Created
July 10, 2019 21:29
-
-
Save m-kus/c69201777690491d012090ff82c7c32c to your computer and use it in GitHub Desktop.
Smart contract originations by source language
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| " <script type=\"text/javascript\">\n", | |
| " window.PlotlyConfig = {MathJaxConfig: 'local'};\n", | |
| " if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n", | |
| " if (typeof require !== 'undefined') {\n", | |
| " require.undef(\"plotly\");\n", | |
| " requirejs.config({\n", | |
| " paths: {\n", | |
| " 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n", | |
| " }\n", | |
| " });\n", | |
| " require(['plotly'], function(Plotly) {\n", | |
| " window._Plotly = Plotly;\n", | |
| " });\n", | |
| " }\n", | |
| " </script>\n", | |
| " " | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "from conseil import conseil\n", | |
| "import pandas as pd\n", | |
| "import cufflinks as cf\n", | |
| "import numpy as np\n", | |
| "import requests\n", | |
| "import dateutil" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| " <script type=\"text/javascript\">\n", | |
| " window.PlotlyConfig = {MathJaxConfig: 'local'};\n", | |
| " if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n", | |
| " if (typeof require !== 'undefined') {\n", | |
| " require.undef(\"plotly\");\n", | |
| " requirejs.config({\n", | |
| " paths: {\n", | |
| " 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n", | |
| " }\n", | |
| " });\n", | |
| " require(['plotly'], function(Plotly) {\n", | |
| " window._Plotly = Plotly;\n", | |
| " });\n", | |
| " }\n", | |
| " </script>\n", | |
| " " | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "cf.set_config_file(offline=True, world_readable=True, theme='pearl')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "Operation = conseil.tezos.alphanet.operations" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "non_liq_ts = Operation.query(Operation.timestamp.max().label('ts')) \\\n", | |
| " .filter(Operation.kind == Operation.kind.origination,\n", | |
| " Operation.script.notlike('_slash_'),\n", | |
| " Operation.script.notlike('_prim_'),\n", | |
| " Operation.script.notlike('_sharp_'),\n", | |
| " Operation.script.notlike('_Liq_')) \\\n", | |
| " .group_by(Operation.script) \\\n", | |
| " .order_by(Operation.timestamp.max()) \\\n", | |
| " .all()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "all_ts = Operation.query(Operation.timestamp.max().label('ts')) \\\n", | |
| " .filter(Operation.kind == Operation.kind.origination) \\\n", | |
| " .group_by(Operation.script) \\\n", | |
| " .order_by(Operation.timestamp.max()) \\\n", | |
| " .all()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df_oth = pd.DataFrame(non_liq_ts)\n", | |
| "df_oth.index = df_oth['ts'].astype('M8[ms]')\n", | |
| "df_oth['non_liquidity'] = 1\n", | |
| "\n", | |
| "df_all = pd.DataFrame(all_ts)\n", | |
| "df_all.index = df_all['ts'].astype('M8[ms]')\n", | |
| "df_all['all'] = 1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df = pd.merge(df_oth, df_all, left_index=True, right_index=True, how='outer').fillna(0)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df['liquidity'] = df['all'] - df['non_liquidity']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df_liq = df[df['liquidity'] > 0][['liquidity']].copy()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df = pd.merge_asof(df_oth.cumsum(), df_liq.cumsum(), left_index=True, right_index=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "application/vnd.plotly.v1+json": { | |
| "config": { | |
| "linkText": "Export to plot.ly", | |
| "plotlyServerURL": "https://plot.ly", | |
| "showLink": true | |
| }, | |
| "data": [ | |
| { | |
| "line": { | |
| "color": "rgba(255, 153, 51, 1.0)", | |
| "dash": "solid", | |
| "shape": "linear", | |
| "width": 1.3 | |
| }, | |
| "mode": "lines", | |
| "name": "liquidity", | |
| "text": "", | |
| "type": "scatter", | |
| "uid": "30c207f7-f803-4fcc-a438-1c72ac21571a", | |
| "x": [ | |
| "2018-12-06 09:29:18", | |
| "2018-12-06 13:55:38", | |
| "2018-12-06 13:56:08", | |
| "2018-12-06 16:42:48", | |
| "2018-12-06 16:47:48", | |
| "2018-12-06 16:57:38", | |
| "2018-12-06 19:58:18", | |
| "2018-12-06 19:58:48", | |
| "2018-12-06 19:59:18", | |
| "2018-12-10 08:54:28", | |
| "2018-12-10 09:29:48", | |
| "2018-12-10 09:57:58", | |
| "2018-12-10 10:15:48", | |
| "2018-12-10 10:24:58", | |
| "2018-12-10 10:29:28", | |
| "2018-12-10 10:36:18", | |
| "2018-12-10 10:40:38", | |
| "2018-12-14 08:46:58", | |
| "2018-12-14 09:24:48", | |
| "2018-12-14 09:25:18", | |
| "2018-12-14 09:25:48", | |
| "2018-12-14 09:26:48", | |
| "2018-12-14 15:19:38", | |
| "2019-01-02 16:04:28", | |
| "2019-01-23 04:10:08", | |
| "2019-02-19 17:52:08", | |
| "2019-02-21 02:03:28", | |
| "2019-02-21 04:50:38", | |
| "2019-02-21 04:55:38", | |
| "2019-02-21 04:58:48", | |
| "2019-02-21 15:09:08", | |
| "2019-02-22 10:51:58", | |
| "2019-02-22 11:07:48", | |
| "2019-02-23 12:16:58", | |
| "2019-02-23 12:16:58", | |
| "2019-02-23 12:17:28", | |
| "2019-02-23 12:21:08", | |
| "2019-02-24 01:44:58", | |
| "2019-03-01 01:22:48", | |
| "2019-03-10 01:20:28", | |
| "2019-03-10 09:24:48", | |
| "2019-03-10 10:34:38", | |
| "2019-03-11 03:05:58", | |
| "2019-03-11 11:30:28", | |
| "2019-03-15 01:33:28", | |
| "2019-03-15 02:07:48", | |
| "2019-03-15 02:42:18", | |
| "2019-03-15 02:51:28", | |
| "2019-03-15 23:49:08", | |
| "2019-03-15 23:55:48", | |
| "2019-03-16 18:03:08", | |
| "2019-03-16 18:11:38", | |
| "2019-03-16 18:13:48", | |
| "2019-03-16 18:27:18", | |
| "2019-03-16 18:29:58", | |
| "2019-03-16 20:59:28", | |
| "2019-03-16 22:15:48", | |
| "2019-03-21 14:18:18", | |
| "2019-03-23 15:34:18", | |
| "2019-04-05 10:05:28", | |
| "2019-04-08 23:02:28", | |
| "2019-04-09 00:54:48", | |
| "2019-04-11 09:35:38", | |
| "2019-04-17 08:18:58", | |
| "2019-04-17 08:19:28", | |
| "2019-04-17 08:19:58", | |
| "2019-04-17 10:23:48", | |
| "2019-04-17 10:24:18", | |
| "2019-04-17 10:24:48", | |
| "2019-04-18 04:01:38", | |
| "2019-04-18 04:02:38", | |
| "2019-04-18 06:00:58", | |
| "2019-04-18 07:41:38", | |
| "2019-04-18 07:42:48", | |
| "2019-04-18 07:43:48", | |
| "2019-04-18 08:46:58", | |
| "2019-04-18 09:07:38", | |
| "2019-04-24 08:00:58", | |
| "2019-04-24 08:01:28", | |
| "2019-04-24 08:02:38", | |
| "2019-04-24 08:03:08", | |
| "2019-04-24 08:04:08", | |
| "2019-05-01 05:38:08", | |
| "2019-05-04 12:59:08", | |
| "2019-05-04 13:23:48", | |
| "2019-05-04 13:43:18", | |
| "2019-05-04 16:25:58", | |
| "2019-05-05 15:16:18", | |
| "2019-05-08 02:38:58", | |
| "2019-05-10 14:48:18", | |
| "2019-05-11 08:16:08", | |
| "2019-05-11 08:47:08", | |
| "2019-05-11 08:54:38", | |
| "2019-05-13 02:45:18", | |
| "2019-05-14 20:28:58", | |
| "2019-05-14 20:49:08", | |
| "2019-05-14 22:02:38", | |
| "2019-05-14 22:21:58", | |
| "2019-05-14 22:44:28", | |
| "2019-05-14 22:45:28", | |
| "2019-05-17 20:54:28", | |
| "2019-05-23 20:08:38", | |
| "2019-05-23 20:10:18", | |
| "2019-05-24 21:58:08", | |
| "2019-05-30 19:30:38", | |
| "2019-06-02 07:06:48", | |
| "2019-06-07 16:27:18", | |
| "2019-06-10 20:47:48", | |
| "2019-06-15 07:23:08", | |
| "2019-06-18 16:08:28", | |
| "2019-06-21 10:36:08", | |
| "2019-06-21 12:31:08", | |
| "2019-06-21 22:39:38", | |
| "2019-06-21 22:57:28", | |
| "2019-06-21 23:03:58", | |
| "2019-06-21 23:14:58", | |
| "2019-06-25 20:20:22", | |
| "2019-06-25 20:28:16", | |
| "2019-06-25 20:30:51", | |
| "2019-06-25 21:39:05", | |
| "2019-06-25 21:42:05", | |
| "2019-06-26 13:05:53", | |
| "2019-06-26 22:50:09", | |
| "2019-06-26 23:08:18", | |
| "2019-06-26 23:11:28", | |
| "2019-06-28 09:03:48", | |
| "2019-06-28 13:00:48", | |
| "2019-06-28 14:58:38", | |
| "2019-06-28 21:42:18", | |
| "2019-06-28 21:49:48", | |
| "2019-07-01 01:54:28", | |
| "2019-07-01 12:21:28", | |
| "2019-07-01 15:18:48", | |
| "2019-07-01 18:01:58", | |
| "2019-07-01 18:18:18", | |
| "2019-07-01 19:05:38", | |
| "2019-07-01 22:09:28", | |
| "2019-07-02 11:30:08", | |
| "2019-07-02 12:54:48", | |
| "2019-07-02 13:48:48", | |
| "2019-07-02 13:52:18", | |
| "2019-07-02 14:02:58", | |
| "2019-07-02 14:05:28", | |
| "2019-07-02 14:19:38", | |
| "2019-07-02 14:37:38", | |
| "2019-07-02 15:07:28", | |
| "2019-07-02 15:18:48", | |
| "2019-07-02 15:31:58", | |
| "2019-07-02 16:04:08", | |
| "2019-07-02 16:06:08", | |
| "2019-07-02 16:13:08", | |
| "2019-07-02 17:17:28", | |
| "2019-07-02 17:50:58", | |
| "2019-07-02 18:23:52", | |
| "2019-07-02 18:33:58", | |
| "2019-07-02 18:45:08", | |
| "2019-07-02 21:05:32", | |
| "2019-07-04 07:53:34", | |
| "2019-07-04 09:07:00", | |
| "2019-07-04 19:39:11", | |
| "2019-07-04 22:36:39", | |
| "2019-07-05 13:13:04", | |
| "2019-07-05 14:35:46", | |
| "2019-07-08 09:21:04", | |
| "2019-07-08 12:57:27", | |
| "2019-07-09 00:49:18", | |
| "2019-07-09 04:12:26", | |
| "2019-07-10 21:12:16" | |
| ], | |
| "y": [ | |
| 6, | |
| 7, | |
| 7, | |
| 8, | |
| 8, | |
| 8, | |
| 9, | |
| 9, | |
| 9, | |
| 11, | |
| 11, | |
| 11, | |
| 11, | |
| 11, | |
| 11, | |
| 11, | |
| 11, | |
| 29, | |
| 30, | |
| 30, | |
| 30, | |
| 30, | |
| 33, | |
| 65, | |
| 94, | |
| 170, | |
| 170, | |
| 170, | |
| 170, | |
| 170, | |
| 170, | |
| 177, | |
| 177, | |
| 177, | |
| 177, | |
| 177, | |
| 177, | |
| 180, | |
| 202, | |
| 278, | |
| 278, | |
| 278, | |
| 283, | |
| 292, | |
| 306, | |
| 306, | |
| 306, | |
| 306, | |
| 307, | |
| 307, | |
| 307, | |
| 307, | |
| 307, | |
| 307, | |
| 307, | |
| 307, | |
| 307, | |
| 381, | |
| 397, | |
| 484, | |
| 498, | |
| 498, | |
| 500, | |
| 520, | |
| 520, | |
| 520, | |
| 520, | |
| 520, | |
| 520, | |
| 525, | |
| 525, | |
| 526, | |
| 526, | |
| 526, | |
| 526, | |
| 526, | |
| 526, | |
| 548, | |
| 548, | |
| 548, | |
| 548, | |
| 548, | |
| 579, | |
| 582, | |
| 582, | |
| 582, | |
| 583, | |
| 600, | |
| 603, | |
| 613, | |
| 614, | |
| 614, | |
| 614, | |
| 620, | |
| 622, | |
| 622, | |
| 622, | |
| 622, | |
| 622, | |
| 622, | |
| 624, | |
| 629, | |
| 629, | |
| 632, | |
| 636, | |
| 636, | |
| 664, | |
| 666, | |
| 668, | |
| 668, | |
| 673, | |
| 674, | |
| 674, | |
| 674, | |
| 674, | |
| 674, | |
| 676, | |
| 676, | |
| 676, | |
| 676, | |
| 677, | |
| 677, | |
| 677, | |
| 677, | |
| 677, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 693, | |
| 694, | |
| 694, | |
| 698, | |
| 698, | |
| 701, | |
| 701, | |
| 702, | |
| 702, | |
| 705, | |
| 706, | |
| 725 | |
| ] | |
| }, | |
| { | |
| "line": { | |
| "color": "rgba(55, 128, 191, 1.0)", | |
| "dash": "solid", | |
| "shape": "linear", | |
| "width": 1.3 | |
| }, | |
| "mode": "lines", | |
| "name": "non_liquidity", | |
| "text": "", | |
| "type": "scatter", | |
| "uid": "4262e963-ce30-44fd-91f8-3ae220c193d3", | |
| "x": [ | |
| "2018-12-06 09:29:18", | |
| "2018-12-06 13:55:38", | |
| "2018-12-06 13:56:08", | |
| "2018-12-06 16:42:48", | |
| "2018-12-06 16:47:48", | |
| "2018-12-06 16:57:38", | |
| "2018-12-06 19:58:18", | |
| "2018-12-06 19:58:48", | |
| "2018-12-06 19:59:18", | |
| "2018-12-10 08:54:28", | |
| "2018-12-10 09:29:48", | |
| "2018-12-10 09:57:58", | |
| "2018-12-10 10:15:48", | |
| "2018-12-10 10:24:58", | |
| "2018-12-10 10:29:28", | |
| "2018-12-10 10:36:18", | |
| "2018-12-10 10:40:38", | |
| "2018-12-14 08:46:58", | |
| "2018-12-14 09:24:48", | |
| "2018-12-14 09:25:18", | |
| "2018-12-14 09:25:48", | |
| "2018-12-14 09:26:48", | |
| "2018-12-14 15:19:38", | |
| "2019-01-02 16:04:28", | |
| "2019-01-23 04:10:08", | |
| "2019-02-19 17:52:08", | |
| "2019-02-21 02:03:28", | |
| "2019-02-21 04:50:38", | |
| "2019-02-21 04:55:38", | |
| "2019-02-21 04:58:48", | |
| "2019-02-21 15:09:08", | |
| "2019-02-22 10:51:58", | |
| "2019-02-22 11:07:48", | |
| "2019-02-23 12:16:58", | |
| "2019-02-23 12:16:58", | |
| "2019-02-23 12:17:28", | |
| "2019-02-23 12:21:08", | |
| "2019-02-24 01:44:58", | |
| "2019-03-01 01:22:48", | |
| "2019-03-10 01:20:28", | |
| "2019-03-10 09:24:48", | |
| "2019-03-10 10:34:38", | |
| "2019-03-11 03:05:58", | |
| "2019-03-11 11:30:28", | |
| "2019-03-15 01:33:28", | |
| "2019-03-15 02:07:48", | |
| "2019-03-15 02:42:18", | |
| "2019-03-15 02:51:28", | |
| "2019-03-15 23:49:08", | |
| "2019-03-15 23:55:48", | |
| "2019-03-16 18:03:08", | |
| "2019-03-16 18:11:38", | |
| "2019-03-16 18:13:48", | |
| "2019-03-16 18:27:18", | |
| "2019-03-16 18:29:58", | |
| "2019-03-16 20:59:28", | |
| "2019-03-16 22:15:48", | |
| "2019-03-21 14:18:18", | |
| "2019-03-23 15:34:18", | |
| "2019-04-05 10:05:28", | |
| "2019-04-08 23:02:28", | |
| "2019-04-09 00:54:48", | |
| "2019-04-11 09:35:38", | |
| "2019-04-17 08:18:58", | |
| "2019-04-17 08:19:28", | |
| "2019-04-17 08:19:58", | |
| "2019-04-17 10:23:48", | |
| "2019-04-17 10:24:18", | |
| "2019-04-17 10:24:48", | |
| "2019-04-18 04:01:38", | |
| "2019-04-18 04:02:38", | |
| "2019-04-18 06:00:58", | |
| "2019-04-18 07:41:38", | |
| "2019-04-18 07:42:48", | |
| "2019-04-18 07:43:48", | |
| "2019-04-18 08:46:58", | |
| "2019-04-18 09:07:38", | |
| "2019-04-24 08:00:58", | |
| "2019-04-24 08:01:28", | |
| "2019-04-24 08:02:38", | |
| "2019-04-24 08:03:08", | |
| "2019-04-24 08:04:08", | |
| "2019-05-01 05:38:08", | |
| "2019-05-04 12:59:08", | |
| "2019-05-04 13:23:48", | |
| "2019-05-04 13:43:18", | |
| "2019-05-04 16:25:58", | |
| "2019-05-05 15:16:18", | |
| "2019-05-08 02:38:58", | |
| "2019-05-10 14:48:18", | |
| "2019-05-11 08:16:08", | |
| "2019-05-11 08:47:08", | |
| "2019-05-11 08:54:38", | |
| "2019-05-13 02:45:18", | |
| "2019-05-14 20:28:58", | |
| "2019-05-14 20:49:08", | |
| "2019-05-14 22:02:38", | |
| "2019-05-14 22:21:58", | |
| "2019-05-14 22:44:28", | |
| "2019-05-14 22:45:28", | |
| "2019-05-17 20:54:28", | |
| "2019-05-23 20:08:38", | |
| "2019-05-23 20:10:18", | |
| "2019-05-24 21:58:08", | |
| "2019-05-30 19:30:38", | |
| "2019-06-02 07:06:48", | |
| "2019-06-07 16:27:18", | |
| "2019-06-10 20:47:48", | |
| "2019-06-15 07:23:08", | |
| "2019-06-18 16:08:28", | |
| "2019-06-21 10:36:08", | |
| "2019-06-21 12:31:08", | |
| "2019-06-21 22:39:38", | |
| "2019-06-21 22:57:28", | |
| "2019-06-21 23:03:58", | |
| "2019-06-21 23:14:58", | |
| "2019-06-25 20:20:22", | |
| "2019-06-25 20:28:16", | |
| "2019-06-25 20:30:51", | |
| "2019-06-25 21:39:05", | |
| "2019-06-25 21:42:05", | |
| "2019-06-26 13:05:53", | |
| "2019-06-26 22:50:09", | |
| "2019-06-26 23:08:18", | |
| "2019-06-26 23:11:28", | |
| "2019-06-28 09:03:48", | |
| "2019-06-28 13:00:48", | |
| "2019-06-28 14:58:38", | |
| "2019-06-28 21:42:18", | |
| "2019-06-28 21:49:48", | |
| "2019-07-01 01:54:28", | |
| "2019-07-01 12:21:28", | |
| "2019-07-01 15:18:48", | |
| "2019-07-01 18:01:58", | |
| "2019-07-01 18:18:18", | |
| "2019-07-01 19:05:38", | |
| "2019-07-01 22:09:28", | |
| "2019-07-02 11:30:08", | |
| "2019-07-02 12:54:48", | |
| "2019-07-02 13:48:48", | |
| "2019-07-02 13:52:18", | |
| "2019-07-02 14:02:58", | |
| "2019-07-02 14:05:28", | |
| "2019-07-02 14:19:38", | |
| "2019-07-02 14:37:38", | |
| "2019-07-02 15:07:28", | |
| "2019-07-02 15:18:48", | |
| "2019-07-02 15:31:58", | |
| "2019-07-02 16:04:08", | |
| "2019-07-02 16:06:08", | |
| "2019-07-02 16:13:08", | |
| "2019-07-02 17:17:28", | |
| "2019-07-02 17:50:58", | |
| "2019-07-02 18:23:52", | |
| "2019-07-02 18:33:58", | |
| "2019-07-02 18:45:08", | |
| "2019-07-02 21:05:32", | |
| "2019-07-04 07:53:34", | |
| "2019-07-04 09:07:00", | |
| "2019-07-04 19:39:11", | |
| "2019-07-04 22:36:39", | |
| "2019-07-05 13:13:04", | |
| "2019-07-05 14:35:46", | |
| "2019-07-08 09:21:04", | |
| "2019-07-08 12:57:27", | |
| "2019-07-09 00:49:18", | |
| "2019-07-09 04:12:26", | |
| "2019-07-10 21:12:16" | |
| ], | |
| "y": [ | |
| 1, | |
| 2, | |
| 3, | |
| 4, | |
| 5, | |
| 6, | |
| 7, | |
| 8, | |
| 9, | |
| 10, | |
| 11, | |
| 12, | |
| 13, | |
| 14, | |
| 15, | |
| 16, | |
| 17, | |
| 18, | |
| 19, | |
| 20, | |
| 21, | |
| 22, | |
| 23, | |
| 24, | |
| 25, | |
| 26, | |
| 27, | |
| 28, | |
| 29, | |
| 30, | |
| 31, | |
| 32, | |
| 33, | |
| 34, | |
| 35, | |
| 36, | |
| 37, | |
| 38, | |
| 39, | |
| 40, | |
| 41, | |
| 42, | |
| 43, | |
| 44, | |
| 45, | |
| 46, | |
| 47, | |
| 48, | |
| 49, | |
| 50, | |
| 51, | |
| 52, | |
| 53, | |
| 54, | |
| 55, | |
| 56, | |
| 57, | |
| 58, | |
| 59, | |
| 60, | |
| 61, | |
| 62, | |
| 63, | |
| 64, | |
| 65, | |
| 66, | |
| 67, | |
| 68, | |
| 69, | |
| 70, | |
| 71, | |
| 72, | |
| 73, | |
| 74, | |
| 75, | |
| 76, | |
| 77, | |
| 78, | |
| 79, | |
| 80, | |
| 81, | |
| 82, | |
| 83, | |
| 84, | |
| 85, | |
| 86, | |
| 87, | |
| 88, | |
| 89, | |
| 90, | |
| 91, | |
| 92, | |
| 93, | |
| 94, | |
| 95, | |
| 96, | |
| 97, | |
| 98, | |
| 99, | |
| 100, | |
| 101, | |
| 102, | |
| 103, | |
| 104, | |
| 105, | |
| 106, | |
| 107, | |
| 108, | |
| 109, | |
| 110, | |
| 111, | |
| 112, | |
| 113, | |
| 114, | |
| 115, | |
| 116, | |
| 117, | |
| 118, | |
| 119, | |
| 120, | |
| 121, | |
| 122, | |
| 123, | |
| 124, | |
| 125, | |
| 126, | |
| 127, | |
| 128, | |
| 129, | |
| 130, | |
| 131, | |
| 132, | |
| 133, | |
| 134, | |
| 135, | |
| 136, | |
| 137, | |
| 138, | |
| 139, | |
| 140, | |
| 141, | |
| 142, | |
| 143, | |
| 144, | |
| 145, | |
| 146, | |
| 147, | |
| 148, | |
| 149, | |
| 150, | |
| 151, | |
| 152, | |
| 153, | |
| 154, | |
| 155, | |
| 156, | |
| 157, | |
| 158, | |
| 159, | |
| 160, | |
| 161, | |
| 162, | |
| 163, | |
| 164, | |
| 165, | |
| 166, | |
| 167, | |
| 168 | |
| ] | |
| } | |
| ], | |
| "layout": { | |
| "legend": { | |
| "bgcolor": "#F5F6F9", | |
| "font": { | |
| "color": "#4D5663" | |
| } | |
| }, | |
| "paper_bgcolor": "#F5F6F9", | |
| "plot_bgcolor": "#F5F6F9", | |
| "title": { | |
| "font": { | |
| "color": "#4D5663" | |
| }, | |
| "text": "Cumulative number of originations" | |
| }, | |
| "xaxis": { | |
| "gridcolor": "#E1E5ED", | |
| "showgrid": true, | |
| "tickfont": { | |
| "color": "#4D5663" | |
| }, | |
| "title": { | |
| "font": { | |
| "color": "#4D5663" | |
| }, | |
| "text": "" | |
| }, | |
| "zerolinecolor": "#E1E5ED" | |
| }, | |
| "yaxis": { | |
| "gridcolor": "#E1E5ED", | |
| "showgrid": true, | |
| "tickfont": { | |
| "color": "#4D5663" | |
| }, | |
| "title": { | |
| "font": { | |
| "color": "#4D5663" | |
| }, | |
| "text": "" | |
| }, | |
| "zerolinecolor": "#E1E5ED" | |
| } | |
| } | |
| }, | |
| "text/html": [ | |
| "<div>\n", | |
| " \n", | |
| " \n", | |
| " <div id=\"fcafed9a-b898-40f9-9beb-2b714af5d4ce\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n", | |
| " <script type=\"text/javascript\">\n", | |
| " require([\"plotly\"], function(Plotly) {\n", | |
| " window.PLOTLYENV=window.PLOTLYENV || {};\n", | |
| " window.PLOTLYENV.BASE_URL='https://plot.ly';\n", | |
| " \n", | |
| " if (document.getElementById(\"fcafed9a-b898-40f9-9beb-2b714af5d4ce\")) {\n", | |
| " Plotly.newPlot(\n", | |
| " 'fcafed9a-b898-40f9-9beb-2b714af5d4ce',\n", | |
| " [{\"line\": {\"color\": \"rgba(255, 153, 51, 1.0)\", \"dash\": \"solid\", \"shape\": \"linear\", \"width\": 1.3}, \"mode\": \"lines\", \"name\": \"liquidity\", \"text\": \"\", \"type\": \"scatter\", \"uid\": \"30c207f7-f803-4fcc-a438-1c72ac21571a\", \"x\": [\"2018-12-06 09:29:18\", \"2018-12-06 13:55:38\", \"2018-12-06 13:56:08\", \"2018-12-06 16:42:48\", \"2018-12-06 16:47:48\", \"2018-12-06 16:57:38\", \"2018-12-06 19:58:18\", \"2018-12-06 19:58:48\", \"2018-12-06 19:59:18\", \"2018-12-10 08:54:28\", \"2018-12-10 09:29:48\", \"2018-12-10 09:57:58\", \"2018-12-10 10:15:48\", \"2018-12-10 10:24:58\", \"2018-12-10 10:29:28\", \"2018-12-10 10:36:18\", \"2018-12-10 10:40:38\", \"2018-12-14 08:46:58\", \"2018-12-14 09:24:48\", \"2018-12-14 09:25:18\", \"2018-12-14 09:25:48\", \"2018-12-14 09:26:48\", \"2018-12-14 15:19:38\", \"2019-01-02 16:04:28\", \"2019-01-23 04:10:08\", \"2019-02-19 17:52:08\", \"2019-02-21 02:03:28\", \"2019-02-21 04:50:38\", \"2019-02-21 04:55:38\", \"2019-02-21 04:58:48\", \"2019-02-21 15:09:08\", \"2019-02-22 10:51:58\", \"2019-02-22 11:07:48\", \"2019-02-23 12:16:58\", \"2019-02-23 12:16:58\", \"2019-02-23 12:17:28\", \"2019-02-23 12:21:08\", \"2019-02-24 01:44:58\", \"2019-03-01 01:22:48\", \"2019-03-10 01:20:28\", \"2019-03-10 09:24:48\", \"2019-03-10 10:34:38\", \"2019-03-11 03:05:58\", \"2019-03-11 11:30:28\", \"2019-03-15 01:33:28\", \"2019-03-15 02:07:48\", \"2019-03-15 02:42:18\", \"2019-03-15 02:51:28\", \"2019-03-15 23:49:08\", \"2019-03-15 23:55:48\", \"2019-03-16 18:03:08\", \"2019-03-16 18:11:38\", \"2019-03-16 18:13:48\", \"2019-03-16 18:27:18\", \"2019-03-16 18:29:58\", \"2019-03-16 20:59:28\", \"2019-03-16 22:15:48\", \"2019-03-21 14:18:18\", \"2019-03-23 15:34:18\", \"2019-04-05 10:05:28\", \"2019-04-08 23:02:28\", \"2019-04-09 00:54:48\", \"2019-04-11 09:35:38\", \"2019-04-17 08:18:58\", \"2019-04-17 08:19:28\", \"2019-04-17 08:19:58\", \"2019-04-17 10:23:48\", \"2019-04-17 10:24:18\", \"2019-04-17 10:24:48\", \"2019-04-18 04:01:38\", \"2019-04-18 04:02:38\", \"2019-04-18 06:00:58\", \"2019-04-18 07:41:38\", \"2019-04-18 07:42:48\", \"2019-04-18 07:43:48\", \"2019-04-18 08:46:58\", \"2019-04-18 09:07:38\", \"2019-04-24 08:00:58\", \"2019-04-24 08:01:28\", \"2019-04-24 08:02:38\", \"2019-04-24 08:03:08\", \"2019-04-24 08:04:08\", \"2019-05-01 05:38:08\", \"2019-05-04 12:59:08\", \"2019-05-04 13:23:48\", \"2019-05-04 13:43:18\", \"2019-05-04 16:25:58\", \"2019-05-05 15:16:18\", \"2019-05-08 02:38:58\", \"2019-05-10 14:48:18\", \"2019-05-11 08:16:08\", \"2019-05-11 08:47:08\", \"2019-05-11 08:54:38\", \"2019-05-13 02:45:18\", \"2019-05-14 20:28:58\", \"2019-05-14 20:49:08\", \"2019-05-14 22:02:38\", \"2019-05-14 22:21:58\", \"2019-05-14 22:44:28\", \"2019-05-14 22:45:28\", \"2019-05-17 20:54:28\", \"2019-05-23 20:08:38\", \"2019-05-23 20:10:18\", \"2019-05-24 21:58:08\", \"2019-05-30 19:30:38\", \"2019-06-02 07:06:48\", \"2019-06-07 16:27:18\", \"2019-06-10 20:47:48\", \"2019-06-15 07:23:08\", \"2019-06-18 16:08:28\", \"2019-06-21 10:36:08\", \"2019-06-21 12:31:08\", \"2019-06-21 22:39:38\", \"2019-06-21 22:57:28\", \"2019-06-21 23:03:58\", \"2019-06-21 23:14:58\", \"2019-06-25 20:20:22\", \"2019-06-25 20:28:16\", \"2019-06-25 20:30:51\", \"2019-06-25 21:39:05\", \"2019-06-25 21:42:05\", \"2019-06-26 13:05:53\", \"2019-06-26 22:50:09\", \"2019-06-26 23:08:18\", \"2019-06-26 23:11:28\", \"2019-06-28 09:03:48\", \"2019-06-28 13:00:48\", \"2019-06-28 14:58:38\", \"2019-06-28 21:42:18\", \"2019-06-28 21:49:48\", \"2019-07-01 01:54:28\", \"2019-07-01 12:21:28\", \"2019-07-01 15:18:48\", \"2019-07-01 18:01:58\", \"2019-07-01 18:18:18\", \"2019-07-01 19:05:38\", \"2019-07-01 22:09:28\", \"2019-07-02 11:30:08\", \"2019-07-02 12:54:48\", \"2019-07-02 13:48:48\", \"2019-07-02 13:52:18\", \"2019-07-02 14:02:58\", \"2019-07-02 14:05:28\", \"2019-07-02 14:19:38\", \"2019-07-02 14:37:38\", \"2019-07-02 15:07:28\", \"2019-07-02 15:18:48\", \"2019-07-02 15:31:58\", \"2019-07-02 16:04:08\", \"2019-07-02 16:06:08\", \"2019-07-02 16:13:08\", \"2019-07-02 17:17:28\", \"2019-07-02 17:50:58\", \"2019-07-02 18:23:52\", \"2019-07-02 18:33:58\", \"2019-07-02 18:45:08\", \"2019-07-02 21:05:32\", \"2019-07-04 07:53:34\", \"2019-07-04 09:07:00\", \"2019-07-04 19:39:11\", \"2019-07-04 22:36:39\", \"2019-07-05 13:13:04\", \"2019-07-05 14:35:46\", \"2019-07-08 09:21:04\", \"2019-07-08 12:57:27\", \"2019-07-09 00:49:18\", \"2019-07-09 04:12:26\", \"2019-07-10 21:12:16\"], \"y\": [6.0, 7.0, 7.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 29.0, 30.0, 30.0, 30.0, 30.0, 33.0, 65.0, 94.0, 170.0, 170.0, 170.0, 170.0, 170.0, 170.0, 177.0, 177.0, 177.0, 177.0, 177.0, 177.0, 180.0, 202.0, 278.0, 278.0, 278.0, 283.0, 292.0, 306.0, 306.0, 306.0, 306.0, 307.0, 307.0, 307.0, 307.0, 307.0, 307.0, 307.0, 307.0, 307.0, 381.0, 397.0, 484.0, 498.0, 498.0, 500.0, 520.0, 520.0, 520.0, 520.0, 520.0, 520.0, 525.0, 525.0, 526.0, 526.0, 526.0, 526.0, 526.0, 526.0, 548.0, 548.0, 548.0, 548.0, 548.0, 579.0, 582.0, 582.0, 582.0, 583.0, 600.0, 603.0, 613.0, 614.0, 614.0, 614.0, 620.0, 622.0, 622.0, 622.0, 622.0, 622.0, 622.0, 624.0, 629.0, 629.0, 632.0, 636.0, 636.0, 664.0, 666.0, 668.0, 668.0, 673.0, 674.0, 674.0, 674.0, 674.0, 674.0, 676.0, 676.0, 676.0, 676.0, 677.0, 677.0, 677.0, 677.0, 677.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 694.0, 694.0, 698.0, 698.0, 701.0, 701.0, 702.0, 702.0, 705.0, 706.0, 725.0]}, {\"line\": {\"color\": \"rgba(55, 128, 191, 1.0)\", \"dash\": \"solid\", \"shape\": \"linear\", \"width\": 1.3}, \"mode\": \"lines\", \"name\": \"non_liquidity\", \"text\": \"\", \"type\": \"scatter\", \"uid\": \"4262e963-ce30-44fd-91f8-3ae220c193d3\", \"x\": [\"2018-12-06 09:29:18\", \"2018-12-06 13:55:38\", \"2018-12-06 13:56:08\", \"2018-12-06 16:42:48\", \"2018-12-06 16:47:48\", \"2018-12-06 16:57:38\", \"2018-12-06 19:58:18\", \"2018-12-06 19:58:48\", \"2018-12-06 19:59:18\", \"2018-12-10 08:54:28\", \"2018-12-10 09:29:48\", \"2018-12-10 09:57:58\", \"2018-12-10 10:15:48\", \"2018-12-10 10:24:58\", \"2018-12-10 10:29:28\", \"2018-12-10 10:36:18\", \"2018-12-10 10:40:38\", \"2018-12-14 08:46:58\", \"2018-12-14 09:24:48\", \"2018-12-14 09:25:18\", \"2018-12-14 09:25:48\", \"2018-12-14 09:26:48\", \"2018-12-14 15:19:38\", \"2019-01-02 16:04:28\", \"2019-01-23 04:10:08\", \"2019-02-19 17:52:08\", \"2019-02-21 02:03:28\", \"2019-02-21 04:50:38\", \"2019-02-21 04:55:38\", \"2019-02-21 04:58:48\", \"2019-02-21 15:09:08\", \"2019-02-22 10:51:58\", \"2019-02-22 11:07:48\", \"2019-02-23 12:16:58\", \"2019-02-23 12:16:58\", \"2019-02-23 12:17:28\", \"2019-02-23 12:21:08\", \"2019-02-24 01:44:58\", \"2019-03-01 01:22:48\", \"2019-03-10 01:20:28\", \"2019-03-10 09:24:48\", \"2019-03-10 10:34:38\", \"2019-03-11 03:05:58\", \"2019-03-11 11:30:28\", \"2019-03-15 01:33:28\", \"2019-03-15 02:07:48\", \"2019-03-15 02:42:18\", \"2019-03-15 02:51:28\", \"2019-03-15 23:49:08\", \"2019-03-15 23:55:48\", \"2019-03-16 18:03:08\", \"2019-03-16 18:11:38\", \"2019-03-16 18:13:48\", \"2019-03-16 18:27:18\", \"2019-03-16 18:29:58\", \"2019-03-16 20:59:28\", \"2019-03-16 22:15:48\", \"2019-03-21 14:18:18\", \"2019-03-23 15:34:18\", \"2019-04-05 10:05:28\", \"2019-04-08 23:02:28\", \"2019-04-09 00:54:48\", \"2019-04-11 09:35:38\", \"2019-04-17 08:18:58\", \"2019-04-17 08:19:28\", \"2019-04-17 08:19:58\", \"2019-04-17 10:23:48\", \"2019-04-17 10:24:18\", \"2019-04-17 10:24:48\", \"2019-04-18 04:01:38\", \"2019-04-18 04:02:38\", \"2019-04-18 06:00:58\", \"2019-04-18 07:41:38\", \"2019-04-18 07:42:48\", \"2019-04-18 07:43:48\", \"2019-04-18 08:46:58\", \"2019-04-18 09:07:38\", \"2019-04-24 08:00:58\", \"2019-04-24 08:01:28\", \"2019-04-24 08:02:38\", \"2019-04-24 08:03:08\", \"2019-04-24 08:04:08\", \"2019-05-01 05:38:08\", \"2019-05-04 12:59:08\", \"2019-05-04 13:23:48\", \"2019-05-04 13:43:18\", \"2019-05-04 16:25:58\", \"2019-05-05 15:16:18\", \"2019-05-08 02:38:58\", \"2019-05-10 14:48:18\", \"2019-05-11 08:16:08\", \"2019-05-11 08:47:08\", \"2019-05-11 08:54:38\", \"2019-05-13 02:45:18\", \"2019-05-14 20:28:58\", \"2019-05-14 20:49:08\", \"2019-05-14 22:02:38\", \"2019-05-14 22:21:58\", \"2019-05-14 22:44:28\", \"2019-05-14 22:45:28\", \"2019-05-17 20:54:28\", \"2019-05-23 20:08:38\", \"2019-05-23 20:10:18\", \"2019-05-24 21:58:08\", \"2019-05-30 19:30:38\", \"2019-06-02 07:06:48\", \"2019-06-07 16:27:18\", \"2019-06-10 20:47:48\", \"2019-06-15 07:23:08\", \"2019-06-18 16:08:28\", \"2019-06-21 10:36:08\", \"2019-06-21 12:31:08\", \"2019-06-21 22:39:38\", \"2019-06-21 22:57:28\", \"2019-06-21 23:03:58\", \"2019-06-21 23:14:58\", \"2019-06-25 20:20:22\", \"2019-06-25 20:28:16\", \"2019-06-25 20:30:51\", \"2019-06-25 21:39:05\", \"2019-06-25 21:42:05\", \"2019-06-26 13:05:53\", \"2019-06-26 22:50:09\", \"2019-06-26 23:08:18\", \"2019-06-26 23:11:28\", \"2019-06-28 09:03:48\", \"2019-06-28 13:00:48\", \"2019-06-28 14:58:38\", \"2019-06-28 21:42:18\", \"2019-06-28 21:49:48\", \"2019-07-01 01:54:28\", \"2019-07-01 12:21:28\", \"2019-07-01 15:18:48\", \"2019-07-01 18:01:58\", \"2019-07-01 18:18:18\", \"2019-07-01 19:05:38\", \"2019-07-01 22:09:28\", \"2019-07-02 11:30:08\", \"2019-07-02 12:54:48\", \"2019-07-02 13:48:48\", \"2019-07-02 13:52:18\", \"2019-07-02 14:02:58\", \"2019-07-02 14:05:28\", \"2019-07-02 14:19:38\", \"2019-07-02 14:37:38\", \"2019-07-02 15:07:28\", \"2019-07-02 15:18:48\", \"2019-07-02 15:31:58\", \"2019-07-02 16:04:08\", \"2019-07-02 16:06:08\", \"2019-07-02 16:13:08\", \"2019-07-02 17:17:28\", \"2019-07-02 17:50:58\", \"2019-07-02 18:23:52\", \"2019-07-02 18:33:58\", \"2019-07-02 18:45:08\", \"2019-07-02 21:05:32\", \"2019-07-04 07:53:34\", \"2019-07-04 09:07:00\", \"2019-07-04 19:39:11\", \"2019-07-04 22:36:39\", \"2019-07-05 13:13:04\", \"2019-07-05 14:35:46\", \"2019-07-08 09:21:04\", \"2019-07-08 12:57:27\", \"2019-07-09 00:49:18\", \"2019-07-09 04:12:26\", \"2019-07-10 21:12:16\"], \"y\": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168]}],\n", | |
| " {\"legend\": {\"bgcolor\": \"#F5F6F9\", \"font\": {\"color\": \"#4D5663\"}}, \"paper_bgcolor\": \"#F5F6F9\", \"plot_bgcolor\": \"#F5F6F9\", \"title\": {\"font\": {\"color\": \"#4D5663\"}, \"text\": \"Cumulative number of originations\"}, \"xaxis\": {\"gridcolor\": \"#E1E5ED\", \"showgrid\": true, \"tickfont\": {\"color\": \"#4D5663\"}, \"title\": {\"font\": {\"color\": \"#4D5663\"}, \"text\": \"\"}, \"zerolinecolor\": \"#E1E5ED\"}, \"yaxis\": {\"gridcolor\": \"#E1E5ED\", \"showgrid\": true, \"tickfont\": {\"color\": \"#4D5663\"}, \"title\": {\"font\": {\"color\": \"#4D5663\"}, \"text\": \"\"}, \"zerolinecolor\": \"#E1E5ED\"}},\n", | |
| " {\"showLink\": true, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\", \"responsive\": true}\n", | |
| " ).then(function(){\n", | |
| " \n", | |
| "var gd = document.getElementById('fcafed9a-b898-40f9-9beb-2b714af5d4ce');\n", | |
| "var x = new MutationObserver(function (mutations, observer) {{\n", | |
| " var display = window.getComputedStyle(gd).display;\n", | |
| " if (!display || display === 'none') {{\n", | |
| " console.log([gd, 'removed!']);\n", | |
| " Plotly.purge(gd);\n", | |
| " observer.disconnect();\n", | |
| " }}\n", | |
| "}});\n", | |
| "\n", | |
| "// Listen for the removal of the full notebook cells\n", | |
| "var notebookContainer = gd.closest('#notebook-container');\n", | |
| "if (notebookContainer) {{\n", | |
| " x.observe(notebookContainer, {childList: true});\n", | |
| "}}\n", | |
| "\n", | |
| "// Listen for the clearing of the current output cell\n", | |
| "var outputEl = gd.closest('.output');\n", | |
| "if (outputEl) {{\n", | |
| " x.observe(outputEl, {childList: true});\n", | |
| "}}\n", | |
| "\n", | |
| " })\n", | |
| " };\n", | |
| " });\n", | |
| " </script>\n", | |
| " </div>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "df[['liquidity', 'non_liquidity']].iplot(title='Cumulative number of originations')" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.0" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment