Skip to content

Instantly share code, notes, and snippets.

@lucasrodes
Last active July 20, 2024 11:04
Show Gist options
  • Save lucasrodes/f9a4183d769b7daacd9ea8405a5a08db to your computer and use it in GitHub Desktop.
Save lucasrodes/f9a4183d769b7daacd9ea8405a5a08db to your computer and use it in GitHub Desktop.
Gist with notebook complementing my post on Medium
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook complements my blog post **Exploring WhatsApp data, Analyze your WhatsApp chat data using Python** on Medium."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install dependencies\n",
"!pip install whatstk==0.4.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load a chat"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Load chat\n",
"from whatstk import WhatsAppChat\n",
"filepath = 'http://raw.githubusercontent.com/lucasrodes/whatstk/develop/chats/whatsapp/lorem-2000.txt' # change to your chat file\n",
"chat = WhatsAppChat.from_source(filepath=filepath)\n",
"# Chat as Dataframe available in chat.df"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Loading chat setting hformat manually (skip if previous cell worked)\n",
"# hformat = '[%y-%m-%d %H:%M] %name:' # change to hformat of your chat\n",
"# chat = WhatsAppChat.from_source(filepath=filepath, hformat=hformat)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First data overview"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First date is: 2019-04-16 02:09:00\n",
"Last date is: 2020-06-13 00:00:00\n"
]
}
],
"source": [
"init_date = chat.df.date.min()\n",
"end_date = chat.df.date.max()\n",
"print(f\"First date is: {init_date}\\nLast date is: {end_date}\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>message</th>\n",
" </tr>\n",
" <tr>\n",
" <th>username</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>+1 123 456 789</th>\n",
" <td>507</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Giuseppe</th>\n",
" <td>516</td>\n",
" </tr>\n",
" <tr>\n",
" <th>John</th>\n",
" <td>481</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Mary</th>\n",
" <td>496</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" message\n",
"username \n",
"+1 123 456 789 507\n",
"Giuseppe 516\n",
"John 481\n",
"Mary 496"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat.df.groupby('username').agg('count')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>num_messages</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2019-07-01</th>\n",
" <td>20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-07-26</th>\n",
" <td>20</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-07-11</th>\n",
" <td>19</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-08-22</th>\n",
" <td>18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020-03-23</th>\n",
" <td>18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-08-23</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-05-28</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-05-02</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019-04-18</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020-06-13</th>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>235 rows × 1 columns</p>\n",
"</div>"
],
"text/plain": [
" num_messages\n",
"2019-07-01 20\n",
"2019-07-26 20\n",
"2019-07-11 19\n",
"2019-08-22 18\n",
"2020-03-23 18\n",
"... ...\n",
"2019-08-23 1\n",
"2019-05-28 1\n",
"2019-05-02 1\n",
"2019-04-18 1\n",
"2020-06-13 1\n",
"\n",
"[235 rows x 1 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Day with the most number of messages sent\n",
"chat.df.groupby(chat.df.date).agg(num_messages=('message', 'count')).sort_values(by='num_messages', ascending=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Who talks the most?"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'temp-plot.html'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Number of messages sent\n",
"from whatstk import FigureBuilder\n",
"from plotly.offline import plot\n",
"fb = FigureBuilder(chat=chat)\n",
"fig = fb.user_interventions_count_linechart(cumulative=True, title='User inteventions count (cumulative)')\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'temp-plot.html'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Number of characters sent\n",
"fig = fb.user_interventions_count_linechart(cumulative=True, msg_length=True, title='Count of sent characters (cumulative)')\n",
"plot(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## User message length"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'temp-plot.html'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig = fb.user_msg_length_boxplot()\n",
"plot(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## User interaction"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'temp-plot.html'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig = fb.user_message_responses_heatmap()\n",
"plot(fig)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment