Created
February 17, 2018 17:32
-
-
Save lovasoa/9b4680d0ad815767bef83a34e327d8ec to your computer and use it in GitHub Desktop.
Logistic Map with numpy and matplotlib
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import numpy as np\n", | |
"from matplotlib import pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def calc_cx(n):\n", | |
" c = np.linspace(1,4,n)\n", | |
" x = np.random.random(n)\n", | |
" for i in range(1000): x = c*x*(1-x)\n", | |
" return (c,x)\n", | |
"\n", | |
"def plot(c,x):\n", | |
" plt.scatter(c, x, s=.1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 57, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1 loop, best of 3: 12.2 s per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit (c,x) = calc_cx(1000000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 58, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1 loop, best of 3: 6.73 s per loop\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD2CAYAAAAgRbdwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHjFJREFUeJzt3X2MZfVdx/H3nZl9KHQGgbp0hA1orAVSF5ySyk6hrSJF\nTFHSNL9ofaxiJbJVS0xDfWjVVJtGSY3sEpUGo02b5lcrtPWB1Ww1BRaC9NoIQTCroVnplG3Jdndg\n2Flm5vrHuWfnd8+c53ue7+eVbHbvPffhnDlzP/e33/N76A0GA0REpJ2m6t4BERHJTyEuItJiCnER\nkRZTiIuItJhCXESkxWaqfLNDhw6pK4yISA7XXXddL+z+SkMcYGFhIdfz+v1+7uc2jY6lebpyHKBj\naaJxj6Pf70duUzlFRKTFFOIiIi2mEBcRaTGFuIhIiynERURaTCEuItJiqboYGmN+EPiYtfZtgftv\nAj4ErAH3WmvvKXwPRUQkUmJL3BjzAeATwM7A/duAjwNvB94KvNcY89oydlJERMKlaYn/D/BO4JOB\n+y8DjlhrjwMYYx4CrgU+G/dicZ3W46ysrOR+btPoWJqnK8cBOpYmmr9tH/0D+0t57cQQt9Z+zhhz\nScimOeCEc3sZOCfp9TRiU8fSRF05DtCxNMnS3sUz/y5rxOY4w+5PArPO7Vng22O8nohIJ7jhXbZx\nQvy/gNcZY84DXgTeAvxJIXslItJCVYa3L3OIG2PeDbzaWvuXxpjbgYN4F0jvtdY+V/QOiog0XR3h\n7UsV4tbaZ4Grh//+tHP/F4EvlrJnIiINV2d4+yqfilZEpO2aEN4+hbiISEpNCm+fQlxEJEETw9un\nEBcRidDk8PYpxEVEAoLhPf/I4dD7m0AhLiIy1MSQTqIQF5GJ18bw9inERWRitTm8fQpxEZk4XQhv\nn0JcRCbGuOG9OgM71gramYIoxEWk0w6+7wb2PL5cyGttb1iAg0JcRDrqub2LTAF7CnzNXoGvVRSF\nuIh0il8yKWMV+I2SXnccCnER6YSji4vMDMp9j6YFOCjERaTl/JZ3FWG21qP0L4qsFOIi0kq1rKLT\nsAAHhbiItExSeJdZtz5xFpyzUtKL59TEEo+ISCg/wP0JqcKU2YPka5fPJj+oYmqJi0ijhbW841rj\n6yXWrS9+qpj+5kVSiItIIy3tXWR++O+wlndUkGcN8AHN7P+dlkJcRBrFDeelA/tZWFgIfVzUHN9H\nL4Ddz6d/vywBvvN0hgdXRCEuIo0RrHkv9fuZXyNLgGe1rYHD7nVhU0QaIc1Fy6jnVKWJgdnEfRKR\nCZUlwKOsZqgvbGR8zFoDi+cqp4hIrYpuTWeZKjZNK9Z9zJQG+4iIhC9EnDXM6xixudFrXpArxEWk\nElEryAcfk6akUtfKPEu7yr1wmodCXERKkya43W1LexdzXeCsykUNC3BQiItIwbIEd5Db9/vMYJ/A\n8+tcH7PM0aB5KcRFpBBuuI7big6Gedj2OsI8WE7ZwBssVGenFYW4iIylyPDe8trOiM20ZZYyZxqc\nPzZ6ewpv2H6dEkPcGDMF3A1cAawCt1hrjzjbfxP4KbwvpT+y1t5X0r6KSEOMUzLJy62Zx73f1y6f\nLWxh5KD1aZheG2151911PE1L/GZgp7V2rzHmauBO4CcAjDHfAfwa8L3A2cBXAYW4SEeV2epOI3jx\nc1xp5h53B/tMr9cf2kFp+rpfAzwAYK19FLjK2fYS8DW8AD+bdAOgRKRlgr1G6uw5UuR7T8pgnzng\nhHN73RgzY631x0UdBZ4CpoGPJr1YP8eENgArKyu5n9s0Opbm6cpxQLHHsvYH+85cyFs6sN/7u8Kf\nU+SxHNg/sm+u7y+hlOLvw3eOMdinrN+vNCF+EnCXs5hyAvxGYB747uHtg8aYh621j0W9WNS0kkn6\n/X7u5zaNjqV5unIcUNyxBC8kzsc9uCSxx3J/+FS0ZcwP7u/D06+C2ZV8k06Nc07ivgDS7MvDwI8B\nDGviTzjbjgMvA6vW2lPAt4HvyL2nIlK7pg+4CQpOePXcBeW+XzA0T5xV7vslSdMSvw+43hhzGO8L\n7j3GmNuBI9baLxhjfgR41BizATwE/Et5uysiZWpTePsueXC0z/hcwdUUt3oyuzLa0h9Q/8LJiSFu\nrd0Abg3c/bSz/cPAhwveLxGpUN29TsblDv6ZKzhU3dLMcqAPehN6qmg+cZEJ15ReJ+Py973MYJ1b\n2Tq4p+4ueQpxkQnWxvJJnDKOww3p0yG1i6QvjbJ7JSrERSZU1wLcl2VlnzSCIRkM7R7xrfGySy4K\ncZEJ1NUAB+9CZ5HcgD61fev21Zn4IC273KIQF5kwXQ5wX5HHtpzQhTBpObiyQ1YhLjJBJiHAfUWV\nVdzeKGHdCYsu32SlEBeZEJMU4FB8WQXCSyNZFmYug0JcZAJMWoD7ijhed0TmKylb3VXOk6UQF+m4\nSQ3woriDh46dH/6YtUAXFPemuhiKyNgmOcCLPPaoIf3TNU5RqxAX6bA6FxXuqrC6eFRf8DJmVAxS\niIt0lMoonnG/yIIhHAzNqEZ4FQEOCnGRTpv0AC/a2S9vvS8qqP37g/XyoinERURiuCG8Ph2/3eW3\n0GdKrpcrxEU6SLVwz9cL+DkkhfD0ILykUtU0tQpxkY5SKaX4IH3mytkt9/VKeJ8sFOIiIhmkrY6s\nzlQz6EchLtIx87ftq3sXOuv1X10eWZrN/Ttox5p6p4hITiqllHNdwJ2Kthf4uy4KcRGRlMK6GNZN\nIS4iEsPtQhjWUyWq9r3WU01cRDJS10JPkT8HN7jD5g7fFlP77lF+kNc8nbmI5KXArt6p7VvnD9/o\nwVRIUvuTYpVdM1eIi7REWGiHXcBc2rvIwffdwA13HaxityZKWE08ajDQem9zW5nrbCrERRoqbWiH\nmeQAL/N/KG6L25/gaoPwurQ7PW2ZdWuFuEgDRAVP3q6CS3sX1c2wBMtnba6z6ZdJogK6qq6HCnGR\nGozTyk587QP7NeAnpazTxYYtlFw3hbhIRYLBrZZy8Y4uLmYKNbduHcXtYhhVOgmzATx3Aex+PsMO\n5aAQFylJma1tCRcXyGEBvLQLdr0Qv2K9+5rBUPY3uUPx3TJL2QEOCnGRwjQttCe1Lr46Ex7KYS3o\npACH0Z4lwVD2L2zWOQRfIS6SU9NC2zX/yOGJ60ee53hPbYftCRNVueG/5pRf/FZ33SMmFeIiGbSt\nrj2JrfFnrpxlz+MRy9IHnJyFuZwXK9O2utd64SsCFSUxxI0xU8DdwBXAKnCLtfaIs/1G4MPDm33g\nNmttFVMGiFSibcHtm8TWeFYXPZ98cdO9sLn78OjPNE3vlpkBzCSUbMaR5n8CNwM7rbV7gTuAO/0N\nxphZ4I+Bd1hrrwaeBV5Twn6KVGZp7+LIH/AC0f/TNpMQ5O4xXvxUdCs8mNXrvdFBOWHc7Y/dPPqz\nrHsaWkhXTrkGeADAWvuoMeYqZ9si8ARwpzHme4BPWGu/Gfdi/X4/146urKzkfm7T6FiaZ/62fSw5\nt5cO7B/ZvtSiYxw5J8M+4209R2l/v+adf+88Hf24YOhOD0ZXpQ9rkffYzK2LQnqbhF1IDbbQB+TP\nviRpQnwOOOHcXjfGzFhr1/Ba3T8EXAm8CDxojHnEWvvfUS+2sLCQa0f7/X7u5zaNjqUZ4sok88EH\nt0jwnCzhfUm18X8RaX+/3C/gY+en79rnB+0G8SUVfx+eY+sXQVjvluBjeuTPPoj/AkgT4icBd3XQ\nqWGAA7wA/Lu19hsAxpgv4wV6ZIiL1CkquPv9fquDO07Xa+PBY5tLuKYZbHFHdUkME6w/D4DTzvPd\nFrjbL73Mi4RpQvxh4CbAGmOuxiuf+L4CvMEY8xrg28DVwD2F76XIGNp6YbJok9JT5dJD8V9a04FJ\nrLZluOgYLJP0GP0CcLf5Ab46A9Pr6d8jqzQhfh9wvTHmMN4+vscYcztwxFr7BWPMBwF/yjRrrX2y\npH0VSU3BPcpvjXctyMPC+uD7bmBPzHOCIZzl4mQwxKPq6K60rfy8EkPcWrsB3Bq4+2ln+2eAzxS8\nXyKZKbjjdTXIx3HirGyTWgUDPynAq6DBPtJqCu5sulQff/q6Rc4Juf/co+kG+sDWAA/OhRIU12qP\n6jOedabErBTi0joK7vF1oTUe1YKeP5b/NbOGrXvxMk/wF6HuYf8iqXVl8E3d/J9ZV1rkQbsPp/+d\nWOt5QbyWM2mbEKBqiUujqdVdjrbXx+O+gB67eZHdKV9nfdobEh+20HFbKMSlkdwPaRtDpg3aHuRR\nju+eZffz6eriwa5/WerXWRaIKJNCXBpDre7qtTHIk8pAl38lOcD9roF+n/HVmeQpaYPiArzsi5lp\n90OkEqp116uNNfK434800776XQP9oN0xDPCiqipVToylEJdaRM0SKPVoS5A/e234/rnhe8mD4b9H\naQK6CbMSZqVyilRKte7mcksr/u2m2bG2uV9uySIqfKO6ACbVswfDP+O2ctOM6ByXQlwqofBuB7dF\n3vQ6eVRwuyveR4VwXDj7Ab/eG+21kqbXS7AWXsWIToW4lEYXKturiRc805Z6koIz6aLjxjC8g68T\nN72t/5p1lGNUE5fC6UJlNzSpTu7uQ1RdPC0/aKOyfmaQfvBP2DD9jXy7lZta4lIYlUy6pwl18uB7\nF/GlklQTn3G6HsbNQhiW9e7r+u9T93ziIrEU3t1WZ518/rZ9I/sQJUu/7CwXLJOmkU36MkiaV6UI\nCnHJbWnv4pnVcBTe3Vd1qzzufYKt8SwhmSdQo1r/YQFe5UCfqH0QieV+kJcO7FeATxD3+kYVtfLg\ngtX+PhQtqgY+AI5ekP51/AAfBO4rk0JcUtPgHPEFSyxFK+I1k8LT3T4z8BaI8K0OaxQ9sk1tG3ah\nU1PRSu0U3hKmrFZ5UeWapPAMbnfnJ9+xttnLJGoYf9iXxBT5p7XNSyEukRTekkYZrfKk37Uifhfj\nwta/+DkAjp0f/pjg0zeGj58ZbA34Mrsd6sKmbKHeJpJVWJDn+d2povugb3oQ3oXQvTA5AOaWo5e1\ncx87FXKfT71TpBIKbxlXEWE+7u/ecszix8G5VJ65cpY9j49OXXs6oW+4Kyyc095XFIW4AMXVIUUg\nX5iP2wr3J5s6++XoxwRb6GFzj/sB7pdEor4Q0uxLFVQTn3B1j8aTbgte/EwK6iy/g/951ezIbT80\nsyy1trRr9HbwqVNs9lRJS8PupRIqnUiViqqZu26462Dol8IrMeWQYL06uJRbj82Si/+4U9u9v0/E\nlGlcU3hfJFW1xhXiE0bhLXUqI8yDtoUEuB/AboBH9U4Jlid2nvb+vvRQ+MVNX/CC6sygmnU4FeIT\nRGUTaYoyBws9edXWi5VzK1tbxtMDuPip6PU4/Z4rwcWUo4SFtd9NURc2ZSxqfUtTlTFY6NyjW4O5\nhxfgbpfCHnBydrRE4rac/ce99Kr8+1LFPCq6sNlxGqwjbZD3dzPsouNFMYs3BGvlu14YvRDpBmIR\n5eykucuLoBDvKPU6kUkQtijyE4FeK0nP33Caym6d3P+n22Ux2CMmLZVTJDWVTmTSvf6r0XXu4IXG\nZ69dZIfTTA72JhkwWk6Jq6HDZt1d/cQlF5VORLJzp5oN5m6wBf21y+Nb4n5wVxXgkKIlboyZAu4G\nrgBWgVustUdCHvMPwOettX9exo5KNLW+pSvKXjnolRmvC+IUm7VwdwFkN7TDLkpG9U2vU5qW+M3A\nTmvtXuAO4M6Qx3wEOK/IHZN01PqWrijq9zdq1kHwLmz6oTc1vO3OI+5zA9xtfX9972LmEZllj+BM\nE+LXAA8AWGsfBa5yNxpj3oW3n/9U+N5JLF24lC4at6U7F1G2dsPar3aszoTPteK2wN/g9Dn/vwvi\nQ9MPbLea0oTBPnPACef2ujFmxlq7Zox5A/Bu4F3Ah9K8Yb/fz76XwMrKSu7nNs24x+IvHgve8lVL\nNf5cunJeunIc0PJjObCf+dv2eb2rDuxPPJbzfn0fOwL3/e+lZ/MD/Ze2PNbtD+6H9LHz41fuWZ3x\nBvu4+xA2fa3PnSHRfdyJsyjtc5omxE8CbjV/ylrrH8LPARcCXwIuAU4bY5611j4Q9WILCwu5drTf\n7+d+btOMcyzB1vd83IMr0JXz0pXjgA4cy3Du7oWFhcRjWQoJ09c8tzXAo0S12v3eJdvXvED29+Gx\n1K/sPffM+6zApWOck7gvsjQh/jBwE2CNMVcDT/gbrLUf8P9tjPk94BtxAS756eKlTJqlvYsQslBy\nkl0vhN8fNo9JcMTmAK9kcuHwYmcPrxXtN5aO755l/lh8N0NfVetspinX3AecMsYcBj4OvN8Yc7sx\n5sdL3C9x6OKlTJoz/9N0SodBWWvnYWE3t+yVPdwFjnc/P/rYk04d4uKnlpmO6T5Y5Sr3vsSWuLV2\nA7g1cPfTIY/7vYL2SRy6eCmTyl8SLazbYVHd/M5+2RvMs20tvLU8YLRlf+mhw2d6qIR9Kfivsdbz\nFlhOu0LQODTYp6E0bF7Eu3APo6GdFOD+/N9pvPQqr5ziDr13uwSuB5L92WsXORnSJdHnD9ufGozW\nxMukYfcNpPAW2eS2yH1HLxgdpOMK1rldwZ4lsyFT1AbnBJ92Hn/sfK9eHlXjPrO6UOTRFE8h3jAK\ncJGt3Clr5x85zDz5SirBBSP8KWqjDPAWTnb5oz7TXKz0Bw1pFsMJoQAXSTZOPTwYeH64BkdV+mWR\nHvDMlaPzpRw7Pzk43Qul7t9lUIg3gOrfIumk+XxElVnC9PACOxiybg8Ud5WgN91/mAuf90I/ank3\n/3WronJKzRTeItnFtcbzTAMbDF13MQf34ubRxcUzG9enYSZQnnF7rVQ1Ha1a4jVSgItkV+Tn5fRM\ntqB96o2zzAy854R1HwxeFIX4FnsRFOI1UYCL5Bf3uVmfTv860+vRIetflHQXhbjhroPpX3yo7Na4\nQrwG/ig0BbhIflGfn7ipaIOmBuEhuzqzWVJxR2w+e63X+FrrJbewqxqxqRCvkC5gihQr7HMUNyth\n0CsRVwXdUsmFzoXSY+d7c6nMRIS/L7hJXQw7wA3vpRyT+ohIuHEaRNPr2R5/fPcssxEDiVw9Nnu+\n+LfLohCvgFrfIuVazdnP7qk3zo6ssRnGba2fe9Trbpj2YqV6p3SAAlykfJc8uPn5yhKcex5f5qKE\nfuXuXCzHd8/ySsYeLWVTiJdIAS5SnTyfsw28UkdwxKab0TtPb/779V9dZvta+d0Gs1CIl0QBLlK9\nrJ+35eGMhMEgdDN6R2ACrAFeGSaJeqe0mAJcpD5ZPndzK8mr0bthfHz3LFNsDsUfEN/PvAoK8YIp\nwEXql3Sx0jcgWwhe/NRmeJ95fkRaVxWuCvECKcBFmuFN96f7DGYtbfv1cX962SlGF5RwqSXeMgpw\nkWZJ81kckLwupnuf21PFz+6oNTfdfuJlUogXQAEu0kxJn8kpRlvjwQUggk6GXM+MWptztaKuiArx\nMSnARZoty2czaWbC47tnRy6EBlvyvl7Ea5VBIT4GBbhI97klkXOPLp8JzSqWXktDIZ6TAlykPcb5\nnLq9T3a9MLr02oDoC5tJXReLohDPQQEu0j55P69uSJ7aPloDj1touapBnQrxjBTgIu2Vp3XsPifs\nwmbU6yrEG0gBLtJuF4752Q3rf746U2+QKsRTUoCLdEPe+VUAHrt56wLN29a8lniVC0G4FOIZKMBF\nuiHLZ/kcZxGIXS9s3T5FeJCqnNIgfitcRCaP26IO6/vtT4IVFdpl91JRiCdQGUWkm9J+ppNa1HE9\nVKD8kFWIx1CAi3TbuJ/tpLp3FXVxhXgEBbiIBAVLI0kjNquoiycuL2qMmQLuBq4AVoFbrLVHnO3v\nB35yePMfrbW/X8aOVkkBLjI55h85nPq6V9IFzLVe9etvpmmJ3wzstNbuBe4A7vQ3GGO+B/hpYBHY\nC7zdGLOnjB2tigJcZPKk/byHTS3rZnbUAhFlSmyJA9cADwBYax81xlzlbDsK/Ki1dh3AGLMNOBX3\nYv1+P9eOrqys5H5uFvPA0oH9LJX4XlUdSxW6cixdOQ7QseQ1H7PN34fXhoS0OxFWXKu4rONIE+Jz\nwAnn9roxZsZau2atfQX4ljGmB/wx8B/W2v+Oe7GFhYVcO9rv93M/Ny2/FV72+1RxLFXpyrF05ThA\nx5JbTFnF34elkG0bPa8FnlT/Huc44r4A0pRTTgLujAFT1tozvSWNMTuBTw0f86s597F2KqOISJ7P\nf9U18C3vn+IxDwM3AdYYczXwhL9h2AL/PPAla+3HytnF8inARaSt0oT4fcD1xpjDeP9jeI8x5nbg\nCDANvBXYYYy5cfj4D1prHyllb0ukABcRyNZbpQkSQ9xauwHcGrj7aeffOwvdo4q16WSJSDX+86pZ\n9jy+nOk5qzPesPyquxlO9GAflVFEJMwNdx3M/Bx/XpUm9hPvJAW4iMTJkw1VLcnmmtgQBwW4iMQ7\n4cwlnqb0WtX0s66JDHHVwUUkjUsPeQ29tJnRo/rW+MSFuMooIpJF1qyoOlQnKsQV4CLSNRMV4qAA\nF5HssuZGlSWViQlx1cFFpCpVButEhLjKKCIyrqbmx0SEODT3BIhIezQxRzof4iqjiEhVNNinYCqj\niEjR4vKkjkDtdIiDAlxE6lHVFCqdDXGVUUSkLGkah1UNwe9kiKuMIiJla0q+dDLEoTk/YBGRMnUu\nxFVGEZGqNKGx2LkQh2b8YEVEqtCpEFcrXESqVnejsTMhrouZIlKXildkG9GZEAcFuIjU47tqzJ5O\nhLjKKCJSN3cptyp1IsRBrXARqZe/lFvVWh/iaoWLSFPU0ZhsdYjrYqaITLpWhzgowEWkWarOpNaG\nuMooIiItDnFQK1xEmqnKbGpliKsVLiLiaWWIg1rhItJsVWVU60JcrXARkU0zSQ8wxkwBdwNXAKvA\nLdbaI872XwZ+BVgDPmKt/fuS9vUMtcJFpA3mHzlcesMzTUv8ZmCntXYvcAdwp7/BGPNa4NeANwM3\nAB81xuwoY0dBrXARaZ+yJ8dKE+LXAA8AWGsfBa5ytr0JeNhau2qtPQEcAfYUvpcOtcJFpE3Knhwr\nsZwCzAEnnNvrxpgZa+1ayLZl4Jy4F+v3+5l3EmD+tn1jPb9JVlZWOnEc0J1j6cpxgI6lieYpL7vS\nhPhJYNa5PTUM8LBts8C3415sYWEh0w76+gf2s7CwwHyuZzdLv9/P/XNomq4cS1eOA3QsTeTnV+7n\nx3wBpAnxh4GbAGuMuRp4wtn2GPCHxpidwA7gMuDJ3HsqIiKZpAnx+4DrjTGHgR7wHmPM7cARa+0X\njDF/BjyIV1//bWvtqfJ2V0REXIkhbq3dAG4N3P20s/0e4J6C90tERFJo3WAfERHZpBAXEWkxhbiI\nSIspxEVEWkwhLiLSYr3BoOyR/ZsOHTpU3ZuJiHTIdddd1wu7v9IQFxGRYqmcIiLSYgpxEZEWU4iL\niLSYQlxEpMUU4iIiLZZmFsNaGGN+EPiYtfZtgftvAj6Et6bnvcMJuBor5jhuB34J+Obwrl+x1j5T\n8e6lYozZBtwLXII35fBHrLVfcLa35pykOJY2nZdpvMnnXo+3Ctit1tonne2tOC8pjqM158RnjNkF\nfAW43lr7tHN/4eekkS1xY8wHgE8AOwP3bwM+DrwdeCvw3uE6n40UdRxDC8DPWWvfNvzT5F/KnwFe\nsNZeC9wI7Pc3tO2cEHMsQ206LzcBWGvfDPwO8If+hpadl8jjGGrTOfF/9n8BvBxyf+HnpJEhDvwP\n8M6Q+y/Dm8f8uLX2NPAQcG2le5ZN1HEAvBH4oDHmIWPMByvcpzw+C/yuc3vN+XfbzkncsUCLzou1\n9n7gvcObFzO6qlZrzkvCcUCLzsnQnwB/Dnw9cH8p56SRIW6t/RzwSsimzGt61inmOAA+gzdP+w8D\n1xhj3lHZjmVkrX3RWrtsjJkF/havteRr2zmJOxZo0XkBsNauGWP+GrgL+JSzqW3nJeo4oEXnxBjz\nC8A3rbUHQzaXck4aGeIxMq/p2UTGmB7wp9babw2/kf8B+IGadyuWMWY38K/AJ621n3Y2te6cRB1L\nG88LgLX254HvA+4xxpw9vLt15yXsOFp4Tn4RbyW0fwOuBP7GKZmUck4ae2Ezwn8BrzPGnAe8CLwF\n778ubTMHPGmMuQx4Ca+FcW+9uxTNGHMB8M/APmvtocDmVp2ThGNp23n5WeAia+1HgRVgA1gfbm7N\neUk4jladE2vtW/x/D4P8VmvtN4Z3lXJOWhHixph3A6+21v7l8Er1Qbz/RdxrrX2u3r1LL3Acv4XX\nGlwFDllr/7HevYv1W8C5wO8aY/x68j3A2S08J0nH0qbz8nfAXxljvgxsA34DeKcxpm2flaTjaNM5\n2aLs/NIEWCIiLda2mriIiDgU4iIiLaYQFxFpMYW4iEiLKcRFRFpMIS4i0mIKcRGRFvt/jMcVTPM9\nnY4AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fb0547f64a8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%timeit plot(c,x)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment