Created
August 24, 2022 17:04
-
-
Save luisquintanilla/eb59873296b8379304449e1702d53c6a to your computer and use it in GitHub Desktop.
Word Count ML.NET
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Install packages" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"#r \"nuget:Microsoft.ML\"" | |
], | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": "<div><div></div><div></div><div><strong>Installed Packages</strong><ul><li><span>Microsoft.ML, 1.7.1</span></li></ul></div></div>" | |
}, | |
"execution_count": 1, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Import packages" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"using System;\n", | |
"using System.Linq;\n", | |
"using Microsoft.ML;\n", | |
"using Microsoft.ML.Data;" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Create data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var corpus = new [] \n", | |
"{\n", | |
"\tnew {Text = \"The quick brown fox jumped over the lazy dog. Dog is so lazy. Quick!\"},\n", | |
"\tnew {Text = \"The lazy dog was jumped over by the quick brown fox. Fox is not lazy\"}\n", | |
"};" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Initialize MLContext" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var ctx = new MLContext();\n", | |
"" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Load data into IDataView" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var data = ctx.Data.LoadFromEnumerable(corpus);" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Define pipeline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var pipeline = \n", | |
"\tctx.Transforms.Text.NormalizeText(outputColumnName:\"NormalizedText\",inputColumnName:\"Text\", keepPunctuations:false)\n", | |
"\t.Append(ctx.Transforms.Text.ProduceWordBags (outputColumnName: \"WB\", inputColumnName:\"NormalizedText\", ngramLength:1));" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Apply pipeline to data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var transformed = pipeline.Fit(data).Transform(data);" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Get words in word bag\n", | |
"\n", | |
"This contains the count for each word found in each of the respective documents." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var wordCounts = transformed.GetColumn<float[]>(\"WB\");" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Get words" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"VBuffer<ReadOnlyMemory<char>> slotNames = default;\n", | |
"transformed.Schema[\"WB\"].GetSlotNames(ref slotNames);" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"var words = slotNames.DenseValues();" | |
], | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Map words to word counts" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"dotnet_interactive": { | |
"language": "csharp" | |
} | |
}, | |
"source": [ | |
"wordCounts\n", | |
"\t.Select(x => words.Zip(x))" | |
], | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": "<table><thead><tr><th><i>index</i></th><th>value</th></tr></thead><tbody><tr><td>0</td><td><div class=\"dni-plaintext\">[ ( the, 2 ), ( quick, 2 ), ( brown, 1 ), ( fox, 1 ), ( jumped, 1 ), ( over, 1 ), ( lazy, 2 ), ( dog, 2 ), ( is, 1 ), ( so, 1 ), ( was, 0 ), ( by, 0 ), ( not, 0 ) ]</div></td></tr><tr><td>1</td><td><div class=\"dni-plaintext\">[ ( the, 2 ), ( quick, 1 ), ( brown, 1 ), ( fox, 2 ), ( jumped, 1 ), ( over, 1 ), ( lazy, 2 ), ( dog, 1 ), ( is, 1 ), ( so, 0 ), ( was, 1 ), ( by, 1 ), ( not, 1 ) ]</div></td></tr></tbody></table>" | |
}, | |
"execution_count": 1, | |
"metadata": {} | |
} | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": ".NET (C#)", | |
"language": "C#", | |
"name": ".net-csharp" | |
}, | |
"language_info": { | |
"file_extension": ".cs", | |
"mimetype": "text/x-csharp", | |
"name": "C#", | |
"pygments_lexer": "csharp", | |
"version": "8.0" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment