Created
January 16, 2019 14:37
-
-
Save ltiao/86f7f3fdd3c59bed81abc0844a2a8d1c to your computer and use it in GitHub Desktop.
Recursive generator function inside a closure. Either the most beautiful piece of code I've written. Or the most contrived and convoluted. There is no in between.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"from sklearn.datasets import load_iris\n", | |
"from sklearn.model_selection import StratifiedShuffleSplit" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"random_state = 42" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"X, y = load_iris(return_X_y=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(150, 4)" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"X.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"StratifiedShuffleSplit(n_splits=1, random_state=0, test_size=0.4,\n", | |
" train_size=None)" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"sss = StratifiedShuffleSplit(n_splits=1, test_size=0.4, random_state=0)\n", | |
"sss" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([128, 101, 52, 28, 94, 38, 76, 141, 148, 75, 126, 87, 69,\n", | |
" 45, 8, 115, 4, 127, 79, 84, 108, 82, 140, 59, 131, 10,\n", | |
" 22, 97, 13, 95, 63, 135, 33, 15, 56, 105, 16, 27, 32,\n", | |
" 78, 104, 26, 92, 60, 41, 58, 119, 93, 112, 11, 146, 72,\n", | |
" 83, 116, 62, 91, 120, 48, 57, 7, 133, 106, 31, 132, 80,\n", | |
" 73, 66, 111, 107, 20, 30, 25, 42, 14, 70, 138, 35, 137,\n", | |
" 2, 18, 124, 122, 74, 143, 43, 117, 29, 125, 96, 34]),\n", | |
" array([121, 109, 36, 144, 1, 9, 39, 147, 98, 89, 23, 149, 118,\n", | |
" 44, 61, 100, 65, 37, 113, 142, 64, 24, 145, 46, 99, 53,\n", | |
" 102, 19, 54, 139, 40, 130, 71, 86, 110, 47, 136, 51, 81,\n", | |
" 123, 50, 49, 68, 103, 129, 85, 88, 0, 17, 6, 3, 134,\n", | |
" 90, 21, 5, 55, 114, 12, 67, 77]))" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"train_index, test_index = next(sss.split(X, y))\n", | |
"train_index, test_index" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(90, 4)" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"X[train_index].shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(60, 4)" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"X[test_index].shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([0, 1, 2]), array([20, 20, 20]))" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.unique(y[test_index], return_counts=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([0, 1, 2]), array([30, 30, 30]))" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.unique(y[train_index], return_counts=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def recursive_stratified_shuffle_split(sizes, random_state=None):\n", | |
"\n", | |
" head, *tail = sizes\n", | |
" sss = StratifiedShuffleSplit(n_splits=1, test_size=head, random_state=random_state)\n", | |
"\n", | |
" def split(X, y):\n", | |
"\n", | |
" a_index, b_index = next(sss.split(X, y))\n", | |
"\n", | |
" yield a_index\n", | |
"\n", | |
" if tail:\n", | |
"\n", | |
" split_tail = recursive_stratified_shuffle_split(sizes=tail, random_state=random_state)\n", | |
" \n", | |
" for ind in split_tail(X[b_index], y[b_index]):\n", | |
" \n", | |
" yield b_index[ind]\n", | |
"\n", | |
" else:\n", | |
"\n", | |
" yield b_index\n", | |
" \n", | |
" return split" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# first split 70/80 and split the remainder 60/20\n", | |
"split = recursive_stratified_shuffle_split(sizes=[80, 20])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[array([139, 138, 7, 34, 109, 128, 24, 132, 76, 96, 22, 101, 83,\n", | |
" 140, 146, 46, 67, 8, 61, 44, 88, 85, 1, 9, 35, 74,\n", | |
" 145, 0, 65, 6, 57, 136, 73, 4, 54, 43, 69, 55, 75,\n", | |
" 131, 99, 60, 18, 79, 125, 5, 111, 63, 12, 149, 13, 89,\n", | |
" 106, 25, 122, 113, 119, 49, 80, 11, 59, 52, 115, 142, 38,\n", | |
" 45, 20, 118, 130, 123]),\n", | |
" array([ 64, 40, 15, 114, 36, 124, 50, 2, 107, 53, 141, 30, 87,\n", | |
" 62, 17, 39, 134, 105, 19, 70, 66, 42, 129, 116, 86, 37,\n", | |
" 21, 94, 72, 41, 71, 84, 68, 110, 148, 82, 98, 137, 31,\n", | |
" 48, 47, 102, 127, 23, 133, 27, 51, 95, 121, 77, 120, 32,\n", | |
" 104, 16, 58, 147, 33, 103, 92, 135]),\n", | |
" array([ 56, 14, 112, 143, 93, 26, 108, 78, 144, 100, 117, 29, 126,\n", | |
" 97, 28, 10, 81, 3, 90, 91])]" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"list(split(X, y))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(70, 4), (60, 4), (20, 4)]" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"[X[index].shape for index in split(X, y)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(array([0, 1, 2]), array([24, 23, 23])),\n", | |
" (array([0, 1, 2]), array([20, 20, 20])),\n", | |
" (array([0, 1, 2]), array([6, 7, 7]))]" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"[np.unique(y[index], return_counts=True) for index in split(X, y)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# first split 40/60 and split the remainder 50/50\n", | |
"split = recursive_stratified_shuffle_split(sizes=[0.4, 0.5])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(90, 4), (30, 4), (30, 4)]" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"[X[index].shape for index in split(X, y)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(array([0, 1, 2]), array([30, 30, 30])),\n", | |
" (array([0, 1, 2]), array([10, 10, 10])),\n", | |
" (array([0, 1, 2]), array([10, 10, 10]))]" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"[np.unique(y[index], return_counts=True) for index in split(X, y)]" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment