Skip to content

Instantly share code, notes, and snippets.

@maedoc
Created May 17, 2014 08:48
Show Gist options
  • Save maedoc/d1d37a3845edcf829aa5 to your computer and use it in GitHub Desktop.
Save maedoc/d1d37a3845edcf829aa5 to your computer and use it in GitHub Desktop.
Quick examination of the Reduced Wong Wang model
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:6d3b9ad4ddf41f45bb3b7a034dd3c62ac507531666ddf35c6714f6946dab6e02"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import sys\n",
"# replace with path to your copy\n",
"sys.path.append('/home/duke/dev/tvb/library')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 81
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from tvb.simulator.models import ReducedWongWang"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create model with default parameters"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"rww = ReducedWongWang()\n",
"rww.state_variable_range"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 83,
"text": [
"{'S': array([ 0., 1.])}"
]
}
],
"prompt_number": 83
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compute derivative with range of state variable values spanning reasonable range [0, 1] & null coupling"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# pretend \"network\" of 1000 nodes, varying state\n",
"state = r_[0:1:1000j].reshape((1, -1))\n",
"\n",
"# same shape array, but all zero\n",
"coupling = state*0.0\n",
"\n",
"# compute derivative\n",
"deriv = rww.dfun(state, coupling)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 84
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Visualize 1D phase flow with stable & unstable fixed points"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# compute fixed points in 1D\n",
"offset = diff(state[0,:2])/2\n",
"stable = state[0, c_[deriv[0,:-1]>0, deriv[0,1:]<0].all(axis=1)] + offset\n",
"unstable = state[0, c_[deriv[0,:-1]<0, deriv[0,1:]>0].all(axis=1)] + offset\n",
"\n",
"plot(state[0], deriv[0], 'k')\n",
"plot(stable, zeros(stable.shape), 'ko')\n",
"plot(unstable, zeros(unstable.shape), 'kx')\n",
"xlabel('s(t)')\n",
"ylabel('d/dt s(t)')\n",
"grid(True);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEPCAYAAAB7rQKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FGW2x/Fv2AQXZFBZAjhhGUBEdlkcgRAIiQuLBJGd\nyKJBkIg4AiIXryOKbDKCOAo67AREVJBgyAAqIIggu6KCNwyBBB0YRkV2cv94K3TbZulO0l29/D7P\n00+6OlVdx2PTJ3Xet6pARERERERERERERERERERERERERERERIBY4CDwHTA6l3VetX6/B2jsxrZT\ngK+t9VcCNxZtyCIiEiiKA4eACKAksBu4zWWde4Fk63kLYJsb20YDxaznk6yHiIjYpFj+q3hNc0yx\nSAMuAklAF5d1OgPzreefA+WASvlsmwpccdqmqjeCFxER99hZaKoAR52W063X3Fkn3I1tAQbiOCIS\nEREb2FlostxcL6yA7z8OuAAsKeD2IiJSBErYuO9jQDWn5WqYI5O81qlqrVMyn23jMeM77XPbeXh4\neNbx48c9DlpEJIQdBmrZHYQnSmCCjgBKkf9kgJY4JgPktW0scAC4OZ/9Z4kxYcIEu0PwG8qFoTw4\nKBcOuN+J+t2XvV0uAcOBFMwssrcw05IftX7/BqbI3IsZ+D8DPJzPtgAzMcUn1VreCjzmxf+OgJeW\nlmZ3CH5DuTCUBwflovDsLDQAa62Hszdclod7sC3AnwoblIiIFB07JwOIn4iPj7c7BL+hXBjKg4Ny\nUXgFndEVDKyWo4iIuCMsLAwKUDd0RCN8/PHHdofgN5QLQ3lwUC4KT4VGRES8Sq0zERFxi1pnIiLi\nl1RoRD1oJ8qFoTw4KBeFp0IjIiJepTEaERFxi8ZoRETEL6nQiHrQTpQLQ3lwUC4KT4VGRES8SmM0\nIiLiFo3RiIiIX1KhEfWgnSgXhvLgoFwUngqNiIh4lcZoRETELRqjERERv6RCI+pBO1EuDOXBQbko\nvJAuNOfPn7c7BBGRoBfSYzQVKlTg4Ycf5pFHHqFGjRp2xyMi4tc0RlMAmzZt4tKlS7Ro0YKYmBje\ne+89Ll26ZHdYIiJBJaQLTe3atZk6dSpHjx6lf//+TJ8+nT/+8Y9MmDCBo0eP2h2ez6gH7aBcGMqD\ng3JReCFdaLKVLl2aPn36sGnTJlJSUjh16hSNGjWiS5cuJCcnc/nyZbtDFBEJWCE9RpPXeTRnzpwh\nKSmJv//97/z444888sgjDBw4kEqVKvkwRBER/1HQMRoVGjfs2LGDN954gxUrVtChQwcGDRpEdHQ0\nxYsX93KIIiL+Q5MBvKhZs2bMmTOHtLQ02rdvz/jx46levTrPPfccR44csTu8QlMP2kG5MJQHB+Wi\n8FRoPHDjjTeSkJDAF198wapVqzh58iRNmjQhJiaGd955R+fliIjkwO7WWSwwAygOzAVezmGdV4F7\ngF+BeGBXPtuWB5YBfwTSgB7A6Rzet0iudXb27Fnee+895s6dy/79++nbty+DBg3i9ttvL/R7i4j4\nk0BsnRUHZmEKRj2gF3Cbyzr3ArWAPwGPAK+7se0YIBWoDay3lr2mTJky9O7dmw0bNrB161bKlClD\ndHQ0d911F2+//Ta//PKLN3cvIuL37Cw0zYFDmKOOi0AS0MVlnc7AfOv550A5oFI+2zpvMx/o6o3g\nc1KzZk0mTpzIv/71L8aOHcuqVauoVq0aQ4YMYdu2bWRlZbFmzRpiYmKIjIwkJiaGNWvW+Cq8XKkH\n7aBcGMqDg3JReCVs3HcVwPmsyHSghRvrVAHC89i2InDCen7CWvapEiVK0KlTJzp16kRGRgbz58+n\nf//+/Prrr5w9e5ZTp05dXffw4cMA3Hfffb4OU0TEJ+w8onF3gMSdfmBYLu+X5cF+vKJy5cqMGTOG\nb775hipVqvymyIApNDNnzrQpOiMyMtLW/fsT5cJQHhyUi8Kz84jmGFDNabka5sgkr3WqWuuUzOH1\nY9bzE5j2WiZQGfghtwDi4+OJiIgAoFy5cjRq1Ojqhyr7cLmolj/55JNcZ6Xt2bOHmTNnUr9+fdq1\na+eV/WtZy1rWsqfL2c/T0tIIVCWAw0AEUArYTc6TAZKt5y2BbW5sOxkYbT0fA0zKZf9ZvtaxY8fs\nI6zfPGrXrp112223ZdWqVSvr+eefz0pLS/NpXBs3bvTp/vyZcmEoDw7KhQMF7BDZ2Tq7BAwHUoCv\nMFOSvwYetR5gisz3mIH/N4DH8tkWTGGJBr4Fosi90PjciBEjqFmz5m9eq1mzJtOnT+fAgQMsXryY\nzMxMmjZtSlRUFAsWLODMmTM2RSsiUjTsPo/GTlaB9q01a9Ywc+ZMzp07R+nSpXn88cd/NxHg/Pnz\nrF69mnnz5rFlyxa6dOlC3759adeunS57IyK20bXOPGdLofFUZmYmS5cuZfHixRw/fpxevXrRp08f\nGjdunP0/XUTEJwLxhE1xQ6VKlRg5ciQ7duxgw4YNXHvttcTFxXH77bfz4osvFskgnfPAX6hTLgzl\nwUG5KDwVmgBSt25d/vrXv/L9998zd+5c0tPTadasGa1bt+bvf/87J0+etDtEEZHfCeXeS0C0zvJz\n4cIFUlJSWLRoER999BGRkZH07duX+++/nzJlytgdnogEEY3ReC4oCo2zn376iZUrV7J48WJ27NjB\nAw88QJ8+fYiMjNQkAhEpNI3RCGXLliU+Pp7U1FQOHDhA/fr1+ctf/kLVqlVJTExk69at5FRc1YN2\nUC4M5cFBuSg8FZogFR4ezpNPPsmXX37Jxx9/zE033cTAgQOpXr06o0ePZteuXTkWHRGRoqbWWQjJ\nyspi3759LFu2jKSkJEqUKEHPnj156KGHqFevnt3hiYif0xiN50Ku0DjLyspix44dJCUlsWzZMm66\n6aarRadGjRp2hycifkhjNOKRsLAw7rzzTqZNm8aCBQuYNWsW6enptGrVihYtWvDKK69w7Nix/N8o\nyKgfbygPDspF4anQCMWKFaN169a89tprHDt2jBdeeIH9+/fToEED2rZty+zZs/nhh1wvgi0ikie1\nziRX58+fZ926dSQlJbFmzRqaNGlCjx496NatGxUqVLA7PBHxMY3ReE6FxgNnz54lJSWF5cuXk5yc\nTJMmTXjwwQfp1q0bFSv6/CamImIDjdFIgbnTgy5Tpgxdu3ZlyZIlZGRkMGLECDZv3kzdunVp164d\ns2fPJjMz0/vBepn68Yby4KBcFJ4KjXgsu+gsXryYjIwMnnjiCbZs2RJ0RUdEioZaZ1Jkzp07R0pK\nCu+88w4ffvghjRo14sEHHyQuLo5KlSrZHZ6IFJLGaDynQuNFzkVnzZo1NGzYUEVHJMBpjEYKzBs9\n6NKlS9OlSxcWLVpERkYGTz75JNu2beO2226jbdu2zJo1i4yMjCLfb2GpH28oDw7KReGp0IjXlS5d\nms6dO7Nw4UIyMjIYNWoUn3/+OfXq1aNNmzZ+W3REpGiodSa2yT5PZ/ny5Xz44Yc0aNDganutcuXK\ndocnIi40RuM5FRo/oqIj4v80RiMF5g896GuuuYZOnTrl2F5r27Ytr732mk+mTPtDLvyB8uCgXBSe\nCo34nZzGdLInEkRGRvqs6IhI0VDrTALGuXPnrrbXsqdMZ197TVOmRbxPYzSeU6EJYK4nhzZu3Pjq\ntddUdES8Q2M0UmCB2IN2Pk8nMzPzd5fBef311zlx4oTH7xuIufAG5cFBuSg8FRoJeNlFJ/vaa4mJ\niWzevJk6deoQFRVV4KIjIkVDrTMJWtm3Nsi+DI5ubSBSOBqj8ZwKTQjJ6X46vXr1Ii4ujvLly9sd\nnkhACMQxmvJAKvAtsA4ol8t6scBB4DtgtBvbRwM7gL3Wz3ZFHXiwCYUetOv9dIYPH05qairVq1en\nS5cuJCUlcebMmZDIhTuUBwflovDsLDRjMIWiNrDeWnZVHJiFKTb1gF7Abfls/yNwP9AAGAAs9E74\nEqjKlClDt27dWL58OUePHiUuLo558+ZRpUoVJk6cyJo1a7h48aLdYYoEDTtbZweBtsAJoBLwMVDX\nZZ1WwARMoQFHMZnk5vZhwL+t37t+c6h1Jr/xww8/8M4777BkyRK+/fZbunfvTu/evfnzn/9MsWKa\nNyMSiK2zipgigfUzp9HZKsBRp+V06zV3t48DdvL7IiPyOxUqVGDYsGFs2bKF7du3c+uttzJs2DAi\nIiJ4+umn2b17N/rjRMRzJbz8/qmYowlX41yWs6yHK9fXwvJYz/X12zFHPtG5BRcfH09ERAQA5cqV\no1GjRkRGRgKOvmwoLDv3oP0hHjuXs187cuQIrVq1YuzYsezbt49JkyYRGxtL+fLl6dOnD7Vq1aJi\nxYq2x+ut5RkzZoTsvwfX5VD+95H9PC0tjUB1EEcRqmwtu2oJfOS0PBbHhIC8tq8KfINpveUmS4yN\nGzfaHYLfyCsXV65cydqyZUtWQkJCVvny5bOioqKy5s2bl/Xzzz/7LkAf0WfCQblwIOc/9PNl5xjN\nZOAk8DJm7KUcv58QUAJTMNoDx4HtmAkBX+exfTngE8zYzvt57N/Km4jnzp07x4cffsj8+fPZtGkT\nXbp0YcCAAURGRmo8R4JWIJ5HUx5YDtwKpAE9gNNAODAHuM9a7x5gBmYG2lvAS/ls/yym4HzntK9o\nzKQAZyo0UiROnDjBkiVLmD9/PqdOnaJfv34MGDCA2rVr2x2aSJEKxEJjNxUay8cff3y1NxvqCpuL\nPXv2sGDBAhYvXkz16tUZMGAAPXv2pFy53E4T80/6TDgoFw6BOOtMJOg0bNiQadOmkZ6ezrPPPsuG\nDRuIiIhgwIABbNq0SbPWJCTpiEbEy3788UcWLlzInDlzyMrKYvDgwfTv358KFSrYHZqIR9Q685wK\njfhUVlYWn332GXPnzuW9994jOjqawYMHEx0drQkEEhDUOpMCc54zH+q8mYuwsDD+/Oc/849//IMj\nR47Qvn17nnnmGWrUqMHzzz9Penq61/btKX0mHJSLwlOhEbHBjTfeSEJCAjt37mTlypVkZmbSoEED\n4uLiWL9+vcZyJKiodSbiJ37++WcWLVrEa6+9xuXLl3nssccYMGAAZcuWtTs0EUBjNAWhQiN+KSsr\ni08//ZTXXnuN1NRUevbsybBhw6hfv77doUmI0xiNFJh60A7+kIuwsDDatm3L8uXLOXDgAJUqVSIm\nJubqa764hYE/5MFfKBeFp0Ij4sfCw8OZMGECaWlpDB8+nFmzZlGzZk2mTJnC6dOn7Q5PxC1qnYkE\nmJ07d/LKK6+QnJxMv379GDFiBDVr1rQ7LAkBap2JhIimTZuyaNEi9u7dy7XXXkuLFi3o1q0bmzdv\n1mw18UsqNKIetJNAykXVqlV56aWXSEtLo3379jz88MM0b96cpKQkLl26VKj3DqQ8eJtyUXgqNCIB\n7vrrr2fYsGEcPHiQ8ePHM2vWLOrUqcMbb7zBuXPn7A5PxO1e23VANcxNb9KBM16LyHc0RiNBa/Pm\nzbz00kvs2rWLkSNHkpCQwA033GB3WBLgvHEezQ3AEKAncDNwwlq/IuaGY4sx9435xdOd+gkVGgl6\ne/bsYdKkSaSmpjJ06FBGjBjBLbfcYndYEqC8MRngfeBnoDNQA3Nb5JZAdeB+zFHNB57uUPyPetAO\nwZaLhg0bsnTpUrZt28YPP/xAnTp1SExM5NixY3luF2x5KAzlovDyKjTtMUcsmTn8LhN401pHRPxc\nrVq1eOONN9i/fz8lSpTgjjvuYMSIERw/ftzu0CQEuHMItJ7fF5ScXgs0ap1JyMrMzGTy5MnMmzeP\nfv36MWbMGCpXrmx3WOLnvNE6KwPcBNwClHd6RABVPI5QRPxGpUqVmD59OgcOHCAsLIzbb7+dkSNH\nkpmZUwNDpHDyKjSPAjuAOsBOp8cqYJb3QxNfUQ/aIdRyUblyZWbMmMH+/fu5cuUK9erVY9SoUbz/\n/vt2h+Y3Qu0z4Q15FZoZmIH/v1g/sx8NUKERCSrh4eH87W9/Y9++fZw7d47+/fvz/PPP88svgTqp\nVPxJXr22tsAn+WzfDthYdOH4lMZoRHJx+PBhxo8fz8aNG3n22WcZMmQIpUqVsjsssZk3zqOZCrQB\n/olpoWVgjoAqAc2ADpgi87SnO/UTKjQi+fjyyy8ZO3Yshw4dYuLEifTo0YNixXRBkVDljckAT2Fm\nln0FRAPjgXGYArMfczQTqEVGnKgH7aBcGNl5aNKkCSkpKcyZM4dp06bRrFkzUlNT7Q3Ox/SZKLwS\n+fz+Z2CR9RCREBUVFcX27dt59913eeyxx6hduzbTpk2jbt26docmAcCdQ6BE4B+YojMXaAyMBVK8\nGJcvqHUmUgAXLlxg1qxZvPTSS/Tu3ZsJEyZQvnx5u8MSH/Dm/WgGAT8BHTHn0fQHJnm6IxEJDqVK\nleLJJ5/kq6++4uLFi9StW5eZM2f65BbTEpjcKTTZ1es+YCFmfEaCiHrQDsqF4U4ebrnlFmbPns2G\nDRtYvXo1DRo0YO3atd4Pzsf0mSg8dwrNTmAdcC/wEVAWuFLI/ZYHUoFvrfcul8t6scBB4DtgtAfb\n34q5qvSoQsYpIvmoX78+KSkpTJ06lSeeeIJOnTrx/fff2x2W+BF3em3FgUbAYeA05rI0VYC9hdjv\nZODf1s/RwB+AMTns9xvMLLdjwBdAL+BrN7ZfAVwGtgPTcolBYzQiRezChQtMnz6dqVOnMmLECJ5+\n+mlKly5td1hSRLw5RnMZc1Rz2lo+SeGKDJhbD8y3ns8HuuawTnPgEJAGXASSgC5ubN8V+B4zLVtE\nfKhUqVKMGTOGL7/8kt27d3PHHXfw0Ucf2R2W2MyuM68qYm6khvWzYg7rVAGOOi2n47iYZ27bX485\nt+e5Iow16KkH7aBcGIXNw6233srKlSt59dVXGT58OHFxcRw9ejT/Df2QPhOFl995NIWRirmKgKtx\nLstZ1sOV62theayX/fpzwCvAr7hxeBcfH09ERAQA5cqVo1GjRkRGRgKOD5eWQ2s5m7/EY9fy7t27\ni+T97rnnHvbv309CQgL169fn2WefZeTIkWzevNmv/nu1nPNy9vO0tDQKw51e20KgnxuveeIgEIm5\ngVplzKVsXM/8aokpHLHW8ljMJISX89j+U6CatX45a/3xwOwcYtAYjYgPHT58mISEBE6ePMlbb71F\n48aN7Q5JPOTNMZr6LsslgKae7sjFKmCA9XwA5rbRrnYAf8Lc/6YU8JC1XV7bt8FxlekZwERyLjIi\n4mM1a9Zk3bp1JCYmEhsby+jRozl79qzdYYkP5FVonsFcDeAO62f24wccX/gFNQlz/bRvgSgcJ4CG\nA2us55eA4ZgrEHwFLMPMOMtreykA17ZRKFMuDG/lISwsjAEDBrB3716OHDlCgwYN2LjRvy8Ar89E\n4eU1RvOi9ZjE76ceF9YpzLRlV8cxJ4ZmW2s93N3e2f8WLDQR8baKFSuSlJTE6tWrGTBgADExMUye\nPJk//OEPdocmXpBXr62J0zo5DWZ8WfTh+JTGaET8wE8//cSYMWNYvXo1c+bMITY2Nv+NxBbeuB/N\nx5gCUwYzJpN97kwDzPhJK0935mdUaET8yIYNGxg4cCAxMTFMnTqVG264we6QxIU3JgNEYu45cxxz\ndNPUejS2XpMgoR60g3Jh2JGHqKgo9u7dy+XLl2nQoAGffJLfDX59Q5+JwnNn1lldYJ/T8n7gNu+E\nIyKhrGzZssydO5eZM2fSu3dvRo4cqZlpQcCdQ6AkzAUqF1nr98acgd/Li3H5glpnIn7s5MmTDB8+\nnF27drFgwQKaN29ud0ghzxtjNNnKAEOB1tbyp8DrwDlPd+ZnVGhEAsDy5ct5/PHHSUxMZPTo0RQv\nXtzukEKWN8Zo3gQewEyBnm49fwBziZdALzLiRD1oB+XC8Kc89OjRgx07drBu3To6dOhAenq6T/fv\nT7kIVHkVmrcxtwdIBjZgLsff0BdBiYg4q1atGuvXryc6OpqmTZuycuVKu0MSD7h7CHQz5lbOsZjp\nzbswJ1Iu91JcvqDWmUgA2rZtG7179yY6OppXXnmFa6+91u6QQoY3r3UG5iZjS4D+mOnNr2GuQyYi\n4lMtW7Zk9+7d/PrrrzRt2pS9ewt7eyzxtrwKzSinx5NOP0diLl450evRiU+oB+2gXBj+noeyZcuy\ncOFCnnnmGdq3b89bb72FtzoU/p6LQJBXobkBM425KWbWWThQFUjAcXkaERHb9OvXj08//ZTp06fz\n8MMPc+bMGbtDkhy402vbBNyLuXIzmAKUjGO6c6DSGI1IkDhz5gwJCQns2rWLFStWULeu6+2tpCh4\nc4ymAnDRafmi9ZqIiF+47rrrWLBgAYmJibRu3ZqlS5faHZI4cafQLAC2Y+52+b/A58B8L8YkPqYe\ntINyYQRiHsLCwhgyZAipqan8z//8D4899hjnz58v9PsGYi78jTuFZiLwMHAacx+YeMx9akRE/E6j\nRo3YsWMHGRkZREZGcvy4rgFsN497bUFEYzQiQezKlSu8+OKLvP7666xYsYJWrQL9zib28+a1zoKV\nCo1ICPjwww8ZOHAgEydOZMiQIXaHE9C8fcKmBDH1oB2UCyOY8nD//fezadMmpk+fTkJCAhcuXPBo\n+2DKhV1UaEQk6NWpU4fPP/+czMxM2rVrR0ZGht0hhRS1zkQkZFy5coW//vWvzJ07lw8++IAmTXTu\nuSc0RuM5FRqRELVixQqGDh3KnDlz6Nq1q93hBAyN0UiBqQftoFwYwZ6H7t27k5yczLBhw5g8eXKe\n10kL9lz4ggqNiISkO++8k23btrF06VIGDRrk8SQBcZ9aZyIS0n755Rf69OnDf//7X959911uuukm\nu0PyW2qdiYgUwPXXX8/KlSu58847admyJd9++63dIQUdFRpRD9qJcmGEWh6KFy/OlClTePrpp2nT\npg1bt269+rtQy4U3qNCIiFiGDBnC22+/TefOnVm1apXd4QQNu8ZoygPLgD8CaUAPzEU7XcUCM4Di\nwFzgZTe2bwC8gblvzhXgTiCnS7hqjEZEcvTFF1/QuXNnnnvuOR599FG7w/EbgXYezWTg39bP0cAf\ngDEu6xQHvgE6AMeAL4BewNd5bF8C2An0BfZZr/8XU3BcqdCISK4OHTpEbGwsvXr14vnnn8/+kg1p\ngTYZoDOOe9rMB3I6Y6o5cAhzxHIRSAK65LN9R2AvpsgA/Ieci4w4UQ/aQbkwlAeoVasWn332GcuX\nL2fQoEFcvHgx/40kR3YVmorACev5CWvZVRXgqNNyuvVaXtvXBrKAjzBHNn8pupBFJNRUqFCBGTNm\ncOLECTp37swvv/xid0gBqYQX3zsVqJTD6+NclrOshyvX18LyWC/79RLA3UAz4CywHlNwNuQUYHx8\nPBEREQCUK1eORo0aERkZCTj+oguF5cjISL+KR8v2L2e/5i/x2Ll8zz33UKpUKaZOnUp0dDTJycns\n2bPHb+Lz5nL287S0NArDrqbjQSASyAQqAxuBui7rtMTcPjrWWh6LaYO9nMf2DwH3YO4CCvAscA6Y\nmkMMGqMREbdduXKFp556ivXr15OSkkKlSjn9HR3cAm2MZhUwwHo+AHg/h3V2AH8CIoBSmCKSPd8w\nt+3XAXcAZTBHN22BA0UbevBx/usl1CkXhvLgkJ2LYsWKMW3aNLp3707r1q05cuSIvYEFELsKzSQg\nGvgWiLKWAcKBNdbzS8BwIAX4CjOd+et8tv8PMB0zQ20Xpm221ov/HSISQsLCwhg/fjyPP/44rVu3\n5uuvv85/I9G1zkRECmLBggWMHj2aNWvWhMx9bQraOvPmZAARkaDVv39/ypYtS2xsLCtWrKBNmzZ2\nh+S3dAkaUT/eiXJhKA8OeeWia9euLFmyhLi4OP75z3/6LqgAo0IjIlIIHTp0YOXKlfTu3ZuUlBS7\nw/FLGqMRESkCn332GV27dmXevHnce++9dofjFYE2vVlEJKjcddddrF69mvj4eFavXm13OH5FhUbU\nj3eiXBjKg4MnuWjRogXJyckMHjyY9957z3tBBRjNOhMRKULNmjVj7dq13HvvvVy+fJnu3bvbHZLt\nNEYjIuIFe/bsITY2lr/97W/06NHD7nCKhM6jERHxIw0bNmTdunVER0dTsmRJHnjgAbtDso3GaET9\neCfKhaE8OBQmF3fccQfJyckkJCSQnJxcdEEFGBUaEREvatKkCatWrSI+Pj5kT+rUGI2IiA9s3ryZ\nbt26BfTlanQejYiIH7v77rtJSkqie/fubN261e5wfEqFRtSPd6JcGMqDQ1HmIioqigULFtC1a1d2\n7txZZO/r71RoRER8KDY2ljfffJP77ruPffv22R2OT2iMRkTEBsuWLWPUqFF8+umn1KhRw+5w3KLz\naEREAshDDz3EqVOn6NixI5s3b6ZSpUp2h+Q1ap2J+vFOlAtDeXDwZi6GDh1KfHw8MTExnD592mv7\nsZsKjYiIjcaNG0dUVBT3338/v/76q93heIXGaEREbHblyhXi4+M5efIk77//PiVLlrQ7pBwVdIxG\nhUZExA9cvHiRuLg4brjhBhYuXEixYv7XcNIJm1Jg6sc7KBeG8uDgq1yULFmSZcuWkZ6eTmJiIsH0\nh7AKjYiInyhTpgyrVq1i06ZNvPzyy3aHU2TUOhMR8TPHjx+nVatWvPjii/Tp08fucK7SeTQiIkEi\nPDyc5ORkoqKiqFy5MlFRUXaHVChqnYn68U6UC0N5cLArF7fffjvLli2jZ8+eAX+pGhUaERE/FRkZ\nyauvvsp9991Henq63eEUmMZoRET83JQpU1iwYAGbN2/mxhtvtC2OQJveXB5IBb4F1gHlclkvFjgI\nfAeMdmP70sBSYC/wFTCmqAMXEfG1p556isjISLp168aFCxfsDsdjdhWaMZhCURtYT84FoTgwC1Ns\n6gG9gNvy2b6n9bMB0BR4FLi16MMPLurHOygXhvLg4A+5CAsLY8aMGZQtW5ZBgwYF3Dk2dhWazsB8\n6/l8oGsO6zQHDgFpwEUgCeiSz/YZwHWYInUdcAH4qWhDFxHxveLFi7N48WK++eYbJk6caHc4HrFr\njOY/wB+6Ix96AAAKF0lEQVScYjjltJytOxADDLGW+wItgMfz2X4R0BG4FngCmJtLDBqjEZGAk5GR\nQYsWLZg2bRoPPvigT/ftj+fRpAI53WBhnMtylvVw5fpaWB7rZb/eFygDVMaM42zCtNb+z72QRUT8\nW+XKlVm1ahXR0dFERERw55132h1SvrxZaKLz+N0JTBHKxBSFH3JY5xhQzWm5qvVaXtvfBbwHXAZ+\nBLYAzcil0MTHxxMREQFAuXLlaNSoEZGRkYCjLxsKy849aH+Ix87l7Nf8JR67lmfMmBGy/x5cl/3x\n38fp06dJTEyka9eubNu2jcOHD3tlf9nP09LSCESTccwiGwNMymGdEsBhIAIoBezGMRkgt+1HAG9b\nz68DDgD1c4khS4yNGzfaHYLfUC4M5cHBn3MxZcqUrIYNG2b9/PPPPtkfOXeV8mXXGE15YDlmRlga\n0AM4DYQDc4D7rPXuAWZgBvffAl7KZ/trrPUaYiY6vA1MyyUGK28iIoEpKyuLIUOG8OOPP7Jy5UqK\nFy/u1f3pfjSeU6ERkYB34cIFYmJiaNasGVOmTPHqvgLthE3xI8792FCnXBjKg4O/56JUqVK8++67\nvP/++7z99tv5b2ADXb1ZRCTAlS9fntWrV9OmTRvq1atHy5Yt7Q7pN9Q6ExEJEqtXr2bo0KFs376d\n8PDwIn9/tc5EREJcp06dSEhIIC4ujvPnz9sdzlUqNOL3PWhfUi4M5cEh0HIxbtw4qlSpwmOPPeY3\n10RToRERCSJhYWHMmzeP7du3M3v2bLvDATRGY3cMIiJecfjwYe666y6WL19O27Zti+Q9NUYjIiJX\n1axZk0WLFtGzZ0/+9a9/2RqLCo0EXA/am5QLQ3lwCORcREdH89RTT9G1a1fOnj1rWxwqNCIiQezJ\nJ5+kbt26tk4O0BiNiEiQO3PmDC1atOCJJ55g8ODBBX4fXevMcyo0IhIyvvnmG1q3bs3atWtp2rRp\ngd5DkwGkwAK5B13UlAtDeXAIllzUqVOH2bNn0717d06dOuXTfavQiIiEiO7du9OtWzf69u3LlStX\nfLZftc5ERELIxYsXiYqKomPHjowfP96jbTVG4zkVGhEJScePH6dZs2bMmzePjh07ur2dxmikwIKl\nB10UlAtDeXAIxlyEh4ezdOlS+vfv75OTOVVoRERCUNu2bRk1ahQPPvggFy5c8Oq+1DoTEQlRWVlZ\ndOnShdq1azN16tR819cYjedUaEQk5J08eZLGjRsze/Zs7r///jzX1RiNFFgw9qALSrkwlAeHYM/F\nTTfdxJIlSxg8eDDp6ele2YcKjYhIiLv77rtJTEykV69eXLp0qcjfX60zERHhypUrxMbG0rx5c154\n4YUc19EYjedUaEREnJw4cYImTZowf/58OnTo8Lvfa4xGCizYe9CeUC4M5cEhlHJRsWJFFi5cSP/+\n/cnMzCyy91WhERGRq6Kiohg8eDB9+/bl8uXLRfKeap2JiMhvXLp0ifbt29OxY0fGjRt39XWN0XhO\nhUZEJBfp6ek0bdqUDz74gJYtWwKBN0ZTHkgFvgXWAeVyWS8WOAh8B4x2ev1B4ABwGWjiss1Ya/2D\ngPtXiwthodSDzo9yYSgPDqGai6pVq/L666/Tu3dvfvrpp0K9l12FZgym0NQG1lvLrooDszDFph7Q\nC7jN+t0+4AHgU5dt6gEPWT9jgdloHCpfu3fvtjsEv6FcGMqDQyjnolu3bkRHRzNs2LBCvY9dX8Kd\ngfnW8/lA1xzWaQ4cAtKAi0AS0MX63UHM0ZCrLsBSa/00a/vmRRRz0Dp9+rTdIfgN5cJQHhxCPRfT\np09nx44dLF68uMDvUaII4/FEReCE9fyEteyqCnDUaTkdaJHP+4YD21y2qVLAGEVEQt51113HkiVL\nPLpvjStvHtGkYlpcro/OLutlWQ9XRTVSrxH/fKSlpdkdgt9QLgzlwUG5gMaNG/PMM8/YHYbHDgKV\nrOeVrWVXLYGPnJbH8tsJAQAb+e1kgDH8drznI3I/CjqEo8jpoYceeuiR/+MQAWQyjqIxBpiUwzol\ngMNABFAK2I1jMkC2jUBTp+V61nqlgOrW9qE8hVtEJGSVB/7J76c3hwNrnNa7B/gGU0XHOr3+AGb8\n5iyQCax1+t0z1voHgRgvxC4iIiIiIuIbuZ3w6exV6/d7gMY+issO+eWiDyYHe4EtQAPfheZz7nwu\nAO4ELgHdfBGUTdzJRSSwC9gPfOyTqOyRXy5uxoz77sbkIt5nkfnW25jZwPvyWCdUvjfzVRzTQosA\nSpLzGM+9QLL1vAW/nRodTNzJRSvgRut5LKGdi+z1NgAfAnG+Cs7H3MlFOcxVOKpayzf7KjgfcycX\nzwEvWc9vBk5i3yki3tQaUzxyKzQef28G81nzeZ3wmc35xNHPMf+ocjqnJ9C5k4utwH+t55/j+GIJ\nNu7kAuBxYAXwo88i8z13ctEbeBdzThrAv30VnI+5k4sMoKz1vCym0BT97Sjttwn4Tx6/9/h7M5gL\nTU4nfLqevJnTOsH4BetOLpwNwvEXS7Bx93PRBXjdWs7yQVx2cCcXf8JM3tkI7AD6+SY0n3MnF3OA\n24HjmJZRom9C8zsef28G42FfNne/HFynPwfjl4on/03tgIHAn70Ui93cycUMzLT7LMznI1inyLuT\ni5KYc9XaA9dijny3YfrzwcSdXDyDaalFAjUxJ6U3BH72Xlh+y6PvzWAuNMeAak7L1XAc/ue2TlXr\ntWDjTi7ATACYgxmjyevQOZC5k4ummNYJmF78PZh2yiqvR+db7uTiKKZddtZ6fIr5cg22QuNOLu4C\nJlrPDwP/B9TBHOmFklD53nSLOyd8Og9qtSR4B8DdycWtmB51S59G5nvu5MLZPwjeWWfu5KIu5py3\n4pgjmn2YE6ODjTu5mA5MsJ5XxBSi8j6Kz9cicG8yQDB/b7otpxM+H7Ue2WZZv9/D7+9tE0zyy8Vc\nzODmLuux3dcB+pA7n4tswVxowL1cPIWZebYPGOHT6Hwrv1zcDKzGfFfsw0yUCEZLMeNQFzBHtAMJ\n3e9NERERERERERERERERERERERERERERERHxjmVADeu58w3ar8GckR/M1yYUEREvq4W5JUE21+tn\nTSS4TxyVIKa/kER87zrMLct3Y84w7wH0xHEttUlAGcwVGhZar60Cevk2TBERCVRxwJtOy2WBtfz2\nUh6uRzTXEMIXLhQREc/8CXPl30nA3dZrXwGVndbJ6dLzGUBp74YmUvSC+TYBIv7qO8ytcu8DXsDc\nMhryb2WHEZz3S5Igp0Ij4nuVMff7WYy5ffYg4AhQCUd77CLm32f2rYKvAS4D530aqUgRUKER8b07\ngCnAFcyl2IdiLlHfDNhprfMmsNda7oc5Atrq80hFRCRo1MDMRMvNi8ADPopFRESCVBLmXvSusk/Y\ndL1Pu4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuO//AUhlbsbuVFghAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x633bf90>"
]
}
],
"prompt_number": 85
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wherever the derivative is negative, $s(t)$ will decrease; where positive, $s(t)$ increases. Therefore, we can label points where $s(t)=0$ as fixed points, such the $s(t)$ doesn't change. \n",
"\n",
"If $d s(t)/dt$ is positive to the left, we know the point is attractive, stable, and vice versa if negative. \n",
"\n",
"To verify this, we can simulate (from two different initial conditions) for a long time to obtain the steady state solution:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"T, S = rww.stationary_trajectory(initial_conditions=array([[0.01, 0.99]]), n_skip=100, n_step=int(5e4), dt=0.1)\n",
"plot(T, S[:, 0, 0, :], 'k')\n",
"xlabel('time (s)')\n",
"ylabel('s(t)')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 80,
"text": [
"<matplotlib.text.Text at 0x634ee10>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGSNJREFUeJzt3X2QVPWd7/F3M8ODM4NA5GHAwVGIooy6iO4MagwtkYU1\nPlTIZRPdJOXerasxwXuTW1kfkrqR1I27uoV7yWpKV6Nmr1qGdZP1aVF3V22tJCLrBeRBBnlSeQog\nwvAwIjAz94/TwzTDTNtAnz59ut+vqi76nD6e/uYX7Q+/3++c3wFJkiRJkiRJkiRJkiRJkiRJOXoU\n2Aosy3LM3wOrgXeACwpRlCSpeFxG8OPfW1BcCcxPv28CFhSiKElScTmd3oPiQeBrGdvNwIiwC5Ik\n5a5PxN9/KrAhY3sjUBdRLZKkHkQdFACJbtsdkVQhSepRZcTfvwkYnbFdl953hLFjx3asXbu2YEVJ\nUolYC3z+RE8SdY/iOeBb6feTgF0EV0kdYe3atbS1tdHR0VH2rzvvvDPyGorlZVvYFrZF9hcwNh8/\n1GH3KJ4CJgNDCeYi7gT6pj/7B4Irnq4E1gD7gL/o7UTr169n7Ni8/G+WJB2DsIPiuhyOmZXLiT75\n5JMTLEWSdDyiHnrKmUERSCaTUZdQNGyLLrZFF9si/7pfcVSsOl5//XW++MUvRl2HJMVGIpGAPPzO\nx6ZHsX///qhLkKSyFJugcOhJkqJhUEiSsjIoJElZGRSSpKwMCklSVrEJCq96kqRoxCYo7FFIUjQM\nCklSVgaFJCkrg0KSlFVsgsLJbEmKRmyCwh6FJEXDoJAkZWVQSJKyik1QtLa2Rl2CJJWl2ATFvn37\noi5BksqSQSFJyio2QbF3796oS5CksmRQSJKyik1QdHR0cODAgajLkKSyE5ugqKmpsVchSREwKCRJ\nWRkUkqSsDApJUlaxCgrvpZCkwotVUNijkKTCi01QVFdXGxSSFIHYBIU9CkmKhkEhScrKoJAkZWVQ\nSJKyilVQeHmsJBVerILCHoUkFV7YQTEdaAZWA7f18PlQ4CVgCbAcuKG3E3l5rCRFI8ygqADuJwiL\n8cB1wDndjpkFLAYmAEngXqCyp5PZo5CkaIQZFI3AGuB94CDwK+DabsdsAU5Ovz8Z2AEc6ulkBoUk\nRaPHv73nyanAhoztjUBTt2MeBl4FNgMDgT/r7WQGhSRFI8yg6MjhmB8SzE8kgbHAvwN/BOzpfuCj\njz7Khx9+yOzZs0kmkySTyTyWKknxl0qlSKVSeT9vIu9n7DIJmE0wRwFwB9AO3JNxzHzgLuB36e1X\nCCa93+52ro7NmzczceJEtmzZElrBklRKEokE5OF3Psw5ireBM4HTgX7A14Dnuh3TDFyRfj8CGAes\n6+lkDj1JUjTCHHo6RHBV08sEV0A9AqwEbkp//g/AXwOPAe8QhNatwMc9nayqqop9+/bR3t5Onz6x\nuf1DkmIvzKGnfOro6OigqqqK7du3U11dHXU9klT04jD0lHcOP0lS4cUqKAYOHMju3bujLkOSykqs\ngmLw4MG0tLREXYYklZXYBcWuXbuiLkOSyopBIUnKyqCQJGVlUEiSsjIoJElZGRSSpKxiFRRDhgwx\nKCSpwGIVFPYoJKnwDApJUlaxC4qdO3dGXYYklZXYBYU9CkkqLINCkpRVrIKiurqaTz/9lAMHDkRd\niiSVjVgFRSKRcAVZSSqwWAUFeC+FJBVa7ILCeQpJKiyDQpKUlUEhScrKoJAkZRXLoPDubEkqnNgF\nxdChQ/noo4+iLkOSyoZBIUnKKnZBMWzYMLZv3x51GZJUNmIXFPYoJKmwYhkU9igkqXBiFxTDhg2z\nRyFJBZSIuoAcdXR0dADQ3t5O//79aW1tpW/fvhGXJUnFK5FIQB5+52PXo+jTpw+nnHKKvQpJKpDY\nBQU4oS1JhRTLoPASWUkqnFgGhT0KSSqc2AaFPQpJKoywg2I60AysBm7r5ZgksBhYDqRyOamXyEpS\n4VSGeO4K4H7gCmAT8J/Ac8DKjGMGAz8HpgEbgaG5nHjo0KGsXr06r8VKknoWZo+iEVgDvA8cBH4F\nXNvtmOuBXxOEBEBO3QQnsyWpcMIMilOBDRnbG9P7Mp0JfA54DXgb+GYuJ3YyW5IKJ8yhp44cjukL\nTAS+BFQBbwILCOY0ejVs2DC2bdt2wgVKkj5bmEGxCRidsT2ariGmThsIhps+Sb/eAP6IHoJi9uzZ\nh9+ff/75/OEPf8hvtZIUc6lUilQqlffzhrnWUyWwiqC3sBlYCFzHkZPZZxNMeE8D+gNvAV8D3u12\nrsNrPQG0tbUxYMAA13uSpCzisNbTIWAW8DLBD/88gpC4Kf2C4NLZl4ClBCHxMEeHxFEqKioYNmwY\nW7duDaFsSVKm2K0e22nixIk89NBDXHTRRRGVJEnFLQ49ilCNHDmSLVu2RF2GJJU8g0KSlJVBIUnK\nKrZBUVtb6yWyklQAsQ0KexSSVBgGhSQpq9gGRW1trUEhSQUQ2/so9u/fz6BBg9i/f3/ntcKSpAxl\nfx/FgAEDqKqq4uOPP466FEkqabENCoBRo0axefPmqMuQpJIW66Coq6tjw4YNn32gJOm4xTooRo8e\nbVBIUsiOJSgGECwFXjROO+00g0KSQpYtKPoAM4CnCR5CtB74IP3+n4GvEPFVU/YoJCl82YIiBVwI\nzAHGACOB2vT7OcAfA6+HXF9WBoUkhS/bo1CnAp/2sP9TgudaLyDioSiDQpLCl61H0RkSj/fw2ePd\njolEZ1B0vxlPkpQ/uUxmn9ttu5JgSCpyVVVVVFdXs3379qhLkaSSlS0ofgjsAc5L/9n52gY8F35p\nuXH4SZLClS0o/hoYSDBxPTDj9Tng9vBLy41BIUnhyhYUY9J/ZguFsXms5bgYFJIUrmxXPf0NUE0w\nzPQ2sIUgWGqBi4BrCIaivh5yjVnV19fzwQcfRFmCJJW0bEHxNeDzBEFwF1Cf3v8B8FvgFmBdqNXl\nYMyYMSxcuDDqMiSpZH3WVU9rgPcIQmM88CtgP/AiRRASAGeccQbr1hVFKZJUknK5PPZ/AbuBLwBT\ngEeAB8Is6liMGTOGdevWeS+FJIUkl6BoS/95FfAw8ALQL7SKjtGQIUNIJBLs3Lkz6lIkqSTlEhSb\ngIcIhp/+lWAV2aJZnjyRSDj8JEkhyuUH/8+Al4E/AXYBQ4C/CrOoY9U5/CRJyr9sVz112gf8OmN7\nS/pVNM444wzWr18fdRmSVJKKZgjpRNijkKTwGBSSpKxKJijWrl0bdRmSVJIifZTpMejIdp/EwYMH\nGThwIC0tLfTvX1SP9ZakyCQSCcjD73xJ9Cj69u1LfX29vQpJCkFJBAXAWWedxapVq6IuQ5JKTskE\nxbhx43jvvfeiLkOSSk7YQTEdaAZWA7dlOe6PgUPAjOP9orPOOsugkKQQhBkUFcD9BGExHrgOOKeX\n4+4BXuIEJl0cepKkcIQZFI0Ey5S/DxwkWKL82h6OuwX4Z2D7iXyZQ0+SFI4wg+JUIPMZpRvT+7of\ncy1dy5Yf91rhtbW1fPLJJ64iK0l5FmZQ5PKjP5fgmdwdBMNOxz30lEgkOPvss2lubj7eU0iSepDL\nooDHaxMwOmN7NEGvItOFBENSAEOBPyUYpnqu+8lmz559+H0ymSSZTB71hQ0NDaxYsYKLL774BMqW\npHhKpVKkUqm8nzfMO7MrgVXAl4DNwEKCCe2VvRz/GPA88JsePst6Z3anOXPmsHHjRubOnXtcBUtS\nKYnDndmHgFkEz7J4F5hHEBI3pV9519DQwPLly8M4tSSVrZJY66nThg0baGxsZMuWonpchiRFIg49\nioKrq6ujtbWVHTt2RF2KJJWMkgqKRCJxeEJbkpQfJRUUAOeeey7Lli2LugxJKhklFxTnnXceS5cu\njboMSSoZJRcUF1xwAYsXL466DEkqGSV11RPAnj17qK2tpaWlhcrKMO8nlKTi5lVPvRg4cCCnnnqq\nS3lIUp6UXFCAw0+SlE8GhSQpq5IMiokTJxoUkpQnJTeZDbBjxw7GjBnDxx9/TEVFRYhlSVLxcjI7\ni1NOOYXhw4c7oS1JeVCSQQHQ1NTEggULoi5DkmKvZINi0qRJvPXWW1GXIUmxV7JB0dTUZFBIUh6U\n5GQ2wIEDBxgyZAhbt26lpqYmpLIkqXg5mf0Z+vXrxwUXXOA8hSSdoJINCoBkMsnrr78edRmSFGsl\nHxSvvfZa1GVIUqyV7BwFwL59+xgxYgRbt26luro6hLIkqXg5R5GD6upqJkyYwJtvvhl1KZIUWyUd\nFBAMP6VSqajLkKTYKougcJ5Cko5fSc9RALS2tjJ8+HDnKSSVHecoclRVVcWFF17o8JMkHaeSDwqA\nq666ihdeeCHqMiQplkp+6AmgubmZqVOn8uGHH3Z2xSSp5Dn0dAzGjRtH//79WbJkSdSlSFLslEVQ\nJBIJrr76ap5//vmoS5Gk2CmLoAAMCkk6TnEZsD+hOQqAgwcPMnz4cFasWMGoUaPyVJYkFS/nKI5R\n3759ufrqq3n66aejLkWSYqVsggLgG9/4Bk888UTUZUhSrJRVUEyZMoWNGzfS3NwcdSmSFBtlFRSV\nlZVcf/31PPnkk1GXIkmxUTaT2Z0WL17MjBkzWLdunTffSSppcZrMng40A6uB23r4/M+Bd4ClwO+A\n88MsZsKECVRVVfmIVEnKUdhBUQHcTxAW44HrgHO6HbMO+CJBQPxv4KEwC0okEnznO9/hvvvuC/Nr\nJKlkhD32cjFwJ0FQANye/vPuXo4fAiwD6rrtz9vQE8DevXupr69n0aJF1NfX5+28klRM4jL0dCqw\nIWN7Y3pfb/4SmB9qRUBNTQ033HADP//5z8P+KkmKvcqQz38s3YDLgf8KXNrTh7Nnzz78PplMkkwm\nT6Quvvvd79LY2Midd97pA40klYRUKhXKs3fCHnqaBMyma+jpDqAduKfbcecDv0kft6aH8+R16KnT\nzJkzaWpq4gc/+EHezy1JUcvX0FPYQVEJrAK+BGwGFhJMaK/MOOY04FXgG8CCXs4TSlCsWLGCKVOm\nsHr1ak4++eS8n1+SohSXOYpDwCzgZeBdYB5BSNyUfgH8mGAS+wFgMUGYFERDQwPTpk1j7ty5hfpK\nSYqduNxxFkqPAmDdunU0NjbS3NzM0KFDQ/kOSYpCXIae8iW0oAD43ve+x549e3jkkUdC+w5JKjSD\nIo92795NQ0MDTzzxBJMnTw7teySpkOIyRxELJ598Mvfddx833XQT+/fvj7ocSSoq9igyzJw5k9ra\nWpf3kFQS7FGE4OGHH2b+/PnMmzcv6lIkqWjYo+hm0aJFTJs2jVQqRUNDQ0G+U5LCYI8iJBMnTuRn\nP/sZ06dP5/3334+6HEmKXNhrPcXS9ddfz44dO5g6dSpvvPEGI0eOjLokSYqMQdGLW265hX379nHJ\nJZfw4osvcvbZZ0ddkiRFwqDI4vbbb6e2tpZkMskTTzzBFVdcEXVJklRwTmbn4NVXX+Wb3/wm3/rW\nt/jJT35Cv379IqtFknLlZHYBTZkyhcWLF7N8+XImTJjAq6++GnVJklQw9iiOrQieeeYZvv/973Pu\nuefy4x//mMbGxqjLkqQe2aOIQCKR4Ctf+QrNzc18+ctfZubMmVx66aU89thj7N27N+ryJCkU9ihO\nwKFDh5g/fz6/+MUveOONN5gyZQpXXXUV06dPZ9SoUVGXJ6nMuXpskfnoo4+YP38+L7zwAq+88go1\nNTVcfPHFNDU1MX78eMaNG8dpp51Gnz524iQVhkFRxDo6OlizZg1vvvkmCxcupLm5mVWrVrFjxw7G\njh1LXV0dI0eOZOTIkYwaNYrhw4czaNCgo14nnXRS5//RknTMDIqItLW1sXv3blpaWti7dy+ffvop\n+/fv7/HPAwcO0N7eTltbG21tbbS2trJt2zZ27txJS0sLLS0t7N69m7179x7+ZzJfbW1tVFRUHPGq\nrKw8YrtPnz4kEomcXsBR28cq138u23G9fWYoSvm1bNkyyMPvvDfcpe3bt49Vq1axevVqNm3axJYt\nW9i8eTObN29m27Zth3/YW1tbqampYdCgQdTU1DBgwAAGDBhA//79j/qzX79+h3/MM3/chw4dyogR\nI476rE+fPodfwOGQOXToEIcOHTr8PnNfe3v74WM7w7TzfU+vzOOy6fzRzjw22z/X22fd9+d6nKQT\nlw6KExaXv8LltUexa9cuFixYwO9//3sWLlzIypUr2bZtG2eeeSZnnXUWdXV1jBo16vDQ0LBhwxg8\neDCDBg1i4MCBzjNIigWHno7R8uXLeeaZZ3j22Wdpbm7moosu4pJLLmHSpEk0NDRQX19PRUVFnsqV\npOgZFDlobW3lqaee4oEHHmDr1q3MmDGDa6+9lssuu4y+ffuGUKYkFQ+DIovW1lbuv/9+5syZQ1NT\nEzfffDPTpk2zxyCprOQrKEpuMvvZZ59l1qxZNDU1kUqlGD9+fNQlSVKslUxQ7N69mxtvvJFFixbx\n+OOPk0wmoy5JkkpCSVy+s3LlShobGxk8eDDvvPOOISFJeRT7oFiwYAHJZJJbb72VBx98kJNOOinq\nkiSppMR66Om3v/0tM2bM4Je//CVXXnll1OVIUkmK7VVPK1as4PLLL+fJJ59k6tSpEZUlScWrrJ9H\n8dFHH3HNNddw7733GhKSFLLY9Sja2tqYOnUqjY2N3H333RGXJUnFq2x7FPfeey/t7e3cddddUZci\nSWUhVj2Kd999l8mTJ/P2229TX18fdU2SVNTKbgmP9vZ2pkyZwle/+lVmzZoVdT2SVPTKbuhp3rx5\n7Nq1i29/+9tRlyJJZSXsoJgONAOrgdt6Oebv05+/A1zQ24l+9KMfMXfuXCorY33rhyTFTphBUQHc\nTxAW44HrgHO6HXMl8HngTOBG4IHeTjZ27FgmT54cTqUxkkqloi6haNgWXWyLLrZF/oUZFI3AGuB9\n4CDwK+DabsdcA/xj+v1bwGBgRE8n++lPfxpKkXHjfwRdbIsutkUX2yL/wgyKU4ENGdsb0/s+65i6\nnk7W2NiY1+IkSbkJMyhyfdJQ9xn5/D0cW5J0wsK8PHYSMJtgjgLgDqAduCfjmAeBFMGwFAQT35OB\nrd3OtQYYG1KdklSq1hLMAxetSoIiTwf6AUvoeTJ7fvr9JGBBoYqTJBWHPwVWEfQI7kjvuyn96nR/\n+vN3gIkFrU6SJElSacvlhr24e5RgTmZZxr7PAf8OvAf8G8Flw53uIGiPZuBPMvZfmD7HauBnIdYb\nptHAa8AKYDnw39P7y7E9BhBcMr4EeBf4m/T+cmyLThXAYuD59Ha5tsX7wFKCtliY3leubUEFwZDU\n6UBfep7jKAWXEdyRnhkUfwvcmn5/G9C5nvp4gnboS9Aua+i6IGEhwb0rEMz7dF5EECe1wIT0+xqC\nYctzKN/2qEr/WUkwf/cFyrctAP4n8CTwXHq7XNtiPUEwZCrXtuBi4KWM7dvTr1J0OkcGRTNdNx7W\nprch+JtBZs/qJYKLAEYCKzP2f53girK4ewa4AtujCvhPoIHybYs64D+Ay+nqUZRrW6wHTum2L9S2\nKOZFAXO5Ya9UjaDrEuGtdP0LMIqgHTp1tkn3/ZuIf1udTtDTeovybY8+BH8b3ErXkFy5tsX/Af6K\n4BL7TuXaFh0Eofk28N/S+0Jti2JeYc8b7wIdlF9b1AC/Bv4HsKfbZ+XUHu0EQ3GDgJcJ/jadqVza\n4ipgG8GYfLKXY8qlLQAuBbYAwwjmJZq7fZ73tijmHsUmgsnNTqM5MgFL2VaC7iMEXcRt6ffd26SO\noE02ceTSJ3XpfXHUlyAkHicYeoLybg+AFuBfCSYfy7EtLiFYF2498BQwheDfj3JsCwhCAmA78C8E\n8wzl2hY53bBXKk7n6MnsznHF2zl6YqofcAZB+3ROTL0FNKW34zoxlQD+L8EwQ6ZybI+hdF25chLw\nBvAlyrMtMk2ma46iHNuiChiYfl8N/I7gSqZybIvDerphr9Q8BWwGDhDMyfwFwRUN/0HPl7r9kKA9\nmoFpGfs7L3VbQ/CMjzj6AsFwyxKCYYbFBP/ylmN7nAcsImiLpQTj81CebZFpMl1XPZVjW5xB8O/E\nEoJLyDt/F8uxLSRJkiRJkiRJkiRJkiRJkiRJuRkE3JyxPQp4OqTvuorgkcC9OR94JKTvliQdp9M5\n8k74ML1G1wJtvUkBw8MvRTo+xbzWkxSWu4GxBHd+3wPU0xUcNxCsMfVvBGsLzQJ+QHCX9JvAkPRx\nY4EXCVbwfAMY18P3jCZYOqFzVc+Z6e9ZAryecdyL6c8kSUUiMxjgyB7GDQRP/KomWG+pBbgx/dnf\nEaxoC/AK8Pn0+6b0dndfB+7L2F5KsGAbwMkZ+y8H5h3b/wSpcIp5mXEpLInP+Pw1YF/6tYuuReiW\nEcwpVBOsaJo5r9Gvh/OcRtdKnxAs4PaPwD8Bv8nYv4UgrKSiZFBIR/s04317xnY7wX8zfYCdBA9W\n+iyZoXQzwZLQXwb+H8GibB+njymXZykohpyjUDnaQ9dSzcei80d/D8H8xX/J2H9+D8d/QNczAiCY\n11gI3EnwLIHO5wGMTB8rFSWDQuVoB8Ew0DKCyezMJ4J1fzpY9/ed238O/CVdyz1f08P3/A6YmLH9\ntwTzFMvSny1N728kmBCXJJWhV+mawO5NCi+PVRGzRyGFaw7w7Syfn0/w4JhtWY6RJEmSJEmSJEmS\nJEmSJEmSJOXH/wfTc6cdOJEfyQAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x4cfcd10>"
]
}
],
"prompt_number": 80
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Of course, the value of the fixed point computed above should be close to the last value of the simulation:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"(S[-1, 0, 0, 0] - stable[0])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 79,
"text": [
"0.00042085555921959894"
]
}
],
"prompt_number": 79
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment