4AnOO7gXEx1y7mAhqT8DSE0dquif7KRo9wnjyUko/vLwHv7rhOV4uQon79fNSCXyl2oznEVT70IvXgISzVyo65MauulDMiDmo3yiv8ILNQCvScSeUL+zskrkQeaeFaEXJ8ZlYyt5SSvWthXrHWIxFS3A9d6SARgmj/9OsifOQCRynzBzjjESzV5uX/9Uy21f76QjMO41b/u7tcNkAGhSBouhNskAFAucpyJ6gsUqhsl3w1baSYkE4ET/J5B60rXOAVAGRO/t2axyxQvwbMpIW7QhnrVciYC4IGE6hQxjjzD6+UIQBngzCVBnfUcnhZxcnL0Z0i6dVubDz5kLjuIXdw9x8lX38eZzZ/Cc/QbwUOx5ZIAwdBiuduGHLltXTmVhZTVuf5W5AwXm9hTAh2BnXkfR7arz3T/u5Bnzuzl0QRthPuAbf9zO7+7fzczefEIc2Mle3LfqD9H5Zx3Yw4lLOrnziTG+8rKFWtstQSC48IheLjyiN77keUf38p3bdvLiYwf0DoWCWd2FyM0jXPXcBRmWOBnXVM0hbJhYBQrhBijfsXZbQEaeZBBh8g5F8l6E8agjiL1VpFJsIxGmd2wUSTs0jLtVXykDyjDT/2xtt2G8WxhCmmdu5WfeJN/3cN0mxmVmNsU2C9F4KULd3kMkHXmXzXsqeuHo6x0ZrcEWuj17gqAzp6+pB+BK7YglCpojmiFSCg4/uItvXbeVpcu7Y3/eQcHVQXUA4Ydar40G3TJyMygCLbkTzZADFrXx01t2snxZp44LYlKoAbOc1owMKdHjpDnFyEYCYn364hlFHt5Ypf9gPZ+riHnXntj0YkEJ9OLCU8iRgHCXF40RRHI3dDvxVDLnxHJJEc/7oqli94qqqOsHASLUrDeAs6cBDvx+1QgPbp3gXWfO5nXfeILvvGGxXrwoxdvOmsZ3f7uDF1yzmg8/q8IHfhTSLdyc53knAT+a9GKfjkk9+S7MP5l84E1KqXuEEO3A3UKIm4CvAW9WSt0qhHgZ8BbgP4QQS4GLgWXANOBmIcSif0Vgor3B11bp8GNnT/Neefx0XvHMQS45pp/tW5q043Lc1A7EiIIdEG7x8HcXCCKDleruEms3h7ztZ49zwpf+xpU33kNYDnj1edOSuxs9tAGlZhBvJSN5qk+TZS4jEN0MFZ6bDHCqKlF1C6GEQvvUNOyqItKzwyeu3UR/j8f1H4xAd7ZctjGl7R/K6N+EXu3a33/xt2FO2r8rklYIbrl/hEP/4x66u1wmZJVK0EwAXSA4/YBuisJD1aRuVr42ECpGA9WzD+/lrsfGmdad5+YHdydAOy4XCdNsBgj7mCmbw+T6BDZtbzCzvYBXDKCpgXgzVOm82knkJmZQNO/SQS9GPJH46TbH7fdvy4VcEN3WhJDVkjetfASJW8FaBEiMYax5jr08W4rpN1pcMudJ63wzaKR0jEyuy2w7yR6zz7PdIuZUkl82L6ESnbh9/B/pKy12hCAB1LZx4CTD02xeRIxeq4WNgJTrRfO9xZgbuwzMXh/9f7JrRr1otd0NGv1y/LFcH4o4jzDzSX6Ly4HusvEncn8Y5yP0edIL9PGI1Zau9lCiAXegdb5egM1mx/m0KocbJgarQp8vIreLmukOUwCQyHPRpPqM3sv5R/Zy03sO4P51Exz18Xv4zz9s5MGux+g4fgszuzejlNCeTuqudtupoLmxiJqQBHWXJ55Ywvi6XhaUu1g7UkXkQpyGJNjj4AihJW32bkdAsttZF+kxKAvOo7ZdKjo8Y1G31nfbbTozMRdzDi8/cRCRGV9tN51x1rEECfCF9ihifGtb7c18ZC56V5G7PFn0E7eqjkLkopgG2fHDToGwAnEloDvWkrcA3dmUctPZ6ve9uMBMPbOpGhngOH7sAtNxfJQSBIGLjPzDm+smubkU2qWgIwIkIWt2jTC7u0jou+wcaVJrhpoA8CSq6KDyiZcOlXcISi5h0UV5DkHJIyh7BCUXpz1HEy23UJ6TAM5qE7fSSDHdRKHjlatZ4jAnCdo8Cm0u4xOTmQeh0NeUJLSLRPIBaXKrgB5nfcWi3gJrNlU08WJ/II47ghsZQXoSNUUgSgHCC1g8I89jOytWAaK/luxKCRJdtwBRDwkLUeyQvKPdJ7qCMO+CELrOOiWrtk3wtpfO5JJDp0MTrr9zl87bB+EILjlmgJn9eb513xBnLe7l+fsdzJIZMy7da8P5X5aUUluVUvdE/x8DVgPTgcXAn6LTbgIuiP5/HvBDpVRdKbUWWAMc/q8o21NmvBdMH3juyfMdqSUZAk9Inr2sn2A8h5poIgi0EVg+QApwyiF11+eMTzzAAXNLnHpIN+97zUGUPTkZENPi/zZTmU17O57NxwBWQQR4FU1f4UlJ6Dva9Y/RSjoKJUHIgLDqIKs+5PRq9u8Pj/H567eyZbjOT9+zdNKgn0o2ww1pMB4/mwClmKj63HL/CB87fQET9Sbv/9kGHtg8wQGzStz68CjnLprGr+4Y4fnndejOVgq1FxhH6f+HILwAAkGlFhKiKBQEU8sFLjm8wLt/so6GP5szj+6ezH5my51lhM3vxuIbqNYClrz+Lt5y2kwQinseqHD9g7t474tnpSdUe+ciBbhJFiA1lRhimQihhg0PSYMIow8vMDkMvZGSRNHIYhDesM41CyhrRyHNIFvHWjHce91F2cfsafK1z291zHw3hmfQum1nnyFbViP7MMeyEo29sf7xIrDFdfa59jV70YHHAYfscxRpdtsulvmNFkw2CfjNptS5ESCOjdIywNlmHbOsui3vSAEdK/+sFxH9PaF3kzMtttwEBYqukbkgZi1xwogdyzDb1vmT7mue0w4WY5KMwFa2jdo2CQKmtHt87CVzGa36XHfnLr786628//sbeNs5IxzSPg+/3oFTaHJHdQ9/uGsP+w0WOLOrG+kFTOvZzNhEiWccVuAPD1f524MTHDath221Kqs2TzCvrxC3lfFqgCsFvq9oKzh6fG21Q6msv3F0Vibv7GD9HvvaNwsYkeRt6tPcxxyv6+tN2G6T/Ik8TqGpfaJ7IbZ7TdWQqAikx79Z9R3nv7fnoXV7BtNWk/YRA3CpJsuy9iUpsWRLxlWm+c0A6qz8RCkRB3HKGmFKGaCUDmUe3ycExzIMdgXc8Ohm9vgjzJoWsu2xGlOm5jjv1AEKniQs6DyVoyspLCTwQksrHILIjWBvX4FHN1VZMK8dGcX5CHIuQilMHJD4WsOIOxIlBU7V56Zbd3DCim7NAAfJyk5UAw12CxJVAFELtSMH07Zst7YR8/zDm7dz8EFd2k1mMwQ/jMG3UJoBD/OOvvd4E5GXOmrkMByxoJ1r7x5i8exi5LFLJP3OzGV5iXHeIQIiY1RB6DnpCJ6hIii6iCAHjqDQ6egFhFB84NSFvPD7D3LmUd0QMfICxedePp/lr7mHl1yxi/atM5mojh3WsuE9TdP/gMa7Vwhxl/X9K0qpr2RPEkLMAQ5GBxlaCZwL/BJ4DjAzOm068Dfrsk3Rsf/x9JSBtyPcc45f2qa31iLPFKIY4ubq8WClG5qgNtyOdH2+eN/DnLGim3dePCsZsLKeIEIA1RoQZaUn+0oGxNgApwUr0dXhsLUywfS2Nj1YRW7zlC+0xbIAnBBysHpLhQs+8hCHLmznirMHOWZpByLrIjCbhDWJ2Ckll9H1N1YNaCs5PPfrK9k0Uufy06fy0cvn8O2bt/P4lhrljgozeyJmvYGexIu+NoI0zycAFBcc1ct3/7qDFx07wHkH9vGJ67fym3cs45kfWsnRB7TT1bWPV20ztGbAiMEdMWjetLtB3pNcePoUHh8f5eXfe4TvvmkxuZzUq/mmSlqU7QfYPLvRS0uVAOQ8kZGudb5hy3NYYJ00s+xY59VEJBWK/l9SiW/ZWnS+LUExf+1dFXPv7PtqxW6ZeskuVPYmZ4HWbdgcU2iD3g7Lb7qRztjvxJTH/htdj3GZZeZJAxbMRGBcRWbBOqQXEFndcPweLZBjkkU4KcP0OVZfjtxvKiMlMYsHSOQRhtW1Xa1BxPCCbWw4yVuKqUM1GaQn0hMFKu0D3LghtCMN2tfFXozie6T11MLNvGDzkzCgKKnXWGJiXC/KwMo7AZItGU5n8nPG/4cEdGd3UOw2KUktnjvLLi84sZ8XnNLPg+srfPWGrbz5wSc4ZnEHm/5Yx3EEF54+wO2r9vDBr6/n6gsXcnifyy9WPoJ8uJeu6TCrpwPhhty9doyHt1Q54h33AoKFvWUe2j5Oe94hUArXEXz44jmcvLRrctlNOR0ScA6JDYOdJNG8IdLnmt/iOrIBsojb56TgN06IW67rsdTIDk2eHiCjgCctPOu0jHhrTmvpH7w1CDf8jK1QTLHxIjPxWbtQKfeWFgDfm/ykVXIcnzB0Yl/zukzJPWJf9KZfIih4DsfOHuCVR/dS6B1D9AdskQFXfWcDr3npHNrKbvxAgQW6tfFj8tDKczjuhH5uvXOEeYs7UXkHb6yO8CPpihBaMiIFsu7rwDp5FyLD0UB4rB9uctpxfdojTjNE1IPEbaE9DnsCJWVSlRHo1VGOBT+5bSeLF7dx0PyyvmeGKDNSGUDHughUbPdV8Zrc8fg4W0cj3WMgCMdcbZNl5rf26H00VeS3G5QndKCggqfJvkAhmyGyUUc5AlmPBnFXEhYkzvQmA0O9HDm3nXd+cT0fvnIOtDkwTSGBUw7rYUtZMV+101XsKgoh+pVSO/b68p8mSSH+JzTeQ08WMl4I0QZcC7xeKbUnkpd8RgjxHuBXpIWrk4v5L0hPCXgLIeSc/oH+KWEP4UQFiY9qSKrbupCuj3QDgqaL38ixuz7B79Y+znfv28j0qTk+fcX8pBNkB6x9MWqKBBjZIMNMQDbz8GRa1hjUC154Yj/X/HYLK87uJ2xE7p+kQjUchOtDu9LeV4APfG8DX3ndQo49oOupseytmB372VR6kJ/ameNPn1jOuu11ygVJfyEHAupNRW2P4k+bqrz9zGlANQZ6oqCIIyVa2rWZ3XkmagH1TW3kuitMKefIj+d5xUmDfPnGrbztopm0TK1kA6Y+vfQ5oxWfC4/sZf8FbXzyOxu58qxB9p9bTurXEzrKpwHNNgAwId9r6GcpQezOaSI6x7h0NmAsJNGFGxBu8qxFeUo00Daa9UIE8NzoGhMyOAqClALM5jmzDLspsznXXoyY+5iBNUD7g5ckLhz3lex21IhumlOaQVHEiwnlC0TeMH4kxr9Ke95JwHOm7Kbcdl2pCPxaEUoJBKohtK92Y1iblZPY7d2OzhkvpJIy6e3+ZOuapqH0rDxMWQMLjGeYQiO1SPkcN+fY0UVtFlSR1pCrhFk0KTbgtMB3LNfAPq4isJRcZ+qmFeBXtveKmLUOifXm8cLA3CdbKZlkFhv7WqgZwA2TPeRA2iA6a1hs/grBAXPKfObKBQRNxR8fGGFql8fSBW2oksPzjuxl06mDXPjR1fzn6bBu2xRefNDB9JWHYQL84k7ef/Zclva1c+VpU2mv9DDcHKcvX6bgSXK9E2yv1bnsq4/y878P85kXz0NGXiOS58w8lylbOHnhE++GpepDpZ/LvO8Q7akq2ZhILZ5EPkxIALPIsnawhAH6rVIr0L2PgDwtk2UwuU/JSWQT1EoHO8mg0nJvmYp0mblG31NLTYJAvwyj624lW4nvo0J+/eg6vvfsE3C8cV2HOZjalecNL5zFp767gTdePo8f/nIze6ohfd0eO7bXqPmK7u4cCEFIBHoB1Qw5/fyZNDvyFLaNa7eBQYhyIyY+CNmxvU5/p4db87n7sXHuun8URynCUNHRV8Bvz+GONVB5B1EPIpkJqHzUyCJ/8LHGGjRp6EkdTRvYPRFw4bJOrS83Q5an9egq8qpiXBWKQCGqAWIsRA1Lfnbndg6YX+b8KT16LGgIREHvmAM6omcz1NdH7V05ElvK4lSaKM9B1pp6lz1qHvihju456oMHxRkjvHHZKXz54Vs4650r+eK7FjO7I4cIwA3g+j8N8YGFQyzunZW7Z+2aw4Hr9t6ynj7pXx0yXgjhoUH395RSP9P3VA8Dp0a/LwLOik7fRMJ+A8wAtvwryvVUGe/FC/v6vZGRXroYwqk3qO9po9nMIRqKIHD5+56VfPL3G/ADxdmHd3PNmxcxa0Yhw/SS3k5vBWQD6/enkswkY4BRKxBuMZTPWN7JW762jomgTrujtQ4qkDoyWUklzGgAj22tcuz+nZPzip/HTMoZFjwiH0RWkt/imYQQzJ1aSB1rNhUbhhu87oi5yIIlYG4KVFMgbKf+0Rv0CVEhiMFRlCuoO1VkZQZHLejgk7/bNBmg2ZNyKxmKNcmbiW3x7CJ/eHCEV37yMTpzDvvNKSXvcVxpYG375lZWHrmonnIqeVeGIW+37xshlZi5JXFdZeQqLgnoNveywYYi8QeeI2kXNotvg2+bKbbrJ57QM3UVkrRjBw32bWlFlo22FyDmb5aVNM/h60lCWPWkJqTelWnIBCgaMC41yIjBuHl+gW4vUfjkyRpthSiY+lDJszREPNmLQpgGvzbrGgF3BHGQI4WYBICJDA9Vw4nBa6KxzQBZSIPu1DvKgssM6BJqMgiK5RzRV8es5pPfk+iBpkj6/BTbmQXdlsFoSiaiTLmtBUK27kz9ZBcWdn8jDYJa+W6O243RgmcBXCvQbfd/460pFDjAycu7dFuSAjkRQF0xY0qen79zKed9eBXHzerGlQeyp9bOtP6NeJ01bvpjhfc+4yCcoEnoOszwOnGLDZxSjZsf3sWWkQanHdzNf/16E+999iz62nLRs9p1mflrAeW43PZcsbd5IVroqUBAQ0wybNSuY8OU0bRqSg2ys23rqc49e0kpv9ymHBbYhmTKsKcOTQhnjCqjIFBhi3DzKU02TGLBU2Xyk6neGFbmcnWCwEVEMduVki0MM7Vv8Df+9g4OHexjoMPVz+Si5Rx5SdGTvOL5s/jYVx+nvTPHla9ayK5NE/R35yK22gEpYjArfO0qMCh60AzxO/J4ozXNeEvBqlWj/P7PO5k5rcjQ9irbN05wwEE9vOK8Qc1uh9oLCI1At9dakIyVEegOPanXXS4xiDWeSnBlvMmmclo3HpsD5B1d5qKWtogg1Ax0ZDAqxkJNjFQdxsZDDprXlhhrCgjGcjjtDUSP2bHDit6t60L4IcJXOM0GzniToM2L2XRRD8EViHpIsxoihhXX3T/M5o0+8z2Xk/qXc9Iz1vOcd67iVedN48VnTeXS0wa44EOruer4rRzW0yn+Nm3GufybAO/wn5ea7DUJrQn+OrBaKfVJ63i/UmqHEEIC70Z7OAHNfn9fCPFJtHHlQuCOf0XZnhLwznm5o5d0DnhDlW7CUNLdvVPryLo2s6Na5zt3buP+LeN8+00LmT6Qj1z4GEaKBKDuS8Nqjtu/mcm3FWjMXmcmlizIgZTOWrqCFfPbWL2pySHT2nByDYSjCBsOcjeIMNBAIh+5+BKZm7WiKFRUwFZst+WOcK+seYYpn9LpUpkSct2aTbxuv4GEZXUUNAXhHpe/b9rNA9vHNAASioc2T/Dykwb51O82kwsdqrUAr9ygjxw7RyM0bPKxJ/nstq0NOO26U4r2ksv5R07h6uu28PmXLOA9P1jPh36ykXMO6+E1p0yjLB2oiiRIjkMcREEEaKBt/HOX0Ex3l3WPMQVtKg1GDcsMMCoSg0PjJsqca4DGBAk4N24H4x2PFnVv7gEJSLbryNZe72tXw5QzIDF6jOuQxCA0sO5jhxKuRkCW5N7CUzHwVEqD2xgQRlv0asK6kdEYmscJNGuu6pZ8wizWjEtCSQIMIkPduKz1CNhHRpNxeSTauNfUmSABf5akRDWl9jASF0joxaEVYMQAVeEEVp0LLbMJSXTjsgXLZyWFSJcDEk13q1DzGTCd/L9F/zZg2mjVTVZ7ceeXLWucQiYvGMwtspIRC6gJo3k1bc+ARbudTnJrSXrBme3XcZntBUbkts30UwmDvTl+9q6lPOtDD7H/wt/y7Dkz8SudfP8vQ+wYq7NhdJyphV6kDMgVq8hinaFmnbs3jvGiQweZ1u/xu/t2s7vm09dthYw1i0JHJZ4gslXfanyCyWN8lJf5zQa+wgk1O4t1bYgGNyY6rl0vdv+272N2QJwWLi5bld38lPXWQ6ZdmmTaitQePPbmUSiWLZE5x9gQxAgyfY7t/1sIRS5X17eTNuMQTpruhJBIGXDekpl86Nb7mGg06cj7euzJS20g6Ek6e11OOaGfIACnEcagW3lOrM3O7WkQhtqYEMCt6B1+WQ+0vMSFrRvH+fPfhnn9y+bgTviIQPGF76znOSf2ISq+BtEK5FhTy1fCKCBOXaHaNZOtcjJ5jjDy7Y320y8CBc0g6huCrTvqUAvAEVoi1gy1a0IhMe4PzV/RVNoV7rCu5/FxhdoltcSk7iBzATLvI8ohFEVCwDVDvfirRK4rPat9Bgqn4iPqgdbI5yO2XcK6LVW+/PutPLq1yhuOmcPqxwLWDDuo+xqcd/50fn37ECvXTfCJV8zjvCN7+MWGbZw8bwqffVCe0ro1/q9LxwCXAA8KIe6Ljr0TWCiEuDL6/jPgmwBKqVVCiB8DD6Fnxyv/FR5N4CkC70XTpz7rpNkwtW0nbZ27CQZ288s7dnPV7zaycFqBI/fr4JeXLUXGW9ZmEMHS7kXHgr2MUEAsIbG39e2UHSCz92g1sTgi/Zsj6OxwGA+qhOEUaHqoUOLkmoR1F9nQHhFkfzPNusX3arFCS2OLtEOMyCdoXGZj8Z9jcnmj74OdOe4aqXDYjDa27mnQ57k0wpBCTiJLIQ/vnGDdaJUrThuMy+YHiu/+aQfnHTqFJQMlvvT7rbhddXqFy9BEc+8Tr13+7Dlmkg8iwOXD4bPaOXB2mTvX7aGn5PL+58zmDw+NcNS77uPvnziIYoeTsJReBJhUlIepE8OMG1dPbpS/2W3AqqeCVY68SkJP+1hBeayyKzT7lVOp3Yu9Prv9rIbZbgWwbWDTCnxn22qDCPzrRVzMlBtW1gAnXzPahAmwjvXSkWZaFMLJ91QkHiPsMkf1Z0LLZ90kqqZIZCCSRN9sG0WKiPGNRgeBshh+pUG3AaKRG06CCMjY5RCmcUYu9nJhDEpjhs7qW4l7Qmtxwd4Bt7k+xU5njSRVAnRSqRVYynZtm3m3y2VOz5TFlLNVcCIgqUM7mYVQ1kBSRf+YvoT1NwukW/Vt+5xW/VoXMHlO43u5qSbVy4zePDf/5wF85IcbOe9Pd7NrvMkz5nXxljNmcf3KDYzUH+fZSwfZNdTkxlt3014WvOm0WbiewFchm3bXWdgf7X6qpO2L0CIlzGI0Wzet6ss8Q4huezYbbmwETGCiyAg9th1ApWe9LNMOxPrqLNsefW8Jvu2UAsTRH3uxmTL2TRYKsd7buKy0/cNn7Q5o0Rfs9pZl2LOBnQJnktvQbH7a2FIfO2l+P+tHFvCBP97HC4/p5N77d5Prdih2exxzTB+z55Q5ZFkn37p2M0et6EF5TqztFkGIUwtBKUQQIpoCp6lZ5DDvaqPFesDDD4/ylzt2ceXzZuFM+LF8ZPnidm6+ZQenHNuLrEVAuBpCBX7+tyF27G7iK8WMqXnOPKYHt+gQRrJF0VSIyCOKilh3DaQV27fXOf+YHm764xCnHTdFLzyNX24jL4kkKcqVKC/Uzg3KIIm8FAWCYCJHY7xIafZuRLvVj+sqIZyMm1yAgtBxtlTkJrGiSQcZBReiHiKqioXTSlx+zFQ93obQVe9hWU8XpcKBFF40ynfaJLf+eYjXfPox3vnsmZz/4Yf488vmI4JanxBCKLUvIdPTI/0rpSZKqduYPKqbdPVervkw8OF/WaGi9JSAdzOoHbx46Siv/cX9PDpUoZCTnHhgJze8fxn9nbnkRAM2UCmmNPV3XylmzUgkAXs7xyR7YmqVsmBdaXeCvgrwfQ9HCcLAIWh6mglwKjhTq9SjADWpPAz4yU4IgYonsbjIUt9r0hapcW1nT8J2GYXgsP3aedM313LG4n52DPmc95mVDI/5vOv8mbz08Gn89t7dvP6cwURLDbie4CUnDKQmZ6UEohwSxpIYJoMNSbre7VRBA1ifOBjOu366Dk9KPEdwwRG9PPPDD/LSE6cShNBQimLEcmOidwb6mWIjR1MX7ULrwaton9+QgEisv4IEtLqZ34OojA4aZDejvGyttc122+8u27bsdtS0/t+qh7TKz5THQQf9yYXRd5WAiro1OSoBjQgIW6AbGYGDvEprms29DJNVkYhS5HVBiZidJkTv1hgjR7MF70ft00RqNc9s5Cp1oXd6XDWpzxgWXHhK52eDDgMmbO8V0hQ7ystLWDxdL2KS68GY8TVsXwZQ21E6E88lyYImZsbtvmkWBZAsFMzxvQ1HdruQpJno7I6cfZkNtu02Y3YVzCIom4z7yFZjndrL8ahsKSCeLXv2N3sMy3hlUkJMXhxnjIo72zw+dulcCGF8POAT127ixd9bzZQ2l+GxJu/5+XredNJsPnDqIoQDXqEGUjEy3mRqRw4Rylj2FINvs3AWTF642jsypvwBSR1OGoOJdyQEJLIS650J+1rPtI3oWFMkxszZvm2/P+P5x/TpFu9nkg9v9Hkx0G4RVCq2KbAyVBH7DWlgnVpoGtBsNehUQCdrvDGBnVL3tnTfk4+HKJVMrifPm8419z/KjIdcmgWfogzZXg1YtL3G7DllPEfQ1+7y9zuHOfKQbrxKk6DkIZraeFDvqIS4VZ+g5Gltdqh48N5d3PSnnfTkBC8/Z5q2e6wFcVTH45d28O0bt7Ft7QTTC55+ryPgj0q2bwm44qTpCE+xfrTKx769kWP37+C+bRVm9uU5b/8eZIfgB7cPMzLu40iBqoUM9uTYtrvOeFNLOhojAeee1U+YTzPdshYgxvUCICxJHVreV9CpKJZ0e5M5n2Yjjz9cwO2q6rZYVXpujh0ARJXogJhQCF8bYKp2iaiEmnEP9F+NJyCo6/YWjrs8/thSHBEwpX2YWqNIx/AOLnnBXKa0e1z7yy185Mcb6Sq5DDm7mNNbdJ/YzjRg8+TW+fRJuoX964D30zk9KfAWQogZfe09F35xFe+6eCbPPW5x9APJIB0ZzKlxqf0tm632MPptQmh3b7kWN7BTDC728ptoce6TMZn24NlQUIeCJ6nlq7HLJTfXQAiFW6rrULM5+O3fdnPo4rbWedqAOi6HSgwBjdGgOcf2/jAhEV3h3idUoK3doaPoMFStM1UUaC85LJhW5I8Pj1KSLiVPapeGDqg9EtEWj9oQgF8ROKFmNp94os7cXktDbt6bsL7boMKuz1JU9iZ668yD154zndtWjjJWD3n5mYOcd8wU3vi1J9g2Wueqazdx5H4dnH54NzIQyeTfsCY8ScJiO9b/IQ3ObQ8m5lqRKaMBB9m2IElcFe4rGc24fa2RgigSxt1O9j2McaspVwTeRTlMA3Ki8/JKA2QLUAihdOjiRhQ8wmaN7X5gjCsbyQtSNQFCoBpS+56Pj0tEMdRaV8P0WYsRWzKSaseu0r/F9aNQdRkx4yoBxZ7FzBuAnFo8Ks2yR8dUPdKZoxKGMiS+l2rqfihCizHOZ8pmsjYypsyWOiGxW70UAHfSz7PPRb1J5nnNvW0NvPG6YfeX1M6ISrc7W6bU6p4GeCsme3xqtci3rzPn2Mm+hz26m0BWIcTEiLSwYVPp/mf6lE+yu+SQ8sfflnN4/0WzUYFi9eYqa4dq3PbRh9h/QZ7czGqs+SeErrzH8LiWJsR6ahvkmefLuhS0+zUWYy1gohaSc8ErRGBeqGiBbqRYUVmNVxP7fpJEF+9abSOXWYwZkN2K1InY+n25QrPBdOI9KPrTAphnpU4q0HKJOOiTWbjui+U2eZmATmaRHiawXAiVCjlvjmWZ71ZBePrbXUKlOHXedPziKJWuGt4Ul7Dms/KBEfZf2Mazn9nPl3+4gaMO6taZhwqn0kTWtNcRExhHNkP9mpshD9yzm9dfMpu80TlH8hDhB4hKgGgozl7cxdd/to2eDo+zF/XSnytxz6ZRlva367GzAbNKJd560izW7Kxx5TEdbN3V4Mu/3oafCznr+F7mzy4RFiTBniaPra3wrBU93P3oOH9ePcr9OyucXYq06NEi1LDduEKvFUMi14AKUQtZs6tKUA5wBJSn7MZp04FvVJeDqIW6T5WifmfInDGh54ExIIc+z+w0gZ4rw+i9R565qsOdlL0K3V1DVCbaGap0M3X743hOlXNOncr4zjq33bWbP64c5YKvrqS/s5wDlvM0B94g/qWM99M5PRlsBZixaFaHvOnD+/Pc4/v0EQMKBAnoqAuGdvtcf8cuHUbVBh57A92h9bFLZMCgncwx83tWu5idAE0ybK9p2AGccEAnN943gus2kTJEOgG57gltFFEMCYXiI7/YyNtbeQIxE5AxbjTsUZMEdAfRJGbKZPyGQrLNn01W2cOqYqwScOzSNn56z04Ont/G2y6eyQtO7ucvT4zy9du2UdtUgorQACsgll6MNny+cMM2DunpZWxTLw+urbD/rHICJu1octn7y8z/zeRbRPvdrilefvpUHtlS5ZITdJjogZ4c333TYv7j2bP54u+28pnrtvDrv+7Sg4Yn9Ceny4YJ9GmszLNgZG8Ls2z7MMeMZMeLnsu0pVZb+gZgZ5NpPwGRy0YSZj076Rr5SzZPlfmYPI2xI2j3gLanBC9itF0LzJbDDIgjXigZllrLNVQkD9CTrCxqJks1hWa2Q2Ltt3A0mNbMOlpHbureiwC/yTt2X6gS/bgNQkG3X5OPkfBY1yTaYxV/hKcS6YtZcJjnj/4vPF0XIhdGml+VzjP7id9fdE50vWGpJwfaUbGRafa43e5FtKhI3XtSm0neXXyOo5IgNpPAuNUOAiJgSrp92WOeaY/mWs/6tLrOsT6S9K5hiCYEGtHkn7U/MEDDjFeGfTegu4a2m4D0YjAAEQqWTi1x1oE93PbBA/nUjZtZva0C5UiO1BRsG20QW7IZuYSPbkdm98S0jRC9uIwWmTHothZXW4YbHPvh+zjyg/exezTgl3cP8ei2WpKHlVQg0uyyi35He6ObzHz2ZCna1UjsLZK2bBYApNpYmHZ3abHfe72Fia6p19a6n0eBlUzIeh35NAlwlQrEZPc/2cK1YCsDTTuv6GMC7wihKLgOg+0FfrF6M8WcZHFXkRl5lxv/PMSe0SZfu2Ydn/7S46xfO8F3fryBSjXgnjuH+fhX17Jxc1Wzx36I8ENkpak9kuyusWNnnZxAa6gDFWms0VKMmoIK9JY93nbhTF78jH7+69dbueYvO7jriXGOWdABoSCseYQVFzfwWNLdjhwuMDNX5lXHTed1p05nQWceMRYgxwI8JVjWpx0DHLqsnWnT8lSbIbf+fViz3RUfOe5rCYgU2iBTCpSnP3h67Lv0+Kn8+PadCE/hlJp6Lq6AmAgiF7lCS1OMZ60APeZWJGqPhBGBGlOsWjvBl67fqnd/6/q8r9+4nVMWdenxWQk8t8nEeAfDlR4cEcKIwBlu4m6vcebiLqa353jvubPxQ8X86VJ0dXX9SwK//F/6n0lPBXgvPXheye3vyiWDrgSaEAzDjs0N/nL3BO/72TpO/9QDPOvjDzE05ic5e6RZTWgNgLLH7IkkO5HZjCckXhjrTAZpIQlD7QBlOHppB/ds2cNYo0GtVtIBBLoiVFRWrN9RZ2Z/jmnd+WTyGlP60yTuHEhgQiX3NqDMEYm7PKOdjICYKISJvtuARZOsLeAwKvdvVg7z4mcOcODMMqcd3M1nXzmfZTNL3L15hLDi6vptCGpeyJd+v5Wf/G2Il5zcxwH9XeTbxvj9ml0cMNvyPgLJewxJtsLs1IzKYgaCKqhQM0J5T/K3qw7imt9vZ8mVd/GpX2xm17jPxc/o44gFHRy5qJ1bVo1Mfldh5j41lUzkDeu4ARL2NTYTmK1/G4wYkNJKErCvBVqo6zBm3YzWOztB22WwyxrtNMTn29vn5tkMyyxU4vLQAqGtfAYjiF0OxoBUavZalMOEHbfvC2gvDgqK0b0i0IlEu6O0GeRS5K/YvBsTmc8BUQzT7HhUjtjNoUMixbDfQQvwKWwAbf9mgK+rEplLFkjubVE9qb5U63NddN2ZOsqATxEtDuLFgJGwPNm97Wc3izV7wWWDZFO/XnSdAcd2yl4rSFjovTHcrRhy0/ZtVt5ekNr+jomI0QLJ1rjx0mD6gfl/A4twINXOj5jXztdfuZCXfeFRdu5salDtwqbhOgfOLhP7krfZbPMe7AUbVpuyvwO3PjzC2Z9ZyekHdTE01sSvw6XffIS3/OAJHtw6jhJJp1fKAvURyI/lVIp9v1dnH7/ZyT7HAtwxgLcXcJAA8IihF25oRcaMgLYF0FtFNkWotGrTLMKzQF4m4NkG2YmRZhT50gkmRcKMj2UAuOMEfP68g/jl6k2MjzlMC7ooVAV7djU5ZlaRV50xyFvOnsY7LpnFmSu6+f61mxjZXuPtF07je9dvpTmqjSVlI8QZ83F21PnhtVt4yVmDWlvt6lWGs6eJnPC1jtssCAugiopb1u9hoEdyyv6d3LVlhPGgEUd1VYEkrLsEVY+w6RDWHf0u60JLEisgdoWICd2/VUGTZM89uo9ZnTkeeXwCWQmQlRAxEiDGQ0RFg3XtUpDoo8CD5YvLbB1tEBpCxSwqhdAeXxyRRGhWgAdq3MF4N1K+YP22Olf/aguhHwHyccmuXT5FKZnfW0LVpDZIVZInRmfQCFw2Vbv13B+ln/xpiDefMovv/20HLzyhn5c8c4A5U8unP4UW/P950vug//3Pv2t6UqlJT2d5+eJpQhrmLRiC3z0wwvUPDPPXR8fwPDigr5tT5k/lilfO5pyv3ctAdy4NfFoB7Va2oln5hsoct72lGDBtBvDstu/egH4VZE3ykmcM8JMnVvPihYdSGByDQgRuSrB+Z405A4V0WexJzUyQ5pgjtDcOs2XkRB3QbJc3SPxad1kDZMpYKmlEMi9oLzl89IaNdHU4HDCnnHqGZx01hWvv2cLR+8+PIzT6gR6QLztxKgATaow3/uRxEIozD+6ZLCOxtnFTE2kz+rtb6QHDgYoKOPZN9/O3jx1EzpUUkMzsyTN/RpGv3riVWd15vnbzVm5eOcqN9+/mjEO7k3uZFb8BEO3RuzPVEA1+yhXaOj27hW+78gNdJsM8t5AitEx2NMsik0GPIgGchlm068d+fwI9kBOdb86xwxKbMplPQ+j8W5FcMeC2wJAiAe5mIo/zTECvvizKtymSMON5ZW3hk/gZN/kb2YlK8hdGBmPuXUsz1IAGr03dtkU5ukFTpOUcJpkyGzmPrQFP+bS2nsG+zpS9lfGbzW7a7vTMwsaBlgF/jObbPsf+LXt/ky+k24P5bp7PZqshvq+a0MZpqiGTxU9RJfKlVuy1nX+AXsBnXaxK63z7Ge1dRkjGRSOfineFVNzXRU2hylbbM1vi9kLB/Gbapr2AN4QGcNDsNj7wvNkc9Z77+OCz57B8VpkH1k8woyufyHMg3V7ssjtR44t2TBphyFd+t53P/X4L7TmPzrLkmpct5uKvrGZef4E3/GgNSwZLHDOvk/f/ah15R/LNyxeTM7pkR0WeevRNVF0glY/wgYJCCUV1QlFql+kx3tRtK5mJqZesAWZU7/v0ZtPC2FcbVkaL68j2IBXQKUgPbimmPOvrPDqWioYJ2vDZMqKOveQY/90t3A+aYyKSYwqhcJyAaR1FvnLhgXz2r4/ziVsDzljexcfOmUtut9JkSg66+3QI9CvOGdRSiprirIO7+f1duznj+F5oKsQeDarHdvlM7fSgEqAkqF0+E9WAOoo6ICdCtmxu0NfjsXJ3BRXAW86bTrgnx8Ur+tk60qRjmov0AsKGHoRD39FSHwHBiINTbuj+l48W99G4InwFNbhz3R4Guz12jDQRo0Fqt0lUQlRBEpacOHiOcgUUJLiK5XPLfOP2LVx65HQ95xtZlgOqqN+daKp4MSvKIfgQViXCU8zpKHLQYDt9BY+dYw36Snluun83py+dQjjm4I8V2DY6FU82mVHegRCK9ZVuRjYN0DNvM2I0RIaCR3dVeO6h/Xz9pm2sWNxGrdGcM+mlPs2SDlL67wue/5n0pMB7+tTOE9Zuq/CiTz7CYxurNJqKFf3TOWPBQbzz8By/Wvcwlx8znaCa41G1nYXTik+WZZJaAXIz4RhgZXuuGEf72gZMCHhE9NdMDLaUohUgKwAoTj20i/d8fz2vPWWbHlh8BSVQrmD9zjqzevPEbgIhmYQV0YQpMkBIROdE3100CB9DB4ZRaPBpgsRMqgcV53nffePkpGC40uDVZ09PniMaEM48vIf/vHYTn7xpI/0DDsPjPsWSZHpXDjUmuf6RnbzvJxt4+clTufzkqelom/uq+wAYF9CtoI14UvnML7ewcmOFrSMNZjsFqAq2jDZ44pEaG4brXPzphzligdbDn3dYD68/f3ryTFWSXY92kUh1XLRxSQ7t2ssGOHaywY89Edqs+L6SAQbGF7iRz9h1arTm5v72u87eV6LBkw0+bOBl2qDNMAqVlg4YI0ZhXW/YXgN8WgG9QCR+0A1QiIB1zNYGIgENkTGnCoTWV+eSSSeZJIjZyRioKc3GxFp12wjOuH6Lnl0FUcTXbHnt5Gae3wbKdrL7bUMkYMLUa7yo1mVQVRmDqPiZswDc1sGaQd6WNhi23d6lyJbJGgYmlTW6Ro3LRPYVSaaMNxpReBKPVMbnvNnFsRdNRn6VBddkymXaXKvzhPVR6IWkBTRFgJaTmLzM4tO0ZdNOlC6rasjEiDSj7z9leTfrd9bpcj22jNTZNFbnJ3/fyTvPn4HnthiQ7QUaUX7Rc734M4+yeKDENy7Zj8bIaayYfwef/NM6PnDeHC768mr+8uaFHNTfjRAC6Yb8xw2P8opvPsbBU7vZOVEnEAFvP202ZcflJ/fs4Bf37aSmmty7cYwtow36OzzGawFbv3IEpSjceapdQKqeUr+b4gstjchKNuJXZOu77QWnAeGOAmW5G7T6FrQG4Vnf82nZisK48Gzp+TZM+sMk+YkB2TIkZYwZygScBw6Hz+rie/OW8427N/CL+3fyqmfMgLFAS4zG9bnCyCuj3cqcEjz4+DhnruiBpqI5LGhKH8cVGtw6IBuKL9ywlZ42j0Je4BYdquM+jzxeZdmCEg88McF7zpgNviRsOpwwr5ev/mUziwdKiEKgX5mA0NfP79e8uM/LQjM2HhblEDWq+6vfhFtXjvLmi2bwlV9tZWy3T3uXq9+xi8YXcVj6qL6b2ivKd27aTm/BZbjio7wQ0R6d0ETzsX4Q4RN0f6qZNiCQ7QH4MFRrEIaKkw7o5Pu37+CFB0/j0c11nnu4R31bCZSguzjCcKWbjRO9zG3fTtHx2TneR8/IJvDgeUf18dDaKoEPP3jtEi77ymM0G27H5Lf/9Ev/zqz1P5OeFHg3qv4yfyTPG06dzrLOdlxcKju6yHeMo4KQcI1EuCHelAof++YmLjtjanKx6fn7mpQhmUAMKyNIQn6bAdAwpoa9nDCslUrY5WyyJw6bPS3DwnlF1myrUdncQxhK2uYMIfIhn/7RRr79hx1848pFCVgLVCJpMD44DSjPRWXxQBUFQkXg0ifR9BpA087klGXlQhja7dMMFI/uqHL2ET1pFgZwXcHP3rEfN9+zm0/9ZjMfu2Qup+zXjapKPnTdOlZunuC6ty1jamcumXBbMHIp8GoAS5s1GDfh3jXj/MeP1vOMpZ1MnZLTz5tTnH/0FO56eJxNu+ps2tXgpEO62TXuM9CR49ilnfr6QNd1mnWMmC9LaxmP/ybsvF2mVv0yy0bZoM7cy/YmYbyf9ET5Vki2/7LAPt7FsOpmLwZW8TXmPEjasHnnpi0bbbXZejb3zk7oMVi3jsdlsgCmAVoGbNqGYqad5zXgFcUwnX8AasxBtAcadBdsQKCZQWH7SzfvQpEsWpq6jMKLQHXNyifb3xXJfez3aWvzierIAGFjhKfU5PetAF8k+uwAYg0xmXNt96WGpTTkX1PofDqDfbPbWXAIcaAj1dRuFIWjUNUIGBEmCyWzADU7c3YyBEMrP/HZZ7ZtC+z+m5Wrmd9Mf96D9pVv8jZtIyQZn8ZU0mbdqDxGbmLyaZry6spQDQmNaHFhdn+iZzr7kB7KeYehnYp3rDiQklzJu368no89b442CjdpbztVAupByPpddX7wmv2i57uNa2+A5x3VyzX36GByXe0Sx1MENZfAd3jdYfvxq4e2EQSCFTMLbKtUOOGqezlqThd/XLOLz5x3AAtnSS7+xkqWzipx84MjzOsv0AgUpRTzTnpBnW0LmV3QVFAj+z1AvAs1yeNOxu1lKly8uU+2WtwwWuymAXhqgapEbLypY5ElQFuDapUuR5SPMcCMn8WAcyAbFVOFEhW4XHbELH6zaohf3DHC+Su6kWgf1vc/Nk49UBy2sA2RE+DD0pklbrp3Fx/9wQameB5rd9SYCAIG+j1+e/cuTj+kG6Gdq9wAAQAASURBVBrQXXY5/ZBuutpcPR8oReWggC//ZiuFwGFoq6C3W+9ihKHESExELkC4+rmlG2rwHS0k/GoOzw1iPCLCEBxFMJLjgW0jHLO4g507m5x9UA+fu3kr77hoZtLmPQVS6sA2Aai8fjGbdtTJu4IzlvZwYG8bn7t5M689ZzpVL+DqX26hWgt564UzKDtOMobnIagqPv/7zayY0cHR8zv4we07ecUpg3gFwfHLOvjk7zdw8dLZqKpDrrNKfXeZYmGCmcVxynt66SyPMDd02Fnrih01dLQ7HLm0nQfX+Hib+/nsRYqXfHttTghRUErZLguedul/K+P9ZJv0+M2g673PWMqBHd04gZ4hytN2JYqPQOKP5xkdDXl0e5WTDuxMLhZiUidPDeZY/zdjhw0CjaGPYX7sYCg50vpJ27gOK69a9DETVxNwBNKRdJdc9gRjlKaMIrpC1m+r8ZO/DPODty7h8s88xqat9fTE7ZIsJhztGxSXSB8ZSSVqFqProreKxzNlMn/tugijvKuKdcNVussuhy9sx7ECQ9jb7YO9OS45dYDPX76AL9+4FSUV/3XDRh7ZXuH7r13C1K6IKsvKBcyxVgyekVoA+PDYhiqHv+0+Fk0r8pv3LCMvZezJ45wVU/jubTv40Wv245glHbz7wpnc8h/LGav53HD3rqiOorzGo3cQRgSE1PVHlolvtTiz62eCRDNtnstuS6YN1NGAwzCIAjDrf2Mo5pOEnTf38aPf7fZi6s7+bgB6g/TCztQj1rlmUZCLGGcDwOyImpDIDppWHuZcYf1u523ua/KFKCQy6b4B6d0gB+3f2EWz95k+JUph4lotCz7qpuNHn1x0v4KVT/yOrb8FlXzPPreK8rW1vjmSxYRNzEl9rjISl5DEYDnbphWJzleJtNxBRqAxkiOkyruvZMpvyuaLGGALR6XcIsbnK5GMY2ZhZoNnux1n+4Bply3Yy7hNmmsNkDe7hYpkh818z2rFjZcdsxtUQy9M7fG4mbl/CMqX+mP7hY/Sa86axsmfvJ+LvvUAN64e5nmzT2bbcJP3/2xD6rx6M+TDP93IR366kTUba6m28di2KjO789pzj6P7zjA7mb3A4Vf3DvP1Vy/kS7dvpjLcSWVPB15XlYFFVS47q4tXPLed885o44qz+rnp3fvz3GO7+ct/Lufko3LMmuny/TcuprfdZWZPjiPmt1PKicl1/1TwQEv3kNHC2hj7GhehsccV0jsQ9n1s0Js1low13hYLHp8TGVBaQDz1PdKAC6EQMkS6QfyxteUyMsqUbhD/H6GQjv7u5Ju4hTrS0dcpBV++eCnfunsjn755M6oh+a9fbmL7Dp/qqOKHtw7p8bQJ1KDoOrzuvGlcfvJUPvLCOXzqJfN454Wz8H3FR3+ykc/fuIXHNle5/s5hXe49CnZBKXQo5R3e8MwZfPuOLZBTuKUG966rMa+zfZJr0pQbRaBeLQG6zSIU4ZgLDshykwe3j7F0sMSnfrmZW1fu4cgF7dHcpNuhykkNtiPQbcwIfnHnMM86rhdcmDaQI+84UBX87vYRLjm6n7edN4PP/HwLtz48wtf+uI01O6uopuLLN2/lhCVdVGohV/9+M4sGi3gFPf4cOLWdjSNVBosd7N44SH13GSFDqrUyo2PdlPMTbNg1g7Xj/QRRULFwu0d9XTsTj0/hrNmH8K27hpgTzGH5YI8A5jyFVvx/6f+DtE/GWwgh9ps1JZefXkHVBMJBu65rgKgH/PnR3SwdLOKWG/zs3u2cf9SUtKzBDhwTZ0p6O7cVq2Bv75lJOMhcb5gigQa3djJgykgIskxooKABB84qs3p0mMHFbewYb/D5G7bSDBU/v22IYxd0ctEnHubPn1yONFrQSpSH5ZzfuAUyuq6UDMAkw37GDHp03D7H/D8HP/7rMG88ZSZXfPcR3vXddXz4JXPS7K8FNm+6azenL+/h5V9ag0LxzSsW4Zjy2gO7XSb7mJ184rpe+cQEB7/1XqSEWz+8nFzeKmwIriM4b8UUnv/5h/n2axbjScEDGyb422NjbNrdoL3gcOyyTv2OjOFZQyEK6RktNXfZbhptQG2SYeJMPduLtrpVjzUihK+SLcMKWvYiou8TIgGsFRJGOq80kPKV1oObRZ8i2XUxi5MiCfg294ZED24z2JCAG2F9z4JVE8a9BXuWYt/tfmOzczWhvQjZ5QlIywdU9Jx2/nZ9C1JSD7UnYschHZXUMPrmO1E+rcDr3vSy5n3kVHqHy+RjtwcD8IxrwjjaH8RyHgNiTTLyGvtcw5QLEB1hGvyY57IZUJPsY1F9ibagNUPqRIW2+202PxsIm99c6zczVpjdG9MOyVxjnjm7yDblsN+rnbcLcWRd0zabFvVvP4txZRmm8zBuJm09/knLunj8CyvYPtbkc79ew2+e2MCi8hzuWvMEr/z6Gt79rJnceP8IX7hpK8cv6uTRbRX++tgeejs8vvrqBTy8ucoln3mE9z5rNqopUU2J7PZ5YtcET4yVuOTofj7844287tCDmai2M/Xgx1H/P/beO86Sqszj/p4KN/Tt3NM905PzMAwwQwYJAoKAZBSMKCoGDGvO2XXNrmLW1TVnVwUFUUERAYmSmQEGJsee6el8U1Wd949TT9W51bd7xt39vOL77vl8Zu7tuqdOnTrx9/ye5zzPDAUj2mhq2pXxt1zR9LR5PL23w9SxZsbMwp4C33vnQYRjmjd8/Ul+dOseXnLKzMb5ItoE6dNs32VTM4KjGTDP5hFNliYmsyyw3JBPxW1uGl5AePosEPvwJLKlmJVoRRJ1FdJAPdAQJVM5ESiVAG5UrMG13sMt1BMWXTmamXmPn73iEM77yv1UojqnHtzJcQsN+fbFP2013m3GFHiaS4/q5ae37uUlJ/WBA06kwFece2wP5xzdhYr9o3/5+u2xEBgL2A7kfEVUV/SWcuzYU6OvLcdNm3bx1lMXoQPQVY0qhubwZhQad3y28AE4LXWztvuRcbnqR4xGAR2tHrO7chy9qI2lCwoG8PugW1XsY9thTyXgjntHaS863P3gCMcd1I4vQmtdEYWgQ8XO7XXmrCyA1rzuWf2sH6py+bHd/Ncfd3PjniFOXdHJyrkt0K84fU1Ho0bTg6OXtFOpgx85jI100tIyRhB6jNVLjNRa2VltpxY5LO/YTjiUZ+vmxQxVW8k5Ad0tQ7z8iIP46l330OKFLrAYWNdktD5F0j/3Acn/Sdofv9ORc5X35T9uY1u9bNSpIw6Eii31UZ4sD3PyynYiFfKVP23nirNiMxOtSXzG2ouWzQLZKcsSZjcPm7UbxwCosjKf9vokQLMg/9Tkw0EeRqKtw7OO6OaqmzYT1uHyzz3G4vkFfveJQ7nmr4N88JzFHDO/g1/dsjdl1AUYgTGJGNGNz47VSQnITljI+DMLPoTJFAYYGB0P2DNe58w1HWz4+LH8/r59TNTDRqZK3iWEZx7WxVu//yRHLmnlP16xzNhRCrMGKaByrPubsWchiXZgfDzk8Lffy5JZBXb857HM6PTTNpSk4eMvWMAFx/SwdssE37tpN5+8eivvuHQeFxzRw5O7KqbOouiqYgLrTLV52arvqZJPKmTJe5VJ+9Wz8sgBQ2HsBCQ68d8CyESA69TmXyH+TQ5hij20CCXZdrBNTexxazOboXXNBj+SsmtPs1lpM/w2yBLQJHUt6Ub2XJMC7nqT8gIme3SB1BzGwYBuaUsXM/dczFi356vNZNtzXTRPNmtvCxuSX/LKPM6uF/Isqaswi+KxxLannQowC4C1NWZTJVswkvpC2nfC4tsAOju+7b6VMWEnaVcBwvbfcr9o+iwXe1NqrLKaEXludryJQJy3vttnH+zDy5gylRyC1aD8CKc1SM2LMu09v6vA0Uvb+M6bVnDd2t0sXTjKK45aiBf4XPzpdazbXOHLL1rGHx/bR1e7x+IZRQ5fUOLiTzzCZZ97lJ++eSUXndBjmNtcBDXFv565gt/es4/XX9rPF848gUP7T2bW058gmu+Zg2wtpp46r9CeMp9Fhe520n6XKLJ7TayDy542ky9et50vXb+dQLSbtjaGxvdKxoGbuZZ1PZklVYT5bnD/pxs1QA1uLGn8J55RYk8n4k6wwb1mZkwoJxVOG1jxxMUgKRNulymg1Y1QMStuXBRKwdp4Y8mHqHxIrqj5xuXLufbBPQZ0x8L5ofNL3LN5hE0DNaIJj7bIZ/POitmXZS5WNAxp1KBjNKMTGLBfIY6QC6oYsXp+K7c/OsGJy9t5cMsETwxOcPSSknkPLzQcy5hHOJYjqnnG5MQ3IdwLM0dwOwzojmouUdmjNtTCtu2alrpZ1F97Zj/3bB7l2vsGE4FLVTRUzOfPf7+bha0+nY7L607t52md7UQ7fKIhD11xeNridj7w8w34mIigFKG11+fwpa24wHNP6uVVz+pn5dKWWCOpU5Ilwnxv16xaXGSvNoy/79fYOdiP40QUvQr1yKPDq7CsdYD2lmEGts+hJTfBvI4dzO3eSlf3bub3D/LOZ85jbie0trYexFM4aSDS6n/075817Q94z1k5t9W54oxZ3P74KJ/7w1ZueHAfN94xzo9vGuSlR8zFaQn42bqdnLamk94uvxFgZ00JZANoBr5kw2imgpMkgNID2uOB2yx/lj1vpsJtVzzjxE7WLC9x5mceZGZPjledP4fhckhvS56OvM8rj5/L92/cnW6WRWXeaZ+GfSo1C6hg7NFcZegEAZA2EJEktpLZVNZQha07ajy4dZx3/3wTjg8nH9TBXx8enWRqImUct7Kddf9+FK9+Rj8qagJsbXAjm4aA4eyGHAE12LGrxnNPmMEjXziS7g6/EcjEn/c/McbZH30EpeHHtwxw6wOjfOO5h/DyU2Yxc2aOgX31dEEpKnOwksYyku/xafGkjvYYsYUIG5TYQEPsUxWNh3IFFIUYgFFVKYNt/5N7RE0vqUo6JgPru83uSh3sNpa6yvesOYkNOqWO0yWPxrHUMMdoBAP2OQjR9lRIBcGyMqx4bPqTgFjbRCWwAKw8D1Kb7GYeQOyVRLQANqMt9ZLnyntBOg5toAuN88TFCEQCtu12lneXA6suqe98aRsvvk+8y4hAJJ+2cG//brervFfsy7xBC9dsTbOBtvTxVMx/mUbBU+pkr5l2Xe22abbeVaz75ZqmcT5Bo896cXVoM/eQHsYU0BqPGV12zFhp0eb8ihAePg3s/GdevpjLvr2WC79zNxtHx/j2a5dz4ZHdPOcrD/OdK5fz3Veu4Nu37uSwua2ctKiLm953GMtnFI2v7K4wdpuqGdo1iyM727j5Vz0s7VzGiUffji45oM1hNyKgFPtaVirudzV5DSwrM5YUHHN4iX9/6WJ+e+8gT3/P/Ty8SWzRrPwHsr/Hqv9JGixIgbH4fnek3S1f31P4nm/QAFn7nDC5Npg2F8j8HQNsy/xEuVEDE2yez+R/TuP1pIzYn7i9Ds/vy1PXmtFymNR16awC37x5Jz++Zye7R2s8tKnMIf0tBmxrEtewuuwYV3oTZjx5FUW9rJP20cMua9q6uG/bGF2tLsPVOtVQUyyAW6yjvCh2H+gZ0K1jsxJLENcVJxVeYn/y37trBy88Yg7RoI+qOVx6xEwe21JGS8TlMdPut907TKfvcMjsFg6b00IucghHfXOwPG7HQ3s7eMOpC9g3FnLXunEYU7EPco0ajMw5Ck2jwC/7VEwG/fTWAR7dU2blES4987dRr+cYD4oMV9qJtENnfpRa5FLwqty3cwVDlXZaimOU2obJFcv4bRVyXRP47TVOWdbNklmdJx/AyP2Hpv9zJ9g8zZ3b5rk5HJ5zwgyowP2PT/C1P2/nMxcvw81FBLmAf792G7/54Krmm494HYF08ZdFRECHzXZhfU8WrvhTgJKozmXjHCPdbMdJD/Q5pJul/aZ1nZy4/sBLF/DzW/cYe61IUxsPacubCby0u41Nu6tUo4h80UX7ClWL4smj0R0Oao/10pFVtrBX9vtAGqUuK/IUTFstaylx3PI2Hts9zi/v2cPi7iKbdlUawSc0AI9ZWR/r0mZZ7YG0o7C5dnIwm2cES+cV+f6bD0qfl62rhrd+ZwNXPGMmj2yosGNfja8852AWLHbA08zwPe4fsgzbRZ0NJLRJorLWk4GD1GeKZ6cRQkkXMRuMCHgPrN/rmIOjWdAimgwBq/JMB8OgacwYykawtPPK93EFbXHD2mYdWY2DLVSIKUDiY5nJgobcZ6sls4yaXZ4EP4kZfV2LPW4IeI1NL/SISoP2SD3EtEEAlDxLYcZ9LfPMZvNWnq+sz+xhafHeAo1Msi1QiFCRZcO1dU/W7l0EW9tXvt1H0k5A4low+7uUZYOnpPwYYE0RNbAhyf12W9hpIi5LPMU0K84WeEW4tOf6VHPHbfK7/AZmnbQDVsm4E5Mkec6E9Q4Y9pFWjOnJqGs0LM0ED6svn3t8L2ce3kXeUdzxyCiHvesenn3kDAbH63QWfJRWPP/YPu5eN4Hfqemc4cGIgmGgQxNVPVyvhu/XGHlyPr29e1h87BDRPNeQDfLucfAyFZhNRu2N0nktJlhlRTjs486sGe8TNcU9G8f44b8cxOa9VV78hcf4xTtWsqC3MLV2rqEtrU47EBwg3nbsMqRv7b7O9p3Feich6+W6FiAee0dRxJFlMdFCk86zTS9icJ5xVwgZ4A4WgNUpsHfMvFF+mvdlp87krT97gq+8YAVKKX54yx4+95xlVHXIf92xh4d3jvL8E3qN6UlOhDjzT9cdlBOCp6lWwC3nwIvM3MhpVC2i4Dm0+zlGqwH9pTyPbSub+uQiHAK06xBWfKKal2gDnFJotDLx2ua4AbriMM44M1uKhGOtROUQNRKR7x7niLltXH3nIBuHKpQcl2oQsWBOnucf25dqhesKpyVIiBexJ+/C501nzOOLt2xm2UKfrpyXmjBGxEHT4jbNYTzAWIHUhsdD6qEmzGlcP2K8VqIS+vhOQDXMEUYOfYURBivt7K0X6M6NU60Wcf06hb5RVHuE3ueiQ4e5XXlAL9zPaPyHp39m1vp/kqZlvNtaCgvntpIMnMDX/PbRvXz8RQsp9mrUjJDv3rGbs4/uNr67sykxJLMaVxbpqdS8wiLbUqG90TikUqJsEu2ge5zUbV0eM0km4huLKn3TKg1+vx0Flz69Fz+O4Jb3FLUwZGxvF2ElR8F3EhWkqlkLeUs8ofKkAYK0TgH+KI0Lqb2pjqrGA6GOaSPtgtet+ctHV/PNNyznI7/ezCnLO/nG73YyuKc+eSHOjlknc73ZYTY72cAuXpjK4yHX3zXI+HjYmE+AXAgbtle46ZFhvvGnXXR0OFx8zAx+tWEHUaS57FOP8q0bd5s2a7bxSxJzpGz9m70PTAYl0n7NVOv238KCy1iBlNmW9smRAk1htaVtJDCSHHCzN7ysTX+bbmxTYRNt1lHey24bMU8SRtjuV2GG5JnyXPlug9DE80RcXlznBFxLOT6Q16i2KG3DGsaMzMVsVLaXIGEyIWVs7DEt81lZ10UAkDa2GXAb1Ar7Z1/LCpeT1Po0X7lsgcRuc2kzO9iS3ca20GGDf8cqQ67lYqDh6qnXsGbJ7icpO69T0J19H6mP7foP0jXDrmezJILpVEmW6zKpsGW/Z0h6psUlZfldzFhoBdXTTHVn1d9KnQWPoudyyqGdbP/ysdy/dZxnH91LT8FHa8W7zpvHjY/v5cJVfaBhy/0rGFi7gGBjEa+tCgEUW0cZV4fx28d38ftH9vGD3+/iV7fuYbwcGsZba3ROgaNQuyP0XtdEX60o6oMFGI9thnW8/vYqdK+D7ylqdc0hva185LkL+MhPt6BlbZI5n52/Mr7tiKJ22l//SJKxJOXC5Oii2eTo1BylWXnJ4cxGc5T08CUJgFZuhOOHKRtum6IIsx2XmwByuV+eFc+tV50xi85uh+d+60Fu3TjI8tkFci2KtpJDUAiY0++zYknRHOgOMf0xbtYc5UeonCaagJxv3lEHjnEZKp5hvAC3GBFFUCooxstRTLCoOIJvQG7mBLmuCbyWmrnPOtS9byTgmrv3Mr67jev+VuPY3iUEgUd5vJWx4S7Gd3Rz36N13LLH89bM5NmH9vG60+Zw3iE9pr5VzMHumkJXXXTVhVocHdXV8TuEXP70Pr5y03Z27q4bJr+uiMquiUIpWiJioSWnzXzy4BWnz+JFJ/bx5Wu2g6Pp7dzF3NbdFL0q7flRCl6VIHLZWW1jLPD4y97ZbBiaSxR46ZqW0zgtATM7PWr1oPcARuD/pb8zKaU6pvnt6AMpY1rgPW9W15rZM3KGHQs0V127jZc9Yybt7SZi4mg54Eu/3c6bL57TvICI1IxAgIA8VYCMbCqyMUIjyGoGrMwbGoYjDuGqQm2iRbVbq5G9Scf5dEmZDUVU3ko11LGz5LF9uIqfKzOmxwnQlNpcAxQHSTeeMFYhie1qqGGI1K5W3JnbjKEsxALQbObbwUgB8QTq9DwOn9fK12/ZzitP7eecjz7Mh7+/aTKznbQHkzf27PUwc12AjGwuAbznh5v4xk07eeFn1xHV9WS71BAWdOW56iWL+d2HDuGdF81j/UCZZx7cyT07Rnlw8zg/vWuAZx3fnT7TBi+2/b+0j1V2VqU66R2EHbbBmG1nK6YVE6RAVpiVOiljK7biEgUzyxZLfWo0gvbIyg/p+MqyWHa/+pnfpJzsPTIH4r5oYPBtASRhbK1rDqkAaAt0EpEwCxBEYNQqAXdJJMwW67086x5pF3tO2vPWfg8b4Mp3qYfNxirrPvve7HOgcUzYzDiZPLYWRD6l/+22EY8skuy5ZQsRttAg42x/RI0tNGTHc+yKMKmvPScz9+uKk44F2xTFHoe2WYr921TAzwaQJdI+qWEYuoDJ7gtl3sn4FHZc2sR+vj3ns20fQm+rz9pPHcl3rlhByfdQSrNwRoH3Xjift//oSfSQCZO9bXQmE/vakwOs+wb76C26nD77PJYvKHLRcT0cfUg7X/r+FnTVrMVKg9obokcchjfPJBjOUx8s4LVXje1tXaH80LDG45qfX7+LfOTQ3upCQXPswna27K1y+RcfIxTwnRWMsoRGM0Ewq5XaX0pArG7oowZb8CSv1KkRSKdg2gLJDX9LvhRAT4qYKwDbSYF7Yppisd2T6gSonOKTL1vEa87r5/U/fZzd4zUT6dZXvOLp/cxsz1GrR1AjsY3WVdesPe0huJrtIzXm9uRx2sI4IiVE4y46cAjdkEhF1ANNXvtU6lEcpVKhHQPciUAVI5zuumGl4z1g17aAL167m6WFXj5900bKQZ0lcyo4TkQ+X6FQmCCKHOqVAqfPX0BP0E47JXRgxoyZfzGArscefSJlnj/uJ5orVdC0d7m849x5fPfmXQyXA3TFTaID67JrhL8aqbbI0sx2tnmcsKKDr966Da9Qprt7N3PnP0ln5x6KfoWCV2Us8Cm6IYe172Nx12bjS37CjU2zIujRtM+BIAqaRQ15yiSzjPxTmprcqJTqyl5USj0T+MWBFDDt0pDz3eVzOgw18uUbdvCc42fQ15FLGON/+/kWrnzWbONzc6pkM4Ji9yebmiJdvO3aKGBYNS54DQtfzGBnAJyqRcal3yipfa61ASXaYfE6EWB8cCchXzWdLR6Le4tced0dnP7VO3n3pfNSNrIdA95zCp1zDHjJYVgje6OShdh2AybgyLYbVUzaIHVJJQv6VS9fzE1rh9izL+DHL1vFnx8Z5gPf3zR1W0uygZok2fhswD1h5VNww337eGB9mZ++bSVBBPc+Op6+l2z+NYWTV7zmvNkU4jY4+6gu/u0XW5jdYkxeXnN2P09f1dHIzkmyAXcWGGTZbWknG8ja75cF5Jr4gKhK7xdQIF5PbKAYkkbCtNlOCXYABoTaobRF8Gqi4EnqlmXNobn5kQ3Cs3/bbTIVc2mDOrsdRHiQQ3MCcn3MmC1a97ZrA77a4ncVZlvRCLrBtKHN+tvCQQ1jHgCNYLYW/8sCdAEsNljMvrskezxnQazO5Gt2b/a7lJcF9jagtplOO0231tvauOnex47UmQWp4soyvq5yEYk/cJ3Jmy1b8sS2szbYTX7PMvv2MwsYNhIMEymBhnygQ6egOwuq7XfV1meYeZ7dnmHMFELyeeKyDp4YKENnSDXM0eZP4Oer4MPwg/0MTnQyUCuwauYuFs4pUMq7zGnxed4JvXzkR1v4+g07+NpPtvOJH25lZFeekYkO9u6czchAbwPI1HWX2vYS5Uc62fBYyMuPnkMOB0LobvW5/l2HcNDsFp7/2bX86f4hbnl4mM/+eiufuWYr9z4+RhRkwGqzZAudWZB+IJqSzJqXAHA7KQxQFwbc1XEwKJ0ysMkhTEjcD9q23paLQnFNmAJrnZQvoe0TTY8jz6ZRW6XgtNWd/PUTq7n6gT186rdbCT1z38r+Et/8zR72bTcMta6bEO9G+wMUYIwAL/b9Le+iChGqGHLaIZ285UdP8rO/7eboT9zJF27ewvGf/yvHffYuLvzyQ5QrYdpmlr95HcHX/7KDlx1yMN3OQt50wkqed9h8HE/j5WrGxaITcc3arTxzeQ86cgjrHlHgmMOa414yB5VjTJ/Ec0wi4MTjXFcV1MEJXF5z0lx+dMdudOigQ4WuOzQE83JJD6hDMj+OWdDGyQu6+N1ju8nPHCWo+AwP9zBUaSeIPLr9Coe07+KQvvW0du0j1z5ubNx3SlsqlKfw3IYV9ymZIv0/+/cPSl8D/qSUSjQKSqkXxNfPOZACprXx1lHU39fp8+0/7+SUVR0smBXvynV4ZNMEtz02wr+9bOH0T7AXYnuzszfdZPIqAwDK2kiD+2MMqsQHrZSxrRZG1466Jk7wI4XSOjUxKGAOSIr/4QoJSPn4Kxbw6OYyJy5bSr4QVyJh0TRKKbS94xcxC0WJRnbZ9oQhINCym733wXHuXDfKnIU+S+YVWTSnSL7gxvWFli4HVzk896iZfPvGfXzowoV85Y87+P4fd/Oi0/oa2yLLiGRZWDsCqNQltulGwTW37eETv9jGf718NU4F3vP8ebz120/S357j3RfP45B5JXO/+H22GPzLTumjteBy7mce5uB5LVx1xRLzw/5UrVlALmNE3sdmNbNlaRLVHx3atLMAQdtndN0qA1IXgZCOBRH+ZHxqYt/OupFRF3Ai9ZNyVOZTUrMNthm4zv5ts7IS/U3GzXRAvBLXs9Akn92G9kJv11PGhV0XG6zaQYcgtTmW8VDQ6XiXNrPHpX1vM1CbfWaWNbTvt1ntZuDa7kt7LmTbTto0s/kl488eh/9bKavpSDQXMcAWJlMOuWZY0IYkbaLjcoVEmMr0ITv+RCiSv2N3l6ozSomL6dogO6ay4Ft+b2YTb7WxDhUT9ZB6pNE56G0bYKJSQkcO0YDPln1z2DjezfziKF2rt6E9ZcKRj8DCUoH3XTAfXNBDLl+5YSfjQ/14TkDOq7J3vIfuYJvB/oFDMJFjdKibcr1IbWIDgwMebcNF/F5jW6Nymnc9ex6v/fp6rn1gkIc3T3DJ02bgOooP/XITj+8sc8FRM7jy7H7mzYhtsuzxdiDC2nRtmhzGxOxtlqZDuToJ4Z5ExbT7wNYiARKqPvX9DVlXhUpFoDFBd4QZt8xfFPa9sQAjANxm+63nFosuv3z3wXz4J5s55+MP88M3reDwJSVWdrTypb9s5c1nzUPpCNevmbEW33vQrBau++sQZyzrNuOwoNk5XOXLN+7g13/by7lHdPGFly9h1fwWlBMz0Xn49p92cdl/PMrPXrUKJZFo47a574kJjp/RT54OlFfD8+r4BcOsuIUaTugQ1T32Vaosm9mLUiFR4MWBghzQZqyZ2AexIKMVOnARkx4CZdrP1UZLpaFUdDh4Ziuf+9MmXn3CfIpFE6hIhfH7VkkPwMt+Gq+zq5YVuPGRnWzHpb/TodvbSW5flV2jfcwrDeI7AWHoEdU9/C5j665rDgwqsy63Qs5TrlLK01rvz1/YPyj9cx6Q1Fr/h1KqAvwxZrmfC7waOFVrvfFAypgWeFdr9c6f3zPASYs7WTU31lpoqNUjrvzWej77qiW4EomwWbIZv2QBpnFDa9j0YslxKjYRO59qAMP4MVCSyJIV3RgVLtTo3Y7xQ96KYc3bdaMf5vhzbn/eHE6ok7KUtbhesacWpUEXFTjK2Bd61uYo5Ym7ILs9BAx68Js7B3l8s2buFpcfjmznvp3DfPONyzj+oHZiAoYg0vTkc7z9tMXkZo5zcGsPp3/9Tp5z4gzDONvJBgvyk9Q7abv4cxyoKmrFkHd8ewM3PTLMDe84jJ4W047HL2jnK69Yypu/8yT/ceNOrnrJkkZW1UrKUVx83AzOObybSFtsnrKeZ6csYJVNWgBAMy2Hw2TglgcJA5wAZzFnkDzC8uetMsQcqIXUxESe4cRtJhE85VBgFOcX0xRpU9vkxE51UtttO9nAMWv6Y2/aNnPu0zh/7HIySU84hiW1XR82a0+pu3XeoUE7k31GFsjbhyyFZW9qEtbkexacZOuYHcP2/U6T+xIWldRswta2ZMdVszaxWeFmn1Mle0zKepcVFuz6yjMlX0O7WmM5wpjC2M/Pjv9mZTYD2HYb2VuwxjCD4s/e9ggEaZtk77HHarb97GSD7giyg1bF9sE69ghSyCl8T6GqMFpuJ4xcwsBjcMtsNk10saJ9F0tXPYTucwzRIuchtDL0VwnwNbWKy2i1g3m9m3BcU7Go6hGNOyaqYejSOWsXpfECrzhqGf963SMs6Mpz5YnzyPeNgYLdgzWWzSryxnPmpGY4oWJwOOBHrzuIa+/Zx4Uff4SvXbmUo5a0TU0SNRN2pCkORKhT2nhmscpTMdWX+FDPCthWEvvjhnFokxvyDI1lz21+U0onwrWA/SQoUHbNtDWqMTmRKzh85CULue6uQZ71bw/z0zcdxPyeAsWisdsedmp867Zd3L1+lCd2VaiHmhWziwQ1ze8fbuGoxW38/K+7+fofd/LmC+fw3kvWkHOdRsE/DkZ2+Rkzue7uQe7cNMIxC9oNaG+JUHW448kRLpp1LPl8GS9Xw/UDvFIVHI2uu8bnt1bM7IKByjiz2nNEoWuEPsAJjRlMVIM/3T/KcfO6yfsq1RjEkT+Vo7npiX1U6hGbd1Xj9ncIA8V//nUbV540z0QJrZoFSo2TRnCW9crFuFtsgVc/r48P/2AzHzx3IU7VI5erUvLLKKXpbB2kVisQBR7BSB5/UdnUZcScY3josTFKOdcBeoBd+xll/5f+zqS1/l4Mvu8FNgMnaB37gTyANC3wrtfClsuPn0VPIQ9RmGy27/rRRi46sYcjl7Y23tBsE4AM82HlnUq9ni1Pkr2JolNVZ3wYw7BHutG2F4hj5xrJWqKzRToFpfbGLYxhm2oMXy6McXIgUKEc0JE27gWF7W626WZZ3Fhl+5xTerj8qsf5t9OPJAz6CFsf5tIv38sfPnQI3S0+nlact6ab3z22l3MWFaGu6Gh1OHZxG/duHuP45e2NbYn1Kc8U7y+2h4rIvGNUhud9Zh3HHdzGq3r76VIFcGL7x0hzwwNDdBQ93n/p/EbwngUX8bW87zT+Lv3uWfdNVYbdRg6NftAlZZlvYauFuRYgqTEHWEva9KWw3rapTcRk8yAB5IpG4CZmKmK6Ib/L+9VIIwRKnYUdni41s08WV2ww/bzJbqR1zCGj7qixr6YDBFl7drk+HXOfsfdPxrOUNR2TPdVv2TpmAYn9rllBKVvPZgy55J8K0NsEQDPWP1uenVST37LjPJsOBNTbTLj9nCzAnYplzTLRcs0O4ARGgyUCg2z8cu/+2sImGaTtJCVkxjTEjDxGaXSocF1FZ9FjcHdAW3GE7UP99HkBXlgn50QsWf4ILNNmXXaUcWNYB6o6Wdd1V0ixqPGdOsqJGB/tAGBox0xyuQr1eo6W1lGCcg7Hr7FxYg8LZyrqusy4M0Yhr6Gq+MqNO3jn2fPTd42Fh6LnUPRdnnNkL0cuaeV5n1/Hl165hKOWtVkvRHNQnb02nSBp523wD54ZgF6T/NZ3RYYZF0Bt5dOOSq4lAFvmidKQT8F+0s9Sd1mrJeCWQ6o9xnx/1hHddHd4XPLZdZx6cAf1muatP36CPz06zMvOmMm7XzCfZbMKeK4JwrZ+e4Vr79/Lh3+7iQuP6uGGjxxKV4eXjl8Zo/Z8d+D9L5rPFf/+OFdfsZptu+Gv23Zz4xN7+fW9gzz3U7Nom2GEkGjIuMgVO23Rxizo81m7Z5hZbX14eQN2lBMZl4Wu5nPXbeNpC7v4zj1baM97XLq6H8+D4YmQr92ylUJecdKSTma1uBzU1caC7gJR3SWs+PzuiR3cuWUf3fkCeydqTEQ1Tj+sA4bE7EaZw5Y1TTCs+c97d0JN4yj41p07WDOjnZVuiZxXoxaYBb7YMoZfrOAWAuNRq8toIn588wAlXWBmS4sC+niKAm+t+af0aqKUepB0xW/BCDd/UsoATa31YfsrY1rg7TqO19OWS1RRRPDzO/ewaW+FT79m8dQMjwAcSDeGbPs2A9xZdSVN8thMkTCGzTYjUeEAiTu7YlwJAcoC2GQTSdT5cT5fpRM86/YuZt0VmLJGlPFS0EJzpjdbxwhWzm/hLefN5s033sInTr4If3wlHzhnH8/79Dp+9Y6Dacm5LJ1XYMtwxZw8z0U4OohdRDVpN0mV+JrN/ko+ab86fP7PWykUHDZur3LOsjbe9csnWDI/h/bhT/cMM1QL+OxLF9PT5jeaPzSoMjPvJnnEPGIqRkzKmQogTAUY7TFi91k2rLVtbiLASkCbDdYrpMy0lC3Mn0dq1ywmJhM0RoGUdpa2sN83u/HabZBtRztNB6Sy3xvK040gU643Y03leuYcRHKPlGGDMPnUVh7b5GMqTcf+WL2pUlbYsOthJ3le1swiq8KVtUnuyWpU9ldf+9lZ9jnLPNr1b5Zs0wt785G6hpBEHcT6nsxB3SiANTMJEYBi90dkPdteO7PalqjJdbkvYbAz75o1Jcnk09n74jZPgB6wY7hKZdClRSsGqm0cvGaQrX9Yw7K2nTgL6+jISRhgnXNQo5EBfbFtulNXhLk6i1aupbavBd+vUq/n+eZ991Mohhza18lcx+UPjw8QEHHEohJvuLiXqhfx9Ru28C/L5xBpzYxCzhAJYUzw5EyHV+sarTXKh0W9BT71/EU89zNr+dFbV3LM0raG90q+TyfAZNfS7P2T8sdCh93WyX3WdWsOqGbj01ov7KJUpJnkZUWEV535Dol7vUnvLOM0Nns7bkk7t310NT++bYDb1o5wxppOPv7qRXiualh/Vi9qZfWiVp59/Ix0vnqke7GjJwvQ8echC0q883lzed73H6RUcDnn6G4+dOICzjq+i7f9fD1fvmIJOV+h/IhwPIfW4PghUd0FrThididfvGUjJy/rwA1z6NDBLYSg4IFNExw2p5Vjlph/G/dW+OYdW4kieHJwnHc9cxHdrR5R3U3Ybx2aueJ4Iecc2sNvH97L7uEx+jtz7N5T596NYxy+sBVyGj3qMbqpm1zXIB/+9SaedWKJE4/ugDHYXK2wdX2dL9z7AJcsOZS86qNWK9CS38e1j+3gkaFhTj6kg0d3ThAEcERPO4f3zeAvWysOMBN4cJoR9Q9N/4ymJsC5/9MCpgXenoOjlDY2x6Hi3m2jfPrarfz+o4eY5hIg00zN2cBOZ5IsADKxbBBmbxBY+WDyAtaMibMBwqRna2Mq0hVnymEc2+dpDFIiDvSlHlOpBAXQu0CPThmgLPMlC0R28Y3g0lN6eXxnhXf88de8+4SLeNby2QyW6zznE+v4yasP5ow1XVz4sUd40eH9dGkH1RqyYaDColmFRpY4oDFCpqj/pH523gr88e4hrr57L9e/8xD8CY/7HqtzzhqHk09qZ/36Mt+9YTc3f/QwE37eZrWwvtsbujxPvtt90wxA2SB+qkV7Gian4R57PGWBYSI4ZeokAolts13FCE6R9bvtL1w0JL51j2xEdn1sIDsdAyy/Q+OYmWq8N0vSRrb/5awgZD9LysyYVzW07XSg3xZk7Hb/74LrZslmUiXZ42QqgWaq9rKBh7RtM3O2rMBvt1cWuNigO5vfvp6sjRmwBCTBi+TZkjcZ4xbQlu/22pedC+LyD+K1IH6eDa4T8K5ScC91SeanJRDYz7Tq1ACinRiwZUwi5Hdtv6c9tuV3J2VZD55d4o5HqxzR3cnyzq3o3Q4j9RbWLP5bsleouk4P1ucwwrCMmRbo7nZ5cnicJXMj3IEAlObSI3q5ceMuOmZVuXtLhSvP60VFTjKWayqikHfMwbhIUS6HVMKAQt5tIGdOXd7FH+4b5ozlPeBqHt42wQ9eexCf/uVWfvqWlZMPUGf7FzLtyeTxmtWQZtOUoegtUNogFGomCYUN4F6n47wZInBBDzuxr21t/GrbrvpCDGMrEX/teZbUAVyleOEJfbzwGdb5pGZaHfvdk71MN2IMm1Cy2ujC42dw4bEzGp5/sNfG5u1PcslXHuHqN65KhETHjf2eY/4OynkuPmwWP7lrgBcd009Z17nqTxtpKzls3lfmipP6UfkIXXNY0FXkVacUIVKGPQ8VygtxHE1U8U0AHy8y1+Oopmev6kkY9iNmd/Kr+wa45u6tdHcpXBTRxG6UUlx+yOH84u6HOHGpgjbN/NYC8/MFjj64xFd/8gSOu55izmHPeJVzj2/jgnnz+c19e6lOaF5z1myivT7BhEO74yqMS4inbPrf3Db+30pa603/0zKmBN5KKfewRTMcCho07ByqcsXXH+cn7zyI9oLXfPBPxcrZIEQmUlZFKZtWli1rZjsoaaqNuNmCJc+2IyRC6lbOTrbbQxsENNv87U85zJld5LIn/+1ya/Ce583jU7/YytWbfsuS3iO4ZMHBFPx1XPzlh7juvat4+TNm8e27t/Pms4zbxnldebYN1JjVkTPPKsdli9cB2weztYgPbKvz87/u4Z4NY9y7aYzr3noIuZpHbbjAbx7cxTvPnwm1iOvuG+TslT0GdEOyuDa0gb2RyO/ZQ3pM8XeWeZFP0TQ4uvGaHYCpWcoC9KwQPU6jCYedRw6kKVIPJ2PKmKl4Vj4Z37b96xQHiybV7UCuTzWWp0tZENasDJupyjKf2edOtdE3eyaZskTgtMGnXf7fk5oxxQ3Mq/WsA2kvWziyAbR9bzNhycl8n6pOzcaAfE/mjSEvGg5KNhFwxCxAiacEuR6m5gDmukrfp94IhBPbX/sMgYB/eW7y7NS7SAKgpfJRBjTb76NJBQcFOh5ncuhPTWK/MSDFBt7ioi7Oe/vjI9SCiFPmLOHhPTOY07KXYDjP6iX3GVYyxDDcMvdEe1XQ5pB1BOQ1ugZ1N4IOjddXgZ0wK/QJ1rkcPrudw2e3o0cV+JG0AOu2lTlqdrsJalTQvPSMmXz4l1v46PMWmrLjfts9UWXZzAI6cJiIauRch+OWdrBp4EkmxkNaSm7zsZLV/Nn73lTmQvZ9kpqBemlPaG6+Zpef1bQ1q6vK/FYHXXNBEx8gDNM1J1AmJkA+JrCq09QNJpssCpi211K7HbKEhCLd3w6EkFDg9kd85GULeeEn13Hb+hGOaZ9JUPFxxIe5AtwI1w+YU8rT35Hjmkd2smloglef2k9bi8sv/zZAa9FD63i+RArlRUaWrZugNRHgFANcv5p4bNGxz3jlKqLAQQeGEddacdaixQyMPcYrj51FVPOIApeglqNazbO4rZf162DpcWm7+aHD6y7sgZpieDxkpFZn/uwcOtKs21LmzafOh5omqrs4fkhba1UppZohnKdM0v+Epib/G2m6bbGzo9VX+PDY7jLnfvphPvvyxSydXUxz2Iu4vc42Y29sNVU2ZTdauacZ6M6yebLB2C6rbLW3nTcLgAPre3ZDknKamQzYeUPrH03eTzO5bCu/rjnoIYc3XDCbXz+ym93VfWwfnMOzl83ntGXdfOiHWzj74G6+f/su7tg8Aj48fUUnn/3V1vQZEtETUoCVrfKE5hkffpAQzZVn9nPrOw6nryUPGq75W5kLD+vFLwA1uOLsWVz94B42ba+kBchGl+1nrGtOJo+0cbYN5e8YNCQH9bQ2/xriFGeeNenFSNvY7vts/2c3E+Ln2tEtJZ/4VxV1pgTQkbrLP3sTk7xZAHegyR4fBwJ+Zbx5Ta7bwoy2rjfTJk31fX9J5nMzIK6tf/8dSqPZWiz9K8+dDghPNQZocp89x7X9XU3dJ9l8dWVAaKAax0cD6xcDZdlorHrI5mPb4upQJZu8jtlo+a61OUClq/FnqBrWRclPqBr/ZfoiARHWOxm3Z1a58pv9Ly7PuElz4uebOugg/ZR/CeiGDBObdvQH/2szr/3uej5xwTJGy52MBDlm9WxnfLALf1YZv7ts5qCct7DfpWLqG4156EGHgVoNP6dMRONRw9AWeupsHBrn+rvHqNd0GvKcuK4K6k5kQHwIPZ0+p6zs4P714zy+ucI1dwzy47/u5v5N43S0u0R+wNX37uGcQ3rQdcUzDu7kxrVD0895GzTbQFnGU02l89fWVMqnLUCqzDU72euwY+WXfrIJk8gqQ865lFXjPAnig4RehCqExmuIuBKUg7m2hjC7psg72aaH9ny2NbLNTBKhcS3Z35oi54NknYjr1tPmoyNw8gG59jKRX0V5IZE2LhbdYg3HDznj0A7WDYwytztPq5tDV1227q3T7eUJh/Kx9orEi4mTD3BbasbveNyuTjHEyQc4VhAiHbgElTz1SoHyWBuj4x3UKmbjjgKXsG4qmstVOGVxH9c/NAJDykSJ3eegR514bjl0lFzm9RoJZOtolRVzW3D8WEB3I5x8QKmgKJVKnftprf9L/4A0nalJZ1drTt149xBv/+kGvvX65Ry2sNSc+bSBjy2h2sleILITM8ugwuQFzH5u1qwkW5akrHQvv9vgaCpG3QYp9uRvYqvdkIYUdOrJC0UzwQRMVEEFudDhiy9bwqXfuIOPneows6ODd5w/h4u/8AjP/cJaWnyH135rPa8+o58rTp3FD+/cxRO7yiyZWWysn7yvgupExAd+sonLz5jJ5o01Vi8o8brTZ5sQ4nFIYV1z2T6xm2cv6iOacHBbq7QUXM45eAZ/uX+UBbObxEq32e1sX1qbwOd/s411W8t8+fVL09+b9fMElp303yEBZ9vVHnsCOhXGbaJdVxm7Yj4CaZh0W2B0MGw5pCYp2f6ezkQj+/uBvM+B5LE3Z3szj5i+PtMJL3ayWclsknFtC1i2/X+2PnZ5krJCkD0mptNw2WU3y9dsXTmQ++25KmAziisq7QxMirRqgdmE2bIFNttczX62Y90nvqybSss0bzsB1Y4mYZEtBlnKVWJ60CTpwHqezUSLdyZt/WY9Rych2lWiplduZN6/ISS5lTf7ColGKwYkWvOLewe474uHM/a3WWwLCrR7Neq1PB3zdhlGVVzEiVbKxdj9hho6NWoIyIUoX3P0/FZ+cfMgbz1zngmq42t0zeFlT+/jqj9uYc2yBfS3e8kY0WWHY2a28dUbd3Ls7HbzLmXoLPh899addBdyXHhcNzM7cvz4lgG+f+tuBvaGHDqvxMxOs3Cdu6aHz1y3lZNWdtBZ8qZmveUsiuy8iaAWCzq12EuWzJ+8btxbbU2DaE9qGYJCQpPb650k0e7Z5nKyr8nZKHTjepLXKKL0b8smvwEwZ81GbQLArksWL2TXCQHjdpI1J7tmJAHwSDWvVcy5K5vlj+D+J8ZYUCjy0PoKj+4cZ2V/iXodHt89wYqZJdAQqJAlswr4ruKCNT1EFQ/cgFwOPA/qEw5htYDWCseNcAv1ZJy7xXqiwdFxNE23pYaOFMFYnig0gaGiyMFxIsr1ArvGqmzYN84c15zOd5yIKHIo+A6jZZ9gyMNzAsLRPFHdNYc9W+ppu+Y0jgduDuOxDXCV+b3U4tDe3t7DUzSZ7vnnY7yVUl8HfgvcoLUe/e+UMR3wzm3dM+Z85nfDXPuBVcxqj5FRlvmx/26mwrIBug0Q7bLCKf7OPq/Z5m5fz6Zkck5RntSlgYWZ4v5mIMLOK/na9ORysptnlhWOF5Tjl7Vz9ZtWcdFnb+e21x+PUg6/essqwiqs3Vzmsm89ws//uoetu2oct6iDa+8a5F/OnTMlQPqXbzzJhoEyD/zHOB0Fn7eeNZf6uOI39+6lVFScsqKTJ7eGtLZFyelrt1IDR7NgvscvbtvLc07poVA0jTs4XCeqwYzuRr/8Wmv+/Vfb+Mu6YX71rlXJ+1113Xaq9YjZP87x3ufNTzceu70AOq22mIgbpkOlQOdAAKltRjCVcJQdC5AewrVVoOIJJoqvy332gUqbdbXH3v7A7lRjFRoFmmy95Xe5v9nGZJcfNcmzv9SMxbbbbCqwatdRvk8lEMhGb5dnA8xmQipMbpdmzDWkB70cmBRhIQvukzltge2p+s9mq628DbbOGrSyWEuY7C2i2TOk3bNmHc1At6PTfFnbaQHJcV4t7GbcXonv5zDO2+wZYZPrDc+JAbiw3RpU6KShye1oigLUtWoMOBKzp2DMYr564056Wj30ljxjE+3sqrRzcPcm2hfuMl56hBEVj1SiPI+AKvz2r4M8sbNCzjGN3l30uX/zGEGkcesu1DUTE5of3rODz796EY5WKXOe08Z0Qis621z+/Lcyrh9y1/YhDltS4sJjZ1CuRRw0twVXO7z2GXON9wlAT5jBrJTmuCVtHLGgldd+Yz0/eNNBaXvJWBXXtiKQ2eNdYYQWhUVAxIPCHv8yTsSUSFl5xYzJDpiVnf++1Teyftlril1nOwWmfslaKOuUYvI8zAJrG2BD47oh98s9dhmSR2zmm0X/tTWiYurmknqYst6rVo+YKGv+5WlLUI7mG7dv4eXHz0ZHiu/etY1jlrRRVB6LZuV5YneZXXsiPFy0F7J5dIKFXUXjkjJwcfP1JAiRU0h9bUYVD4fAaFBCJxn/ytU4XmTYb6VRNdPJTww/yprlmjluH1HkEEWmslo7lKsthKHD4NbZdEe7mNjXTqXaQlfvrpjVNgIleeO2sRZEaVu2mMbMFxWu67bxFE56Og3RUzf9J3AW8GalVA34PXC91vr+Ay1gOuDtzOjI8+t3LcJx1eSNliZ/Qzrps5Myy45LsqVS+S5/2yrgqZh0KRsms+HN1FR2XeR71hQiy/hlN+pmyV68siAou7DYdpLyqUCPuMybk+OIha3csmEfp7S0odoC3ILmkEVFvv/SVbzyu+sII82GgQpvOmb2lNWpliPu3TzKN1+6nDs2jHLIghYe3znB7x/YxwtOm0F5DL5xwx7mdxR54bF9OF6I44dJOPsTD+3gV3fu5eLPPMK171nFpl1VnvOptfiuw5yOPCvmFujr8okiuHP9KP911x5e/oxZSRvsjP3gXveuVRzz3vt47/PnG3ZZfJtnwZUmBeVZ/+eSR2zZS03KsNNUwFbaXvpfvJuEpDNBQK0wRiHpwVV5Zki6CWXHzf4YbptBtceJtq5nBdUs2G/mucROtgDbTNjIboQHUlY2RVP8nn3/bL79lTcV4519l2blTAooYljYSc9o9mzrtwY76ya/N+SzBXIb+ErkPKvOWhh0+7lyn5QxRUqCm4Sq4UCYzTAnbKgwoTJWMZ86cpJn2Gx0UkZif64mAeeGMZPcqA2o1qADB6VAN/FsomOgriQkutIQOlTqdb78p+38+J5dnHfIDD7yq06W9S/grPnr6D58a+qn2SGOz6BTDZWArhoUAo+wCpefPhNfmfDcO/fV+O7tO3jRiiX86MEt1Al4zZn9OIFjTMladaPpSk7z/JN6ufn+EWo64k3nzzFtqXTqklTr1ANLNe7rELSrcBRcfNQMbv/5yGSSKUsINHM64JAC47qK15dM39osedY8rplP7+xcbKZpsv+2r0mSIHDiKSsRFKz89v3C6MvZGfucjNRd6mK3kf1OU+33kwR4ndZfDtlWlYnPYb9XCHtG6wyVA75552aIHHaP1ZM59dyje7lp3Qh/eXyAj1ywiCWzCiyZVUBXze/b9taY01ZAR4pcezmdE5LE7KaqCSdyOAWzkck81SHxHHFRboSbq1Gr5Lh/cAuvWnMY9bqD44R4XkAYukSR4s7tJSrM5bGhBRzROsYTexYxozhEUM3hexGoMGlH31fUlW7Qdu8ZqfOvv9hMFHW185RNin9GxltrfTtwO/BBpVQP8EzgLUqpQzF+va/XWv90ujKmBd69HXntOGraDaH5nUy9gU/FBGdBiGx2WdtpeyGbaiNtBm6mqkszYUCSb/3e7H55lr352u7V5NNeROxFxWYHXFBd5qaL1szg2gd387S5M8nnR1FFDb5m1bICp67sYqQS8LU3LDWn8KdImwerLOkrcujCEsUWh31jAWcd2o1/JJTyLpHnseT4LogUrldH5UNUWwR1GAtDnvOxtTzv5F6Wzi5QqUWc9sEHefGJfXS2ejywZZwb1w1Rq0ccv7idnK84cnEr/375omRB7Wz1GC4H3PDokHE9K4trFlBmgV/iE1qnakRp22zQmmyyN4Zmv0myF3DphzKWqtW6R+osB1clvx2caaoxNB2jY/+tM9ebgW6ZC9ON62YpO1btTRMmt9XfU26zd242JLPv3uz3SSxwBjTvr25aNQZ6SQT4GOzaZWW9iWSSzVLbfzc8TkC3AOcsMBXzDNssIKtNsO5tMMuY4sBRYnOdBdzZfHXTCdk8kwBDXFZD/WwyIK6LjsG+RD/UoZMwfjaw1lisutwbv5eo5pUbJmG2f/vQIPdsHuXP7z+MgQcP43ebW7jnyd9w8hqXXdvrHLS8BQpOuj5OaIsk0QlY2z1RY2C8ThgpfIzg8dpnzuHezaN8Z+0THLe4g0Pnl4zXjVz8nuOk63VFJeYZJx/ebrWDbrR9tgVgXyeRRZXSTBDwiv98jM+8ZLF592brDTQys/baZwPRlgyItokp+94sqLYJKNsW3E72HpXdk21gLs+UMhPhI1P3rCZKrst72u+hSe2vbSJO1qRslOEsQZYVJCpAydojCpi2CzEgXDxUOdCSc5nTmeNVp88kmvBx22voMAAHijicdUg3T+6uEFV9HK9mlA11F+VowghU6BlTEk8bebPmNh48Ds0ccHKZIJHWXI0C15yriBz+9GjAwW2HMl5uw3fruG6A64Y4ToRSVe7e+leet+okqlGdkbFOKqFHFDnUKkXDmrsRbksEGnKeoibmSSFsH6xy8b+v5bKT+/jSzeH+whH+w5ImXWP/WVMcNOdH8T+UUkdi2PBp03TA23WUatz4s0yZPdmbgRnbtZLcY6csALGTDbib5WnGwEjKLmTNyrZBzlR1y5q82ADJvt6MwYTJC0cWVNnlyIJWh1PXdPCeqzfwxPAQy7w2/N6JxFPBh58/jw//cjNv+faTfOnFS9PAPbrxWYUWh0otAgeW9hfNwiC23eMOuu7ilWqJSjrxhFBTXPu3QZ5z3Azedck8COFHNwywZbBK6Gm6uz3OmdXNcwoz2DNS545HRzlkdomPXraQYs5NFvtCzmGiGvGqLz3O2y6ea+rlkgZXEFY724e2C0QJiiSLd1YDIe1q94WdbIZ9KtDmk0YvFRMTqas9NuznyNiIaAwO1IyptoWsqVK2bs3Uqvb4tIU5nfl7qjGf3YT/XmFaUgPDS+M72+1sM1gyPrPMV7a9krplQOhU/qHt+TWVAJBcz3TAAQgYEtilwf56EqNvgW7LxtqMGZ3+3gCsra/NwPC0lZoGcGfK0qHVdlMA7iREuD1ObXOW+F4dOEQ1D5RRmycvEbPeyo1i05MYaFvfm/WhcjR/eWyEi4/opUX5bJ/oJlfo4C3PbOXuTQNQirjmgUFWLW7hmUd14xU89AyFqmoTKj4EcoYZHg7qfOSFC4ytcxSBByofccTBJY5YUUKPO6hCBD7oLoUa06nWKpt80ui0WqEn4rXRi9+1qjJrjhncjzxRYbQacvvDo2weqDB/VoFjV7Q1EjGyhmkaYwk0M6Oyu6vZ4Ul7/iSNSiNAn8q9qzwnzPyW1TJHmWuBSpl1eR9Zm20hwtYoNpuX2WuiDahn8sk6m71H2t8HahmBUdbCzNrw54eGOXFFB6qgcdw6OKSHROuKclmBdnDzQVKeAObdQyGLF/qGIde6QbBNDhZjCbqxhkh5ESoXEo7lkrkTVPOMjHUyFj3EMbNmo7UiiDyU0ri5Gm6hzu0bhzh9eSt9rftYO7iAnWMzGA3y3LpnIUeGeRYUn0zXwKo5H1armjkxMRFy6efW8amXLCKMNNw8fKBUyv+l/4Wktb4HuGd/+aZTyjuusN1ZibjZ9+lKyuabKu9UQ2SqZ03FfNquw6TcLIOurb8Di5nKsuD2ffZv2Xo3AwD7+55l/OOyC12K77z8IF78w/vZtEtDLfUyoAKXahWevryj0dNIZgGe05tjw+4KYR2zIcmGWHHQgYPTEqvachFOW2gYnIrZVHQNShKOvgLX3T8IwHsumc+LT5/Jxcf3cNCcFgqOw4ue3sfbnj2XOZ35xjoEcOySNrburfHiU2c2sDYTeyJuvWeEs9/7ECe96QE+9K3N3P34aHpAp4pZhMcwzIWdpM2mM6/QVr5mY9PJXPcw3k5FUBSmpkbKHsmCbm8GTqZM+ZR+cZr8k5TdHOx7myXJ38Cq0iiQTAe6YWqwvb/5a4/vZvmaMVNZgbkZ6J8KNCudALopgWaEYc+yQpWD5ZPfEtyy/w40TTXO7PfIgm65puI62KYf/xPQDSnTnEkJYy5tl/zQpPws6PZ14xiVeqvG8iJRnWsIK37KfCvMv5gRJ2b1kn/aWn9i9rxc1tz8+BDPPq2L2q4SD4900Zev0tua4/zjujh/TQ9vedYc7n1kjE/9eAuViQBVteop9tJa09+V49bHRxKPL+S08a5RVugxJ22HHKhKzGJ3xvcHpAcYxaxM5q4dSCYAPW4mp64pdE0ZFj4XEZVdDi3N4j9fsZzuXpcNAxVeeNU6/nj/EP/xm53s3FtL9x1xayqA1V4r5FnZv6daP5ole49qxhJLsvs6W3ZWyJdrYs5g19Ge7/Y9AqRrTN77NKkGQfLLdZuNr1nf7XVd7pO2G8s8o4lQ9dObBjjniC4ITJ/psoOupHt+oagJoojRcoium4iWyjMh4XeN1JjdHTMskcLWUkUVH113IVI4LXWUuKj043DyoUrma1jLMTbRTj3y2VUZoV6fTbleIIocfL+K11LDyYWM1GvM7vIYq5aoRi47Ku3srBaZU5ig4FaplltSb0I1hRspgjiw06v+cz1XPHMWJ63qIIzAcZynNPButjT/Pf/+WdO0AXSiSE/P0ApAgeZqrWZSamj93azl9mdGkC27GfNtLyK2/bZdRhb0iiTfrO7/Wylbj0lMH1AAPeRw6MIWPvycBXzkj4/xjTlL8dqr8YTXLOjO8/nrttPd6nH6UV3pIm61seMrzljdyc//OsBzT+4112N/tE4hAF+biKRggLmjIK/ZVwv4zi27eMWp/Uabm9M8tHWCL122lBd/7lEOm1fiv27fQ6UWsX53hXdfNI/jV7VPDhzhw8cvW8hP7xhg464Kh8wpQVnxzh9v4Nf37+Wkozp5/8sWsNIpcf0dE7z+K0/wxdcs4cj5remCax9CkiRAWDaW7HiRzdTeDLKgsVnbD9FoZuKad6BCCvLsTSf7zKjJ9ekON2Y3yKkEhGaAtxmLlE1ZwdMG31kBAqZn5JvVCyarwrNAeqoypQ+lPlMK3H8nLS+spA3YXU1D8Jmp2LMp1hcVR/eb5M9akpup4ySmneYsMhwQ6FZulNp3N/xAw9xo8CYSZjpMGGkL6JtDjubdsqY02vK6IvkkbHbiVs6tEdXcBJzo0IntvI2piXFV6KbmOk5k2HKl0ZHifVdv5FmHduO0K/YM9KOU5uR59+PPKJv2Lju4Y9Dt+Lzg/D4+/6MtvPmSueSUQ2KCpoBROG91D1/50w5OWNpu1jiITcG0ifIrBwMh1W7V4neMI16a6yp1jxcBPqiCAWmqaN7buHA0DLrytfk7cPDbKxxRbOfIJa3gws2PjPDW72zgspP6eNFVj+I5ilc8cxbnH9+N78X9Y48RmxkXM7ashvRAkz0GBZza66SMHXv+isZPWXnlml2OTUTJWiLl+NZvnnVtujra9cpZv2UsNqZcCyE985Pd2+OhMFEPeXR7mWPndBjyyjdjWlfdRHhSOuK4xe08tqPK4fPacHIhKh/yh/uHmDXDwcmFRjscmEPFKOMvWwcuXi4wh4UjMxbkkLGuOxAZ/91eqUpY9/FdQ+tXJ3rZOTbKX7dsIOeFFPIT5ForaDQ79tUZa2/jkN48RTegHHr05Su0+xVqUdygKj1voFCMVyN+dMsA7SWXy0+bCUAUarTWUyGqp0T6Zzc1+e+m6YD3RLkWj+Rmk18mr83E2et3FtjaG7wNmLIM3lTDpBnr3azPpgL00Dgxk+/q71/Ypip/f14kpqubxdLLRnj2od188tdbeXB9njWr4smt4FVPn83TV3Ry8RcfZu2yo4zHhPaoEUTU4W3PmcuzPvQwxZLD+Uf2mAXH7guLLdehiTx27r89zDsvmst5a3pAwcObJjh0XgsvWryKPXseZufOKl9+4XLe8OP1/O4Nh3HEmhZTZp1UEIvboTvnM/SDp5k/NOBqLnt6L9c+sJfaaEh7j0/HTJfndbdS9+Zy80NDHDm31Rwu0kBOc9tjI2wfqdHfleNpS9pQqMbDl/ZGAWYDtVmkZh5y7EVfNjnxbiK23j6pzbcwYXYZkB4eEoY1m5r1dfZswlRjZioTK7v+zZJtQ7o/UN1MgICpx+hUyRYkbcHoQMqxNQoHmpQ2URKTw1tZUNrkbxcDwO06Z/M2HEyL8waZ/JMAtfXnFGUZkw9i4V6lVhoxYE3qYQkMCZBWFjOdBd/N3PVpq9xmZSqdzMVmoLshiamM/JkLDKMXHwJ03MCADUARoSJj0514MHFDiByi0EVpRVT3iQIPjyr3bhnlFx9cQdjjM1Yv0eqFBIFv2GcNhPDXx0ZYPaeVzlaPl57Xz39ct5PXnD87bpYYfMdjR004yYFW6SNdMW2rWmMwXcGANAcDuIeVGXcFTGTGmovTW48ZWWXcwo6DCjXi7k/5GuWHhl2vKnTFxcmHBqCHRrDR44orjp7PMctamN3v8aZz5vDkngpf+90OPvKzLbzvknlc/LQZ6dgpG9JD+rsBrGa1Q1MJwdn9N5tsdlnma02l7iOzpFSWdZfy5VqgINLpOtlMSJhqv5Oy7HezCTQxYxHbenmuTfZln5U1EbTyF3wHz1Psqtbo7/FNX9ZcgokcTi0y47oQ0uK7DI4HiYeePz80Qj3SXLx6JjrSRrCUOQQ4foiWOekZl5Wm/RTKi4WyWCsUlnO4fp166PPQbo9H9gTUgo3kPZ8XrV5CT9+OxE3gxO5ObnyszHfv/xunLDmWJR1DVIIcQ/UW2v1xXDdIzFyUZ+rT1erxsWu28PsPHpo2SaQJwzArwjxl0oFuEU/VpJS6BHOQclQp9V7gCOAjWuu/7e/e6bbw8fGK1WcyORqePM3f2d/qwGiTJ9oqselqlN2YpwLd9nWb7Z5qUcqqZpulrFQmqlNLhdpQh6n+lo3aBo3N3qNNQ9H453zXufP43O33M767C1wdg2fFQX0lVva3cNujI+aeGo2HU3zom5Hjh287iB/etjtVKUuyFzsHVDECH+qB5rzDehIg+tiOMsu7WymXS7z16Ut4/qldvOgba/n65cs47bh2Otu8xkWzbL2fHTNLASVYtazEvZ84ghc9rY9XfexRfn7LHn62bg+FnoiHNpTNgl7QbB4vc8ln1/L5G7ezYW+Fb/xlFyd/4AGuu2sQHei0P7NdZ4d0l3fUmXzCyoiQICf2BWjb90vd803KUaSqVDvgj3y3Vb1ZzzlYz8yapti20c3mRlb9bI8xuVfGwlSgu5lqWcZjttz9zU1J9r0ivDiZa81McMj81qyu2d+UNuO52dx1p7hP5rpr/WvWlsKSQiJUqZhhUvE9yWd8TSndKIRZ3yVvg+mJDBXXMMbK0YY99s2/JK+jDThKTD+sf272XdLvKg7cIWU3lGc9f7/JGhvKjwzTK20R10v5ETQxgRFTk0kHLkOH1oLL+vUVtq4dZVbHTobrHvl8xcxfD9YPTfDA3lFOPKkNFcLMnEfrhMvgnhoMR2x7soIe00TidcTT6LqCDm1M80adpK56xEnnQ830iS4omEHC6qoZEU5XPUUDHmZdqCl02SEad02AHjH5K0aolginFBjThZoB5bquIFBccEwn/TPihaSqWNxV5BMvXMTN7zuMj/9qC5v2VlJioBQDWDlYbo/jLLGQTSK4BtbftuBtm2jY61EOw+7bZplx25Aj9Q0ugnyAMUWUeV2K213WQLFXt5/dDFU1I/DkXe33lDLsvQWYBNjtMmwNopXfQfHmC+fwqWu3QBwcCmXCxd+8dpyHN9ZAw33bRzikvxUduIQh3LdljLNW9KZV9aIG4Vc5JniOKsQVj227o5pLVHYNQx46hBWfoJInqOapBnke2Pk4b3/aGl685mBCnWIsHThU95XQWnFU/2yee8ih3LD+PtYO3UPODejwyxS8qhFQRYAO4KYHh/n89dv4+IsX0d+VS947jCCKItty/v/S/256Xwy6TwTOBL4DfOVAbpyO8R4fq4R6EnCEqcGkXLcHf0gj0yDXsmrwZupfWXT2x8TJ/RkGqqkt9v6SbJCJbZs16233YfY7yz2y0Wc3Nfv9bGZwujq4gNaceUwHX7xxG7duGOYZHXm8jmq8ecLHLlrMlT94jNFqyG/esoqZvX7atnF7L+zPs3lPNa2DR+PG62HYn6oi8iN0QscBGr55404+dNJhtHbs4+6BXejQ46BZLYzoIFVNQiPIksUxgtFqwJ6RgDDSzO/Kk8s5eEXFaUd3cv2D+3jBR9YCcPj8VlxlWMzRKODiT63lk5cv4rQVnQb0hrB5sMKHf7GF9/7XRpbOLHDhsTO45NgZ+Dmr07NtK+yKMCGaZJO4+s69XH33Xv7txQvpL+bSTQeMbbks+mJGYx8C8jCMWYuO7RXjdqvF38VsRcavBOKRg6X2mLDHL5nf7I3J/pS6aeu6zTqJeUyWgQpITJomPatsXR9XxuValsWeai5OBcqzc1JSM/OfZvmzfZk1UWlWttTTbp+pNnz5zW43uV/6VNjyeI8UlriBLfZI2cOsCY+L8f4l2NM2hckKcpJs++L4WeILvEE9O1U7uvspf4r+anCRmDDXUcKQT0oC7rJlQMPaKT6KHccE22nNebz064/RXfL5t1OfSX+hgt9SRtc092wZ45a1I7zh0jngxvUZhUtP7OHbN+ymHkb0deUY/lvAvqGQC57eRa4dVGcEFdD1GARPOCg7+I6LmZ85UALsWoB98VgvkrgX1ROOAeyA01tHVRW6GhmGuxSYNamOObBeCo1Ji6thwpilaHEnKVFFtenDtlaXBd1Fnv/JRxmvhvR1+px7VDfnH9vDolkFokATafBUqhmhTqMZnN1/MSOsK44hZcTdoRAQIvTbWjx77tq/2Uy7gHJZ80JlBF2blJC+F62hrIs2+G8mNOgm36Ve+Uze7AHY7MF6ew2wx3QGTzz7uBl89bod3P3EGEctaqVcVnzvgScYn4COYZ9btwQUPJfOoolu+buHBjlndbcxLwoc0A7KD1MNkI4XF61M22jT11HVMw4M6q4B99oAdDdXY2K0nXKQZ/uY5rYtT7J2YA+rZ/YAMDrYTS5XxXEiKpUWqmGOvOvzqiNXsKP8MN+4516eu2oZ9VwO368ZITdSXPPAAO/52UZ+/6+H0t+da8AZI+WASqWyp0kPPDWS/qc3NZHReA7wFa311UqpDx7IjfsH3tBgPpCkZhtqdiMUlZBtGhBmvkPjJMkuDNMle3NrZkuWtfG1wUkz9VizzVjUtbJZuqQbSta+U97Jfged+T7V5pVtt3jRU3XF51+1hEs/fTuLe05jWWstUWuumF/gj+85jOvvH+StP3qS7736IAOixTTCg5zv0Fp0efoHHiDnKs45vJvzj+nh6tv3cvpRnRw6v5S8y4ZNFRb2FZIABGGo2TJQZXlXFzdue4JX/fBRXnhEP1995VIu+swj3PKvqym0Og31fnjTONfeOUigNf9y5mxO/vADLOsvMlGO2DFaY+XsIl975TL8guKa2/dy5Xn9/Pu7VuBtDnjtf6zn0q8+QrHg8PoLZnNKdy849cRmcN7iFr7x+uVEkeab1+/glsdH+PQ1W3nhCX1cfupMejr85gKNqCft9s3BvrGA7920m+/dtJsfvnkFl5zQ22iv6JrnJmBVWdc0RhVtC5v2IaFx0kAOFYztaUGbsuLNv6k5ib2JZIU0m+mRa1lgKuAaUh+82efI4Scb6Nfjzdszmg+KejLb1AAMab6pTiVEN8uXrXdW2LCTJvZvbAmGNrNtz7FsnWVOZoUdO4/dRk0FIG3MW+z1wga52Xlt+9N244rFttOKVPBtALqSHCbbXVuh5hV6srAmqcn6kn2GcpuU3ZSd1CnQsFnFvyOJvXcYeglTriOHb73gEN5+7Vp273XZVilx/IyN3LFrN/f+bZTDF5X4l5PmwnYFc7QxKdFQVB5XntXfIFhuHqvwk9sGOH5FO9QwHkxyGgoaVYiF4m7MHARziNpVsY14/FJ5DWXQoy6qJSIczJmw2yVzFgZtwDyhQuVD015DKbBWdZUc0FSl0PRRhIkOau9xoSIacXnNiXPpn+WyYlaRnWM1fnPvIP/ylSfYNVxHOVCuh1x09Aze/Zx55PNOCoDtbpO9Nf6uClHaT/YeFwETsSbA7js5RGoLibZgnlkzdV2h2q0K2HNFhBpZ/5zMb/I8eYYw6Pbvtg35VCm73tjCsr0eKes3R4pXfPU1y7jss4/yuzccxpa9FeZ2FDj7hB7CqocOjUcTHSrcQsC20QrnzO2Emkblw4TJDis+jh/HvFCGpYZYONXGA47ywjgydCy4eiFRJYfjROyttjJWHWCkupBzlx/Mk/t2AFAL8kSRi1Kacr1IqF1C7bBtfAYr2pfx/EOLfO3+jTxzQcTZ3U5y7uPLN+7gN+9blYJuWdtds7+Njo7unKZF/+Hpn9nUBNimlPoacDrwCaVUnql3vIY0HfCuVWqhaRd7YmYB91QqpRqNoVtlMbAPjjTbpLMbmw08mrFW2bqAmdTTHU6xN/j92WU3S83U2zbDJhNAkg2Y3Mw9Uo9skntaYHGpwKdeuohXfv9mft1zHK39ZcNuxPev7G9hIgwNWMqTCiFxGb//6KGMTgTUKporrnqcPzw4xLlHd/PGbz7B0HjIBy+Zz/Er23nj957k6GWtSRVcV/HsE2Zw9o9u5C3PnEtfe47RcsS8zgJhpJmohxRwGvrxiV0VvvT7HSgHutt88p7Dhp0VSgWXKNRcf98+vvPnXbzm7Nnc9Zk1nPiuB3jkvhG+9cud/NsLFnLHE6PccO8+Lm5dxa4NnZR2jrJnpJeO4gjdy7dCPziOYmV/C8cd2sEnX7yI7/xpFxd8+hG6Sx7PPbaXC47vobXUpGOlvVuAClx+0kwuPWEGz/n0Wl7w749SCSIue/rMdOzEqrzEnCRPancozL70q/Sj3fYiaCnMxixaAWj0cpAdA7LxZYXJBjaWyfNEgFg5Zqeaqa2lfKmD1FHqY99TZTLTZqcsU7y/1EyIyKYGxt6ohVXObGq6rgyzKAymXVZW62ULFjZwydZ1f/WRJFEgk/s0k2xxG7QTurGd5Z5EWIg3ZclkAym72NjVZ2KuYicrumESGdO+N76m7OdKymrhmiUFolpv+nyItT0Czk09HR0S1VVDkzpOSBSlfozv2TrC9Y/s5ernnsOeyjiF1i3c+9gorzt9DtGED5UIiiGM6gTQ6VChqqRCYQF+8KsBliwosHJOS6OZgw0IRQCVeVsXoVIbzU7cPqoUEo14uJ01olHPhP324vxieqHitshp9IhrxmUMuAygtNUscdv4pl10zRy+O+WQdpOlqphVKPCKE/u54oTZhEN53LYqkRPxhT9s5+T3PcCXr1zKkYtaU4AsADbrqq/ZPibjvU03BgGTvhdSrJkQXY2FiRi8qqL1MJln9hondagwORaCXR/7+SKcZvarScJxpkkbkp1X2kjqJSA0LmP5rCJvv2gul31jLZ+9eDkbhiZQhU6c0AEvIvWmBJVqPO48bQSmmulrt1CP7atjkkJ8/sd+7pUbkZpdOUaTHLhEocvYRBuBdljc1cnJiw5jy761tPg5osjBcwMi7YCGnFej6JcJtYvnhFSCPG35kPccP5PvP/Awz6jOJRdOcMujw6BgQW+hEXTHbTJUhiAIBqdouadE0k3Bzz9NuhTjs/vTWushpVQ/8LYDuXFK4K211isXzogaQG/EZB/DMvDFTlYOo7kwyVYWGoGG7eGkGcuUZbIkZQG3DLa8+dRjDqoUTa2msv01SxJQI1J3w+Y8DdCW73Z97ew6c4+dmmkN7PpYn6ce1snfjhvjIzet421HPY3u+TtN0Btf8+RAhcV9hfQds0y/graCBwX45XsPTh5x5bP6GRyqc+J776e16PLo9jKXPaOvoRofetECBobrDNTrHDy7hZ2VMp+/cSuvOHMWH/rpZq561ZKGtjrv2G48pdi8t8rLT5/Jq8/sTxZcrTXX/m2QLUPGbUlb0ePs1V1c9P6Hee6xvTzjQw/yyZcv4v1HHodSmlqQY9vAEobrBTqq7VQfztO9cxf53jFaPJdKNaI00+c1z53Lay+cw6MDZX765wFO+cADfPPKZaxe3NpcqJFxrMCpKU5Y2c5YJeRln3+cVfNKHGEJHzaD0LR/bFtxW/Vq2zvKnBgn3ZSkDrZdvg2kpxIaJWWFYFl46xhgIky9qNcFyKu4DlVSVj8+YKbq0WTh0GbusykruNrtZFsW2mtBJX63Yvx3s3kt7+9pwxxWHFRLZBi3AANusmYd9gHXOummbs9T++CVvHeWIc+mBs2DnsycH8i+0cwtYvZvOcyZ1XxpkjDvKsrc46XCgIosQStjEtMMlNvvptzUjMV+t4QJT1hJm/G06qtNUBG8lKfRoQElqZcTJynzoR2jvOm6tZx/WC9tfgeKUX7x8FZe+vR+42lCAFCWlHHiOlSAbgj3abpaXW66f4hLj+41bZSLb8pjzMVcDJvdpaBFobbH+0ILMEJqUlEB6qn3GJU3G4SuirbTsJuKyNRBG5ZZ5cIUBFcUUdnFKYbGl7ij0VInF5QDbq6eesgJMcJloOLQ9abuqurxhtPncs6hPTz/S4/wtdcs40hZy6SPa6Rzqhxr0+zxLSSXva4IaBdyRvI4NM47F2PDLYBX1oysgJYNWJW3yskCfG3dr4ntyLXRYhUs4dNOUsb+hOJm98r8FpwR1+XZx83gsa0TvO3q9fzXaw6GUOGU4kiTcZyLX9yzh0PnlIgmfGNeAkgwKOWYFzAMN+jAPEg5OvEapIiIYu8nytVEVZeg7pPzasxr2csjraMEwS4e3zvACw47BKXqBKGH5wYoNJ4TUA999pY72Vcr0ZUbx0FT8idY3N3CNY89wYtmt/OFP2/l0y9dFLvEjNspiewKQxNojL+up2TSKKJ/YlMTrfUE8AulVJ9San58ed2B3DutO8Ewii3/bWBpJxsc2oBcBryAjOykC6z8IsXbtmFTqYSbASCse2J2UhViADGmUj+tNuORVWsJMyA2avZzs+OiGRCyhYjsAjDd/SKVT8e6y+ITwBvPn8O/fOMJXnndjXzh4pXM7jdsysBoQG+b39iW8qxm7SjPjqC73edPHzmM3nY/PhNobajx4rWwL8/4WMhYJeJTL1nIi7/8KEcuaOOrN+zgWcd0c+bhXck9CsWzju1ubId44VOR4twje1KAGsFHXryQN5w7h/62HK87q59/+fYTvGPPBpbMLvDG587j+MWtpl+GFPU9RUb2zmDzjsX4xXsYbx9DlSOjOnZg2aIS717RxiXP6OOy9z3C5y5bwgmr2ye3J2kbhaHmO3/cRUvBdMJ9G8dS4G3bPlZIQeg46fiVjU0AnswF6VNRqYLZ7AUQC0jOx2WHGDU48d8+MKLMBghm/MpzJVx9nRRc2/WwN1iFYevyOrFfTTZeEUBlY2sjHcviTcBm6e32g8mg1c98l3XAXj9swFslsZVN6i9u3YTVLmgTuVXGclMvJpm6+KSgW+oscy37HjZAmA6ER1g/6snzOFuuPaezJmmJ0KYa69ikThLEBzBu/piGfQ4mg+z9/Q3mWYapk2dn2PhmSezcXQzg8HQcxdo61FmNCCp5iO27o8ghihy+csdGPnbJQh7ZNc5n//oI5yxfwXhQM1qxigEsTjEw7ToeM8rFyJApIYw5IT/6wx7GhwIWzsrT0+dDm4LxuL4yX2WvEZV/JX7HNoXeqlA9kRmDNRUDbFDtoWn3kjYxDyqOAc6+Efp0GINvSRVFEro8r1GB8eut/CgNtBIDdV2P295iYXUQM6d1lUYGrZuw98tmF/jZG1bynKvW8h+vWcYRSy0iQUglj3SNsOeZLXAm55VI2WqbDZYUka4VvpV3qpQV+uN3mkRA2PERbLLNJxUYsvXYn0DcLNmEU7bu1j74jkvm8Yz3PchtW/Zx0/1jXLCyjxvXD7J8RomyrjOrK89RPf1Uhz38UtkEjFIax49MIBxIQLaZm645DhIpoyESl4NaEYUOyolwnIh8vkyH0pSdMrdueYQXrT4Y1zGgP4hMuUppfLfOaLWV0XqBnBPiqohQO4Ta5ZlLZ/D4UMirf/II40HIqvmxBwMxL5U+AAYndATs+ztb8f/SASal1PnAZ4DZwG5gPgZ4r9rfvVPxaaZgx6lV4ohICSiGxokmm4T8AzPRZOJmN2oyeWGySt1WGdppKoDqWL/Zvkhz2ixKssEVaGTBbdVMFP8mdbTf165v3fq01ffuFPkhVX1hPSvbNpLswAIZJsINFV965VKuOG8G533jHm6/10XXFHlHUYti4UJYB7utsww4jc+Y2ZXDcZUB3Xbfxu3zwMZxTl7ayb5yncXzC5y7pps/rx3iTc+cw58fGm4UZpoxsdl3tb57StHfmQMXZrcX+NmVh3Dne4/gHWfP43Pf38JZ73mImzaMEC118FaX6T5tC8uPuJ+czrN3bRuDf5lL/aECI7f0EdxWxLk3YsWMAr/82CG8/jvr0ZFO7TulPTRc+K8P85cHhrniS49zybG9KOAHb1zOZSf3gYYXfXodW3dV0yAQOQxLG2EAKjSon80GzuSNTWwmZSMRdtYGg+LOUMZWgDnomLNYP3u+BaQgOsIwe2UaN1jpjwBoT1XG5Ennp9Q9OUBFClgKTPZrbvex3CvPk3rZ7exan3UaWXaJDiiCiggSVZW2WVaTEJAK7fJPDqrKM+2xaK8X9vgToG5fE0E8C6Ilj6/TwClaNc53iV6X1QDI37KWZBlcV6fsbvwOOlTommMCfNRM8Bnl6wZvIjpUjXVzdXzwLWW4E+G7rmjwQR6ZZzSs2dJmWdLD9vhkg3V7bXNIbcZjFbv4+nbzAa5fR2J4GPbboR5o3MjldWfP5jmHnsCtWx7kZUcuJIwZRuVGRGUPXXMNmG2PEjOvm3aO8M07dvP8U3t541lzuOCsmVxyfK+x2W5TifCmR5yUIc5rVE3DMLEAG5cpe0GEOYRZNMw0LZhxGMbvFiioGWCsciG66hDt8wmHfdNfFccwt3WFao09v3g6Yd91TRGNeMY80MMEaKm5Buh7BtSr9jDxjmGeY64v6i3w4ytX8o5vbeDcDz/Ma7+0nr88PEzTJESBm/lnu0ZtIV0nsvnl4L29d0yX7H0u6+LVFgxs1huMzTk0EhSSbHY8O0clZfdtey7I2qib/JNqa8XnX7GEN3x3AzPaPH734CgvPWoeY2VNe97jaYs6cdwIr1BFhw5R4MS22xFaQ1RzE9tugLDqEdU8dOQQVn3Cqk8UuIR1j7CWI6jmiSLHeCMB2ooOrzxmLgqHeugn5zdCbRpDKcN6d/hl2rwy1dDcp7WipW2Ew5Yo7tw4ws9etzIlymTttdbovWPhUx54N+umv+ffPzj9K3Ac8JjWehHG1vvWA7lxWsa7JZ8bGhioz5jXWTCnvu1kS9MOZiPVNHovkQ1zlNS1nKhFRPUtZdSZbBqS3Qj2l2xAYNchN0UX2fnFA8RUE10AQs2wzORolPJtMGWXb7NY0zHbAu6y7GK2TOBZR3SzbE6R533iDj7fvozd5Rqj1ZDx8ZCWooNCpeCiGei2310EpywwsBbRvO/wies34zjgOIp3XzKfvSMBV9+7l4+/eGFjuTaQk+dkF1CbjRHVWA5O+sh9XHHqLF5y7CyOmNPGT15/MA/vGuNN//kkI+Mh553YA3WNnqfoLJbBH6Z7tcPgfXPZPjILZ1CzcOYGnMGAuYeMcPS8dl706Ue58pn9nLCinU/8eitfu2EHC2cVuOXhER7YPMFxC9u44eEhLn7aDC49pS8Bzz+9bQ+3rhth3VePIq+cdCxrzFgtkarDZdwKQwwGDItrQpkfMkYEbNsblaSQNCCEMHbSZnJeQoL6yGYq5iT2+BI2WQ6COhgvLL067V/pF2HJBZgLCLUFMEkixNig3FZXQ2pPbZtlyDtjfcpzRNslgof4m9cxgzSVcKtIhR1beLeFFZs9y86BxN46/hTBW/KJqYVvWDnVGjXOqYSF141zdDqCIFtHO3kx85wDXbbYUgHUoTKgThjUigN1wzqLJkCi8uFjTBjAmDMkWiaVsLc4cZnZBcYhNeXRQNbExX7HUBuGPBGUYqIjBu3KjXC8AA8I44A6L16zlK/esJaTl3ewrHsHfYceQ0tuE4M7ZtLeMYibq5uAYY5hnZUygFgrzQMPj/KG0+cYQbNk6qY7XbQDznBo1mcVg2jR7sg6WsDcJ/vDePwpQXRkHI6phr7SgYMqhGnglYpjDtBJMBYMuFY5A9JVIWaw8xEqH3tXyYXoqsnvFMPUQ02YaiDCkXzc51Ha5zWHpd0t/P4tq9k4WGHHUJUrv/Y4f/3Ualrybjp/7STXDhSZSH6XRrMyaSdZy7LJ1jBln2VrvLNseElPHv/yDvb8i6xrtpBv/5a9P8u223uNlefQhSU8F6pEvOW8PnQAF6+eiZMLiOouyguNK8CabwReR6NcY4okVdChOa8QhS46cnDctF+VExFJ1FYgilwcJyIMPdzQoxZGVII8Rd8sqJ4TJOHj61WfULt0FYeZqBWpRj5BfPBSRw7XPbGDs1Z309LhpvtRSCPh6cDgaP0pD7ybLS3/RKmutd6rlHKUUo7W+k9KqU8cyI3TAu+c7+/ePVZfOq8nD2PKLCDtoZmcY8T+U+PMLZmb7Q2vnUbAIIMkqyKWSZcFJVlAbC80NhCwmWKZ7HKY0zZv0ZjFRJ6j99cSpJKkqPWy9bElzjDze5YJs+8TQCDgzQY9WebYKmNZf5Fvv3Y5n/zNVupRxF/XjnLHo6MMjtY5eWUHb7xgDkvnFdMb7IXNrr/UISswWAzt11+7jPs3jbNqZksCfj71ykW8d2w+Xa1eKrjUMaywvegL4BLzCse6Ls92YdvOKk/srvCHB/bxktNnJuBt1eIS337Nci66ai1nn9aLhwE/LSWP8bqGTkX3qq3kHq+yb7SHei2Prhao3lniy5d4/Ple+NrV63nn2EY+8Pz59N2VY25PnmvefzB3rxvjp7cO8LO3r+QgUdnlTF0/f8US3vuDjbzlm0/y+VcswUGlIFpClRdIfd8mwCb+3kKj0CQAwAbIHukBxgR00sjW2uNG+iR7qE/asUo6D4VllUh9OQzolrlkzxEbuGYPbQmTLeNP+lqeZdvAS55kZyIdx7abMNvm3E5iIpKY5+hGwRAa1daQzptmh5mlP4TxzenGcWePx2ZJbLpt0N4MwMv1Zsle37IAIDIAW3k6AfdJ3d1G0I0C1RI1lCUAL+kjz/xoQGecUTyTSDu4pg20ilnclsi8Z2xnnAgS9ntJvaTN7LUonusq0mgR+N34yFRscuL6gWVv7nDfzkF81UJlTxtKRXhOyPC+Geyd6CLSDr1ztxoBQlzxtZnnXn3vIGcf1GPaTMwJ64ZFVlIvT6dmThHp+i/rUA2zf+2ND+t2Rql5k9bJ+NZVs9fpipOYqxjhJQbbhXgsVdM21+OueedSDKjtfUHFZYjZUN0BKxgRIclBWvN3DP4lKJCrmed1sHB+jeMXtfPQ5gmOWdGWjjGb+IIUeBK/s+yPU413maeS7PUhC7rteSNlNpsTct0n1XZNlaYivOy67I+Ek7rYZ1ds/CDf489D55Z4ZNMEX65tx/ccorphtx0vYtdolQsO7uegnk4AgnIOr1BHeSFoN7EuQmkDuGNBM6oboO54sZWuG4JWuG5AtWr24xohKirFnktMJ+W9KkHoUav7lMM8RbdKzqtRD33aGWc8KFL0y/gtVX774CCvPm12+s4hJFFXrbYcHq9pDO35lEyGtZ5q4fynSENKqVbgZuAHSqndTI652jRNCzeDSG8aGKk9LWFTBHTbE9w+0NNsYtgSrK0ekoVcDpw1c3smeZoBVwHyOWBUNYb6tesggEckQ7GBtiVkm6G1k71BywEc2/+xpCyrtr+xZNcza1Jj+0SV97SBsSwuVTh0fonvvWYFV359PW86Yy5XHrMI19X8at0Onv3xtbzo5D4OW1Civc3lM/+1jd1jNZ55eBdnHdrFEQtbcYpq8mIr9bfAlOsrY19osaAOiq5S3Pm26QM0Lng2q2o/I8OKuo5iYLjOaYd0pmXEfT67P8/Bs1q4f+2ICckMtLqK8ZEAqhraoHXxHkrhXqIxD7ejTnlLB9XBDk67ZJDNUQtf/PM+Nu6q8tePr+bGB4b40/3DLOkvcM9nDyfnO4196MIVp83ihzfv5g/3DfHOb29AK/j4Sxbhuio1eciTaj5kg8kKMQJIbXAu7SL23k78PcvARqTA3Aaz9qyV9hTPDQI2ZFzJhlsmtSkXv8ACKqWPtFWm/BNzFZlTdl2kn4uZa1jvJc+Sukmf16z2ts97QCOYrtM4diTVadzIbWZd6iWg1CEBnNNqnbKamenyHmjKgh1Zz+LyVc4EXVEIa2oqkHX5N2ldTOoYN6KwzXEIcxW705NgIegYkEcGVOJpA7o9a2BNB2psoSErmMWuFhU6jdKpzHXHD805zPiQpasV5x00mz89+Tfee91m/u3c2Tw+uJA9tSKz8mMs6hrAaasbMF2KoBWiNhcqEWs3TnD2RV2GEa6BbnFQE/GgEjMpWTs16BE3Nh/RjfMCoKRJ3DJWVUoEhUZToFpDA7JdjWoNaPCrHln/kjMbCtUWokddqMQstrigrGIOjWrMoU0Figgc3dDPTj4wzyuGhlkfjyvrGMEoqPgoL2T14hL3bRxLgbcNKKWOMj9krZ2qb7P7ShZIJwCTxnE33VjJ5smQRtPeb2MFrO9ZgTc7V8k8Q9bYrE25RfysWdTK7r11rjx5LmHZmIfUKwW8XI1KPeRnD2/hoJ5OosADpQmrGjf2zQ0Q1j2iwMP16w0ehMLQTfzWe7maOVwceNSCHPXQZ2aujR08QX/LEuqhTy3IEYReCsLdOgWvShi5uCokchx6WwZpKY2ivJCZbTm+e9tOVh+8CF85jW1m7cP1kEBrfSA99Q9L/+SM9wWYnfVNwAuBDuBDB3LjdHwPuwdH1+4eCNJNMo9hukdUCpqr8T9xu6ZJB7z8Jip6OU0ugEIkcVGRjJEujj4pGLHtPCvWJ3FZHbo5MwjpouRaf2cPc0JqW20PhOy9timMrVq3ATqk4MoGLzbAtjdjeZ5t2x1a+evWPVlwFNvszZ6V4/frBnnTL9cxvLuDp7cfyXUvPxpddvjzPWN8/zdDrFlQ4lfvOJjlfUU+9cttvO1bG43pgZh62HKasKiS7EXYXsiyi2m2DWwWRcClXY7VDjN7ff71uQu4/NSZkxffEE5a3s7Ntw0m11SEOdgkhwv7DLBwDqqj5yiKRw4TRQ7hYzn+628DvOP8uVx2Wh+OqzhjTRcfffFCXn76LHKu09Tm0Sspfv6OlTx9VQenHdbJ567ZztzL72B0NGDt1on0HSzWvqEdmvWxgEx5P7FlludPkI6DrCZGGG1bC2KndlKVb8JCq3QMFkmBaoFU+yRJ5qdS5j6JvAnp/LTY2IbNPLD+tsGNi2ErbWAt9ReBQFv/ZK2Q+yuqEVDbbZ3YMJPaj8t7y7NyOmXIwQBxm6FvNoanXRH/zmSzdPJP1kJJOWO/nb5nynAmgDF7P9bfklfaI/40ERRB5WLTlChmu/PamED4utGcRP5NleT3KPN3JtlAUqJxOrkAxzM26o4TMbczx/eecxKD5TL/+ruNFN0a28tFBmolHNfYSOtxJ2GTnbGIn1y9i7NXdJGfiDtIYUK510jPRIgGKl53VFdomOlaYx0ZIhUEFbHpYNyGIeiaa8J/xwKn2N0b5jy2wR93kpD0xm7bCD+qKzTliSs+17SzKoaolhBVim3A20IjFBS00aI64ORDoqpHfU8RPeYSxWBd1x3CiRyOZzp/9axWHnhyPB1LMp+EZIJGwsml8UxIQ4dZ322gnLWjtr9n8++P45N6Zsuwx509d+1xJecnQqucZqAb63oyL6yy7L08JhNeddosrr53L0EYJW4uo8ghrPu0tGgmaiGOFxqTkchh36jia3/ewTt+9Tg/vHsnjw+MUwvMAyRKK0AUpYtKFLp4+Rq5Ytkcmqy3sLrzKK5bOwCOYbXzfhXPNaYmrhORd2vmMGauguuGJpiOX6FSbsHJhXzonMU8sbvC/RvG4z5WKflVM+1VCSMUyj7d9H/pfz+9X2sdaa0DrfV3tNafB95xIDdOu81s2z20fmA8HsUyeV3SIC2WJcOkCalJwXOi8o3vz2MAeKzWT+w022lUa4kniQopABVVeglojZ8zrhrrIAfiaqrRpk+kXrGltie4MHkVayWyFwR78ZBn2QuVxqhrZSG0AX12g7IBiOTL2r3aICPLNNgMQgTvu3Q+v37fKvy2iDN/+Hsuv/Y6vva3DTw2OEZrK7z61Jm858xFdNULXHLoTH748oO5d8sYL/z6Wt73o438/LY9BGJLa9dJ6iqjxFa7R9bvKm4/se+vkPpxl/vsuteUAWRyENQBpRTvfPY8HLEXlRTC3Y+N8oU/7WDN8ta0fXxloka6hvnSBYXugtvuHOb1n3mMz1+/ncrc7ThtdV599GKuun47u/bUGspt2icWa9DXlePrr1jGWUd089BVR7BmQSu3PTrKYW/8G8/6+EPsHLXKy7LFtqAngNQeP7Z2RJizFhp9iEvbidAZR/BsMG/JMrRip5mDVB9qJUWqubE3Pdk8Qw0T2twrrLVdl2ybQaPQaDPjWdWy1DkOC56ohCsYIVA0CDKH2nQqfIsQam+kNczcFzMmaU8Zv5r0gHWONMy1HMi03ydb/wNN0n4WcdzQf83KywocMUBTAtb2l5qVKecNVBw4JiK18fa1Cewi98ohOqlvFtg3W/Oaga4m9UgD/Uwee44XotwQx4nwvYhPnnE0167bTckbYEbeLBbrNh1sDi5O5Azru9NBb1M8saPCmlltZn3247FS0WZMTJCAdMAcKB13TN6KMgKXPS91TDjUMPuLaEYqoMddoqqHLsdhv1t0Ysct40XlYsFFg67EHlEgnSsy7uOxq/KmjEQokcOvsp7KZ3wwVYdOHC1REU7kqA8X0RocL8IpBniOolq12leIrCqGFGsGYCEF37U4n33/fzfJWM6WIePDJhJswTM77iTZdZYzFkH8nUx+AeWxu81JAoNLqkkXwdQSTPy8w6FzSzy6e6Kh6kHgg1as6m/lb9v34eWr1EPNzx/YyXMOXsS7TlvOrFKR2zcNcdfWwcTGO6z7RJE5kyCBo5QTEdbNwUvHiXBVxNaJXo7vXcJ9OwfYNdpLZ9cA5VqRSpCnFvrUQw+tFTuHZ7FhuJ9yYKJVts3YCwpG6wG7R+qs6W9LzoLowBzylYPX27bVKRXyew+8I/8xyeid/vv//sHpjCbXzj6QG6c1NdFa79xeJaIz3g5k4tquwrKTWyYbpIuQfWjJlrothjEpH9IFMk/j5JVNyd7QizTaNnmkNuV13ShJyyS2GTmboYVUqJD8SWNYdbBBp5QJqU9YySeCht1O2YNZ2Y02u2ELey/57O8WO+i6iqteuQRC2LKnyl1PjnJ+bxfrt1X48O+fZNveGk9b1Mnq+SX6WnO865RlbBgfptMrcNdD+/jUT7fx/hfM45xV3UQ5zeMbK3z0F1s49bAOTl7dwZyZOW68d4h94wGXHjeDrYM1PverbVz6tF5OWNmeePjQuYjtgzWe2FMhCDSnHdyZqn/rgI7PChTD1NZ3qnhPjmnbq/6wndddPIetm6s89+qHOWZ5Gy87ZxbkFbrkoCoRQV3zvI+tJacdXn7qLNZun+D8Tz7Mi8+eyaV9R/Ppl9S58DOP8Pv3HUpvVwYRJhuf1aYOMfNrNtgV81v47b8eAhFc8+6DOf+jjzDvpXey9stH8sjmCc48sou8vIQtaMgYl/kigiikpimOldceO3JAUtrCtgMHJgHvhjmiDIiGxoA/9niXA585UgbQrn8z06EKqdZKBBVbWBYTFlcZ8B5ZZdh1tYGvACOxA41oBC/C5Mj5Ck1qB96SWYBsZhzrc3+A1m7fvyfZ2o7pwHY2TQWegcTvtw02pI7N/HE3KUcV4vuzPsTtv7PC53T1bOaL3K7n/gQXOWzpRLF7tRDPczj/oAV8/Z4HWblgFYO1HKOBz8qKiSSoK8aWW1ccuos5QkfjhI4xEalghK6cNu4Aaw6qEttkSx3E/FAE0jKGsZ5wjMmHizl4qpVhzwugOkNcp4quOyhHE+3xjecR8R/uWm0XaxGSKIViQy/zPB5TEsI+aR8JviRaV6uObnsNt7NmvOfUTaAWxwsJynnTdm7EjY/u4xkrO9P5brv+lIPJoiHLW7+J9sfFMO1jKmHbmzLZzbSect2e19lr9jyQ/Us+5bpddjPgno2mGgGOapwjWdLBfoasdfY6Y6+xMS44fGErD+wYZWVPJ2EtPvCqIajkOWlBL1++bSN3rC8TRQ5z2ku0eDlcx+WUJS5PtgU8vHM0Adxap4cpc/lKDLp9arV8woK35UbYOzHMSK3GA/u2cu7CwxkZ6mHWzC2MDnUzXG7Hc0LG6y1sneiiOzfBijmP4hWrJlomsGVfhZWzi3hKgfiIL2AEwBC0q9hRr5Ar+Jt5CicN/5SmJkqpK4HXAIuVUg9YP7Xxv+HVBNjw5K6aDF+TZIKJ7elUG79ItiJ1igoQUq8m0HjA0VbL2up/z/qeXQDswzNSB/EQYh9kSxjHePLKYaJmtuPNFhG5z2YAbZZN6idA38veT6O5CdZ1aDTTcK38tqmBvHO2vvZi48K8vjzzZubBgaOWtvG843sZrgbctX6UBzeO88jmUcq1CDTcvHY7R8xvpRKF/OHefZw9r493X7Oemx8b5siFrXzkF1uY8+ddPGtNF9/+8y4W9RS5/POPJY9/7uqZsSZE852bd3HVb7bT1+Vz48NDAJR/dAKeRLbD5FOleNOzg8mI3W9IatITC3rz2vPcevsQbQWXd587j78+Mcp573+Y55zWiy446Lyivq/Oll017vjg4ZDTPGN1J1ecMYsTP3g/F71+A0dUZ/Ouy+q8/4eb+MorlqYaHNueWMZr0jd6sjusGpx9dDfb/vMYzvzgQ1x75yBv/fYGrrpiMa85a3Yj42prC+xrwqrLpmiD0nL8adfLte6XNquQAgppQxm7YIJTCACAdI7UMW7XEkNF0vEu80XmpIxHERZy8Rywhe4KqXvFrEColGE+7cOZtrkVcRlFbRhLaYucVd9xUvMwm5gSYV7eXw5wyRmUCAOw2qJGDc50yRY4smBkuvT3AO6G+5qAWYjbWE0W9IEk0E5W+M+uC3ItsO5JflOpP3Q7gEUWoNvXIpjUkBHGhjmeHwnbreNnYMxNtPUMJYfRYgbwyqNXcu4PfseFK9dz98gK5hVrPLR+NasWPZiMGeVqzjqsk5/cPsALjutLCRY7smJ7CC2x7bT0n5xngFjQNO+t2sMGrUQS2TNey1XRuAPEAz1qDkQ6Yg4k4z4iYfW1VqlQJHND1pdApWDbUen8GosPdxaj5JBy4l/d1SZiZqhxcgFh1UM5UTJebli7jx+dvNIEzinpyUSUrA0itNtCqC3k53XzMWvvWXZfZ9ea6cD6dIKYtHWzeZONEDup/Mz4b5ZHUnbey74q8yKCou+weU/V2NdX/AYzEYBXH7uEsO4TBH7shz5M8vhKUalrgsBv8F7ieXXQiijwqFaLDE10UPCqPDCwkYd2D7Kgo5UFXS10jbZy9boHOG/5HFpbfeqh8Wbiq4BykKc3P8byueuoTpTwilXqo0V8yuzcV6e7kDNCVj1eY12NatPJnrZtpMamgertTVrpKZWeAqz1fyf9EPgt8DHgndb1Ua314IEUsD/gvXXz7omoYUBnQaad7E1AAIuozmXBGSVluSPMImHbpmWfA40HN13re0Sj7+0soycR+rCuS2COvE4XD7nPs8qSZC8gzVTTgQXIZdG12QBFCmgqKnVdJaDMBl2ygNqLkuQVYJQ9Yd7AhsXfmyw4HQWP09d0cfqaroY8YVXz18dG+MzCRXS0elANuHvLKNUoYl+1zmvP7ueEJW3sHq9z4TE97JsIeHFfH0ctaeO4pW0cvqCV9XvLvPVbT/L4jgrnru7mD2v38YFL5/P6Z83GK1pqWPvdbCFFNilbgJKDMD589PKFaXvWYM2KVpbMLPCqbz7OjXfuY05fnvYWl0LOSYUpBwquw4cvWcCLv7OOX15xCBfn+/nu8E4Of8ff+PU7VjG3Iz95c8kKOBOYjVGEvLj9+zpyfPKlixgaCjhjdSdv+MaTvPjEmbS2uangJ3W27mvoa2XlkXqIhxNhcKQc2yuPjJnsmQO7fHuTlA1YmO1Qp+PFFiyEHXKs/JLqmApl30fMi0QbVlQZrU68MQjQyWq1EmEzFnI8K18lrqMfPztQjfbM9nwR8xmZUw6pFxBbAJoOHEseW7u1v3uy9+8v7/4itQmT1wy4ZMvO5puKuWxWpwAmLxSqcTzA9EAnKceuP6bPhZi0AHgSmdHRRKGL44TkfZeLVq7ghiceJN91MOOhx9hEJwfVfHxdRg+5qJaIxQsK/OrRPdRbQ3ztmKiTNkiTw/722BMTJPm9RZv9R/alCLMfxMx3MsYiElAjrv+MRkYlhyl17MtdCcPs6kYtrczfKK5nbFKl6w5KR4adjNe3hJkuxMCpHEezVKb93HxgmG8/5P49QyhH0dfvk3hhyba/vUeozG92sgFuaOWdqq9tCu5A5sRUbKa95trzIaJxLbKeobVqjNw6aZwry3wq1vZpGh0pCEklglsIX/3jDv781sNBaVw/wPPMQclaLY8fm4qYswlhDLCd2ENJgXu2DnJY3+wEdJvDlRG+X0vqrLVKXAY+NDDAK48+iPFyK1orehcuZuuoy41PruMXjwxz6MwWZnX00ZHzKLg1ZndvS9qnPl5EOcYM6aSlnbzz6ifQsfcgPe4Yv/Q+ifnvtn0Bu3fvfnS67vm/9N9LWuthTFSA5/93y9ifqUmwfH5PXVd1XnmZGW4fWoLmqmQbjBL/Lhu1zCFblZ6dzFOp1rPgTcqyTVrkM49ZgFswC5x9T3zIYtLiZQNnh9Slk83Oy4YuLsqwrtnChgDLPI0so7SfgHG7PUVwyYJvcYeV9XeeFXggFSaEfRlViU10svEAbk5x4iEdDYzqDR85NHlHHWgOf/O9jJZDOkseH37RAs45qjtpG43mtV99gnecMZ8PXruB+f15/vL81ZRCzzxPxoE4+k/U8jr9eyKu7wRmfGRNfWQclEi0LM88pou1hx7FyEjA47sr7Byp8bFLFjaCMeBZR3Wze7jORV9/iJ+8+mB+/faD+fiPt7LotXdx3TtWccZhsSAidv/2eJX6iRcTGT9x/377D7u4Zd0Iu4bMQvvZ327jfZfOT/vEBtM1q9wssBOmWsCwAEgBoHa/QmqeI/eKtkQ+7dP7wjbLWKpbv4sZBxjTFOLNaq+CLgvgyjySOgvIcYjDbpPadNtMu63psN9dxqQtSGddJMq8EfDUgjEds+emzXiL2h6rbPG2Mq5SMxWpd3bjlmvaKkOeM1XKsn77S83U5/a6agNeuSW+J7EPnu55TX7T9jObseLxdaUml5+EqrdCz0/7fAt0S2Q/ScqNzJBWmIAkTpQAlvNXLOblV1/Pq06u8eBQK3NaajyydSVH9N4JGqJRF1WIWNhb4FO/3MqbL5xLQbtce99eggDOP2yGaR/p98Csqfv2BTy+tcKS+Xl6OnMwKoKjSg9c2vMkj/GWUleIR5Ok7V1tQDPa2Mw32Mhb5II9povELLhOTVpcjR5xY81flB50Fs9cMjdjMxanGEBowPdAbYJXfe9Rfvjmg5q3v01aSD9Np42x89jrUbN+nQ6U24B8KgBvm025erKAOUXd7OBP2smAb7megHLrGU68nsk6IWsOpP3kQ6ng4DsK5Uc4uRC3VicKPKLIMeA7AdEOSmmiyDHnkIDuYo7tY8Ms7u0wPrgDPw0W5YaMjXWS9ysQ5PDcgDBoYWSiw5Qd++aeWdKcu+IgBsaG+P6DDzCv7y5eccgx1MM8jhMR1HJoraiUWygUjDo077os6S3y2JYyKxa2oKIofW8NVGDroIrCMNw6Res+NZLmn9LU5H8j7Y/xppjLjewdCFtnzPLSidIsWEUlnkgt2thjOrpxMtoq9yybZP8u7LbNUskGm2Xe7Y1SQK/NFtrsms1CyKEjdKqul3pIfbWVx7bPk9/E44D9bAEM9uIr98n5Yom4J/VytQEGbTplfuXdI4w6UUJm2yYHcr+ALQFcIkj4wKBqbMs4uEQDgJe6i+mQ3B+PDKUV13/gEN73w03c/ugIr/nqejZ965hkEduxs8b9m8e46i9bOOPoLl574WwajLekb7U2dr+ShAmN4ueKiYFtkiTjxAai1sJeyDkUunL0tedSs6es8AdcfupMulo8Tvn4/Ry7so2Vs1s4bEGJl3/tcd5+/lxed/7sRoBlAzMBf8LyCkh24RMvW8RPbh5g864qHSWH/k6fEI2by2wq0i/2mLbnQ9Y9oLw7GFOLtibXbe2GPX8kfxZsTZAeXrTPOchvBZ3ahXfEfRdgrjk6PbBs+0SGRjeIdQyj2BZ/FzDnkJYtc0iAtQin0tfKeid7Axf1eVWlIa1tLY8NNiKM/arkK+nUREDWADvZfSJryv/GhmAzsjawtQHOAXl9tQCIPTanY9ib/TYNyNGkQDObX2uVth80ClFgzWVrfttmJ8lY1Uk7KOuzt+TRV+qgFDyM7xzOROjwyGg3hw4Vyc0ah7KD6oq4+JgZ7FsW8KVrtpOPHBZ1tlAPwsbx58O2sQrf/e1ulswoMDIe4uWhp+g3tr0fB8JxI2MfXoqMcBfEym/r3VUcyAdIAbq8W9Ww00o0mbbA5sV5hyGaMPEOVEuQal1F2C9AtNtFVTQ42pi5gBk/GvA0g+UJLvrqg3zyskUsm1OcPIelzrbWMNOPk65lQfn+hKrp8kx7r2p8hj1OmmWfSsCLx2kz1l2TCQQle7CsjUJk2cJ5CCct6+AvG/dx1kEzmNjbQb2ew3EiPK9OGHpUKi24bkAUudSCHL5rGHHHiThmXjffuvdRTl7SFrsQNB1SrSrGKm0UvEoCxB0VoRRxkBwXhwjPSd93RqmL/rZuzl3Rya07H+fU+QuoVIpEkUs9NL7BC2qCqO4SVnxOX97NJ6/exjdfv6wRZ5WNCdPGXfUAeEoD7/+tZfafMe0XeBeKuSeeHCrPnjGnbTLols3RwYDTarxA5zPsyf42C3sBsYMfyDNkIbHV7ZJkQxhR6cHInPWbeExpOGBhsSMyES1gp2tOwnI03CshwuUATTNJX2MYlZy1ELsYcO3q1MtKwfoUydwG6/JZ1CnYk0NmsjC3kKgmcXV6gFHYyYI236uk3loKpCy7DfJt92ydyni2iNt6VmeO/3jDMjbtqzBWDtO6+Cbc/MdetpDDl7exenHJLLLCZgtbKe4bBXiJGlhAvryrbV8sgobMzggDKsEcnpUUwn2Pj3Pzk0P8y3lzaJocuOD4Hp5xRCdrt0+wdssEaxaXuOnBYW55dJjXRbPTPrS1GtLviYkGDRvI3M48b7lgLtTh/T/bxJVfe4Iv/nYH9111RCNQsf1ni2BYi9vEDnmeTS6p/bQ8Vxhs21TFNv0QM65sJEtJ0s/2WQQBs2Wdzh2HVFASsJGwcRiAXYqvixebHCnol4NbtobDodEm3GatXYygKK5BRXslwD7EjOOcTg93jpOy7zJHpO4SaTe73miaXydzXTbpqfJNx3ZPAhrQIDEfAEuubYbQfmbWNGqq1MBmqkbQIUk8jwhGtgWFZP1VaV7LhKRhfNv5JMX247apiXwqNzIRN2P3gp4T8LxDlvPbx+/iuIMOox4pBqo5du2ay9zOxwnLPl4thAi6ih5vOWcu0V6PtTvG2VuumfW2C6JRzdd+v5MO3+PtZ87DqTlc/eAA/aU8esIxzH4hSrSUSpnxrtzIsNM2WItAlx106KBc41/bCHq6cS9p0SiZa/Y5FYXlwk8R1TycQj0xW1HFKJ7DRiBVfkQ04eO01NP2Dk37DU/UufirD/HB5y/gVIlzkCUHNM0JMRF0mwHyrLlodoxMp+2xU/YwsDy3mWYpe6s9zpvN1ew4U5k8lvtNGb+J9kbGc6QnEx/xevGCp/fyvh9v4hmz5lGulCjXjK1Ga2EMwESSjEO2B5FZPH0MA14JqxS9HPW6y85hRUde4TgO49USkXZM/hp4bsBQpUJHPofnBHhOQBB5ZvwTUY98XCdkohYy01vELaP3UK+bMPPy7EKubILxAPWqj6cc7n5ylD1bImbMiAeARxwlNeLJXeMRsKlpfz2FUrQ/07v/j6b9Au+R8dpdG7ZXTjrmoLZGNb5EyhKpvUgKEpsxLTY7Bc03AklZ+1+5Nyu12hNSni3sqUPj5gnpRh9hJmXeKkBAlSL1cSsLQU3UgBkgnpSrYqFAQEMMpOU+l1TVLcx3nVTVbx82sQUU+wCdAC47n7CQSsIYRwZU61gIKsQLTiGu26gyv0ugjUp8uKesDFBxMKA7isstKHRrStYt6C82sriA6yteenZ/2o7K/KcVJpR1RCMQFzdeObj5gWGe9YmHeMNZc3jjeXPo7fHTvrVNbSxthK45qL0WKwu87RdPsnekzkXHzmBenxUiUQB+DEZbcy5Hr2jj6OVtvPjUmdSDCF9oB2hkXsl8FyBa042+qmMziQ+eu4CVM4sEIpTJmBVgKQKgvVlOBbinSg1Ah1QDYkeNtW1dbSAhAoW8k7h7zGHa0h57idmTxVCLraTkEZMgjZn7wobLIWYbdMsG7lh1tTd9aa8OnTLedrLnhO0hRjQQTbQcDW0r/Wr7Ij8A8DvJ1OtA7pGyDzDvfs03pB426IW4zYTgUDS470tMHzJgOUsvSbCb7MOSNrLulYiLUrZWic22fa2hzhigrUOnwWTAXI9wYnMTx4k4ZeEsPn3bnbzk8K38cc9iegrGr/G+jf10L99mbL3j4EKmzRStBZffPjzGbx7Yy6x+j5zncMGaHua1F5LntXoeoxMRs9pIPYuIsJjX6cFhObsQB1nTNQcdKbOmSt8L4RHR6JKypFPBUAgOX4gQRVR1UW6E8iNji2ubtY1q9JiDrrnJQhuVXZQfGf/faF72zXW89aK5nCnnc7Ljxe7fLDC11zIhi+zUIKBZ90x6hmLS4VsbbIdNxvE047rpuE/2tsygzI77Zr+JRxmLFVe21lWSvS4oWL20xM6RGtXxFhM5UsKzV82hYM8JqIa5xMe2JNcJGZoI2T5S5j/v2YhLC9c+uplnLV/Esp4ZrOjpS0Cz79a5fesujp07i5xXI9JOEixnIihS8KpM1Pcxv1NRahkFpfG8OrlCmcpECaU0I8EwN67fwZ7xKpWKwwVHdvPtu7ZT7DACs0qi8mqiQkQ1jKpa6wPUp/3jUnZJ+v9L2i/wfnTjrts3jLQ1eoAQ0BCzmTrQqFw8IxSN6lybqbN9VTdLWQk3e3DSnnR165owtjYDaLtqs01IZLH0daP6WpiMmsIO4wtxXnthku+JQKAbTWGSzV9PbodcJo+AIkUqlYNhyG23X/Ierk7ZzYDkYIXyo9jPszYhlUtR6sNU1JIiaLhAXaMKmIUzr1OGNALtK+hRqLoGxyjwlLimmwYsamFII52u0Q7xBq6tdzDtMHdmnoNnl7j23kF+98A+3n7WPI5e1sasXo9wFJ7cW6GrzWNedz7xXa0KUfpOGnSo2TNa56Kje7jurn286oxZjbbJsrFKv0t7Qgq6ZaOxx6WMJZs58vTk8R3PC6cEz39GX2rGI36qE81F3AYTNIJue1OQesockGcJc+Za15JGz5Qhv9kCp7yj/f5y7kC8hrSQjuEGRokUVMi7RTRGmrWBvdQ/C3xtkG2NgSRJIBR5B5nD2iqT+Lpdvh1NFiufbdspz7N/lzaRd5U+E4Ed632ypijQHFQIuJwCcOgsu2OvJ9n6N+RTk3cobT2PzPfprgE6NC+k3Kg5GJ9iN8zabUs5SX2meE7D/XFSjsb164Sh6Rjfi7jgoBX8ZeNdFDsXMl53+Mb6VXiO5t1911IfL1CYMWrAcC5C5UPm9+d4y5lzKedq/OCOAV5x4iwT6CYXGYa9pqjriJFqHSgagmLCMTaxMgeHU3/LZp4pMw5qxO+qUz/dFcfYdxciM+6E6LHWYwo6NbtsA8Y1qhylYFLAJcA4RINmU6wNt+C3lVMAHgtF16/bS2urywXH9Ewee1ntRJY0mKJfkjQVG93AOqu03Cz4bga27Vu1uOezymgmNNiCY7Oxns0/VWqYD6DjNU81uzEmtDZsrzK7w7j7qwT5pN6DlXZavCpB5FINc0QocjrAi8e/1oreUhtvOO5QwtDjlk17ed0xx7Coq5NrHnuMveWA3qLHfbt2csWRC9k+OsZZS/NE2qEe+AnT7TsBRb/MNY/u4unzl1L1N7FpfJTvPrAWlCaINL7j4joRFxzVRYdTgGorfuso5SCk1OuAitI1NlRsm6hRLOR3TdNS/5f+wWm/wFtr/fi67WFAEa9h8sQM9PZdVU774INc865VLJ9bTDdJmQPCOmoagXXWZhvrNztao2zqoq4nc18zWzdoDkYE4GoaFtbkNLTUV+quiAM2mIVQh7E/1khPXoRsQBRZ10Li0/A6fX9ZqGXhLqvUNZawc6Lel/aOfWDjxQJD7AFCdUQGpHfEEm8LBnRLu4h7OqlbK+ZAHJgDdHuVeX4urt8eYKZGBTFjk1cpGLeFosiA8WaaokleyVxQYida0tTHIj75/a1sHKgyo81j6bwib75wDt++YRff+f5OdgzWQEEp5zI0EfCXj66m0/VS9t9qk79tGOeQhSVefWE/z3zHQ7ziGTNxQmWEj0K8IJVI7bRt+3o7TbUpSD/KuJS+sANgiPlQSaUA12bGHczBQAHitibHtnHWpB4OJPy1gNtmTC7Wfc0xVqNAYc9fuSeHAd/CRAuQts8TyLkEpSDQ6GEHNTOaHD2yhcZQ8bbgYZ99GCf1YCL3y7yQ/GJGhXW/vWa4pOcSssy6xrSfQwqMmgkTtqmcLQRkxnnTNEktrqb+TdKBsOBZ0w7SuuhJTKAFZN39Fz4JCIdOOlnt9WyqST2VWlg3AeXN7L0xsqdSgBOhHIXnBYShhxs5PG/VIp738+v56NlD3LCzl/ltVRaWyozt6Wb93oUcoh7mgc2HMLO4j3nLH0PFDdpScKmoyJyvSExCgKLm7DXdfPumXThVlyMOakmihEZ7fVRLmPSJHo3JCtcAdh2mjL6MSeVGqdazLoclI3SrMvbZilgA1em4lLMyfmR8q5fNHKLd1LE+WsDJBfhtZZQXGVY/NEB0uBzwvl9u4FfvOtiMZ9vXvp2yoHmqsSuEUXa/lPWlGcstgngC6lWa9wAY7QZ3cXbdkmuqKcudNVFKrmXdXMYpm0/Fpjqgzd/yooJD4vSV67ZzzvKZ1Os5KkEepTTVyCeKbbHHI7NZ+05AqB2IzU0iZXx2B6ExRZmoj9NZ8GjNu1xy8MGs3TPMwESZjnwL/3H3Blb2dfPlux5iYUcHz1y6iGo9T86t0doyEntLgaIf8qvHt/K2k5ZRqHcYP+CBh5er4ebqKDcyJktt40xEdTpa3ElrueoLefT+CfaOq5un7p2nTmoW4+3/D2m/wBtY99Dm0YAaXjLxRRUdwp/XDnPE3HZe8oVH+dMHDzMu3bJqdBtQuqTAUUCQDXBEJWxL9Y6VN7Cu2/bcdrLZaflbgITNvOV0o9lA1rZcmHRMXhXGk9kFCazS1OzFZh5cSAKZRMT241H6LjmMmYxtJyjsdD1mtEtRCsoUJJG65KFidpHY02IY1lAn7aZbFeIaTOVjwOwo6NeoEW3qkVcx+FFoLzYVEWDixuW56cKnfYfkEKW12Cf7rOWxQce/qYrmLd/eQHe7xxVnzaKn5LFkdgEVKT54yQJogZEgwomg1O5x+hvuY3wkpMPLm02ppBsW8JFKQE4p+tpznHlYF1/5/U5e+4zZRkCqK2jXaVtL38DkjcZmNqXCAsB0Jp/tcs0GqOOWVsAeUxooKLPKyBwawYBL2aylbrbfdrGNtwFnSOOslbHuWPmz+KgZg2uz64l5ioU4bYAr7+toI9jlI1N/sUHPKajqFBxACpoL8XyRg7Qw+bCoPc5GSG34ZT7aa4Xdrln7eJuxl1gBzcCBvL88E+tvSNvRHiNZIawByE/N/NmuxqY1V8mA7KZsdRb46hRkNIBqpc21DBhuKD/NPLl8AdKSwxGiIb1/OiFAh87kDTVKmUIbNEkkS8eJmNHqcsL8Oazb8VdmtZ7FtrEcXbk6N2xZzamzH2ZirI1Wr8Lm8V76xzbhtVZxSubMyeyOHFvqVRaWCugRB9UTJfEFLj9tJr++bw933TZEUNdceVY/Tkdgok7WjU2sKkWW5kvjtIWxXbg2fefHbSDuPusYu+8iZp3zdIOLTd3imP1CGw8oKhcZbyk1heoK0TlzGFCC4xS7h03b1Ew714KIy765lnc/ex5zezLmc7L+2Z/2PMj+3QyI2+eTkjGeEb6yY3U6bY8UMdXZhOS5sn/QaB7VDIBpIwA1FQgzHpN01HhdR/F4jeK5oAEVE2dxlNf//N1ONu6q8a/Pns/egTyhdggil0roUXADapFHpBVOzNprFFoZgSsCNg2VUUpTj0Lu37WTKw4/jHrkEWiXZT29uMq4ItRRwA8e/BuXrzmUb9+3jnroU4t8ZnTuxm8pMz7cxtaRcdqKFeoDCr/SzXi1hZxfJV80wQuiuocKI6LQhRqMRuOU8vFiKNYIMTnx4NYau3bt+svUvfTUSBpFNCVj9P/tdCCMd2XpvJ5KEOqCF6YLswBvXXVY1l9g9dxWvva7nbzhzDkGSGbVXgKowSxW2U3IBgVY+YVptL0oyO9u5n57ERJGywbx0LjpRjSoVnUcxOP/Ye+943ZJyjrvb1V13+FJJ+c5Z+ZMHiYHBhhmyCgIIoLIYn5VREXEsLuKYX19Fd1dXZU1IqY1AoqIkkEyzDB5hsnxzDlzcn7SHbqr6v2jQlf33c+ZEWE/gNTnc8793Hen6urqq37X70oi9CGJwo+CIWXHV1rU8ecNiy3ElyKCaBr9F8l+6f6rE/Y6CH/lFQBNvRjREAei8uQ5FcBcBbqrforqcxYHnLSFEkQXrBJY5bcHcO0FmQPmAmGS7UGeFv48uXDCUILtedP20FCWlnffeITdb7saEbLLhEBL/8xnpzP02PCG33yA09Z32balCwtusO1J6Vh+P0a7D465YPsUaPj5l2/nm//nPbz+hVv9uWy9imo6Jm350NvcaFK2OMyvANiC+1TwNQ7ZS8KzSIMRm202+VtTscBpkGTq9hD6njIcYa6oxjHNRa95fQETrJfBsfSdZJsAFnFAOHUXCVaE+N26ojzglIsR1btc2DoDnrLuwV0sgFwlYLWt5EXTLQsqcB8UE0Od0U4BcrOFsQipHVOFJ1WgFfVxW5FBbLzjyb1NmNfbLHwQ2c0m8FgR2KZYxYNtazw4FtW+NpHVkQEUk+dNmcJ43QZYj+c6FeudHB9Bdwq2k3uIj0gZhHF5kcsyRwrDj1x1Id/z7g/zC99wDQeX1vPYYo+LVi9x06FzeWx5irERTvd96HKu2HkHWTlC6pLDhwrOuKrn5sIiFYvbA6YsL3n5RhCCA/cv8Xsf2sfONT1eet4GB54tVUG1oWd0+xaRaV8VU0ApnOwOgDWQHV0P8JSIZAlDnG+4EHGOmYFC9jXMGGepHFtX1l5aV258IadYcO4wnTWLXPs/buN7n7OJVzxtfX2A0/c/fE8/afne3KZX+D08oxY2uzafw/NLFKhWn20LtcDepixbyRUqzMF4nKgd17TcOCKrMWfDnMe/CwGASxDW8slbT/K3nz7Me153KQwU2ipKqxyr7Zu2Eplk3xHC+dwbJA8fO8rndu/hjDVrMAYu37wRJSXaCnccFiuccqWk5Oy1m/nT2x5Fmy7Dssuq3jy9NQvoUcZHH97Hy847nU4mQEvKMkdgyfMxViu0VkifT9y5xGoePDDkrM09N0apnNRwx25daq3vaB3cr7D2dcb7FG16qvfIg/sHV1ywY6q2QL3+Dx7iTz91kDve8ELWTuV84199gh9/6RYEYnLxbzJy6fYURIRFOl380gwOAdCkAqgJmEK2jrYo73A9qDPcJtlWJjumC+upWgwyITHNiWSVsVUBkCCEUrY+ZfKGPkVVZp2AD2NWOOVABItCCKQMjGXIkR6YaSVgteuLGBtsxy/UypdILmx1zRPCAdUeDggoD+ybRRqsO79IXXnC9nC+XLB0tORfPnuMqTnJS1+yyTE/y4Y3/91uvvXK9ZV7gc/SEtJ1CWMceM8Ff/qRgxz726e7+/fBqTFtl7/mQlGyZs6lupzLcuYHGjMAOWXrwj7ECwgq1jkFsE2rTAC9KUOeBucq6vMS6j76qTtRN9ke0uoF3+SwmKWl5NP5pqkyhqQBpyEjTNrf5oJpoRZb0ZzHQQFNrTvpewDONSm09F2R1As6BQm6kgKTHp8GsQoaOcpTWpXKFSe44CwI906ETDPpvaa+3M0W7rHpE54e3yQLYp+ou67F31tWjaY88Z/N4MJWFpB24Fs7rJXFbrhGhP0a21vP1/J7BVqS6wn/sjRM/el+tWsaUQPcNv2OBzLSxiBLpUqKosOaqWlmOhlb8gfYOjPLSEtGRnJwcRolLKvzkvki468f2cGd82t5wcZHWTd7FLtwCHtUITZqxIxx82UKF1Mx8kA4F2yd7fLjz9/G7Y8s8cef3MfxQcmPPXcb00I5dtITGqJXyX07Vo6Q6Zv6+66I3oq2J2FkECNHXnAS7JJArLbYUiI62ssQAYsWctALHWSuyftDZL9EjQqEsnzigRNcsXOGH3vx1vq7lFpFU7kE9fkaH6T/vekWGbeL+rGpopju1szS46/bOqdWmNc1hbFpTUl+n1AEdX3fCYUUfOYZU/sejg3nFMqAcuBZLwh+5m938XffcymdssehI5uZH0+jhKHwKQEDAFdCI4Uhl04ACGFRQvPA0UO86qJzmMl7jE2OEprSH9uRZW1fbRVPO+10rtl+GkoaNq1/DKk0o5PTjIZ9Pr/7AD/+tD5aC05b3eOv7ryH/+eKc5BZyWgwRZ6PkZk7p8pLrBHcd2CZ87dN1eWo1z++8NhCAdw3+XC+8topjCdf0+3JQEpOLAw/fNuuxQqs+KDKs9dP8ZPXnoUpzkfqVVy4eYbbHlty+6VVw1R1TPS1DWC86ZKSKq9hUo2o0jSpxr46OV9g8hSV+bfJdlsqIeCvb7VwQTkSV+hgLLEjWQHwcC4rPEPe+BeymqTMbeh/iTNZQjRxxb6G/gU2ceyuT9f6dFN1kBkBduh7BnZBVb7HKehP791atzCkLkBD61LCeauA3QJ2vYBpERnqeA+BxbaO0RYj68BxaWv9FxoYW/7sPftZ/V3Xc98jI979iWN898/exXhJM1w0/NPNR/lf37cTYUSV61kSzbHgrnf7vQu89Kq19Luqnis6ZYIlXLxlhtsfXHJKiRVcdfosP/l3D/MDf/wgZowD9iGTTHie6XwJSlqqDIYFK53vKUuUumtonI/3MlVavXCO8OzKMIa4cRT+WQaMGZTLWSoQmroqhfzm4d0RVHOiGVeQHhvGi2SfVHlIFVCdbEs/03tP+xQUmLCt9Pef+rWH8QvHWBwbuZCMTbDOGCqXrHCtVA6Ee99g61VBh1QKROr2k7YgawI7/kStbTVoSsr0/W9hCFeUrKn8OUUgY9txK4HnuIuW8V/oW/pbAMdNkBy3JceG37COwY7HWeL39PxNN4AUZEfQnfyzRmK09H7SGqVKlHKp1ma7fRAnuXL1CYyF3UtdDHCiyDgychN6da/gnmPT/Nkj53PrgfMYzM8xPjZVX1sSBVHMW8Reg110D+ay86d53Qu3cOlpMxwZFNiRwsxn2JED2YwF9rhyCk1XI3rapRdckpjjGZz08kuKas5lopbGM7iviI4mFMRh2sZCPbJbIqdKsjXDOFayV3DXwSWeef7cpBLZrCpqgWVRvdfJXKmRSvH3xpoF9WxZuE/r45nCv3ZLDfW5HK5rRPWvpaVzszY/UxeRYBlp7Bvvwe8X5x7U5rcpZfw0hRvE6D8P/NONx3nGWXNsX91n8fgaRrpDR5ZkQiOFpSO1Y6qFqX1mokQJTT8fMtJLbJx2qTCVZ6EyWdJRBV01pqMKJAYpLF01pp8P6WQFWzbtJp8aMVju8LH7l/nTWx5iriv57Rvu5fZ9huefsZWtc1PsOenSGU7NzdOZXiafHqI6hVMklOHhQwPO3tyPzyy0kTYsj8zAWjvi6+0rtj0p4L17/7EPf36X0akgOH6y5B2fP8J3X72J6XyANoqXnLuFt3/ycPUyhqArqMBTytilwiGYj1NwGBbcwC5CFXAW/k6ZyYGofg95tFPBYHDMamCwikRoeW1YzGn3b0YnwDf5bLrPtC26UGd3eqYuPKAOamrsWoNhTsELuDLY+HGZtog1uiY04/lSEJMWrhG4oMhpiV0nHOjuSLeASOEykxjrTHPafwbAHSoHWvcpSosYmrgf1vLOfz3MW96zn3d+/yX84ovO4s++/zyecfoqvv1Nd/Pb79nL4kAjZoRnoP1nKHIyh/eFhv/91/t54zdurVwQ2lwvDGxenbP/2MgtrsLypm/eTmfK/f6Db3uQYugX26a7UhjXFODJxneLA9TheS1TB+lh/w6OXQsFavw41xYnCwujkmf+9B3c+dhSxcCmQZbhGYYW5looBSyS32TyL/RVN45NyyWnLVX2Qv/TbelnU5kLLQU3AexAXZFJrQjpuWZxrjVDXDXBsERIqDHnqXWhz6TbWJAvYZxJPtNxSRWM5rvaeL8mvqe/x3v3DGJQpJ9sewJgsqJPdgJ029jwNhYwPV8KluNvDQAeQbVu7F8bGxE/rZYO4ASAZqvfbQKqTKmcf6yRsYR2M7uLkAaVleT5mE425rsuOZtf+cTdPGXtg2ybGrNYKHbN93jg2DSPnOyzVCo2T405Y26AAN5y2yJzvTMphj23BoRg/DA3wifUK1wCl58+w0275rFaYIa5c3/pG5fKb0a7NSG32LHELOfO5UTZyjqowPaVk4NHjHuXChw4z3EAHZxLyVBWWYEEDghaMEs5g/2rMaWj0A8vjFm/plmwwrc0k5DBZVFJ5UfKcscBTh5iIIdgYu7aU1hG4rnjNfwc1sKRRVpUimQCyGvzq2aFqe9XJ7MqJbM2R6NrVWNeJ0oiViAzd2O2VPWUl9Ld41/dtJ8ffu4W5g+v4/DCBgA6qkBJQ0eWdFVBVxXkskQJQ0cWdFRBJjW5Cmy2od9fYqq3RK5c6kttFUpqclWQy4JO5j4zWbJh3X62nv4otx8/yB98Yh9/cfNeVvc6/MgztvFfnr+N77v0Em47sJ/PPrTMs8+e48a9h1B5idGSYtDDjLP4LglhKdCUTT8NCbc/usRUv3fHyg/xK6dZqMmEL+bfV2t7UsAbuPmG++fLsNDqgeVVv3kfP/fi0zl/R4fVM8eQwnD2mjk+dMcJHjsynEynFhbjoWcFLPUFG+oLaGr2DT6ZTcYa6oFZIZeloQ5Skib6LSulANG1FdAOoKKtNQF3cronnAhBIEb2PLmfsaiDhcjc44BJAEoZzpcwuFKkmTLCvbcABxEZVyq/Wymi+0n04w5Au6FzxBaAcPrpXU8O7Bvz3//xcT7wuit56XmbnaDUgh+9Zgc//uztbJvu8QPP3Ux5wtafV7iPXEQXoZc+ZzU/93e7eOieoSvmky4uSV/O3tjnkUMjp0RJ2Lm+z2/8p7N48yt3cmyp4IGDA2LKyHR+ner5pmMZ1j9BVYwonCdk1gjH0fIMknnSU5L7Hl/mV/52dwUGmspm2ofwfqT9FlSLazr/UuUhZcTS9yAuysl10gxCtvEv3MuYymrQNlbhvOE5hnMKGq5bSV86yd8ax4KnoD8AlJC2DeoZYAyVwiMax6af6SvZlAlNS0a6X2hNeQO0Bnut1NLxDP6uLedcCTzHbU2/6xQ4p0A6Zb2b59HSs9GNcyRAynrAHL+njHlgKBOm0pTKAQIPCmrXa7CUzW3WyPgvgO8sK3jxeet52vZNfNc/fJ4ze3s5Y2bEml5JNzMMS8Wj830eOjHFyEjOmhtgykc5Z8PZZJ0x44NTjB+cQR/tOmvjUFYWyw6YJYVdkE4e9C0ffOgo522dQnY1slMi5rQjALo4UG0F5dEeZpQhMhPTGTrCQiDGFnm8hANgT0qnUBYCWyjscYktXQAnAp8RC9BgFyXDA3OMj0xTLHXJ+0PyVS4F1dHFkvVzLcA7JZnSQPympQ7q8zm1zKTKerp2NZntGiimmr86URptY/+2ZkW70phi8MCsB8WvYUEJ8zr+PTFnq31SoC6kwWqJHmWYYc74wDQP7Blwsig478we47KbMNRjcunAdgDfuQfaIX935dNuEAiMcX3qZiMP2guUcMpaJxvTzwexcuXSwiqKxR63PjzgB688mx96xlau3Cnprlom6445bXXJdK44bXXG48cMW2anGCzMMn9iXRyLrFeQ9Qr2Li5z/WMneO5Fq+pjbeDGB5e5/7Ej71jhaXzFteaS82/9d6omhNguhPi4EOJeIcTdQog3+t8vE0LcIIS4XQhxsxDi6uSYNwkhHhJC3C+E+MYv7d1W7Un5eFtrF87dsX5puKS7H/j8Cf74owd4xplzvPTi9dhSkmUlw5Hk5X95AwcXxhw6VnD6hl4rUKq5T1gqDTwIkTTLSGihKM5KLWXSWWHflPlK+6MsIqNaTFPAH4/1DNcKeXprZtVm9ax0/wiA/P6BIQhVMuP57aRwTO8pBS0piAqCN7orWCec4rnczrYjXGnkGpsFE366gTUXojYmgRUXFhdkad2+v/+hffz0N53Glq1QnrSUgw6mlORrBrzgSi8kQiYAqErYBzZa+4ckBN/+nA2ctbnP9/3h/Zy7qc+vfs/pbN3QbYyJ4O49y1y4fap6lgYXJKsF52zos+fYiAu3Tzvf+MxOVj4NIC51owiArOnWJKhcFZr5pFMQl87fZIxzIXnWU1bxT58/ijEWWYj2inLN/rX91lRQBRyYH7FxVQcpk0U2fcaBhQ8trWLZPH+TMe6eop8BCLQdL0kq+PlrpspKqOhpqXJpQ1XaPqMqdw+VkpIC5iBHms82HaPQl1QxWUE5X/H42jZR+T2H+zWJLGgC/yezUrSw3e3BjkmnG0pAjQRbAfC6oOjwrov4e3O/AJpcYGZ14shqp9c1DujUztVgpaxpH+xwnJCGPB+jdZ8feer5bJ6e4w3v/Tte+/Rv4ZqNW7i7M8fJccaBpW4UkV1pyEXB7SdXs/XgGWxadYDhaIrV6w6j1MgVrFkQ2HlXgEfkxjGfQ8dcd2clO7Z2YARydVEpe36OCeGCLOVUSQyE7Tk5IixwwoFp556osGOFGSusEUjtCpSJ6TLOA7soEdZiBwqVV+ypKRWyUIjM8PixEZtXN0rcJ+95bb1LQXfaVH1eTADyJzXvxaTC37Z7MyYA6pl24nyozhOz8dRcSyaVy9q8Tud96s6kfb5wcPFPocvKIpVGD126PqMlb37Pfn7xW3dAIVi95jCHDm9DKU0my5hzXEmDFAZjJVJUL3/w2d47P8+22TnG4x7GSoyVdNQYKQ25KhD+GGMUuSqYml7gY3v28NiuBe4/MuCjj+/i6edOsWGu4+65C3McYSwOs6l/Ae9+ZB/P2LEOKTVT/UXymWVkrhHKYrTl9e+6m//xPWfQySYf4g0PFeVoNPpc+5P6Cmu24vu+TK0Eftpae6sQYha4RQjxEeB/Ar9srf2AEOKb/PfnCCGeAvwn4EJgK/BRIcS51tpTrdBfVHtSwBugk3e+cMEbbnn2iy9Zx2+8+kwu2DQF2lIudzh+ch1CWP7Ldefx1lse4pJNs1Ulu5SJg3ouUo0DYWHRbC5wuvEJFcuWnjvV9JttJSJJ4d7moOn7F9aOZeVrnAaVrHCilSpwWbxJMuynRVVJK3UTCGXpoU4vN8/ZVBzaFASoM5DgFR1RnX6lcbK2Gmdfxrja1yYC2EVqQyVPP3v9ST79hXl+61/28r4fvdT5y+MWUiGs85s0Br3UQc2O3PgO/eLXt3UmJwR2Irjy/Bk+/ZZL+dBNx/jmX7uH3/i+nTzvotUVKDbwyOEB527uu3H0uXUpHWB4yTlb+NubH+dFl651bFN6/01ASuP3AMBTBjcd7zQYsun/3XxNk+Pe/TNPIf/2z/DSN9/N+3/uolMvgM1+pYtmwnbf+NACf/bxA3z09hN8+P+9mDM39ap+tSmb4dzpvbaxZSsFKoZ9Uvat6aKTzs8UEGucwgVVqscF4bKZLOHTWibXCOcX1Ku8hv6HsWhTMppKVfi+0rvUfDfawEaY9G0lsr/INsFOn2IxqvlmW3hSrHvT59qD7xUtdIFBTwBRCIYMx8f9aqSDqjIvJPtZI2v7xqIq4W+tEKp6aTqdEUJYXnnhZi7Z9Dx+4oPv45odZ/Hdl1zF0E7xObmeR072eWy+53Q51WFYGt67byffZCW5LFhljsS1wgwUQlrMUuZcPgYy3stTz5rhd/9lH5umOzBjuWjrNNfsnPPuigAWtapwY9DTbrxznPJoLHZBYofuRTGFcxURmUbmFtF1KQSjjFsSHpyDXs5RfRcQIjKDUBZbSMamZO+JEdvXdNvJl1PN2yjbGs+1jSjSyXNofSdEfR4mYLmtxZzwiSJW34H6+9Ti1jIREFwjhgR2hWvHewJ3X6F8PGCtjIrd8shw98F5nnvB6ZSHewyXZujlQ+fHrRzwDuXcAYxxFSZDaffQFguDFFm8ZiZLkKBUiZSG8biLRaCkptNb4O8fepCdq2Z53QU7OT4aMjAFf/a5A1y0eYZvunw1IhNkcoTpLfPJxx9FSsW21ZK8N0Qqg+qWIC0aw4//w4Ncec4Mz71kdXXzXk4bY7jlwZMFcM+KA/UfqFlr9wP7/d8LQoh7gW24WTjnd1sF7PN/fwvwdu8f/6gQ4iHgauD6L3XfnjTwfnjvkT/52W8649lvet5piK4TkmaoGC1PoZRGa8U3nL+Oj+3eS7fvmYFUS28CnmAqHlCxWxa3KAdBBXWhE9pKqbmaLdXWw/c2sC6JDJZoS5nVcq3ga3WqfrhMA7b9mCgsPZscMmKka/BKQDwAz6YcSgVw+KdxOWYzHKBOWW2oBHcq1DPr9k1zkKfH+uMFsP+REd/2W/dyZLHgj77zXK45cxVmmCMzg+oOMWMvxHzZZDtScNxfywjnImJx7jOhaJCxLh1hR4KxvOjp67j8jBle/ev38VebDvGGF2zjirOnwcBNjy3wtItmYjYWof1jHsMzdqzhp//5Pm57dJHLd84QUzy2tQCy02fTHNNTtdTFpMmkNgDgB3/+Iv7yUwexWBdk2mzhPG0p/9JrKbjlkUWu+4U7MAZe/w1bOH1dwyqQAuLwewq+m/eQMspp0aoy2Z62AHgDO51eI+1D0me6DcvDav++F6KerjNYdgomgXEqR5q+26FP4Zg0vzhUAD5V9ttkRHo+0n2rdygs8K0WrmZLgMepQExt3xXAsV3htaz60M5kx+ONnHwXbGWmbzvOaFm/z9Z+1Rn6JuhunrsCTCr2R/iS2UJYzt+Y8Z7veDa/e8P9/OA//y1vfPpzuWqdQgrLnYfneGxeMNICazVKSD51eDsGOG9pPc9e/6noGmHBp/gDWwhMIaFQnL3e8ov/aQdY2L845vq75+E0B0ztUCJmtZuT866su+ga93xLgR14IG0EsqOR0mILFdleawVi1kQyxGqBKRRmnKH6Y9SawtVp6BrK4z2EMnx210meecEcQoj2+d5kupugOSWCTiWzPDkUW5hvbW4kPMF8DdafdM7U/vYfTxAcHK5T72cyH9MMJy1zN+xnrZ1QHvW4w7/eM89zz1vFySOw98g827qSvnIl2Y1Pa2mtRJaGQucopVHo6FKirUJaw3nr1vKJR+/imTs2k/mMPMYoV/1y3Kc0GZksyWf3879veJRvumADZ3ROZ/l4SW7WQNHhxy7ZxK7lI7zt4wd57XVbwQou2zbLHXtO8CNPPRtrx8jMua2UheD99x7mdz6xmxdfsYb/+rLT6rLYP/+/+shhLPLQl4Oh/XI1OyFs/81tvRDi5uT7H1tr/7i5kxDiDOBy4PPATwAfEkL8Jk66X+N32wbckBz2uP/tS96eNPAejop//df7l8Y/c63q2GGGzIw34UiU0GR5yef2HODqc2Y90BArBjgC9YU0VE4UONAX9kuB6KnY2ub2AEpTDXul55uaam0DBK9wvdaqXCt1y4PtIChimsCwvXACJbLs4dqpqTAVain4Squ0xRNS7aep0s51/b2eygeY5Fj8vnlyctPoQ2H57X/ax29+y3n8ygce5dEDBQz6WGkQma8Ylmn0yM0XhEUPchhlyFwju7pK3xXucYBj6ZVFdKwH4rBpdYcP//JF3PjgAj/4J/fzSy8/nWeduYYP33Wcn/qOrVUA3jweEEkwGX/w0qv4xX+8g/f+9EWTi1SarUN7BBMyiKTArGnuTcevqQSm85vGvv56z79oNc+/aLUfQ7+9GRyVXq9FWbTW8n8+eYi7H1vix1+0lde+YIurHEvj+NCaikDKFKel2kML11ymyl5SiioLQj95qdN7DBaC1G899Dvsl+YbD1U/e8A6b5UIQDnkW0+fQ8qmpxaGEP+QtvC803SKTfmTVrBttibICX8nOfEnAEAbe9hy6omiN439VgQpgSCgCi6baA2GOz1uxb+twLT4hcfDU/Y6+b7i/nrS5zt2r+FyItK+JOeWUmOtoJspfuqaC3nxOefzSx//PJtnH+R7n/oyjo8yHj12gqnOLP08xwJ7lzus6xXsWp5hfP1zufb028l6I1R/7LKLKIvslehlF0hplyViWoOC4rjh8ELhAr1DmfgMGAnKxY7zuNMlDCzB/13kGjmjPYEgkN3S/Z4ZF1QfcvuXRKuBzDVCWvQxpw3KToGac/5XH77/KC+6dI0fj3TQ2ga5sa3N+to8JH0mqXVO+H++4mNrar+WNJMxjV/bs06UzCeyzLTus8I8doGSXkmTJpmbFcttjYyMvhAWrRV750c8NljmPTeeZHN3Df948CG2r+kyKi26cMfo0kWkG604d90qnrZ9A0Y45ttqgUGCgReedRr/eO99zHZ6HB0sc9W2tZy/biPgUhDq7AC/f/0jvP4ZZzLTk4wWx5RlzvJwmn53Ga07bO+vheI4xck+QhmeuW0T155msdYgrGBhqPnLW3fz17fu5Vnnr+JtP3wO52zp190b/fpz5HjB//v3u1li6m2nHOivoGbhS+FqcsRae9WpdhBCzADvAn7CWjsvhPhV4Cette8SQnw78KfAC2hHif/+Hra0Jw28rbX7zzlt3aCg6IjRNMViTlF0KIoO49IJkNOnV3PnoXlXcEDhXBJWEgQp0xTcLSR10z7U2TKYXNRCZoY2RhjqoCV8T/XBIKya/WyaYlvZNi8ATiVTDFgp4uIiMlv3A5eA9Sa/Ahfk2bZAtoHvwJanLGF6TNjXCsdcp2byAEbCWKWZY1KG0QNzK6gKCxnXZyxoDZum+tz848+h0yuRmQPT2mcICGPkhDbu71JhjHCLkw84ikFQ3mUECWLZVum3DHSM5NrzV/GuX7qQ33/XXn7pHx7jJ755G+vWdVwBoCWismZLxzhdvHkVCwPN0fmCdTO5OzeNMTNUYxb8zcM8EUwW4QmgKDvF/A7HtoG30FL8sRJH0eYuArz/tuO8+9ajXHPuLO+/4Ti/8d39dl/t5rmCopD6O4d3Kt0eXMVS3/XM1i0t4f5Sq0kYq2BBaComzcwrAgfoT+CAtyCCdr2/i9owcqkXm0pPes4wf9Pzy2Rb2iSVn35k+BNlvznWzTFsKlRtrU3mlNWJox+sMokfbLJtRZb6ybFDrYC3zZLnwXbMqZ24gKT7NM+bBkQGM37tkAR0mwQArdTHJjkRfrNWkmUFxhi0Vpy+ao7ff8lLePXfv5P5hXu4et3F/MsdH+fpZ76IhULRVYa13ZJBqbhk7iRHix437rmYLf2TbFm9j5lNxxz4xoFfUyhsabEHBKJn2LG2x7kb+nzu1gWuuWTWBVqWjhyRuZtY5VIHmRmsBZkZX5ocbOEC+0TX1oKh7QnpiIUZg17IMWMXjFoOOsi8JJsaxzlbYvnXu0/w316148kt97U1aYV1rGW8a+RNbS1NFMoG6A7+2LUc3MpMZipJZF7c9mTcoVLXkjbA3biX4P5kTZK5pBl3ENjuIscYxb7FJb7rmRt50brtFMMeV522GtlbZqoPWUdjixw9ytBFTlnkfPCBA/zZ7XfTkRld1WEm7zPWcGhxiWPDZawt+dYLNjI6XPB/bn+IbbMHWT8tOG/jNDc8fpifuPZ8+lMFZuzcVYqig7aKwWiKTJXceXCBc+c2oYscad3aaUpnMXno6ALf9447eM21G/j4z13C3IyqZHZzXZHwsTtOsmXdjLnpoaPvf+LB/sppXxZUmzQhRI4D3X9jrf1H//P3Am/0f/898Cf+78eB7cnhp1G5oXxJ25MG3gBz0zM33fDw4gsum9vszSo9DBLtE8ev7fY5sVS6zCEr+g8yycSFXZtCIwRdpsemn6G1CZsnY2xZQVi1+m3XrieIPm+RNT4FAE/AdxQOhXCVIaEOekoqRi1l1xp+vbGvOgRLVdcCUX2PzKAXRkPh7NNjKjcPcOmzpkxVuVDgC7a4hUQYqrSE3vxvS8ujR4dkFxr6q4Yu6r+UWK0wRYYSRQQ1plA+6jz4fwvEKENSuoCnwLIoW6XraqbY85kGdm7q8puvP8uPo63AY9h9MfM5XHOsFazKuxxf0Kyby+tKS96YSCm4s+H+qRaUVGkz1EHeEwE2kvMEZbENVKcBmim7S33f8zb32fX4kMf3j/j2p68/tQKQKlFt7HxqAQhMdXDNWCndYXredO7VmFpb3WNguVOGOpx/2jqf2TTIWoPakaSibbNApbIkZdW9P22NlYfJ59sch2abuN4TsHZt2xPl3GpfzONULiZPEqRAw83kCVxLmlkiIPHhbvG3bbqHVMdW77Dz061cRFKWMU33lf5dbZe18zvgbWoyMhwnpUYIQydzAWx//LJr+OkPfoqtc/dzyfYX8ujh2zhz3dN81UDLSAt2D6Y5b+YEfTWmMIqTS2uY1icQ6ChrALS33roxhKeeOcu7PneUazqzMBDORzu3yK6O7nLRQlBKZNeB7pAvunJnExR7p5Adjcg1YmhRawoW71+HUiXduUXytUPMcoYZZMiO5n99eDeveOp6pnM1qWjWHkLye0qmnIoBajtPCuBO4QZSUwZTP+7mMen54sFP8M60pdVcQflrFmGK86SsQEK0yIR5aQVaK1cZlZz9ewbILSWy0Kiyz3R/6C0QAjLtishaQQa86NzNaJ1hrWVxJPiDG+8lVxkznZyrtm7m0NIS1+85yIvPOYsXnnk673vgMb7z8i3cfXCBH7r8UsqhYmEIeT6mKCpft0HRoxxnfPLRXfzn56zBGonqFuhhByENn3vsKD/93nv48x8+l0t2TFOzyDWfo7/1u/cscmi+LIA7TjngX2Hty5kSUAghcGz2vdba30o27QOeDXwCeB7woP/9n4G/FUL8Fi648hzgxi9H3/5NwPvexw786ScemXrBM599kqWTq+hkY5bG0wzKLlPZkIEZMd1VFeva9ENqe/nbFtMUiDfZo9BSEAQrv+Ap+9sUHk2zMy3CpNka/YiMlfCAUa2wqBrqrinNMtGi2kckG2xgaCU1f/HmeWvH2CSQs+G2IDqeYR5Lt5D4wB60cOZVY12KNkvldx+eo7a1lG5///EjbFqd8azz5jBFUEIs2dwIVRRVWjNhsRpkp8SMq6CUyPxl1k0ZXM5ccutmZpp1Q+LAWZhPyjo3mKAcxHEMJkhLPjXAlIrvuGIbv/be3fzh951DN68WdRHcdVIrQQokg1uFFXXXn1B9NHyPFA+tbiETLg7pc/HWDzJbn8/hb+ufScML4OytfW7/75dTDiHvi2qM0vcifG9jbUNWltBXqJ5taG3scgp0A6hu+liTKIRdW1VYTXOch3OFfxbn1jLd2AcmMx3Zxt9NRR5/3aAc5cm+qbLTBODhuuG3lYBP27g0vz9ZKqcWkPZvW4SabiZPJlgyurydat9TLYYtwIfGeZuuJAFoAwiha6A7/RRisn/uODewM1PzlGXOGXIVb7ruWv7ijvu5ZPNWPnpyD9v6I7QVrsrloMOxcc7h8RQbOjCbD1i36jAi146dLqUvFe/GXijjyrlL+MRdJ3jONXMxy5LoWOy8BGUxhXJstxHO7aTnzDu2UA685cbtt9ShWO6ii5zeqkVkr3QB52Po9pe9VVBCbhFdjV3OQMD7v3CMf/nPF1YDl75r6ff0WcTf2smiVhIpZGdZwZ8bqIIlw3XSa7Y1L/uejFtJPMQz6G0KZLhWE2w3+9AWsBtyxuPnotYZQli+59Jzec273sf3PWcDYtB1Pt2lglz791BixhlSGaDEjHpeIYSF0YinbFjDC8/aibWCXBVoz5xpH1R8ZLlkYXktW6Y2Mi401hQxW0qpc0Zll+Wiz1x3gaPLgrV9gxKKrDvElopxafmFj9zN3YdP8i//5SlsXeMDbKLVuzGAiSvu3mMF01P93daeOBVl+B+tPRP4buALQojb/W8/B7wWeIsQIsM5Nv4QgLX2biHEO3HBqSXw+i+Xv/y/CXgPRuN/fd99R4tffOFpeZYVWCs4Opwjly4dz9LIMNWRFWsroVbIpc3clQKdyAImx2jqoCMFMM2FsQmapO9H0/WiJWitVUBZKsYq8SsLgsoxV1VKJKv9u9HGfqeCJZyvCbz9scEVpQbOrHUAu2GOjX83jmn6n0fQHsZtXCkNQuqK4Q4A17PLNZY9bBeC8UnNWz98kN96tWOegylWSItecghLZBqhXCyA0ZLO1NgXAshQeYEQuMUqc6Db5bwVrueZrdwOwtTPqdwfCj+oEsfElzbuIzua4mQHkWmyqTGvuHwdDx5d4Jr/73b+84tP49VP3+Aqk6cWBajmZ+p4FhQfk4DvAMbj2Pi/g8/9qQDZBGPhgVcKtNN9Yx+T5+e3CQR5R1TvTNt129x2i+T3tnnatm42QWX4XgPELe/QSLRLmcKbi3NbpW8L8iK17qRl7E9lHWv2tekDLlq2NS0KbecJLX2/Vrp2jTTw77eqAE6bz2xFBgRzPisCFyHTbA2Njd43d7JP9d++GMAd3EoioGmcr8lcN7cbU00SrbOJYytQbmLe4zqz6Y6XUqN1xuJ4mpFRjMuSdd2CXmcV9x9+nIs3bUX74wojGOiMw+MpZvMBWiuXi7uwyKmCY/Mldzy+yEMHhyAt52zt85wrZ7nn8WVe+rz1boB9bIEYW5eByZceFxmIjo5ug6o/dq5y0mVwGi/2KYscKZ1LCrlLH2hGFemQrxpiFxV0nAXk5ILBGMuqqWBmY2WyKrRTyRVWeNbpOhQu0wC7rX+3naP5sxatx8TUgQlJlZ4/ncu1Pq/A4k/MQSOrLrVYW1zgo2TNVMbFGzdz24EFnrYhRy5oymEXawSqV2AKhS7yONezrKAsc4Sw3LTvIE/ftg3lq1oKYcllwbjsIKVhVHZZ1Z3h0GLJ6l7OoOzFEvJZ4crJa6voZ0Om+wt88MHjPO/MzUjpXExOLhv+n3fexvMumeMtr7sIkSX4ILUyQqv7nLGCx48t/wlfRe2Jpve/+/zWfoaVzUBXrnDMm4E3f9k65du/CXhbaw9v37B6eXlkVvVXLVAeXQvAyaLPhqljLI5LZvqqwfCtALbjOUWVx1d5wR1AewAzASxb2he/dMFvA+ITLiVisg8p+9VkArTwzF67UEkZU6s985uyouGcLWa9dPEVylTXitlHRKUAYLHiFGxCBBPJPh7k2zC+YfHPrXML8WV1Va9ECF25mQyBGRwA9xkr9uwf8a6PHeXQkZIP3X2M73/GVi5avxprrMsYEBiMzPlPinB/QGdu4NiEThkDjGTX5ca1Q6KLgV1WiLxsWDOYDHg1vo8hS0aGSww0JAJkM86Q2Zh8VcEvfMtp/PCLNvJz73qE99x2lN//7rNZN5dV2ThqFhBRXSMd2+DCY0W9KAxUvxdERU4oy7HFgrGxbF7dqc7TBvakmNxWm9MiAZEVS1qNUQBwyaIW5kNbJgrTckxba7qTNI61AzFh6UmZ1bh/07c896qhweVFTmMM0u60jcepWpP9rr3X/rP5CqXfV2IXV2K/w2HhvQ0tWkhYERSnQLq1X+HcaaBb27M/VUv2bwPF7o+V3Uri9hWCJZv+2ynbHQB185ohi0RzH2slxtSPDTmRXYBcRqFzRjpHYxlqw5pOQZ5tZKk44q5vBV1lsMBiqVD++PG4R69chE7Br73vMc7e3OeyM6d51oWryLrw+V3z/O8P7KXXlzBvYRpsTyKWDGQWvdj1ct7LeC0wY+Xni0ZMGcyCQg/dkiqlIeuMwQj0ia4j171LhOyUUfYycgTIr3/4QV75tPXEAPhToRLbIp8aYzyxvfmKB0xrqUBx2Gcl0sjvX/PzDrm403619UnLCmBbx3K37VP/YVLGNdNXtjHecXui1IXva6fWsOeRZS7vTCEzjcxK9LhDOeo65cwoOp0RqjPGeCbbWsGxwYhNcwprC6yVcV5mssQi6Kgxr7hwG3988318/+WXgYX58TQdWZKrklW9eZbHU66qZXfEkWXDuhlD1h+y75jmW/7PDfz8K7bzqqevd51ti12DOkmZZGp69LjV8/PzH2gb+6/k1hoc/h+grcT1rNhWz01/9HOPH0H1SpQqmessM6VcPtJlPWJuKlHHApAIRXIMCWMjaiyzGWReQDkmzIZy7oVw/8ZN8LzCnbSx4M3j2s4RF3cPdNsYpaYcSBP8FwpbKAc+S5d6KpbS9edrVpZrFg8wY+8HHcrvhmpeJoyJ9JklRLsg9ceklcBIP4tqXEVuydcPkB2NHnYoF7uOgUkrKlo4sVhy4OSYn/ndXXzjz99FXiqetmM1n3jjVbzumh3+2u4+UoAQA48AIQ16lPmAmKTL/p7Nsg96NO66ZjGrKpwuUaWyC88osOBj/7mMz6sLdECsMuQbllHeFCy6LqfuhrmMt/3wOXz7Uzfwwt+8k8eOjNx8K0R9TiTztdbSuRznhfvdjoT7N5DohRx9ootZzPipv36U7W/8PL/wjl2Uo4SVTual1f5YLeL8P+W1C1H9XbZsS483YQ4kcyr8ax5jG4xVekyR/PPHuow8yTX8NSeC5NJy0qFlVFmPgjtICjialq50HFIGSCf7Qx04hyC3MD7he/o7yW+6fh9xDJrXb2uhrzb5F6r8reBCMuFastIiZKuqfIBza/s3YG8geRc9QTDBLK587Yn9qeR3CrRDSrXwL90n/XR+szKConS/alv9ezgfQC41g3JMP+swowpOLN7PWRt2YnGge0t/zI6pISMj6SvNdD5wQZ6Z4b13H+YVV27g1c/cwHmn9cmmLHQsTzt7lscOjnjOxatcZcsTIA4b97zHAjU7Jls3RM454kAPcgecg8ugdzWUuaYzM6A7s4T0BXLKQYfxwjTDxWmsVqh+gV7OKZa6DI/P8rc372fXiQFvfNHWJ2FVWWEupc/pVMenBFAL4902J6sKqQ4cC2krmR+qTE6w0KL6tGICYE1k5Gm6mGiJaRRqqoHuFncmcIqfMZOuTKVx1oaz1qzi1kdzuusWyWaHqN4Y1RljraAounQ6I2ReYI10BXHyMb2pJfLuiN7UEp3OyAf8BiuMQeAqVXaU4mnbNvP2L9zLSEuksChp6KqxKyUvC7r5kMWBZamYZ8NaVw743ffv5nUv3MyrnrqhLp+LxriGWJtw62OggA989hgP7F8sgbv5KmvW2Q++6H9fre3fxHgD3LNr/x9/8IHpV7zgzEx0+gN6SyMWiz6ZLBmakm6nsVq2MMsWN7GKkz1krlFTBbKroevTMoXFgYRFCgF+aZXJ0KJ/bvJiJozfSrln0+wi1opWYB01+uCW4SO5o/AJXcgmJV3cL+T6TU3FWlRZQiCey4yluwbePSRluALbIPx4KFOZsoMQTVgDl0c8fQA48I1z7SC3qHUj5HSBnu8yPDJLtjRCdUuOj0b8zLsf5u7HBxhj+bFnb+eX3rSTXpZFAeyAs89XWxpsqRCZdsyOsA58Zz511ihz1dmMQRcunaAehHRaJcYzRSIz7rzLWbx3ucZXlCtoFGASLrgyrf4YrJnThkyM/HO1MIsr1FIIvvWK9dzx6IC//PRBfuHlp0/kY6+5HSXPqOZ/mroxBODprRzCKx1mrPiVl5zFHXsXeOz4kFf+7j389WsvYKarED07Cfhrj8oxybVrpfs0WKha00lfwxx/orxN6WItxcoLd7h8mJO+rPaKGYwCgznyLkTdhNGTOLbbgD0uXZVB3//WyqDJ+VqZ6QL3rmR2crwE7ekSU/cVqMuWYNnITi3gJ5hgQTUfAgD/IprVshbMl5rmhWAih3drVhJ/TxEw/RuaK7m9clrANj/tZnMgSLYAr5VdW0KwfqgcGDKjgCRXBTP5EsLMM93pMpuNGJs+h5chExlTmWFsJLm0rO0UrMqGrJo+4QI0leHAwphv2bAOjKmse35efOtT1yNK4QriSEdO2OOiWpP8OyKmNHJoKRd6SCNgBFln5OTp9Bg7kJhBRrnUZTzsIZXLBZ3lBZ2ZAWasXNBlZnh4dIg/uuExPvxzF7mKs80hSdlrZWvvaZPZtm3vbXxPqnX1lM22CRQ8GA5r15Pj61If7ol88821unZ911J52+bnvbIyqGKwbu13JGevXc0ndj0EnSlYdvcxHvRZGszS7y4js5Ji2HPMd29A1h1zfDhm7ayIGXxcvm8P6EtFtztwimEhuGzLeu48eJhMLNFVObkq6eVDpNRM9xfpdEb8yU17eP2ztiB8cZxhYVmbZ5WltGktzETlSpjKLQVHD5f81F89yuZ16247eHzxydgEv3Ka5ctdufIrtv2bGW9j7Kc+fv9xl27AClZNH2cmH1CaDG0tmaq/UBMsniUytjIzjBem6ixRwtymrK8DeyKWA59oiRCqAafGVIx9CufQYMukb80FImr0/vpe6FTmtapvtX6Gwg2B3Q6mxbhvnf0O17JGYEvlUu6NHYsezlcx5hX7YAtZsRK6On90Iwksetrfhj+x6BmyLQP6209SDrrseTzjVX9wL8+/YA2fesPVfPrHruHVF28nL3uxHLLzddSxQIYe5ZjSMf6mVOhxTjnM0YMO5XIHU2RY41iMfGrkGKJMI6TBjDP0KKNc7lAudZxP+Fihl1xJXbsksQNZB9c96gCrwDEAYTtA1yI6JgY2MVU93J/7hjO46dEFPn7P8YY/qU9tlvpzJ8x0bU7VwKqNKeNEbuKis7k/zV9/18Xc8/gy52zp86LfupNdR4duHjdbc+6VovIxTxnZlEkNzG3jX7wnmSieLW977R21YuKdtdYpQbasb0/Z7TYXhrbF0o5E3ZKQMNuin7yoAl8Qierew/7hHTXJ99AkxKDulVi/sH/KqEcGMGGYwmdCTUxU2kvvsXmtNBBaJP9qJ6jLEKBWnr0tR3IA3Svl8K5ZGxKAFAH8qdjtZvd8kZ024qL5bFM/7rA9gO7wPQXora4tCLRVGOsyZVkr0N431ljHZIaqggujMbPdLqVVbF97Prc8/jDHRhkHBh3mC8VimSGAkcnQWtGdXmZsyxgcaVNL6hgwsO/YmNOmuy5DiQGzoNz2JCuNHTs5JFeXdDYuIbulk1dLiuLwFON90xTH+46EkNYx38rlI7dGIrulK7YzVaBmxvzdjYf4r998GjO9kBUlHRBRWWug7qIYtrUFZFcDWmeSm3FFUFldA6kTjms2YeskTksLa5ApZbW2RAtLy/7pPAgMepKyMMqRJrvdwnabRvxBcDNp/nbmmrXce+QEw0M9xien0KPcZTwRBik15bgTrSvluEOx3OezDy7w9O3rAGIMQsgxL6VmaTDLYDTl/L0xbJrpcGR5P6v6J5jtzzM9tUC3O6TTHfLRR/Zz9uaMNWu0i4sSluedt5pPP3CiIiab+CYQO2nL4eE9A77hzXdx6WmreXDf0d895cP5evuKav9m4G2tHWZ5Z/8jhwaYMkPrDCVchSVtIEu17vQzAdThBZW9gt76+fiyTfzzINMW0pu3/fHjBJDYAESos1wJkA8AYvJmmAT5te3JSxtMZgFAN4NTrK9K5ssGR2Cd+FGHqmU1oJ3+i6y1iODZjF1Qjss5q+ruKv7cdeVg0pWlpgR4wJZmSwmft+1Z5Fv+4vO8/C9u4o3P286rL90CRnphqtDDjvPdVo5BM4VybHWpMGWG0QpdZKhOgcpLNyal8oBbYbVCKhdwFIS4HufoIsMU7vhy2HW/DXMXNFM6VxRbSBfAVOD+DXBMlfeprgFwqLFZomN8xhYiU9BdU/KrLzuLt3x4HweOjRNlKVGc2uZ/+nuYY8GlKGwKCpof83PXzfEPP3QRn3twnjM29PjW372b2/csTi6UIjlnANfNOdqmpIbrp65NiQCfUDabLX1vNA5s+FSTQljkVFkVfYquKzjrSQDkqYKduoA0W+qeEs4X/g7K0zj5PfxrnrOpJIe/UzA9FpOxAiLZN57bg480iw3UXXlMi+Us7V/ayuS5tfU1bYmlqqYgn6I92UqVQpmaDIu/y0kw3QauhXTHT4Lsut9svW+pEidX+L0ddBu/f9M1JQXgWitKk3HX4eNcunGafcMptq6e5ZETQ3Yv9Ln/WJ/bHvsctzx2K3vnT7C+u8ite+e5Zc9J3n7LAV5y+Vqf0SR5z70sPL5UsrrXQfbGlEPh3Em0jPFFdqgwo0TBmLLIaU1n0xIiN2TTI/TYERCj+WmWTq5y96EVy8MZyjLHjDJ33pFi35GC937hKM+7cPXEeNTmI/XP1JrrB68C2eHdLEUFuttS9kWixm8TdaVvQhn0oPiJ3JLiGmapK7JPooUMJhOAPN1Hq9YgX3fNyTkHFTlgrERJyWWbT+cvPm2RmUaPXXCkFIaj8xs4enIDS4MZxkWXh46MeOsNj3Hr7mW2Ts+i8pKsPyTruLSWLsGEjO4tBolSmm86dyNHRsf5/ZtvZSRPoPKCrD/k/Q/tptMveNEVcy4Ljl8DZ/qSux5fdp0OMTAk70zAN0G2+jH+9Xfu5c0vOZfdC7YYDAYffNID/RXSLBWB8MX++2pt/2ZXE4Dlkf6L99+1+Mvfc/FpDEZT5KokVwUGg0wmTT0YLtGqbV0gPGE52nA+X+gBLeIaGltThWia1oKLi2zss8L1JwoDJNq4EGCTtHVh/9SvLfhgtpvXBFbaVvNbu4LgAWFgn0JBGoEXhKZW4KAZ7CIkWBP6KojZV4ytzO8FvOPTR/j4I4e5/iev5oqd09Xl/UJryqxmCrNGgjTeraTEFDnlyAUhyUxHtiwKdOsCL4EITMtxh+D3mWUeNWvXqeAeER6ZUNZVOQ0AOqTZC8IoZF0J/rwhMHQcgFSiFEq4+Kw+49Jw7X+/jevOXs2f/cC5rlRzeOYB+Aawln6G+eIVyZCWzD9e58c5yF0JaQFnbOzysf98KW9+72N89J7j/P1Nh7ls+0z1jINrQhsrlbgqtbWQ+ksEf9PauQJgdp1/Qr+4kL1F4YD1WNTZ2whW/FORFkF137GFsQrvYRjWwgdjxgXfOmsGOHA7beo5zGn8TePvFe+DKuAVW1kLAiue3E88X8igEo7NknMl5v0VXTrglGAnfa41y1l6ribQiIC6cQ1pa3+v2J8mULKiFdyvePyT2C8FO6ccm8bxKdhujmuTHQ8yR1vFSHf4wsG9vPbyqzhcFpw9N6DE8uh8l5PHP8ALznkK0x3F7ftuplMs0Oksc/Fawd0HlnjNqg0e0Pp5YYSTjcBV2+d468f2MTYWM1BcuWUN15w/jSgcCaJHmZPZhcEed6lYsbhsKZmhXO7ULEDGKJZPrsIYyczUPFl35FzutOITjz/Of3v/Q7z5FWfU46IgyvvmuAljJ5XnNpY6VfhEYxvV3Kv/6D4cqeLnZCOQt81dqZZcQFQVVV2fJy+zYlVVVppbyfXNZL9ToN5mdUlBvLHOL/ibz7+Ed3zhen7wOTvI+0PMkmRQ9BnpDrOdRXJVIITlM7v38v1XnYEUEiGHtXkYPgudo62iNC6QV2WaXkeTKQvS8E9f2M9SYZgfjbh8xzTfeOUsKOPjZdz9DIZw866F+vxPY2IErg6I8Q9Ug5WGWx5b5JeetYHF0d4T1tpjLaP9Fd4E5qvYT/vf074o4P3Q3oN/86FVM7/4HU/JMyEshQdkXTKGhfNCiZMoBTAkfs4NEP5E+bMDexO1WHzVLOlAwoQPawAgKUiChClPzh0rK6YrY3t/IlgO/TbNgEEZT1+NQQtTUPoUSG15xhu/p7lMRQr4pQEJ1qiqMIdNmI7IVFTg2x3rb3/s/W49WF3bz/mxZ53G5TunADBjH6GfV9GE42HPmUyVdlHf0qALl44iRPKbMov+cNZIdKHIumNiUJiwlN6/25nrDNbqmGpMCANFjsoLz6YrVKfAGoEsNKLn/Mbt0Pvdd63zHQa3YIUy4CG9H3gTsUv3Jbra+VDnlvf/7IUcOFlw2c/dwoMHB5y7eWryoduGchbmVnO3NPctDnyHZgYZHWn55W86m//6wtOZ7vpA2RRsJ6x0szSzO/8p3pEwRxLlFMAWst7vCYU0mSvpucZVTMNE3l/c3HCVSW20ushu6UB1mqM+TZ0ZQEAhquJFwRUm+FqHMWljzNP3KAHurdlZ0n21++5yi1sXE9ACbqJJPw1wawRrrwgs0/tNF83UPaChEAeFvnaa5j7NlgD72I+WeXEqAFzLRBF/q9jxuPi3AJ22cz8RaF/RreQUQMn4F1di0Fah0K7qX9ljsehwZHmR1b11PHi8w+pOyayCh/a9h3PXn8OGmVlGWvKdF13K9bvez09cuZ3eqiXOO/N03vKBvfyXF+wAI6H0CivuUVy5Y5Yrt81FMP3WT+/lmvOnMUNXkEvmGtlxxIFezmHs39FSohd7WCvI+iOKpT4LS6uQwrGiQlgKU/D5A/v49AMnGZSaD957lA/85EVs3dChrpGJCStK6/g2g5WpZNSErAqHp/snoK72Wdtncu7W/LZVIHxI5s5kV+M5VvANX9HK0wTdDWvJStaT+va69cRYwcnhgPVTXYSyDBemOHRiE8tlj3X9E/Q6A2flkwZjwZoOY505dxRpyDuj2K/gotLLh5TaYaBdJ07wvgcf54VnbeL1V5zJ0miabj7iC0d2sW7WYscKOVO6MdNONt61f4FffcUZrtPBkpESMN63P9TrsFZw/Lhmbb/Lh+5dRKr8XSuP+ld2+2pmrf897YsC3tbah8/avGFZZvNzU3mXxflpFkcz9Ows+44PY0BXZJnSY9OXLwGvUGf0mkA4Bhp5QRK3B/NXM7dlKkhaWMT0OrW+JQt5qDQXT9lI/9XGak+wNtaVZU63x23NY1KWIWFO0oUwyktjQVTlnpEGG1MH+nNZC8q419WD73BfTqoIXCSeG6enbJxjYXQcIVy2EZFpENJlawHHYgPDwRTdrmMAxoMpQnolayXd7gCtnV+l9CWls+445kYNJXkdK16istLfj0R4l6XRqO8CqoaWTmdIpz+ILKk1AkYKrCZUn7SFL9YSKhWGcdTUM5CU7r5UZtxcKkFIwZbVHX7ppWfwrs8f400vm6LVH7dlfriON76nC5Stcv86NwJ3jikpMcMEYKX+k1bUgupEmpbuCZqbmwKy6lzh9wigkz62sWSTPp8JONFV5UXZK8AIp5wJl80hzrnmO994v+3Y54XWwrkB5Y1jQo7vtoJRaapHgws8iiBZVBYPSRUk6oOURZ6c51Ss+QrsejTxp2C8AbBXtJ61gU/TPk4TQCRRjv49zPRK13U/1kE3EN9ZkfzeBN2B4U1lXhvzmDZt2wM2my4sAYALYTE4c742kruPLHDG6nUslX2UsJzen+fyHddyx54bOH/TBkZakkmLFZI3POMs8t4iQsBcJ+fVl2/ijz+1nx+6dpu/x6CcJcqt8UV1Upe6zDiGW4AZZvGdNqWkHPQoywylNMWiYjBw1kIpDIcWx/zKp2/ivsMLPH3nKp5z3ipWTSu+67oNbN3k88HVLMPU51yquMn2Z9qmnFcWTuq4vmnlTYE5TMi99N2tXccCQU61taaCP9HpRDFu2TbBdD8J0D1Z9dRn0bGqdtztB/bx/HM66FFGUXRYKKbYPHOEbj6MVteFgSITWQzSDODdaBXXN3DPWKkSJTXvv/8QJ4cjvu+Sp1LYDvsXOkxlQ6ZlSUdBIQqwLggz4BIzzvidT+zmn974FNf3FoUqWjAhkpYzImNprPn4gSP67l2P/9nKA/319pXYvijgDdDr9z7xqYcXXnbt6XNkssRYQc4U88uW0aEZumuXavufMhK6ITTCy3xKF5R4rPtXW6ibh5wKdDdNajUXk8CFJPunx7edV1pEYpZGWOfX3OKDGYRJOE0QMIBnLieFmvUvvE32EdYgGgIymsWsiMx4XdgJwMBYxfG+/tGTXLJ5lWNzpMWMq0ShplRJVLemKDqJ6c2glMZaQ1k6dOPSgGmEkWRdl67JaOmqto0kMisZLk/Tm1pCFzmjUZ9x2aGbO4tJt1sxD1IZZKess66CKspf+/taElXFQrwA82yq6Bhs6fzwZaGdn74HtqJn+O7rNvGaP7iH336/4o0v2Ir0dSyeyBWgFp3fmDvWiKqUdAAu0tSEaJwPRQiCld51x1W3k50S1S0nzn2qZktZYzWFdKx0yLyzkutK816r98nFBMR5pYyb55lBGF0v2Zy+56LOkkfwpgx2LJz1wecAt8EdKPFhjPecBIimi5bomMl86uF76vefzntf3Cv4TabgPgDrJuCP87zpb9uwfEyQBW2A2yb31cIoYuuV/Grj+QRWwdbWkG+p9azWmpaE8HML+K6dvsnYW5Fkk5CTLiQrmJbT8xgqH15tJRKL8AMihOXOA3u4fMsWCqPQVnDf4hr2L4FkGSmnKE3B2bMDzpvbl5zf3fvp63pcuWOG3/robp62c45rz13ldgjpFi3RNWrP8RG//6k9PO/MDTzl9A5mmEfAXQ4q+SeUxoy7UfYhSv71sQf44MN7uefgAr/00p289OLzEH3t5pahys4VlLnQGhaWWmv5fSWlrrl21fZtzC2n5E/s3q5Epsf6TDNpwG+9v6dmpKP7ZnOf2nytXJGqPjzBeZP9rRVIYSjIMUi0ldxzaC8//rQLKUeS40trmMpGZLL0llcH2G/Zd5grt2xwoFqVnvHWjEZ9b6V1FVhL48D5Z3adQIiM55/1FAYa5ospCiOZzgdIqekoSVH4cRu5ezTjjJNLmv0nx2yfnobCyWnXcTwBlFgwwy1bOHTYMp0rbt5zZATccsrB+Apu/0EJ7y8eeN+3e+9b3rtx7Uueftrpaqa75INfIM8tnblBxdqRLiqTi050zfBPQIj0pZ7UuGtgIGj1flJa/KIpYKWiFe2LYWPxqKXkq7sP1FoKhoLgFjjmGWrXF9LWmO/WSO1UoNjJaO7Jm3H7BOEvhI3uJBAElEUEARoAeNxB4QbRASRhBfNL/rq2Av7OXSTHGBc8ojWUZbee9ksbMlUvLhAF5JLzd+xNL1IOeozHXUTRYVx0YdktpkqV9FUZGbQsL5BKI3OXiQBBlV4vuCYEs1wKlEaV0mELUWdItf/dCGzpAkOtf04zMuOd33s5b3jXvfzk2x/ht7/9LGSenLdlCtQYoBWYTqvrgUAqKFPhHkpZmYgbLJBQLuMLRsQUhc3ztyqm/t0IoCsqfaOsxqKnim6T6Q5sWFAcgp9+CAIUmQblFRdVxjGqva8+eCueL7hJZcR31A5lxeoFUB8Hy0b9cCI+w4JZzhAdHedG9MNOfVzx1qEk6Nv6eRBTISZ+m5Zk/iSgKALGsCB68B+eQ5PBOyXoXmHfVAYCdfkSn6uYDJpcST6FbS2gu9UVpSkHfcXKJ2qOEazyGqfZTKAdnKd/t4HuFKAbK4DKDeWO/Y/x2iuv5vB4mi8cn+YTD97JTHaS8zY/g32LfWY7mh39eYZll5lUhlqBHmRcvnE9l65fx02Pn+R3PriPH75uG70pXF55Yb1FxvLz37iT8XLG39+1l/M3n4Y1EuMBtymd+8HycDpWM5yZO8FhfZwffse9nL2xz0++cBuXbp9GdpN3JFXe0qrKKzHATSAe5t0TIZZ0/bT192FCOfbbJmODbLV/w7IXY43C4aE/CdPd7pL1BApgC6heKWd3aMHC0hYfAC49pcTEeXVssMzG6RlGI8PY5PSzUbWvdxl54MgCz3rqWoRPZwmuCFM473DcZ6w7CCz3Hx5w+4ElvuOSizg57pEJzVy+jBSWYdnFGEVJiZIWU0r0UhfyMR+8+wi//rGH+cPXnBeVlJqVPcgakmfjx+gz9y9x2twsR6z+vLVHnkzUy1dcs4R3+z9e+6KBtzH2k5/etXcwfsZTZoTocWR5wL8+spdzt8tokgNqAqK5GLmXr37etLoVVItQdJWwNjl3Ar49+xRPJ/C+ok/ywTZZttq2hkAS1eI+4WfZdCVJtXrb2CepDIdfCJ/IhLaSq4qwYmKRDHl4hTTRNUVmVTR1MBeG/rzh2Tv4xj+4hVdcuZZVU8plVfFpsWRWYsYdyjKPZrZMFZQ6J1dFZAqMkVjv96OkRggTfbf1uMN43I0lfEMKp/G4R6czrAEgqTSqU0TA6SoDJuMSs7JUIFLktirdrKVjUocN1yZpXX7dQZ+pdSe9L7Fjprsdy1tfcz5vet8D/PQ7H+E3v+2slZnvZuBRsl0kFo4qpsF9N6VCGJdKMVT6tMa7oaQApHDPU2a65qsf7yNet/qtnrM9UWz9NgeAw4MP9xH2YeK9CvcS5rDMDaJTxvNanzFED3NUt6x8PkM2omQht8EqYQVlarq3/t5K6RUNFfPXT7iaBEUrBrSCHSk3PnnC2oXP8GxLb9Xp2HgOK0TcN+Q/FiEmoA3oQyXLfB/i+CbgKQZF+T6kylGrm12DeMAkFrB0vtnKZc2WqiYTZEgVGM57KiBuXeDzhJxL5E4KuNvM/E0Z1HQtOVVLJHTNtQSI7iTxewKghLCMTc5IKx49cZSZqTO4Z36Wh493kBQ88+xncnCpSz8fcPrMkJ4ak8mSTmfkMm6NcpchqXRuLkIarty4gTNnV/N7H9vNOZt6fNNT1pP1NWaYY0pJLiyfeHCJqzavY7w0hcxKRoMpyjKn06kH2wHcsvc4b3zf7fzGq87kueesdT/6OTUxfsavIWPpFMeOiW5Ttef+RKDbJt+bj7Q235K5ljx7mZsJUNdU6FN5FoG13+6qA+u6NfIUTPeKgDtcuybb5ATonpgzpu62VK2hdTcTbZWLK7ASsCgJg9EUQ91BCcMUgtG4h8CireLBI0ssDTt0s4o4CWkuS5NR6AxtFX9+282csXoVr77oYoZlTk+NKY1iueyyUHYZmoyNM0e4ae9RfvS6bcwvWf7PTY/wN7c9zrPOXcVfv/Z8zlpXpVQWydjGe2o8RwBhFPcdX7b37T3y6+2D+dXR/qP6eD8Bpbpys9bqbrf7ief9xT/zq5+8nu/+xw9x9c4OP3rtjriQx9R7vtXSFUEFIAIzmOS0hgR0J9p4BAkJQI+ZPCz1VF5GsJK/bv1m/MdKZruwLe17ZLgbL0l48T3gidW3/O9Gu9R71Xk9w7NCiqRwzvCpdZaUW3b+lMHnTJchV7ZPuZR8Vr/JmFEkjm3pUiCu6Xb5xnM38iPvuAebvBHGL/QqK73pTTuzW9FDG0Whc8Zlh0LnkalSPs9pGCNnput51ryM/R+Pe76qmGQwnI6Mg2OVVD0QrA1UhDR7pXAg2y9OVkv0Qhczylzw0yAH63LHC2XIe0OKxd4E+yNzy//41rM4OS74h9sO1QBpZLCbnzE9pCDmeo+skUkCYk0cTzN2BYXCfNBFHv9VqRlzl55s7IK7XEpJZ9qN/wJ4t/X+xVsKPuY1P9BkHvj3NG21/NGJMhHGoLmPzHVtLKr3UfjASzcuIV+7GWcUiz3KxS7lUselzCxlTLUZldqxckGeLZVaRZIpBevcVmrKg09DGnLnI4gpEmOGpXD+sfBpSmUd6DTTPSbzLdxvyny7vlQyqhmQtlKrge4VlO/JYxIlLczhlRjGOP8SK9YpWOgnYrmbOZNTIN4ERm2tjW03KyxFATxpqyhMxv3H5jlj9Vp6SnNwOefY8knmWc+e+T7LRcYla5dYlZcUJmOutxBzaMtMY7R0mZk8oNPjDrNyhh+96gI25qv455sXGZ+YcjUFhl2KQY+b9h9i61oXLF6MXGXlQueR7R4VXZbHU+wb7OON772df/zhiyrQHdYeU/8XLU3CuRbopQ56vlNLXTmRpjKsaclaVbPMhvWvQVxVrphBRsnqvU7Wqdq7fqoMX4kSGaza5ajjU93K1rkb0tEGpac6b7CIyYn1r+Z2SfvcWuk9aUtjGbLnaAOZMIyKLidHswx0zkjnlDpjWPRYHk/x4JExm2bWcMveRUZFl9Jk7F8Y8oc33s9bb36AhaFmWMLf330/l2/eybU7LmCou4xNxlB3GOicw+Np9g6nWZsPODYYMNfN+etb9vHCP74B1S/42E9fyv/6tnM4a+10LS1wSBMc6zSkrnpB7hjB889Zy+HBeGCM+fjEAHwVNfvv/PfV2r5oxhvg/j37/vurrz7rxdfunFY/97xrWL/akvVGgJ1YzJ3wD1HX/sVtCIRJs29jgYmLfiP4rOk/rd31AvuW+rA1o7DdCamxkq2tJgSoXzMFhCkzpSt3kSZzFFxE3H3V/diCu0Y9WCQtg9uWDUBFn+jQpNTxHMHfO6RBdCxqUJ8tjpYR/NanHwbgPbdv4WUXbq6GSBpskceFTGuFkpqizFFKU5qMslQEtyNjJUpojFG+T1X/i6JDlhXML69CCMtUZ5nxuEupM4yVZNIB87w7Qg9zn4LQUZFCurki/D61qPwGw4hf2EJp58BOysw49xVw5/YBg6FwEcLy/33r6XznW+/nVZdvrpjc0ltomvOkyeLYpKS3B76pq4bRylkoEiXC5YKtFqbw7NxtCETi+y08KxbBr2ehwn22lRN3YzIpquICLqxnoE/BRiWBW02/9wD8RX0Y/P5ywupjvDIodVkLEAbPuAX/U2kxRrhsEm0suH/uCAek47sukncdUfm4B4Di3XfMSFWEobKIkFsutDQrS2M82lxHgqJT22+FNmHxa3GPq6rq2knAmlw3TfVW9931732iMNXzN9vWPkbg0wKSnyiryUpuJkEpr7nyJPs1XUygAuTGSgSWW/bt5ZrTNtFXBcuF4vDgOBetc8GMh4c5YyPoS00mtMso4q1GIfi3HPlgTa1iSXqAu/aNuGrbekbLUzFQ/NhwiUIb/vyG/fz4M2YBKEoX9zIqemirGJucXA547T/dxJ9/z1PYvrpPhY5xSmNzeJMgfZEbpKiIiMkH4T+TtKWtFg2bWKmCUprOT+oAOvhl107RohyuFGMV5rgZZzGrleoUkzu2zdd0HUzWw+YxlUVlUikLrHbb7+H5gSOAtFGuAqoVaGuRQjAsuyzrLoVRdL3FFohpBF923vl8/NGHuWLLRo4uj/ibOx/hdVdexdLY8s/3P8LYwGVbzmLT7DpOFILCKEorKaxkpBWLOkOh+cvbb2Bc7OO5Z6/mf3zmIT7zM5czlWduDMoWzCHq73DEMQ2rxK1HDzE7M/UJe/h4M8rl6+2roP27gDfwuZv3HF/4vVduXT3bHSZuAbI+cUQQ+EEL959NH1jrDJHCilZtJr6kpUCEc0lbgajUJIaI2QyeCHw/EeieMAf76zYDRpv3krqUpIKlKVDaTLbGB200W7sQavrJV24rVVS2Z5rLDJmVkdGufPXqwZwHT2rKUQeVF8i8jPeqferI0EIfe/mQYdGj1FkMUpHKUOicYpSjpI4loEtvpstV4ZgsnVPo3JmEtUIJF7wJkNkxmXTPzpYK64NSwvO0pUtjB/iASTc/Jp5TKTE+RsB4twYhK7AZF5JSgpZs7U+TKTgyr9mwRkSLR8hTW7PGtLIu/lPLqEQ6v2KDtGVcfMK8qJ6TigUZwjgqVVkPMjuOOdJrOZzDQu6wa1yErWdNYhXCBKw7/+zKTSEEj52qufcref4rBT/7sTIBNEr3fIxWyKy6f1PkLj7BWOfWA5iiytYTC00E1jpR1ifBMFH5qHVFJWDa1j+FsphxCIC1EaxI7zvemqHFrgDEoXKpSTclsrAV8HqlRChTAeNw7AosdgQK6e0kQd0xsFrYSHqAs7Y0r9/qU5vKsXTbE4DsJwLdzRSCMJnlJHUxCWDcBVK6wLjvufRiHl2e49iwy67lW7hs08vZMjNkVa9Ah/dEalfa20jKYZfMjl1wtzSUvvBbUHTvObyIosP22TUUhY0s+/vveZzvvehq/vGeXcwvrEEJzfJ4KvbRWkFpFPceeZQrdsxy0ZYZPz8FEwpNUC6hHpCbPuuBq1IsO9pV5U1Ad33Q63NsMm5q8vppgbbaqVay8iY+4qK51jWIBpW7lInlsOvSxobjUxIqdauM1w7KdWU9O5VCt9Jv4feUpAIvb60D38ZIlDAsjpeZ6fZQHoiv7SzRVWOWyz5T2YDC5BTa8Jnde3jW6Tv52KP72Du/yHdd8nSWyi5WCF5y3qWMTUZpFYWRSGGRwtKXBeicZTIKI/jcrlt4xfk72TM/ZvNqwZGlgumuqilIERMFxV2F596QYZFMctv+7Jb58p5d+365dTC+Spq1X/fx/qKatdbu3LrhD99555E3vfbajf5HvzG8+FYkiDAR9olZtfbCWVeOo5avuuGeYr0fZEiR5vavhETcVYNQlXYembHUDcUzmEEwxXzYTDIEbb5rEWynwjAsGN6/Ol3g2ky8zdK2ITgpBCnW939y5rbQHHMejsmAMhaoCU0qB+SkMnzhv1zH03/nczzv9B1o7/LQmRo4UOBZN+ejXQVThYVKCcd856Kg0C4YMzzHUdkFQAnt8n3LkoHuU8Tc3RYlnG2/NFlk7nWRI6RByQIhXLBfcNUIQLJc6lTp7NIFzoqacieMcBlglPGAzs+xro7MlFLGFb4xgjPX99l1eMj6VW6xjaxxc7GyiV9kquhRMYypJScCcXBpILWKv6dWC+WDTQOQMkZSjjtkYlT59ZqW+VQm8zEsfv67TN4/YayzI5TS/S4m89lPLOotgHOCPUve1xpjKw2UmXO1Eta5RRkJWqF8XvgUlIOhHHRcgG3ucrcTfdUbYCAFGroOtm3KOqaANPyUKBvBAmDGk882gBQ9ypCdsgr4DhaT6O9dDyaty4XqvOkzA+K8iW49DZ/w+J4LG7OMpExdzTfbCkJ2n/A8XfrV6npGK/fup4+zaZk7BfBuZ8JZsZkWUJ5mMLFBUQv7u3wmGOtcBUYm55Fjhzh33Vo+dKjH3cMRRg+ZzmFsJBesXmZZSzZ0l1jdm4/gOssKdJF5VxFJWeZRPi2NBe+7/wHecPVFFNr1qzA5n939ONpOsTzOWS5KlNCMSxdMZxEsFX1mO8tMySGPHFvmos2ztbgON8fSgassRuEZhhiPGiNtBbpUqOnxpHJXexBPAFga5wzW5dpctyCiFWLy+PBOm3KFazXmZJhLNeW8QTBEK0pCOFg9mV6y3a2kTlTVt00y4EH2GCvj+vL4/DxbZ1dxeLiaZZ0zkw0pjSuAs1hMc3DxCKfNzTLb7fGRRx7lgvXr+dannMNYZ4x1hkWQCe3nJfRVgUUwNlAYxdAohlrSVxr0ImesWs+/PnqCt968n//97edMkgY1nBN+S28iWcv830eWRtzx+Pxx4Kb2B/PV0041xb+W27+X8WbX/iO/87br5U/94DUbuiJZfVNW2epJFgqIwDyA1LoPdVh8RGWKhsieTZzKVudL93MBYLIOvr3AE2qykEQ02SXncf2QFYALzGFTcUgFzET/6gtWE2ynC10QIFpPst5tPuXgWCMpDNooBGn1tOoc1np/R8+mxn2sQCiNNpIzVs3y7u+9mp94/82849XPRqkSXWS1BV2pEq0dO5PJMvrBhUWylw9ZHE8jMfTzIVIal9eb6hxjb7LNlVvUMlUisIxLlzWg0DmZKciyAlNmqG5RLR7SRLBnAwg3ScabTNdAThD8wZoi/eMVWeH+KCt3i/CMpTJcsLXPxx8+xpU7Z+rBRk13pTDXQvCiqEBh5RtdZS9xCqOsWHAAI1HC1tjtkK0mHK98XvQAumuWhwZT2mScwjmM/wSQ3onZlC7YsZVJWwlwx/mHC2Cs9ZnqPIn7hFAG1RnX3K+sFZRlHpl9U2bRnSnEKBityOwYkenogmJTE2yiZKQtdTtxB5EA6WQ/v+gFy5fLelMXjRbiuy87lYWlyhBTZ/RiMHgir1oLIDXjF1YKPmu6miTgO4ylu4aKcQVCWu9XG+ZYIoes8O9Rg4FsKPLpXKyNR0OGVft5y5Fpstjt8q6thYA4YyXGOlZ5bDIeX9T0O10KO8XjCz32Hvkgl655PtdsnmdZK7b3l5kvO2yZOuLOkxTkKss8WtGsrQqqaKvYMD3Hn932EEIopjsFxweKs9eupZ8J3nP/Ll514VUcHzhioZ8PKbRzrRjrnNIoHj855MoNneju02Qx4yNssZI2t4PPutSoIeE63jJmT8Bi17KN+M9gXQnbm1l0oitQON8KzyrEqKi8QEjHeE+QZGFNTOeVnfTXTvPB10mo9pzvtftdYXuwlqTWXwkUNmMQnqHJGOgOy7rDms4Sn939OK98ynlAj0s2n4axgkGZMzI5Q53RUy51cmmdvLYIhjpjWecMdMaSVkgBHWl49hk7+Yd7vsDZ62Z4eL7Lyy/dSNP9J+ntqe+xlIjcBeT/1edPcGih+DVrT6XmfnW0r/47+OLavxt4W2sPXXTm1rtuenTxyqeeMed+FG4hc8DIv8ylrIFnoGK9vRCM62OiDUeAEc2ossYCSp8dAqilN4ogXFhcyoI2QUbSX1uBNVuxWHqUxfPVFpmE6Q4MXhQ0AZx7zd42jg3CJPwd7jW4hEQXlJDazLMswVVDCjMhbMIiEs3MVItlALypKdpal1Ek7Cf9OFgjefqOdRj7MHfvX+b8jXOUZU6ej+M9QWC63QnzrGA06jDSHaSwDMZ9jJUUJqPnUzUFNju0TJXkFIzLDqXJyFRJaarpKIUD60IYMlG5l+hxh6Lo0DXLZP1x3N+UyvnnAhSqAhVhfvkxLccdFySaF86s2y3BVophAMZ6mPOj153Gc377Nr7tqnXsXFuvaFkLYIyLVKXQVR1rgA2fPaNZjAmIIFtGRanaLrMyziegtoCv5O4R+iiVQRdZBLLCA3ihnAIjM93OxDbZ9AZj1n5NSerGlC62FSPo501/6JQ6Mdn/sE9kZOOYVNatGriwosH+t8WYhHM3Anab1xZgvc9/83j37icsc8IaNmVI6sIEXhFoC7RMlIFgHVipb817ijIz3dcGVnFSRrSdN/XnPlWrA+fJYPA21hHqriRNYFURBy1seJCnCMZG8S/3Xs/zdp7L7sEcN+1+gLLX5dItG1nbOczTZw8w213k0wfPZ7nsk8uSTjaOlSONcXKx0HmUldooehm84oJz4m9j7QLn3n7XnTz9tDO5YtsFDI1gWQtyqVkue0xlQ7SVHBrOMZct89FHH+MXXnLVBKASqXXGCLB1RXEly5K1oJc6CGWr+gUtc6HNRbKZmvJUz7ByVZvcFq24SWsrBBfkrNUCmVc+3jXluqUwUlu/VmKyV7qH5nxMfbvj+prMKyksZ6ye4aGjBzk2AqHnWddxLkyz2ZBcasbaoIQD0W4NU4xMxnzZpSM0Y6N86XnoSM3Y5CyWHU6WOWMjGRvBus6YaVWydf0Uz9pxFi9/+/t4+w9eUH/GJpEPqaVRQHCnc7JDgCXWYCiHiv9z0+Hh/Pz8n08MzNfbV037dwNvgPseO/jG3/pU9xN/d8ZclrLJkDBxVpBW0wrAVhg78SLVFpOgfSeANixONROWsDFPc0x1VIZqlz47BhW7VXNHSBec8HIkDFjlJ0k8ZmIBMfVUWG1m2BBAF1xJmoBciGqhafpChvvWVmGETI5JhHdLv9wteYZTGle3YYJFN3XAbiS/8qLzeN0/fIa3fctzOHtdj6LoIISl0xnF/gRBJ7D0spH3185Yti7fqZKGke6AxvvBGZSvTln4Eryh30XpChzkqnD7Se3Bvaw9Z6E0g8UptFbMZCeqe1BVMKpj+TJUXnr2SMVnI4RFly64xWiNsgLVK9ycC+yoERTLfVRH8R2XncYnHjzOzqdVwNs0A4dDH5oMbDIPUhBkSkUx7CGlY4BTZtttrxQ5cKC79jwb2QHQSeHWBLQJ6Z6R8RkHtDfpdnpDx5qDz0ZQf2+CX3ja/8CQTvyethTYBSUhWFWSNG5xeylReVnNx8a8DMx+E+xP5A6GOlNsBdZa99qK+n5O4amD75prWQJaRKrUh3v2i2bNKuGzhYjgPp1ccyI1WzNQimpuBGDTfKdrvwU5+ASZR5qyYcKC1wDqNVnKpIxYia2uy7BJ+RfIg7YWq1KeIue38f7dBxeXuGHP/bzlpd/PW+7ssTCe50eech07Z5foCM38eJrjo1lWZyNGOmc6X0YbRVcNKnAfZW/4LmNe/dJmGCs4vLTMP99/H6++6CryrMvYy+HSKpZ1TiYMy7rLUGdMZ2M+vutGrjtzNX2VY7WpzeEIAn3QsSuYlTyPICdWAMrOrU6ieg7Qpu4IqXWm/qBWciuZVKLdIEweH/oc5kQkwFKWOlqCQ57/ST/t1IWkzXVkYpysiGRQW6uvr+2xTrX5SCC3ZLSibJ7JOG1iHKOlAADj50lEQVRuNW/7/Ps5e80UP/LUK/y6YfnUrgc5Z+0qSpshsQyNY8aPF10k0FGaockYaVe4qestc8fGGYcGYzZOddnQKVB+bFZ1F/n9m27jOees4rTZaWyZ9rUiEIRMrHNh7I3ABgzg54nMNR+47whC5R+11p5ccaC+itrXfbz/Ha3U+rPnbt94cNfh4bbtU3OYUpFNj+oMd1i0dDWJHAvu3BzQdVaE1PVEtggQv7AYHQKxqPb3mrwIJn9lXMXCXFfmsyQd0opsAsk5m4uNriftnyx3HBbRChBWAqbuq5YW5wjM9hOl5Wrm0k0XWoNEYuJnXGi0c0cJVeCcoHMBfQFIh3bxhnX8yjecz69+8hb+5FuuI/NCfDTqkedjpNTokBnAutymuSwxVjLWGZnUkZlX0viocicYO3IcFRHlAWcQjCGjiUhYfWMkFFW97042cv6bPgOJHk8GgVqtXHKbAMb9AhJZe+F8C/UY7++tI9MAUJY53bklTluXc9eB+frYN8GTtFBW/r3Bx7Ft4QufWWccU5vVspv4MZWJG0BMPykcwCt9RdGguAjpGG2Vh0I29aAmq5V/Vio+43LUqQF6XWRIZRqWAlGbV00WeXJ7C1D0PsYhd3QM8vRWgjiODStN7TopIK3FcLQFbCV9sgLbOJ/ViYWiEcsRAfOplIsga2LwqvTBUsplnJEmKSAS2PC673yrMtAE+FTnByoZmLDcE+OU+HivlHlE4OZYm495OK7t9/C9zUWuLX3bSi2+j0nOboHFWjnh7x2JBAT/eO/tvObiq9kznOPRIzfzzJ3Xcu6qBZa14sDIlY6/ZOODHJjfFAuiaKMYjfrOXc1IjK80GM7pQL/z6QZ46NhRPrt7H6++5FoKmzMqBdoKlLCMjKIrNSOTsVAqclHy3vs+zCcee5y/+09Xx+cXZ32aNcr/3pTZrLD2ADHrlNUSM8qQHR2JqyqVpYgAzp3Xf6apA2MHEsVfyypGpOXdqYHn4KLnY1Fia8QGNI9ZKU6gbQ6lzcmoybnbLJKTWr3TzzbCK57bb3vmjtN5fKHggg2z/MPdNyGFYn4EV5+2k/PXr6UwkqHuMDaKJZ2jhKUjDSNvkdVWMLaSpbHivkOP8oWD+zmyrPnOy57K7HRGR2q6dg9v+MCHWDcLv/eKC7HWtihD1bNzP1TKv5BJ0DcglMsg81ufPTS+Z9f+n2gdvK+yZqnel/9o7UsCvAH2Hj75E7/zyePv+F8vnpNCGcwoQ2QmBkXVzOrWs9+ZQRiJsKYyd1IH17XP0DwAieYwr7FKZSrBl/ozBpOalmBsLfDJlHJiIUz7UGU0qQRSYFBbQUIiJNz3ypUEJjOZNCP627al14nC20wKGGkrBrm07tEGVimep3SATVgXbJK6nKRpCq2VPP+szXz4gaP87Z2P8J2XnE2WFRRlB60z8nxcCUkjGGlfQtk/gZHOo/k4t5qeckx5aRTj8TQdWVAaRV8MybMilvoO9z4qeghh6XUGaJ1RliLmEO90Rki1XGX3sIULOsQtEEYr57Pu0x+G8QnAM30WElzKwWAlGSvKkSv0M6UFJ4cFq3oV6K+Nu59X7gJ1wCIai1rzWQmlK0be+zG788vaHEmfv/RssVLapV8shTOlW4G0gtLPy6wzdsCjqFsV3D8VA1ZjRpHwPhnhUWGd1a3ehRXYsXCfkb0TDaBRHwtT5EifCSHm77UtPsdaTCzCMmtZ8NuCnr2Sn8aHRGY5GdNa6snmfbUoFuGYCJb9PYT3ACFqssdaUTHvYc1N50YEaAlowQOdhpk+jbOordcBjIS4jTBmYQ4kClbKlrcVKAn322a9a/p018mEdsBtVtjeJB2aebzjM7Lu70OL8zzrjPP58GNzLArLtrmCnVOLDEzGtCo4b81ujFHMdRZj3u/54QwbZ44wHnfRVvlYFCezhmUXJV1mi0xq7jl0hLsOHeK7Lr2UZZ83Xif9nc1GWATSWsZG8amHP80jJ47xrtdcRzcHU5potQoMaq2wEUzWJYC6NWcFhU8XTllQ3ZKYircR+D/hp53GIwWw3gDfTVew2nNpSX9bm9NGOt9upattLUpbNU/qc6gNlKd+3vVjJ/ODT8imdFvilpmeO7TVvSkeOLqfy7degRJnkYmSkel4VyJXZGdZ54yNQuKsDMtlhkYw9u/FoBR8+pGbyPLNnLvtGxg9fhO755fZMrWKhw7dxdtu/ii/+pKzecHZG73SkmARmFD6A6mRZlBzlZrx1jy4cddJjg/tXdbah/kaaadS0r+W25cMeC+Pxu/+0H2HT/7sdVvXrJ/qVotwZN5EtdikzKDwAooSPa6CX9o029hsdS7hzT2OyZGVCd0Gv0m/oKbXDwLR99F4n2CgAugtC3pgioK5sh14V0IiCBKtswTcVgtRCrpPxXDX+tBiYnNDarGJq4qxouYrbKxbTIyQKLRjxIUko2KY29oPXLWTn/3gfbzigouZEjZWmyzL3Ffw8oFxQlPY3AeeOBA59CV1XcUvSa5KCh8wWhpFRxaMdSeW3u13BgzLqiyvEBY7EuTKmVrLMkcpV40OKyiHvqBFEjSVdcaUHnBaKypAa0UtN/bYM/fGSPQ4RxfuVShHXcbjLsOyR7Hc59AJw/b1nepZmCra31pRN9U2F4bEp775PIO1xj+8eLwxkqJwGWCcf6qJ8yfOOWFRqqQoOjEnOlQMeMpopu9RsGqYEKjpF834DoV3dqUAv0Zz79gK89aD77TPAUzGxdrvGrZPjGMCIOO7WlaKbK2PjYW/1seWoMY2ZWIlIGKCX3wAtdG64Y+TdeZyAsx6q1vNFxzqilsYM3+tCIqtqAXYNvvfbGmmkjjPfHnz4O88MQYtoKbOIibV+6JSuHKwZATTiSysybCE2TYt50jzfVtcINuxwSKretOU5QnOnt7M2bMDprMxxwZd5rIRRZkzMH3A+YsfG82xvnfSVRrUmcvb7GWLsZKxyRDapYG7cdcu7jy4ix972jXRjSATmk7mSsErYaKfuRKGwycf5CMP38W7XvNclBBYW3pZ4IkLpeN6NOEKmM7FJNuQi7eYfKZCGZ9BTkxYaGO2JO+n3bZuBTnUfI9SoFx7disE2LYqVd4SF7ZJpeOxTcWtWd00nVeVgk5cJ1OGuzkvwjNsNhWzjVSBs239XtXrszBaQgnD2CisFDG9YADdSzpn5PtQGGf5WPZzY2wEX9h7FzPTZ9DJN3D345/jjNVruGTjWu7bfxP/ct+nee9rr2Rdv0csUEdisRO27hZrKzdcqxMZJ+spfv/X5w6V9z62/0cnbuiruJ3aYe5rt33JgLe1Vm9au+pNv3P9gT988wu3C4By0EH1xvUd01RDoQVQ4Bec+nkTLTtZGKPLgHdJsX6Big8yHGcSpoiwuDqWuxbkaVTdPCgqFqppNksXoTYN3f3t0xMmUf7pPs2Ao9oQJQtT7fyNdFtpk8LdYNjHWkHhAXAIbAy/GesEDRDzacd9qFhrayU7V69G25Jb9x3jym1rmOosE4KVMllG4A3OZxJ8UBTVNYwVlCh0WZmWJdb5VRrjry0YepY7uJsYIxmVXQaF9xkXhtyXqRe4QKlcFSyMZuiqMb3OECCCjFAFM8/HuDzmBWWZI31e1/B3MepWY28U1joXncWlOcajnFCNMs0EEJ5N8J+u5gzVnGl9UrQ+82DKDYuWRaBsiW0sHmEBDfPYGFkDVNIHTlqtau4qwoP1tH9CWIRP31f5+VbXicArTVOXpgVruY/0tyabhQ4WkgYg8WOXLjLWWy1q49kG8gNwCWkZG64WtfcnBdBt/YWJ/cNn6usK1K4Tz2GFA1ON80ofVGmMdJlZcPPJFBkyr7PRTctfc9xX8u2uMeX+POk4hzmfAp02k34KhkzCqjYBdwp8orxIQE91vjrgro/35DwJVjIdwZNk98klRsUyh/UWbjt6Ly/buYPpTLOqs8Txok9Xljy2uIm5fEAuNYOyE32zO/nIVdc1eQyWG+icXBoHorTh1v37uXLbWbzrngd4/tmXxb4NtEIJi/b9WJ0P0PoYv/GZD/AXL7+OrsoJmaLC+EhpnNskTMzppoIZQLHLce/XsbQQUhqDIILVuJ6P21pnYWnNGhb2SUFwmyWjBWw/UUsVqrAWm6a7KFC3/tatJOlvE32qrXkNtr1FwQbQrGw9tn7N01axtt/j5HCJ0peRD4DbIljSHbQVjHxawJGRLJduHhgE2ltgNq0+i4/c+0nWTE3z1NOvZPtsn0cP3Mh77v0U//yDl7F6KsOU1LEDIGwlf5wLj8V6xSukyo191y4Dl5CG2/cscv/h5UestZ9/0g/p6+0rtn3JgDfAoePzf/Keuzq/9oarN6/dNOfy76ZBT01GKY34tlYglW4UT6gqOKb+qdbKWhCG8Ps381PHZqoUcW6BtDX/utCH1Pct+oGmgqFN629xOakvPHV3kRR0r8QkrPR7237RbcIKpAiLoKiB9+B2Esa/tBnWA23hhVquipqfnBCWjBIhJP/9Gy7jB9/9Sf7yFS/DmBlmeouegfU+5EKQS5eVZGyyCLjBgWXnSynjoiqxWCw |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment