Skip to content

Instantly share code, notes, and snippets.

@lopespm
lopespm / obsidian_notes_encrypted_backup_script.sh
Created September 12, 2024 06:20
Backs up all Obsidian notes into an Encrypted .7z file - destination folder could be e.g. Google Drive, Dropbox, OneDrive
#!/bin/zsh
# See this blog article on how to create Obsidian automatic encrypted backups, on Obsidian application quit, or any other event:
# https://lopespm.com/notes/2024/09/11/obsidian-backup.html
#
obsidian_notes_folder="<your_obsidian_folder>" ; # For example, /Users/yourusername/Library/Application Support/obsidian
obsidian_notes_tar_archive="${obsidian_notes_folder}/obsidian_backup.tar.gz" ;
backup_folder="<folder_where_the_final_encrypted_backup_will_be_placed>"; # For example, /Users/yourusername/Library/CloudStorage/GoogleDrive/MyDrive/backup_folder
echo "Starting to compress obsidian notes..." ;
@lopespm
lopespm / max_content_length_of_embeddings_model.py
Created June 9, 2024 08:36
[Python] Check which is the maximum content length for a given embeddings model
# In this example, we get the maximum content length for the intfloat/multilingual-e5-large model (https://huggingface.co/intfloat/multilingual-e5-large)
from transformers import AutoConfig
checkpoint = "intfloat/multilingual-e5-large"
config = AutoConfig.from_pretrained(checkpoint)
print(f"Maximum context length for this model: {config.max_position_embeddings}")
### Output "Maximum context length for this model: 514"
@lopespm
lopespm / remove_ignored_git_files.sh
Created July 10, 2020 23:48
Remove from repository all git ignored files
# https://stackoverflow.com/a/34435207/1765893
git rm -r --cached .
git add .
git commit -m "Remove all ignored files in .gitignore"
@lopespm
lopespm / random_subset.py
Created June 19, 2019 11:17
Compute a random subset - Python
# This solution to compute a random subset avoids the use of extra auxiliary space, with O(k + n) time complexity and O(1) space complexity, in Python (5.15 Compute a random subset, on EPI (Elements of Programming Interviews)) (September 2018 edition)).
# The idea here is to pick the r-th combination, and find its constituents by incrementing them in a Odometer like fashion, and taking into account that the next digit in the combination will be greater than the previous one.
# For example, the combination sequence for n=5 and k=2 is:
# 0 - [0,1]
# 1 - [0,2]
# 2 - [0,3]
# 3 - [0,4]
# 4 - [1,2]
# 5 - [1,3]
# 6 - [1,4]
@lopespm
lopespm / binary_tree_from_preorder_inorder.py
Created May 10, 2019 17:30
Reconstruct a binary tree from a preorder traversal with markers - Alternative Solution (Python)
# Alternative python solution for 9.12 Reconstruct a binary tree from a preorder traversal with markers on EPI (Elements of Programming Interviews)) (September 2018 edition)
# Time complexity: O(n)
# Space complexity: O(n + h) - the size of the hash table plus the maximum depth of the function call stack
class BstNode:
def __init__(self, data, left=None, right=None):
self.data = data
self.left = left
self.right = right
def __repr__(self):
@lopespm
lopespm / is_valid_sudoku.py
Last active May 6, 2019 17:40
The Sudoku Check Problem - Alternative Solution (Python)
# Alternative python solution for 5.17 The Sudoku Check Problem on EPI (Elements of Programming Interviews)) (September 2018 edition)
# For an nxn Sudoku grid:
# Time complexity: O(n^2)
# Space complexity: O(n)
from typing import List
import math
from typing import List, Set
import math
@lopespm
lopespm / levenshtein_regex_dp.py
Last active January 25, 2021 19:23
Levenshtein distance between regex expression and target string - Dynamic Programming (Python)
# (Variant #4 for exercise 16.2 on EPI (Elements of Programming Interviews)) (September 2018 edition)
# The core idea is calculate the levenshtein distance, while taking into account the special cases of the regex expression
# *, +, ? and . were taken into account for the regex expression. Expression blocks are not supported
# This algorithm uses dynamic programming, yielding a O(mn) time complexity, O(m) auxiliary space for cache
# (m and n are the lengths of regex and target strings respectively)
#
# Version using recursion with memoization: https://gist.github.com/lopespm/53a215d0b2b0518b52b6bb6687bdaff6
def regex_dist(regex: str, target: str):
@lopespm
lopespm / levenshtein_regex_recursion_memo.py
Last active December 28, 2021 09:25
Levenshtein distance between regex expression and target string - Recursion with memoization (Python)
# (Variant #4 for exercise 16.2 on EPI (Elements of Programming Interviews)) (September 2018 edition)
# The core idea is calculate the levenshtein distance, while taking into account the special cases of the regex expression
# *, +, ? and . were taken into account for the regex expression. Expression blocks are not supported
# This algorithm uses recursion with memoization (could be transposed to a DP solution), yielding a O(mn) time complexity, O(mn) auxiliary space for cache and O(max(m,n)) function call stack
# (m and n are the lengths of regex and target strings respectively)
#
# Version using dynamic programming: https://gist.github.com/lopespm/2362a77e7bd230a4622a43709c195826
def regex_dist(regex: str, target: str):
def regex_dist_aux(r_i, t_i):
@lopespm
lopespm / kth_element_spiral.py
Last active October 12, 2021 22:32
Compute the kth element in spiral order for an m x n 2D array in O(1) time (Python)
# (Variant #6 for exercise 5.18 on EPI (Elements of Programming Interviews)) (September 2018 edition)
# Consider a 10x7 (mxn) matrix, in which we get 30 elements for the the outer ring, the next outer ring would have 22 elements, then 14 elements, and the most inner ring has the remaining elements. The number of elements per ring is given by 2 x (m - (1 + (2 x (r-1) ))) + 2 x (n - (1 + (2 x (r-1) ))), for the rth ring.
# Save from the most inner ring, the difference between the number of elements of each adjacent ring is 8 elements. If we want to know the number of elements of the current ring plus all the other previous ones, we get an arithmetic series (https://en.wikipedia.org/wiki/Arithmetic_progression#Sum).
# The sum of all the elements until a given r is given by sum = (r(a1 + ar)) / 2, being a1 = 2(m-1) + 2(n-1), ar = 2 x (m - (1 + (2 x (r-1) ))) + 2 x (n - (1 + (2 x (r-1) ))). If we solve the equation in relation to r, using the quadratic formula to disentangle the final polynomial, we reach r = mat
@lopespm
lopespm / print_levels_tree.py
Created April 6, 2019 12:24
Prints a given tree in levels, using BFS - using Python
# Print tree by levels - using BFS
# The idea behind it is to use BFS and keep a level marker integer which marks the end the last node of the level. This is similar to Naresh's sentinel approach, but without the need of inserting a sentinel inside the queue, since this is accomplished by the level marker.
# Time complexity of O(n)
# Space complexity: O(2^tree_height)
from collections import deque
class Node:
def __init__(self, data, left=None, right=None):
self.data = data