Last active
December 20, 2015 01:29
-
-
Save lluang/6049539 to your computer and use it in GitHub Desktop.
Implementation of Donald G. Morrison and Rita D. Wheat, 1986 Misapplications Reviews: Pulling the Goalie Revisited, Interfaces, Vol. 16 No. 6, pp. 28-34 as an IPython notebook
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "pullinggoalie" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Pulling the goalie\n", | |
"\n", | |
"Writeup by Louis Luangkesorn, based on article by Morrison and Wheat, (1986) [1]\n", | |
"\n", | |
" \n", | |
"## Problem\n", | |
"\n", | |
"- If an ice hockey team is down by one goal late in the game, should that team replace the goalie with an additional skater?\n", | |
" \n", | |
" - In hockey, the team scoring the most goals in a game by putting the puck into the opponents net wins the game.\n", | |
" - Season scoring\n", | |
" - Two points for a win\n", | |
" - One point for a tie\n", | |
" - Zero points for a loss\n", | |
" - Note: Goal differential has *no* effect\n", | |
"\n", | |
"- If a team pulls its goalie, it is more likely to score a goal\n", | |
"- But, the likelihood of scoring a goal for the other team increases even more!\n", | |
" \n", | |
"## Model\n", | |
"\n", | |
"- A team scores goals at a rate of $\\lambda$ per minute (Poisson distribution)\n", | |
"- If team *A* pulls its goalie in favor of another skater, its rate of scoring goals increases to $\\lambda_A$\n", | |
"- If team *A* pulls its goalie in favor of another skater, the *opposing* team *B* rate of scoring goals increases to $\\lambda_B$\n", | |
"- $\\lambda < \\lambda_A < \\lambda_B$ for all teams $i$\n", | |
"- The scoring process for team *A* is independent of team *B*\n", | |
"- The potential outcomes are win, tie, lose with values 2, 1, 0 respectively\n", | |
"\n", | |
"**When is the best time to pull a goalie?**\n", | |
"\n", | |
"*Thought question: What is the immediate objective of a team that is down by one goal near the end of the game?*" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Motivation 2013 Stanley Cup Finals - Boston Bruins vs. Chicago Blackhawks\n", | |
"\n", | |
"### Game 5\n", | |
"\n", | |
"- Boston down 2-1\n", | |
"- Goalie Rask (BOS) pulled 3rd-19:04\n", | |
"- Bolland (CHI) scores and empty net goal 19:46 Chicago (3-1)\n", | |
"\n", | |
"### Game 6\n", | |
"\n", | |
"- Chicago down 2-1\n", | |
"- Goalie Crawford pulled 18:32\n", | |
"- Bickell (CHI) goal 18:44 (Crawford returns, Tied 2-2)\n", | |
"- Boland (CHI) goal 19:01 (Chicago 3-2)\n", | |
"- Rask (BOS) pulled 19:20\n", | |
"- Game ends\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Analysis\n", | |
"\n", | |
"- Once the goalie has been pulled by team *A*, three things can happen: \n", | |
" - *A* can score; \n", | |
" - *B* can score an empty net goal; \n", | |
" - or the game ends with no goals scored by either team.\n", | |
"\n", | |
"Find the probabilities of each event.\n", | |
"\n", | |
"- $p(0: \\lambda t)$ = The probability of zero goals being scored in a time interval of length $t$ assuming that goals scored is a Poisson process.\n", | |
"- $\\Phi_p(t)$ = The probability of obtaining a tie when your team is down by one goal with $t$ minutes remaining in the game and you pull your goalie.\n", | |
"- $\\Phi_np(t)$ = Same as above except you *do not* pull your goalie.\n", | |
"\n", | |
"\n", | |
"- $X_i$, = minutes until an extra man goal is scored by Team *A*, *i = 1 ... n*.\n", | |
"- $Y_i$ = minutes until an empty net goal is scored by Team *B*, *i = 1 . . . m*.\n", | |
"- $Z_i$, = minutes until the end of the game with no goals scored by *A* or *B*, *i = 1 . . . k*.\n", | |
"\n", | |
"- Because the scoring model is Poisson, the likelihood that team *A* scores a goal in *X* minutes is $\\lambda_i^A e^{-\\lambda_A X}$\n", | |
"- The likelihood that team *B* scores an empty net goal in *Y* minutes is $\\lambda_i^B e^{-\\lambda_B Y}$\n", | |
"- The likelihood that neither team *A* or *B* scores in *Z* minutes is $e^{-(\\lambda_A +\\lambda_B) Z}$\n", | |
"\n", | |
"$\\Phi_p(t) = [1-P_p(0;(\\lambda_A + \\lambda_B)t] \\frac{\\lambda_A}{\\lambda_A + \\lambda_B}$\n", | |
" \n", | |
"$\\Phi_{np}(t) = [1-P_p(0; 2\\lambda t)]^{1/2}$\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Note: The real question is not who scores first, but when should the goalie be pulled given that there are *T* minutes left and you are down by one (i.e. choose $t$) so \n", | |
" \n", | |
"$P(Tie, T, t) = 1-[e^{-2\\lambda(T-t)}]^{1/2} + e^{-2 \\lambda(T-t)}[1-e^{(\\lambda_A + \\lambda_B) t}]\\frac{\\lambda_A}{\\lambda_A+\\lambda_B}$\n", | |
"\n", | |
"Mathematically, we can take a derivitive with respect to $t$ to get an optimal value.\n", | |
"\n", | |
"$t^* = - \\frac{log[\\lambda(\\lambda_A-\\lambda_B)/\\lambda_A(2 \\lambda - \\lambda_A - \\lambda_B)]}{\\lambda_A + \\lambda_B}$\n", | |
"\n", | |
"This turns out to \n", | |
"\n", | |
"So, does this look right?\n", | |
"\n", | |
"1. How to find estimates for $\\lambda, \\lambda_A, \\lambda_B$?\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"a. Data from power plays\n", | |
" - A player is benched (removed) due to a penalty for two minutes. So there are now players on that team facing the standard 5 players on the other team. \n", | |
" - Track both when a goal is scored (by either side) or no goal scored\n", | |
" - But this is imperfect, since the goalies are still present on both teams. So it overestimates the chances of the team that is one person up to score.\n", | |
"b. Use data from times goalie was pulled. \n", | |
"\n", | |
"\n", | |
"Now, given our estimates for $\\lambda, \\lambda_A, \\lambda_B$, find the optimal time to pull a goalie. First code the pTie and optimal $t$ functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import math, random\n", | |
"\n", | |
"\n", | |
"#lambd, lambdA, lambdB = symbols('lambd lambdA lambdB')\n", | |
"lambd = 0.06\n", | |
"lambdA = 0.16\n", | |
"lambdB = 0.47\n", | |
"\n", | |
"def pTie(lambd, lambdA, lambdB, T, t):\n", | |
" firstterm = 1-math.pow((math.exp(-2*lambd*(T-t ))), 0.5)\n", | |
" secondterm = math.exp(-2 * lambd * (T-t))*(1- math.exp(-(lambdA + lambdB)*t))*(lambdA)/(lambdA + lambdB)\n", | |
" ptie = firstterm + secondterm \n", | |
" return ptie\n", | |
"\n", | |
"def optimalt(lambd, lambdA, lambdB):\n", | |
" numerator = -1 * math.log((lambd * (lambdA - lambdB))/(lambdA * (2 * lambd -lambdA - lambdB)))\n", | |
" denominator = (lambdA + lambdB)\n", | |
" t = numerator/denominator\n", | |
" return t\n", | |
"\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now, get the optimal time." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"tstar = optimalt(lambd, lambdA, lambdB)\n", | |
"pstar = pTie(lambd, lambdA, lambdB, tstar, tstar)\n", | |
"print(tstar)\n", | |
"print(tstar, pstar)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"2.34709155754\n", | |
"(2.3470915575411206, 0.19607843137254902)\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pt1 = pTie(lambd, lambdA, lambdB, tstar, 1.0)\n", | |
"print(tstar, pt1)\n", | |
"pt0 = pTie(lambd, lambdA, lambdB, tstar, 0.0)\n", | |
"print(tstar, pt0)\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"(2.3470915575411206, 0.17863379736990476)\n", | |
"(2.3470915575411206, 0.1313591180063588)\n" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"So, if tstar is the optimal time, and the probability of getting the next goal is 0.196, what do we lose by pulling the goalie either earlier or later?\n", | |
"\n", | |
"Try a range of values for $t$, given $T=2.347$ and look at the probabilities." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"tvalues = [0.1 * i for i in range(40)]\n", | |
"ptievalues = [pTie(lambd, lambdA, lambdB, tstar, tvalues[i]) for i in range(len(tvalues))]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import matplotlib.pylab as pyl\n", | |
"ax = pyl.axes()\n", | |
"ax.set_title('Probability score next goal before end of game')\n", | |
"ax.set_xlabel('Time goalie pulled')\n", | |
"ax.set_ylabel('Probablity')\n", | |
"ax.plot(tvalues, ptievalues)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 5, | |
"text": [ | |
"[<matplotlib.lines.Line2D at 0x23760d0>]" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEXCAYAAAC+mHPKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOX6wPHv4JKKgAiYmoqWKGAqiCPiQuQxtVwyzUxN\nMc3QMlyyTsdfudQ52rHcolI0zdyOZZr7ng64QSiaCpIrmluSCyBuCM/vjzcmR7YBHWaA+3Ndc8nw\nLnPPM/je86yvTimlEEIIIfJhZ+0AhBBCFA+SMIQQQphFEoYQQgizSMIQQghhFkkYQgghzCIJQwgh\nhFkkYViJnZ0dp06dKtSxdevW5eeff85x286dO/H09DTZd/v27QBMmjSJIUOGFOo1RdFbsGABbdu2\nzXFbYmIidnZ2ZGZmFurc27dvJzAwEAcHB3799deHCbNI5VUm+UlMTKRXr144Ozvz5ZdfPuLISgdJ\nGAVQt25dKlWqhIODA3q9no8++oi7d+8WeRw6nQ6dTpfjtrZt25KQkGCyb5axY8cyd+5c4OEvOKXF\nw1ygbNmkSZMYNGgQqampNG3a1NrhFInFixfj5OTElStXGD58uLXDKZYkYRSATqdj3bp1pKam8s03\n3/Ddd9+xcuXKbPvdu3fPCtEVjq3O2yxOZVjcKKXYvXs3rVu3LtTxxfVLxq5du/D398fOTi57hSUl\nV0hNmzbl+eefZ/369YDWxLRw4UJ8fX2NTUIGg4GePXvi4eHBlClTuHbtmsk5IiMjadq0KY0aNWLZ\nsmXGi/fJkydp164drq6uNGnShP/+97/cuHHD5Nj4+HhatGjBU089xezZs0lPTze+Zu3atXOMecKE\nCfTv3x+AwMBAAKpUqYKjoyORkZG4uLhw5MgR4/6XL1/G3t6eK1euZDvXxYsX6devHzVr1sTNzY1X\nX33VuO33339n4sSJ1K9fn+rVqzN58mRASwKLFy+mZcuWBAQEsGTJEmNiMBgM1KpVi9mzZ9OgQQMG\nDx4MwMaNG+nWrRsNGzZk+vTp2cohS9bxc+bM4cknn6R169Zs3LjRuP3evXv88MMPtGvXDh8fH+bN\nm2esHXbu3JkxY8YY93311Vd54403SEhIYOjQoezduxcHBweqVq2a42snJSXx/vvvU716dV566SXG\njBljLGeA2NhYBg4cSN26dfnoo4+4cOGCcdunn35K/fr1cXFxoV+/fuzcuTPH18jN8uXLadiwIf7+\n/mzatMlkW05ld+fOHRwcHLhz5w6+vr54eHgAcP78eT788EPq1q3L66+/zoEDB4znGThwIKNGjeKV\nV17BxcUFg8HAtWvXmDFjBo0aNeL5559ny5YtucaYV9nn97nduHGDSZMmUatWLf7xj39w6dKlPMsj\nt7Ju164d27ZtIzQ0FEdHR06cOJHt2Pw+x169elGjRg1q167N6NGjTZqUBw4cyOjRo3nllVdwdXWl\nS5cu3Lx5k3HjxlGnTh169OjBsWPHjPsXpPxsihJmq1u3rtq2bZtSSqnY2FhVu3ZttWLFCqWUUjqd\nTrVt21YdPHhQ3b59W506dUpVqVJFLV++XJ07d0717t1bBQcHG8+l0+lUQECAOnTokIqIiFB169ZV\nmzZtUkopdeLECbVt2zZ19+5d9euvv6pmzZqpuXPnGo91d3dXDRs2VDt37lQHDx5Uvr6+avbs2Uop\npXbs2KFq1aplEvPPP/+slFJqwoQJ6rXXXlNKKZWYmKh0Op3KyMgw7vvWW2+pf/7zn8bnM2bMUN26\ndcuxLMaMGaPee+89dfPmTXXnzh21e/du47YmTZqo0aNHq/Pnz6vU1FQVHR2tlFJq/vz5qkmTJiom\nJkbt379f+fj4qG+//dYYd9myZdWgQYPUxYsX1a1bt9Tq1atVkyZN1N69e9WFCxfUK6+8osaOHZtj\nPDt27FDlypVTw4YNU5cvX1Zz5841KYeZM2eqdu3aqSNHjqgTJ06ooKAgNWfOHKWUUpcuXVLVqlVT\n27dvV4sXL1ZPPfWUunHjhlJKqQULFqg2bdrk+JpZevbsqQYMGKAuXryoFi1apCpXrqz69++vlFIq\nLS1NVa5cWc2dO1ddvnxZhYaGqmeeecZ47PLly9XFixfVzZs31bRp00xi/vbbb3N97dOnTyudTqe6\ndOmiTp06pX766Sfl7OysEhISlFIq37LT6XTq5MmTxueBgYFq+PDh6vLly2revHnK0dFR3bp1Syml\nVHBwsLK3t1dLly5V6enp6vbt2+qll15SoaGh6tKlSyoyMlLVrFlTHT9+PMdY8yr7/D63d999V3Xs\n2FGdOnVKrV69Wj3++OOqbdu2Ob5OfmUdFBSk5s2bl+OxSuX9OWZ9Hjdu3FAXLlxQ/fv3V/369TNu\nCw4OVk5OTmr16tXqwoULyt/fX3l7e6vJkyerq1evqpCQEDVo0CDj/gUpP1siCaMA3N3dVeXKlZWz\ns7Nq27atmjx5svGCq9Pp1MKFC437Tps2TfXp08f4/Pjx48rFxcVk//v/eP/1r3+p4cOH5/i6c+fO\nVV26dDE+r1u3rvroo4+Mz8PDw43b80oY48ePNyaMrAvO/QkjKipK1alTx/jcz89PLV++PMeYRo8e\nrV577TWVmJho8vv4+HhVtWpVk/Nm6datmwoPDzd5X1kJaceOHUqn06mzZ88at/ft21ctWbLE+PzA\ngQPK29s7x3h27NihypQpo5KSkpRSSqWnp6vKlSsbL6CtWrUySWo//fSTeuGFF4zPV6xYoWrVqqVc\nXV1N9svrop31Ok5OTiYX37Zt2xovNCtXrlQBAQHGbWlpaapSpUrGOO+XmZmpateurfbt25fva2d9\nflmfrVJK9enTR33++edKqfzL7v6EkZSUpCpWrGhMkkop1bp1a7Vy5UqllHYxbNeunXFbSkqKqlGj\nhrp586bxdyNHjlRTpkzJMdbWrVvnWvb5fW7e3t4m77F///65lkluZf3nn38qpbSE8c033+R4bH6f\n44OOHz+unJ2djX/nwcHBJl+u/vOf/yg3Nzfj8927dyt3d3elVMHLz5ZIk1QB6HQ6Vq9ezdWrV4mM\njOSDDz4waQ/19/c3/rxnzx78/PyMz+vXr8+9e/eIi4sz/s7Hx8f4s6+vL3v37gW0aviIESPQ6/U4\nOTkxatQoDh06ZBJLbsc+DH9/fypWrIjBYCAhIYGTJ0/SrVu3HPcdO3YstWrVIiAggFatWrFq1SoA\nduzYkWs78YNl4ufnZ9IE8/jjj5s0p23bto1hw4bh7OyMs7Mzzz77LImJiVy+fDnHmGrUqIGrqysA\nZcuWxdXVlfPnz5OWlsbevXvp3Lmz8VwDBw5kz549xmO7dOlCRkYGnp6etGrVyuwyO3r0KJmZmTz5\n5JPG3zVr1sz48+7du02eV6pUCQ8PD+PntWbNGnr06EHNmjWpWrUqFy9ezPZZ5+XBv4OoqCigYGUX\nFRXFk08+ib29vfF3zZs3Z9euXYD2d3//3/auXbtISkqiZs2axvPPmzfPuP/90tLS2LNnT55ln9vn\nlpKSwtGjR7O9x9zs2bMnx7K+/7VyGyyS0+fo5+dn0sf3+eef0759e6pWrYper+f69eucOXPGeN77\nBw9Uq1aNRo0amTw/f/58gcvP1kjCeITKli1r/Ll169bs27fP+Pz48eOUKVPG5I/o/nbi2NhY44Xq\nq6++4rfffuOHH37g+vXrTJ8+PVtHY27HmqtMmTJA9k7v4OBgFi9ezKJFi+jVqxfly5fP8XgXFxcm\nT57MhQsXGDduHP369ePatWs8++yz/PLLL2RkZGQ75sEy2bdvn7EvBUzLD7R257lz53Lt2jXjIy0t\njWrVqhXovdrb2+Pv78/mzZuN57l+/bpJn9L//d//4e3tzcWLF1m2bJnx92XKlMlzYICnp2e2IdKx\nsbHGn9u0acP+/fuNz9PS0jh+/DitWrUiLS2NIUOGEBwcTEJCAlevXuWJJ54o0ECEB/8OAgICgIKV\nXcuWLTl16hRpaWnG38XExJiMDsv6ewEICAjAzc2NP/74w3julJQUVq9ene3c5pR9bhwdHfH09Mz2\nHnO76Ldu3TrXss5PTp/j/v37ja8VHR3NtGnTmD59OhcvXiQmJgYw/f9j7udWkPKzNZIwLOTFF19k\n8+bNrFy5kvPnzzN+/Hi6du1q8s17/vz5HDlyhJ07d/L999/TpUsXAC5cuICzszPVqlUjJiYm25hx\npRQrVqxg9+7dHDp0iDlz5hiPNVetWrWoVq2ayQUc4LXXXmPlypUsWbKEAQMG5Hr88uXLOXfuHJmZ\nmdjb22Nvb0+ZMmXw8vKiVq1afPDBB1y4cIHU1FR++eUXY5nMnj2b/fv3c+DAAWbPnk337t1zfY3+\n/fszZcoUdu3aRUZGBklJSaxZs6ZA7/P+c40bN47Y2FgyMzM5f/68saMxMjKSBQsWsGjRIhYsWMA7\n77xj7Cz18/Pj+PHjuXa2lytXjvbt2/PJJ5/wxx9/sHTpUg4ePGjc/txzzxEXF8f8+fO5fPkyH374\nIXq9HhcXF1JTU7lx4wY1atQgMzPTmIAL4osvvuD06dOsXbuWLVu2GP8OClJ2rq6u6PV6xo4dy+XL\nl1mwYAFxcXF07NgRyH4hrFKlCm3atGHs2LGcOXOGjIwMjhw5ku1vKUteZZ+fF154gc8//5zTp0+z\nbt26XOcfQd5lnSW3i3p+n+P58+ext7enWrVqXLx4kXHjxpkcX5AkX9DysyWSMB6RB7/11KtXj+XL\nl7No0SKeeeYZmjRpwrRp00z2f/PNN+nXrx8hISH8+9//5rnnngNg1KhR3Lp1C3d3d959913eeust\nk/PrdDrefvttRo8eTffu3Rk8eDADBw7MNZb7f5+1TafT8dFHHzF48GCcnZ2NF/XatWvTrFkz7Ozs\naNOmTa7vd9++fbRs2RJnZ2cmTJjArFmzcHR0BGDt2rVUrFiRVq1a0aBBAwwGA6Alo1GjRvHWW28x\nbNgwRo4cSb9+/XKN+/nnn+fjjz/myy+/xM3NjYCAAGOcub2/3AwZMoRBgwYxbtw4qlatynPPPcex\nY8dITU0lODiYr776iho1atCmTRsGDx7M66+/DoC3tzfdu3enUaNGudZsvv76a1xcXGjatCk//vgj\n/fr1w8nJCdC+YW/fvp2IiAj0ej0VK1ZkyZIlAMYRZP3796dp06bcvXvXpMzzmm+Ttb1v37506tSJ\nf//73yxatIgGDRqYVXYPnnfJkiVUqlQJvV6PwWDg559/pmLFirnGMXv2bNzd3Xn55Zdxc3PjzTff\nJCUlpUBln1ss9xs/fjytW7emTZs2zJgxg9DQ0Fz3zauszXmtvD7H7t27G0d5de3ald69e2f7P5nX\n8wdfuyDlZ0t0qiCpUZQKgwYNolatWnz88cfWDqVY0uv1/Otf/6JHjx7WDkU8BPkcs7NoDSMyMhIv\nLy88PDwICwvLtn3JkiU0bdqUpk2b0rdvX5NvHfkdKyzj5MmTrFmzhrffftvaoRQb+/bt4+TJk6Sl\npTFr1iwOHz7MP/7xD2uHJQpIPkczWHIIlo+Pj4qIiFCJiYmqYcOG2YYS7tmzR12/fl0ppY13zxry\nac6x4tH78MMP1eOPP66++uora4dSrKxdu1bVrl1bOTo6qr59+yqDwWDtkEQhyOeYP4s1SSUnJxMU\nFGQc4RAaGkrHjh3p3Llzjvv/+eefNGvWjLNnzxb4WCGEEJZnsSapmJgYk1VTvb29jWPEczJnzhy6\ndu1aqGOFEEJYXtn8d7G8bdu2sXjxYpMJNubIa8SDEEKI3BWmccliNQy9Xm+yzHZcXBwtW7bMtt+h\nQ4cYOnQoa9asoUqVKgU6FrQ3beuP8ePHWz0GiVPiLM5xFocYi1OchWWxhJE1fjkyMpLExES2bt1q\nsrwAwNmzZ+nZsydLliyhfv36BTpWCCFE0bJok9SMGTMICQkhPT2d0NBQXF1dCQ8PByAkJISPP/6Y\nq1evMnToUECbbZk1uSinY4UQQlhPsZ64p9PpHqp6VVQMBgNBQUHWDiNfEuejJXE+OsUhRig+cRb2\n2ikJQwghSpnCXjtlLSkhhBBmkYQhhBDCLJIwhBBCmEUShhBCCLNIwhBCCGEWm1gaRAiRO6Xg5k1I\nToaUFNN/793T9rl/lZysn3U6KFcOHB21h5PT3/9WqFD070MUf5IwhLCitDQ4exbOnMn+77lzcP26\nlhzKlze94GclgfLltYSSJevnrH/v3s2eZJKTtWTi6AhVqkCNGlC7NtSq9fcj63m1amAn7RDiLzIP\nQ4gicOMGHD4Mv/769+PYMS1h1KkD7u7Z/61VC5ydtQt7uXKPNp7bt7XEcf06XLigJaecHteva7F4\neZk+PD21uETxJBP3hLARycmwezfs3/93cjh/Hry9oWnTvx9eXuDmZtqcZGvu3IFTp+DoUdPHb79p\nNR0vL2jUCJo3B70eGjSQGklxIAlDCCtJTYVdu8BggB07tAuqXq89fHy05NCgAZQtQQ3AmZnw++/a\nez18GGJitMfVq+Dn9/f71+u1GpMtJ8XSSBKGEEXkzh2IiNCSw44dcOSI9g372We1R4sWpbdTOSkJ\n9u37O4HExGj9KW3bQlCQVj7e3pJArE0ShhAWdPMmbNoEP/4IGzdqF71//EO7ALZsCRUrWjtC26SU\nVhOJiPi7Bnbjxt/JIyhI6w+RBFK0JGEI8YilpMD69bBiBWzdqjWvvPwydO8O1atbO7ri68wZLXlk\nJZDbt6F9e+jcGTp10jr6hWVJwhDiEbhzB1auhKVLtW/FbdtCz57w4ovg4mLt6Eqm06dhyxZYt04r\ncx8f6NJFSyDSfGUZkjCEeAi//QZz58LChVondXAwdO2qjQQSRefWLa3WsX69lkDs7LTE0bWr1oRV\nvry1IywZJGEIUUBZtYk5c7TRPgMHwpAh8NRT1o5MgNb/ERenJY41a7Sk3r079Oql9R896rkppYkk\nDCHMdPy4liS++06rTbz5ptbkJN9ebdvvv2uDDpYv1yY9du8Or7yi1TwkeRSMJAwh8nHgAPznPxAZ\nCa+/rtUm6te3dlSiMM6e/Tt5nDihJY9+/SAwUCYOmkMShhC52L1bSxS//gpjxmg1Cnt7a0clHpUz\nZ7TEsXChNolywADtIU2LuZOEIcR9lIKff9YSxZkz8M9/an0Ujz1m7ciEpSgFBw9qTY1Ll2rzO4KD\ntT4PWffKlCQMIdAuGmvXaokiJQXGjoU+fUrWshwif3fvahMsFyzQRl116QKDBmn9HTJMVxKGEOzd\nC6NHa0MzP/wQevSQ9myhLVfyv//BN99oI+OGDtVqHlWrWjsy6ynstdOi/50iIyPx8vLCw8ODsLCw\nbNsTEhIICAigQoUKTJ061WTb0qVLeeaZZ2jUqBHffPONJcMUxdyZM1otolcv7WIQG6vNyJZkIUBb\nETg0VOvDmj9fW0X4qae0gQ/R0ab3ExF5s2gNw9fXl5kzZ+Lu7k7Hjh3ZtWsXrq6uxu1JSUmcOXOG\nVatW4ezszLvvvgtAcnIyLVq0ICoqinLlytGuXTu2bt2K0wOzqKSGUbqlpsLkyRAeDu+8A++9J53Z\nwjxJSVpz1ezZ2uTMYcOgb9/S8/djczWM5ORkAAIDA3F3d6dDhw5ER0eb7OPm5kbz5s0p98Ag6j17\n9tCsWTOcnZ2pXLkyzz77LHv37rVUqKKYycjQmhcaNtRu8vPrrzBhQun5zy4enpub9gXj+HHtS8f6\n9doy7GPGaDVWkTOLdQXGxMTg6elpfO7t7U1UVBSdO3fO99jAwECGDx/O6dOnqVChAhs2bOCxxx6j\nU6dO2fadMGGC8eegoCCCgoIeRfjCRkVEaM0Ljo6werW2IKAQhWVnBx07ao8zZyAsDJo10xZDHDVK\nW4m4JDAYDBgMhoc+j02OHbG3t2fGjBm8/fbbJCcn07hxYyrkcoOB+xOGKLmSk+H992HDBpg2Teuj\nkNEu4lFyd4fPP4fx47W+jr59tVWJR42Cl14q3iPtHvwyPXHixEKdx2JNUnq9noSEBOPzuLg4WhYg\nXXft2pUNGzawe/duMjMzc6xdiNJhwwZo3Fi7y9vhw1rntiQLYSkODjBihNZcNWYMzJyprQgwbZo2\nVLs0s1jCyOqgjoyMJDExka1bt+Lv75/jvjl1vly+fBmAbdu2cfjwYZo1a2apUIWNunJFm7E7fDh8\n+622mmyVKtaOSpQWZcpoQ7N37YIffoBffoEnn4SPPtI6zUsji46SioiIYOjQoaSnpxMaGkpoaCjh\n4eEAhISEcOnSJfR6PSkpKdjZ2eHg4EB8fDyVK1cmMDCQy5cv4+DgwFdffUWLFi2yBy+jpEqsFSu0\nkU+9emmT8CpXtnZEQsDJkzBlirYUyYAB8O67ULu2taMqOJm4J0qEP/6At9/W7pM9bx60bm3tiITI\n7sIFrYlq/nytFvLPf4KHh7WjMp/NDasVoqDWroUmTbT/eAcPSrIQtqtmTa2D/PhxqFULWrWC3r21\nId4lmdQwhNXdvQv/+pdWzf/f/yRRiOInNVW7x8rUqRAQoM0LatzY2lHlTmoYolg6c0a7h8Fvv2n3\nq5BkIYojBwetP+PECe1v+LnntJs7xcVZO7JHSxKGsJrVq6FFC21OxZo14OJi7YiEeDiVKmkLYJ48\nCc2ba6vj9u0L980wKNYkYYgid/euNhlqxAgtaYwZIwsFipLF3l6baHrypNY01bYt9O+v9XkUZ/Lf\nVBSp06ehTRs4dUpbVbakLL0gRE4cHLT+uZMntbXPWrXSbg18/ry1IyscSRiiyKxfD/7+2lLkq1aV\n7vsRiNLF0VG7R8uxY1rTa5Mm2lDca9esHVnBSMIQFqcUzJihfbNavVprjpKlPURp5OwMn34Khw5p\nyaJBA/jvf+HmTWtHZh5JGMKi0tO1ew3Mm6fdES8gwNoRCWF9TzyhDcPduRNiYrTEMXcu3Ltn7cjy\nJvMwhMVcv64t7VGuHCxbplXLhRDZRUfDBx/AxYva/Tm6d7dsLVyWBhE25eRJ6NJFu8/A558X76Wh\nhSgKSsHmzdqNnapW1ZYe8fOzzGvJxD1hM3bu1CYvhYZqfReSLITIn04HnTppE1hfe037whUcrN1V\n0lZIwhCP1MKF0LMnfPed1nchhCiYsmW1ASK//aatU9W0qXZTp7Q0a0cmCUM8IkrBuHHaGjoGg9YU\nJYQoPEdHbWn/2FhtyZGGDWHBAu1GYtYifRjioWVmarO29+yBTZvAzc3aEQlR8kRHa8uO3LoFX3yh\nTYAtLOn0FlaRkQFvvKEtebB+Pfx1o0UhhAUoBd9/r3WMP/OMNofjiScKfh7p9BZF7u5dbdb2+fPa\n6A5JFkJYlk4Hr76qLWbo7q71b/z3v3DnTtG8viQMUSi3bsFLL2lJY80abbE1IUTRsLfX+jeio2H3\nbm2Bww0bLP+60iQlCiw1FV58EWrU0DrhypWzdkRClG4bN2r9iA0aaEPZ69fPe39pkhJF4to17eYw\n9etrQ2glWQhhfc8/D0eOaDcja9lSq3lYgtQwhNkuX4YOHaBdO+1WlLKAoBC25+JFqFYNypTJfR+p\nYQiLunhR+/by4ouSLISwZTVq5J0sHobUMES+rlzRhvD17g0ffWTtaIQQD8smaxiRkZF4eXnh4eFB\nWFhYtu0JCQkEBARQoUIFpk6darJt7ty5tGrVCj8/P0aOHGnJMEUeUlK09tEXXtBuACOEKL0sWsPw\n9fVl5syZuLu707FjR3bt2oWrq6txe1JSEmfOnGHVqlU4Ozvz7rvvAnD16lX8/Pw4cuQIFStWpEuX\nLowYMYKOD6w3ITUMy7p5U0sW3t7w9dfSDCVESWFzNYzk5GQAAgMDcXd3p0OHDkQ/0HXv5uZG8+bN\nKffAUJuKFSuilCI5OZlbt25x8+ZNnJ2dLRWqyMHdu/Dyy1C7Nnz1lSQLIQRYbOHpmJgYPD09jc+9\nvb2Jioqic+fO+R5bsWJFZs2aRd26dXnssccIDQ2lRYsWOe47YcIE489BQUEEBQU9bOilXkaGtrxy\n+fLw7bdgJ0MjhCjWDAYDBoPhoc9jk3cqSEpKYtiwYcTHx+Ps7EyvXr1Yv359jsnm/oQhHl5mpra0\n8tWrsG6dzLMQoiR48Mv0xIkTC3Uei3131Ov1JCQkGJ/HxcXRsmVLs4795ZdfaNmyJfXr18fFxYVe\nvXoRGRlpqVDFX5TSVsNMSIBVq6BCBWtHJISwJRZLGE5/rUQXGRlJYmIiW7duxd/fP8d9H+x8adu2\nLfv27ePq1avcuXOHjRs30qFDB0uFKv4yYQJERGhr0lSubO1ohBC2xqJNUjNmzCAkJIT09HRCQ0Nx\ndXUlPDwcgJCQEC5duoReryclJQU7OztmzpxJfHw8jo6OfPjhh7z00kvcvHmTTp068eyzz1oy1FJv\n5kxt2eTISKhSxdrRCCFskUzcE6xZA0OHwt692pLJQoiSrbDXTpvs9BZFJzYWBg/Wbn4kyUIIkRcZ\nMFmKnT+vrQ01axbkMmpZCCGMJGGUUjduQNeu8Pbb2gQ9IYTIj/RhlEIZGdrd8tzc4JtvZBa3EKWN\n9GEIs733nlbD+PFHSRZCCPNJwihlZs3S5lns3ast/SGEEOaSJqlSZPNmCA6GXbvyv+evEKLkkiYp\nkacjR6B/f1ixQpKFEKJwZJRUKXD1KnTrBtOmQdu21o5GCFFcSZNUCZeZCV26gJeXdi9uIYSwuRso\nCdvwn/9Aaip8+qm1IxFCFHfSh1GCbd2qjYrat0/uayGEeHiSMEqos2e1Tu5ly6BmTWtHI4QoCaRJ\nqgS6cwd69dJuhiR3rBVCPCrS6V0CDR+uLSy4cqXM5BZCZCfzMAQAS5dqE/T27ZNkIYR4tKSGUYLE\nxWlNUNu2QdOm1o5GCGGrZFhtKZeSAj16wOefS7IQQliG1DBKAKXglVegalX465bpQgiRK4vVML74\n4guuXbtWqKBE0Zg9G06dgpkzrR2JEKIkyzdh/PHHH+j1el555RU2bdok3+htTEICjBundXZXqGDt\naIQQJZlZTVKZmZls2bKFBQsWsG/fPl555RXefPNN6tatWwQh5q60N0ndvQsBATBkCAwdau1ohBDF\nhUU7ve1Z3BTXAAAdZ0lEQVTs7KhevTqPP/44ZcqU4dq1a3Tv3p3//Oc/BX5B8ehMnAg1akBIiLUj\nEUKUBvkmjJkzZ+Ln58f7779P69atOXLkCLNmzSI2NpZFixbleWxkZCReXl54eHgQFhaWbXtCQgIB\nAQFUqFCBqfctpfrbb7/h6+trfDg5OfHFF18U4u2VXDt3wvz5MG+ezLcQQhSNfCfuXb16lZUrV+Lu\n7m7yezs7O1auXJnnsSNGjCA8PBx3d3c6duxInz59cHV1NW53cXEhLCyMVatWmRzXsGFDDhw4AGjN\nYU888QQvvfSS2W+qpEtOhgEDYO5cePxxa0cjhCgt8q1hnDx5Mluy6N+/PwDe3t65HpecnAxAYGAg\n7u7udOjQgejoaJN93NzcaN68OeXyWEp127ZtPPXUU9SuXTu/UEuN0FDo1Em7z4UQQhSVfGsYcXFx\nJs9v3rxJfHx8vieOiYnB09PT+Nzb25uoqCg6d+5coACXLVtG3759c90+YcIE489BQUEElfDV9n74\nAaKiIDbW2pEIIYoLg8GAwWB46PPkmjAmTZrE5MmTuXXrFg4ODsbfu7m58c477zz0C5vj7t27rF27\nlv/+97+57nN/wijpzp3TFhbcsAHs7a0djRCiuHjwy/TEiRMLdZ5cm6TGjh1LamoqY8aMITU11fg4\ndeoUo0aNyvfEer2ehIQE4/O4uDhatmxZoOA2btyIn58fbm5uBTquJMrMhOBgGDECmje3djRCiNIo\n1xpGQkICnp6e9OrVi9gc2j+aNWuW54mdnJwAbaRUnTp12Lp1K+PHj89x39zGA//vf/+jT58+eb5O\naTFjhnafiw8+sHYkQojSKteJe0OGDGHu3LkEBQWhy2Hc5o4dO/I9eUREBEOHDiU9PZ3Q0FBCQ0MJ\n/2uxo5CQEC5duoReryclJQU7OzscHByIj4+ncuXKpKWl4e7uzunTp02axEyCLyUT9w4dgn/8A375\nBerVs3Y0QojirrDXTll80MbduwctWsA778Drr1s7GiFESfDIb6C0YsWKHGsWWXr06FHgFxMFN3Uq\nuLnBwIHWjkQIUdrlmjDWrl0rCcPKjh+Hzz6DmBiZzS2EsD5pkrJRSkG7dtCtG5gxKE0IIcxmsXt6\nX79+nXnz5rFp0yYAnn/+eQYPHmwcBSUsY948SEvTZnULIYQtyLeGMXLkSDIzMxkwYAAAixYtQqfT\nMWPGjCIJMC8ltYZx4QL4+Gj35m7SxNrRCCFKGouNkvL09CQuLo4yZcoAkJGRQaNGjUwm5VlLSU0Y\nPXuCtzd88om1IxFClEQWux9Gz549+eKLL7h69SpXr17lyy+/pGfPnoUKUuRv5UqIi4P/+z9rRyKE\nEKZyrWFUrlzZOEoqLS3N+LNSCnt7e1JTU4suylyUtBrG9evQqBF8/z20aWPtaIQQJZVM3CsBhgyB\ncuXg66+tHYkQoiSz2CipLIcPH+batWvG54GBgQV+MZG7HTtg0yatOUoIIWxRvgnjp59+4pNPPuHU\nqVPUq1ePX3/9lfbt27Nly5aiiK9UuHUL3nxTq1k4Olo7GiGEyFm+nd5hYWEYDAZq167NgQMH2Llz\np8zBeMQmTgQ/P+ja1dqRCCFE7vJNGMnJyTg6OlKtWjWuXr1K69atOXLkSFHEVirExcH8+TBzprUj\nEUKIvOXbJFWnTh2uXbvGyy+/TFBQEG5ubgQEBBRFbCWeUtoqtOPGweOPWzsaIYTIW4FGSZ06dYoL\nFy7QxkbGfBb3UVLLl2uT82JjoazZww+EEOLhWHSU1J9//snmzZvR6XR07NixwC8isktLgzFjYOFC\nSRZCiOIh3z6MJUuWEBAQwN69e9mzZw8BAQEsWbKkKGIr0T79FFq1gmeesXYkQghhnnybpHx8fNi0\naRPVq1cH4I8//qBjx44cPHiwSALMS3Ftkjp1SruL3sGDUKuWtaMRQpQ2FltLqmrVqty6dcv4/Nat\nW1StWrXALyT+NmoUvPuuJAshRPGSa+v5O++8A4Cbmxt+fn7Gju5du3bx3HPPFU10JdCmTRAfDz/8\nYO1IhBCiYHJtklqwYIHJgoMmB+l0BAcHWz66fBS3Jqm7d6FxY5g2DTp3tnY0QojSyuKLD166dAnA\n2JdhC4pbwpgyBSIjYd06a0cihCjNLJYwDhw4wLBhw0hLSwO0Zc9nzZqFj49P4SJ9hIpTwrhwQbt7\n3t694OFh7WiEEKWZxTq9J0+ezNSpUzl8+DCHDx9m6tSpTJo0yayTR0ZG4uXlhYeHB2FhYdm2JyQk\nEBAQQIUKFZg6darJtrS0NIKDg2nQoAHe3t5ERUWZ+ZZs0/vva8uXS7IQQhRX+U4ZO3XqFH5+fsbn\nzZo149SpU2adfMSIEYSHh+Pu7k7Hjh3p06cPrq6uxu0uLi6EhYWxatWqbMeOHz+eOnXqEB4eTtmy\nZY01nOJo1y4wGMAG7morhBCFlm/C6N27N/369aNfv34opVi2bBm9e/fO98TJycnA3/fN6NChA9HR\n0XS+r7fXzc0NNzc31q9fn+34bdu2sXfvXipUqABQbFfIzcjQ1ov67DOoXNna0QghROHlmzBGjhzJ\nxo0bjRf1AQMGmLU8SExMDJ6ensbnWc1Knc0YHnTu3Dlu377NsGHDOHr0KD169GDEiBHG5HG/CRMm\nGH8OCgoiKCgo3/MXpfnzwcEBXn3V2pEIIUorg8GAwWB46PPkmTDu3btH06ZNiY+Pp1u3bg/9Yua6\nffs2x44d47PPPqN9+/aEhITwww8/MGDAgGz73p8wbE1aGkyYAKtWwV8jlIUQosg9+GV64sSJhTpP\nnp3eZcuWxcvLiwMHDhT4xHq9noT7Gu3j4uJo2bKlWcfWr1+fhg0b0rVrVypWrEifPn3YuHFjgWOw\nthkzoE0b0OutHYkQQjy8fJukrl69SvPmzfHx8aFmzZqANiRrzZo1eR6X1ecQGRlJnTp12Lp1K+PH\nj89x35yGd3l4eBAdHY1er2f9+vW0b98+3zdjS5KSYPp0KOaDu4QQwijfeRgRERE5zvR+xoxlViMi\nIhg6dCjp6emEhoYSGhpKeHg4ACEhIVy6dAm9Xk9KSgp2dnY4ODgQHx9P5cqVOXbsGAMGDOD27du0\nb9+eiRMnYm9vny0OW52HMXIk3LsHX35p7UiEEMLUI5+4l56ezubNm9m1axcdO3bkmWeewc4u32kb\nRcpWE0bWarTx8VCtmrWjEUIIU4984t7YsWOZNWsWbm5ufPzxx8yYMeOhAixNPvwQQkMlWQghSpZc\naxh+fn5ERUVRrlw5rl+/zosvvkhERERRx5cnW6xh7N8PXbvCsWMy70IIYZseeQ0jMzOTcuXKAVCl\nShVSUlIKH10p8sEH8NFHkiyEECVPrjWMMmXKUKlSJePzW7duUbFiRe0gnc4mEoit1TC2bNFmdR85\nAn/lWiGEsDmFvXbmOqw2IyPjoQIqbTIz4Z//hEmTJFkIIUom2xr2VIwtXQqPPQY9elg7EiGEsAyz\nb6Bki2ylSerOHWjYEBYuhL/WWhRCCJtlsfthiPx9/bV261VJFkKIkkxqGA/p+nVo0AC2b4enn7Zq\nKEIIYRapYVjJlCnQpYskCyFEySc1jIeQlASennDgANSpY7UwhBCiQKSGYQVTp0Lv3pIshBClg9Qw\nCimrdnHwINSubZUQhBCiUKSGUcSyaheSLIQQpYXUMApBahdCiOJMahhFSGoXQojSSGoYBSS1CyFE\ncSc1jCIitQshRGklNYwCkNqFEKIkkBpGEZDahRCiNJMahpmkdiGEKCmkhmFhUrsQQpR2UsMwg9Qu\nhBAliU3WMCIjI/Hy8sLDw4OwsLBs2xMSEggICKBChQpMnTrVZFvdunVp0qQJvr6+tGjRwpJh5ktq\nF0IIYeEahq+vLzNnzsTd3Z2OHTuya9cuXF1djduTkpI4c+YMq1atwtnZmXfffde4rV69euzfv5+q\nVavmHnwR1DCkdiGEKGlsroaRnJwMQGBgIO7u7nTo0IHo6GiTfdzc3GjevDnlypXL8Ry20FomtQsh\nhNCUtdSJY2Ji8PT0ND739vYmKiqKzp07m3W8TqejXbt21KtXj0GDBtGtW7cc95swYYLx56CgIIKC\ngh4mbBNXrsCcOVrtQgghiiuDwYDBYHjo81gsYTys3bt3U6NGDY4ePUrXrl1p0aIF1atXz7bf/Qnj\nUfvqK+jRQ+53IYQo3h78Mj1x4sRCncdiTVJ6vZ6EhATj87i4OFq2bGn28TVq1ADAy8uLbt26sXbt\n2kceY15u3tQSxpgxRfqyQghhsyyWMJycnABtpFRiYiJbt27F398/x30f7Ku4efMmqampgNYxvnnz\nZjp16mSpUHP07bcQEKB1eAshhLDwKKmIiAiGDh1Keno6oaGhhIaGEh4eDkBISAiXLl1Cr9eTkpKC\nnZ0dDg4OxMfHc/nyZXr06AGAi4sL/fr1Y9CgQdmDt9AoqXv3oEEDWLwYWrV65KcXQgirKuy1Uybu\n5eD77+HLL2Hnzkd+aiGEsDqbG1ZbXCkFU6bA++9bOxIhhLAtkjAe8PPPcOsWmDn6VwghSg1JGA+Y\nMgXeew/spGSEEMKE9GHc58AB6NoVTp2C8uUf2WmFEMKmSB/GI/DZZzBypCQLIYTIidQw/nL6NDRv\nrv3r6PhITimEEDZJahgPado0GDJEkoUQQuRGahjAn39qE/Xi4uCvFUmEEKLEkhrGQ/jqK+jZU5KF\nEELkpdTXMG7ehLp1tVndDRs+mriEEMKWSQ2jkObPh9atJVkIIUR+SnUN49498PCA//0PCrDyuhBC\nFGtSwyiEH3/Ubr0qyUIIIfJXqhPGzJkwapS1oxBCiOKh1CaMmBi4eBFyuVW4EEKIB5TahBEWBm+/\nDWXKWDsSIYQoHkplp/cff2i3Xj15EqpWtUBgQghhw6TTuwDmzIFevSRZCCFEQZS6GkZ6ujZRb9Mm\naNzYMnEJIYQtkxqGmVas0NaNkmQhhBAFU+oSRlgYhIZaOwohhCh+SlXC2L8fzp3T7qonhBCiYEpV\nwsgaSlu2rLUjEUKI4seiCSMyMhIvLy88PDwICwvLtj0hIYGAgAAqVKjA1KlTs23PyMjA19eXro+g\nSnD5MqxeDYMHP/SphBCiVLLod+0RI0YQHh6Ou7s7HTt2pE+fPri6uhq3u7i4EBYWxqpVq3I8fubM\nmXh7e5OamvrQscydCy+/DC4uD30qIYQolSxWw0hOTgYgMDAQd3d3OnToQHR0tMk+bm5uNG/enHLl\nymU7/ty5c2zYsIE33njjoe95kZ4Os2bBO+881GmEEKJUs1gNIyYmBk9PT+Nzb29voqKi6Ny5s1nH\njxo1is8++4yUlJQ895swYYLx56CgIIKCgrLt89NPUL8+NGli1ksLIUSJYjAYMBgMD30em+z+Xbdu\nHdWqVcPX1zffN3l/wsjNF1/IqrRCiNLrwS/TEydOLNR5LNYkpdfrSUhIMD6Pi4ujpZk3ntizZw9r\n1qyhXr169OnTh+3btzNgwIBCxREbC2fPwosvFupwIYQQf7FYwnBycgK0kVKJiYls3boVf3//HPd9\nsI9i0qRJ/P7775w+fZply5bRrl07Fi5cWKg4wsLgrbdkKK0QQjwsi15GZ8yYQUhICOnp6YSGhuLq\n6kp4eDgAISEhXLp0Cb1eT0pKCnZ2dsycOZP4+HgqV65sch6dTleo109KglWr4Pjxh34rQghR6pXo\nxQcnT4YTJ2DevCIMSgghbFxhFx8ssQkjIwPq1YM1a8DHp4gDE0IIGyar1T5g82aoUUOShRBCPCol\nNmHMmQNvvmntKIQQouQokU1SFy7A009rw2kf6D8XQohST5qk7vPtt/DKK5IshBDiUSpxNYzMTHjq\nKfjxR/Dzs1JgQghhw6SG8Zdt26BqVUkWQgjxqJW4hCGd3UIIYRklqknqjz/A0xPOnAFHRysGJoQQ\nNkyapIAFC6BnT0kWQghhCSWmhpGZCQ0awJIlkMsah0IIIZAaBgYD2NtDixbWjkQIIUqmEpMw5syB\nIUOgkAvbCiGEyEeJaJJKSgIPD0hMhCpVrB2VEELYtlLdJLVwIXTvLslCCCEsqdjfh04prTlq/nxr\nRyKEECVbsa9hREZqt19t1crakQghRMlW7BPG3LnS2S2EEEWh2Hd6OzkpTp4EFxdrRyOEEMVDqe30\n7txZkoUQQhSFYp8wZKFBIYQoGsW+SSozU0n/hRBCFIBNNklFRkbi5eWFh4cHYWFh2bYnJCQQEBBA\nhQoVmDp1qvH3t2/fxt/fHx8fH1q2bMn06dNzfY3ikCwMBoO1QzCLxPloSZyPTnGIEYpPnIVl0YQx\nYsQIwsPD2bZtG1999RV//vmnyXYXFxfCwsIYM2aMye8rVKjAjh07OHjwIBEREcybN48TJ05YMlSL\nKi5/RBLnoyVxPjrFIUYoPnEWlsUSRnJyMgCBgYG4u7vToUMHoqOjTfZxc3OjefPmlCtXLtvxlSpV\nAuDGjRvcu3ePxx57zFKhCiGEMIPFEkZMTAyenp7G597e3kRFRZl9fGZmJk2bNuXxxx9n+PDh1K5d\n2xJhCiGEMJeykK1bt6pXX33V+HzWrFnqww8/zHHfCRMmqM8//zzHbadPn1ZeXl4qNjY22zZAHvKQ\nhzzkUYhHYVhsLSm9Xs97771nfB4XF0enTp0KfJ66devywgsvEB0dja+vr8k2VXwHeAkhRLFjsSYp\nJycnQBsplZiYyNatW/HP5VZ4D174//zzT65fvw7AlStX2LJlCy+++KKlQhVCCGEGi87DiIiIYOjQ\noaSnpxMaGkpoaCjh4eEAhISEcOnSJfR6PSkpKdjZ2eHg4EB8fDynTp1i4MCBZGRkUL16dfr168eA\nAQMsFaYQQghzFKohq4hFREQoT09PVb9+ffXFF1/kuM8HH3yg6tWrp5o1a6aOHj1axBFq8otzx44d\nytHRUfn4+CgfHx/1ySefFHmMr7/+uqpWrZp6+umnc93HFsoyvzhtoSzPnj2rgoKClLe3t3rmmWfU\nkiVLctzP2uVpTpy2UJ63bt1SLVq0UE2bNlX+/v5q2rRpOe5n7fI0J05bKM8s9+7dUz4+PqpLly45\nbi9IeRaLhOHj46MiIiJUYmKiatiwoUpKSjLZHh0drVq3bq2uXLmili5dqjp37myTce7YsUN17drV\nKrFliYyMVLGxsbleiG2lLPOL0xbK8uLFi+rAgQNKKaWSkpJUvXr1VEpKisk+tlCe5sRpC+WplFJp\naWlKKaVu376tGjVqpI4fP26y3RbKU6n847SV8lRKqalTp6q+ffvmGE9By9Pm15IyZz5HdHQ0L7/8\nMlWrVqVPnz4cPXrUJuME63fUt23bFmdn51y320JZQv5xgvXLsnr16vj4+ADg6upKo0aN2Ldvn8k+\ntlCe5sQJ1i9PyH/+lS2UJ5g3T8wWyvPcuXNs2LCBN954I8d4ClqeNp8wzJnP8csvv+Dt7W187ubm\nxsmTJ4ssRjAvTp1Ox549e/Dx8WH06NFFHqM5bKEszWFrZXnixAni4uJo0aKFye9trTxzi9NWyjO/\n+Ve2Up75xWkr5Tlq1Cg+++wz7OxyvtQXtDxtPmGYQ2lNaya/09ngIlPNmjXj999/JyYmBm9vb0aM\nGGHtkLKRsiy41NRUevfuzfTp07G3tzfZZkvlmVectlKednZ2/Prrr5w4cYKvv/6aAwcOmGy3lfLM\nL05bKM9169ZRrVo1fH19c63tFLQ8bT5h6PV6EhISjM/j4uJo2bKlyT7+/v7Ex8cbnyclJfHkk08W\nWYxgXpwODg5UqlSJcuXKMXjwYGJiYrhz506RxpkfWyhLc9hKWaanp9OzZ0/69++f49BvWynP/OK0\nlfLMcv/8q/vZSnlmyS1OWyjPPXv2sGbNGurVq0efPn3Yvn17ttGmBS1Pm08Y5szn8Pf3Z8WKFVy5\ncoWlS5fi5eVlk3H+8ccfxmy+du1amjRpYnNrZNlCWZrDFspSKcXgwYN5+umnGTlyZI772EJ5mhOn\nLZSnOfOvbKE8zYnTFspz0qRJ/P7775w+fZply5bRrl07Fi5caLJPQcvTYjO9H6UZM2YQEhJinM/h\n6upqMp+jRYsWtGnThubNm1O1alUWL15sk3H++OOPzJo1i7Jly9KkSROTJd2LSp8+fYiIiODPP/+k\ndu3aTJw4kfT0dGOMtlKW+cVpC2W5e/duFi9eTJMmTYyrEEyaNImzZ88a47SF8jQnTlsoz4sXLxIc\nHGycfzVmzBhq1Khhc//XzYnTFsrzQVlNTQ9TnsX6BkpCCCGKjs03SQkhhLANkjCEEEKYRRKGEEII\ns0jCEEIIYRZJGMLmXblyBV9fX3x9falRowa1atXC19cXBwcHhg8fbu3w8lS5cmUALly4QK9evSz6\nWgsWLOCdd94BYMKECQUemZMVqxC5KRbDakXp5uLiYpxJO3HiRBwcHBg9erSVozJP1lDGmjVrsnz5\n8iJ5rQd/LszxQuREahii2MkaCW4wGOjatSugfaMOCQkhMDCQp556ii1btvDRRx/x9NNPM2zYMOMx\nv/32G8OGDcPf35+3336bK1euZDv/uXPnGDRoEF5eXkyaNAkHBwfjtvDwcFq1akXnzp0xGAyAtgBd\n+/btadasGS+88AIRERHZzpmYmEjjxo2N8c+dO5fnnnuO9u3bs3Llyhz39/b2ZvDgwXh5eTFx4kTj\nTOG6dety9epVAPbt28ezzz5rUi4POn/+PO+99x4BAQEEBwdz+vRpQKv1DB48GE9PTyZNmpRPqQsh\nCUOUINHR0axfv5758+fTs2dP6tevz+HDhzl+/DixsbEAvPfee4wdO5bo6GgaNWrEN998k+08kydP\npmnTphw9epS7d+8av3kfOnSI7777jo0bNzJt2jSGDBkCQMWKFfnpp5+IjY1l9uzZTJgwIc84IyIi\nSEhIYMuWLaxevZp///vf3L17N9t+CQkJdOnShYMHD3Lo0CHWrVsHFLwmMG7cOF599VX27t1L7969\nmTJlCgCffvopnp6eHD16lNu3bxfonKJ0kiYpUSLodDq6deuGg4MDAQEB3Llzh1dffRWdToe/vz97\n9+6lTp067Ny5k27dugGQkZFB3bp1s51r69atfPLJJwAMHDjQ2Bewbt06Xn75ZZycnHBycqJBgwZE\nR0fj7+/PzJkz2bBhA2lpaZw8eZLk5GTjcjEPWrFiBVu2bGH79u0ApKSkEBUVRWBgoMl+Tk5OvPTS\nS4A2833Tpk307NmzQGVy7949NmzYYEyY99u8eTN79uxBp9MxaNAgpk+fbva5RekkCUOUGFkX6PLl\ny/PYY48Z1+4pX748d+/eJSMjw6Q/pKB0Ol2OK3saDAZ27tzJ5s2bsbe3p1q1ankmjMzMTMaOHUtw\ncHCBXx+gQoUKxuaprKap3GRmZmJnZ0dUVJTN3rNBFB/SJCVKhPwufEopqlevTr169VixYgVKKdLT\n001W6szSoUMHFi9eTGZmJosWLTL+vkuXLvz0008kJydz7Ngxjh8/TosWLTh//jxPPPEEDg4OLFu2\nLN+LeN++fVm4cCFJSUkAHDt2jJs3b2bbLzk5mVWrVnHnzh2+//57OnXqBEBAQAAGg4H09HST+B58\nv0opypcvzwsvvMCsWbPIyMhAKcWhQ4cA6NSpE9999x2ZmZksWLAgz5iFAEkYohjK+qat0+ly/Pn+\nfR58/vXXX7Njxw58fHzw9fVl79692c7/wQcfEBsbS6NGjbhx4wb16tUDoHHjxgwYMIDnn3+ekSNH\nMnfuXAC6d+/O9evX8fLyYteuXSY3pMkpptatW9O3b1969epF48aNGTZsGPfu3csWh6enJ2vWrMHH\nx4enn36azp07A/DOO+8we/ZsWrRowZNPPplveUycOJFLly7RvHlznn76adasWWN8n/Hx8Xh7e/PY\nY4/JKCmRL1l8UIgH3Lp1i4oVK6KUYvr06SQlJTF58uQijSExMZGuXbty+PDhIn1dIfIiNQwhHrB/\n/358fHxo3LgxJ0+e5O2337ZKHPKNX9gaqWEIIYQwi9QwhBBCmEUShhBCCLNIwhBCCGEWSRhCCCHM\nIglDCCGEWSRhCCGEMMv/AzTnRcjf/gCUAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x2260210>" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now, we can see what we lose by pulling the goalie at a time other than the optimal. Note that this says that if you do not pull the goalie when you are down by 1 with 2.45 minutes left, you only have 13% chance of tying the game." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fractionoptiomal = [ptievalues[i]/pstar for i in range(len(tvalues))]\n", | |
"fx = pyl.axes()\n", | |
"fx.set_title('Fraction of optimal possibility of scoring next goal to tie game')\n", | |
"fx.set_xlabel('Time goalie pulled')\n", | |
"fx.set_ylabel('Fraction')\n", | |
"fx.set_ylim(0, 1.05)\n", | |
"fx.plot(tvalues, fractionoptiomal)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"[<matplotlib.lines.Line2D at 0x25f16d0>]" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFHf+P/DXgo0miohYwRogSBERiVHRs0UsuZjYW9SE\nmFMTPf3GMzlFcxeTS2wxRo2J3fRoLDHWuCIqRUGxKypR0USwIiBS3r8/5sfIAkvZsAV9PR+PebC7\nMzvzns8O89qpqxERARERUTlZmbsAIiKqnBggRERkEAYIEREZhAFCREQGYYAQEZFBGCBERGSQJyZA\nDhw4AA8PD5NPNykpCa+88gpq166Nzz77zKjTunLlChwcHGCMM6/Dw8MxYsSICh+vIcaPH4///Oc/\nAACtVovGjRsbNKy3tzciIiKMW+z/N2vWLDRt2hTt27c3yfQKM9fyX1m5u7tj7969Jpueg4MDkpKS\nTDY9U6lijJG6u7vj5s2bsLa2BgBoNBqcP38erq6uFTYNKysrJCYmolmzZgCAjh074uzZsxU2/rJa\nv349HB0dcevWLVhZVWweu7u7Y+XKlejatSsAoEmTJkhLS6vQaeTTaDRGGa8hli5dWiHDnjx5Un0c\nHh6OixcvYt26dX+ptuJcu3YNS5Yswfnz5+Hk5FTh4y8Lcy3/f0Xh5duUNBqN3mV+9OjRaNy4Md5/\n/32Dxh0SEoIRI0Zg7Nix6mvG+r81N6NsgWg0Gmzbtg1paWlIS0vD/fv3i4RHTk7OX56OJVwDGRkZ\niaCgoAoPD0BpR1PNoyW0ZWUVGRmJZ555xmzhURH/S+ZgyuXblCzpy5jRiRG4u7vL3r17i7yu0Whk\nzZo14ufnJ82bNxcRkUmTJknjxo3FxcVFXn/9dTl27Jg6fF5enmzZskX69+8vjo6O0rZtW7l69ap0\n7NhRNBqN2NnZib29vXz//feyb98+adSokfrea9euybvvvitubm4yevRoiYuLU/uNGjVKJk+eLAMH\nDhQXFxcZO3asXLt2Te/8HD16VEaNGiVubm7y3nvvSXJysoiIdOnSRaytraVGjRri4OAgFy5cKPLe\nW7duyYcffigtWrSQAQMGiFarVfvNmjVLBg0aJOPGjZN69erJ66+/LleuXBERkeHDh4uVlZXY2NiI\nvb29fPzxx3L58mXRaDSSm5srIiKdO3eWDz74QLp16ybOzs4ycuRIefTokYSFhUn9+vVl9OjRcv36\ndXV6JbX1rFmzZPjw4cXO/759+6Rhw4ayePFicXNzkx49ekhUVJTaPz09XT7//HPx9vaW7t27y5Yt\nW9R+169fl6FDh0r9+vXF2dlZBg0apPabO3eu+Pr6Ss2aNaV169Zy6tQp9fN577331Gk3atRI77SL\nGzafm5ub7NmzR3799VepVq2aVK1aVezt7cXPz09++OEHCQgI0JnPefPmSf/+/YttA32f45dffik1\natQQa2trsbe3l/Dw8CLvLakNrly5IuHh4dK8eXOpV6+efPDBByIikp2dLevWrZOgoCBp3769rF+/\nXrKzs3U+j6VLl0rLli1l5MiRxc770qVLpX379tK4cWOZNWuWPHr0SO3/yy+/SGBgoLRq1Uq+++47\n0Wg0cvHixWLnvXPnzjJ37lzp0aOHuLq6yuTJk+XOnTtq/8TERJk2bZo0adJExo0bp36OBw8eFGdn\nZ7l69aqIiBw7dkxq164tZ8+eLXb5Lk5JdZa03CUmJkqXLl2kTp060rp1a/nwww8lLS1N7a9vHbV8\n+XKpWrWqVKtWTezt7aVfv34iUvL6pKAZM2ao6wR7e3uZOHGiiIhO3dnZ2fLdd99Jly5dxNfXV778\n8kvJysoqdnx5eXmyYcMG8fT0FB8fH1m9erXOOmDlypXi6ekpjo6O0r9/f502KLicuLu7i6enp+zd\nu1f2798vbdu2FQ8PD9mwYYPO9LZv3y59+/aVVq1ayfz583XarDhGC5A9e/YUeV2j0UjHjh3l2LFj\n8vDhQxERWb9+vdy+fVvu3Lkj06ZNkw4dOqjDb9y4UVq2bClbt26V3NxcOX78uNy6dUsdV8EFvvA/\nUKdOnWTChAly8+ZN+eqrr6RmzZqSmZkpIspKp2bNmrJx40ZJSUmRPn36qCuhwtLT08Xe3l5WrFgh\nN2/elEmTJknnzp3V/iEhIfLVV1/pbYuRI0fKwIED5erVq/LTTz+Jk5OTXL58WUSUlXbVqlXlk08+\nkZs3b8pbb70l7du312nHggt5cQHi5uYmWq1WLl68KE2bNpVnn31W1qxZI6mpqdKvXz+ZM2eO+v6S\n2rq0AKlataqMGDFCbty4IatWrRI7Ozt58OCBiIjMnDlTunTpIufOnZO9e/eKu7u77Nu3T0REpk6d\nKtOmTZOMjAzJysqSgwcPiojIyZMn5ZlnnlHD+OzZs3Ljxg0RERk9erT8+9//LtO0Cw9bcBko2H7h\n4eEyYsQItV9WVpY4OTnJmTNn1Nf8/Pxk48aN5f4cV69eLc8//3yx7yupDUREfHx8ZMqUKZKcnCxp\naWkSHR0tIsqKwcfHR2JjY+Xo0aPi5+cnq1atUuezSpUqMmbMGLlx44ZkZmYWO+++vr4SExMj58+f\n1/mfPHHihDg7O8u2bdvk0qVL0qdPH7GysioxQBo3bix79uyRa9euSWBgoHz55ZciIpKTkyMuLi6y\natUquX//vqxZs0anjnfffVe6du0qGRkZ4u3tLUuWLCn28ylOaXWWtNwlJibKnj175NGjR3L8+HFp\n06aNrFixokzTLrhM5StufZKRkVHs+4tbJxRcXy1atEi6du0qJ0+elMTERAkJCZEvvvii2HFt3bpV\nmjdvLpGRkZKQkCDBwcFiZWWlrgN++eUXuXTpkjx69Ei++eYbsbGxkfT0dBF5/L8zceJESU1Nlfff\nf19cXV3lpZdeksTERPntt9/Ezs5O/WKxefNm8fHxkcOHD8v169dl4MCBMmPGDL2fj4iRAsTNzU3s\n7e2lVq1aUqtWLfn73/8uIkojrl27Vu/77t+/L3Z2dpKSkiIiIgMHDpQFCxYUO2xJAZKSkiI2Njbq\nSkZEpEOHDurKYdSoUdK3b1+13zfffCNBQUHFTmfjxo0SHBysPk9PTxdbW1tJTU0VEWVhyf9nKiwn\nJ0fq1Kkj586dU18bNmyYzJ8/X0SUlXaTJk3Ufg8ePJAaNWqo819agISEhMikSZPU/q+99pq0adNG\nfb5hwwadsCuocFuXFiCF2zs4OFh+/PFHEVFWgjt37lT7vfvuu2pdU6ZMkeHDh0tSUpLOOI8fP66G\nX/785Bs9erTOVkVJ0y48rL4AKW7+3njjDXn33XdFRAm02rVr63xLz1fa57hq1aoSA0RfG5w+fVqc\nnJyKzL+ISL9+/WT58uXq8xUrVqjfhvPbJH9rVd+8z5s3T30eFhYm77zzjoiIfPTRRzphunfv3hK3\nQEJCQtRv0iLKlmP+VtSuXbuke/fuOsP7+flJTEyMiCjftgMCAsTb21teeOEFneFKC5DS6vT19dW7\n3BW2YsUK6dOnT5mmXXCZEil9fVJYceuEgnU/99xzOl8iNm3aJL179y52XOPHj9cJs6+++kpnHVDY\n888/r/5v7Nu3T6ytrdV11bVr10Sj0ehspbRs2VLdmh46dKjOFkl8fLx4eXkVO518RjsGsnnzZty5\ncwd37tzBxo0b1X5BQUE6w65evRqhoaGoW7cumjRpgszMTJw4cQKAclZNhw4dyj39qKgoNGvWDHZ2\nduprbdu2RWRkpFqfn5+f2s/V1RXJycnFjuvQoUNo06aN+tzW1hYtW7bEoUOHdOa3OGfOnEFWVhZa\ntWqlvhYQEIADBw6oz318fNTHdnZ2aN68OaKjo8s6q/D19VUf16tXT2d8Li4uOvNVUluXxt7eXj1h\nAQDatGmDqKgoPHjwACdOnEBAQECx8zhjxgw0atQIwcHBeO655/Dzzz+r8/3f//4X06dPR8OGDTFz\n5kxkZGSUa9p/1ahRo/D1118DANatW4dBgwahatWqRYYry+dYEn1tsG/fPr3Hzw4dOqS3TQHlsy7p\n7DQAepfxmJgY+Pv7q/0KLt/lHdeePXtw4MAB1K5dW+0SExPVs9+qVKmCUaNG4dSpU/jnP/9Z6nQK\nKqnOtLQ0JCQk6G2jBw8e4K233kJgYCAcHR0xefJkJCQklGv6+fStT0r6/PWtE9LT03H48GGEhoaq\n7TV69Gid9UlBpX1WkZGRGDJkCNzc3FCrVi3ExMTozGf9+vVRp04dAMoyAxRdZxT8LMePH6/W1aVL\nFyQlJeHmzZt659Pkp/FWqfL4xK+rV69iypQpmDFjBn7//XdcuXIFNjY26oG1Ll26qCv9wqysrPQe\ngGvfvj0uXbqE9PR09bXY2Fh07NhRfa7vvYV16NABR48eVZ+np6fjwoULeO6550p9r4eHB6pXr45z\n586prx05cgSdOnVSnx8/flx9/ODBA1y8eFENWWtr6wo7yFhaW5cmv7Z8R48eRXBwMOzt7eHj44Mj\nR46o/QrOY506dTB37lxcv34dM2fOxLBhw3Dnzh0AwLBhw3D48GFERUVh165dWLVqlTqOgv+A+qZd\n3LD6VKlSpci8tm/fHtWqVUNERAS++eYbvacxl+VzLIm+NujSpQtiYmKQm5tb5D0dOnTQ26b582Oo\ndu3aIT4+Xn0eFxdn8Li6du2KkJAQ9cvinTt3kJaWpoZFcnIy5syZgzFjxmDKlCl49OiR+t7Slu+S\n6nRwcChxuVuyZAnOnTuH77//Hnfv3sWCBQuQl5dXpnkqXJe+9Ym+z9/a2lrvtOzs7BAUFISdO3eq\n7XX37l31f6KwktpARBAWFobOnTsjLi4Od+/eRbt27QxeZ3Tt2hUrVqzQ+SzT09Ph4uKi9z1mvQ4k\nJSUFIgJXV1ekpaVhxowZyMrKUvsPHjwYy5cvx6+//oqcnBwkJCTg9u3bAJRvGwUXnoKcnZ0RGBiI\nGTNm4ObNm1i9ejVOnTqFnj17AijfGUfdu3fHqVOnsHLlSty8eRPvvfceAgMD1VQvaXxVqlRBaGgo\nZs2aheTkZPz888/YsWMHXnzxRXWYP/74AwsWLEBKSgpmzpwJf39/ODs7q/NYMLyKU3DaJc1XaW1d\nGmtra8yZMwd//PEH1q5di5MnT6JHjx4AgP79++Pjjz/G+fPnodVq8c0336jz+MMPP+DatWvIy8uD\nnZ0d7OzsYG1tjSNHjiA6OhrZ2dmwsbFBlSpV4ODgoM5HwXkpadqFh9UnICAAp0+fLjLPI0aMwIQJ\nE1CtWjW9XwrK8jmWRF8beHp6olGjRpg+fTquX7+OtLQ0xMTEqG26bNkyHD16FPHx8Vi2bFmZp1ea\nF154ATt27MCvv/6KpKQkfPrpp6W+R18bd+vWDSdOnMDatWtx584dPHz4EFqtFsnJyRARjB49GuPG\njcOXX36J+vXr49///rf63tKW7969e5dYZ0nL3fXr11G7dm24uLggNja2XNdoBQQEICEhQT27rbT1\nSXHvj4+P19tmI0aMwMyZMxEXF4e8vDwkJydj165detvgm2++weHDh3Hy5EmsXLlS/cL06NEjpKSk\noF69eqhRowZWrVpVrr0XxdX1v//9D5GRkcjNzUVKSgq2bNlS4ntMGiCFvym2adMGb775Jrp27YpO\nnTrB29tbZ7O8X79++Oijj/DZZ5+hTp06eO211/Dw4UMAwNSpU/HJJ5+gdu3a+PHHH4uc171hwwbY\n2toiMDAQWq0We/fuhY2NjVpH4Vr0fYu1s7PDb7/9hv379yMwMBA2NjbYsGFDmd4LAPPnz4evry86\nd+6MtWvX4ocffoC7u7v6vgEDBuD06dPw9vbGgwcP8O2336rvfeONN7Bt2zY4OTlh/vz5xU6r4POS\n5qu0ti7pvHhA2W3Rrl07BAUFYf369di1axfs7e0BAP/3f/+HF198ES+99BL++9//Yv78+ejcuTMA\n5Vth+/btUbt2bYSHh2Pp0qWoWbMm7t+/j9dffx1OTk7o0qUL2rVrh+HDhxdbS/369fVOu/Cw+uah\nc+fOaNWqFZo2bYq2bduqr48YMQKnTp1Sp61PaZ9jSW2nrw0AYOvWrbCxscFzzz2HVq1aQavVAgCG\nDx+OyZMn480338T48ePx9ttvY9iwYSXOZ0k1FKyxdevWWLlyJWbNmoWePXuif//+AKDWpO/9xY3L\n2toaWq0W586dQ0BAAJo0aYJ58+YhLy8Pn376KVJTU9XrKVatWoVVq1bh4MGDAIpfvgvy9vYusc6S\nlrvJkycjMzMTbm5u+Oc//4k333yzzKfX9uvXD1ZWVmjYsCFeeuklACWvTwobPnw4EhMTUbduXbz9\n9ttF+r/22msYM2YMZs6cCScnJ3Tv3h3nz58vdly9e/fGrFmzMHbsWAwbNgzDhg2Dra0trKysUL16\ndSxatAhz5sxBixYtcOTIEQwePFjn/WVdzwHKF4s5c+bgs88+Q926dREcHKx+odFHIxW1j4TKbfbs\n2UhMTDTKxW0VSavVYsSIEbh69aq5S6lwGRkZcHV1RXx8PJo3b27ucszil19+wfTp08t8PMxcKkud\nxrRkyRLs3Lmz1C0DU3libmVSGTG7zW/hwoXo3r37UxcemzZtQlZWFuLi4vDJJ5/o3R1jbpWlTmN5\n+PAhtm/fjpycHGi1WnzxxRfq7ltLYJRbmVDZlLbrw5JUljrLw93dHU5OTjq7DZ8WX3zxBUaPHo0G\nDRpg3LhxGDNmjLlLKlZlqdNYRATh4eEYNGgQPDw88Oabb1rMPesA7sIiIiIDcRcWEREZxKJ3YT2J\nu02IiEzBFDuXLH4LJP88f0vuZs2aZfYaWCdrZJ2sM78zFYsPECIiskwMECIiMggDpAKEhISYu4Qy\nYZ0VpzLUCLDOilZZ6jQViz6N90n9xTIiImMy1bqTWyBERGQQowTImDFjUK9ePbRu3VrvMP/617/Q\nrFkzBAQE4OzZs8Yog4iIjMgoAfLqq69ix44devvHxMTgwIEDOHLkCKZOnYqpU6caowwiIjIiox0D\nSUpKQt++fYu9c+bixYuRm5ur3uq4efPmOj8YpBbHYyD0hBEBHj0C0tOBhw+B7Gz93f//OYoSWVsD\nVavq76pXB2xtgRo1gGJ++JCeUKZad5rlSvSYmBidG4LVrVsXFy9eLPaOqOHh4erjkJAQngVBZpOX\nB9y5A9y8CaSkAHfvltw9eABkZChdevrjx1WqPF6pl7Tyr1IFKOlmDCJAbm7x4fPo0eO/mZlKWFWv\nDtjYKNPO/2trCzg4ADVr6u9q1QKcnB53jo5KcJHl0Gq16m/JmJJZAqS4qyX13bakYIAQGUNWFpCc\nDFy79ri7cUMJioJdaqqysnVxAZydgdq1lZVrftewIfDss8rrjo6Avb2ygraze7yytrVVgsHU8vKU\n+cwPsczMx4/T0oD795Uu//EffwDnzwP37ind7duPu/v3lWDJD5Q6dZQ20dfVrauEJRlP4S/Xs2fP\nNsl0zRIgQUFBOH36tHpv/5SUFDRr1swcpdBTICMDuHQJuHhR+XvpEnDlyuOwuHMHaNAAaNRItwsI\n0F0ROjsD1aqZe24MY2WlbHXY2Cgr/L8iN1fZwsoPlFu3lC2y/KA9ebJo+NraKm1cv37xfxs2VLrK\n2r5PK7MFyJQpUzBy5Ejs3LkTnp6e5iiDniBZWcCFC8Dp08DZs4/D4uJFJSDc3YHmzYFmzZS/Xbs+\nDop69Xh8oDysrZUQKmsQiSifwfXrypbd9etKl5gIHDigbP0lJytbPXXqAE2aAI0b63ZNmiifoYtL\nybv1yLSMchB9yJAh2L9/P1JTU1GvXj3Mnj0b2dnZAICwsDAAwPTp0/Hdd9/ByckJ69evLzZEeBCd\nCsvMVALi9GngzBnl7+nTQFIS0LQp4OkJeHgoIZHfNWzIgKgMcnKUELl6VemuXNF9nJSkbE26uyuf\ndeG/zZopuw/JdOtOXolOFuvuXSA+Xre7dEkJBS8v3a5lS+7+eBqkpSlBkpQEXL78+O/ly8rWZrVq\nyvLRooXS5T9u3lzZ0nxatl4YIGCAPE3u3wdiYoDoaCAuTgmLlBTAxwfw91e6Nm2UsKhe3dzVkiUS\nUZaZxEQlTBITdR9nZQGtWgHPPKN0+Y9btVJOeHiSMEDAAHlSiShn+Bw+/Li7eFEJifbtlYPXbdoo\n3xx5uihVlDt3lOXu3Dmly3+cmKjs+nrmGWUXqKen8kXF0xNwda2cWy0MEDBAnhQ5OcDRo8C+fUBE\nhLKV4eAABAcrgREcDPj5cRcUmUdennKc5dy5x8fV8v/m5DwOE09P5TTt1q2V42qWHCwMEDBAKqvc\nXODYMSUw9u0DIiMBNzegSxegUyclMBo0MHeVRKVLSVHCJD9QTp1STlN++BDw9n7ctW6t/P2rp0hX\nFAYIGCCVyYULwK+/Anv3KlsZ9esrgdGlC9C5s3IxGdGTIiXlcZgU7GxsAF9f5dhd/l8PD+XOAqbE\nAAEDxJJlZgL79wPbtyvBkZ4OvPAC0L07EBKi7DsmepqIKLvCEhKA48cf/71yRTlQ7+urdH5+Sufk\nZLxaGCBggFiaS5eUsNi+XbkAzNcX6N1b6Xx8LHufMJG5ZGQoWyv5gRIfr/x1cnp8hqG/vxIqjRpV\nzP8RAwQMEHMTURb8n35Suj//VLYyevdWtjR40RaRYfLylDMPC1/nlJenhEnbtsrZiAEByvHD8oYK\nAwQMEHMQUc6Y2rhRCY2HD4GXXgIGDFAOfvO0WiLjEFFu9RIXp/wPHj0KHDmi3FE5P0wCApRwcXMr\neVwMEDBATEVEuYjvu++U4KhWTQmMAQOUBZa7pojM58YN3UC5fRs4eLDk9zBAwAAxtsREYMMGYP16\n5V5RQ4YooeHtzdAgqsye6B+UIvNJSQG+/14JjUuXlND45htuaRBR+XEL5CmQlQVs3gysW6ecPRUa\nCgwfrhwIN8ePGxGRcXEXFhggf9X588CKFcCaNcpuqdGjgb//XbmNCBE9ubgLiwySlaUcCP/iC+XW\nC6NHKwfcWrY0d2VE9KRhgDwhzp1TtjbWrlUu8HvzTaB/f96gkIiMhwFSieXlATt3AgsWKFe5jh6t\n3Bq9eXNzV0ZETwMGSCWUkaFsaSxaBNSoAUyeDAwaxB9aIiLTYoBUIsnJwGefAV9+CXToACxdqtzp\nlqffEpE5WJm7ACpdXBwwbJjymwMZGcpuqp9/Vu56y/AgInNhgFiwgweVmxf266f8xOulS8puqxYt\nzF0ZERF3YVkcEeVHmf77X+D334Hp05WtDR7fICJLwwCxECLAtm1KcNy9C7z7rnKbEV4pTkSWiqsn\nM8vLUy78+89/lBB57z3l9um8bToRWToGiJmIKNdw/OtfSli8/z7Qpw8PihNR5cEAMYNDh5TguHlT\n2fJ46SUGBxFVPjwLy4ROnFDOqBo8GBg1Snk+YADDg4gqJwaICVy6BIwYAXTrBnTtqtwld8wYHiAn\nosqNAWJEd+8CU6YA7dop125cuAC8/bZy+xEiosqOAWIEubnA8uWAhweQnq7cVn3WLKBmTXNXRkRU\ncbgTpYLt26dsZdSuDezYAfj5mbsiIiLjYIBUkMuXgalTgaNHgU8+4cFxInrycRfWX/TggXLVeNu2\ngL8/cOYM8PLLDA8ievIZJUAiIiLg6emJli1bYvHixUX6Z2ZmYtSoUfD390fnzp2xefNmY5RhdD//\nDHh6KvesSkhQriK3sTF3VUREpqERI/zyur+/PxYtWgQ3Nzf07NkTkZGRcHZ2VvsvW7YMCQkJ+Pzz\nz/H777+ja9euSExMhKbQ13ZT/TB8eV29CkycCJw9qxws79zZ3BURET1mqnVnhW+B3Lt3DwDQqVMn\nuLm5oUePHoiOjtYZxtHREWlpacjOzsbt27dha2tbJDwsUW6ucjt1f3+lO36c4UFET68KP4geGxsL\nDw8P9bmXlxeioqIQGhqqvjZkyBBs3boVzs7OyMnJweHDhyu6jAoXHw+8/jpgZwdERiqn6BIRPc3M\nchbWZ599hipVquDGjRs4ceIEQkND8fvvv8PKqugGUXh4uPo4JCQEISEhpisUykHyWbOA9euBjz5S\nbkFSCTaWiOgpotVqodVqTT7dCj8Gcu/ePYSEhCA+Ph4AMHHiRPTq1UtnC2TgwIEYO3YsevbsCQAI\nCgrCmjVrdLZcAPMfA9mzBxg3DujUCZg3D6hb12ylEBGVWaU9BuLo6AhAORMrKSkJu3fvRlBQkM4w\nf/vb37B161bk5eXh0qVLuH37dpHwMKf0dOAf/wBefVU5SL52LcODiKgwo+zCWrhwIcLCwpCdnY1J\nkybB2dkZy5cvBwCEhYVh8ODBOH36NNq2bYu6deti0aJFxijDIAcPKrupOnRQ7pZbq5a5KyIiskxG\nOY23ophyF9bDh8DMmcC6dcDSpcCLL5pkskREFc5U607eygTK7UdGjlQuCkxI4O4qIqKyeKpvZZKd\nDYSHAy+8oNyO5IcfGB5ERGX11G6BXLoEDBkCODkBx44BDRqYuyIiosrlqdwC+eEHoH17JUC2b2d4\nEBEZ4qnaAsnIACZPBvbuVYKjbVtzV0REVHk9NVsgp08rPy2blgbExTE8iIj+qic+QESAr75Sbno4\nZQqwYQN/WpaIqCI80buw7t8HwsKAU6eAiAjlNF0iIqoYT+wWyMmTQECAciV5dDTDg4iooj2RAfL9\n90CXLso1HkuX8lcCiYiM4YnahZWTA8yYAfz4I7B7N+DnZ+6KiIieXE9MgKSmAoMHK7/VERsL1Klj\n7oqIiJ5sT8QurPh4IDBQOTV3xw6GBxGRKVT6LZB165TTc5csAQYONHc1RERPj0obINnZwLRpwC+/\nAPv2Ad7e5q6IiOjpUikD5N494JVXAGtrICYGqF3b3BURET19Kt0xkN9/V34tsFUrYOtWhgcRkblU\nqgCJiQGeew547TVg8WKgSqXcfiIiejJUmlXwxo3KbUm++gro18/c1RARkcUHiAgwbx6wcKFyim5A\ngLkrIiIioBIEyBtvAFFRwOHDQOPG5q6GiIjyWXyAXLsGREYCDg7mroSIiArSiIiYuwh9NBoNsrOF\nB8uJiMpN/IKoAAAVKklEQVRBo9HAFKt2iz8Li+FBRGSZLD5AiIjIMjFAiIjIIAwQIiIyCAOEiIgM\nwgAhIiKDMECIiMggDBAiIjIIA4SIiAzCACEiIoMwQIiIyCBGCZCIiAh4enqiZcuWWLx4cbHDxMbG\nIjAwEJ6enggJCTFGGUREZERGuZmiv78/Fi1aBDc3N/Ts2RORkZFwdnZW+4sIfHx8sGDBAnTr1g2p\nqak6/dXiTHRDMCKiJ4nF3Exxz5496Nq1K2rVqgUHBwc4ODigZs2aeoe/d+8eAKBTp05wc3NDjx49\nEB0drTPMkSNH4OPjg27dugFAseFBRESWrdR73U6fPh2LFi1CcHAwrKxK3+MVGxsLDw8P9bmXlxei\noqIQGhqqvrZz505oNBp07NgRtWrVwoQJE9CzZ89ixxceHq4+DgkJ4e4uIqJCtFottFqtyadbaoBU\nq1YNAQEBZQqPsnr48CGOHTuGPXv2ICMjA927d8fJkydhY2NTZNiCAUJEREUV/nI9e/Zsk0y31ADp\n2LEjXnzxRbzyyiuoVasWAGX/2ksvvVTs8IGBgZg2bZr6/NSpU+jVq5fOMMHBwcjKyoKrqysAoG3b\ntoiIiNC7FUJERJan1AD5888/4erqisjISJ3X9QWIo6MjAOVMrCZNmmD37t2YNWuWzjDt27fH7Nmz\nkZGRgYcPHyI+Ph4dOnQwdB6IiMgMSg2Q1atXl3ukCxcuRFhYGLKzszFp0iQ4Oztj+fLlAICwsDDU\nqVMHr776Ktq2bYu6detizpw5sLe3L/d0iIjIfEo9jffPP//E/PnzsXXrVgBAv379MGXKFLi4uBi/\nOJ7GS0RUbhZzGu+HH36IWrVqqUf5a9Wqhblz5xq9MCIismylboH4+vri+PHj6vO8vDz4+/vrvGa0\n4rgFQkRUbhazBRISEoKPP/4Yt27dQmpqKhYsWMBrMYiIqPQAeeedd3Djxg08//zz6NixI65fv47p\n06ebojYiIrJgRrkXVkXhLiwiovIz1bpT72m8H330Ed555x1MnDixSD+NRoNPP/3UqIUREZFl0xsg\nXl5eAICAgABoNBr1dRHReU5ERE8nvQHSt29fAICtrS0GDhyo0+/77783blVERGTxSj0G4u/vj/j4\n+FJfMwYeAyEiKj+zHwP59ddfsX37diQnJ2PSpElqMSkpKWjQoIHRCyMiIsumN0AaNGiAgIAAbN68\nGQEBAeqxDzc3NwQHB5uyRiIiskCl7sK6f/8+7OzsYG1tDQDIzc1FVlYWbG1tjV8cd2EREZWbxVyJ\n3qNHD2RmZqrPMzIy1J+iJSKip1epAZKZmalzq3UHBwekpaUZtSgiIrJ8pQZIUFAQtm3bpj7funUr\ngoKCjFoUERFZvlKPgZw+fRpvvvkmbt68CRGBi4sLli1bBk9PT+MXx2MgRETlZqp1Z5nvhfXHH39A\no9GgXr16xq5JxQAhIio/s18HUlB6ejpiYmJw9+5d9bWRI0carSgiIrJ8pR4DWbFiBf72t79h3Lhx\n2LRpEyZMmICdO3eaojYiIrJgpQbIqlWrEBERgbp162LTpk04cuQIUlJSTFEbERFZsFIDJDs7G9Wq\nVYO7uzuSk5PRvHlzXL161RS1ERGRBSv1GEhgYCDu3LmDUaNGoWPHjqhatSoGDBhgitqIiMiClXgW\nlojg6tWraNKkCQAgLS0Nd+7cUZ8bvTiehUVEVG4WcRqviMDHxwcnTpwweiHFYYAQEZWfRdwLS6PR\nIDg4GJs3bzZ6IUREVLmUeiGhp6cnzp07hzp16sDV1VV5k0aDhIQE4xfHLRAionIz+y6sK1euoEmT\nJkhKSiq2GHd3d+MXxwAhIio3swdIwZ+tHTBgAH766SejF1MYA4SIqPws4hhIvkuXLhm7DiIiqmTK\nFCBERESF6d2FZW1trf5sbWZmJmxsbB6/SaPB/fv3jV8cd2EREZWb2e/Gm5uba/SJExFR5cVdWERE\nZBCjBEhERAQ8PT3RsmVLLF68WO9wsbGxqFKlCjZu3GiMMoiIyIiMEiBvvfUWli9fjj179mDJkiVI\nTU0tMkxubi7eeecd9OrVi8c5iIgqoQoPkHv37gEAOnXqBDc3N/To0QPR0dFFhlu8eDFefvll1K1b\nt6JLICIiE6jwAImNjYWHh4f63MvLC1FRUTrDJCcnY/PmzRg/fjwA5YwBIiKqXMr0m+gV7e2338aH\nH36onmpW0i6s8PBw9XFISAhCQkKMXyARUSWi1Wqh1WpNPt1Sb6ZYXvfu3UNISIh6G5SJEyeiV69e\nCA0NVYdp1qyZGhqpqamwtbXFihUr0K9fP93ieB0IEVG5mf06EEM5OjoCUM7EatKkCXbv3o1Zs2bp\nDFPw1iivvvoq+vbtWyQ8iIjIshllF9bChQsRFhaG7OxsTJo0Cc7Ozli+fDkAICwszBiTJCIiE6vw\nXVgVibuwiIjKz6LuxktERFQYA4SIiAzCACEiIoMwQIiIyCAMECIiMggDhIiIDMIAISIigzBAiIjI\nIAwQIiIyCAOEiIgMwgAhIiKDMECIiMggDBAiIjIIA4SIiAzCACEiIoMwQIiIyCAMECIiMggDhIiI\nDMIAISIigzBAiIjIIAwQIiIyCAOEiIgMwgAhIiKDMECIiMggDBAiIjIIA4SIiAzCACEiIoMwQIiI\nyCAMECIiMggDhIiIDMIAISIigzBAiIjIIAwQIiIyCAOEiIgMYrQAiYiIgKenJ1q2bInFixcX6b9h\nwwb4+vrC19cXQ4cOxfnz541VChERGYFGRMQYI/b398eiRYvg5uaGnj17IjIyEs7Ozmr/w4cPw8vL\nC46OjlizZg327NmDdevW6Ran0cBI5RERPbFMte40yhbIvXv3AACdOnWCm5sbevTogejoaJ1hgoOD\n4ejoCAAIDQ3F/v37jVEKEREZSRVjjDQ2NhYeHh7qcy8vL0RFRSE0NLTY4b/44gv07du32H7h4eHq\n45CQEISEhFRkqURElZ5Wq4VWqzX5dI0SIOWxZ88erF+/HocOHSq2f8EAISKiogp/uZ49e7ZJpmuU\nXViBgYE4e/as+vzUqVNo3759keESEhLwxhtvYMuWLahVq5YxSiEiIiMxSoDkH9uIiIhAUlISdu/e\njaCgIJ1hrly5ggEDBmDDhg1o0aKFMcogIiIjMtourIULFyIsLAzZ2dmYNGkSnJ2dsXz5cgBAWFgY\n5syZg9u3b+ONN94AAFStWhUxMTHGKoeIiCqY0U7jrQg8jZeIqPwq9Wm8RET05GOAEBGRQRggRERk\nEAYIEREZhAFCREQGYYAQEZFBGCBERGQQBggRERmEAUJERAZhgBARkUEYIEREZBAGCBERGYQBQkRE\nBmGAEBGRQRggRERkEAYIEREZhAFCREQGYYAQEZFBGCBERGQQBggRERmEAUJERAZhgBARkUEYIERE\nZBAGCBERGYQBQkREBmGAEBGRQRggRERkEAYIEREZhAFCREQGYYAQEZFBGCBERGQQBggRERmEAUJE\nRAYxSoBERETA09MTLVu2xOLFi4sd5l//+heaNWuGgIAAnD171hhlmIxWqzV3CWXCOitOZagRYJ0V\nrbLUaSpGCZC33noLy5cvx549e7BkyRKkpqbq9I+JicGBAwdw5MgRTJ06FVOnTjVGGSZTWRYq1llx\nKkONAOusaJWlTlOp8AC5d+8eAKBTp05wc3NDjx49EB0drTNMdHQ0Xn75ZTg5OWHIkCE4c+ZMRZdB\nRERGVuEBEhsbCw8PD/W5l5cXoqKidIaJiYmBl5eX+rxu3bq4ePFiRZdCRETGJBVs9+7dMnjwYPX5\n0qVL5b333tMZZtiwYbJjxw71eVBQkFy8eLHIuACwY8eOHTsDOlOoggoWGBiIadOmqc9PnTqFXr16\n6QwTFBSE06dPo2fPngCAlJQUNGvWrMi4lAwhIiJLVOG7sBwdHQEoZ2IlJSVh9+7dCAoK0hkmKCgI\nP/30E27duoWvv/4anp6eFV0GEREZWYVvgQDAwoULERYWhuzsbEyaNAnOzs5Yvnw5ACAsLAzt2rXD\n888/j7Zt28LJyQnr1683RhlERGRMJtlRVor9+/eLh4eHtGjRQj799NNih5k+fbo0bdpU2rRpI2fO\nnDFxhYrS6ty3b5/UrFlT/Pz8xM/PT95//32T1/jqq6+Ki4uLeHt76x3GEtqytDotoS2vXLkiISEh\n4uXlJZ07d5YNGzYUO5y527MsdVpCe2ZmZkq7du3E19dXgoKCZP78+cUOZ+72LEudltCeIiI5OTni\n5+cnffr0Kba/sdvSIgLEz89P9u/fL0lJSfLMM89ISkqKTv/o6Gjp0KGD3Lp1S77++msJDQ21yDr3\n7dsnffv2NUtt+SIiIiQuLk7vitlS2rK0Oi2hLW/cuCHx8fEiIpKSkiJNmzaV+/fv6wxjCe1Zljot\noT1FRNLT00VE5OHDh/Lss8/KhQsXdPpbQnuKlF6npbTnvHnzZOjQocXWYoq2NPutTCrLdSNlqRMw\n/4H/jh07onbt2nr7W0JbAqXXCZi/LV1dXeHn5wcAcHZ2xrPPPosjR47oDGMJ7VmWOgHztycA2Nra\nAgAePHiAnJwcVK9eXae/JbQnUHqdgPnb89q1a9i+fTvGjRtXbC2maEuzB0hluW6kLHVqNBocOnQI\nfn5+mDJlikVe22IJbVkWltaWiYmJOHXqFNq1a6fzuqW1p746LaU98/Ly4Ovri3r16mHChAlo3Lix\nTn9Lac/S6rSE9pw8eTI+/vhjWFkVvxo3RVuaPUDKQpRdbTqvaTQaM1WjX5s2bXD16lXExsbCy8sL\nb731lrlLKoJtWX5paWkYNGgQFixYADs7O51+ltSeJdVpKe1pZWWF48ePIzExEZ9//jni4+N1+ltK\ne5ZWp7nbc9u2bXBxcYG/v7/eLSFTtKXZAyQwMFDnZoqnTp1C+/btdYbJv24kn77rRoypLHU6ODjA\n1tYWVatWxdixYxEbG4usrCyT1lkaS2jLsrCUtszOzsaAAQMwYsQI9O/fv0h/S2nP0uq0lPbM5+7u\njt69exfZDWwp7ZlPX53mbs9Dhw5hy5YtaNq0KYYMGYLffvsNI0eO1BnGFG1p9gCpLNeNlKXOP//8\nU038rVu3wsfHp9h9p+ZkCW1ZFpbQliKCsWPHwtvbG2+//Xaxw1hCe5alTktoz9TUVNy9excAcOvW\nLezatatI2FlCe5alTnO35wcffICrV6/i8uXL+Pbbb9G1a1esXbtWZxhTtKVRrgMpr8py3Uhpdf74\n449YunQpqlSpAh8fH8ybN8/kNQ4ZMgT79+9HamoqGjdujNmzZyM7O1ut0VLasrQ6LaEtDx48iPXr\n18PHxwf+/v4AlH/cK1euqHVaQnuWpU5LaM8bN25g1KhRyM3NhaurK6ZOnYr69etb3P96Weq0hPYs\nKH/XlKnbUiPmPpWAiIgqJbPvwiIiosqJAUJERAZhgBARkUEYIEREZBAGCJndrVu34O/vD39/f9Sv\nXx+NGjWCv78/HBwcMGHCBHOXVyJ7e3sAwPXr1/HKK68YdVqrV6/GxIkTAQDh4eHlPvMnv1aiimIR\np/HS061OnTrqlb6zZ8+Gg4MDpkyZYuaqyib/9MkGDRrghx9+MMm0Cj825P1EFYFbIGRx8s8s12q1\n6Nu3LwDlG3dYWBg6deqE5s2bY9euXfj3v/8Nb29vjB8/Xn3PuXPnMH78eAQFBeEf//gHbt26VWT8\n165dw5gxY+Dp6YkPPvgADg4Oar/ly5fjueeeQ2hoKLRaLQDlhnrdunVDmzZt0Lt3b+zfv7/IOJOS\nktC6dWu1/hUrVqB79+7o1q0bNm7cWOzwXl5eGDt2LDw9PTF79mz1SmZ3d3fcvn0bAHDkyBF06dJF\np10KS05OxrRp0xAcHIxRo0bh8uXLAJStorFjx8LDwwMffPBBKa1OVH4MEKo0oqOj8csvv2DlypUY\nMGAAWrRogRMnTuDChQuIi4sDAEybNg0zZsxAdHQ0nn32WXz55ZdFxjN37lz4+vrizJkzePTokfrN\nPCEhAWvWrMGvv/6K+fPn47XXXgMA2NjYYNOmTYiLi8OyZcsQHh5eYp379+/H2bNnsWvXLmzevBn/\n+c9/8OjRoyLDnT17Fn369MGxY8eQkJCAbdu2ASj/lsLMmTMxePBgHD58GIMGDcL//vc/AMCHH34I\nDw8PnDlzBg8fPizXOInKgruwqFLQaDTo168fHBwcEBwcjKysLAwePBgajQZBQUE4fPgwmjRpggMH\nDqBfv34AgNzcXLi7uxcZ1+7du/H+++8DAEaPHq0eS9i2bRtefvllODo6wtHREa1atUJ0dDSCgoKw\naNEibN++Henp6bh48SLu3bun3t6msJ9++gm7du3Cb7/9BgC4f/8+oqKi0KlTJ53hHB0d8fe//x2A\ncmX+jh07MGDAgHK1SU5ODrZv364GaEE7d+7EoUOHoNFoMGbMGCxYsKDM4yYqCwYIVRr5K+xq1aqh\nevXq6r2HqlWrhkePHiE3N1fneEp5aTSaYu9eqtVqceDAAezcuRN2dnZwcXEpMUDy8vIwY8YMjBo1\nqtzTB4AaNWqou7Pyd2Xpk5eXBysrK0RFRVnkb1bQk427sKhSKG1FKCJwdXVF06ZN8dNPP0FEkJ2d\nrXM30nw9evTA+vXrkZeXh3Xr1qmv9+nTB5s2bcK9e/dw/vx5XLhwAe3atUNycjIaNmwIBwcHfPvt\nt6Wu1IcOHYq1a9ciJSUFAHD+/HlkZGQUGe7evXv4+eefkZWVhe+++w69evUCAAQHB0Or1SI7O1un\nvsLzKyKoVq0aevfujaVLlyI3NxcigoSEBABAr169sGbNGuTl5WH16tUl1kxkCAYIWZz8b+IajabY\nxwWHKfz8888/x759++Dn5wd/f38cPny4yPinT5+OuLg4PPvss3jw4AGaNm0KAGjdujVGjhyJF154\nAW+//TZWrFgBAHjxxRdx9+5deHp6IjIyUudHeoqrqUOHDhg6dCheeeUVtG7dGuPHj0dOTk6ROjw8\nPLBlyxb4+fnB29sboaGhAICJEydi2bJlaNeuHZo1a1Zqe8yePRt//PEH2rZtC29vb2zZskWdz9On\nT8PLywvVq1fnWVhU4XgzRXrqZGZmwsbGBiKCBQsWICUlBXPnzjVpDUlJSejbty9OnDhh0ukSVSRu\ngdBT5+jRo/Dz80Pr1q1x8eJF/OMf/zBLHdwioMqOWyBERGQQboEQEZFBGCBERGQQBggRERmEAUJE\nRAZhgBARkUEYIEREZJD/B5NOMy6xXE86AAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x2379d50>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Conclusion\n", | |
"\n", | |
"Traditionally, goalies were pulled if the team down by one at one minute to go. This analysis suggests that the goalie should be pulled at around 2:40 to go.\n", | |
" \n", | |
"Some limitations on the model\n", | |
"\n", | |
"1. Does not recognize that different teams have different rates of scoring. [2]\n", | |
"2. The analysis ends at the next goal scored. It does not count for the possibility that pulling the goalie enables another score. [3]\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## References\n", | |
"\n", | |
"[1] Morrison, D. G., and R. D. Wheat. 1986. *Misapplications Reviews: Pulling the Goalie Revisited.* **Interfaces** 16 (6) (November 1): 28\u201334. doi:10.1287/inte.16.6.28. \n", | |
"\n", | |
"[2] Erkut, E. 1987. *Note: More on Morrison and Wheat\u2019s \u2018Pulling the Goalie Revisited\u2019.* **Interfaces** 17 (5) (September 1): 121\u2013123. doi:10.1287/inte.17.5.121.\n", | |
"\n", | |
"[3] Washburn, A. 1991. *Still More on Pulling the Goalie.* **Interfaces** 21 (2) (March 1): 59\u201364. doi:10.1287/inte.21.2.59." | |
] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment