Last active
April 28, 2022 06:01
-
-
Save machinelearning147/f18ee060618a713dc68715dbda41be92 to your computer and use it in GitHub Desktop.
agreagate dictionaries with common keys.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "agreagate dictionaries with common keys.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyNHigvnjZNP4OvY6iIDJHnF", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/machinelearning147/f18ee060618a713dc68715dbda41be92/agreagate-dictionaries-with-common-keys.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Method 1 " | |
], | |
"metadata": { | |
"id": "vQfXUq6CLgfq" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "thPN_LMDCyfh" | |
}, | |
"outputs": [], | |
"source": [ | |
"from collections import Counter\n", | |
"dictA = {'Mon': 23, 'Tue': 11, 'Sun': 6}\n", | |
"dictB = {'Wed': 10, 'Mon': 12, 'Sun': 4}\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"res = Counter(dictA) + Counter(dictB)\n", | |
"print(res)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "VxVZCwIhC1D2", | |
"outputId": "b036bc2a-c6cf-40fd-f264-7da72c9e567a" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Counter({'Mon': 35, 'Tue': 11, 'Sun': 10, 'Wed': 10})\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# Method 2" | |
], | |
"metadata": { | |
"id": "iipMJJncLlZH" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd" | |
], | |
"metadata": { | |
"id": "7nQeO-YYDLym" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df = pd.DataFrame([dictA, dictB])\n", | |
"df" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 112 | |
}, | |
"id": "eEbp9l3WDmLG", | |
"outputId": "2005e4e0-0490-483f-da36-6211091b3b51" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Mon Tue Sun Wed\n", | |
"0 23 11.0 6 NaN\n", | |
"1 12 NaN 4 10.0" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-ef16f980-4156-4c22-9cc3-0a4543647cde\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Mon</th>\n", | |
" <th>Tue</th>\n", | |
" <th>Sun</th>\n", | |
" <th>Wed</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>23</td>\n", | |
" <td>11.0</td>\n", | |
" <td>6</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>12</td>\n", | |
" <td>NaN</td>\n", | |
" <td>4</td>\n", | |
" <td>10.0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ef16f980-4156-4c22-9cc3-0a4543647cde')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-ef16f980-4156-4c22-9cc3-0a4543647cde button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-ef16f980-4156-4c22-9cc3-0a4543647cde');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 5 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.sum()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "LYxfOssPDrCz", | |
"outputId": "bf293614-a856-49de-b395-ee1ca082d9e1" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"Mon 35.0\n", | |
"Tue 11.0\n", | |
"Sun 10.0\n", | |
"Wed 10.0\n", | |
"dtype: float64" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"metadata": { | |
"id": "p4HS-oBqEKNV" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment