Created
August 17, 2021 15:02
-
-
Save machinelearning147/1b5809514e449f9ef3e079c84673bf71 to your computer and use it in GitHub Desktop.
Compute Natural Logorithm.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Compute Natural Logorithm.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyMTIPvu4WAlJZvC5jVShv3s", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/machinelearning147/1b5809514e449f9ef3e079c84673bf71/compute-natuuur-logorithm.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "tpzzugTKim1B" | |
}, | |
"source": [ | |
"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "624I-OXdjmDm" | |
}, | |
"source": [ | |
"def compute_nat_log(x):\n", | |
" return np.log(1/(1-x))" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "J1zRa4eBl_hS" | |
}, | |
"source": [ | |
"Visual Understanding " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "F8h0PVCpkfLd" | |
}, | |
"source": [ | |
"x = np.arange(-10,1, 0.1)\n", | |
"y = compute_nat_log(x) #np.log(1/(1-x))" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "LN3RxIR6k3lf" | |
}, | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 282 | |
}, | |
"id": "eeVafpcDk-CI", | |
"outputId": "d759a4bc-aa7d-4606-ee41-ed7c454433a6" | |
}, | |
"source": [ | |
"plt.plot(x,y)" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7f00e2ffee50>]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 27 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbwUlEQVR4nO3deXzdVZ3/8dfJ3uzbTbpka9N0pS1t0wKCLC0ORVCGHcdxVNSOuKI+HGXQ8TczP51x+en4E0etyk9RRtBBhBEEWQWELmlpS9O0TdJm32723KS52c7vj5uWUgtd8r33e7/J+/l45JG7pN/z+TbtOyfne875GmstIiLiXTFuFyAiIlOjIBcR8TgFuYiIxynIRUQ8TkEuIuJxcW40mpuba0tKStxoWkTEs3bu3NlprfWd/LorQV5SUkJFRYUbTYuIeJYxpv5Ur2toRUTE4xTkIiIepyAXEfE4BbmIiMcpyEVEPE5BLiLicQpyERGPU5CLiERAe/8w33ryIIf9AcePrSAXEYmAw/5B7nmuhta+YcePrSAXEYmAjoFQgOelJTp+bAW5iEgE+AeCAPgU5CIi3uQfCJIQG0PGrHjHj60gFxGJAP9AEF9aIsYYx4+tIBcRiYCOySAPBwW5iEgE+BXkIiLe1jEwHJYZK6AgFxEJu5GxCXqGRtUjFxHxqs5AaOphXlpSWI4/5SA3xhQaY54zxuw3xlQaYz7tRGEiItNFOOeQgzP37BwDPmet3WWMSQN2GmOestbud+DYIiKe1zFwrEcepUMr1tpWa+2uyccDQBUwb6rHFRGZLsLdI3d0jNwYUwKsBrad4r3NxpgKY0yF3+93slkRkah2bJ+V3NQoD3JjTCrwEHCntbb/5PettVusteXW2nKfz+dUsyIiUc8/ECQ7JYGEuPDML3HkqMaYeEIhfr+19rdOHFNEZLroGAjiC1NvHJyZtWKAnwJV1tpvT70kEZHpxT8QJC89ioMcuBh4H7DBGLN78uOdDhxXRGRa8Ie5Rz7l6YfW2pcA57fzEhGZBqy1oSCP8h65iIi8ib6jo4yMT0T3GLmIiLy5Y3PI89LDszwfFOQiImF1bFWneuQiIh71eo9cQS4i4knHVnWGa3k+KMhFRMLKPxAkKT6GtEQn9ig8NQW5iEgYdYTxpsvHKMhFRMLIPxAM2w0ljlGQi4iEUbj3WQEFuYhIWIV7nxVQkIuIhM1gcIy+o6Pkh3ExECjIRUTCptYfAKDUlxrWdhTkIiJhUt0eCvKyfAW5iIgnVXcEiI81FGcnh7UdBbmISJjUdAywIDeVuNjwRq2CXEQkTKo7AiwM87AKKMhFRMJieHSchu4hyvIU5CIinlTrD2AtLFSQi4h4U03H5IyVvLSwt6UgFxEJg5qOALExhpLc8M5YAQW5iEhYVLcHKM5JJjEuNuxtKchFRMKgumMgIhc6QUEuIuK4kbEJ6rqGIjI+DgpyERHH1XUNMj5hw740/xgFuYiIw47tsRKJqYegIBcRcVx1xwDGhH/Xw2MU5CIiDqvuCFCUnUxSfPhnrICCXETEcQda+yN2oRMU5CIijuoZHKHWP8jqosyItakgFxFx0M76HgDKi7Mi1qaCXETEQRX1PcTHGlYVqkcuIuJJO+u7WT43I2IXOkFBLiLimODYOHua+iI6rAIOBbkx5l5jTIcxZp8TxxMR8aJ9zf2MjE1QXuLBIAd+Bmxy6FgiIp60s74bgLXF2RFt15Egt9a+AHQ7cSwREa+qqOuhJCcZX1piRNuN2Bi5MWazMabCGFPh9/sj1ayISERYa9lZ3xPx3jhEMMittVusteXW2nKfzxepZkVEIuJI5yBdgyMRHx8HzVoREXFEhQsLgY5RkIuIOGD7kW4yk+MjtuPhiZyafvgr4BVgsTGmyRjzISeOKyLiBRMTlucPdnBpmY+YGBPx9uOcOIi19j1OHEdExIv2NvfRGRhh49I8V9rX0IqIyBQ9U9VOjIHLFrkzkUNBLiIyRc9UdVBenE1mcoIr7SvIRUSmoLXvKPtb+9ng0rAKKMhFRKbk2QMdAFypIBcR8aZnqjooyk52ZdrhMQpyEZFzdHRknD/XdLJhSR7GRH7a4TEKchGRc/Tnmk6CYxOuTTs8RkEuInKOHt3TQmZyPBfMz3G1DgW5iMg5GBge5cnKNq5dOYeEOHejVEEuInIO/rCvjeDYBNevLnC7FAW5iMi5eHhXMyU5yawpynS7FAW5iMjZau49ytYjXVy/usDV2SrHKMhFRM7S715txlq4fvU8t0sBFOQiImfFWsvDrzZTXpxFUU6y2+UACnIRkbOyu7GXmo4A16+Jjt44KMhFRM7Kz1+uIzUxjuvOV5CLiHhOR/8wj73Wys3lBaQmOnJfHkcoyEVEztD92xoYm7C8/6ISt0t5AwW5iMgZCI6Nc/+2BjYszqMkN8Xtct5AQS4icgYe29tKZyDIBy4ucbuUv6AgFxE5DWstP3u5joV5qVyyMNftcv6CglxE5DRerO5kb1Mft188PypWcp5MQS4i8hastXz3mWrmZiRx01r3N8g6FQW5iMhb+HNNFzvre7jjioWub1f7ZqKzKhGRKGCt5T+ePsScjCRuKY/O3jgoyEVE3tTLtV1U1PfwsctLSYyLdbucN6UgFxE5BWst337qELPTk7hlXaHb5bwlBbmIyCk8/lobO+t7uPPKsqjujYOCXETkLwyPjvPvT1SxZHYaN5dHd28cFOQiIn/h5y/X0dh9lC9ds4zYmOibN34yBbmIyAk6A0HuebaGjUvyuKQs+lZxnoqCXETkBN968iBHR8f5x2uWul3KGVOQi4hM2n6kmwd2NHL7JfMp9aW6Xc4ZcyTIjTGbjDEHjTE1xpgvOnFMEZFICo6Nc9dv91KQNYs7ryxzu5yzMuUgN8bEAt8HrgaWAe8xxiyb6nFFRCLpB8/XUusf5H//9XkkJ0TP3X/OhBM98vVAjbX2sLV2BHgAuM6B44qIRERNR4D/fK6Wd62ay+WL89wu56w5EeTzgMYTnjdNvvYGxpjNxpgKY0yF3+93oFkRkakbHZ/gs7/eTXJiLF++1jsXOE8UsYud1tot1tpya225z+eLVLMiIm/pe89Us7epj3+7fgV5aUlul3NOnAjyZuDEpU8Fk6+JiES1XQ093PNcDTeuKeDqFXPcLuecORHkO4AyY8x8Y0wCcBvwqAPHFREJm0BwjM8+uJs5GbP4yru9PT9jypdmrbVjxphPAE8CscC91trKKVcmIhIm1lq++NBeGrqH+NVHLiQ9Kd7tkqbEkTk21trHgcedOJaISLj9Yms9v9/byuevWswFC3LcLmfKtLJTRGaUPY29/Ovv97NhSR53XFbqdjmOUJCLyIzRGQjysft3kZeWxLdvWUWMB3Y2PBPeWr4kInKOgmPj3PHLnXQNBvnN37+NzOQEt0tyjIJcRKY9ay1fengfO+p6uOdvVrOiIMPtkhyloRURmfZ+8uIRfrOziU9tLOPalXPdLsdxCnIRmdYe3dPCVx+v4poVc7hzo7d2NTxTCnIRmbZerunkc7/ezfr52fyfaXRx82QKchGZlipb+tj8i50syE3lx39XTlJ8rNslhY2CXESmner2Ad730+2kJ8Xxs9vXkTHL2ys3T0dBLiLTSl3nIO/9yTZiYwz3f+RC5mTMcruksFOQi8i00dg9xN/8eCtjE5b/+vAFzM9NcbukiFCQi8i0UNc5yK0/eoXBkXHuu309ZflpbpcUMVoQJCKeV9MReL0n/pELWD53ei34OR0FuYh42r7mPj7w/7YDhgc2X8iiGdQTP0ZDKyLiWa/UdnHblq0kxMbw4N/PzBAH9chFxKOe2NfKp361m6KcZH7xofUzYnbKm1GQi4inWGv56UtH+OrjVZxfmMm9719HVsr02cnwXCjIRcQzxsYn+Jff7+e+V+q5ank+/3HramYlTN8Vm2dKQS4intA/PMqnfvUqzx/0s/nSBXxx05Jpu3fK2VKQi0jUq/UH+Mh9FTR0DfHV68/jvRcUu11SVFGQi0hUe/ZAO59+YDcJsTHc/+ELpsXNkp2mIBeRqDQ+YfnOU4e457kals9N50fvW0tBVrLbZUUlBbmIRB3/QJDPPLibl2o6ubW8kH++bvm03oZ2qhTkIhJVXqru5M4HdzMwPMo3blzJLesK3S4p6inIRSQqjI5P8J2nDvGDP9VS6kvllx9ez5LZ6W6X5QkKchFxXa0/wGce3M3epj5uLS/kK+9eRnKC4ulM6W9KRFwzMWG5f1s9X328iqT4WH74t2vYdN4ct8vyHAW5iLiisXuILzy0l5dru7h0kY9v3rSS/PQkt8vyJAW5iETUxITlv7Y38G+PVwHwtetX8J71hRijVZrnSkEuIhFT6w9w10Ovsb2um4sX5vD1G1dqbrgDFOQiEnbBsXF++Pxhvv9cDbMSYvnmTSu5aW2BeuEOUZCLSFi9VN3Jlx/Zx5HOQd61ai7/dO0yfGmJbpc1rSjIRSQsmnuP8rXHqnjstVZKJm/+8PYyn9tlTUtTCnJjzM3A/wKWAuuttRVOFCUi3jU8Os6PXzjM95+vAeCz71jE5ksXaIl9GE21R74PuAH4kQO1iIiHWWv5n72tfP0PB2juPcrV583m7muW6mJmBEwpyK21VYAuWIjMcBV13Xzt8Sp2NfSybE4637p5FReVarvZSInYGLkxZjOwGaCoqChSzYpIGNX6A3zjiQM8WdlOXloi37hxJTeuLSBWd+6JqNMGuTHmaWD2Kd6621r7yJk2ZK3dAmwBKC8vt2dcoYhEnebeo3z36UP8984mZsXH8rl3LOJDb5+v/VFcctq/dWvtlZEoRESiX8fAMD94vpb7tzWAhfe/rYSPX7GQ3FRNJ3STfnyKyGl1BoJseeEw971Sx+i45cY18/jUxjJdyIwSU51+eD3wPcAHPGaM2W2tvcqRykTEdR0Dw2z502F+ua2ekbEJ/vr8UICX5Ka4XZqcYKqzVh4GHnaoFhGJEk09Q2x54TAP7mhkdDwU4B/fsJBSX6rbpckpaGhFRI6rbh/gh386zCO7mzEGblhdwEcvL2W+euBRTUEuMsNZa9lR18OWF2p5uqqDpPgY/vbCYjZfuoC5mbPcLk/OgIJcZIYaG5/gico2fvziEfY09pKZHM+dV5bxdxeVkJ2S4HZ5chYU5CIzTN/QKA/saOC+V+pp7j1KSU4y/3rdcm5cW6B54B6l75rIDHGwbYCfv1LHw7uaOTo6zkULcvjKu5axcWm+VmJ6nIJcZBobHZ/gj5Xt/GJrHVsPd5MYF8O7V83lgxfPZ9ncdLfLE4coyEWmoaaeIR7c0cgDOxrxDwQpyJrFFzYt4bZ1hWRp/HvaUZCLTBOj4xM8e6CDB7Y38PwhPwBXLM7jfRcWc+kin4ZPpjEFuYjHHfYH+HVFE/+9s4nOQJD89EQ+ecVCbl1fxDxNH5wRFOQiHhQIjvH43lZ+s7ORHXU9xMYYrlicx23rCrl8sY+42Bi3S5QIUpCLeMT4hGXr4S4e2tnEH/a1cXR0nAW+FL549RJuWD2PvPQkt0sUlyjIRaJcVWs/v3u1mUd2t9DWP0xaUhzXr5nHjWsKWFOUqTt0iYJcJBo1dg/x6J4WHt3dwsH2AeJiDJcv9vHla5excWmebmQsb6AgF4kSHf3DPPZaK/+zp4VdDb0ArC3O4l+uW841K+aQo5s3yJtQkIu4yD8Q5InKNn6/p4Xtdd1YC0tmp/H5qxbz7lVzKczWjRvk9BTkIhHW3j/Mk5VtPLa39Xh4l/pS+NSGMq5dOYey/DS3SxSPUZCLREBD1xBPVrbxRGUbO+t7AFiYl8onN5TxzhWzWZyfpouWcs4U5CJhYK2lsqWfp/a388f97VS19gOwbE46n3vHIq5eMZuFeep5izMU5CIOGRmbYNuRLp7e387TVR009x7FGCgvzuJL1yzlquWzNeYtYaEgF5mCrkCQ5w76efZAOy8c6iQQHCMpPoZLFvr49MYyNizNI1ezTSTMFOQiZ2FiwrK/tZ9nD3Tw7IEO9jT1Yi3kpSVy7co5XLk0n4sX5jIrQfO8JXIU5CKn0Ts0wovVnfzpkJ/nD/rpDAQBWFWQEep1L8njvLkZxGh3QXGJglzkJGPjE+xp6uOFQ35eqPazp7GXCQsZs+K5dJGPyxf5uHSRD1+ahkwkOijIRQhND3yxxs+Lhzp5ubaT/uExjIGVBZl8YkMZly/2saogU3t6S1RSkMuM1BUI8nJtFy/XdvJSTSeN3UcBmJuRxKbzZvP2Mh+XLMzV3XTEExTkMiMMDI+y/Uj3ZHh3HZ/XnZYYx4WlOXz4kgVcvDCXUl+KFuaI5yjIZVoaDI5RUd/DK7VdvHK4i33NfYxPWBLiYlhblMXnr1rM20pzWDEvQzdhEM9TkMu0MDA8SkVdD9uOdLPtSBd7m0LBHR9rWFWQyccuL+Wi0hzWFGVpC1iZdhTk4kldgSA76nrYfqSbHXXdVLb0MWE5Htx3XFbKBQuyWVucRXKC/pnL9KZ/4RL1rLU0dA+xo66Hirputtd1c9g/CEBiXAyri0IzSy6cn83qoiwtxpEZR0EuUWdkbIJ9LX3squ+hoq6Hivqe44tw0pPiWFeSzc1rC1k/P4sV8zJJiNMYt8xsCnJxXcfAMLvqe3m1oYddDT3saepjZGwCgKLsZN5elkt5SRbrSrJZ6EvVCkqRkyjIJaKCY+NUtvSzu6GXVxt72VXfQ3NvaA53QmwM581L5/0XFbO2OIs1RVm6M7zIGZhSkBtjvgm8CxgBaoEPWmt7nShMvM9aS13XEHsae9ndGAruqpZ+RsZDve25GUmsLsrigxeXsLooi/PmpZMYp/FtkbM11R75U8Bd1toxY8zXgbuAL0y9LPGi9v5h9jT2srepjz1Noc99R0cBSE6IZcW8jMnQzuT8wixmZ6i3LeKEKQW5tfaPJzzdCtw0tXLEK7oCQV5r7uO1pj72Nvext6mX9v7QBcnYGMOi/DTeuWI2qwoyWVWYSVleqhbeiISJk2PktwMPvtmbxpjNwGaAoqIiB5uVcOsMBKls6WffZGDva+4/Pq4NsMCXwkULclhZkMmqwgyWzcnQFECRCDLW2rf+AmOeBmaf4q27rbWPTH7N3UA5cIM93QGB8vJyW1FRcQ7lSjhZa2ntG6aypZ/Klj72NYc+t/YNH/+a+bkpLJ+bzop5GawsyGT5vHTSk+JdrFpk5jDG7LTWlp/8+ml75NbaK09z4A8A1wIbzyTEJTqMT1iOdA5S2dLH/pb+4+HdMxQa0zYGSn2prJ+fzYp5GSyfm6HQFolSU521sgn4B+Aya+2QMyWJ0wLBMQ609lPV2s/+1n72tw5wsK2f4dHQ7JGE2BgWzU7lr5bNZvm8dJbPTWfJ7HRSEjU7VcQLpvo/9R4gEXhqcuvPrdbaj065KjknExOhpewH2vqpah04/rmh+/WfsRmz4lk6J433XlDMsjnpLJ2TTll+KvG6ECniWVOdtbLQqULk7HQPjnCgrZ+DbQMcbBugqm2AQ20DHB0dByDGQEluCisKMrilvIClk6E9JyNJ+22LTDP63TnKBYJjVLcPcKh9gINtAQ61D3CgbeD43iMA2SkJLM5P47b1hSyZnRbqZeelaeaIyAyhII8SR0fGqekIBfWhjgGq20OPm3pen+aXFB/Dovw0rljsY/HsNBblp7FkThq+1ET1skVmMAV5hAWCY9R0BKhuH6DGH6CmPcChjlBgH5vzkxAbwwJfCmuKsrhtXSFl+WksmZ1GYVayNowSkb+gIA+TrkCQmo5AKKw7Qh+1HQFaTpiTfSywVxZkctOaQhblp1KWn0ZJTrJWQYrIGVOQT8HY+ARNPUep9QdCHx2Dxx8fm48NMCs+ltK8FNbPz6YsP42FeakszEulOFuBLSJTpyA/A31Do9R2BjjsDwX1YX/ocX3X0PGd/AByUhIozUtl03lzKPWlHA/suRmzNCQiImGjIJ8UHBunoWuIw52DHPYPcqQzwJHJx12DI8e/Li7GUJSTTKkvlQ1L8yjNTaU0L5VSXwqZyQkunoGIzFQzKsiPDYUc6RrkiH+Quq5BjnSGPpp7X7/YCJCbmsgCXwrvWJbPAl8KC3JTWeBLoTA7WYtnRCSqTLsgHx2foLnnKHVdg9R1DlLXNXT8cVPPUcYmXk/rtMQ45k/ODrlhTQGlvhTm56ZQkpuiPUVExDM8GeTDo+M0dg9RPxnSDd1D1HUNUd8VCuvxE8I6JSGW4pwUls/N4JqVcyjJCQX1/NwUclISNP9aRDzPU0H+f5+p5lfbG96wrSpAWlIcJTkprJiXwbUnhHVxTrIWy4jItOepIM9PT+RtpbkU5yRTnJNMUXYyJTkpZCbHK6xFZMbyVJDfuq6IW9fp7kIiIifS9AsREY9TkIuIeJyCXETE4xTkIiIepyAXEfE4BbmIiMcpyEVEPE5BLiLiccaeuOVfpBo1xg/Un+MfzwU6HSwn2uj8vE3n511eOLdia63v5BddCfKpMMZUWGvL3a4jXHR+3qbz8y4vn5uGVkREPE5BLiLicV4M8i1uFxBmOj9v0/l5l2fPzXNj5CIi8kZe7JGLiMgJFOQiIh7nmSA3xtxsjKk0xkwYY8pPeu8uY0yNMeagMeYqt2p0ijHmfGPMVmPMbmNMhTFmvds1Oc0Y80ljzIHJ7+k33K4nHIwxnzPGWGNMrtu1OMUY883J79teY8zDxphMt2tygjFm02R+1Bhjvuh2PWfLM0EO7ANuAF448UVjzDLgNmA5sAn4T2NMbOTLc9Q3gH+21p4P/NPk82nDGHMFcB2wylq7HPiWyyU5zhhTCPwV0OB2LQ57CjjPWrsSOATc5XI9UzaZF98HrgaWAe+ZzBXP8EyQW2urrLUHT/HWdcAD1tqgtfYIUAN4vQdrgfTJxxlAi4u1hMMdwL9ba4MA1toOl+sJh+8A/0DoezltWGv/aK0dm3y6FShwsx6HrAdqrLWHrbUjwAOEcsUzPBPkb2Ee0HjC86bJ17zsTuCbxphGQr1Vz/d6TrIIeLsxZpsx5k/GmHVuF+QkY8x1QLO1do/btYTZ7cAf3C7CAZ7PkKi6+bIx5mlg9ineutta+0ik6wmntzpXYCPwGWvtQ8aYW4CfAldGsr6pOs35xQHZwIXAOuDXxpgF1kNzYU9zfv9IaFjFk87k/6Ex5m5gDLg/krXJqUVVkFtrzyWsmoHCE54XTL4W1d7qXI0x9wGfnnz6G+AnESnKQac5vzuA304G93ZjzAShDYv8kapvqt7s/IwxK4D5wB5jDIT+Pe4yxqy31rZFsMRzdrr/h8aYDwDXAhu99MP3LXgyQ040HYZWHgVuM8YkGmPmA2XAdpdrmqoW4LLJxxuAahdrCYffAVcAGGMWAQlE/65zZ8Ra+5q1Ns9aW2KtLSH0a/oar4T46RhjNhEa+3+3tXbI7XocsgMoM8bMN8YkEJo88ajLNZ2VqOqRvxVjzPXA9wAf8JgxZre19iprbaUx5tfAfkK/6n3cWjvuZq0O+AjwXWNMHDAMbHa5HqfdC9xrjNkHjADvnyY9u5ngHiAReGryN46t1tqPulvS1Fhrx4wxnwCeBGKBe621lS6XdVa0RF9ExOOmw9CKiMiMpiAXEfE4BbmIiMcpyEVEPE5BLiLicQpyERGPU5CLiHjc/wfpr/pzjIZnAgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "2VjXUNiWmEsH" | |
}, | |
"source": [ | |
"Code here to run in loop:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "lJPO-M0olAXA", | |
"outputId": "7a936c6e-baf6-4b72-e938-83d0565e9ff2" | |
}, | |
"source": [ | |
"while True:\n", | |
" # Pass 1 to break\n", | |
" x= int(input())\n", | |
" y = compute_nat_log(x)\n", | |
" if np.isnan(y):\n", | |
" print(\"Illigal input value entered\")\n", | |
" break\n", | |
" print(x,y)\n" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"0\n", | |
"0 0.0\n", | |
"-9\n", | |
"-9 -2.3025850929940455\n", | |
"2\n", | |
"Illigal input value entered\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in log\n", | |
" \n" | |
], | |
"name": "stderr" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "7g_PQ5DwnKh7" | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment