Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save lorne-luo/31e589da55e6473edd8272992723cebf to your computer and use it in GitHub Desktop.
Save lorne-luo/31e589da55e6473edd8272992723cebf to your computer and use it in GitHub Desktop.
Neural Network from Scratch with PyTorch
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"deletable": false,
"editable": false,
"run_control": {
"frozen": true
}
},
"cell_type": "markdown",
"source": "![](https://cdn-images-1.medium.com/max/1600/1*hAg3w3tSNjvoUE2HCro9Ww.png)"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "# pip install torch torchvision\nimport torch\nimport torch.nn as nn",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "# creating some sample data using the torch.tensor\n\n# X represents the amount of hours studied and how much time students spent sleeping\nX = torch.tensor(([2, 9], [1, 5], [3, 6]), dtype=torch.float) # 3 X 2 tensor\n# y represent grades\ny = torch.tensor(([92], [100], [89]), dtype=torch.float) # 3 X 1 tensor\n\n# xPredicted is a single input for which we want to predict a grade \nxPredicted = torch.tensor(([4, 8]), dtype=torch.float) # 1 X 2 tensor\n\n# equivelent to numpy.shape\nprint(X.size())\nprint(y.size())",
"execution_count": 2,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "torch.Size([3, 2])\ntorch.Size([3, 1])\n"
}
]
},
{
"metadata": {
"scrolled": true,
"trusted": true
},
"cell_type": "code",
"source": "# performing some scaling on the sample data\n# scale units\nX_max, _ = torch.max(X, 0)\nxPredicted_max, _ = torch.max(xPredicted, 0)\n\nprint(X)\nX = torch.div(X, X_max)\nprint(X)\n\nxPredicted = torch.div(xPredicted, xPredicted_max)\ny = y / 100 # max test score is 100\n\nprint(xPredicted)",
"execution_count": 3,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "tensor([[2., 9.],\n [1., 5.],\n [3., 6.]])\ntensor([[0.6667, 1.0000],\n [0.3333, 0.5556],\n [1.0000, 0.6667]])\ntensor([0.5000, 1.0000])\n"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "# Computate Graph\n\nclass Neural_Network(nn.Module):\n def __init__(self, ):\n super(Neural_Network, self).__init__()\n # parameters\n # TODO: parameters can be parameterized instead of declaring them here\n self.inputSize = 2\n self.outputSize = 1\n self.hiddenSize = 3\n \n # weights matrices are initialized with values randomly chosen from a normal distribution\n self.W1 = torch.randn(self.inputSize, self.hiddenSize) # 3 X 2 tensor\n self.W2 = torch.randn(self.hiddenSize, self.outputSize) # 3 X 1 tensor\n \n def forward(self, X):\n self.z = torch.matmul(X, self.W1) # 3 X 3 \".dot\" does not broadcast in PyTorch\n self.z2 = self.sigmoid(self.z) # activation function\n self.z3 = torch.matmul(self.z2, self.W2)\n o = self.sigmoid(self.z3) # final activation function\n return o\n \n def sigmoid(self, s):\n return 1 / (1 + torch.exp(-s))\n \n def sigmoidPrime(self, s):\n # derivative of sigmoid\n return s * (1 - s)\n \n def backward(self, X, y, o):\n self.o_error = y - o # error in output\n self.o_delta = self.o_error * self.sigmoidPrime(o) # derivative of sig to error\n self.z2_error = torch.matmul(self.o_delta, torch.t(self.W2))\n self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2)\n self.W1 += torch.matmul(torch.t(X), self.z2_delta)\n self.W2 += torch.matmul(torch.t(self.z2), self.o_delta)\n \n def train(self, X, y):\n # forward + backward pass for training\n o = self.forward(X)\n \n self.backward(X, y, o)\n \n def saveWeights(self, model):\n # we will use the PyTorch internal storage functions\n torch.save(model, \"NN\")\n # you can reload model with all the weights and so forth with:\n # torch.load(\"NN\")\n \n def predict(self):\n print (\"Predicted data based on trained weights: \")\n print (\"Input (scaled): \\n\" + str(xPredicted))\n print (\"Output: \\n\" + str(self.forward(xPredicted)))",
"execution_count": 9,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "NN = Neural_Network()\nfor i in range(1000): # trains the NN 1,000 times\n print (\"#\" + str(i) + \" Loss: \" + str(torch.mean((y - NN(X))**2).detach().item())) # mean sum squared loss\n NN.train(X, y)\nNN.saveWeights(NN)\nNN.predict()",
"execution_count": 10,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": "#0 Loss: 0.007429896388202906\n#1 Loss: 0.007136822212487459\n#2 Loss: 0.00687433173879981\n#3 Loss: 0.006638271268457174\n#4 Loss: 0.006425193976610899\n#5 Loss: 0.006232195068150759\n#6 Loss: 0.006056810263544321\n#7 Loss: 0.005896960850805044\n#8 Loss: 0.005750857759267092\n#9 Loss: 0.005616967100650072\n#10 Loss: 0.005493972450494766\n#11 Loss: 0.005380699876695871\n#12 Loss: 0.0052761803381145\n#13 Loss: 0.005179520696401596\n#14 Loss: 0.005089965183287859\n#15 Loss: 0.005006836261600256\n#16 Loss: 0.004929537419229746\n#17 Loss: 0.00485753221437335\n#18 Loss: 0.004790371749550104\n#19 Loss: 0.004727609921246767\n#20 Loss: 0.004668896552175283\n#21 Loss: 0.004613881465047598\n#22 Loss: 0.004562269896268845\n#23 Loss: 0.00451379781588912\n#24 Loss: 0.004468204919248819\n#25 Loss: 0.0044252811931073666\n#26 Loss: 0.004384817089885473\n#27 Loss: 0.0043466477654874325\n#28 Loss: 0.0043105920776724815\n#29 Loss: 0.004276504274457693\n#30 Loss: 0.004244245123118162\n#31 Loss: 0.004213692154735327\n#32 Loss: 0.004184729885309935\n#33 Loss: 0.004157244693487883\n#34 Loss: 0.00413114856928587\n#35 Loss: 0.00410634558647871\n#36 Loss: 0.004082761239260435\n#37 Loss: 0.004060313571244478\n#38 Loss: 0.004038934130221605\n#39 Loss: 0.004018553998321295\n#40 Loss: 0.0039991228841245174\n#41 Loss: 0.0039805760607123375\n#42 Loss: 0.003962861839681864\n#43 Loss: 0.003945937845855951\n#44 Loss: 0.003929756581783295\n#45 Loss: 0.003914279397577047\n#46 Loss: 0.0038994650822132826\n#47 Loss: 0.0038852717261761427\n#48 Loss: 0.0038716711569577456\n#49 Loss: 0.00385863333940506\n#50 Loss: 0.0038461231160908937\n#51 Loss: 0.0038341206964105368\n#52 Loss: 0.00382259301841259\n#53 Loss: 0.0038115207571536303\n#54 Loss: 0.0038008783012628555\n#55 Loss: 0.0037906423676759005\n#56 Loss: 0.003780798986554146\n#57 Loss: 0.003771319054067135\n#58 Loss: 0.0037621997762471437\n#59 Loss: 0.0037534136790782213\n#60 Loss: 0.0037449419032782316\n#61 Loss: 0.00373678095638752\n#62 Loss: 0.0037289049942046404\n#63 Loss: 0.003721313551068306\n#64 Loss: 0.0037139784544706345\n#65 Loss: 0.003706900170072913\n#66 Loss: 0.003700059140101075\n#67 Loss: 0.003693455131724477\n#68 Loss: 0.003687068819999695\n#69 Loss: 0.0036808873992413282\n#70 Loss: 0.003674915060400963\n#71 Loss: 0.003669134108349681\n#72 Loss: 0.0036635363940149546\n#73 Loss: 0.003658117027953267\n#74 Loss: 0.0036528666969388723\n#75 Loss: 0.0036477812100201845\n#76 Loss: 0.0036428554449230433\n#77 Loss: 0.0036380700767040253\n#78 Loss: 0.0036334358155727386\n#79 Loss: 0.0036289291456341743\n#80 Loss: 0.0036245675291866064\n#81 Loss: 0.003620326519012451\n#82 Loss: 0.0036162110045552254\n#83 Loss: 0.0036122091114521027\n#84 Loss: 0.0036083252634853125\n#85 Loss: 0.0036045443266630173\n#86 Loss: 0.003600866300985217\n#87 Loss: 0.003597299801185727\n#88 Loss: 0.003593817353248596\n#89 Loss: 0.003590435953810811\n#90 Loss: 0.003587141400203109\n#91 Loss: 0.0035839341580867767\n#92 Loss: 0.0035808123648166656\n#93 Loss: 0.0035777695011347532\n#94 Loss: 0.0035747999791055918\n#95 Loss: 0.0035719049628823996\n#96 Loss: 0.003569089574739337\n#97 Loss: 0.003566335653886199\n#98 Loss: 0.003563654376193881\n#99 Loss: 0.003561030374839902\n#100 Loss: 0.003558470867574215\n#101 Loss: 0.003555975155904889\n#102 Loss: 0.003553532063961029\n#103 Loss: 0.003551148809492588\n#104 Loss: 0.003548821434378624\n#105 Loss: 0.00354654504917562\n#106 Loss: 0.0035443175584077835\n#107 Loss: 0.0035421382635831833\n#108 Loss: 0.003540008096024394\n#109 Loss: 0.003537918673828244\n#110 Loss: 0.0035358767490833998\n#111 Loss: 0.003533876733854413\n#112 Loss: 0.00353191583417356\n#113 Loss: 0.0035300003364682198\n#114 Loss: 0.0035281172022223473\n#115 Loss: 0.003526274813339114\n#116 Loss: 0.003524466184899211\n#117 Loss: 0.003522701794281602\n#118 Loss: 0.0035209578927606344\n#119 Loss: 0.003519252873957157\n#120 Loss: 0.003517576726153493\n#121 Loss: 0.0035159389954060316\n#122 Loss: 0.003514323616400361\n#123 Loss: 0.003512740135192871\n#124 Loss: 0.003511182265356183\n#125 Loss: 0.0035096528008580208\n#126 Loss: 0.003508147085085511\n#127 Loss: 0.003506667213514447\n#128 Loss: 0.0035052176099270582\n#129 Loss: 0.0035037861671298742\n#130 Loss: 0.0035023808013647795\n#131 Loss: 0.003500998020172119\n#132 Loss: 0.003499633399769664\n#133 Loss: 0.0034982890356332064\n#134 Loss: 0.003496972844004631\n#135 Loss: 0.003495667828246951\n#136 Loss: 0.003494384465739131\n#137 Loss: 0.003493117867037654\n#138 Loss: 0.0034918717574328184\n#139 Loss: 0.00349065032787621\n#140 Loss: 0.003489432856440544\n#141 Loss: 0.00348824099637568\n#142 Loss: 0.003487059148028493\n#143 Loss: 0.0034858949948102236\n#144 Loss: 0.0034847462084144354\n#145 Loss: 0.0034836139529943466\n#146 Loss: 0.003482494270429015\n#147 Loss: 0.003481391118839383\n#148 Loss: 0.003480295417830348\n#149 Loss: 0.003479210427030921\n#150 Loss: 0.0034781501162797213\n#151 Loss: 0.0034770946949720383\n#152 Loss: 0.0034760525450110435\n#153 Loss: 0.0034750227350741625\n#154 Loss: 0.0034740024711936712\n#155 Loss: 0.003472989657893777\n#156 Loss: 0.003471995471045375\n#157 Loss: 0.003471007803454995\n#158 Loss: 0.003470028517767787\n#159 Loss: 0.0034690583124756813\n#160 Loss: 0.0034680941607803106\n#161 Loss: 0.0034671456087380648\n#162 Loss: 0.003466206369921565\n#163 Loss: 0.00346527062356472\n#164 Loss: 0.003464349312707782\n#165 Loss: 0.00346343033015728\n#166 Loss: 0.003462528809905052\n#167 Loss: 0.0034616210032254457\n#168 Loss: 0.0034607311245054007\n#169 Loss: 0.003459845669567585\n#170 Loss: 0.0034589646384119987\n#171 Loss: 0.0034580936189740896\n#172 Loss: 0.0034572307486087084\n#173 Loss: 0.0034563709050416946\n#174 Loss: 0.0034555227030068636\n#175 Loss: 0.0034546691458672285\n#176 Loss: 0.003453831886872649\n#177 Loss: 0.0034529983531683683\n#178 Loss: 0.0034521690104156733\n#179 Loss: 0.0034513454884290695\n#180 Loss: 0.0034505247604101896\n#181 Loss: 0.0034497110173106194\n#182 Loss: 0.0034489023964852095\n#183 Loss: 0.0034481019247323275\n#184 Loss: 0.0034473019186407328\n#185 Loss: 0.0034465075004845858\n#186 Loss: 0.003445720300078392\n#187 Loss: 0.003444937989115715\n#188 Loss: 0.003444146132096648\n#189 Loss: 0.0034433745313435793\n#190 Loss: 0.0034425982739776373\n#191 Loss: 0.003441832261160016\n#192 Loss: 0.0034410618245601654\n#193 Loss: 0.00344030256383121\n#194 Loss: 0.003439543768763542\n#195 Loss: 0.003438790561631322\n#196 Loss: 0.003438035724684596\n#197 Loss: 0.0034372862428426743\n#198 Loss: 0.0034365393221378326\n#199 Loss: 0.003435796359553933\n#200 Loss: 0.0034350629430264235\n#201 Loss: 0.0034343237057328224\n#202 Loss: 0.0034335919190198183\n#203 Loss: 0.003432856872677803\n#204 Loss: 0.0034321274142712355\n#205 Loss: 0.003431403310969472\n#206 Loss: 0.0034306757152080536\n#207 Loss: 0.003429955570027232\n#208 Loss: 0.0034292389173060656\n#209 Loss: 0.003428521566092968\n#210 Loss: 0.003427801886573434\n#211 Loss: 0.0034270938485860825\n#212 Loss: 0.0034263795241713524\n#213 Loss: 0.0034256717190146446\n#214 Loss: 0.003424961119890213\n#215 Loss: 0.003424258204177022\n#216 Loss: 0.0034235545899719\n#217 Loss: 0.0034228579606860876\n#218 Loss: 0.0034221529494971037\n#219 Loss: 0.0034214600455015898\n#220 Loss: 0.00342076295055449\n#221 Loss: 0.003420066088438034\n#222 Loss: 0.003419372485950589\n#223 Loss: 0.00341868051327765\n#224 Loss: 0.0034179873764514923\n#225 Loss: 0.0034172972664237022\n#226 Loss: 0.003416612045839429\n#227 Loss: 0.003415921004489064\n#228 Loss: 0.0034152355510741472\n#229 Loss: 0.003414546838030219\n#230 Loss: 0.0034138625487685204\n#231 Loss: 0.0034131836146116257\n#232 Loss: 0.0034124988596886396\n#233 Loss: 0.0034118208568543196\n#234 Loss: 0.003411142388358712\n#235 Loss: 0.0034104567021131516\n#236 Loss: 0.003409783588722348\n#237 Loss: 0.0034091060515493155\n#238 Loss: 0.003408431075513363\n#239 Loss: 0.00340775097720325\n#240 Loss: 0.0034070780966430902\n#241 Loss: 0.003406403586268425\n#242 Loss: 0.0034057286102324724\n#243 Loss: 0.0034050524700433016\n#244 Loss: 0.003404380986467004\n#245 Loss: 0.003403702052310109\n#246 Loss: 0.003403039649128914\n#247 Loss: 0.003402368165552616\n#248 Loss: 0.0034016917925328016\n#249 Loss: 0.0034010231029242277\n#250 Loss: 0.0034003565087914467\n#251 Loss: 0.003399685025215149\n#252 Loss: 0.003399015637114644\n#253 Loss: 0.003398348344489932\n#254 Loss: 0.003397681750357151\n#255 Loss: 0.0033970086369663477\n#256 Loss: 0.003396345069631934\n#257 Loss: 0.0033956754487007856\n#258 Loss: 0.003395008621737361\n#259 Loss: 0.003394342726096511\n#260 Loss: 0.003393677296116948\n#261 Loss: 0.003393008140847087\n#262 Loss: 0.0033923406153917313\n#263 Loss: 0.0033916730899363756\n#264 Loss: 0.003391009522601962\n#265 Loss: 0.003390340367332101\n#266 Loss: 0.0033896772656589746\n#267 Loss: 0.0033890074118971825\n#268 Loss: 0.003388339886441827\n#269 Loss: 0.003387679345905781\n#270 Loss: 0.003387008560821414\n#271 Loss: 0.0033863431308418512\n#272 Loss: 0.0033856742084026337\n#273 Loss: 0.00338500807993114\n#274 Loss: 0.003384339390322566\n#275 Loss: 0.0033836790826171637\n#276 Loss: 0.0033830078318715096\n#277 Loss: 0.0033823412377387285\n#278 Loss: 0.0033816781360656023\n#279 Loss: 0.003381013870239258\n#280 Loss: 0.0033803414553403854\n#281 Loss: 0.0033796795178204775\n#282 Loss: 0.0033790096640586853\n#283 Loss: 0.0033783456310629845\n#284 Loss: 0.003377675311639905\n#285 Loss: 0.0033770063892006874\n#286 Loss: 0.0033763365354388952\n#287 Loss: 0.003375668777152896\n#288 Loss: 0.0033750010188668966\n#289 Loss: 0.003374331397935748\n#290 Loss: 0.003373664105311036\n#291 Loss: 0.003372994950041175\n#292 Loss: 0.003372327657416463\n#293 Loss: 0.0033716566395014524\n#294 Loss: 0.003370988415554166\n#295 Loss: 0.0033703141380101442\n#296 Loss: 0.0033696412574499846\n#297 Loss: 0.003368975594639778\n#298 Loss: 0.0033682987559586763\n#299 Loss: 0.003367633791640401\n#300 Loss: 0.003366956254467368\n#301 Loss: 0.0033662898931652308\n#302 Loss: 0.003365609562024474\n#303 Loss: 0.0033649401739239693\n#304 Loss: 0.00336426286958158\n#305 Loss: 0.0033635881263762712\n#306 Loss: 0.003362917574122548\n#307 Loss: 0.0033622391056269407\n#308 Loss: 0.003361570416018367\n#309 Loss: 0.00336089008487761\n#310 Loss: 0.003360213479027152\n#311 Loss: 0.003359538270160556\n#312 Loss: 0.0033588644582778215\n#313 Loss: 0.003358178772032261\n#314 Loss: 0.003357506124302745\n#315 Loss: 0.0033568234648555517\n#316 Loss: 0.003356150584295392\n#317 Loss: 0.0033554695546627045\n#318 Loss: 0.0033547868952155113\n#319 Loss: 0.003354110522195697\n#320 Loss: 0.003353429026901722\n#321 Loss: 0.0033527470659464598\n#322 Loss: 0.00335206207819283\n#323 Loss: 0.0033513836096972227\n#324 Loss: 0.0033507011830806732\n#325 Loss: 0.0033500136341899633\n#326 Loss: 0.00334933097474277\n#327 Loss: 0.003348648315295577\n#328 Loss: 0.003347961464896798\n#329 Loss: 0.0033472811337560415\n#330 Loss: 0.003346593352034688\n#331 Loss: 0.0033459020778536797\n#332 Loss: 0.003345212899148464\n#333 Loss: 0.003344526281580329\n#334 Loss: 0.0033438371028751135\n#335 Loss: 0.0033431502524763346\n#336 Loss: 0.003342463867738843\n#337 Loss: 0.003341772360727191\n#338 Loss: 0.003341085510328412\n#339 Loss: 0.0033403905108571053\n#340 Loss: 0.003339693183079362\n#341 Loss: 0.0033390000462532043\n#342 Loss: 0.0033383071422576904\n#343 Loss: 0.003337620059028268\n#344 Loss: 0.0033369215670973063\n#345 Loss: 0.003336227498948574\n#346 Loss: 0.003335527377203107\n#347 Loss: 0.003334835870191455\n#348 Loss: 0.0033341378439217806\n#349 Loss: 0.0033334344625473022\n#350 Loss: 0.0033327427227050066\n#351 Loss: 0.0033320458605885506\n#352 Loss: 0.0033313401509076357\n#353 Loss: 0.003330640261992812\n#354 Loss: 0.003329940140247345\n#355 Loss: 0.0033292423468083143\n#356 Loss: 0.0033285387326031923\n#357 Loss: 0.0033278383780270815\n#358 Loss: 0.0033271312713623047\n#359 Loss: 0.003326427424326539\n#360 Loss: 0.0033257168252021074\n#361 Loss: 0.003325018333271146\n#362 Loss: 0.0033243035431951284\n#363 Loss: 0.0033236073795706034\n#364 Loss: 0.0033228944521397352\n#365 Loss: 0.0033221894409507513\n#366 Loss: 0.003321480005979538\n#367 Loss: 0.0033207654487341642\n#368 Loss: 0.0033200576435774565\n#369 Loss: 0.0033193447161465883\n#370 Loss: 0.0033186329528689384\n#371 Loss: 0.00331791746430099\n#372 Loss: 0.0033172082621604204\n#373 Loss: 0.0033164990600198507\n#374 Loss: 0.0033157786820083857\n#375 Loss: 0.0033150624949485064\n#376 Loss: 0.003314343513920903\n#377 Loss: 0.0033136282581835985\n#378 Loss: 0.003312913700938225\n#379 Loss: 0.0033121940214186907\n#380 Loss: 0.0033114731777459383\n#381 Loss: 0.003310754196718335\n#382 Loss: 0.00331003125756979\n#383 Loss: 0.003309310181066394\n#384 Loss: 0.0033085874747484922\n#385 Loss: 0.00330786663107574\n#386 Loss: 0.003307138802483678\n#387 Loss: 0.0033064160961657763\n#388 Loss: 0.0033056940883398056\n#389 Loss: 0.003304962068796158\n#390 Loss: 0.0033042412251234055\n#391 Loss: 0.0033035113010555506\n#392 Loss: 0.0033027802128344774\n#393 Loss: 0.00330205331556499\n#394 Loss: 0.0033013224601745605\n#395 Loss: 0.0033005925361067057\n#396 Loss: 0.0032998602837324142\n#397 Loss: 0.003299126634374261\n#398 Loss: 0.003298397408798337\n#399 Loss: 0.0032976623624563217\n#400 Loss: 0.003296930342912674\n#401 Loss: 0.003296192502602935\n#402 Loss: 0.003295455826446414\n#403 Loss: 0.003294718451797962\n#404 Loss: 0.0032939789816737175\n#405 Loss: 0.0032932411413639784\n#406 Loss: 0.003292504698038101\n#407 Loss: 0.003291759639978409\n#408 Loss: 0.0032910217996686697\n#409 Loss: 0.0032902800012379885\n#410 Loss: 0.003289532847702503\n#411 Loss: 0.003288790350779891\n#412 Loss: 0.003288047155365348\n#413 Loss: 0.0032873020973056555\n#414 Loss: 0.0032865542452782393\n#415 Loss: 0.0032858047634363174\n#416 Loss: 0.0032850641291588545\n#417 Loss: 0.0032843127846717834\n#418 Loss: 0.0032835633028298616\n#419 Loss: 0.0032828114926815033\n#420 Loss: 0.0032820655032992363\n#421 Loss: 0.0032813071738928556\n#422 Loss: 0.003280554199591279\n#423 Loss: 0.0032798051834106445\n#424 Loss: 0.003279050812125206\n#425 Loss: 0.0032782929483801126\n#426 Loss: 0.003277535317465663\n#427 Loss: 0.0032767837401479483\n"
},
{
"name": "stdout",
"output_type": "stream",
"text": "#428 Loss: 0.0032760247122496367\n#429 Loss: 0.0032752633560448885\n#430 Loss: 0.003274502931162715\n#431 Loss: 0.0032737450674176216\n#432 Loss: 0.00327298603951931\n#433 Loss: 0.0032722223550081253\n#434 Loss: 0.0032714586704969406\n#435 Loss: 0.003270694287493825\n#436 Loss: 0.0032699313014745712\n#437 Loss: 0.0032691641245037317\n#438 Loss: 0.003268399043008685\n#439 Loss: 0.0032676327973604202\n#440 Loss: 0.0032668637577444315\n#441 Loss: 0.003266094485297799\n#442 Loss: 0.003265324980020523\n#443 Loss: 0.003264554077759385\n#444 Loss: 0.0032637789845466614\n#445 Loss: 0.0032630085479468107\n#446 Loss: 0.0032622350845485926\n#447 Loss: 0.003261463949456811\n#448 Loss: 0.003260687692090869\n#449 Loss: 0.003259907243773341\n#450 Loss: 0.0032591382041573524\n#451 Loss: 0.00325835426338017\n#452 Loss: 0.0032575754448771477\n#453 Loss: 0.00325679499655962\n#454 Loss: 0.003256014781072736\n#455 Loss: 0.0032552406191825867\n#456 Loss: 0.003254452720284462\n#457 Loss: 0.003253670409321785\n#458 Loss: 0.003252884605899453\n#459 Loss: 0.003252096474170685\n#460 Loss: 0.0032513150945305824\n#461 Loss: 0.0032505306880921125\n#462 Loss: 0.0032497402280569077\n#463 Loss: 0.0032489539589732885\n#464 Loss: 0.0032481641974300146\n#465 Loss: 0.0032473690807819366\n#466 Loss: 0.0032465795520693064\n#467 Loss: 0.0032457837369292974\n#468 Loss: 0.003244992345571518\n#469 Loss: 0.0032441976945847273\n#470 Loss: 0.0032434065360575914\n#471 Loss: 0.003242606297135353\n#472 Loss: 0.003241809783503413\n#473 Loss: 0.003241008846089244\n#474 Loss: 0.003240209072828293\n#475 Loss: 0.003239411860704422\n#476 Loss: 0.003238610690459609\n#477 Loss: 0.003237810917198658\n#478 Loss: 0.003237013006582856\n#479 Loss: 0.0032361994963139296\n#480 Loss: 0.0032353997230529785\n#481 Loss: 0.0032345924992114305\n#482 Loss: 0.0032337859738618135\n#483 Loss: 0.0032329827081412077\n#484 Loss: 0.0032321717590093613\n#485 Loss: 0.0032313622068613768\n#486 Loss: 0.003230554750189185\n#487 Loss: 0.0032297431025654078\n#488 Loss: 0.003228927031159401\n#489 Loss: 0.0032281186431646347\n#490 Loss: 0.0032273007091134787\n#491 Loss: 0.00322648580186069\n#492 Loss: 0.003225669264793396\n#493 Loss: 0.003224849933758378\n#494 Loss: 0.0032240375876426697\n#495 Loss: 0.0032232182566076517\n#496 Loss: 0.0032223984599113464\n#497 Loss: 0.0032215798273682594\n#498 Loss: 0.0032207544427365065\n#499 Loss: 0.0032199304550886154\n#500 Loss: 0.003219104604795575\n#501 Loss: 0.0032182789873331785\n#502 Loss: 0.003217454068362713\n#503 Loss: 0.003216634737327695\n#504 Loss: 0.0032158007379621267\n#505 Loss: 0.0032149699982255697\n#506 Loss: 0.003214145079255104\n#507 Loss: 0.003213308984413743\n#508 Loss: 0.003212481504306197\n#509 Loss: 0.003211650298908353\n#510 Loss: 0.0032108165323734283\n#511 Loss: 0.0032099836971610785\n#512 Loss: 0.0032091473694890738\n#513 Loss: 0.0032083075493574142\n#514 Loss: 0.003207470290362835\n#515 Loss: 0.003206632100045681\n#516 Loss: 0.0032057908829301596\n#517 Loss: 0.0032049540895968676\n#518 Loss: 0.0032041065860539675\n#519 Loss: 0.0032032709568738937\n#520 Loss: 0.0032024222891777754\n#521 Loss: 0.003201577812433243\n#522 Loss: 0.0032007291447371244\n#523 Loss: 0.0031998921185731888\n#524 Loss: 0.00319903832860291\n#525 Loss: 0.003198188031092286\n#526 Loss: 0.0031973449513316154\n#527 Loss: 0.0031964874360710382\n#528 Loss: 0.003195636672899127\n#529 Loss: 0.003194783814251423\n#530 Loss: 0.003193933516740799\n#531 Loss: 0.0031930769328027964\n#532 Loss: 0.0031922173220664263\n#533 Loss: 0.003191363764926791\n#534 Loss: 0.0031905078794807196\n#535 Loss: 0.0031896450091153383\n#536 Loss: 0.003188781440258026\n#537 Loss: 0.00318792462348938\n#538 Loss: 0.0031870603561401367\n#539 Loss: 0.003186197718605399\n#540 Loss: 0.0031853339169174433\n#541 Loss: 0.003184465691447258\n#542 Loss: 0.003183603985235095\n#543 Loss: 0.003182734362781048\n#544 Loss: 0.0031818647403270006\n#545 Loss: 0.0031809990759938955\n#546 Loss: 0.003180120373144746\n#547 Loss: 0.003179255174472928\n#548 Loss: 0.0031783783342689276\n#549 Loss: 0.0031775059178471565\n#550 Loss: 0.0031766321044415236\n#551 Loss: 0.003175758756697178\n#552 Loss: 0.0031748758628964424\n#553 Loss: 0.003174002980813384\n#554 Loss: 0.003173121949657798\n#555 Loss: 0.0031722437124699354\n#556 Loss: 0.003171361982822418\n#557 Loss: 0.0031704737339168787\n#558 Loss: 0.0031695952638983727\n#559 Loss: 0.0031687107402831316\n#560 Loss: 0.0031678222585469484\n#561 Loss: 0.0031669337768107653\n#562 Loss: 0.003166050650179386\n#563 Loss: 0.0031651612371206284\n#564 Loss: 0.0031642718240618706\n#565 Loss: 0.003163382178172469\n#566 Loss: 0.003162488341331482\n#567 Loss: 0.0031615979969501495\n#568 Loss: 0.0031607013661414385\n#569 Loss: 0.003159803571179509\n#570 Loss: 0.0031589085701853037\n#571 Loss: 0.0031580140348523855\n#572 Loss: 0.003157111583277583\n#573 Loss: 0.003156212391331792\n#574 Loss: 0.0031553118024021387\n#575 Loss: 0.003154413541778922\n#576 Loss: 0.003153505502268672\n#577 Loss: 0.0031526004895567894\n#578 Loss: 0.0031516961753368378\n#579 Loss: 0.0031507927924394608\n#580 Loss: 0.0031498793978244066\n#581 Loss: 0.003148973686620593\n#582 Loss: 0.0031480658799409866\n#583 Loss: 0.0031471506226807833\n#584 Loss: 0.0031462411861866713\n#585 Loss: 0.003145330585539341\n#586 Loss: 0.0031444195192307234\n#587 Loss: 0.0031434998381882906\n#588 Loss: 0.003142584813758731\n#589 Loss: 0.0031416688580065966\n#590 Loss: 0.003140748245641589\n#591 Loss: 0.0031398283317685127\n#592 Loss: 0.003138909814879298\n#593 Loss: 0.0031379845459014177\n#594 Loss: 0.003137064166367054\n#595 Loss: 0.003136137267574668\n#596 Loss: 0.003135212929919362\n#597 Loss: 0.0031342841684818268\n#598 Loss: 0.0031333593651652336\n#599 Loss: 0.0031324296724051237\n#600 Loss: 0.00313149974681437\n#601 Loss: 0.00313056749291718\n#602 Loss: 0.0031296375673264265\n#603 Loss: 0.0031287011224776506\n#604 Loss: 0.0031277656089514494\n#605 Loss: 0.0031268373131752014\n#606 Loss: 0.00312589923851192\n#607 Loss: 0.0031249576713889837\n#608 Loss: 0.0031240256503224373\n#609 Loss: 0.003123080125078559\n#610 Loss: 0.0031221371609717607\n#611 Loss: 0.003121196059510112\n#612 Loss: 0.003120253561064601\n#613 Loss: 0.003119305009022355\n#614 Loss: 0.003118356456980109\n#615 Loss: 0.0031174139585345984\n#616 Loss: 0.003116464475169778\n#617 Loss: 0.003115519881248474\n#618 Loss: 0.0031145683024078608\n#619 Loss: 0.003113616956397891\n#620 Loss: 0.003112660488113761\n#621 Loss: 0.00311170588247478\n#622 Loss: 0.003110748715698719\n#623 Loss: 0.0031097966711968184\n#624 Loss: 0.0031088388059288263\n#625 Loss: 0.003107876516878605\n#626 Loss: 0.003106920048594475\n#627 Loss: 0.003105957293882966\n#628 Loss: 0.0031049950048327446\n#629 Loss: 0.0031040336471050978\n#630 Loss: 0.0031030664686113596\n#631 Loss: 0.0031021004542708397\n#632 Loss: 0.0031011318787932396\n#633 Loss: 0.0031001653987914324\n#634 Loss: 0.003099195659160614\n#635 Loss: 0.0030982240568846464\n#636 Loss: 0.0030972573440521955\n#637 Loss: 0.003096279688179493\n#638 Loss: 0.0030953073874115944\n#639 Loss: 0.003094329498708248\n#640 Loss: 0.0030933513771742582\n#641 Loss: 0.003092374885454774\n#642 Loss: 0.0030913955997675657\n#643 Loss: 0.003090412588790059\n#644 Loss: 0.0030894335359334946\n#645 Loss: 0.00308845192193985\n#646 Loss: 0.003087469143792987\n#647 Loss: 0.00308648101054132\n#648 Loss: 0.0030854956712573767\n#649 Loss: 0.003084515919908881\n#650 Loss: 0.003083521733060479\n#651 Loss: 0.003082533134147525\n#652 Loss: 0.003081537550315261\n#653 Loss: 0.0030805484857410192\n#654 Loss: 0.003079561283811927\n#655 Loss: 0.003078560112044215\n#656 Loss: 0.0030775635968893766\n#657 Loss: 0.0030765633564442396\n#658 Loss: 0.003075564978644252\n#659 Loss: 0.0030745731201022863\n#660 Loss: 0.003073570318520069\n#661 Loss: 0.0030725656542927027\n#662 Loss: 0.003071562387049198\n#663 Loss: 0.0030705605167895555\n#664 Loss: 0.003069555386900902\n#665 Loss: 0.0030685439705848694\n#666 Loss: 0.0030675397720187902\n#667 Loss: 0.0030665274243801832\n#668 Loss: 0.0030655162408947945\n#669 Loss: 0.003064502263441682\n#670 Loss: 0.003063490381464362\n#671 Loss: 0.003062476636841893\n#672 Loss: 0.0030614605639129877\n#673 Loss: 0.0030604430940002203\n#674 Loss: 0.0030594307463616133\n#675 Loss: 0.0030584093183279037\n#676 Loss: 0.0030573883559554815\n#677 Loss: 0.003056370420381427\n#678 Loss: 0.00305534596554935\n#679 Loss: 0.003054314525797963\n#680 Loss: 0.0030532926321029663\n#681 Loss: 0.003052267013117671\n#682 Loss: 0.003051239298656583\n#683 Loss: 0.0030502071604132652\n#684 Loss: 0.003049177350476384\n#685 Loss: 0.0030481452122330666\n#686 Loss: 0.003047112375497818\n#687 Loss: 0.0030460793059319258\n#688 Loss: 0.003045039251446724\n#689 Loss: 0.0030440036207437515\n#690 Loss: 0.0030429682228714228\n#691 Loss: 0.003041934221982956\n#692 Loss: 0.0030408899765461683\n#693 Loss: 0.003039844334125519\n#694 Loss: 0.003038800088688731\n#695 Loss: 0.003037760965526104\n#696 Loss: 0.003036712994799018\n#697 Loss: 0.0030356652569025755\n#698 Loss: 0.003034620312973857\n#699 Loss: 0.003033566055819392\n#700 Loss: 0.003032522276043892\n#701 Loss: 0.0030314645264297724\n#702 Loss: 0.003030410734936595\n#703 Loss: 0.003029354615136981\n#704 Loss: 0.0030282975640147924\n#705 Loss: 0.003027241677045822\n#706 Loss: 0.003026185557246208\n#707 Loss: 0.0030251287389546633\n#708 Loss: 0.003024066099897027\n#709 Loss: 0.003023003926500678\n#710 Loss: 0.00302194245159626\n#711 Loss: 0.00302087957970798\n#712 Loss: 0.003019809490069747\n#713 Loss: 0.003018738003447652\n#714 Loss: 0.0030176721047610044\n#715 Loss: 0.003016604110598564\n#716 Loss: 0.003015534020960331\n#717 Loss: 0.0030144602060317993\n#718 Loss: 0.003013385459780693\n#719 Loss: 0.0030123144388198853\n#720 Loss: 0.0030112352687865496\n#721 Loss: 0.003010154701769352\n#722 Loss: 0.00300907832570374\n#723 Loss: 0.0030079965945333242\n#724 Loss: 0.0030069167260080576\n#725 Loss: 0.003005831502377987\n#726 Loss: 0.00300474651157856\n#727 Loss: 0.0030036605894565582\n#728 Loss: 0.0030025721061974764\n#729 Loss: 0.0030014861840754747\n#730 Loss: 0.0030003965366631746\n#731 Loss: 0.0029993082862347364\n#732 Loss: 0.0029982172418385744\n#733 Loss: 0.0029971261974424124\n#734 Loss: 0.002996026771143079\n#735 Loss: 0.0029949296731501818\n#736 Loss: 0.0029938339721411467\n#737 Loss: 0.0029927378054708242\n#738 Loss: 0.002991635352373123\n#739 Loss: 0.002990535693243146\n#740 Loss: 0.002989433705806732\n#741 Loss: 0.0029883303213864565\n#742 Loss: 0.002987225539982319\n#743 Loss: 0.002986123086884618\n#744 Loss: 0.002985007129609585\n#745 Loss: 0.0029839053750038147\n#746 Loss: 0.002982793375849724\n#747 Loss: 0.0029816769529134035\n#748 Loss: 0.0029805738013237715\n#749 Loss: 0.0029794592410326004\n#750 Loss: 0.0029783404897898436\n#751 Loss: 0.0029772240668535233\n#752 Loss: 0.0029761074110865593\n#753 Loss: 0.0029749858658760786\n#754 Loss: 0.002973862923681736\n#755 Loss: 0.0029727399814873934\n#756 Loss: 0.0029716233257204294\n#757 Loss: 0.002970491535961628\n#758 Loss: 0.002969368128105998\n#759 Loss: 0.002968237968161702\n#760 Loss: 0.0029671108350157738\n#761 Loss: 0.002965979976579547\n#762 Loss: 0.002964847953990102\n#763 Loss: 0.0029637161642313004\n#764 Loss: 0.0029625834431499243\n#765 Loss: 0.0029614476952701807\n#766 Loss: 0.002960308687761426\n#767 Loss: 0.0029591761995106936\n#768 Loss: 0.0029580320697277784\n#769 Loss: 0.002956897020339966\n#770 Loss: 0.002955755917355418\n#771 Loss: 0.002954610623419285\n#772 Loss: 0.0029534606728702784\n#773 Loss: 0.002952314680442214\n#774 Loss: 0.00295117381028831\n#775 Loss: 0.002950020134449005\n#776 Loss: 0.0029488790314644575\n#777 Loss: 0.0029477218631654978\n#778 Loss: 0.002946570748463273\n#779 Loss: 0.0029454149771481752\n#780 Loss: 0.002944263396784663\n#781 Loss: 0.0029431015718728304\n#782 Loss: 0.002941948128864169\n#783 Loss: 0.002940784441307187\n#784 Loss: 0.002939627505838871\n#785 Loss: 0.0029384614899754524\n#786 Loss: 0.002937304088845849\n#787 Loss: 0.002936137607321143\n#788 Loss: 0.00293497066013515\n#789 Loss: 0.0029338039457798004\n#790 Loss: 0.0029326353687793016\n#791 Loss: 0.002931463299319148\n#792 Loss: 0.002930295653641224\n#793 Loss: 0.002929119626060128\n#794 Loss: 0.0029279489535838366\n#795 Loss: 0.0029267731588333845\n#796 Loss: 0.002925596199929714\n#797 Loss: 0.0029244180768728256\n#798 Loss: 0.0029232369270175695\n#799 Loss: 0.002922057406976819\n#800 Loss: 0.0029208732303231955\n#801 Loss: 0.002919693710282445\n#802 Loss: 0.0029185067396610975\n#803 Loss: 0.0029173188377171755\n#804 Loss: 0.002916131867095828\n#805 Loss: 0.0029149428009986877\n#806 Loss: 0.0029137544333934784\n#807 Loss: 0.002912563504651189\n#808 Loss: 0.0029113739728927612\n#809 Loss: 0.0029101762920618057\n#810 Loss: 0.002908983500674367\n#811 Loss: 0.0029077886138111353\n#812 Loss: 0.002906588139012456\n#813 Loss: 0.002905389992520213\n#814 Loss: 0.0029041890520602465\n#815 Loss: 0.0029029862489551306\n#816 Loss: 0.0029017834458500147\n#817 Loss: 0.0029005787800997496\n#818 Loss: 0.00289937318302691\n#819 Loss: 0.0028981640934944153\n#820 Loss: 0.002896954072639346\n#821 Loss: 0.0028957456815987825\n#822 Loss: 0.002894533798098564\n#823 Loss: 0.002893322380259633\n#824 Loss: 0.002892111660912633\n#825 Loss: 0.0028908916283398867\n#826 Loss: 0.002889677183702588\n#827 Loss: 0.0028884613420814276\n#828 Loss: 0.0028872406110167503\n#829 Loss: 0.0028860189486294985\n#830 Loss: 0.002884797053411603\n#831 Loss: 0.002883573994040489\n#832 Loss: 0.002882350469008088\n#833 Loss: 0.0028811234515160322\n#834 Loss: 0.0028798982966691256\n#835 Loss: 0.002878667786717415\n#836 Loss: 0.0028774356469511986\n#837 Loss: 0.0028762081637978554\n#838 Loss: 0.0028749722987413406\n#839 Loss: 0.002873735735192895\n#840 Loss: 0.0028725003357976675\n#841 Loss: 0.0028712654020637274\n#842 Loss: 0.002870030701160431\n#843 Loss: 0.002868788316845894\n#844 Loss: 0.0028675440698862076\n#845 Loss: 0.0028663061093539\n#846 Loss: 0.00286506419070065\n#847 Loss: 0.0028638169169425964\n#848 Loss: 0.002862572902813554\n#849 Loss: 0.002861322835087776\n#850 Loss: 0.002860073000192642\n#851 Loss: 0.002858824096620083\n#852 Loss: 0.002857571467757225\n#853 Loss: 0.0028563232626765966\n#854 Loss: 0.0028550655115395784\n#855 Loss: 0.0028538068290799856\n#856 Loss: 0.0028525551315397024\n#857 Loss: 0.0028512950520962477\n#858 Loss: 0.0028500359039753675\n#859 Loss: 0.0028487779200077057\n#860 Loss: 0.002847515745088458\n#861 Loss: 0.002846249146386981\n"
},
{
"name": "stdout",
"output_type": "stream",
"text": "#862 Loss: 0.0028449876699596643\n#863 Loss: 0.002843722002580762\n#864 Loss: 0.0028424530755728483\n#865 Loss: 0.002841183915734291\n#866 Loss: 0.0028399156872183084\n#867 Loss: 0.0028386481571942568\n#868 Loss: 0.0028373694512993097\n#869 Loss: 0.002836097264662385\n#870 Loss: 0.0028348213527351618\n#871 Loss: 0.002833544509485364\n#872 Loss: 0.002832265803590417\n#873 Loss: 0.00283098965883255\n#874 Loss: 0.0028297044336795807\n#875 Loss: 0.0028284245636314154\n#876 Loss: 0.0028271395713090897\n#877 Loss: 0.002825857838615775\n#878 Loss: 0.0028245756402611732\n#879 Loss: 0.0028232894837856293\n#880 Loss: 0.0028219956438988447\n#881 Loss: 0.002820705994963646\n#882 Loss: 0.00281941588036716\n#883 Loss: 0.0028181213419884443\n#884 Loss: 0.0028168242424726486\n#885 Loss: 0.0028155359905213118\n#886 Loss: 0.0028142407536506653\n#887 Loss: 0.002812942722812295\n#888 Loss: 0.002811641665175557\n#889 Loss: 0.002810343401506543\n#890 Loss: 0.002809036523103714\n#891 Loss: 0.0028077370952814817\n#892 Loss: 0.0028064288198947906\n#893 Loss: 0.0028051265981048346\n#894 Loss: 0.0028038229793310165\n#895 Loss: 0.002802510978654027\n#896 Loss: 0.0028012089896947145\n#897 Loss: 0.0027998953592032194\n#898 Loss: 0.0027985796332359314\n#899 Loss: 0.0027972653042525053\n#900 Loss: 0.0027959533035755157\n#901 Loss: 0.002794637344777584\n#902 Loss: 0.0027933220844715834\n#903 Loss: 0.002792001934722066\n#904 Loss: 0.0027906829491257668\n#905 Loss: 0.0027893653605133295\n#906 Loss: 0.002788037760183215\n#907 Loss: 0.0027867192402482033\n#908 Loss: 0.002785389544442296\n#909 Loss: 0.0027840666007250547\n#910 Loss: 0.0027827343437820673\n#911 Loss: 0.002781406044960022\n#912 Loss: 0.0027800805401057005\n#913 Loss: 0.002778751077130437\n#914 Loss: 0.0027774174232035875\n#915 Loss: 0.002776080509647727\n#916 Loss: 0.002774745924398303\n#917 Loss: 0.0027734122704714537\n#918 Loss: 0.0027720772195607424\n#919 Loss: 0.002770734718069434\n#920 Loss: 0.002769396873190999\n#921 Loss: 0.0027680539060384035\n#922 Loss: 0.002766713500022888\n#923 Loss: 0.002765367738902569\n#924 Loss: 0.0027640226762741804\n#925 Loss: 0.00276267621666193\n#926 Loss: 0.0027613311540335417\n#927 Loss: 0.002759986324235797\n#928 Loss: 0.002758630318567157\n#929 Loss: 0.002757279435172677\n#930 Loss: 0.0027559271547943354\n#931 Loss: 0.0027545762713998556\n#932 Loss: 0.00275321863591671\n#933 Loss: 0.002751860534772277\n#934 Loss: 0.002750506391748786\n#935 Loss: 0.0027491494547575712\n#936 Loss: 0.002747784135863185\n#937 Loss: 0.0027464244049042463\n#938 Loss: 0.0027450602501630783\n#939 Loss: 0.0027436965610831976\n#940 Loss: 0.002742332173511386\n#941 Loss: 0.002740968018770218\n#942 Loss: 0.002739601070061326\n#943 Loss: 0.002738232957199216\n#944 Loss: 0.0027368590235710144\n#945 Loss: 0.0027354888152331114\n#946 Loss: 0.0027341179084032774\n#947 Loss: 0.0027327474672347307\n#948 Loss: 0.0027313686441630125\n#949 Loss: 0.0027299963403493166\n#950 Loss: 0.002728617750108242\n#951 Loss: 0.0027272403240203857\n#952 Loss: 0.0027258608024567366\n#953 Loss: 0.00272447825409472\n#954 Loss: 0.0027230980340391397\n#955 Loss: 0.0027217131573706865\n#956 Loss: 0.002720329212024808\n#957 Loss: 0.00271894340403378\n#958 Loss: 0.0027175631839782\n#959 Loss: 0.002716168062761426\n#960 Loss: 0.0027147841174155474\n#961 Loss: 0.002713392488658428\n#962 Loss: 0.0027120031882077456\n#963 Loss: 0.0027106080669909716\n#964 Loss: 0.0027092124801129103\n#965 Loss: 0.0027078192215412855\n#966 Loss: 0.0027064234018325806\n#967 Loss: 0.0027050257194787264\n#968 Loss: 0.0027036250103265047\n#969 Loss: 0.002702222438529134\n#970 Loss: 0.0027008235920220613\n#971 Loss: 0.0026994228828698397\n#972 Loss: 0.0026980217080563307\n#973 Loss: 0.002696613548323512\n#974 Loss: 0.00269521027803421\n#975 Loss: 0.002693809801712632\n#976 Loss: 0.0026923955883830786\n#977 Loss: 0.0026909869629889727\n#978 Loss: 0.002689572051167488\n#979 Loss: 0.002688162960112095\n#980 Loss: 0.0026867559645324945\n#981 Loss: 0.002685340354219079\n#982 Loss: 0.002683921717107296\n#983 Loss: 0.0026825095992535353\n#984 Loss: 0.0026810932904481888\n#985 Loss: 0.0026796746533364058\n#986 Loss: 0.0026782590430229902\n#987 Loss: 0.0026768369134515524\n#988 Loss: 0.0026754147838801146\n#989 Loss: 0.0026739935856312513\n#990 Loss: 0.002672569826245308\n#991 Loss: 0.0026711428072303534\n#992 Loss: 0.002669712295755744\n#993 Loss: 0.002668286906555295\n#994 Loss: 0.0026668605860322714\n#995 Loss: 0.0026654365938156843\n#996 Loss: 0.002664001425728202\n#997 Loss: 0.002662571147084236\n#998 Loss: 0.0026611359789967537\n#999 Loss: 0.002659703604876995\nPredicted data based on trained weights: \nInput (scaled): \ntensor([0.5000, 1.0000])\nOutput: \ntensor([0.9393])\n"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"gist": {
"id": "",
"data": {
"description": "Neural Network from Scratch with PyTorch",
"public": true
}
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.8",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment