Skip to content

Instantly share code, notes, and snippets.

@magnuskahr
Last active November 25, 2019 21:05
Show Gist options
  • Save magnuskahr/cdaadb17193e21404faedfa74c8e8dc9 to your computer and use it in GitHub Desktop.
Save magnuskahr/cdaadb17193e21404faedfa74c8e8dc9 to your computer and use it in GitHub Desktop.
projectbook_v6 UNET.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "projectbook_v6 UNET.ipynb",
"provenance": [],
"collapsed_sections": [],
"machine_shape": "hm",
"include_colab_link": true
},
"kernelspec": {
"name": "swift",
"display_name": "Swift"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/magnuskahr/cdaadb17193e21404faedfa74c8e8dc9/projectbook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"metadata": {
"id": "kZRlD4utdPuX",
"colab_type": "code",
"colab": {}
},
"source": [
"import Foundation"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "uthWm9IJvG_Z",
"colab_type": "text"
},
"source": [
"# Setup\n",
"\n",
"First we will need to set up a bunch of different structures.\n",
"\n",
"* A `Point` contains coordinates for a corner in an image.\n",
"* A `Mask` is a collection of points, representing a every corner"
]
},
{
"cell_type": "code",
"metadata": {
"id": "SUrYwzxlFuJy",
"colab_type": "code",
"colab": {}
},
"source": [
"struct Point: Codable {\n",
" let x, y: Double\n",
"}\n",
"\n",
"struct Mask: Codable {\n",
" let nv, ne, se, sv: Point\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "n-Pj9_jUwHos",
"colab_type": "text"
},
"source": [
"# Import python and tensorflow"
]
},
{
"cell_type": "code",
"metadata": {
"id": "au63cjnstSaD",
"colab_type": "code",
"colab": {}
},
"source": [
"import TensorFlow\n",
"import Python\n",
"\n",
"%include \"EnableIPythonDisplay.swift\"\n",
"IPythonDisplay.shell.enable_matplotlib(\"inline\")\n",
"let plt = Python.import(\"matplotlib.pyplot\")\n",
"\n",
"let np = Python.import(\"numpy\")\n",
"let pil = Python.import(\"PIL\")"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "LcIrKwiyiE5v",
"colab_type": "text"
},
"source": [
"# Endable shell scripts\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0AO83EmkiJRn",
"colab_type": "code",
"colab": {}
},
"source": [
"let subprocess = Python.import(\"subprocess\")\n",
"\n",
"public extension String {\n",
" @discardableResult\n",
" func shell(_ args: String...) -> String {\n",
" let (task, pipe) = (Process(), Pipe())\n",
" task.executableURL = URL(fileURLWithPath: self)\n",
" (task.arguments, task.standardOutput) = (args, pipe)\n",
" do { try task.run() }\n",
" catch { print(\"Unexpected error: \\(error).\") }\n",
" \n",
" let data = pipe.fileHandleForReading.readDataToEndOfFile()\n",
" return String(data: data, encoding: String.Encoding.utf8) ?? \"\"\n",
" }\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "eIQjMWYpv3yz",
"colab_type": "text"
},
"source": [
"# Download dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "MGmiL1-Tiodb",
"colab_type": "code",
"outputId": "66f26ffe-58fb-4cf4-cbe5-3a20490745e2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 164
}
},
"source": [
"let command = \"git clone https://github.com/magnuskahr/BingoTicketDataset\"\n",
"subprocess.call(command, shell: true)"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'BingoTicketDataset'...\n",
"remote: Enumerating objects: 3215, done.\u001b[K\n",
"remote: Counting objects: 100% (3215/3215), done.\u001b[K\n",
"remote: Compressing objects: 100% (3211/3211), done.\u001b[K\n",
"remote: Total 8061 (delta 6), reused 3213 (delta 4), pack-reused 4846\n",
"Receiving objects: 100% (8061/8061), 663.24 MiB | 48.87 MiB/s, done.\n",
"Resolving deltas: 100% (16/16), done.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0\n"
]
},
"metadata": {
"tags": []
},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "6NFQPHd3FyLu",
"colab_type": "code",
"colab": {}
},
"source": [
"let base = URL(fileURLWithPath: \"BingoTicketDataset/324/points.json\")\n",
"let jsonData = try! Data(contentsOf: base)\n",
"let data: [String: Mask] = try! JSONDecoder().decode([String: Mask].self, from: jsonData)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Sk-cwlD-jrRa",
"colab_type": "text"
},
"source": [
"We also wonna decode the json to be used as objects"
]
},
{
"cell_type": "code",
"metadata": {
"id": "TeUh85HajvTM",
"colab_type": "code",
"colab": {}
},
"source": [
"let files = Array(data.keys) // names of the image files\n",
"let masks = Array(data.values) // points of the images"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "OeMKI49hwXCX",
"colab_type": "text"
},
"source": [
"# Prepare data\n",
"\n",
"In `MaskImageGenerator` we convert a mask to an image, where the points of the the mask is represented with radial gradients."
]
},
{
"cell_type": "code",
"metadata": {
"id": "KnTHbMIotO0t",
"colab_type": "code",
"colab": {}
},
"source": [
"struct MaskImageGenerator {\n",
"\n",
" struct Constants {\n",
" static let white = PythonObject(tupleOf: 255, 255, 255)\n",
" static let black = PythonObject(tupleOf: 0, 0, 0)\n",
"\n",
" static let imageSide = 324\n",
" static let imageSize = PythonObject(tupleOf: imageSide, imageSide)\n",
"\n",
" static let gradientSide = 40\n",
" static let gradientSize = PythonObject(tupleOf: gradientSide, gradientSide)\n",
" }\n",
"\n",
" // Lazy create the gradient once\n",
" private let gradient: PythonObject = {\n",
" let image = pil.Image.new(\"RGBA\", Constants.gradientSize, Constants.white)\n",
"\n",
" // Create the radial gradient\n",
" for y in 0 ..< Constants.gradientSide {\n",
" for x in 0 ..< Constants.gradientSide {\n",
" let distanceToCenter = sqrt(pow(Double(x) - Double(Constants.gradientSide) / 2, 2) + pow(Double(y) - Double(Constants.gradientSide) / 2, 2))\n",
"\t\t\t\tvar alpha = distanceToCenter / (sqrt(2.0) * (Double(Constants.gradientSide) / 2)) + 0.3\n",
" alpha = 255.0 - alpha * 255\n",
"\n",
" let position = PythonObject(tupleOf: x, y)\n",
" let color = PythonObject(tupleOf: 0, 0, 0, Int(alpha))\n",
" image.putpixel(position, color)\n",
" }\n",
" }\n",
"\n",
" image.putpixel(PythonObject(tupleOf: 19, 19), Constants.black)\n",
" image.putpixel(PythonObject(tupleOf: 20, 19), Constants.black)\n",
" image.putpixel(PythonObject(tupleOf: 19, 20), Constants.black)\n",
" image.putpixel(PythonObject(tupleOf: 20, 20), Constants.black)\n",
" return image\n",
" }()\n",
"\n",
" // Create an image with at gradient at `point` \n",
" private func imageGradient(for point: Point) -> Tensor<Float> {\n",
" let image = pil.Image.new(\"RGBA\", Constants.imageSize, Constants.white)\n",
" image.paste(gradient, PythonObject(tupleOf: Int(point.x) - 20, Int(point.y) - 20), gradient)\n",
" let nimage = np.array(image.convert(\"L\"), dtype: np.float32) * (1.0 / 255)\n",
" return Tensor<Float>(numpy: nimage)!\n",
" }\n",
"\n",
" // Return a tensor containing images for the corners\n",
" func images(for mask: Mask) -> Tensor<Float> {\n",
" \n",
" let images = [\n",
" imageGradient(for: mask.nv).expandingShape(at: 2),\n",
" imageGradient(for: mask.ne).expandingShape(at: 2),\n",
" imageGradient(for: mask.se).expandingShape(at: 2),\n",
" imageGradient(for: mask.sv).expandingShape(at: 2)\n",
" ]\n",
"\n",
" return Tensor(concatenating: images, alongAxis: 2).expandingShape(at: 0)\n",
" }\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "iDGPgcVOsiTa",
"colab_type": "code",
"colab": {}
},
"source": [
"/*\n",
"var generator = MaskImageGenerator()\n",
"let mask = Mask(nv: Point(x: 10, y: 20), ne: Point(x: 60, y: 60), se: Point(x: 33, y: 33), sv: Point(x: 100, y: 20))\n",
"let t = generator.images(for: mask)\n",
"\n",
"plt.imshow(np.squeeze(t.makeNumpyArray(), 0))\n",
"plt.show()\n",
"*/"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ACr7mB15xL7E",
"colab_type": "text"
},
"source": [
"Next we need to be able to download an image and convert it to a tensor"
]
},
{
"cell_type": "code",
"metadata": {
"id": "eubuGwhSxLYM",
"colab_type": "code",
"colab": {}
},
"source": [
"// download the ticket image and convert to tensor\n",
"func tensor(for imagePath: String) -> Tensor<Float> {\n",
"\n",
" let img = pil.Image.open(\"BingoTicketDataset/324/\\(imagePath)\")\n",
" let image = np.array(img, dtype: np.float32) * (1.0 / 255)\n",
"\n",
" let imageTensor = Tensor<Float>(numpy: image)!\n",
" return imageTensor.expandingShape(at: 0)\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZN3yZFdmxmRW",
"colab_type": "text"
},
"source": [
"Finaly we are able to collect all of our data"
]
},
{
"cell_type": "code",
"metadata": {
"id": "NdXeZoldIgil",
"colab_type": "code",
"outputId": "202c4791-73d5-42ac-8c8b-7edc62a558a0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 129
}
},
"source": [
"var generator = MaskImageGenerator()\n",
"\n",
"print(\"Creating dataset, hold on!\")\n",
"let start = Date().timeIntervalSince1970\n",
"let x = Tensor(concatenating: files.map(tensor), alongAxis: 0)\n",
"let y = Tensor(concatenating: masks.map { generator.images(for: $0) }, alongAxis: 0)\n",
"let end = Date().timeIntervalSince1970\n",
"print(\"Did finish!\")\n",
"print(\"It took: \\(end - start) seconds\")"
],
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"text": [
"Creating dataset, hold on!\n",
"tcmalloc: large alloc 2015543296 bytes == 0x7bf10000 @ 0x7f331d080b6b 0x7f331d0a0379 0x7f3304906ab7 0x7f33048b3afe 0x7f33047f633b 0x7f33047c5feb 0x7f33047c6f1b 0x7f33047c70ae 0x7f32ff5888db 0x7f32ff433ca5 0x7f32ff4346f8 0x7f32ff415ffb 0x7f32ff4166af 0x7f32ff411f6c 0x7f32ff413a10 0x7f32fcc24725 0x7f3317b5c382 0x7f3317b5beb8 0x7f3317b5c454 0x7f3317b65074 0x7f331d4ba8a0 0x7f331d4b83bb 0x400490 0x2\n",
"tcmalloc: large alloc 2687385600 bytes == 0x11d284000 @ 0x7f331d080b6b 0x7f331d0a0379 0x7f3304906ab7 0x7f33048b3afe 0x7f33047f633b 0x7f33047c5feb 0x7f33047c6f1b 0x7f33047c70ae 0x7f32ff5888db 0x7f32ff433ca5 0x7f32ff4346f8 0x7f32ff415ffb 0x7f32ff4166af 0x7f32ff411f6c 0x7f32ff413a10 0x7f32fcc24725 0x7f3317b5c382 0x7f3317b5beb8 0x7f3317b5c454 0x7f3317b65074 0x7f331d4ba8a0 0x7f331d4b860c 0x400490 0x2\n",
"Did finish!\n",
"It took: 16.218261241912842 seconds\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ky7JV33dpmqb",
"colab_type": "code",
"outputId": "0a59a2be-9ea4-4b5d-9562-c205ed4dc306",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
}
},
"source": [
"print(x.shape)\n",
"print(y.shape)"
],
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": [
"[1600, 324, 324, 3]\r\n",
"[1600, 324, 324, 4]\r\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "GjMBrhO0uGNI",
"colab_type": "code",
"outputId": "628bb671-20e5-476c-ff5d-de5ad2448e15",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 258
}
},
"source": [
"if let randomIndex = (0 ..< x.shape[0]).randomElement() {\n",
" let img = x[randomIndex].makeNumpyArray()\n",
" let mask = y[randomIndex].makeNumpyArray()\n",
" \n",
" plt.figure(figsize: [20, 20])\n",
" plt.subplot(1, 5, 1)\n",
" plt.imshow(img)\n",
" plt.xlabel(\"Ticket\")\n",
"\n",
" let corners = np.dsplit(mask, 4)\n",
"\n",
" plt.subplot(1, 5, 2)\n",
" plt.imshow(np.squeeze(corners[0]), cmap: \"gray\")\n",
" plt.xlabel(\"North West\")\n",
"\n",
" plt.subplot(1, 5, 3)\n",
" plt.imshow(np.squeeze(corners[1]), cmap: \"gray\")\n",
" plt.xlabel(\"North East\")\n",
"\n",
" plt.subplot(1, 5, 4)\n",
" plt.imshow(np.squeeze(corners[2]), cmap: \"gray\")\n",
" plt.xlabel(\"South East\")\n",
"\n",
" plt.subplot(1, 5, 5)\n",
" plt.imshow(np.squeeze(corners[3]), cmap: \"gray\")\n",
" plt.xlabel(\"South West\")\n",
"\n",
" plt.show()\n",
"}"
],
"execution_count": 13,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAADxCAYAAAC6cmxXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9669tWVre9xuXeV9r7cvZ+1zqXkA3\n0BQ0iDYoNgEchG1FKCAloESK1FEsYUdxlE+R/C/kQxT5Qz6EKEhECoqRgoNDOk0cYjCCxIGOTWjT\nDXRVV3Vdzv3sy7rM6xgjH+Yac699urrrdPc51TvU+5O21tprzT3mmGOucaT1nOd9XhVCQBAEQRAE\nQRAEQRAEQfjooL/dExAEQRAEQRAEQRAEQRA+XEQQEgRBEARBEARBEARB+IghgpAgCIIgCIIgCIIg\nCMJHDBGEBEEQBEEQBEEQBEEQPmKIICQIgiAIgiAIgiAIgvARQwQhQRAEQRAEQRAEQRCEjxjPTBBS\nSv0tpdSfKaW+pJT6+8/qPIIgPDmyLwXhaiJ7UxCuJrI3BeFqIntTEJ4OKoTw9AdVygB/Dvw08A7w\nh8C/F0L406d+MkEQngjZl4JwNZG9KQhXE9mbgnA1kb0pCE+PZ+UQ+hHgSyGEN0IIHfA/AD/7jM4l\nCMKTIftSEK4msjcF4Woie1MQriayNwXhKWGf0bjPA2/v/P4O8KNf62Cl1NO3KQnC/794EEI4fsbn\n+Ib2JcDR0VF45ZVXnuWcBOFK87nPfU72piBcMd58800ePHigPoRTyd4UhG8A2ZuCcDX5envzWQlC\nH4hS6heBX/x2nV8QrhhvfbsnENndmy+99BJ/9Ed/9G2ekSB8+1BKyd4UhCvGpz71qW/3FC4he1MQ\nRmRvCsLV5OvtzWdVMvYu8OLO7y9sX5sIIfxSCOFTIYSr9S+HIPzl5QP3JVzem8fHz9oYIQgCsjcF\n4aoie1MQriayNwXhKfGsBKE/BD6mlHpVKZUC/y7wj5/RuQRBeDJkXwrC1UT2piBcTWRvCsLVRPam\nIDwlnknJWAhhUEr9PeC3AAP8cgjhXz2LcwmC8GTIvhSEq4nsTUG4msjeFISriexNQXh6PLMMoRDC\nZ4DPPKvxBUH4xpF9KQhXE9mbgnA1kb0pCFcT2ZuC8HR4ViVjgiAIgiAIgiAIgiAIwhVFBCFBEARB\nEARBEARBEISPGCIICYIgCIIgCIIgCIIgfMQQQUgQBEEQBEEQBEEQBOEjhghCgiAIgiAIgiAIgiAI\nHzFEEBIEQRAEQRAEQRAEQfiIIYKQIAiCIAiCIAiCIAjCRwwRhARBEARBEARBEARBED5iiCAkCIIg\nCIIgCIIgCILwEUMEIUEQBEEQBEEQBEEQhI8YIggJgiAIgiAIgiAIgiB8xBBBSBAEQRAEQRAEQRAE\n4SOGCEKCIAiCIAiCIAiCIAgfMey3ewIACkg+5HN26umNlYYnO85vH8PO86jIPcXpfNt4wmXAq92D\nNQHNuCJ+XAgF+XaBPNDHw5UGZSDoiwXz7ROcMa6y/6p1DtP7GsPwRPN34xTRO4/TtW0fB8MTLYjd\n/sGTnVkQBEEQBEEQBEEQng5XQhAKQP9EZiX/wYd8IE/fFNU/0bzs++gDHgegdv4+fFjr8PRR+sk+\nTmG6XgvBjE/9sBV5xveaSwNzsS6h3z5+IzN7//W6EING3JN+NhSEAE75rz2Pr3WLHru/wxW9l4Ig\nCIIgCIIgCMJfbq6EIASKgHmCw56mmPP0PDnhSeYVds43PTXb5+biNfcEJ3yq6/D0COFJ13R7r4O6\n5BSafgkedHXxnAFUAIbxQYEO45I9ibPm/V1Bj+OB7Ann324H1Rf3Qj12Jv+kilX83PdPeLwgCIIg\nCIIgCIIgfOtcEUEobL/wfxBP0U3xRE6cJ+VJ5rVzvuAvBIUAqK0w8nj90dfkG7LHfHjoJxD1LjFa\nbTTgnduKP2NZV4DtOvnRjrNTThYJl0rPvs60to/+fQ+/uHfqidQ4tnOKGt/2pj0mCNkn/KwOUVC6\nordUEARBEARBEARB+MvJlRCEFJCGDzdFxTxFcenJRro4SgME8Hg84MKFWPGkHpWriPdPJqgENep/\nMYMn6mC7v/dhvT14Ozaj6SZmPzkDKI0aPnj1o0yjuWzAejwHKKd7ovlrfzGfAceg3FcZgr6uNLYj\napkwzuhJkpAEQRAEQRAEQRAE4WlxJQShvSrlh1+ZE0JgGAaMMRhjsNbS92MpjXMO7wJKKbz3KKUo\ny5JhGFBKMQwDRVHQdR3OOZIkIc0S2rYmy8bI6oDDGMMwDIROEUIgTVNCCFhrSZJkOh9A04xJNtZa\nZrMZSqlxHt7jvSdJEkIIoANaa4ZhFLWyLMMYg3OOEMY5a60J3qO8o8gzhsER0PRYXn/7Dqu65Yd/\n9K/yH/2Hn2axWIzjwjSfYRim+Vk7nstai1LjdWRZhlKKuq4py5KmaXDOsb+/z2q1mubQti1FUUzr\nDJAkCU3TYK2d1kcpRd/3ZFk2rdNyuaSqqmkNIiGE8Zi8oCgKzs7OyPOcNE05Pz8nhIv1yfOc+bxg\ntVrRNytO7t/l9373d9BuwISAHxyu66lm473Myxn14Gkd/I+/9U/5F196QDqfUZsKWsci27C3t0dZ\nlhwdHfF//l//HGs0IQRu3LhB27bU9QkKMzqYtCFJErJEszo5pcoUVQr/6X/8d7mZnxFCoOtGYaiu\na1arFXt7e+R5zmazoe97XN2SlPv0GO4tO2x1QFaUDB6MMWM5W2GZz+e0bUtVFaA81mqstaRpMs35\n3pfvcHp6yt/+z/7zZ7nFBEEQBEEQBEEQBOESV0IQIngSOtquxfc9JkkITuOdAbf1dDiHDgqlFGor\nMLhmwGhN3/cooFs3eM+2xKgDnWB8h9k6V/qhJRiF8h4GCN4Ttv3NvNNAht0KAlprqtTQNA1q0ITO\n4bwnhID3Hq01YEisxW/FGtfVeO/Jsj1wkChF0zbjnLUlMQqCIzQ1qbF0gyexJUno6DfnrE7uszq7\nT1efofUoHuyKM/F3Y0ZRzBgziWhZNnqL2ralWee0bUsIgb45n67HOccwDDR5PglC8Txt22KtnY57\nXBBKkmQURJp8mlMUu6IgNLgwCUJJkkxim9YaYwzee0Kf0dWwWS8xYeDR3bd4580vcH1/n1xplufn\nuH7ArROMMaxP76CTklU38APf8538qy89QPmOJFnQDy3VYU6Sav7iS6+T5Zaf+Zm/yWc/+1sYo3jw\n8C7eB9wA4EhSRzmbk2UpynfMMzg+nHFjv6TSPX5zn67rxs+TUvR1zfLBA1S7IL9+nWF1jtGabrlC\n+4HzdctyE0i6ga7OCcpM10xnUa5jGDq0r7YlkR5jFNWsQPmGMMzx3YbMSL2YIAiCIAiCIAiC8OFy\nZQShKg1o58g0WBtQyqM1BBPdJdB3oyslEEisxvueIi1ow+jM6LoObaJrpsd4D6HHMgo4IdRY7Fgf\nlBqc8xgzCiNKeVLryLKM1apF60Ce2204sCMxAxjw3jMMwyikmEBiFa7vSDUkpWG9bpjlirYdi4D2\nKkvXdQTvyYzGWk1bryiSGWWecNbWPHfjmKbpeHDvLovFYhJwrLWTGyoKL1pr8jzDuQu30+7zKAxF\nsafve5IkwVrLarWaXtdao5SaRCBjRjFjGAbSNJ3ejwKH956iKMb1D4E8z+n7frt2o3OqDz06sejE\nMoTRDRWPc24YXVUqY15ZkqREuYYbN+Y8d2PB6uQ+ic3YrxJ0SOj8htlsxunpKYdVSWY8qVb8rR/5\nTv7wT15n0zzi6NVX+PKXvshrr32MW7f2efToHrdvv81P/uRfYzab8frrr3P79m0O9vfHnCY0TdPQ\ndw3GNywKaB4t+Tt/5+cxvqZf1yTDgA2BxCZkqWVx8zpvv/02t5dnXLt2DRUU1w5SWsXoOspSGh0w\nKtC6Du01zvcoX+G6niQxaALBu9GgRECHwNDVtLWirCzrzcmHv+cEQRAEQRAEQRCEjzTfkiCklHoT\nWDJGswwhhE8ppQ6Bfwi8ArwJ/EII4et+41VKgTIYm5Lo8Uu7MYbBuVGY0BofFHYrWBACaIP3gbYf\nSLJRdEiynK4dsNYQCPigUEYzuACuR9sEk4zCCVqNbiICSoFzA33jUNYwBI/rekyaYLOUvu85OR9d\nL4vFAp2M4kqVJpytlhRpwrAtIVPGcP/hQ2azGcMwUKYpWVHQtj0uBFKjp7I3rQL94MnLGX2As1XD\nZlD0TqODZhgUQaXjWugxeEZpRYulcx4dwHvNoBJUMLTDQJ5ndF2H95pZOaNtGoJOMGnOYEbnizEZ\nnVNopQkqQaEYNBiT0fQBi0UFRY8lbNvCD34Um7quo/WaLCnonQI7OqwcjkEpvMkh6fHO4U3C6fpC\n3HLBEVpPETROKfphIFiLSi2z/T1050AnqADezFg6SKoKYwNHi5yDkHA4W/DJ73ieX/uf/xkP//yL\n3HpuQVmk/NAPfj8vvvgiv/qrv8oX/vRPyLKMzWaDVp7laoVzDoeiyjPKLCVsNnzq+z/OT/3rf4X1\nvbcwQ40ymrJcjGJe0ORZhveeV1/5+OTQstYS6oecbU7wSYVNUqpigVOWetOgkoxEpWhVoZwmTTOM\nT3C+xbsBtKb2DQcHB6zPNhzduEk4P/tWtuEz3ZuCIDxdZG8KwtVE9qYgXE1kbwrCs+VptNr66yGE\nHwwhfGr7+98HfjuE8DHgt7e/f32UQtkEjEXZhCEw/TjU9Lx3jt45umGYfpquY/B+emyHgc4N9M4x\nePBohuDpvRuDgBUMwdO58acdHJ3zeKWn8wVt8Eqz3NT0PuCVxqQZxWx+aY5eadrBESORQ1AoZajr\nFqXM9JoxCS54+r6ncwODC/R9T9O1aG3R1hCUoSgKegcuaIKyeAyDV1/1E5TBo6cftJ2eB2VwQeHR\nuKBwQTF4ptcGz/R7fN67QO/C9Hx37Hiu3gVcUNOx8fnuWEonaJNibIY2KdqkFOWcvf1rHF67zuG1\n6yz2DsHoMc/HaALQDwNaW5QZS9cG5zFZgdeaLC+x1pLnOe16hfItx/sV3/PqDZ5fwN2757zyyit8\n/vOf5/d+7/f49Kc/zcHBAU3TTE4orTVpmrJYLMjzHK01R8eH/M2/8dPgHYcHC1547johGKzNAYv3\nGrAkSUHfB9brljt3HuC9HoU/pUZXVVaMn6N+oG46ejcw+IDCELxGKUMIihAUVTmjLCqMSbA2JXjF\npunYNE8WZv1N8K3vTUEQngWyNwXhaiJ7UxCuJrI3BeEZ8TR7r0d+FviV7fNfAX7ug/5AAdZDgqbf\nNJRZThguApmdc6RpCsrjwzB2N1eeoszwYaDtatLM4sNAZhMMitSkGKXQQWOCJVE5ic5hsCSqYFFU\npMqQactQt9igsEERuoF5XlLYlDLJSJWhSnO0C8yygm5d49ueWVZMj1mW0bYt6/UaqzRH+we4tiMN\nCtUN+LpFdZCEFNc5siKn14F2aElShRoaXrlxje+4fsyDO3dJFBh6GJbktiUJK+apJw8deRholqfQ\nNxjfE7qa3AB9Q6o8NgzYMFBYRWEVNgyUiWaoV+QGri0qUuXZKzMKqzC+x7cbykTjmjXG96ihpd8s\np9eGeoV2Hcb3JDgKq3DNGu066JtpLtZ1hGbNXp5wWOUsMss8NaRhIDRrzNCi+wbfKYxPMa2i0hmF\nStlLC+gGEm2pihl56CiUp6nXnNcd591Aur+HLQyoln/jxz7BT/zoK3zXc4bf+ez/wqN7J3zsOz7O\n62/eY9Vo+lBwtulIqpKh3bAoEsr+lGv+Pn/9e4/4e//Oj5Nt3sU2D3BDw8lqxaJMINQY26OSjl7X\nrNwKXVnunJ6wd/05ep3SqxmzuUFxH9W9SeHWzDEkPkGnhiFrWLkHdOacTq8ZbE3ralabNet6g9IZ\n9WZAkZMwkKonbHf/rfMN701BED4UZG8KwtVE9qYgXE1kbwrCU+JbzRAKwP+mlArAfx1C+CXgRgjh\n9vb9O8CN9/tDpdQvAr8IUKZjhk22za1pupY0TUc3zTavB5jcHjDm2DRNQ1mW1HU9Zd4EAqiA0rGB\n+cgYauy25UtmyuOx1l7qghU7iFlr2Ww2pOlYMpbnOe+++y43btxgs9mQ5znr9ZrZbMZ6veLatWuc\nnJyMnc7aFq31NJbWo6ukHxqqLENpj+p7hmFglqWcrGoOFguCCnzuc5/j53/+32ZwLXlWMAwdwTli\nR3elxmuK807TdKf7mJ3WK0mSqRPZble0vu/HcOdtEHS89ukDsbMeu2sHTGPvdnqL8wEuuq7tsDvO\nRRbSmMW02WzItp3fnHPbtVyPXcyCI00SEmOp6xZCIEsL8IEsTTg5OeP7X/sEBy8+TzXf53/6zd/m\n0euf44+/eMr1I8OhVbx4lNHW9zk6nnN8veCT3/39fPdLN+jbFSVrcuUpE4ce+jHnyZYEP3acg8Cm\n68jzAoLm5s2bU/e6B7fvUx0aEpPSD+C0o5wlDKcrzjYbsspSpCl906LLinZTkxiLUpAlKcEN1PW4\nlut1jzHPJMrrqezNl1566VnMTRA+ysjeFISriexNQbiayN4UhGfIt/pN9MdCCO8qpa4D/0Qp9cXd\nN0MIYbt5v4rtZv4lgIPSBPAYq0kw1O02O0iFHYFhbNvtvd6KLEyPo+bgUUpPnqcQHKMgpBj/HRkZ\nRYmxBfzOXC51y4ot1aPYopQiz3NWq9UkFkVBRGvNZrPh+PiYNE1pmobEjsvqtm3Wxy5dlsGNbifl\nA9YkKOVxzoHzmFxRty137tyZxo7zRSm0vhBfYgh0FHzGwOxRxImB1FNO0fa92JWs7/tL1xlFmnj9\nu53NdtcsCmbxfMMwXHofQKv3N5xduhbYBlFDVc0wwzjvZrMmUZqiKMbM7ySdriHeA4A8zxgGR1Fk\nNM2GT7x8i9v3H/ILP/NTfOXt27z63IrX33iTvu+4sb9H9dyCo8WC5194jheOF2wevseszEjoMThU\ncGgCVnmGraAYnEcZRZHndP2A0nYMzR5asr4jsRoGuHZ4QNLDvfOe4DqSVIEZS+xwFwLc0PUUixzv\nHP3QYVAkSYJRMPQwnx2877p9izyVvfmpT31KWqAJwtNF9qYgXE1kbwrC1UT2piA8Q74lQSiE8O72\n8Z5S6h8BPwLcVUrdCiHcVkrdAu49wThjkHRiSdOUoiho2/arHCh5kqJ8mAQLm6SEwTErSvq+RyuN\nzuxW8HDbRw+o8ct8lk0iQ7oNCI5Onl2BpOvGTJckSaZuYV3XkWUZy+WS+XxOCGFytBweHlLXNXt7\ne6zPl+PCWks/uEmQcYoxB6etCUNPVVUsqoTlckmSVJgwUC/P+MrbD3j33Xc5vn4IYRS71HYuQ+fw\nPkwt3aMrCJjWrWmaqatYXddkWTa5gqy1kyAUu6VZa6c1DiFM3driuPE1YwxN05Cm6UVHt63wFMWk\n6EoCLolXu7+PJYABq5hErDRNGfCTeNbWPUWajPdlcCR67GSWGEVwPW3dMJvNMMbw6J3XKUzCfF5y\n43tf5Hzd8aOvvYK1lsW8pN6seHTvLnY4p/AZmIFrVUW7WsMQxrJCbTBJwiZY0tRydnaGCjCfLRj6\nDUky3qdqto/3nuPjY/phg28dug9kWrM6v09iCrxN6UMC9KRpRt9G55Zj6Du6riNPUoDxXnSK2Wz2\nzWy/D9pTT2VvCoLwdJG9KQhXE9mbgnA1kb0pCM+WbzpDSClVKaXm8TnwN4DPA/8Y+PT2sE8Dv/GB\nk9Caul7jXE/TbMjyhLZrGIYerSHLEpQKDK4jzSxpZumHDud7UJ7VejVlCKWZRhuP8z0+DCgd0GYU\nVLquI89zlFIMw0CSJJMDJc5jGMYytb7vJ4fQMAx0Xcfh4SHOOeq6HjONgMViQQiBk5MT1us1dV2P\n7g9jWCwW1HWNc45h6KiqiqIoUMqwWdWkNkMDCg9h4OThHQB+//d/H2vtFIxsjJncO7FVfHQxxdby\n1o4ulrEtfU7XdZOwE6+1bdupDX3XdZOIVBQFfd9PndGyLJteK4piakMfxa04h6qqJlGtKIpJcEqS\nZHQ+Aefn59Pc0jQd59N70jQnTXKqakae5yRJgtajaJamCUVR8fbb76KUQWuNc47NZsVsVnL9+iF9\nX2MtzGYLrE1J05RHjx4x9A3XDvdIjeLk/j2Gpub4+Hhcd21pnGNA0ziNsyVkc3pTctIAentd+Zgx\nldmEblOjXeDoYBT92qFn8D3PP/ciZTanSlJy1fPKrT3+7E//BW+88SarlWO9cTifgEpoO0/fO9ab\nmrwoaboeZQ29d7jBkybZN7sN35enuTcFQXh6yN4UhKuJ7E1BuJrI3hSEZ8+34hC6AfyjrfPDAr8a\nQvisUuoPgV9TSv1t4C3gFz5oIKUUSWKn8jBjDGVZ0PY9MDopALQ2oDQaRRrLtgIkRqPG6CCGoQfG\nEi24cK+EEDA6Yeg93oE1O68bM7mEYoaO92M5l3NuOma1Wk0iUt/3l/KMosspz/MLx9G2hMq5sZ19\nN4xuI6sN6DGTxyo9ZhupAGGgKApOTk6mdYjjs12b3Yye3WvbdeC832u7LqD3G2P398ef77qn3u+4\naVwuSu+stVM2UBSHLgQlDUFfchFFwWrMRRoFpKOjI4qiwBjDZrPCe2jbdhSYfE/XNxgMSZoyuIBj\nzBfq+540z0B5jIdBBQKWZV0zKxdok2HzEq8UgzZ4bXHaTcLb0Pd4N2YdLaoZy9UKYww2S1kulxwe\n5qw2G0Dh+gGDo9usaNbn3D9/i3tngaMscO3okHk1I89T9vYKtEno+jFUfL2psdaSpekk7j1Fntre\nFAThqSJ7UxCuJrI3BeFqIntTEJ4x37QgFEJ4A/jk+7z+EPipb2QsBSz25jRbQSAEz/PPP8ejs1Oa\nphnLyYyBEKZg6DzPpvKnsiwA0FoRgpucNM4F2rYlSVKGYaAsZlM52KixhIsw6m3JEzA5cEIIFMU4\ndpqmrFYr5vP5NKc0TXHO0bYts9mMtm053Nun3mxwzmHVGFrddR1Jblmv1+RpRpYVBOdp64Ysy1m3\nDVZnGODG88/z+c9/fnQZ6a8tFDjnpkyg6L6JwlUsEYvupsdDpmMJ2OjKGR1GUbyJ6wEXQlJ0TUUB\nLOYR7WYNee9B+anjWnQJVVU1hXc757bnSvEekiTDDRuqqqI5fUg7tKA8i9keD+4/5NatW5ycnJAX\nKVmakiSGut6QLRZU2/uCztGJZd12KG0xiWW1WZMlKUbZMWPKWPJ5xumj+ywWCx6tNiyqGZvNhtB5\n0txgbMYw9PRtMw7L2HXO5AUuKDKbcfvRKXfv3ePjL3+STd2S2YRUG1R3Sn3W8Vf/yg/wX/7KH1Dz\nEPqGamYoy5yqKLl+44hXXnqeNE156YXn+djHv5MvfOELPHc05k49TZ7m3hQE4ekhe1MQriayNwXh\naiJ7UxCePc+kvdE3Ssy3KbdOnc22a1h0rkSBJrFjqZPaihreuVG42QpAaZJQ92tQfiplyrIM78Mk\nbEQXSNc1ZFk2CSJFUeC9Z7VaTTk5wzCQpillWU4dxLz3Y+bNTkeyPM+Zz+dTaVnM7YEL98vgukkU\nydOStu4wJpmycdzQsrdIWSwW0zX3vhvDpEOAoAmaqXwqlrQ556ZcpCj4RKEm5gwZY6bnaTqWVyml\nyLKMpmmmkrJhGAghkOf5NHel1CQ6RfdTLAuLj9FB1A8XwlhZllOe0bAN14axdM8x3oMsy2g7z2w2\n467rmM1mY96S6ymKirOzJW3bog3s7+9T12u8d/R9x2xesl6vsYDyDu17FvOCvm+oUsty+YhZVqC1\noRsM1hqqPCP0PbgBhpYyHcvRjNWks4y+Bx8883mFJoCHk+WKw8NrvPPwlMViwbWjI1ymub64Sbtc\ns1/kVIuE2g1k5pjRBGZwCdSDpj6teXi25r1793nn9h0Sq/F+oCwLfvZnfxaUIy+SD3vLCYIgCIIg\nCIIgCB9xvukMoadJIExhxFGwifk5u5k5UXiI3bOcG0OWo1NodKJclHGNpWhjwHJ06ozOITcdE88Z\nS8NiR634GEWU6CLa7dxljMFay3w+n0KW4/uPt52PLqfo3IlCEX4cJ2w7ZxljqKpqEnXiPHbnFMd9\nvEzs8dd2M392w513S7XcVlSL40aBKR4LTGu/6xCK54trGEvRdkvu4jVH8SwKTmorCMX5xZDs3Wyn\nPEnZLFdURUGepAxtRxgcqbUE15Nog+ta8I4yzzAaisRQ5gnedeRWU2YZWWLJ0xQ/OKwxWKMoc8vQ\nNqRWkVpF6BsY2se6oI2fk9lsNgqGeU5ZlnRdx3u3b7NpG/re4YYBgkOFwGp5xvGeJbEZQWm8CwSl\nCWhcgPv3TyirOU3b8957d/jjP/5/t+Jk9wx3lyAIgiAIgiAIgiB8NVdCEFJK0bTtFHq8mM3xg4Pe\nsVfOUINnv5qDUhhr6fqepm1RWqONxofA4ByDcxhyDCnKW6weBRerNSoEvOtwQ0tiFXle0TQtxlhU\nULi2I1GazGgyrSgTS5okbNZr+q6jKksSa2mbBkIgsZah71HAZt2SpjlN0zEMY5lXlmUMQ0cIbnSE\n6AwbFLOipBtaZvslravpQ4u1GqUC168dsbAJt/ZvcP+dc5LkAIehVx6nHU5pghkdN3t7e/R9T5Zl\nzOdz+r6nLMvRaVWWk0g1m83w3nN+fr4NbE6p63oSyOL6x8foblqtVmitWa1WAMyqBV07kKUFs2pB\n8AqjE7SyaGUJXk3h0sMwcHZ2xoMHD7b5PxuASeTK9YBzPaetx6Vz8vkB7XpF5hzzJKOvIUkV+wcz\nbt68Tp6nlGWOTUYBLuY47e0dkFSKs/ohZZVQVjld29J3jken5+SLGaYqUdZyfPMmtx+csO4D60GT\n7V1j07Rs2gY3tDTLE1RwJEnC+XrFsq7BGrIsocgt8xyuVzBjzUG2T1+v0KbH68D9u2uWJ56Zs/xb\nf+3j7A2PKIqKYfBoNEZZ8qTg+PAGn/yBH+H0pOXw6FVeeOk19mfXGOr+w990giAIgiAIgiAIwkea\nKyIIjW6ZKEw45yZxI3bN2mw2dF23DR0eu39VVTU5OeLrMR8nlm/FtvHxb6IzJXYci63Z8zzHOTeV\nQsVSqlgeVpbl5ESKZWWxI5iI0oAAACAASURBVJf3nrOzM2azGWVZ8ujRI9brNVk2On52w6e7ruP0\n9HQURvJ8KueKQoxzA9euHfDWW29NwdW77qDYdQwuSrpiyV18/n4uqPg8BhiPpVluu/5qygiKfxvP\nkabpNM/onIlkWTYJNGmaMpvNODs7oygK5vM5169fn1xDu66iYRimc4xrvxWw3NYlliYURUGSJLz1\n1lucnZ2htZ66mnnvJzHr/PycLBu7dLVtizGG4+PjqXQtnvedd97h+Ph4CqXu+55yNqcsKtI8Iy+q\naV12HVV939P3PcvlEoCXXnqJ1WrFgwcPprW9efMGxirads0Lz93g+74nQfuORHtuHO9z49qCoat5\n+527/OZv/DpGeZRr+O9++b/h1379N7h267mntJMEQRAEQRAEQRAE4cm4EhlCcFHKFL+Mx7ydWFIU\nS5miSBRLuWLZURRL4nG7ZVFx/FiOBkwCUtd1o1DkLoSQfis8sZMXFI+PQkoUXtq2haAmISXZKZna\nFWZ2O5NFUcMYQ9u2k3MmCh2z2YI7d+6MxygFSkPw03XEa9oVhC51JNueL/4e1+PxMq94TBzjceEp\nniOWuu0ev1taF9dWa83p6SllWV5yG+3mEPV9j0nt9u8MilFkUpipjK5xfspqcs5h7SjW+eC3az9M\nAlUsUdst99oV2JRyNI3HJgatoczLMd9odU6e5NtSt/FvrbUE5wGF2V5313UkdsyRWm3W01q0Qzet\np7UJWsPgWmxiee7Wdb5vvsdqteK1T3wfRZFxenpKai1ZlqGM4datW3z2s5/lX/7xn/Dvh8sd2wRB\nEARBEARBEAThWXMlHEIQLokNURjY7YwVS5/gIq8myzLKsqQoCpxznJycTKJLFAvKssQ5N7l94pf4\n6CaKf7vbdSs6e3Zb0jdNQ1VV0/liEPVyuSRNU+bzOcvlkrOzMw4ODiYxI55vNptNQktVVdy9e3cK\neI6CTp7n3Lv/DrN5wZ/9+RcxOkGpUejx3hNwwChMAdN8o1MpClBRgHk8VyiKWfH1ruum646dynbd\nV1GMi2uw656JAtDuOR4XpfI8J8syDg4OxlygPJ/ynLQ1oBUOhXeaph9GUcha+r5jvV6jlOLo6Ihr\n166xXq+ne7N7H4+OjqauakqpqWTt8PCQrusYhoFrR4cEN97zrm84PT3FJJbBe5quRVkDW/dYzLKK\nAppzjs1mQ5IkzGYzsiyjKmbM5/NR0OtqzpaPSFJNmgS0anjlpX1+6Htf5Cd/9Ac42rPM88APvfYx\nbt084MXnrvHDP/AxvuPFI/6Tv/tp7p4N/Bf/1S99aDtNEARBEARBEARBEOCKCEK7YcnOObqumxwr\nUdg4PDxkb29v+oIe26tH54nWehIKYCw7i06e2Bp+90u+MYamaSiKgtVqhfd+Kv8qimIqWVqtVpNY\nE7NwoniilOL4+JizszNWqxX7+/uTwBLFpHicc44syy6FOEcxKbpxnHM8OrmP9x2np4/IsmwUv7ya\nHDpxXLhwP+06hKJotlsytisIxTF218Ha0SgWA7jjesJFyVhZllPpWBwrlpDtOrpiIHbf95dKw3aD\npR1bl5YyGJ1ikhStEs5XK5bLJUk2Cl7n5+ekaTqV/W02mykoPIphMUep73vW6/V0X/M8p2ma0S2U\nWI6Pr/H6l/58DBAPY8e0th9Y1g1OKQLqq1xR0ZEW5xDCGGDuw0BVzWnbltV6vT1fysF+yc3jGfuV\nwfZL9svAXqVJraOpz7i2X3J8tADf0q1PGOozZocVdx6ePf1NJQiCIAiCIAiCIAhfhyshCIXA5B4B\nLjlS4pfx8/Pz6cv5fD6fcm9ie3VgcrpEN1AUhZJkzKSp63oqAWuaZgyz3ooHUcSJbdu11pPwZK2l\naZrJMTObzaa5xzDnNE2nrlpRaKrr+pIgE8vc6rrm4OBge+1jrlBs4T64DW+/+wbzRTV15FLKTDlL\naWovOafiXHe7esXzRjcQQFVV9H1PnufTWi8Wi2lucaw4976/CDpumoaTkxMA6rpmtVpNwc67GUdx\nfeq6njq3DcMwdQ6LgpPWUM4qQoCudxTVAqUtWZ4TgCQZ3VkxIypmJGVZNrl++r6fhCKA2WzGYrGY\n7v1ms2Fvb4/z83OMVSSp4dVXX8Zaw/7+PkPwpFmGTTKUtrTOTwJSdD9FwTG6waIr7drBIW1bU5QV\n5XzBjedujaVtWuGbBuN69nJF6FZYPFWWoggkiaVtG1ToscpRZoaiyBm2Ip4gCIIgCIIgCIIgfFhc\nCUFIqctZN1HQiC3adx02MScoCg5RkIjujuhGieVMUWSK2UPRHRMFk+ikiYHEMY8olg7tunAezyuK\nc47umDjWZrO5FEgdS9DGPBw7iSTRMTR2JBu2bpyMs7MTnn/+eTabzaVSLaXCJQFmN1cpOqnidcZ1\nePx6Lq/7Ra5QvMa4NrEEKzqT3i9D6PG287vziWJUdETFkrGiKPAEmqbZHm9IbIa1KbB1hGk1zT+u\nW3R4RVEprknXddM674Zux2O6rkNruHv7PQ4ODnh4enIhfvXdKCy6APoiEykShbY4drx/ybbbWdd1\nWJPS947NpqGrO1QI9G1HkWWowPijFM57lNKAIvi47g5rFJrw+K0RBEEQBEEQBEEQhGfKFRGELkKK\nY9BzLIOKX/KjwySWisUuYbEkrCgK1uv1pU5iURiIQsVuEHEsOYpj13V9KYsmunl2RZPdcOQkSQAu\nlW/Fn/l8zmq1YrFYTCLRarWanE17e3s8evSI+XwsO5rP52RZRtM0HB3v8+abb/Daa5/gy1/+MiFA\nCDshzjpcKoPbdTXFcrU4r9h9K15DdDbtBm0D0/XEuUYHThSaYolczP+JYlAsA4tOoJjfFAUa7z11\nXU/uqrOzM87PzymKAq01Dx+dkuYlwxBou4FREHJTl7lYchavJ84l3t/oEtu9f/GzMwwD8/mcPM+5\nf+8uqEDXt7z88svcvXsXYy0+KKrFHm+/9y55OZs+I7vXFnOj6roGtl3NknGdu65j8B5Fyv7+dW7d\neJ6jg+scza/R1xtSY2nbjqbpKMo9nLIMbsxNCl7hnaKvl1jcs95igiAIgiAIgiAIgnCJKyEIxTya\nGBq8v79P27aXyrSMMaxWK8qyZG9v76ID1FYAiSVGUUjabDZYa6nrehI7djt+7Tphuq5jPp9PgpLW\negqP3i15GoaBzWbDcrm8FKwcg6FjCVsMs44t0WMpVxzLWktRFLz33nvMZjOGYaCqKtq2ZX9/Acrx\n3HO3ePPNN7+q1XwUYOLz3e5qu+VpZVlOAlAsn4vEY6JQFB0w0VEUBZ445908osdLxHZzn+KYu4HT\n8e82mw2/+7u/y2c+8xkePnwIWgOatu25eet5vA/M9/ZYHOxP9yqW9MU8n3jPo1Mnlnh1XTc5gqLA\nZ62dxL+TkxPm8zlvv/02xig6N851sVhwenbGbL7H/QePODs7u+Q6i+KQUoo8z6fXzs/PpoypPJvR\n9Q7nFFrl4DQnD85QymDN6H4yNkOZjGHQdAMQDOgUrS3NsuVor3pWW0sQBEEQBEEQBEEQ3pcrIQjB\nhWslBjFHB8xueVZd15PgAmOZV3SsRJdQFC9iBs5uu3Pgq9xBURyJ59wVeXbbre8GUsexdvN3oogR\ny5TyPKeu62nuURiKwcRFUXB2djaVi01BxvpC1Ighyruh0FFk2XUkRUEozjOWVu2u6a4gtisI7YZV\n75aF7Yo5j5fXxXM8Hla9W2612wa+LEsODw/55Cc/yc/93M9x8+ZNlFKUZclms5lcPVHE6bbupNhR\nLJbcxfsex4/iTRSIYrj1brlbdIXBKKAtl0uqqppcUcvlksViwWq1muax20ktinjGGNbr9XSPo3sM\nYBg86/V6dFXpZBIQCRqTXHSSm8oVufjc1TXM5/Nvas8IgiAIgiAIgiAIwjfLlRCEQgg07QZtoB9a\njFWUVY5NNHWzJuBI0otOXyGEqfNV0zSTUyaKClEYaJqGJEnIsowsyybHT1EUsG3hrrUiyRJOV0uy\nqqTuBzbbH9c2LMoCS0C5gcxoFmXBvMjZnJ9hgke5gTC0zIuczGiGvr1wlyiNQ1HM5oTBkWiD7weK\nNCNPUp6/eYvNcoUO4LqePEk5djOey4+YV3PW9QqtwHUtJoAPCpKc4BVFXuGGMIkNWZZQVQUh9FRV\nhnMt/bAiSaHtVgxDg7UwDA2bzQqt4eTkIVpZZtUCrSxFXpFnJQRNYjO8g+AVaZJTVCVJlqKt2bZs\nd5jETr9nRY5JBnq3wiaeQEuWG/LU0tY1fhj4ype/wp/8yz/h9z7zT5k7zfLdd0gUoAxvPVzS623I\nc/0IEgWJwmlHsAqM4g/++R+gVKDrGqxRzGclVmkym6B8oKs3uK4F32GUww8Nmp55XtFvWr7r5e/g\n3Tff4dHdhwQHTV1zfHTE+dkJd26/ywM/416jWQ3gjGK9OSUvFKiepmvR2YzbD5aUZcXZySPq9TnK\nrbCsKVLHg0e3uXP2gD6xLDb3eGlWMpw16M7i2xX96m32ypoQ1mTz63z+jRN+4sf/NX7sx37827wD\nBUEQBEEQBEEQhI8aV0IQgguXTd/3kxsktmTf7RwWXTuxxCm6SmKb8zzPp/GiWNI0DV3XTaVpUUSK\nmUGxLCqWTO3mGe2WDkVnSJIkU8bQbqlYmqb0fY9Sis1mM4YYP3w4lYRZa9nf32e1WhFCmDKEotuk\nKArOz0+ZzyvarpnOE/NqdlvCRxdRdBzFkqboYGnbFucuAqVj2Vzfu+04gTTNL5V27T6PAdtZlk0d\nxWJ52OPuofijg8Kg8b1ntdqw2TSYLOfuwwcsm5af+Omf4mPf9wmOnn+BjfPs37gO1lDuzdl0Lat6\nRTGrmC3mUzv5tm3x3lMUBZ/85CfJ8/xSKdfZ2dnUGa0sS6qqmtYmZgDFdd9sNrz22mu8+uqrnJw+\nBMaOZkopbty4QXBj5pEyYznb4bVjeufRasxomlczXn75Rc6Wa7RNqGYLzs9WWJOyXq+pqgrwvPDC\nc7jQsVw94vrRnM3yAamGvKpY1x3GFtx+7z7/629+hpdevMWrr7zwoe83QRAEQRAEQRAE4aPNlRCE\n4hf43RKkqYRqW6oFY8vzsizJsmwSXmL4bywVerwULITAcrmc8mjm8/mUPRRDkne7Uu0GRkdxKAo2\nu+PH0rIoHsVSq10BK84plpjt5hY9nmMEMdPHUVb59H7bdBidXHo/njeKNrE0anfOu6Vu8f2LY5NL\nod1xfeOaxevbzXbavRfvVyIGo5uIoLei2Rho7b3n2tF1glbcfXCfcjHn+ZdfIakqMBoXPE3foBR4\nAmonLDpe424pXl3X033I85wsyy6VksUso911vbhXTPc8SRLatp4Cs2ez2XQOYwx125JkKQpDkqWE\nMN7nqqpAm213uBxPmMbb29tjNpuNn81EE+jJU0WiPUYF0iSnbjraxvH22+9Sb1pOH97Dtc3T2UiC\nIAiCIAiCIAiC8IRcCUEIxRQWHMLYkhyY8l92u5DFFubRuRKzcmKOTBSHottIKTV92V8sFqzXa/b3\n9ydho+u6yX0ThYXdv43iFDC1Go+OlehmyvOcrutomoaqqliv15OgM5vNaJpmyg86Pz9nsVigtWaz\n2UzjRGHGhx7nO959922stdy5c2fM7gl6Cm9+P4fQruAT18kNHq0MbvBYm+JcmEK6h2FAK/u+rqC4\nvlEQgsu5Q7Ekb1ccM8agMXgP1qbs7x1SlDNc8HShp+07qv0F63ZDqwOrvsUpmC0q6nrN4mBOkic8\nOnuITjPOzs6mexXzi6qqmtrXR+dUdIa1bUuWZdP84jUNw0CRpTSbNQd7e7zzlTc5eXifRCtc1xMG\nh9WwmJXcPD6iqirqtqdpHSfLNSpNcWG8xtOzR9y9fYeDwyP6AbAJRTVHGU1ZXghKZ6enJEVKnkMS\n1rxwvUKHnsEHsnKPAcv/8b//DrduPMeN6/v0Xf1h7jZBEARBEARBEARBuBqCUPDhkqDRti1nZ2dT\nW3Wl1CTaxBKi6JLx3k/t53edRLG8K5ZYAZPQtFtqFkOsgalNexSXYjlXdIDsduWKLpa6rqfQ4ehm\nOTw8nISag4ODqd18lmWTgFLXNQcHB1hrWa1WnJyc0Pc9e/sF168f8tZbX+bo6DrvvXcH0Ozv76N0\nIEnNpRbvXddNrpRhGMiybJspNOYmje3S9VboySjLGW4IZGlxyUXVNM0k8MTyut2g7TheDHmO5XtR\nWFNKgb5wLXV9g/cDWkNZZCSJom/WWAvaBDarM4rCoOnZrE/4nu96Fd+PJXtZPnaSa9sWGAO/m6bh\n4ODgUtlf3/ccHR1N70dRL8synHPMZrOd/KiMs7MTjo6O2Nsb29GnmSUvxnvfdQ3GapbLJa9/+cs0\nXQ86xQfNalOTlyVGaVbrc27ff8j1555HaYtNUzabhtlsxl/8xV/g+h5rNYMGrT2FbrmxlzDUJ2iT\ncLqq6f229M8HXnrhFlb7D2urCX/JiCJx/Ikh+oIgCIIgCIIgCB+E/eBDnj27pVrR8bNarSZ3SnR8\ntM1Fe/EodsT3QgjTe7udpqJAARfulijsREFkt8QrfqFKkoTCmqkDWGxv/nhuThSlontIaz2ViEWB\nCJhKtKKrJ7p0HncgNU1NSA337t1j4XPms5y2bSmyi65dyl24deL6eX852+dCCNMYA1rbSYhK7MWa\ntW07lc9579lsNpRlOd2buFZN3Uy/R9dWvKa4rsRyPWtIAW1HZ9ew7YDmCKgwkChPsIoyNWRmDHDe\nX8yx3Tn1+oy+d1N3ryi+RddTXKsorsUvwWVZTl3nYsv6eG/7djlmStmEvhuvwxozqqE+kBiNzgsa\nPQaP9/WGpuvpekdiDUlWTN3S0jTlpHGjYOTDVgCyaGspimKaX912pLrBes3+3h55YjjvWmya8cU/\n/zOC8xgFWl+UuQnCkxJzzx4XgOK/b9HlJwiCIAiCIAiC8LW4EoJQbAcOkOc5eZ5PLeSHYWCxWADQ\n1GNZWdM00zF1XY/tvnfKxGIZFjCVge2Wh2mtKYpiCh6O7qM0HVuEt217qVV5/IIFTKVfuxk80ZkT\nRZjdsq3otHnw3nsURTG1L0/TMYg45tJEp5HSPc73vPnWG3xncY2hb7l79x6z8jlgDEHWO23LYzld\nFHaiGDRep70Qa7bXktgMpQzWmm23tvSSsHbz5k2GYaDrumnsKJDFUOm4ttEtFEWtpl/jvcb60VFl\nFazXK8CjlaJIDNZYEmqsbjm7/Q7/7HP/N/fee5fMBuZZSrNqmB2mlGU53YMkSRi6fvqS2/ctZVFM\ngd7GmOmzEIWhWEYITCV1ZZVP7/V9C/jpvhpjwDnKsmR5fsqDhyfs7e1R6gSbZGw2DX3fopTi4aNT\n+nrDwXzOYTkjs6PQd+vmDZZtQ5HlpNU+adtQqAE71JSZ5iR40nLOb//ur/Pq8TE/+iM/OK5bLYKQ\n8GQ456jrmrqup704DMP0/m45aSyrjf/uCIIgCIIgCIIg7HIlBKH4BabruikPJpb7bDYb0jSduowB\nU7lWFAHGgN/x2OgS2nWxxP81f7y0K8uyS2HMUdi5cPkEyrKcStZiaVoUemL5V9M0o/Nm6/qpqmr6\n4hZLq/J8FCPKspzyd6JDKM/zKfx6ttCs1qesVgMvvfQSt999j6985St8/LteJvQD7DiTotgTQ7FH\ncWYUQUahQ2NMchEKjcEWliTJdkKiHcVWXGnblrfffptr165duj/GGJTRlzKFIlE40lrjGUufklSz\nP69IrObafolrO4au4/z0hNVmw73bb7JaLnl0/x7dZslBbjh99IiuKsiTlHrTY+zodmqahrIsKcuS\nk5MTDIq+7wl5jlJquj/n5+dT17YYJh1zhVIzureazYC1GoLHaoPZlgI6N1wqA+y6gbPlivWmoSwL\nlDFkiSZLDF3XUc7mdM2G5WrNXpbQh57NZo0y4z2tmzWL4xtkWnNUJKyWj8jtgqqo+KMvvI5JDN/7\n3a/ywvPX8WlHlc6f0c4S/jKxWq3o+571ej0JyPHfzEgUhNI0Jc/zKWerqqrp309BEARBEARBEAS4\nIoIQarcT1EWpT+zuFcubpsPVVhTYKQ+LZVjR8bMr/OyOCxclaLtdtaKjZLdludm+ttvtKv5tDMDe\nHScKI7EEyBgztaePzqAoqMR8ovh48dwyMylKnXHz5k3effsdTh6dXZSpeY8Kl88XQ57HtbhYI6WS\nKStJKzutW1km1HVN1/WsVmPb9s1mw/HxMV3XTUIKMIlA3dBf6twFo+hUVdXU+a06SBnalocPHvDe\n7Xeo1yu+9MUvEvqOvu149OAe56dnHF8rOHn4iFvXj6nynK5vuHawN5ZRGUPbd+jt58Fty83SNKNb\ndiyqGd5nk+BWzWaTwykeGwWyGEA++Au309QNbjQEba9xdIGF7WcnOsLSIqdtO1Sa4JXDhIucqr7v\nGbSiGwZsotHaTJ/jYRho2p5ZkoB3aAKJsazrmjfeeAPnHK+88jKbzQpHz9BLhpDw9dnNCWrblqZp\nJkEoOvbgokPgbofBmIEGiCgkCIIgCIIgCMLEBwpCSqlfBn4GuBdCeG372iHwD4FXgDeBXwghnKhR\nGfkHwL8JbID/IITw/3zQOYK/KMGKLeVjeVKapiyXy0v5QEVR0DYN5yenVFXF3uEBd967zcH+Pg+W\nj0jSsROVCmCNwiq9bf/ekZicod7gtcLko+BUN6NzJyhFN7QEo/AmkOZz6maDUorcQN817M0XdN1A\nqlNWy7ELli4MJycnlGXJMAwsT8/GOa42Y9ex03MOD/a5d+8edV1z7do1Tk9P8d5PpVFKqbFMbjVw\n68YR33VD8d//t/+AFz72CRbX5uhqQbqx1JsV1g0kWYLyCo1CDx2LLGPTbLh58yZ12/D/sffmUZKd\nd5nm8919iz0zq7I2SaXVi1aXbVnGMl40Qt5kY2PaDIs5YMOcgW4Obgz0Mt1nuvvA9PTQNAOYrfHC\n0I1tBst4HcA2YAvwJlmWtZakUlVlVeUaGdvdt/njxncrSthgG1tK0fc5J05lRUZGRsa9X2R+b7zv\n+2u1XOJzJdMw4PGdDXqHVrA9l0/99Z3cfuttbK1tM3BaKGaLA4MVNFWhCEYcbO9j/ewanZUV2t0+\ncZKBqpJOhvgYnEtNvnDPXYTjDa7s5BSjs0xGY3S3h7+5SVmW9AZ9wjDEtlymgY/rtdAUBT0Ys8/R\n0POcIyvL5HlMnqVoiiDIQkzDBgRFAS2rin4lWY6palAU2IZZC4exFN3mZdie57Gzs0On06Hb7XL6\n9GlWV1dZW1vDcTyEVm2IpYCnzt1cWUFdGN7KM9SWia4ts7mlcM+9D/LcY9cjNIPJ7jqDtoNnGVzS\n17l/Z5tENxGWi6qlpJMRjmuB4YLmMRs9Std+NhvJNr19KqaWcfwvT3PP3zzKdceWKY0Qw3PxoxTN\n+uZ02SdjbTY89eR5ju/7TKdT4jhmNpsRBAFpmhLHcS2OA7U4bJomSZLMHXCV8ikdkU187NtPszYb\nGvYmzdpsaNibNGuzoeGp4+vZib4L+FXgPQvX/RzwibIsf1EI8XPz//8scBtw+fzyfOAd83//TqQj\nw/d98jzHsiw8z0PTtLrUGagnXkVRBGXJ8vIyw+EQ3/exTYvJZIJpVe6RIAhQReWeSYtqQyR7iTRN\nI86zerS8jKtVY9/Lundje2sbx7XrsmfT1OebL8jzonbcWJZVC1lSnEiShIMHD+L7PpPJBNveT6/X\nq6djLY52n06nqKpKq9Viur1FFEWIEtptj9X9+1g79TjhdIquVRO7VFSCMJyLSCZ5UZAkOablEkQR\nk8mEyWSKESiohsrVVxwhKhLSZMZLjl3L/V/8K66/+hp2tzbZePABTkcBgT+jSELGu0M0Q2dje4dO\nb5lpGHLkkqPceefnefTcNr1Lr+b7vv9NXHrgJv7ifb/BQKtEO8swCBWI46w+Tmma0m63mUxn6LqO\n5zlMpz6W7SwUcUe02+06sqWqGqqa1TE7RFV83Wq1mEyqLiDXdWu31Ww2w7IsdnZ2arFwPB7TbrcZ\njUa1g0oWVMuepTiO6whgGIa4rkuy0Ds1GAwIo7R2nHU6HQQZQRBQYOK0PEqUyk1VFHidNgoFuaLR\n67TYmc5wHAfd6VIIH8P0+PNPfpQDK11uveXlWIrFdBqiW+oFkZ9vkG/72mx4apGijxSEkiRhOp0y\nnU7rKYfytQuoHYG2bV8Qs5XOtWodek/lj/Q/Cu+iWZsNDXuRd9GszYaGvci7aNZmQ8NTwt8rCJVl\n+ZdCiIufcPXtwHfOP3438OdUC/R24D1ltTv5GyFEVwixWpblub/reyxOrpL9F+c7bsq636csSzzP\nQ1EUdodDHNOi3W4TxzGhH1QxJ/X8BC1E5f6Ig6pnyJoXP6uqioqoI2CKEJRKFcMq5jEMNVcv6OrJ\nsgzHsebChVp3E8mSa6hiHa7roml63WckBS7ZdyNHxkuhy3XderOWJEndheR5HpNxiGtbBP4EQUGR\n58RBiGG1UXVzPupdQ9VKHM2ZizAxAhXLMHHUSmjIowmjnU3yPGV3NOTLX/wCJ++/mzOn1zDyiHbb\no8hybMckCacowmV1dRnF9Nh35BAf+/ifMk0tjr3wpdz0itdTlBHHT62Rlko1iUsRzMY7OI5DUcxq\nt5dEPueGYaDrau32MgyVNIvPx93y8zE4Wf4s+43yvOo6qgq/q+PheR5xHNeRvSiKmM2q79/r9dje\n3q4FocVY3/y8rqOGsjg7CAJsr4Wj62h6Vcwtp6OVakleVPHBIi/QVIMkyymEQhAHWIZNnKVgmnQ6\nHc5un8KPQtqWwJ8FoJYkEehOSsuz0CKNNC9qIeyb4clYmw1PLfL1Qr5mpGl6QXwsiiLiOL5AENK0\nKh4qC/Xl1y9OQGz49tKszYaGvUmzNhsa9ibN2mxoeOr4ZjuE9i0sunVg3/zjg8Dphdutza/7WwtU\nCPFW4K0ArqnU07+kuaYSwgAAIABJREFUs0RulNM0ZTqdVu4fw64nXgEMBgO2trYqJ0lRsrGxQ3vZ\nq/szlLnoY1kWURTVwoTsAKq6dWBeyVNtquZiUpqmc5dIUBdIl2VJlmYYhjrvtalG0QtDYJom/mxW\nxdp0DcuyGI1GZFnGyspKHSlzXbeekibfvTcMo55GppsGo/GU9sDhzPYuWTBGLWJOP/YQFx85TJmF\njKcZK8uDSkiKEzzTwjR11k6f4q8+cye72zvsjnYosy00RWWl08NVNZYHPR5//ASHjxzk9On7ObQ0\noC00NMMkyVJGUx+v3SIRKnc9/AhfefQUz73xhfzYz/9rNqY24zBlOwZd6CSRoLN6CdHaV1gaDCj8\nEYZROQ/yIkPTLDRNY+r7CAWEUglDjuPUU7+yLEPTtNrR489CyrLEtm0MQ9TnweKkt6os16jFOOku\n2r9/P9vb2xeUfpumiWVZpGleC40S2fWkKErt7mq32+QIKCvhaHl5eX5OKmRZBGVOy/NIMwU/U9ge\njUmzgkGnT0EKZHXZ+eGVIyRJhtqzOXdiwvbaSQ6tDHAHLttnHuVA/xmYmktaDi8YG/4t4Fu6No8c\nOfKtfGwN3yCLnUFhGBJF0QXxMd/369c2YC666rXwI9eYfI2J4/iCjrCGJ5VmbTY07E2atdnQsDdp\n1mZDw5PAP7hUuizLUghR/v23/Ftf91vAbwEstfQSoNVq4ThO3ZEhy1BlubSuV2XIZVly5MgRHn74\nYQ4cOEAURei6zsUXH2IUTup3ximqDZDhuNWmP6nG1o9GI9rtdv1OehzHLO1bIQxDdqPRBTGLKIqq\nwmTXJQx9NOV8+XUVJYuYTqe0Wq26sDhJEo4cOcL62XO1ACSFEMdxmE6n2LYNVO/ee55HnudkWUbg\nh6zs288DjzzCSn+FO973+7iey7kTD3Pj9c8kCjTSPGE6XMOfzji7dgp/MmXt5OP0Wm1EkdPXoCgD\n6GroQuGS/R2Ga2fxNwOuOrxKocGBfX1iJSMoOmSZwGkvcXLzFI88doYDFx3l1jf/NMeClCBOeTTQ\nyTMDbJccgVAEpeFy9Jrncefxe1C3R3TyMUrHoCRHiGqse56naJpCnM7LmEWJH8zqrqgsi3A9hzNn\nztROr7JM8Lx2LfR1ex02Nzfnwk1V9j0ejzFNsxYMfd+ve1PSNCXPc86ePUu326Xb7fL446fqEdyy\ngFo6jBYn1iVhQKlUjy1OfNrtdnVMVQXHcYimu9VGW1RCk25GzKKEpGUyHe6wf6lPlhWE0QyRKQx3\ndzhw9HKmScH9D6wx2R3x02/7EU5sfIYyKSDTKfW/PbntW8W3Ym0eO3bsG/76hm8NeZ7XpdFSGIrj\nmDAMCYKAaB4P9X2/jh3K+CpQxyMty6rFT+kWktGyhqeGZm02NOxNmrXZ0LA3adZmQ8O3j29WENqQ\n1jwhxCqwOb/+DHB44XaH5tf9nchJVmEYApU7I5x35FQRLI1+v894NK37L5IkYd++fWxtbdHtdnEc\nh+FwiGqo551AVOveMIyqVHq+KXIcB13XsUyzHhcvo0eacj6qVhRFLTJYxvlNlpwcBlUvkS4qoWJp\naYmtrS1WV/axu7tbO4s0TUNVqp9LTgeCKuIk+4Z0Xa+EJdclSRI0TaPt2DzvhmsJ44iTjx3ngXu/\nxIkTJ/Cnw0pEcR2KPKfneXRsFVvJCYIJjmVjiwyj5VEmGdPZpIqoIQiiiPEkRHMshpMZh664ni/e\n9SV2HjqDu7TK637oe7HbXdZnCYniQktnnJm0FYVZEFAqAs01yUtBXCgYbgfDERgL047KMseynGoT\nqipAwWw2YXX1YD0mu4rFWQRBQL/fR9O0uegWk+d5fZyjKMJ13Tr6FYYhaRrjui7nzp1jeXm5ngBn\n2zabm5usrq7WLjIp6MnnfjAY1GKR7F4xDIPZbIZjGuQIkoVI3+7uLubSgCCIcG2b2WRKq22xPdxm\nZeVg5S5TEnqDJRRNoBRVeW97qcWXvvRpWgccLrvqKu6+7x6uv/pqRBHTbWtkfomgKrMej8ff3Cr8\n6nxL12bDU4d0uknXW1FUEUMpHst+IVksDdR9a9JdJ28rJ/At3mcjCD3pNGuzoWFv0qzNhoa9SbM2\n9xDyb8nFyd/NsJJ/HCjf5Nf9MfBD849/CPjgwvU/KCpuBMbfSJ5TCjFSHJAbeTkKvtPpEAQB4/GY\nLMuwLAvLstjd3cXzvMq1oevVmPQkqUWlKIrq+5XRoTLL5300KqqikMUJ5AWWZaEpKrpauX+63S5A\n/VjgfEGrjGBIQUI6leI4piiKeVwprd/R930f27YrcWs8rvtx0jQliqpy5YIqstZtuWThFKOIuXh1\nCZH4fOyO/5eTDz9AtHWaJbOkq+bscxQIdumbJbPt03TNEpMQJRlTJjkKGtM4x1dMzswSdkqL1kXP\non3kah7ZSnj/Xz/C1a96M6/9yf+Ni256NRNzP5tFh1DtkSkdcuFRYGLkIT29YHT2MaLpsOro8TNo\n7ePcOCYuFILAp9vtzMvAExQFSipxrnIr5BiGVo/FlsKdjI3J46xp2gUdQvL5W4x46bpOq9Wadzs5\nWJbFbDaj2+3Wri3psJDHyXEcgiA47/yZH1cpQMnb5nmOaZpMp9P6fh3HqYSedpsomJGmOVs722zv\njhhNA0rFYDKZVb1QtkUe5wyWupw49zjTLOdL957gWVdcwaAl6DoJKgJRVKKVZVnf5DL8qnxb1mbD\nk88TxSD5i3ixS0ie6+94xzsYjUa1c0gKrzJy+cTL4i/zhieNZm02NOxNmrXZ0LA3adbmU4zcx47H\nY4bDIbu7uwyHwwsu4/GY2WzW9FQ+jfl6xs7/d6pCryUhxBrwb4BfBN4nhPgR4CTwxvnNP0o1AvAR\nqjGAP/x1PQpRvbO9OGpexrKEEHVkzC/CejLUZDLB1HS63W49cnxlZYWoTFhbW6scIkXVBRTN9z6a\nptX9NSpVx1BZlCi6hjaPV4i0JErieeyscqSYpsnu7m7tOtE0DQ0Fy7KrWFleuVDKuQhkmmYlbqha\nvfEKg1lVFD2Z1I4lOfXHNE3iuPqeiqhGrLu2yWw2Y6XfJUl8lrtVjCoJEwrLxPM8yrykVARBGJPm\nGZ3BgNF0wmw2Y/+hQ+z4YLc8hkFM0R4w1QK2pyVbX3iUK696Ji99w08y1DsEQmG04yOsFkLVMFUV\nQYStCaLpjHu/fBcHnnUpF19yhK3Hdlh2DjLa3cSw21xx3Y389f93lsOujakIZrMZrucwm/qV02ne\nb5TnVUzLNE2KglpQ0+fRFenwMYyS2SyoC7iLoqiOaxTR6/Xmroiwngy2ubnJvn37MAyjvk4Kc1IE\nHAwGTCYThBAkSTLvIbIYj8f1bZIkwXEcRtMZutthMhyR53klMnlu5SBTSzSh1D1H6BbbowmJH+Na\nOrpadUdFWY6JwrOvvYo7/uZjPL4z5JprngN5BOkYQ51RZBFZkqO637yq/qSszYanBW9605ue6ofQ\nsECzNhsa9ibN2mxo2Js0a3PvEQQBQRDUjnQ5bEe+qQ7UPZVywq1M4cg9c8PTg69nytjX2mm87Kvc\ntgT+12/0QQhELf7Ik2xxwhecdw/JctQsTRG6UU/mcl2XIAgw23Y9aSdPs/rr8jxHnYsEVZ9NVTid\n5zmqqJwi6bzIetGpVBRVKXWWVM6gMp8vhIJ6uo+MhmVzZ4kUtjRFrd0wqqrWopfsrAmCANd1cRzn\nfCdRmlDOp59pqkBQQpYRBT6qgKIsEaqBHybzkmYbp92rXDCFoNQN7E6XBIHIFAQGfhIxTSJ2g4T+\nwUO87jW3oJsOW5u7hHmEbTtYloEtVCY7O2iuw8DUuOvOT5GGIS+78bk8/7qrSJKIwytdVleXiM/u\nkKsahtHGafWJ801cvXJVaZqGpqukqQAKVLV6UZAFtzLWsnh84zgmd/L6tmEY1hZEOcUtz/P6vJAO\nLF3X64hhWZb195curizLaLWqzh8ZSZTnQ3V8i7mjKQNdq/un5PHI0gjbrsrMNdOA+WQwVTXA0Emy\njLJI8GcBfU8jLzKiKMYsFSzLQDU0NtZ2WO1ex+5wG8o2apmSxlXETvkHFEo/GWuzYe8g14t0TUp3\n3eIvXemwk1MaF9dYw5NHszYbGvYmzdpsaNibNGtzb7E41EQmWb6WICT3VGI+NbwoikYQeprxDy6V\n/lYgTyC5gZedQnC+WFVGv+quDCFYW1vj2LFj+L5fiwKqU7mGqq6Z+aSwWeVWMefOnDzPMSybKIoq\ngYnzo5ntubIZpQlJnGDZVc+Q4zhMJiMUBEUBjuHNxYYW4TisH2e322V7Y7Oahra0XBdPSwFoeXm5\nctG4bt0zJAWlJEkYj8domka37aDrGqE/ZWVlhXOb59i3ssrueESpyPHrGuMgw3V1VFXD63TYWT+H\n57UpDYPh8XOcOrdD99LLecGLXkyq6kwxOTVOsG2TUutiWyFZGqEJBVvX2Dr5IPeeOs0/eeUt/Pgb\nbqOIApQ8JhlvkkQhN157FX/4F3/JZdffyJlpQUjJjS96KfHxz5CsP0S73a57mgQKcZZeIOzI6J3c\n1C4KfsDcXeXTX1piOp3WziAZjXEcB03TasdPp9MhyzJ2d3dZWVmpX6TSNEXXdbIsY3Nzk36/X8fQ\nFEVha2uLgwcPMplMaufS5uYmK6sHOLO1S6fTxQ9iZvPJcePxmJXeIYZb29XP4bbI1UoRpxAMxyO6\n3qB6wYxCVruHGeo+115/DZnyKFsnhjx+6mFe+rJldDdH1RQodJJ5DKih4YnIXLYUuBdL9k3TpCxL\nXNcF+Ful0vJfOXVMCkVSLGry3g0NDQ0NDQ0NDU9kNpuRJAnT6ZTpdEqWZYRhWFeiyMm28s1z0zTr\nug+Z9AHqPtiGvc+eEISyLLtgFHJVOOzVjho5WtnzPBRRbYomkwmdTovpZFQ7bkpsotkU27JIw5Ll\nQY8w9FFUyLKcJIvRjHn/jyJQdI2sLNCVqtDZ8zzCIKDVakFZgiJIsrkLSLPRLJcyyVAUDVHkeLpO\nNpnQ99rMZjPatkschNV9KxqZKDEsA88yKOdiyHQ6BSrBotPpMBqNCMPzUbjuUp88TRCaimFobG3v\nYHs2puux6/tkQiVPJlh6FV3SFYGhexiWx/oo555HfZIy4qYXvYyjP/D9lShSpGyFAQUlGQWtjsdk\nNkKoChcZHT755x8nCabcftvLePULno1583Ukccgw8vE8j1bnIO/94J/xnKsv57Ai2Nk6y/J4SKot\nMSkVdEPhi/cf56YlmzxTyDSDCB295ZCON1HzEEczyVBRhIlthSiCyn1jtaq4mGlS5AmBP6LTNolC\nH00X841rgWnqDIeVIAQKqqqjKFotpPX7S2RZwWw2w7KseUl4dc7kmkaqKOi2Q56nhGmC224xDaaU\nSont2JRZTqe/TFbAylIPoamYNizt6xGkIV5nmVNbAbY9wFYDUBTW1k9ShFMuv/JKHjn+EIWwIYkZ\nWB6KlqKmCdqs5MXHbuS/3H0HW0HBL/3Onbz9x1/P9UfOcu7MBzhbPAfN+JZ2CDX8I0FVVQzDqH+5\nShHItm2SJKlFHXkb+bGu67iui23bFwhDi+JQIwg1NDQ0NDQ0NDQsEkURvu8Tx3EtCCVJUndUynQN\nUE8Al4kN+eakrE7RNO1b3ZPa8G3imy2V/paiKEpdziy7YPIF54QsV43jqitHTs3pdDpo8xNRnpSO\n49SOHjnKXJ6UMgYmxRf5rrkcQ+77fr250jSNIjsf55F9P9LVIu930eEio0wyxiQfv7x/+RgWIxzS\nNeP7/nwUe1YvHlVV0TWT8WiK67TI0hJdN4mFg+otYXT2ESo2X35sjb++9yE+8PFPcOUNz+ONP/Qj\nXP/CF6F5JmGZMJpN0Q0Vz7VZ7nYgCuhbJkaS8JEPfoDn3XAt//P3vpHnPecYH/3wRzh86BDdbn9e\n0JzwH/+P/8RffOqT/Mdf+AX82YzV/Ss8evwhkqgS8YIopFQNDMskz1Mcx0ZTQdeV+jimRfWvjLrI\n2Jh8fkyz6kySx1sWSC9GYzzPq91UlmXV7ipd17HtyvHlOA62bdfPeVEU2LpGEvi4jkGWxggKLF1D\nocDQlOpfU6PIUhSqku8kjPBchySOoCjRVUHLcxB5Rpnl9RQyKey5rovv+6CoaKaFUKtzw7Ft2q7L\nkQP70ASsr28zCSLGYY7T3zcfa//tXV8NT1+e6BKSr1lSILIsq85sy3N/UQRa/JrGHdTQ0NDQ0NDQ\n0PC1kINL5PASeZHxsSiKCMOwvkRRVH9u8bZy2m1TNP30YE84hGTECKg7XcqyrJVGKbx4nldPyPH9\ngE1luxZpAt9nZWUFRYE4jPCnMyJVpe21KuFAVOKEalRTxnw/vGCMs5wyJTf5juOgxhGiKMgpSOK4\n+v5xdWInWQpzl1HJ+Y1bEkf1Bkw6maRlbjFPaRhG7YTyfb/OZ+pG9TW6phDNZgwGK5w5c4bBikpZ\nGEwnCfftxITRFlN/xsGjR7nppW/gJS99Oes7YwphkSN4dHtIZEKcBTgtA0fXIc3Qgoi7/uTjtByX\nN7z2tbzkx3+UOPTJkpgTDz/INc++mo/88Ue47oYb+Oc/8/O85a0/xtve9naGoxGf/tTHWe73+M4X\nvohfe897OfDMFzIej+kbBsduvhVOfxaKnCAckYYhpufS7niEQUyKgmLomI5JFkcIIS54oZAl0opS\nHac0TbFtG13X634gwzDqaWyaprG+vk6/3593KTlMp1N0XSdNU9rtNkEQkGUZ+5bbbGxsoBltWlZ1\nXKLIr8un8yTCsix6rTa7kzFBVJVT91yXnTwnHO+y5LkkSYyuqFiWiZ+m2IaKoasYpsblV17B8fvu\no3XkIvwkJ458wiLmsoMH+fJDD/NPXvkyRmf/kPE04ld++938i3/1z/CDKSgxRfHN9wg1/ONGuibl\neHlZwA7VL23DMOrpeEAt+ti2jeu6GIZRi0WmaWLbdt2T1dDQ0NDQ0NDQ0ADU0TAp9ARBUDuEptNp\nva+q61vmb+jLgT1A/XeqaZr137BNn9DeZ0/sDIqyEnnkidZutwHqseSydHk0nwrVabdZPbhKHEYI\nTUUVCo7romoaSRzSbrfrWIVULhc3Ufm8tFnGJ9I0rTdSs9mMdrtdPQ63Ems0RSPJqob1KE1wFAvX\nrSZP2bZNUuS16yXLMkyjuk/ZkyMXxmw2w7btqkx47n5pt9ucOXOm7t6J45AsT9BUk7KEshD0eyus\nn9tBKBb33X+cv9lS+bf//t9x9XOuJzd0jp9Z42QESnuJ0WiMgsBbGlBONun3+uxurvPFz91D7M94\n5sUX89P/y4+yefYsK67OeLyJa5jorsV0mvKiF9zEHX/8QcpS4Tte+GJ++Zd/hZe/7EFuueVFfNfL\nX8Z06tNq9Xndq17B4+MJrulSihy1u48HP3uOyy89ij/apN+xyPME8ow4LzFMA7Scs2fPcGi1j6Io\n9SZWOoJarRZBENSOG1VVabVarK+v18/v4sY4TVMmkwndbpfxeEyv12M8Hteiodwsh/6UbtsjjkM0\nBdI4RBTUjizHcSjLkslkRhylTMcz+v0+KAorgyVGw12i2RTLqFwXpq6TlCXddovhZMLOzhae16a7\ntMyZrW0uP3oJ0XQX0zSJxmOuu+wo57Zm/ML//nZ++53/jQfPbvEr7/ojXvGa20FN2NkdPmVrr2Fv\nIwXvNE3J85w4jgHq89+yLNI0rdeSdEOapllPevA8D9d1a0GooaGhoaGhoaGhQSL3YnKfFcfxBeLQ\ndDqtR8sv/i0qB+9YllX//VmW5QX7tSemYxr2HnsiMqYqai3+ALU7SMavZCRIjqDP5w3nXrtVCS5U\n49c3NzeJ/ABD1ciTlLbrsX95BdswUUowVI0izXCtynkym80oiqIajz5vSZft6WVZkmcZuqZBXmDq\nBlmW4XleFcewTNI8J5xPGpNjzmXcq4pbVWXSWZaRJEm9eZNjzqVo1W632d3dZTwe0+l0cByn6jEC\nJpMJS0srjMdVf84znvEMDOB3fvO3yJKcKM3w+n2iomAaTNGUlCIZUwRbfOb9d3D8zr/i2asH+Z7b\nvos33f5q1DLFaWm0+g4+Mxy1RC1iyjSi7TqMJzO+69ZX0Gq1eN3rXse73/ku3vrWt9LvdciyhDTN\nSeOEZ15ylPu+8FcE4x0Mw2Q3VhC9Azy4vk0GdFyb8fY6luXgtnuoWqUUe3Y1/ci2bVqtVh0Jy7KM\nbrfLZDKZj5836rJnKdyoqsrS0lLtqDpw4ED9YpSmKRsbG7iui6IotbiUZRlbO7ug6JSKju11SNHQ\nHBfFdClUk0lUEOYqRquH7nUw2j02dqec29wlFypOuwuaidAtVN0iL6tuo2q6nUORZ8wmYy6//FJ2\npxO2dkdMoxlJlqKjEI1n2KTsnn2EN7725Rw6sAKqyx9/6BMYlsVoHpVraPhqqKqK67q0Wi3a7Tad\nTodOp0O326XX69Hr9ej3+/Wl1+vR7Xbr27Xb7VoUauJiDQ0NDQ0NDQ0Ni0jDhExpLIpD0i00mUwY\nj8cMh0OGwyGj0YjJZEIQBHXptIyLyTcy5cCohr3NnhCEpHIoxQE5dUxe5Fh5w7awLKsWhaSFTU4L\nS4uq+ycMw9rCJruF5Lh6GVWSYtNiRE26hmREzdT0egS97B9afCc+LwuipFJJF0c8y9F7mqYRBEH9\nPRana0nRSd6XfOc+yzJ6vR7D4ZBDhw7heR5BMKPdrvpzer0etsgYbZ3j/nvvIktj0jhEFVDmMRY5\n8XibT330g/zo972JH/v+H+TIyjJ5GLC6vMQlRy8iThKCJCCnRKsV24JCzAvCLIuHjx9HCEGappx8\n/LHq2GgGluNyZm2Nj330w5w9eQLH0EmiENW08fYfYpopGI7LzvYmbddDCBVF6Ci6gaGrKEWBYRi0\nWq26G0oKY1Jwkz+nqqp15E72oURRVB8L2aMShmEtyMm43mg0qp/rwfIB/CQnQyUuVFTDYXsSgm5j\nt5dQbY9JlHJ2a5cwg83dMdtjn87yPkyvg+60CNKcII4J0pRS1UGoFIi5o6mFaRlMpmNmswmmY+O6\n9rxLSkOUCmWekYRj0njCzTc+l0cfeJBBp80DDz3ExRcffdLXXMPTC1kKLQVSy7Lqi23bF1zk9fK2\ni6XSDQ0NDQ0NDQ0NDYvIPdnipSzLWiSS4o6sOJGXRSEpz/OveT8Ne5u9ERmbd/lIQUjGuGRUQgo6\nQgjGs6onxjaqXKKiqcwCnzAMOXToEHqWM5lMcOcdMqZu0Ot0cSybzc3NSjDyAwpVpdPp1CPg47nT\nB6i7hExTQ0VQFgVZWqAZOkVZkoocR1NRda1uXJfl1GpZkOU5s9mMTqfD9s4OnU4HdR4dkwtlcUqQ\npmkMBgO2trZYWzvL8mBpLmwFuF5VltwftNjc2mJl/z4u29/l+LlzvOc3f5W3/5//CafloYicnbOn\nee4LjtF7xlFefOVFuHQ5cf+92J7Nvl6PJAy5+MhFfPazn+XaG67H96e0dZMyLygpEUJB6Bo7o13u\nvudLXPWMKwn9Ge2WRRgl3H333cRhxO2vfjX7Vg6yb/8hIh0m4Qx7+TCtS29gY5phtVOC7TWOrB5k\nfRzjR6BpOpamkEYTfL/FxsYG7Xab6XTK9vY2R44cIUkSer0ea2trLA96CCEYDoe4rkun0yEIAlRV\nZf/+/eR5ThRFaJrG1tYW/X6/FgPTtBp13+v1GI1GDFOVOM7oDpY4sb7JcDjkc3fdw6WXXc7y8j6e\nfc01HHn2fjTNQFEUnq1WccW1M48z3NgkKHKCqGC11aZwWsRpRpwmaLqK5zmE/rSKMrYGOJZOloRo\nWkocZ6haC1XTMI2U/at91rd3wJ/xT3/wtfz279zBT/2bt/MH73v/U7b2Gp4+eJ5Hnufouo5pmvW7\nOIvvvMgoqryNdFc2zqCGhoaGhoaGhoavhjQ/LF4WRR0pCCVJwjvf+U7e+MY31ikYKQY9UQRavDTs\nbfaEIATViSjjVNLVA5VYNJ1OqwlVmlqPThaaimc7hEFQ9/985f77uHh5H57nMRwOcRwH3/frqVNy\nupiiKJRzZ4zMPsqiVelUMU2zLjbWNI0gicnKShSiKImTBMutOjrSOKk7bqqspKjzk47jVF0fhoFl\nWdXI+3m0TE4ek44lIQQrK/uJw4BOu8X2+ll6vR6dTofT59ZJM5/77j/Dzc9/MY/90Yd56P4TrCwP\n2Epy4jjhqiuuYGvtLK3VFayiQO+afOG+u/iTP/kTTp18nO/57tfzxu99Axsn15ms7tJrdyjVkkII\nSqGiqBqFEIxmU2571SsYjbZ5/MSjnDt9ipe/+vW85JZbGW5t489CYn/GS19wjN/9ww9x2XXHOJuk\nTFKDy59zMyf+4g+4ur+PkydO0t1/GXauIpQSRwen5ZHMJ4bJovB2u105vOabW/n8O45DURT1+EJZ\nWhZFEUVR0O12mc1mdWl3r9dje3sbwzDodDqMx2OSJOH49ogsy/jz93+Y59/4HTzz6uv5lZ/4eYSq\nEcUpSZaT5yVJFJCWJaqmoBkq++0WFz9DQaEkC3weuPdeHt/YoK/qmKaCrlkUBTiWSZYn5FnE4UP7\nmU13MDs6uu5SYlCWoJsOO5tnsAyVo0smp08N+S//8s38xC/93zzrmquBE0/Jumt4eqGqKp7nYVlW\nLQjJfjQ4X8AvBaGGhoaGhoaGhoaGv4vFpMtiouWJE58Nw+CHf/iHAepUhkz0LN7+iffVsLfZE5Ex\nuPCkkqJJWZZ1eWoQBJX4kme1AyRJErR5xxBUThs5Dh64QK2U/UNysyS/jxR+pHtHlh2XZYkoQRXn\nT+7Fk14qolJBXRR1pMAURVF9fzK+JsfRSyFI3p+clBXHcR2D8jwPx7UIwhm6oeJ6FooCrmXj2Tqa\nCo8+coIkSfC8NpQKd991F3maIUrBr7/rt/nt9/wuO5Nd3v177+ELd9+Fo9s8+8pn8dgDj6AVkJcl\nAhWhaKAqFGXeGsh0AAAgAElEQVTJFVdcwXQ65eMf+xiizPmBH/h+4iRle2cXoVZT0HrtDhvnznJm\n7TSb59YrwSYXoFnM/JgsqyJ5WVZULyKqgShKdAFRFNVimxSC5PGTyHifZVm1U8w0TYqiIAzDumBX\nCnbyc2VZYts20+kUgDAMeeDRE3zmc1/guue+gJ/5l/+a217z3YxnIX5SEOaCqFDw05xCM3G6fVTL\noVA0ClUlSgvCJENoFtfe8Fxuftn/hG46+EHELPARQhCG4fz4Qq/fYWdnh7yoztG8gCQDUCjLHM8x\nsTUwSVATH03TOHVy7Uldaw1Pf+Q5/9XiYrZtN2JQQ0NDQ0NDQ0PD18UTBSAp6ixWuMgJ2ou1BYt7\nY1n78tXup2FvsycEISEEaVJQ5GBbLsW8ZybLEhzHQlUFlmVQ7kYYscDMVIxcJQ0zDM2i110ijFJ6\n/WUUy0GxLHorK6iWRSZK8rJA1RUs20DTBbqhUGYpeRITBz6DbgddEaiUaAIMVSGNQtBgFkwRosRU\nFZLpFCMvUNIUQxEUaYKiQEqBUKtx9kpWYKNio6KVgjLNMA2DsqiEIN+fEscBRRmjqDmQo+vVNC3L\ndFg7u06aFxRZyqDXgbzAtWxcy8W0Wthuj43RAxy7/igHe/D7v/6rqIkgjUo2xzEYPT77+ftpufs5\n/lef5+47P8s7/vN/Ji8zNne22Y0Drr7xGIEo0FttJn6G7XbodfqcO3mS977n3XzmE3/GweVlbMvl\nyquuZX1rgqnlmGqCXgS4pkaYxES54Mjhizh78lHE7mm8Vp+NnRlicBHbqo2+tB/LijHLHdRihK8Y\nDJ2LEBjs33eYOCrIcxgMVtjc3Kp7nvbv389kMqnPg/X1dTRNqx1fsox6d3eXNFI5eOBiNrY3MFyV\n9v42SrdD2upx1+mI3/uTR7jlNbfz7/+vX+Kf/ezPsrG7w/Zoh7SIKYsQpQywtQRDhGgiIwunxLMJ\nIs1wDQchdAoMInRGmcIMg97Nt2JecQNbikcubFzdxUgF5TikazpoCKazNtNQIRcJQq/cZeHMRFX2\no5krXPqsZzEMp/z4q27mYjt+qpdgw9MUVVXrfiDpnmziYQ0NDQ0NDQ0NDV8vi8KOrGpZ7K10HKce\nbCKHmHS7XdrtNo7j1G9GyroC+feopmkXvOHfsDfZE0eoLEuiKMKyTOI4xrINJpMJpqkzHA4ZDAbM\nZjM0VaWYVePC+/0+w9Godmd0Op3KOZJmrK+v02m365O7cgkJWq0W+dxhZBhG7cwRQtSj8TRNq8c4\nSzeRtMr1ej2CIKhLoaUK6nkekR9Q5gVtx60dTkDtblnqdAmjKr5WllWHkK7rjMdjXNdjOBzR8jp0\nui1OnjzBZZdcxGg6QSkhKwuyosSyDA4eWmW4tcnRSy4nLXTe+4kv8q8GfdbHVfnyFTc+n4+9//18\nx3XX8BM/+ZPc/orb2H/4ID/1M2/n93//94miiMlkwitf+QrOnTrDxnCDT3/60ywtLXHLLbfQ6/VY\nWVkhCAKOHTvGn/7pn3LLLbcAICirLqSihKJANQy++/Wv4zf+6zvpd7ucDkMG/SVWrriK+OEd2ksd\nlHiGFvtousGuH2BaDoUQHD9+nOXlZUzTrBw18/ypVJPPnTuH53n19LGTJ09y6NAhut1uXSIdRRGp\n7bO5MUVRNDY3Rqi2w/1fuZfjj55mZ5Lx7t/7f1B7OkmSMJvNcByHJEkAaocXVA61MKwia9KB1O/3\n62iOLFLL85yiDNm3b5nDyz3OPagxSaaUuYqmaET+jEMH93Py7Cb24YOkeU6QRFiaSrvX5aGHHsJx\nW6RFSavjUToqjtW07zc0NDQ0NDQ0NDQ0PPnIJI0UdWTiQu6Pi6KoEzIy2VH17VYVH4Zh1G71Jw41\naRxCe589IQjB+clcaZoilHLeG2TXEStFUbA9h9F0TBxHhGGAaRmMt8YsLS2xubmJUBU6touiUPdq\naJpKnuVAgTl/B70oCqD6/GIpq4yoyYJrWWgtBaDFjKSMhgkhUOcF1/I2ErXI54uoEjqiKMJ1bQzD\nRKRlHW2Tk9SSJKHtekxHu1VkzDJRDZXAj1BNC6Eo2KqOY5sE0wmubSKAOJiiiQJ/NiHWWhy6+Ail\nYXD1tdfwa7/xDnTbIkxStra22L9/P3EQomkaf/GXf45uG9x66610Oh02NzexLIsoikiShNXV1Xpx\nB0mAoggEgkpCqaJbjMc865lXYZsmSq4QpQmr7S7nZj6H9vURBAhRoqoCipSyyC6YFmbMnzs5Wl5O\nC/M8j+l0WncNycliuq4zGo3qY5LEAY7bIgpT/Chn2VvmoeOnePiRk9z66jeg2xY7u9t1/CwMw+qM\nm59X8r4rp4XA9/3aIrn4ArZYsJanAbMowNE0equHWH/0fspSwVFVFKFimpUyHscxmlmdb2maYdsm\nRZGhGjpxWMXdoiLg0GofGH+7FldDQ0NDQ0NDQ0NDQ8PXRLp55H5rsY9SVnPI/luo9lKLws+iO0je\nT+Naf3qwJyJjlTBg1CeN3LSHYUir1arcQZpGURQs71thaWW5HgG/srzMbDrFsiw6rTZQFUXLk1ae\nmNLl02q16PV6c1GoGvNeCTVuLfbIEedxHBPHca2ELgoIslhLuowMo5pQJbuEpPNEOl9khxBQ/5yL\nZda9Xg/f9zE0laMXX0KSpKCo2I5HGCfkeUEaJ0SBTxIEmAocPbifqw56/Lf/+lt0HJ1uzyMuci6/\n9ho+f//9zKKY4WRKXsJwOOTw4cN89CMf4Y477uDhhx/m4qMX8ZrXvIaiKNjd3a3FF9/3646kW265\npXZOqYpe9SApJSiCXr9LlsS8+EXfwQNfuRfH0BkPd4mFwSgzObExwU8KdE3B0EoGXRfyCFVVGQwG\nQKUu9/t9XNdlMpnUDqHV1VU2NjbqY3fppZeSpun5UvCyZHl5mTSbEcchKytHMIw+d3zoMwSJw00v\nfgU//k9/ilIrcRyn7qKSFkYpDMqRijJ6s9j7NJvNasFQFvimaYopUtrtNrmqMhEW/cuupnf0mZwZ\nzfCTCMNU6A66nNs4RykK3JaDbhqEccjyvhWECqUoOLt+BqUMuPZZFz8Jq6yhoaGhoaGhoaGhoeGr\nY9s2juPgOA6u6+J5Hq1Wi06nQ7fbpdfr1ZExGRvrdDq02208z8N1XVzXrWNktm0/1T9Sw9fBnnAI\nKUrlyJhOJ1XJcBYzGAwoy5zpdFq7NTRDxbasyt0hIA1SLMvE8/bX4o1pOwhR4tg2ZVkShiGmpmMY\n+lwUqJxBUsmUrh7btkmSpB53X5aVkDCZTMiyDM/z6kxlGIaUZVkLBabjUoiCJE3wCx/HcSoBpcjJ\nikr0OXnyJKsH9tWqaVEUlQtmUjlSJpMJF198MVE8Y2dnh+FwSLfbZWd3wmB5hfX19frxLvV7bG+u\nk0QJNz/3Ot79vvdyw3OvY3DpZRiGSdfx+MyXvsy1Vx1lZXWVT37yk6ydPsVll13G7be/mvHuiNls\nxnd+582cPH0Gz/MoyxLfrx67VH+lsnvHHXfw6ttfRVkUFEUOQqAICIIZJ9fWufvuu7nvri/wvIuu\nYtDtEGQRVx57EV+688/QBoIVIydPQwaDJbaHQ9Ikp91ukyQJvu/jui623WZra5PRaFQ5pnSViy66\nqHYrua7L9vZ2/UIzm83qcdqlUEhKnS/ff4IwtfjlX/01lg6usrWzhh9OybKsnliWpilCqOi6SpYV\ngDJ3kymUZUGv1yNJknmE0aptktIimSQJ0XQLb7Af022RRCXDUcDq0jKl2yEvfbIyZ2llmd3dXYSm\nUwIZJWmSkBcFQRSzsv8Ajz32GO2Wy4mHH3sql19DQ0NDQ0NDQ0NDw//gyCnYMrEBlXnCMAziOK5H\n0EPlEJJDTjRNw7ZtWq0WhmHgui6WZT2VP0rDN8CecAhBFd9xXZc8z+l2u3XXjaIotZsjKwtySnLK\nuuMnz3PIC5IwwlDPW9hkDKjVatVRNNn/I/OOcqJXkiSMRqO6P0h+PgxDut0uKysrcyFBXNAdJGNL\nQD2hrH5MVNY76QLq9Xr19TJ6FsdxHVerSrQzNjc36ylkcRyjaRpJklSl05ZVLTDbwGs5tF2Xiw6t\nEkfwkT/+AP1uG9d1mQY+R44epUDhDz/wR6Rpyvd93/dx8803EwUhhmFg2QbnNje4//77Adje3iYI\nAlRVrV8MwjBciOxVz43QVBzHQbdMPv/5z7N+7gy2qfPKV9zGvkGP2WQXzXBoLx2gvXyIXGh0el2E\ngK2tLdxWpR4XRUG73a6nvE2nU9I0ZTQa1WpyHMfMZjM6nQ5pmtYvNmma1s4t3bLYnU655977+MKX\nvswkCFFNh53tIVlZIESJrlcdQvL5lhdJWZbEcVXsvBjji+O47huSIlmapmjz3ihNN8lLgel6jP2Q\nbn8ZP8lQDZvd8Yg4TUjSlCCOKEuBYZoUBaiKzmg0wXY8/FmMY7e/rauroaGhoaGhoaGhoaHh70MO\nKpHTbOVEscVptosfL35+MULW8PRhTziEgLmYAo7jsLGxQafTqQuAZZYxiHwKckRZnayWUY1uR1Nw\nHYvpdEoYZXS7bVqeB0CWJdi2jRAllCVCVN9LRpTk6PeyLGs1VIo/cF4ssCyLIAhql1AURei6Trfb\nJc7yKmOpG4i8qGNiQhF1ZE1oOUkSM53m6LqG53lsbW1hmZUwZRgW29vbdNutusNoPJnR6vYoshxV\nLVDnjz0uIvbtW2JnZ4Raqrz8xqN84s8+x3/45RYnN4aomsXlz7yW05vneNMP/CBnT55mNvXRVY2V\nlRWOPfcGXvziF/Mv/sXP1VO7pHNJFjbneU6r1UJVVZ7//Ofj2g6ihJOnHuW+++7jwKGD3HTTjSRp\nCapKicanv3w3hy+5lK0gorRMBocvZxkPU+ywcfYkhttCMWyIwfd9dnd36Q+69fO8b98+trervh/X\ndYmiiOFwiGmadDodNK063nLMYRiGpEInLOCeBx9BdVu8/8MfZNefUZYFSglKCaXQ54p2WcfEKqGL\neWSsOi/K8rw4J4vODcOoR9xLsQwKyBXSPIGiEs5MFSynjeIusekHGLqNbjjMghjPsQmjENPUMUyX\nIPUJw4SigM3tMUXRjAhvaGhoaGhoaGhoaHhqkYKQoij1m+GWZZEkyXxQU1HfdrFCRcbN5N634enD\nnhCEyrLENE18f4au63Q6HXzfR1W92i0yGo3w5mKJFCyMeY9QlqR4nlf10QwsNO1C904cxwhRUuR5\nFXkCNN2i0+mQJEndDyPdPNLtI4uBwzCk1+vV4oAUFGRsrCxB1VQQJWmS1p+TzqckSTA0jSSN8H0f\n06wcOq1WizwrGY8ntFrzhWQJdnZ9dNNkGkyZhRFt14NSYTYaEocRg8M9gtRH0wQnH3uYFzznuUyj\ngM/d+WkOXXENeSkYTXy++IXPYjsehiL45Cc+wUc+/CFuedlLuOvzn+PsxjooJbfcckstwshG+cWO\nnclkQr/f52fe9jZe/z3fw0te+iJW9i9TliXjyS69/gqzaYCm5Jx68G5Wem0Ua4XhLGHpyGUcv/OL\nBMU6l1x0Mee2hzj9JSan12m1WgyHwzrW12q5dDrt2v2jiqpYejAY4DhOPYFsOp3WYt1wOOTwVTfx\n6+/+JWJF59/9wi+yOT6LUBVKCkSRQJ6TlEldCC0dQPIYSleXEKJ2DcleKOkKkrExqHqkFNXB90Oy\nIqeMZuhFSpFlpIZKa/kiHn/kOD0lY2nlIKcee4TlJUHXcxhPq/hamGZMpj5ZVpALwaDfezKXW0ND\nQ0NDQ0NDQ0NDw9dEijtZlpEkCUlyfj8lkR2sckBSIwQ9PdkjkTHqUe3SASI7gaSjI4qiyuVRFnWn\nSyUKzaeApRkqVdu5jG3J8me5qZdKpzxZW60Wtm1Xo8Tn/TLy6/I8vyA/KbuF4Hw8TH7NExeHnEgl\nkWrqYtu6LDiW1xdFUT2W4nzxsdBUVEWnEJWo1e/3EUqJ6TogSryWg6YrkOdcfumlfOYvP41hWPPH\nBt3egA996EP0+31OnTrFW97yFt7ylrdw5syZWgQzDIP77ruPdrtdP+/T6bQu2R4Oh3zkIx/hOc95\nDjfddBMPPvhgPY7QdV0ocgJ/yng8ZnV5wMaZ05W4pOpkuWA8CUikC0uohHFSCzGO49T/FkVRO3Kk\nc0vGCOX5AdTijLQi7oxCuoMVXnrLy7npVd+Fbqmg5ShKgaKAJgRFXlIWQCmgFAiU+uPF/8vjKsUg\nKQzJ5+p8XNCmzErKvEAXArXMoMjJsoJSNRFmi6IA07Tx/YDAj0jSnNksYDyZEfgJUZSSJCm6qaNo\ne2YZNjQ0NDQ0NDQ0NDQ0oOv634qKPfEiI2ONGPT0ZU/sRBVFMJvNsOaF0dKZoSgKcVyN5/Y8rypw\nNs1atDl79mxtS5NTvBbFIukIMebj5jVNq09owzBqESSKoro0WopGQK10tlotfN+vY2JyapUUgRan\nX1mWVQtAQoj6e4dhWP8cjuPUzpg8z1leXq7LrU1Np+V6nDu7wdJghZMnT1IWgrIQKAjarseZ9TPM\ngio+d/SSw+xsbnB4dT8f/MCH0RSVJM7odvrccMMN5GVVwP3mN7+Z6667jpMnT3D48GHe+97/zs7O\nDnEcc+7cOdbW1gjDql/oxIkTfOpTn0JVVW586Uu57bbbuPbaa3nfH/xBbSEUQtSj4Q8cOMDBA6t8\nz2tfyUMPfJk8jen2l9jY2eX6G45x+eVX8qV77sFyXNKyZDAY4Ps+eZ6zs7NTR8DG4zGdTofhcHiB\nG2hnZ6ee1CaPtRT+fv0338UkSPmpf/42Hrv3y0zCEVkZUZQxRZ5RzCeISTFv8fx44gUqwSmKojom\nKHuMxuMxiqJUHUY5+H5IkaSoeUoW+hhqJVpN/IjlAxeDohKEMZtbO2xub3Py5BmCMCbPBWEYYRo2\nyyv76Sy1cbvOU7LuGhoaGhoaGhoaGhoa/i5M07xg4pi8eJ5Xl0o3PH35ewUhIcTvCiE2hRBfWbju\n3wohzgghvjS/vGLhcz8vhHhECPGQEOLWr+dBVE4eFd/3qw3/XNCg1FCEwXQSoms2aZyRxhmKohFF\nCS2vw6nTZ8gLEJqOZlqk0ZgyC9GUHF0tKNOYLA4hz6EoUEtQihLygjxJMVQN13bI06yOhP3/7L15\nsCRnfa75fLln1l6nztqr1N3qVksNAjUgoQUJGcmAzGLggsHGG+bawWJ7jO2Za7hmYsaXYK6xr2fm\nYiMMCGGzGQwXI4QQi8SmBRCy1Nq6W7332c+pJSv3bf7Ik6nuGx7bYCw6QvlEVKiqTlUulfVFR716\nf++rGjq6ZeLYLhIy7jgXc+I4JhWQCkAVqJaG0CRUSyHKUoaex5rjgqoTpCCEjEyGIZFnCMUBfhAR\nhBlxrCFJdeqNLnGSoRkqbjAiREE1a9Qsg8gdMtWps3jyCPWaiR+nSEadGjOQ1Vgfelh1DdlZoGEv\n8NILNuPPn0ARESuxy0HP4dkvfCH9+SUaGShhwMOHHueG17yONUcwM3EhQoaff/Ur+cpX7+Abd91J\nfzjisudfwQ0vfgmf+ezn+X//65/x0IFH6U5Ns2nbdgyzhecmTPY2EfhRnsVkrzOwV0iUJq97/a9S\nl1K0yMZSM+TuJr75yBLt85+FlAikldPYo2VmZ9rULIlet0GW+MgixdRVAs9hy6ZZZASdVpdUsRgF\nGXYQYekKbU1mut3E9QRf/84jyL1pXvXGX8P1M0yjiSFM5EQlSxUiFHzVJE484sQjSX3SLCIjRkgg\nJM5yaJEJAj+k2WiRy2+5cyiJU1RFQ5FVshRiJSJWJXxJEKo15MY0amOOSLT44pfv5i1v/yPe9s6b\neeDwMRKlzsLqCFSTVGikskymy8zs3Mz0+Zt47FTKX3/mOz/W4n0q1mZFRcWPTrU2KyrOTaq1WVFx\nblKtzYqKnx7/GofQzcDP/hPP/3mWZZds3L4EIITYC7wOuGjjPe8XQsj/0g6K8apiVKtw1UiShO/7\nZe28JElloJWu63Q6HaIoYjweP+n0yECWFLIUkjhFCAlJUdB1gywDXTOQJeWM9qzc9VE4SIrnz3QA\nFY1f5kaVfZIkCCHK4yqOV5Zl4jguR9YsK3d+yLJcZhPJslyOphUNVkWgdRAEqKqK7/vlyFaapmdl\nHcmyzMryMo1Go6wBLD6DZzzjYu76xp206zXSJCKMYgzL5IcPPIhumSRZyq233sq7/uid/P7v/S5B\n4BEEAd/85jeZn5/nxhtvZHp6mre//e386Z/+Ka997Wt569vexj333APAc5/73PJazc/Pl/lIpmnm\nY2lHnqBVNxnbQ8IwxDBrhAk4QUSS5a1dmirodDpnNX0lSVKOi2VZhqZpOI5TjvwJIfIA6SgiiCOE\npJBmsLC0gmVZXHXVFaRZTJLERFFQXkdZlkGkT96ALEs2RvpyRxAiIyPduJsikSGyPMA7S+LyvyJL\nIU1I46h0goVhWFokjx07xkc+8hG+/vWv0mq12Lm7g9FoobckUs1nHC2htxSsVovzdjyfe+7u89EP\nf4+7fvAQY37sJP6b+XdemxUVFT8WN1OtzYqKc5GbqdZmRcW5yM1Ua7Oi4qfCv+jvyrLsm0KI7f/K\n7b0c+GSWZQFwVAhxGHgucPe/9MZidCvLMprN5kbzlobneWW2UFHXniQJiqoxHA7RdZ21tTXU6emN\ncbMoHxFKc+GiqA8PgoBGrY4b+GXwVZEZUzR+ZUlcjiTlLVu1jXDrfL9hGKIaeU16Joo8Gwjc3MGk\nSPJZ42SKooAQxGmycdwpsqSW+y2yhpIkQdXkMl/I930ajQae55GmaRlsvWXLFubn5/NWK1XjvB3n\nM7YHbN68mWNHT7Jt8jz++0f+mi279zCx60J0q8PYcTm2uEKm6USexx/+/h+g6gYP/uB7LJ9c4srr\nLmf//v3s3/9cFhcXueCCPVx33XX88m/9Fi+77kU0m03e8Y53MDU1xalTp/je977H/v3PZmpqiijK\nm7dc10UIweaJOosr89x5x2387Ot+FcWwCGLY+azLOfb4A1wypdOtKwTA2toalmVhmmYp/kiSRBTl\nAeFHDz+BadXxkzGb5mYYrK8yOTXBaK1PECeM3IDezBY8FSYmOoSRQxR7KHoe3i3LMgKZOE5QgPzb\nkAJpLgqlAomsbBqThCDN8r/FcYaiSIShT5JESBJEUUCWJSiKhBKryLIg1g0+9Nc38b37fkCSwN69\nF/Hm3/h1Ln32c5hfe4xgPKTWrjFcW2U8sLn3jn9kaWlAozlLECkEUcIl+7pccskl3PuPf/uvXGJP\n8lStzYqKih+Nam1WVJybVGuzouLcpFqbFRU/Pf4tA39vFUK8Efg+8HtZlvWBTcA9Z7zm1MZz/yyF\nKyfLsjLFvKh+NwyjrEIX4ozmsDRAERK6rtNutxkOhxu5Nhau65dtWUmSocgacRwThDGKrACibCs7\nM7x47Dp5UHQSE0URes1C0xWSJKHZaLG8vJwHPcsyaQKmYWDoEr5nIwlBJglUVUKQ5+usrK6i6RL9\nwYCalecW+V6IYVjEcVqmtcuynIs8ul6eR7vdZmlpiVqthq7rGIZBFEXMzs4S+AlPHDlEb6qHoQsm\np6cJ44zR+io3XHMFf/5/vpu//szfc8z26ZoNrnnJS3n4yAnqNZ2v3v5FXv8Lr+X6a67m8YcfKcel\nXNfn+9//Po1Gize84Q184kMf4rd/+7e56KKLeMtb3sJvvPlNXHXVVfzwhz9kZmambAOzLAtZEdx9\n991sbTeotyf4/bf+Rx5edugPPfSaxczWvYz7Q4zamNRZIFV1tmzZguu6DIdDPM9jcnKydEhFUcS2\nbdtYWV1lcm4rkgyWYXDq+AlarQ4pEvf84B/RGm1e9Uuvwx4PyIio1y1Gjo2sKqQpCETZIFZQOJyS\nJEESCpCW7XKSJOXfk42K+SIb6kyxKo5jHnr0cT74wQ+QZQnPv+Iy3vdn/xVZUnFdH2fsc/LUcdR6\ng3vv+yH3f/N+glHA5okenVabC3dNse85c2y/oEsmJVinbCRp9d+wDP9JfmJrs6Ki4idKtTYrKs5N\nqrVZUXFuUq3Niop/Z37cUOm/BHYAlwALwPt+1A0IId4shPi+EOL7fpSVP9yL+vPiduZoV5FeXvx4\nn5+fL8fIer1eLu6QEW9UyxfbUnWtDAhWNQ2EOKsdLMvyivMiMLloJgvDsBxZkuUzhQWpFK6KdrRi\nO4qQymP0fR94sqGscA4V5zQej4mi6KwQ6yiKyvtBEOA4Tjkut76+jmEY1Ewd3/dZX1+lVquh6gqG\noROFPltnpnD6Y2LPpmU1SdOMIMn40lfv4L77f8jrX/96vNGY+79/H+12sxzBK86/1+vxyCOP8Pzn\nP5/3v//9/OZv/iaf+tSnuP/++zl58iQveclLcF2XMAxptVocOHCA22+/nbm5OS688EJmpiapGxqj\ntWXazQaOG2L7Mc3eNJJmAGDbdhnYres6rVardEwVQoyhaoyGQww9H6UTUsba2hqu4zN2XBZXVpE1\nk4su2oum5Z91MVqWX6f8WgnkjftPXrssE5BJZz9GIkozgjjBj2KCOCFMUlKRP4+sEGfgBiE3f+jD\n7N65i1/+xV/i51/+CgxVQ2QJaRTTrNc4evgQH/7Lf+ArX7gbU7bYef5Wdpzf5ZWvvIrXvvY6LtjR\nIwtHhKM1gjjDdoMfdfn8c/xE1+bKyspP8tgqKp7OVGuzouLcpFqbFRXnJtXarKh4CvixHEJZli0V\n94UQHwS+uPHwNLDljJdu3njun9rGTcBNAL2GmkEughRCS7PZxHXdUiDJsozRaESz2QQgDEN27dqF\nJEk4jgPkNfLj8Zg4jvE8D0VR6HUnCMMwF2RUpax7F1CKMa1WiyjKA5KLZqucFNM0kOU8yyjPjYlR\nVUG93tyod89QpdyJRJYhlFyE8sIARdcI4oh6q7lRky5otVo4jkOz2SbLcpFj7949pFlcuoTiOMZx\nHCRJYoJ7QlEAACAASURBVPPmzYzH41IcGw6HTE1OoJkqURYRJTGr/XUMQ2Px1CF2TW3iV15zA0/8\n4B7MHc+n0+uwPnaY2LKVme1bWF8b0tRket0J/NAjU7SNbKKMF73oRRw6dIhWq8Xf/d3f8YEPfIDe\n7CyvetnLeNnLfw7TNOn1evzN39xCt9tl8+Y5Lr/8cnbv2UUQBCSZjOs7iHTI4w/cx3Nf2MEwGrhJ\nwMTU+Ry87x/Z3a4hhMvx48ep1Wp0Oh1GoxH9fp92u43ruliWRZJEG2NpIYokkQnQNBVkBd1o0rdD\nXnn9jaRpiuM4mKbJaDSiVqsDAkXWCIIEJAgjeUO0ExviD0RJhO/47Nu3jw/81QfZtGkT48Dj4MGD\nHD58GEmSmJub4xnPeAa9Xo/bbr+Tr3zlK1x55ZX8xX/7v/H8Mc1mneWVRdI0ptFocNNNN/HE4eO0\nWi22TF7Ja/6X65npetSNgEfu/zIN9QhyUMe3oWZMY6USa5qP0J90MP1b+Umvzf3792c/sYOrqHga\nU63Niopzk2ptVlScm1Rrs6LiqeHHEoSEELNZli1sPHwlUCTCfwH4uBDiz4A5YBdw379mm8XYTuH+\ncV23zAuSZTmvbvedctSrcNUU+TODwQDLsqg1Wvi+T+j5BH5EHK0wNTmJIiRkSSFFEKcZ2kZodRRF\npBsOn0ajkecNbQQH63IGpDQaNeYXl+i0e6z2B0hCIctACAnIMHSdKMwIw1zUSQVo5EHTYeIhy4LB\nYEC93kCWcpfTmc6gwWBAq91ibS13/Hieh+/7pSjW7XZZWFjAsiwMw0COU2bnplkdrGK7DlOtHrEX\nsXVuBin0aCiCz3z0Q7z7g69m6DsITWHnvov57te/xsU//yo0kRKGLpKulAHdaZo7su6//36uvfZa\n3vrWt/Kyn3s5MzMz3HLLLZyeP8U999zDHXfcwQUXXIBlWezbdxFra2soqpyHWyt1wixkwtR45Quv\n4LZvfpU917yMRDHxs5AFO2H/nl34Jx+j3W6XrqAkSQiC3CVjmiZJkhBtuKvmT52i1WqQpSGbN23i\n2KkVtu6aoTe3mec8/xoOHbqPyclJWq06QsiITKHZmMhzpWQL3ahx08c+jBACVdXLasQkztB1kz/6\n4/+rFAAXV1dotVpccsklTE9P0+l08GOJ46fXOf+CZ/LGzbvwfZ/bvvQlXvWqVzAzO8XWLbM47ph7\n772Xy577HH75l95Ivz/ErC8gxccYLg1IfYutk3vpnxqhTJhYmoISRyiKRBr/ZP9vxb/H2qyoqPi3\nU63Niopzk2ptVlScm1Rrs6LiqeFfFISEEJ8ArgF6QohTwB8D1wghLiHP6j0G/EeALMseFkJ8GngE\niIG3ZGWd0z+7l1L4kSQJTdNKp0gx9lU0co1GI0zTxNTzlqdizMsejfLXboQ5O2lCHISMRiM6G+KD\noRukaZq3c8n5+yRJyp09QpSClB/lodJhmjuLkiRBVVUMw8A0TVzHx/V9GvUWhmEgMr/clhApipK3\njyEJZGRUVSYKozK/pthmsd3RaIRp6ViWhSIpZVaNpmmMx2NarRZZljExMZG7YSQZDSNvNUsSkDIO\nHznEpqltrA76tHrTWIpEp9lkZX0ZqaagqQpTs3NMTE0Tra/iJRlJ9mR+kyQpOI5Dr9djPB7zwAMP\n8IlPfIKJXo87vvIV5hdOMz09zXXXXccTTxzi/vvv5+KL92KaJkLKciEtlTHrLUg9du/YzB13BTRr\nBsNAIs1SZrfuYBzm+3RdF0VRME2TZrPJaDQ6q91NCEGr1WB4eh5D7yILlSSJSVNYWVvDqjXpTE7S\nv3dIs9kkivKmuCyNOHniFJKkMPTXUXWfj97yyQ1BSMXQzVwQSjIMw+CHP3yE887bjCRJrA4GpJnC\nY48f4fATJ4jjGNu2mZ2dRVEUDMMgyzImaxKe5/GNb3yDWk1H1RR2795Nb2KStbU+WZawPj5Gy+hi\nWjU0qQZyndD3cMYx9WmVVBoTZzF1wlIM+1F5atZmRUXFj0q1Nisqzk2qtVlRcW5Src2Kip8e/5qW\nsV/4J57+0D/z+j8B/uRHOQhJelKMAcrMnDPbxYp68yIEOkkShu6wFI0kSWJxcZHWRA9dNzHNmEQz\nwB4zGo4xzQRF1hBp7khJwgBd1/Nsoo2coCiJsSwLLwzySnQBnu+gqQbtdpvxeJw7YcLcwZIkCVEU\noalgaDogISSZVGw4niSFBIkoTZiensa2xwDl6FkuerQYDvu4rkutZkHKRltaTKvVAiAIAjqdDsPh\nMP+MsozhcIhZM1EyFdd1ueiii1ASlSNHD9DqNHnNy17C7Z//HPsu24+jgRu4XLD3Qu7+7j3s23ke\nSCooCqHnlhXquq5z1VVX8bnPfY4bb7yRm2++mX379nHttddy4OGHeM973kOtVqPbbbNv375yFE8S\nAtM0GWcamiTI7BVqkeDGF17B0eEqcm2WwIdte57Jo/d9jb1dswwOD4IAsfF+z/OQJAnTNAnjGEVR\n6LY7BEGAImdkUURnossDjz7O0PF4/PBRvvOdu1lYWKDTbWFZFla9zs5dFxJFCZs3bWb7zv1MbZqC\nDEIP3I2soXq9yfrSgA9++GZ+5Vd/BUVW0Bs1Dh9f4ODR02cLk4eOl2HX7Xab9/6nt7C0tILnefzg\nB/cShD6apjE3N8fFF+3LzyO5At+P0NIRWRrQboWI9WWcFFJtE36YZx3FWo9E/vH+DXsq1mZFRcWP\nTrU2KyrOTaq1WVFxblKtzYqKnx7/lpaxnxhpmrc4+b5fOn6K0anicZqmKLKGM85zdpyNJjHFMPP8\nGgSN7gT+2MZUFRpmHmDcsSz6a+t49oimZeK7HrIsk6n5/hRFodlq5a1Tilw6gYIgQIlTNM3Atm1a\njQ4Dd8TE5BRCCMIwxB5vuFNkFbOuk4gMpFxwSuMYKZWx5DwoOvET0iB382imga7LJFnKut2nM9HB\nDgIiIZjbyDwqApLhyXG6fr/P5s2b8V2HltmibtUZjUY4rsO6O6LT6bDvWRdw9OhRGjX42t3/wNZt\nf0g28wwUYwrbWeexB+9n/yUXsHpimU29nSyNHBQFGvU2/X6fW7/4ebZs2YosGfziL/4KDz/8MJ/5\nzOeJwoQ/f9/7+ZP/8r/zB3/wDrZu3c53vnMXF+zeiY7KaDTE1PJROLMxxTiK6U1OcdunP8P2iy8h\nlRWO11o8bpzPJk7SXz/FpXu2sjh/HKNWQ9VNFpeXUWWZTh20tsXiygrtyTnW19fp9XqEro3jRvTd\nMbV2nc9+4VN89ovfxTQfIMsyxrZLvd4kTaHf7/PsZ+1n+9bdaLKM7/s4jo2kQJJFXH395ex/zrOY\nnWqwa+csi4uLpEGKKasgQ5akxK6HHMXUJcH66hoX7dnNxz52C4ox5tprrieO4Lff/g4M3SIMQyan\nJznw6AKyImG4x0jihHHso0oyUsMiqW3Bdl1ku069MUscx7SzFcI4/Gkuv4qKioqKioqKioqKioqn\nIeeEIJRleX6P4+S178XoUIGiKGU1e6PRyN08G+6SInPIMAwcx0HXNNbW1ti0aVPuJAojur0JxiOb\nkydP0uv1kBQZWc7bxLIsK7dTBBQXrWZpmosxkAsdlmURBAE1w2TeX6Qz0cU0DdI4wrbtjZGxfPxN\n1/W84WzDWRLHMfV6Hc/ziOOYRrPJ+vo6lm7g+34Zgj0ajcq2MSEEtVqN8XiMLMvMzs6ysrJC3TKx\nbZvxeMzs7CyWZTEejzEMA0mS2LFjB6urq7zypT/Hx2++mV9+55+xNh5iGAqXXX01q/0B9VaTJMxz\nbG699VYkSeLFL34xr3vdf8BxHG699R947Wtfy+zsNP1+n9u/fCv33Ptdfud3fmdjRCvi6NHj7N6z\nC5CYnZ0ljXVWlpeRJJkgcHjs0YeI45itmzczDEIGQcIz9u0jOniS3vQMR44ep27m17nIMsqSBN/3\nSUVKrVYDIIkz+v0+SeBiNXsYmkIWZeiawti2ydJwY+RQJYk9PM9j09wkQTDi1KnDNGud3HEmUuIk\nQdU0sixjz96L+fKXv8S2rTsYDG2WVmwUBZq1OkbdoG5NYBgag/V1du/exu++42188zvf4PWvfzn1\nWpOZmTmWlpb42C1/i2ma+IGLJEGr1eCV1+yBJEUQI7KELI5RBMiyzPLyIumGEyyJPDTVeMrXXEVF\nRUVFRUVFRUVFRcXTm3NCECpygooMoTRN0bS8/SpNU4BSvCnEoHq9zunTp9E0rRRdTNNEzvJxskJg\nKUKoe1OTLM4vEG+MImWZKMUnVdPyzJ+NUa0iTyiTZWRZRsjyxvtU7A3BKI5jZCERhxGkcZ5FdMa5\nSJJUOn0URSEIglw0iMKyph5yISTN8ha10A8QpoUkScRxjK7rpShUCF+yLKPree18kbcTxzGGYWAY\nRikoOY7Dec0GuizTrFnYWUASx7R7Exw7cpArnnsZD/7gIb59353ccMMNzM7OkiQJjjtGSALT1HEc\nm+3bt/MXf/EXPOvZz+S33/Uulg49ztraGkHos3PnTiYnJ3n00UdptRrEoUq30+H06dPc8eXb2bRl\nG9e/6EX4cYw96JPqdSQJ+rbLpskWqBqaJiMJBVUVuRC2MUKWpimylF/XQgysG1opGAl0duzYwQ3X\nX0UcxywsLKAoeZPb6uoqrjNgZrrL1i0zOG7eVJeECZlIkWRAllBVFUlSsB2X0cjFNHNRcOyP8fwx\nw+EayoYw6bojwtCn0agxHo2ZmZpm754LCf0ASQjIMtI4bzXbvm0b7VYXz7HJogxZkpE0hSzJz4UQ\nIpEghEykTuJlVelBRUVFRUVFRUVFRUVFxVPLOSEISZJU5sfouo7neSRJUrY/JUmCYRioqoqqqqWT\np9PpEIa5wJLXuudOnqKdyzQMDMskjWJ832dmbhZZSIzHYzw3odvtoqoqcZLkIo7IHT6WZZKmKX4Y\nomg6FgLHc+m0J8iyhNFoxPTkBJoiESYxcRiW7pzsjB/3WZbheR6qqjIOA6xkIw8pilhdzRvF/DDA\nMgxMTcePQtbX12k2m1iWRRRF5XkmSb7fZrOJaRpl1o5t24RhSLvdxvd91tbWSlfTwqFD/PwNP8PS\n8UNYW3ewtm6zOI746lfv5MgTJ7hu/+W8+jWvwDAM0iwkSVKyLGU4HPO8y/YThD6n50/wX97zf/D2\nt/0u7/vjd7G+vk6SRPz6m36NSy+9lAMPPcIll1zCI48e4Gt3fJvzzjuPa17wAl7xilcgFJlWb5a/\n+eznuezqqxklgkxWWExlVp2Qrd0pwtES/miM1eqhKSpZkhDGAYZhgiTTH7l5uPZogNGs46UprUaT\nwVjmgvPP4/GtE0iSxM5tPVqtFjt3XsDu3bup1Rr0ej12734uzV6HIAoZe04+ihe6nDhxnM99/n9w\nySWX8LG/+QSZUIiTENPUqVkWsiyQEZiWzvrqGs1mE6FI9EcD4giWllZoteaZnprFMDSGQxtVlXCD\nlHq9TiYEzU4bOfEhSVCIMHUtz8BCkAmJJM44kTRpNlrAvU/5uquoqKioqKioqKioqKh4+iL9tA8A\ncpdM4QCKoghVVUuXTeEISpKERqOBbduYplkKQIqioKpqKSBJqkJ/NKTX62GP8xBnZAmzXstbudKE\nejMfO1tfXy9HvcIwHzuSpHyUTAiB4/rESYaQFMIgdwHpqkYaR7QadXzfxVAVNE3D87zSwVTQaDQY\nj8c4jkN3YoIwihAbQk4cx3lItaKSRDFJFGNqOu12uzyvMAxpNBqsra2xtrZGp9MhTVMWFxdR1TxM\nOo5j2u126ZLZsWMHvu9z/vnnI3yP0elTfPLD/52V+SOYloqTpPz8L7yR4/PLSAjSNCaOQ8LQJ05C\nZFmm02nR63W5665v0Go1GI0GvOlNb+Izn/k0iiLxn//4XbnINR7zkY98lFtuuYV6rcnrXv8LHDp0\niD/4gz/grrvuYjAYMB4OsAyNAw/9I649oL++yraL97PqJoy8iFZnknqtSRxGmKZBY0MkW15e3RiV\nU6jXG8zOzjIcDrGHI+qWiapIWKZBHNqQeqSxw+rySUaDBeZPHWJx/hAP3P8tvvLlD7Oy1ieOHdod\nE0nOkEXC/T+8j5s++AEOHTrExMQEm2fn0FWT0E9ZWx2xsjxidWXI4YPzuE7MsWMrvP//+QAvvv5G\n7v3uvTgjm4VTpyCN+ZkXXs1VV+xn25ZZZiZq3HHHt/ny7Xdw8OBBlhYWWFo4yfrSAgvHj7K+ssh4\nMMBzxsRRQF2JURP7KV9zFRUVFRUVFRUVFRUVFU9vzgmHUJKkpRhzptChKEqZxVMINoX4YZpmKdwU\n77VtG0NX0TSNgT1ibm6O48ePs+P880nTFHswpFarkaYp3W43FxhsG3ljO4aVCzXFrdaoE0VRObpV\njKVpmsZwOKTTbuN5HhMTE6ytrZVuHl3X8/dv7CsMQ0ZjGwlRvmZiYgLP80jTlCzL8rEyz4ckZmZm\npmw0cxynzE0q3FBCCPr9Pq1WizAMy+ebzSaKorBjxw4kSeLg/GNsqtVRk5DtczMs2z5RlCHqKpOz\nc/SmJhmmKyQbDilZVsv9uK6LJEnMz8+zbds2PvjB/8zWrVt597vfzfLKEoZh8KlPfYILL7yQvXsv\n3rgWMpdffgX/2zvfyRte/Rre97738ZU772T/s5/FXXffy8w2MBUVzeoQpBKZrBCFIa7rU2u0SLIM\nXVcxTZMsE2iqQZTlY3xJkiEB3XabU0t9JCRMTUdWBGkWo6gSY2fEyuoSs3PTCCmj2apTb5j8h9de\nz2OPHuSRR44Rx5CkGWPH4bzzN/PJT3yc4Sh3WUlCI01SlA0hMo0jZCHwgwRVwNj2eN+f/jd+eN+3\n2LNnDw899BA7d53Pi1/8YkzTZGFhgVazw/z8PJF9lJZpsD5/hF57ktHyaUbDAdkYZN0iRSbOUiJp\nNW+0q6ioqKioqKioqKioqKh4CjknBCHIg53r9VyAqdVqpSBU1MwXbqHxeIyqqoRhWI6PAaUgst5f\npd1uE4Yh/dGQ7du3s7S8TKvVojvZw3EcJDk3RtVqNZrNJn4QEEURtjPG9310K28uazRbjIcj/DCi\n1eniui6dTgchZXjumCyNmex1We2PyhBs27ZR1VyUiqKIbreL7/vUWw3SKEYz9NyptJFVBCAASQgU\nWca27bLePAiCMmC6EKOKOvRarYZhGAgh8mNtNFhcXMQ0TXRd5+jRo/QmO7j2KpdfvJP+kcM0JudI\nJZOFVZtnPvdyDp8+QW/GIssEWQZpAlEW0Wp1GI/HvOhFN/C1r30NTTP46C03EwQBH7jpr9i1axc7\nd+7kla98FbVajVtvvZULL7yQhcU1vvTl27jpA3/Jx265hSNHjtBptdEbbXbt3I6mKARpzCjW2LP/\n+fQfvJPJlsrMzBwnTx5HsSxUVcZ2xhhqDT+MyCSVyHNQNzJ/RJayaW6GR3/wBEngUzPy0O0syyAB\n33FZW14h3RgdVITgV9/wWpIsZcuWbWSpIBUSK8vrjJ2Aj3/8k3zp1ttIydDlFigycRAiyYJWo4kQ\nGcP+gDiD5YUFPvXxj/PZT3+UP/zD36deV7n7u3ehyDHbt29n375noigq3W6NxsxupCSgpSfMdJso\nW3skYYCkyKwNHI6dXqbd7bBn8xRpGvOXtz3xU1l5FRUVFRUVFRUVFRUVFU9PzglBqBg/Kpw4hUOn\ncOcUjpssyyvdXdfFMIyzxqvG4zFJkmBZVhlOnWUZbuAjSRInT55kZnq6dNFkQZAHRgtBvV7H931U\nPQ+XHjlj4jjGGXvIql6OrKmqih+4aIpKt9vBHg4hTQiCqHR5KIqSZ8hkGbZt0+l0kGUZx3HK4108\nPU+72cpHx4ptSzKyKtA7HTRNYzQaUavVygDpQhyq1+u4Y5skSc4Sx1zXPctdNTExwdju4wyHyH2J\nOz71cV71q29BVRvIzRqrozW++e2v8Gu/8GokAYg8EFuSFBYXl7HMGu1Wh2uv+Rnuv/9+jhw5zMTE\nBC95yc8ShjFJkqAoCuvr67zgBS9gYWGJeqvLO97xDg4//hhvfvObeec7/4j/9J/+V9789t/h2Zc8\nkzu+fTcT0zO4QsPQJbwY1gdDeg2LiU6Xk0sLCFmiNzXFcHWM5/vUWjpxnCKlKbqiYts2zXqbYX+d\nk8ePMT2zncHjjxNFAUmqMLQDllcHRIkASUXRTDRDJwkjFk4cQTcsLKvGdK+BpUu8+13v4IrLnslf\n/dVNzC/0Cf0YQ4Otm2a44srL+aU3vB5d1xmPRjz22CMA3HXXN3jBNVdy9dVXohsCezzC9300PWUw\nWKE70SD2bCJ/jKXnLXRZHKFJGeOxzez0DH3bxXcdvPU1rFrVMlZRUVFRUVFRUVFRUVHx1HJOCEKy\nLGNZVpnfU4xQFS1gQN7qtdGqVQRMu65bNpJpmpb/PXtSrChcOvV6HSEEg+EQVVVpNBpli1nhQGo2\nm8Rpwvr6OkbNAsAPIkzdyPN8fJe6ZSLLuWClq3l2UeHyMU0ToBxfS9O0dA0pioIzdGk0GkiSVIZn\nQ+5sSqOYGFGGYwshGI1GGIZROqXOPF5ZlkmShCAIaDabADiOk4dU+z5CCKamplhaOk2jUaPRnuCk\nPeTwgUfp7O3ihymGqiFbKrIsk2X5OaRpShwlTHR7OI7H8eMnue+++9izZy9bt00D4HkeQsjltQrD\nkFarxQ/vf4Adu3XazSbHT5zg0ksvZdOmTWRpSrfdRjcMDj7+KM/utJBbU6SZj+eHxHqMaVgEoYuu\n66Rk1OomK4t94jgmDOPy+lumkn++G2OCR48eZaIzieAIaRohhEocZXhuiGmGBEFCGOZtbRIZWRKT\npTFR6LG0tEitVuexh0/wsp97MZ12ndU1m4MHDxJFAVs2beaqq64i8AaMhgHdTouLLtpBvV6nPwpY\nX19hYfE0rbaFJIEsC8IoQJJgMFjHUmWiKMKQMsIgJA0cUkUgkTEYrAMpAvD9GF1/MneqoqKioqKi\noqKioqKiouKp4JwIlS7ydkajEePxmPFGGLRp5qNbsizTaDRK940sy2iahmVZ+L5f1rsDKKqKoih4\nnlcKSGES02q1mJ2dZWTbPHTgAEePHi2r3YusHMjHyIQQyLJMq9VG0VRarRaSqiCrClEQbogoGXEc\nMhoNaLfbyBsV9e12m+FwWLp3HMcpK+LHrpOfmywxGts0Gg0sy0LXdTRNQ9d1giBAVVV27txJFEWl\nc6oYPVtdXS1dR67rluKXqqpMTk5y8uRJHMchCALmtm1i05ZNSHHIvh3nc/jAAZpWnVqjgRME7H/+\nZYxG+ZhcHCUosophWDzwwIN885vfptOZ4OUvfyUPPvggSZKU+9L1XAgbDAb5OY5dlpeXmZiYwHVd\n7rrrLo4ePcrznvc8Xve61xGGPieOHWcwGDAzNU3fdrE9n737noGumZw4cYK15RVarRayLHPw4EF0\nzUDXdcIwxDRNDMPI85PSPO8ojSO+/rU7mJ7ZhCRrxIkgQyGKYWR7DEcO9thhZLsM1lcJfRdFApHE\niCyl06wRBi7NhsXq8mm2bZnh2c++gJe//Dpe86obuOyyi3DHiyiKj2WluO4K4/ESKyvHSNMEq2Yw\nNzdFo2GSEREnPpomEcUhhqEhkHBdjziO8X03D+8OfNIsIQp9tm7ajGmauKEgSM8JXbaioqKioqKi\noqKioqLiacQ58UtUiDwfBsB13VyAkaTcFWJZJEmC53koG44bWZKIwhABtFutXCBIUwxdp17PRaJU\n1Vg+vZCLSfU6Iz9gsjvBZKfLRKuNlKXYts3q6ioTExNMTU6SxQlSBiQppqzijB1qNZPY92iaNZxx\nng/kh7loI1QNQ9VIyBg543xMTRKkAmo1KxeqJEGaZbQaTYIgIMugWauTRDGLi4u02200M88C8n2f\nWq2Wh2MbuSDS7/cxDKMUwNI0ZX0wRJZlDCvP2Wk0GiRJwmBkM7d5C0EYstYfoBt13CBAy3wMbcSW\nToCZLuP4Fs1mkzDR+eSnP8/vveN3eOTAAxx87CGuufpydpzX41n7zse1l5GyJi+69upyvK5wbgmR\nIEmQpjGpBNf9zDX47hDTNHnPe99DZ2KCk8eP8/nPfx7N1NmyZQt/9Ftv4t5776U2twtZ0Ygnz+eR\nxx7hvOnNGM4pmqpHow7tmd30V2xiIuQkQhNgezaJbtCYnGF5pc8Ln/cMjp1a4NYvfI7jJ07QaDSI\n03z8TpJjhIgw1BRVipB6s6hCQkQgpwlulLuRMiRkRcO2HQDSNEPTjCedY1LG2E+edHupNYSi4Ltr\npHEuTI1dF0VR0VAInBRTrZNkgno0j1B9tMhDk1LUJENRZJIUJFUi8cdMtS3WV/sEqflTWnkVFRUV\nFRUVFRUVFRUVT1fOCYdQlqVlfbphGLiuSxRF5XhVMTqm6zqWZWEYRilQpGmKqqqleOR5uStD0zTa\n7Xb5475oI1NVtdxGZyOvZzgclplDURSV+yuCrIsRtdwVFBOGIUEQAPk4mOu65cibEKIUdwqRqxgt\nK8a8DCMXHYpxN8uyyuDo4liDIEBRFBQl1+x0XS/fE4YhAJZlMRwOz3As5U6rWq224bJKieOw3N/k\n5CRHDh9EbLw2jiL2XryPf/iHWzl8+AgvfslL0HWdVqtV5jdFUUSr1WJlZaX8DIpzKdxUtm3nrWYH\nD5aC0d9+7GN87Wtf44orrmDr1q0EQUAYhiwvL5NlGZ4bgKQgyRp+mOJ5EeOxTxjE+I5PmsblKGCj\n0SjHCDVNo16vMzU1hevYLC4v02w28QKfNAUv8MkyQRjlGVRREJYZTIXLqbgBZctbcc2Lx/n3Mivv\nA+W1Bcqcq+JzL16bCpAVQZJEyAgUKV9iURSRhzVx1rYty6paxioqKioqKioqKioqKiqecs4RQYhy\nvGtychJN084ShTRNwzCMUgwJw7AUX2RZJggCLMvK6743MoNkWaZer9PtdrEsi1arxXg8JgiCUmgS\nh4fisQAAIABJREFUQjA3N0en02EwGBDHMc1msxSHkiTJ3UYbIkHh1NE0jSzL8H0/FxtcD0PVUISE\nIiTiICRwPVRJRpVkaoZZjoIV51DcdxwHz/NoNBrUarXyb5ALSUEQMB6Py/YwWZaZm5srhbOtW7eS\nJAndbhfbtqnVakxNTQEwGq3Sm2wTJTFLSwt4rs0XP/tpTCnFQEJTLbbv3MXFl1zCVde+kCTJWF5e\nIU1zgSSKIpJMEGcp3/jGXYRhzNpafyNEOyXLBFGUkGUCy6pz9z3f4sMfuYnvff9urrzqMq648nno\nhoyQEgxTIYxcVE0wMzmFEDJrQ4fzL7yEBx87RiLXSFIFVTIYLK2TxDFTU1MkScLhI0eZ27wFzw1I\nwoiaZTAe9umvruC6PnObt2CYdZwgQjcbDB2X/mBEf2hj2zbD4ZDhcIjruoRhSBRFeJ5XXotCiAvD\ncKPiPjlLKCpEoUJIksWTIqWQJcI4IiUlSHwQEXHiMVpfoV4zgJQw9JFVBTIJJIEkSSBSSDMUWbC+\ntvLTWnoVFRUVFRUVFRUVFRUVT1POCUGoCHYuQpSL0OUwDPE8rxSENE1DURQsyypdN0UDGEC9Xmdt\nbY3BYEAURfi+X7p7hhuB0lmWsbi4SAb4QcDa+jq6YRDFMfZ4zGA4BCHIgH6/j6qq5a3dbqNuZBQB\npWOp2+0ShrkTZzgcIoSg1WqV5+I4Tvm+Wq1WNoYZhkG9Xi/DpgG63W4errwhyNRqNWRZZjgcYll5\n2HXRJCbOCFdeXFzEMAw8z8O2ber1OnHss7y8RCoLJicn8cdDnveM3eCNEIFDlmSg6nz6c19gfTgm\nCBMme9OMhmOEkJFVnUzAyLbZv38/3/rWt6jX60iSRL1ep9PpYNs299xzD3fffTdv/o1fZ2pyguc+\n51IEKYHv0qhbeO6YKPSxTJ0bX/piHj3wMDXTIowl5HqPfZdfC3qbMFYJ/AxLMZhot3DtEQCaprGw\nsJCPy/XX8DwHKYu44YVX446GfO/e+3KxJ4jxooQ0k0lRcBwP13VLQagQhYIgKIW+4vtTOMmK72Ih\nBBW3JEkIw9xtlMRh/ncByPmYYEJCGvsoRAzW5pGSiCz20TWFmmkiyyqZAEnK8550VUPTlfI7UFFR\nUVFRUVFRUVFRUVHxVHJOCEJF7Xy/32cwGLB9+3aA8gd44dqAoho9zxcqgoaLsa1arUaz2cx/cG+0\neBXjVUXjWHF/OBxSq9VoNBqsr68zNTVFvV4vR9M0TSsdJLZtly6k4v2GYZROE1lIZEmKrmpkSYos\nJEzdgDRDZBAFuaOp2H+apiRJgmVZpTNqNBohhEBV1XL7vu+X7WlRFGEYRh5E7LosLi4yOzvLysoK\nExMT5flAPp6kqiqKJFhdX0HV8vE4Q1XYOtvj5BMH6bbqZKngyImTzMxt4sEDD7M+HBAEeSZRnCRP\njoY16jxj3zNZXlqhXmuQJhlZCo8/dpDvfPu77NyxiyuvuIp6vV6KJ5Zl0el0iKIIy7IQQuC6Loqi\nsLq4gKaqSIpOf+Sy+bxdjLyYVmeCZrtTtr4Vwtns3Bxr6wMykY/o1U2LdqNOr91istPkvC2bUWUF\n0zSJo5QoSYnTDM8PcP2AOM7Hx/5nBxBwluhz5u1MCqdQIRydJRalG9/JDEgTZBKSwKXTqqFIEoam\nn/Hdk874DoOEIE1jdF3991lYFRUVFRUVFRUVFRUVFRX/P5wTghBkqKqKYRg0Gg2GwyGNRgPTNBkO\nh2X+SyEGFWNVg8GAWq1W5tb4vo/neYxGI2zbxvO80hFS/MgPgoB6vc7YdTi9MI8X+DTbLYIoRNU1\nMgHLqyssrSyX7qLl5WWCICgdP67rAnkLWuHeaTQahGFIs9nENM1SPMiyrHTU5A1depm9E4YhJ06c\nYDQaMTc3hyzL5UhcIR51u12yLMNxHLIso9vtYhgGO3fuZH19nVarRbfbRVEUgiDA87yyDazRaNDt\n9pB1kyeeeAJTVxicfoLv3P55Th06QBoHtKY3sfeZz+L46UUazS5JJgj9CEXR6A8HZIAThKysrHDj\njTcSRRHf/e53+cIXvsCePXuo1+vcdtttvPe978Wxx7zwmms5deIk66trxGFU3izDxNB0FucX2N7r\ncuB799FqdUj1JoujgGUnwksFqVBo1uqcPHGMdqux0TQXbYzYgaHpBL6DpghWlk5x9f6LOfTg91g6\ndQwRhyiSRJJkJHFKnAg8N3cARVGE67o4jlOOI545NlYIRWeKPsBZOVaFiyslQ9FUQOT5P0lKHPi0\ndA178RQTGmgigcjHd8dEUYBumSTkGUNhGJLGMVHgISPoNFtP+YqrqKioqKioqKioqKioeHpzTghC\nsiwzPT3NYDDAtu0yZLfRaNDr9fA8D0mSyh/2RaDzxMREWbHebDbxfZ9Op0O3281buAzjrIauIhS4\n3+8zMzNT1s0XY2lBEDAxMUEcx4xGozL0d+vWrWRZxtraGs1ms3QH5ZXiPu1mC01R0RQVWUiIDDzH\nRZFksiRFU/KRs0JYKAQsSZJotVpMTk5y6tQpAGzbRghBp9NBkiQ8z6PX6zE1NVV+DqqqYts23W63\ndK5s2rQJTdMYj8c4jsP8/DyWYWHoNVb7DrpVI/Y99NThyksv5H/83UdRFYglmZEbcM111xOnAkXR\n0TSDMIzRdZM4y5iYmuSee+7jtttu50tf+jKXXvoc3vjGX+FP/uQ9XHvtdRw7doKLLtqHYVjEccrX\nv34niqJhGBadzgSeFwASQRDR7fZ4/ct+Dsn3GY/HaLUWgaSzde/FjOIEOwowahq9iXwcbTQa4Uch\n3d4UkqKQZQlkGXIWM92uU4sHvP7GF9KQIpy1BVo1gzSBMElx/ZCR6+J5XjlKNxqNytymIAhKoa9w\noBWjY2eGThf5QoVQVAaOyzISUFNVpChB9j3MwKcnCwh9RBIii9wJJJCIkxQ/CDdEQlBVmSyNccaj\np3zNVVRUVFRUVFRUVFRUVDy9OScEoTMbwHzfRwhRjoJZllVmCUEuHkmSVIpCwFkNUbIsl0JN8Z7/\nORumGB9qNpvluJm8UWkPlI1hhSNIURS63S4AnudhGAaKoiBJUtl2VlCETRfHVYyAFUHYRZh1kiRl\neHUYhmVbVSFaKUqeNVMIEYV7KAiCsoVsPB6fdb6FMKbrOvV6HVXViaIMz8+bwpzRkIalM9tr0Wma\n1BsGQpJIkZBVjQMHDuQjXavruSAly7RaLd773veye/durr/++lzE0TT6/T579+5l+759mKbJVVdd\nharoeG7AZG+aVrODM/awRw6aatBfH9KbmCIKE75/97eJPJe56Rm8OEY1LRrdCWzPZTS2Qc6QZRlV\nkfIwbc0ky7KyTU2IDFUSqIqMHHhMtkzWlpeZmmjj2PlnQiYRxglxnJbiXXHdz7ydmSFUXL8zx8aK\n63XW34CEvG1NIJOlKXXTwF5bw5QFRpJBmpDx5GhZnCZnf+nTrAynrlrGKioqKioqKioqKioqKp5q\nzglBKEmSMgPIMIyNynTKavNms1mKOoqilC1io9GoHC0bDAZl0HQQBMiyjOM4QJ75I0lSKeSYpslw\nbJNJgsmZaQb2iPmlReIsZWCP6E726E1Pla1fxThWrVbD8zzG4zGKopQ170EQlPtyXbeseS/CoRVF\nIQzD8jiyLMM0TUajEUmS8Mgjj9Dr9Wi32xsjUvn2ivDs5eVl1tbWcF23dC7V63U8z8P3fYbDYVlL\nr6pqWW9vD2za3Uk0o44kFDZv2YSShfSXT3DhBdt47PGHccOEZqfDydMLHH7iKGQSu3fv5vbbb+fO\nO+9kZNu89e1vYzgcsn37dq677rpy+4uLi/zmG97Au971Lj796U/z93/395DAS3/2pcyfnEcRCq16\niyRMmOxO8u27vs337/0+u7Zs5vff/lbu/s53ieKYgTNGMnT8NAFdxfbG+L6Prus0Gg0ajQa6aeL7\nAcPhkCSMMHQNWYIJE6ws5Dd+8dWkgcP6yiLhRu6UJGSSVCpdQUEQYNt581jhpCo+wyKvqhCICpEt\niqJSjCrEv1RQuoVkSWLcHzJaWSNzfTLbIR0NUBXQhEBkaRlILcsqhmGVbjdVVcvtVlRUVFRUVFRU\nVFRUVFQ8lZwTglCa/n/svXm4LWdd7/mpuWqtWuMezz5TcjKTE0hIIMFgIgEuM1eNEuABlJahn9bb\nqPS9V7j6KCo2rbaiXOQ2DUpkaghcQYYQQZBAM54AOQlkOmPOsKe111zz1H/Uet/sg3AZWpMjqc/z\nrGfvvfbatYaqd9dbv/f7+34LWQARih3xNQxDFhYWUFWV4WhEAfhBgO04ZHlOkqaomkbddUmzDN8P\nsSyHTmeO9tw80yBkrbeFHyckqso0STBcl3q9wWg0oSgUFrpzkKX44xGubWHrKufuXGFhqUu9UcOp\n26R5gqprbPQ2CcKY7twCimrg+RGJomI6NerNFvVmC83QMW2LKA4wTI3xZIiWKtQ0mzzOMXWLJMlo\ntTqYtsPc4hL3HD6MMisgAYxGI6mIcRyHHTt2SHPj0PNxnRqdVpPJqM/y4hxZEmJoKllc4Jh1Yr/A\nrrfpb6yzu23Tf/Ao3WaHRGmyujphpbXAsX/6GHP1OlM/pbW8l8c/9Xm85+Of5PMHvsZLXvoCvnPP\nQVqtFr/3B2/i3e++mU9/+jZMU+euu+7EcSxuuukX6fd7vP71v8WrX/1KVMPllv/+CYZTn9u/9CXM\nusPx0yf5xG23cWp9kyuvvpb13gSlOceh4/dQjA9i+sdZqluE2S7shas5Pa4x8DYJI4v1jSle6DHw\n17Hq4NQdojDn9OmNUn2lpYzRObl+ih0NeMbj9rJP20I5dQ/RyQdQC5vEXCGLbCajgtE4w49g7MV4\ncUiahaSJRxaOKaIR2jRA9QJUL0LzY/Qox4gLjETFTDXScUTY9xglBs1mEzWZMqdskpz+Otb0Prq1\nKZgxG9GUKNWYhilprqAoGrbp4Fg2NdshS3JARdMMLN2g3Wg+ouOvoqKioqKioqKioqKi4tHHWVEQ\nUhRFJngJD6AwDNF1XZori8QqRVEwTVO2UQm1hUjmEi04ov2qbDFSsG1bRsOLOHlpEiwSp0C2iTmO\nI9uFiqIgSRIZFS+KVaZpSvWI8DcSXkRCTSL8i/I8x/d9FEVhOp3K1zeZTCiKQqqJhH+N+BvRXjYe\nj89IxrIsC8MwpKIIkObZosVpMB5hzD4XzTTY3Nyk0+mw77xzGA77mLqGripStaTqGo1Ggyc+8Rq2\negOueNzlWJZFv7/F85//fD7ykY9g2za33347eZ4zNzfH9ddfz2//9m/z7ne/m1tvvZVdu3bhui6N\nRoPPfOYz3HXXXbz0pS+l2Wxy4403EoYhd999FysrK1x00UXs3r1bRsrPLy5hOQ7N7gKWoVOb7YM0\nikmjssXLcRwM3QRAMy00TZkZdIe4jTpXXHE5tbqNZeqE3pgiK9uxNKXcl6J1LAwigighSlLiLCPN\nCjJFJc0hKXKSoiCnIKUgLXKmgY9umbS6HZI4YjIcoBU5k+GIZt3FMAyCIEBRFBqNhjwuRGthmqb4\nvs/W1haNRgNd16U/UpjED89Aq6ioqKioqKioqKioqKiY8QMLQoqi7FYU5XOKonxHUZRvK4rymtn9\nXUVRPq0oygOzr53Z/YqiKH+pKMohRVEOKory+B/4ImZePKKwITx3xuMxzWZTFkrq9foZhRHTNHEc\nhyRJZPqY8NoRF+dFUchIe13XCcOQ8XhMnCRos4JTkmdomiFbuqZTj82tnizuhGEon3NpaamMZU9T\nWq0WzWYTTdPwfZ/BYCD9jXzfR1VVPM+TEfaAVEGJNjRRPGo2m/R6PTqdjmxrE35BAL1ej3a7zWAw\nwLIsdF0HYNeuXWxsbMifkyRhPC5Nirf6Q8belNMbmyztWGY6nRD6Y5JgQrdhsXu5w733HoQ8JC9i\nTq+usrrZ49Of+yf6ozHv+uub+ebXD1BECRdffDEvfvGLUVWV1772tXzgAx/ggQce4MCBAxw4cIDn\nPe95vOMd7+CpT30qH/7wh7nuuusIgoDnPve5fO5zn+PP//zPue2227jyyiu59VOf4Pjx4/zUNddy\n/z33s3PnTuIsozG/zK4LLiVSW0wGQ5Qsw1Cg22yw0OmwsrhEw3XpdObY7A3ICxW3WWdurkMUBZim\nyvJimydecQnnrnQZnD7M8OS9kCaoeYZWFERBTBjG+F6M5yd4fkqUqKSFyUSFETnDLGWUp3hFipfF\n+HmEUbdI1JRxNGHRgsGJo6wdvZ/h+mm0LKNIUpS8wNR0oqBsWRPtYKKVUZic+77Pgw8+yMmTJ8kp\nCOOH/LB+FB6OsVlRUfGjU43Nioqzk2psVlScnVRjs6LikeOHUQilwGuLongMcA3wq4qiPAb4LeAf\ni6K4APjH2c8AzwIumN1eBbztBz1BUeSMx2PpHyQupmu1mvTO0TSNHTt24Pu+9BgSZsxCtaPrOpqm\nYVmWTPSybZtms4miKJw+fZputztTcJStPGEUEQQRmmlgmjbhzL8nDCNZZBLFn16vJ/1gRGy8aZpS\nnaRpGkmSsGPHDlRVxbIs6VkTRZFUPLmuK9VMi4uL5Yc8SzYTqWhra2t4nicj64W/UpZlZ6iMhMrp\n9OnTZxTWut0umm0ymnr0hwPyoqDVaWM7BuPBBv31E6we+Tbf/sYXKTKfLPHpLsxzw9OexTcOfocw\nyvjkxz7Jheedzxte/3qCIOAJT3gC73nPe8jznCc96Ul0u13e+ta3ctNNN/GZz3yGjY0NzrvgAn7u\n536OJEl4yUteQpIkPPvZz2Y6nfLGN76R/fv30+m0OH3qJCeOPMi9d3+bcOqTk3P41DpmZwffODak\n22hhawZrJ05gGzreeES31SQKE3TNJE5VkkQhL1LiJMQ2VYoswlAyLtqzxE8/4TE85arzcaJ1vvOt\nb3Lk3nvIgoCGY2OqGlmSE4UZQZjj+QW+DwM/ZBqlJHlBnKUEaUyWpxSkmJZCGk+ZjDZZvfsA2dZp\naklIx9CoGwauaWJqOnkOuqITpwlJlhLGEYUCiqYSxhFJlqLqGp25Lrv37iFXFTTL/OFH7MM8Nisq\nKn4sqrFZUXF2Uo3Nioqzk2psVlQ8QvzAglBRFKtFUXxj9v0EuAfYCfx74ObZw24Gfnb2/b8H/rYo\n+QrQVhRlx//4WcqWMU0rW5YMo4xpr9VqTKdTacycpqlslRIJYnFcttuIIpIo1og2KNu2sSyLWq0m\n48ctyyJKE0ajEWEYz1qzNFRDxzAsojhmNB6jKIpUd4gWMMdxME2TJElwHEcaAot0MEAaWIvUsyiK\ncByHLMvQdZ0sy+R20jSV0eeO40iDaMMw0HVdbrcoCobDId1uV6qPbNuW3ku+70sDbNnqBqiGjqqb\nhGGIqmtkSUrNMUgij8W5DroS4zo6aRKUSWyqhuO2ueyaawmCgPfc/Lc8cO89XHjhhXieR6/XYzgc\nsmfPHpIk4ROf+ATvete7uP7667n77rv5L697HR/5yEdYWlpiOBxy1113ceLECV796lfjui5zc3Mk\nScI73/lOzt93Hk+74al888Ad5IBuWXhxhl6fR1VVgiDk9KlVHNPC1HUmwxGNWh2AmlMniEpj56LI\nyPKU4WgAeYxaxKhZyHl7lrnsor00HZMiDTl1/AiTQZ88icsDP1fI04IsTkiSlCyMIU8hz1ALUNOM\nLPKJp1Oi6Zj++iprJ46jJyFzrkPsDdGKnCJPZ8eABnkh9/FszJS+T2F4hlqojJ5XZdvgj8PDMzYr\nKip+VKqxWVFxdlKNzYqKs5NqbFZUPHL8SB5CiqKcA1wBfBVYKopidfarNWBp9v1O4MS2Pzs5u++7\nt/UqRVEOKIpyIIgfungOgkD6r4jIeQDbtlldXWXv3r1Mp1Pp6SN8gURse5qmsiikKArD4RAofYL2\n7dvH+vp66d0SRNi1Omgqiqqz2euR56CZBqqq47pNqQ4qixMB9XqdyWRCo9FgNBqxsrJClmWMRiP6\n/T6WZTEej/F9H8dx5FfHcZifn6ff789a0qaMx+MzPIjE86RpSlEUrKysSNVQFEW4rouqqvi+L5Ox\noPQN2rFjB/V6XRatut0uGxsb2HaNdruLH4Zs9geoisbJkydZnp+nZumszLeYMzNOPnCQtl0WtoKk\n4NqfeRrvedd70EyTPXv2sHPHEpdffjnPe97z+L3f+z2KouD222/nL//yL3ne857HM5/5TH73d3+X\ndrvN8ePHefrTn47jOBw7doyDBw8C8PjHP57NzU2+853v8JznPIurr74aJVW49PwLWVmYo+WaaDWb\nQZTx2GufQ6YYeGHKnnPOfaiwZ+i0mk3azQ6WUyMrIM9TqbjqdDpQ5LTqJk1T4ZyFBucvurzkxufw\nC8+6gb2LLe78yuf51pdu54GDd+BvrRINezRMnXw6xk0ialHAXJHTiCOUwRZHvvZVDn7u0xz+6peZ\nK3Ieu7KDpZrGrraLHodMR0PIcvKk9IQSvk+FohAlCRPPw6nXiZKEwWhEVhSouk4QRRiWheXY+GHw\nowzDh3Vsbm5u/v9+bRUVj2aqsVlRcXZSjc2KirOTamxWVDy86D/sAxVFcYEPA79eFMVYqGEAiqIo\nFEUpfpQnLori7cDbAZbadqGqKuImfHDiOObcc89la2uLLMtoNBr4vs8ll1zC2toa/X6f+fl5JpOJ\nbBVzZ0WbKIowDEMa/MZxLFupVFXFD0KpwCnMnNArCMKwVBcZOkleGlUrikIQBBiGgWVZBEHAeDxm\n9+7dHDp0iGaziWk3iGaJaCL+HaBer0vvoFOnTmHbNqdOnWJ+cUH6FRkYsrjjOA7etPRIEuojES8/\nHA4xjDLdKk9SFhYWmHoTFhYWiOOY3bt3853v3IuqWLL4tLBrkcDzsQwbyFjb6NOdWySOMlqNFoqi\nsGhm/NPHPswvvHyZqZKjahaKonDo+GnWe1v8u2c9E8c0ufPOO7njjjt485vfzE033cRTnvIU9uzZ\nw+nTp9mxYweLi4ucd955bGxscPjwYVZWltmxYwc/+7M/y86dO9na2qIoCv7gD/6A933ob9m/fz+H\n7zvEP9z+RfZfeRVbg9PkZo32/AJJlHF8Y8CuPfuACetbaywtLJIkEapqMpkOSLMYw9AosgyrViMJ\nIwzdxJt4pEmCQk7qT2kYYBgRVi3n+isvYd/OLna9RrPb5d57D5HHI75869doNpuE0wF1p8by0iKN\nRp1uu8n+HXOYe5cp8pRwtEEy1VhuNwi9KZde8hhG4wFxkoCioCiQxylxHFBza9IsfWNjg263S5KU\nqrQoirAsqxwIeUGn1f5Rhs7DOjavuuqqH+lvKyoqHqIamxUVZyfV2KyoODupxmZFxcPPD1UQUhTF\noByc7y2K4r/P7l5XFGVHURSrM4nexuz+U8DubX++a3bf96WYDU9RPBE+O4ZhkOc5rusymUxYXFws\niyaeR5IkZFlGURSYZunBEscx4t+GSCD77lYusU3DsEBVKHJI40wqcMbjMbVaDcMwKIoCwzDwPE+a\nQAufo06nQ6/Xw3VdarUG3szIuWwDi8vEMcOQxaGBP6Lb7UoPIN/3aTQaZ7xG8ZpFApn4Wdd18jwn\nz/PSOBulNJe2TdmKJIpm7W5pwm2aJpPBCNM00QyDOEhAVXHrbfpbmzPvIw3XKMhCn29/8w72PfFZ\nJIrBYOzT7HaZX1zGHw+YTMZ8+jP/iGEYvP63f5vB1hbT6ZTdu3czmUzY3NxkaWmJl7/85Vx//fVk\nWcYHP/hBXviim8jznK985Svs23c+r3zlKzl4591sbfXZWtvgGwfu4Mbn/yzzu1d4+4c+wNI5F+D7\nUyylTqRoBGmOQgqKhhf4JHlGFmUsLs4z9sYoSsa4vwlW2Z6nqipFrkChYugWWZqiqSq2lpGqCUWW\nY6oJlpriGgUX7V2m3WrxhEsuoN1uE06HZUobkGUJ/a1Nmp02QeChqQq2rpKmCXEc4/seNbfO1Atg\nltSmqippkZIXuTwuDcOQSjNd12k2m7TbbUajEUVRoKsalvFjewj9q4/NioqKH49qbFZUnJ1UY7Oi\n4uykGpsVFY8MP0zKmAK8E7inKIo/2/arvwd+afb9LwEf3Xb/y2bu79cAo21Sv+/zHOVXUYARF9dC\nOZNlGcvLy2xubnLy5EniOKbRaLC8vEyv1zujgCKi3y3LoigK+v0+SZLIIonnefJiPE3zmbm0QqEq\npf+OZpDlOVmWsbW1JZ8/jmOOHz9OvV7HNE1ZOBqNRuR5LlVEqqqSZZk0vhZeRsvLyxRFIX2CRJtY\nnudYloVplsWdoihmptYhruvS7/fPUAyJVLLjx4+Tpilra2vSdPucc87BdV3CMMRxHIa9TeqWia1Z\nTMcB3jQiSiBOYDT2oDBwkpCfeuxj+KdP3Uqz0cBxGzS78+y76DH88Zv/jM998XZGkyH79+/nlltu\n4Tde8xre8pa38La3vY1arcbHPvYx5ubmeM1rXsNFF13EsWPH+Lu/+zt++qd/mle84hWMRiPuuece\n2RK3trZGFMfMLSyyZ+ceuq7L6tHDJNMBS/MtyFOCMGHfpZezOgnphwnuXJdJEKLoCp1uk7zIGPY3\nQUnRVYMsybGsOrpu0+4sMBhOiaIMCh3LdEj9Hq4WYxdTGlpIPl0jG52irXkkvaO4+YCtI9/EzIdk\n3iqZv4ZZTCAeEgd9mnUVTYnICx9Vi+kPRqRonFjdYHVrQG4Y5IaBYuiYtoVdK4uNiqYSpwl2zWFt\nY50kS0nzjP5wQJKlxGlCkaRk0Y8XO/9wjM2KioofnWpsVlScnVRjs6Li7KQamxUVjxw/jIfQtcBL\ngRsURfnW7PZs4E3A0xVFeQB42uxngE8CR4BDwP8N/C8/+CkUqYARxrv1ep1arYaqqtI0uV6vs3fv\nXrIso9lssra2JiPqhQF1lmVEUSQNnDudjiy+aJqGruu0220KygIUgG4apElGWuRMp1M2NzdWrfYl\nAAAgAElEQVTxfB8oFT+1Wg3XdWVqWKvVwvd9aeA8GAzYs2cPaZqyvr6O4zjkeU6SCDWJL1vWRDy8\niLQXXkiGYTCZTHAch3q9LhPN5ubmpHeQKHZNp1Pm5+c5fPiw/Dzq9TrNZpPV1VUuuOACNjY2aNbq\nDDZ7mJrO4uIyoHLnnXfhNtukucpgNCb1xtQNg59+0jUM+wOSJGOrPyTKc7rzC1x1zdVcdMnF3HLL\nLdx6223s3r2bCy64gKNHjzKZTLj66qu55ZZbGI1GeJ7HG97wBnbu3MnBgwe58cYbpaH3m970Jnbs\n2MFLX/pSopnK5sk/81T+8Pd+l927dvDiF/4i/a11Oq0mjXqT7o5dtOYXabS7nFxdo9Vp4zgOvV6P\ndrvJys5lFArq9TpJkqEqOmEQY1kOiqKT5QqqZuC6bU4eP0QSTjCVjKWui2spNC0VM4+oGxmOEtHQ\nM5JkTLttUSghOQHziw0UIyfKfDRHw6oZpEVMnOfYrotqmswtLWHZNQzTJFcgLUqD6el0yurqqlSz\nnX/++VL1ZpomjuOUyrC8wP7xFUIPw9isqKj4MajGZkXF2Uk1Nisqzk6qsVlR8QjxA1vGiqL4IqB8\nn18/9Xs8vgB+9Ud5EWmaoSoWYRgDGqbpEIZl8USYLgvj4GPHjuE4Dpubm+zcuRPP8xgMBqytrbGy\nskLhR2VqVxiTAXbNodAUkjSlUBV8PyBMYnRFxXZcFEXB8zwcx8G2bWqN0rMnLSAKM1ZPb+K6LnGU\nU3eabJzusbSk0XBamOiYuskknBJHAe1WA4pMFoT8IKJer6OmZSucrusEQYBbq9Pb2GRubq5UJyUZ\njmoQFypxkgEqQZax1u+zc+dO8jTFRMVQVAZbfdpze0iSgFp9nvE0YjTxyFHJ0Wh1W9xz331ccPFF\n9DZO0e12CbMIzVCouRa6qZBkMfVG6XETjkIsM2RPzeIbn/hrrr3pleDaZHaLvY+9mpvf/3f82stu\nZG5uiWc/87lccOGFnDy1Tn8wYTgcc8H557N64iQrCwv87296A5/85Cf45V9+GUeOHOHo0aP0Nrd4\n8YtfzBVXXEGex8RJSBbnhErCg/69nHfpPh588BjzO/fwrS/ewQ3PXuHBtSMUbZvmBVey+c1/YN5w\nyUYeG0MPu9VllCS02i7T+45iuAtoekGSTDGMAkUJ6XZt4jgmK1KSPGHv+RcTRRGFVqrG2q0FVtc2\nWVlZIYoi+kGK0+gwGvWp19q4TocoidEUlY3+Oo1GC1XN0AwDt94h1qcU6QRL02jWGhw7epzl5WUM\nw0RTwQ+mzDW7s33tkiQJwdgvk8UKBV3ViMKyGIhRpo39ODwcY7OiouJHpxqbFQ8XYgEsy0TqZnFG\ny7lpmnIhqqIamxUVZyvV2KyoeOT48a5E/4XZ7rfi+z5pmsrJjVD8QDnxqdVqUu1TFAXdbpdOpyNb\nrXRdJ0kSaU4t/HlEC5nw8CmKAt/3pfJGqHkAqVJK8ky2oWVZVqaepQ89TlzIu64rTayF0knE3CuK\nIuPlReuaiBzXNE2+HuElBFCr1Wi1WvI5hPeQaLsS6WSKohCGIa1Wi8lkgmma0peoXq/Jz3a7n5Jt\n24xGI3RdZ2NjAxUF29QxNIXAn2LrGioKSgHNVgfNslEMm9/8zV/nj/7oD3njH/4h4/GYP/2TP+Gz\nn/0shm5x7XU/TW9riyiKeNGLXsSdd97J1tYWj33sYymKgrW1NRqNBmEYoqoqnU4Hy7LYsbLC3r17\nueeee9ja2mJubo7D9z/A7p07CFPIFZOxF6GoZSHNNlUWu12SqNxOkpX7U/guiZS18v3XZeKXaLlL\nkkSm0Qls2waQht2e50nzcNM0qdfr8nFhGEo/J7H/DMMAIAgCdF2X7Yoi6Q6Q3k9CkVYUxUO3HFRF\n+1caWRUVFRUVP6mIxNEwDAmC4J/dxO+SJHmkX2pFRUVFRUXFWcpZURASiPYvUciJ41gmgUVRxHA4\nlMWEIAhI05TRaESj0UBRFNI0xQsDag0XwzJpdzuyZSfPMizDxDJMdFXDmN1sw6Rm2TI63FA1LN3A\nMcvniLOUMIlLfx9gaWkJRStbuDIKcqUs2mxtbZVFC9uW0fPNZpNwllwWhuHMyLn0Cmq320wmE1RV\nle9ZJIplWUar1ULXdU6cOIGmaYxGI8bjMfPz83jeRH5e49EUwzDpdLrS62j37t184xvfKI2lJxNZ\n9KrVaqytrUmlUrvdZq7TwFDBIGWuZtA79SAdxyTwppxa3+Rpz3oex9YHnDr5IHffdSeamvO0pz6F\n3bt38vWvf53+sEwD+/Dff5L3ve99fPrTn+bZz342F198MfV6nfe///0sLy/T7Xb58Ic/LN/b7//+\n7/Pggw9y7bXX0uv1qdfr3PCU6zl1/Bjjfg+jvcK6X7D74sfRXdpJ3W2xstAh9QY0HZUszZlb2U0Q\nBOR5LldJi6KQflGiiAZlgpsoLBZFwcrKivSosiyLNE1pNBqkaUoYhrLQIwzLxfGlaRp5jmwJTJKI\nxaUFPH9Kv9+n1+uha+ZDRcVZEUpRFLIskxN0XdexbVsWsCoqKioqKn4YfN9nNBoxHA4ZDAYMBgP6\n/T79fp+trS36/b68fzAYMBqNGI1GVWGooqKioqKi4p9xVuiINVVldXWVTrdFvV4njmMcp1T0TKdT\nqbZxXRff92m1WtIvqF6vo2kac3NzbG5uYjRbBFFZfMnzHLSHouyzNEWfXainUSzNqLdLrUWbGsDC\nwgKTyYRms0lKIU2v8zzHcmyKoigLEkHG0tISSZLQbrdlkce2bRl57ziOVLOoqkqe56RpKpUi4jUY\nhkW/P8Rpuui6SRjGfPvb93DBOfsIJlOyrGA4HNDplgqiPM8ZDEYz9U/ZBub5E+bmW4zHY7rd7hkp\nZu12mzRN8X2fxcVF8jwkizLCKGGl0+Trn/0UP/PcFu35PYzTlP4k4mv/7xd4wXVX8fM33sgLXvAC\ndu5cYW31FO993/v4q//r7dxx5900OnM88xlPRdM0fud3foeDBw/S7Xa59NJL+eIXv8jevXt58pOf\nTLvd5vDhB8iKnJ17dvPGN76R1/2X19MbTSAt2HfObhaaLidjUJQaWmuFE/fdR9eoEXg9VCCKIEwA\n3aDT6cgktziO0TQNy7LkvhAG5ELhZdu23MdCQSSMviHDtu3S98its762QbPTplZzOXXqFI1GA9/3\nMQ0LUMnymKLIqNcdoE2j0Zgl0M0xnpbG4XEcy32eJIn0sRL+UYapkYbRIzHsKioqKir+jTGdTplO\np9KfUCwixXF8RsuYYRjyfBjHMcYs9dR1XbnQUVFRUVFRUVFxVhSEmPn41N3SUFkoNHRdx/OmciKj\naRqe59FqtWQLkK7rjMdjOcERKpFGo8E08GXLlGg/Ez8bjiMLCKJgItQaorWr5tbY3OpRn/XnF0WB\nomlks9/ruk6hQJZmsmVNtK9lWSZ/zrIMVStfp67rsg3Ntm3ZAgbgeR6GVZpNK6Eu26tOnTrFwsIC\nG0nK1maPvBCFrBRF0UiTsk2t3+8zNzfHeDzGdV3IcjzPoygKWq0WruvS6XQYDAbSEDvyE1RDp4hj\nTCNjtLnB5qljuJpLkGXousrIC9l3/gWsrq7yutf9Fnv37mVxcZG/ePOfsf/yKzn/govoDQZ0Oh16\nvR5XXnklL3vZy2i329x///1EUcTCwgKapnH69Gnm5xc599xz+Y//6T/zv77mPxCEEaqq8g+3fox9\nF15Ef3ODuNWg02wRTPpMwpSWZYKqoVOweuoUit2kMbdAHobSjFwksGmaJlU4vu9j27ZUnUGp6JpO\ny+NKtJQJ5dJ4PC73P2VRsPz7GnEc0+52mE6npGlxxvEk2gUdx2E6nRLOXpPYPiCPlziOpWpMJNJV\nVFRUVFT8IERrexRF8lwShqFsSRfnpO1t1KJAJM5JpmnKglFFRUVFRUVFxVnRq6LOvG1Eu5WIaIfS\nuyWKItkWpGkag8GAZrPJcDjE8zxs22YymaDrOsPJmLE3ZTSdkKZpWWDyfNIoRskLNBQMVSONE3RV\ng7wgTzPICyzDREVBU1SiIMTzPBYWFoiSmEKBie8xmUyI4pi8KDh58qR8/jRN5WtyHIdWq4Xnefi+\nTxRFssgl2scAeX+apkRRNGsdUqnVXHTNREEjSwvarS5HjhxjNJxgWQ67du1kMtleXMowTZswiGcq\nJ5VOp4VlWei6Lv17er0eqqpKv4Fer0dYzDyOkgglnHDJrkXuPfBlmpbKXLtDoWpc/4xn87Vv3UVn\naQcZ8PGP/z1HDt3PTS/4Rc7du5vJeEi73eaDH/wgO3bs4ClPeQqtVoskSXj84x/P7bffzpve9CYU\nReHb3/42YRzwyle/gre89b9yxze+ycc//nHa7Tb/08t/mQv27uXAl27H1sD3JhRmE3flInqxhZfq\nJFnKysoOFhbnMfQywSyKotIQvFaTMnrRhtVqteQE2TAMqQozDAPDMIjjGNM0abfbnD59mmazSZIk\neJ6H67oy4a3VajEajWbpdab0eYqTENNSmZvrcOjQIVRVJ03K9LN+vy+PQaEG03UdXdfJsqxUCFkW\nluM8QiOvoqKiouLfAmEY4vs+0+mUyWTCeDyW57vhcChbxsRtMBgwHA4ZjUby8dPpVM5LKioqKioq\nKirgLFEIqZrGdDrFqVksLCywvr5Oo1Ga+QoFhWixEr4wpmmyvLwso+dbrRaLi4tkWVZ6+AQB5uyi\nX6yIKUXZVhQFIWQ5FKAbBppeFgbiIiwVQ3mp8BlOxjSbTWoNl/FgWG5HLxUoSRhhOw7NVosoKv14\nhsOhNKhWFIV2u43v+9RqNcbDEQsLC4RhKJVOQrkiVu4A2doVzgy0oyjCcZzSPLrmomsaw8kIw9CY\nTCbMzy+wublJkqT0+wN2rCxg2zb9/pZshxKmyuvr61ItJFrZaLaZBBHtdhvPC9i32MYcxUw311AX\ndhHGCbWGy7ve/yGOnFjlWTc8mflOi06nxcbGaRaWdqBpCqgFCwsLfP7zn2f//v389V//NadOnWI8\nHnPVVVfx0Y9+lNe+9rXs37+fQ4cOsb6+zv79+6k3Wiiaz2/+5v/G4x73OF71qlfx0ptewCEvoFAK\nvChhcdeFbEQpuqtRTE5SqxlMg5gkjzA1jVqtJlsLfd+Xn6do8dveSjaZTMiyDMuyME2TJEnwfZ9G\no4GuzzEajTAMk821Vc7Zey6TrR6KUv6taEUsUqQqqSgy8jxlY3MNy7JoNduMx1PirJxwC9XR9mKU\nMJy2bRvfD2WBsKKioqKi4nshTKJ938fzPMIwZDKZMJ1OSZJELi6JBRCxICR87EzTlC3LwmfPqRYj\nKioqKioqHvWcFQqhPM+Yn5+XEx2RCCa8eDRNk15B4ra91aooCunX44cBtVqtvMietYFtT3cCpJcP\nIFt3tk+WhHrEsiz5GCHRTtOUNE1l0UEoPpIkkUlTnucxHA7RZoWuKIoeKkptK9IIGXcQBGf4ywiT\nY+GFI4o3ogihashJXZ7npEnZGlar1WZJaxqWbchJovi8XLeMQBef22QyIUoLgjDCdZs4pkEWR9Qt\ng7WTxynSRCaoPf4J17Bn33kMx1MarSaDwYBW0yUIPbzpBJWCyy67jGPHjuF5HisrK9x0002yCHTd\nddfRbDZZW1vj1KlTXHjhhTz2ydfyjne8gwMHDvD297yHz/zDpxls9dmxMM/W6lGaNY00zwhyHae7\nRKRaZIpGlKRQZJi6KhPk8jwHkPtCGEirqnpGulx5vOUy4U08RhQZRXGm2WzKY288Hst9X25Hk9sS\n7YhJEtHpdEjTlHa7LZ9P+AiJ/b3du0jTNLIip95w/3UHWEVFRUXFv1nEvEO0hm1PRo2iSKqNvztd\nTPxOeNYlSSK3U7UrV1RUVFRUVMBZUhCyLAvLsjAMQ7Z/bff1UbYVdkS7T9m6o7Nr1y7a7Ta9Xo9+\nvy8vsk3TZDgcztQzCWlc9tc7poVtmLI4tL3vXkyqxH1pmsqEDs0sDYyTJGE0GhGlifQNStOUkydP\nliqjOOb8889n3759xHEsCwsiKl4YGovijCj6iFjyKIzJswLLsvE8H03T0TSdPCsYjcYkccpkMpER\n7nGUlhH1hUqtVmNra4vxeMzc3BztdvsMjxzhzySS2xzHYRzGoFusrW+SZwkbJx9Ez2KO3HcPbs1C\nV8qkrZ3nXcSBO7/NwvIyg0GZVhIHPpam0nBM1CJleXmZq6++Gk3TeM5znsN5551Hs9nk0ksv5bzz\nzuNDH/oQT3ziEzl69AjdhXkOfvnLvPVtf8Wf/J9/ys9c9QT++I/fhFuz6W+ssvrAnfRPHCbPc/zC\npHAXOHR6QK7ZbPXH6KqGY5Rx7e12u2x7S1NZFDtx4oR836KgJ4o+wmPoodSwsignkuFs25bqLtM0\npdeT67pnFBXjOEY3NNIswTAMVFVlfX2dLCtwHIdGo1GqhlotGo2GPH5rtVpZvPR9bKtGw209YmOv\noqKiouLsZrtvUBRFsvDjeZ5sBxNtY1tbW3LeMh6P8TzvjEKR2I6Yc1RUVFRUVFQ8ujkrCkJpmrC8\nY44si9ncXKPdbmDbFqqqyBQucfEuEpoWFhZkWlerVV5QG4ZBlsYo5HS6rTJRK8uwXRfFMvHThABI\nDQOF0rtInxk8C9Nq1dDRTAPV0GVKRxiG1Go17j98iFxT0B0Lo2aTaDCKfMIooe42aTTbZDls9YcY\nps1gOKbTnce0HMZhyNFTpxh7Pqsbm9TcBlkBllOj2WxjmjZJklFv1BmOh3RbLfzJBNswGA8GFErB\n0J/Q98csL63g+z6qCmE0IctD6q4J5PS3xvQ2Rwy2fGzTYffOPURBTL3ewLAc3HaH3niMatt4eYbv\nDRnEPnmnjTq/gF1LCPr30o6PEq8fpm4oJGqDWEm54rLLCU96zGlNbFUnb8GWMiBzM8a9Pptbffae\nu49vHbwL221wan2DL3z162SGxXN/4QVc+9Snc7I/4Gk3PJm7vvEVXEvj7ju+xsf/7sMsLyzy8U98\nhp+/6ZfR3R3ccM3z+cKnvkQj86ixThIdw9nd5UiiEM+fi2atkE1Mas0WQZLSnl9gGkbkhcLiwjJu\nvcloOEEpVDTdpNOdZzL1yQuFOMkYTzwUVSdOMlA0Nja3sOotUnQGE48oySlUDctycF2XIAhwLBtD\nK4tpqmKiazZRAIbmkqVlW5luKITRiPXxgHHoMxiPZLGx0WjQ7XbZGGyRKAWa66DkMbEfPJLDr6Ki\noqLiLCabBVt8L1WQUFaPRqMzvIO2F4O+WyW0XSlUUVFRUVFR8ejmrCgICeWErutSyizSsYQ6A5i1\nQ+kyWWw6ncp2n0ajwcbGhlS/CAVRvV5nMpmUBr4zZZGQSgtVh2hDExfu4vWIVjLR7uU4jmxf2672\nEAom0WoWBAHT6ZR6vfRBqtVqOI6DaZqygKXreuktNB6jKMoZ/jLic9B1nSAIMAyDRqMh07GKopBR\nsmJSp2mlWsZ1XcIwlPHpvu+ztbVFr9cjCAKZbLVdKaRQvvcgCKRaa25ujiNHjpBGMeSl504B3Hv/\nfURJgqoZsr3K8wK63S5ZluH7PpPJhJtvvpkjR45w3XVPxjZ1puMhYeRjWwaXXHIJJ0+exnEcrrvu\nOsIw5CUvfTH/86teyVvf8hcsLnTZfc4Kj7nsIupuk83NEUmi4TbmUVQbUMmLGE1PpU+QSI8Tn6N4\nb6KtTqyElu1diWxHdByHoihYXFyUSi6x30WSnZg0i6Qw8bNo+xL7X+y7OI6Zm5uT+1kULoMgYDgc\nkuc5tm3L56qk+xUVFRUV3w9xHtt+PhMKWKFmFi3iQgm0vTUsy7J/to3t58WKioqKioqKRy9nTUEo\nTVO63a5s/cnznDAMZYw3IL1X6vW69MzRNI0gCFhYWKDRaNDv9wFkMUiZRdoLM2VVLX1nojgmCEP8\nIJDPJ55DXPAXRSGLOeL19Xo91tbWpAm0MHYUEzLhK7SxsUGz2WQ6naLrOmEY0m63gbJAdPLkSVzX\nPUO2res6k8mEVqvFYDCQ/kMiIcs0TVkEcl0X27ZlQQPKVcRut0ue58RxjOd5NJtNGq0m0cw7KIoi\nHMsmyzJqlk2tbhPH8Wx1cUCt5hKGMUqR89nbPsnW2glyf4JmOwQUHPjOPej1Jrlh0uoskkaQhhmN\nZodv330Pn/j4rXQ6HV7+S7/ElVdcQR5HhNMxWpHRMA3ywGc8iXjRi1+GadU5fPQY73//+7ls/yW8\n5j+8gj96w+vI/B76ksaOS3axOp6i2btpti6j2Xgs/a0C1XDx0j6xus5Gb5NCQXr3FEWBoqnU6/Wy\noBaGxHEsW8dEEcd1XZkaJvyaPM+Tfj/iOBKftzCgFv5PoiC43XdqOBziuq70HBKFN3E8icn50tKS\nNLuOwoTptEp8qaioqKj43gil9PZikLhtVw79zd/8DTfffLNskRbq5+9VTBLbrKh4tBNFkVzMFMl9\no9GI6XSK7/uVkq6iouInnrMiZawoIIpiOp0urtuYXVAnAOi6ge8HhGHE/Pwcm5ubtFotqfYRsd7C\nyHg8GUqlBoVKp9PB83zG4/Fs5axMeFrqtIlnKhxN0wiiCMuyqFk1Ij8gT1KSHKnumEwmdDodHMfB\nMEp1jOd5Mj1KKHSEoigIAjY2NnBdV6ZYicf5vs/Kygq9Xo9ms8lgqy8VLQJN02QrXJIknDp1imaz\nSavVYmtrC8uyZEEJkCcsz/Not9usra2RJQnj6YRut8uxBx+UhYvBYCBj2gsFpmnK5saEuZaLF0S0\n2102pyFPuupy3vvO/8avvv6P6IcBWlbwuGuvpRfGmLaFreqoeJw+ucrhg5/jGc9/Zhlnm6fcdttt\nXHPNE6HIMTSVLE/wJlNs20bTHcIg4stf/Qo/87Sn83/82Zv51j338fb3fYCPf/SjvOkv38ITfvG5\npI5JmllkkUU9rVP4MZbdZTSaYpkpRTqmVpsnDMPSnLlWYzgcYqs62sxfKIoiOnNdWYARJt1CATYa\njeh0OmUxp9XE8zyWlpbo9XrSc0mYUKdpShRF0v9JbGu7t5WmabNjIqdum4SRPzuGIMuKmVl6jq5o\n6LpJoSbkeZUyVlFRUVHxvRGLGWJBS1VVeRPnHNM0efnLX06e5zJhTJyTtj9++3a2zzkqKh5NiEKq\naKkUC3bbF/zEvNyyLBzHQdd1bNt+pF96RUVFxb84Z4VCKM8fSoASCVjin7NoGdv+T1q0dn33BEnE\nq4viSBRFaLNYctGaUxRFmUKVxBQKZEWpCBJtR6JoI1LOxPNuX2UTK2/bCwwi7jVJElqtFisrKziO\nI02KTdNkOp3KglAcx2dEkQt1kVA8qapKs9mUrW9CJSTa4RzHIY7jmZeQKv9WvHehYBqNRkRJWVzb\n2tqSn59lWaW5ZBhhG6X6JclysqxA0TRUFBaaLlk4xSQhy3MyFbAt7jt6FEU3mEw8/vG2f+TUqVV+\n/uW/wnvf+14OHDjAdDplOh1jaDrT6Zg0K9O6DFUjSyImozHNhsv65hYnVjfArnP5T13HK37tNzne\nG3P1056NHyqMvZSx56OQEYVjUCPOv+AcelubqJqJotcxDRtvGpBnUKBCoaIoGqCCqlEUCr4fEscp\nilL+nKbl+9R1E103ieMUTTNI4ow0yUniDNOwGQ0n6JqJgoamGthWDYrysxYrs9uPEdu2ZTvYdDqV\naqPtiBY3sR8KRZMtkRUVFRUVFd/N9oLO9jmPaHcXxR+hGrZtW7bXb09m/V7bqah4NLLdh0uYrQvz\ndd/35fff/ZhkNp+uqKio+EniLLkSVVAUjSCIGA7HNBot2u0utl0jTXMsywFU6SEURRG6rsvCynQ6\nlUlSokUsyzLpM2TbNt1uF9/3pbKmUBWsmoNdrzHxpjJtiiw/I+Jd+A+5rouqqjLuXUSSCyXP9tU6\n3/cxDIPxeHxGPOx235okSZifnycIAlqtFrVaTZ58RAz9eDyWKxPNZpPJZAIgT06aVhoZi9Yl0a4m\n2u3qjQZ2rUa/32d+fp48zzl+/DhLC4tMRmOKLIei9BfYu/cckgwM02Jra4CaJxy59yAvfP4zuP/A\nF2g2GiRpSj8M+OI3vsk73/v/EEcF1z7pem754EfYf955vOrXfo0DX/0arVaLiy++mA9+6BZ03cQP\nolLVVHOway4ry/Osrq9xwzOew13HVvmbD9/K1w6vc8MLX0X3MddwOm+gJ12MtMWcY1M3tmhaq8TT\ng9x39z+xOFcjjet4kzYT3yMtcroL5fvTTQPTtlFnHk2FAmtra4xGIzlZtixLFgFt2z6jJRGQ6W/T\n6RTHcVhYWMC2bXkMaJqGbdtyUh4EgSyy5XlOrVbDtm3ZpigTyWaTduHtlCQJWVGgGeYjNfAqKioq\nKs5yxFxDKIGE159Q+tbrdVqtFt1ul06nQ7vdptlsUq/X5TlPJLmKmygYVVQ82phOp4zHY0ajEaPR\niMFgwGAwoN/vS2N28VWYtIvHTiYTqcyvqKio+EnhrJgNFEXBcDhkcXFRqiza7TbT6ZR7771X+uIE\nwUNmvEVRRnt7nker1ZJFG8+f0Gw2ZapTqfwB3/fZu3cvGxs9JpMJUc1kPCkfa9drZEWp8kizh3qF\ngyCQ8lDhvyNizbMsk7JsXdUxTRPXdcnzXE7YHMeRZsNopeKnSLMyLjaKsG1bFowMwyi3S6mC2q6U\nEgUmy7KYTCbs2rWLXq8nTa1Ho5GUiQsjSdu2idOkVEHNvJdWVlY4evQoRZbRajTK9i5yHLdFFCYE\nYczUj+l253Adh/GxNaZrx/nU57/KrzzhOgxVwbQdrn3qDXzzK19ELQze9l/fxqt+5RU85vIn8tJf\nvJH5+XlqtRqXXfY47r//EK3uApPpCN2ukShlwWT11Bpf/+ZB1qcxT3nuL7By8eVseSHkBcyKbkuo\nREXB8aMH6ffupm7nNM2YvYtditCntx7TdedZ3zjMueeey2RSFgX37DmHw4cPQ14qvLeZ3lwAACAA\nSURBVFB1lhZ34Ps+YRDP/KJA10yyNCfPMopcQdMN8gLq9QaeF1Cv16nVXBRFw/OCmeF2hqrqshgn\nDM0XFxelkThQmo+rBp4XkMc5SgGKos2USRnZxMNx6mwNBiiYONWkvKKioqLi+yDmFGLhQcwtkiSR\nQQmGYUjFslgsMgxDFoVs25ZhE9vDMioqHi1kWUYURbIgJLw2hU9QFEVS8b1deS8WccW1hwiCqdVq\nj/RbqqioqPgX4ay4EhU+LJPJRP7jFZMXXdeludu+fXvlila6zf9HFFWm0ykohWwbC8NwliSm0Wg0\npLS60+kwCSfYhklOQZakmJpOToEyK56oikKeZ9KrSKRHCVNrYUQtThpCXbI95UycYHRdJ8nLbWT5\nQ73JeZ6X20pSOTETrURQrgqKiFmhToqiSKajic9BJGGJ1CrxupIsQ9FU1KIgyVJcq0xHi+O4VCR5\nPnEaUVNVwjihKBTiNCGKwFBVDLUgGA+omyquZZIlOfFMPWMa5f550U0v5K1/9d9I3vMB3v32v+D+\n+w9x4sQJHMfhCVdfTaGoJHlZDAuimMnE49bP3o7b7vDvnvt87nvwOKZVRzctpoNNbNPALVJO3XeY\n8aTPdHyCi/Z1IJ/iGga5P8Ub+qShQnv3PoZT5Elb13WCuGwTTItUqrzEymocx1LFEwTBGZPsKIrQ\nzHLV1PM8TNOUE+ztfgsiZUy0GIpjTxQCxbYdx2FzfR3VhvrMiFocM1kco5vlPswLCKLKQ6iioqKi\n4nsj1DxCZSrmJeIcpqoqRVGg67q8mBULVt+tDtreSlZR8Whiu2JfzK2F4l7M14W1hFjwE3N6YSUh\nEn6rVv+KioqfJM6KgpChGzh2nQfuP8TS0hI7duxgOBhTFAU7V3aT5zme5xEEgZzwGIbBaDSi3W7j\neR6NRoMwDFHUgkajgWVZbG5szZQ3vvQXUlW1NJDLMoIiYjKZsLy4RKEqqIVKksbUZ1V/vUAWZ0Qb\nkSggeJ4nJ1zCN0a0iQnzOdG65bouSpGfEf9qmiabm5tlctl4Uyp8wqRUsYzHYxqNhjwxCR8jcZIy\nDIPJZIJt25x77rmcOHGCOI6p1+ulR1IUgT4rVmlaabycpMx1OozHY9rNVpnEFTNL4NIwLIder4+1\nMMfQ77HQbtAfBTzjuqu5544D7LnwYoI8J00LrnrilQy3+ux/zKX86Z/+Kbd96cvkWcpVV17Br//G\nb/DHf/YXWHWX933gQ7zwJb/E7V/8AvcfOcplj30c51xzA3kGRzdHFOS06jqav8nG/V/g9MmjnL/S\n4YLlJsaczqEHBtgDH5WCPEvRFThnaQ7TMVlfv4tud5719c3SZ0kz8Kcenc4c4/G4fM9xSp7kNBqN\nWQqYNSsSGaWHUpyiqjq2bZAWOZpmoOsmSZLRarVmx1Z9dr8+K16WLX1iH29PgAGwbZvMtEiTDK2u\no2sGWZoTR2WhM1NAQSVJUnJNx8irVdqKioqKiu+PmL+IBSCxOLY98GD7xawo/jiOQ71exzTNmfK1\nJtunKyoeTZTBMiG+7+N5nkwJnk6nJEkiC0PfXVQVyjvTNOXio5jHV+OooqLiJ4GzoiCUpimqqnLh\nhRfi+z6j0QjLsgCwLIskSVhYWODEySP4vk+tVpPtW3EcSxNf27ZRNeRFerfb5cSJE9RqdanmaLfb\n+L7PeHNCvdkkmlX+VVWFWQFI07RSDVIgfYtEtP1gMACg2WxKNUnbbcnoeeETNDc3x+7du4njmPX1\ndUynbIWz9NK3Rtc0GYUu1ChRFGHaZdEpCAKgVAy5rit9aOr1OseOHWNlZQUoC1VHjx7lnHPO4cEH\nH5QycN/3sVsuSRKjK+XkMPB8lhYWOHLoMF6nK4sYo/6QRmee+fl5NoMJXuDTtFWW5uZQtTHHHzzK\nRz51J//5DX9Aodtkuoqma9zywQ/yxt/9HbwTJ/HjiN/6j/+JjIJ77r2Pfr+PZtk8cOwYt376M+w5\n91z2N+ZIC8jceTbX11lxbeJRjzu+cjvRibu5/uJlFqcxe/Qtgv4DuHOLLFgBRaQTeBG7d52Loids\nbJxifsUGZZOcljQM7/V6zHfnpNqqKAqCIKBZd6XKan19nVarJVdIhapHrPgkSUKtVpu105VmnoPB\nQE4AhBpJHH/bFVmKokhV2sbGBsvLyzimxf/H3rvGWpKd53nPWnWvfT/X7p7p4ZAcSjQZWVTEKBGM\nwIiNIE4cxBaQABKQIBEMWD9iIEHyJ8qvBIgDJ3AsA0osRTIZGbYs2dHFVoQEiqi7bEcyKVG8SJwb\nObfu6e5z9rXut7Xyo/aqPt2c4QzJme7DOesBdp99ateuWlW1V+993v1971tmOe7e0ygIAm7du8N2\nt+PnfvFfcPJEwJ//M9/7qKecxWKxWL6FCMMQZ/+5wVQqmPewixHz5o9Z8x530TtvPB4zGo2Gz1cW\ny1XBmEgbn848zynL8oH2MeNLCgxzx3QAmC9jTVWesYOwgpDFYnkvcClqHpVW5MWO7W5JFHuMxgHS\nUYzGAUrXxCOfusk5PT2laZq9YBQShiO0luR5ReCPKYuOPCvZbhIc6Q1G09PpBK0Vx8dH1HXBwcEM\n0XqIziWUMXlakm4TlNJ925DvIBzoyhpHgasF4yAi2+zwkEzCmDLJ6Mqa+WiCF3kIFHQtsecyCQO2\n52eopibNdiyOF0xmU1rV0QpNqxXrZEcUx2y2W64/cQOkwA8DtIamaemNtiWu61EUJSCIopg8L0A6\nOJ5P0ykOj0/IywotJNFojHBcWqXRQuJrl9gJ8YSHpI85L6qGbZZzd7mibDvSokGrhrbYUm3u4khN\nWbc0zojbyy3xeIorNN+2gM/+2i/j4KC8MXfSmvd99EOU9ZLDKfzOP/0ZPvGjf5t//8/+WT75yZ/i\ns195jR/9hz/Pv/oXfwD36T/NbT1hJWfk/iH6tc/z4VHB7Owz3Pm1T+B/5Tf5+A2PbHWbrGxRhx+g\nbk55+dUWb3KdTDY4BwGZl/F6usSZTFluXTz/AzRNxWQ2pqhyolFIrWrSMuXJDzxFTQuhgxKKjg7h\nCqQnEUIDCtU1lEVGHPi4AqQr6HRLqxq0UOzSLVVT0nQ1YRyA1GRFiuO5tKojyVK0gFZ11G1DVuRI\n16FuG0ajCQcHB6zWZ0inoyw3+LHDOl0TTWfIeEbRwuvbiujk5DHPQIvFYrFcdt7IVPpislgURW96\n3zzHfAFlsVwljI2DqdQ3fptv1EJmxKK+irweWs3Mc8w2jABrsVgs3+pcCkHItOIcHR1xfn7et37t\n1feheoe+ZPr09BTP8zg/P6eqKna7Hb7vD5VDpswzz3Mcx+HGjRtsNpu+HassGY1GZFnGeDymKAqS\nJKHrOuI4pus64P43CdB/S1CWJV3XDWWjXdcNqWRpmrJerzk4OMALfMqyHDyQpOsM7V/PP/88o9EI\npdSQ+JVlGUIIlssl0+l0MK72PI/JZMJyuaQsy6FlrCxL4jjm5OSEPM+5du0aaZoSxzEvvvgiruvy\n2muv4fs+8/l8KH81VUtVVaG15qMf/ShJknB4eMjp6enQBjcajTg4OEAI0RtfZxn37t1jsVjw7R96\nht/6jU8xCj2KoiAej3jmT30Hn3/uJTp/wl/7r/4bdm7Ize/6OJ/4+Z/HmYz4ru/9HqazkLbaEDkN\nlOfcOPA4e+5z/MrP/hSbl57jIBA8dTCmS9aoPOGZp6+zuvvqfR+kvVmmeeOWUrLb7XAch+12y2g0\nGqp50jTtvYAchyzL2G63+L5P3TaD30IYhkNJsDEdX65XANR1zWazGc6/+TbIvN7MG3/btsMHbOir\nyLTWLBYLPM+jLEtc1+WVV15hs9mwWq2G10bX9e2GR0eH/NAP/WX+rX/z41R59kjnm8VisVi+NRmP\nx0ynU2azGbPZjMViwWKx4ODgYEgZMz9N4phZdzKZDIEVFstVwgg4RgC6GDtvWsi22+2QLrbZbNjt\ndoNdhVnfiEMXBSKLxWL5VudSCEJSSs7OzqiqipOTE7bbLbvdbvDb6bquF1j20e7z+Zyu68iyjCiK\nBgGpaZrBQyeOY9brNYvFgs1mw507dwazZ9d1uXZyjCMkVV08IPgIR6KQSNd/IMrdiAEXvWLMGBzH\nIcnSPiXMeA51XS/meC5JknBwcMB6vaYoikFkMb39ALvdjs1mgxBiaGEy7WrG3NgYZbdty2az4d69\ne+R5zng8Hgynb968OZw7I6oZYW08HrNaraiqihs3bvClL32J3W7HeNy3VI3HY5qmGY7NbDOOY5y2\n5CPPvI/8/C7zcUxZNdzZ1vz2Z59nq0MSEfOLn/4cq2jKv/YX/wN2bUOtGjxRMBVbDr0dr3721/il\nT/4N3ufk/OtPHTDKzrk5dsnvvMS1eYhPTba8Q5WuhxQ3Y8p98bWQpilSyiHaPU3TwRshjuPhfHz3\nd383y+Wyv2Zo6rb3/dGyN4cu9tc9jmOqph4ifNM0pSiKoTzftOFdNPM0cfNVVQ0fsLMsQynFdDql\nqyuEhGvXrnG2WpLmJVK6TCYTXMehqWoCz+NgElHs1o96ylksFovlW5Q4jpnNZszn868ShA4PDx8Q\nhBaLxSAI2cogy1VFKfVVN1MpZASiPM/5sR/7MX78x3+cJEmGKiHz+fuiD6i52Qohi8XyXuAtBSEh\nxE0hxG8IIf5YCPFFIcR/sV/+3wkhbgkhPru//XsXnvPDQogXhBDPCiH+nbfah/H7MX/4m3Qto76b\n9AxT+WMEn7quhwQAkxRlKmZMZPxut2M+nw/7Mf3BSik0HVEQDhUl/X/2aigDNf/Rm2QqIzqZNwQj\nEKgOAj9iPj9gNJrg+iFCOIBEddDU3ZBONRqNkFLi+35vhLz3v8myvkrEVB6ZYzTL4jgeepXNvsuy\nHLYTRRFZlg3Padt2EDF83x8M84yQ4fs+SZIghIMQfTvZbpdSVQ1SujRNR9dp2lax26VM44iD8Yjf\n+a1Pge7T17zRhOjglL/zU/+A516+xez6k5xlJYuT63iex+HBDNnkhG3BH/zWr9AsX+EDRxH1+gzS\nDW5b0ZUZH7h5k3y7paqKfbVSNyS6mdeD67rDsZoqH1M5JoR4IIXNiFrT6XS4b8REI/KtVqveINB1\nSdN0EN3Ma7Dr7ifMGTNB481g9mdSWoxXg7meRVHgeg6e06e5jEYTJpMZ0vFo1b7UWDXUTYmjO4Jv\n8EP6o5ibFovl68fOTcuj4GKcvGkRu3gzj1kh6D52bl5NLoZ/mPsXP+c/LO6YL37faP2Ht2N5Z7Bz\n02J5fLwdU+kW+K+11n8ghJgAnxFC/Or+sR/RWv/NiysLIT4CfD/wUeAG8CkhxLdprbs324FSisPD\nQz7zmc/xnd/5ERaLBavVaoj/jqJoMEqeTCZ0XcdoNOaP/ujzSCk5OTkh2fViiNJ9CWgURUPM+PHx\nMWVZslqtmM1mKKWo9qlb165doyxzkiTh6OgIKQSd1kgYWsQmkwlZlg3iijGTNuke56sl1WhM5AcE\nbh9v7nke7j6afDyd4LruUJbqu72BdFv1osfdu3cJgoCnn36a9WY7VPfcvHmTO3fuEMfxA7Hn6D41\ny1QHmbGcnZ3hOA6np6esVivKsngg+cr3fXa7HZ7ncXZ2xkc+8hGEENy5c4eTkxNefPFFPvShD5Fl\nGavVajCtTNOUg8OQsaP4e3//Z/i+//g/QylBI0Pe99Hv4n0f/g5kV1O0AtcLKZKUmQS92/Cpn/0k\nT048ZqHLUwsHXyTUSiG1Yrfc8PRTN7h793XwHA5Ob/LF557l4OQ6syBgNpuRpulQ5dQLWILFYvFA\nZc7FD72r1Yrbt2+zWCw4Pz9nOp2y3m2ZS0EchLSqF/Nw5FBZFkYRSZIgA28w7hRCsNvthiQXk07n\n+33rlxHpNpsNs9mMsiwpiqJPlBOCuiwQArI856n3vY/VaoPj9qLTdDqlyvvXtts1KP0Nlxy/63PT\nYrF8Q9i5aXkkWIPorxs7N68g5jP0xS/1Hv6i0Pd9fvAHf3BI/TUV+sa6wtwubseEmFjeEezctFge\nE29ZIaS1fl1r/Qf7+wnwJ8ATX+Mpfwn4Wa11pbX+CvAC8D1fax/O/o/zb/u297NarQYvH1OR47ou\ndV0P1SLmA9BHPvIRbt++zXPPPfdA+oapMDLx8EIInnzySbbb7fCH/WQUcXp8iETh7CuM0jSnarrh\nJoSgbVu22+0gynRdNwgD5o1kNJnSNC3r9YairLhz9x5plveG0FVFXlZDVLxJoTJVT13XcfPmzSHZ\n6uK3FZvNZhCRLlYoNU1DmqYEQcBmsxlKX2ezGW3bkiQJTdMM4pVJvyqKYih7NW1wX/ziH1PXDZ//\n/Bc4Pj5BaxiNxvTDEFRVjeO45Ns1kej4+J865l/+5v/L8Syi04KXXr1NkiQEUjHXNSeeIN6t+D9/\n9G/x+7/4Mzwz8nk6lEzLhAUtR66mblrSqkL4MXd3BeHiGiUhq1xx8uQzNKKvBLt16xaj0Yi6rplM\nJgBD2prxfKqqijAMuXXrFq+99hpt2/Z+Tp7HaDTi9PR0aIWru5aO/vw6nktRV5RNPZxb40V1sZor\niqKhAshUbpky46IoGI1GdF3HeDwe0l6qqkK3Dei+ymqbpKyThCQvyKsapVoC38VFE4c+XfONCUKP\nYm5aLJavHzs3LZbLiZ2bVxNTxW1EHnMz5uzGwmE+n3NwcMBsNhs+A140YzfbMJ8LTaW45ZvHzk2L\n5fHxdXkICSGeBr4L+L39or8mhPicEOKTQojFftkTwKsXnvYabzChhRB/VQjxaSHEp4u6GyozDg8P\nSdOUyWQyCC5pmg7ChqnaMTHeYRiS5zlSyqGdzPjOCCEIw5CqqhBCEEXR0EomtCYI7rcgua4/9BDH\nowlK328LutiaZAQVU0UShmHvcRRHOL5HlmU0TcNyuaRRvf+M2YZ5UzFtTAal1CA8mNYnIcQQKWv8\njUzbUhiGg4hhWumEEMNPY2psxm3ar0yblWl5M29mxrDa3bdPmX2blrSu62irmrYpeeJozv/327+O\nrgt0V3N0MGM6ifBFQ1hneGXKz/zdH+c7P/gUJ6OALtkSCE0oBbpr+gqlOERJiRtGFI2ilR64AQqB\ncL1h3EbYyvN8OOda6+GbHCMIGePppmke+BZIStkLSk2D2rcLdl2HEgxGgHVdo6VACYY+cXOtjcG3\nMfU2LWkXEybE3qepbdtBZIuiCM93cIUkiiKapiFJsuEaaa3xpIOQD3pSfTO8W3Pz7Ozsmx6bxXKV\nsXPTYrmc2Ll5dTAVPeZz78MCkelGMH9XvJkQdPH5F/8+sLyz2LlpsTxa3vb/ZEKIMfDzwH+ptd4B\nPwZ8EPgY8Drwv3w9O9Za/4TW+uNa648Hbu+7Ar0IUFUVUsqhD95UyZjUKaXU0P50/fp1wjAcEqiC\nIBgElDRNKcuSsixRShHHMcvlkjzPqZsSiSDcCzRPP/00cRzTdn2FkXR71d+8ibRt+0CVTpZlQ8uR\nedz3faJRjHAk22TH7du32SYJQRAMrVrj8XgwsTOijDmm5XKJlBLP84b9GINkk4wgpWS73QKwXC4J\ngoCiKJBSDm9kQoihKsbzvEEIMWIK9PG1VVXx4Q9/mKqq+OAHP8izzz7Ler0ejKaNIHN6espkMmEa\nBHz0/Tf5w9/9Q/73v/0/czSJaPMN7e4eya0v8ZN/44f57V/4BKPiDtfCmusjuHk6o1UNo6MFt/OC\ntfQYzUf4I59VugFXkJcZWneU2Q5V5oSiFwiNUXS0b+kKw5AgCEjTdBBSqqqiKArm8zlBEBDHMUmS\nDMbQJmoXoKpriqIYzqOJjzdVZWmaAgzbMclmxsvKbMdUYp2dnQ3VbOZ6LpdLdrsdTdWbEWZZRhhE\nHJ9coyhrpOPhCknXNhRZiuoA8c35O7ybc/P4+PibGpvFcpWxc9NiuZzYuXm18H1/EHiCIBj+vhiN\nRv3n2+l0qA46PDwczNin0+lQKWR8ucx2TOCI5Z3Fzk2L5dHztgQhIYRHPzl/Wmv9CwBa67ta605r\nrYCf5H6Z3i3g5oWnP7lf9qZofb9aRQjB8fHxIACsVisODg7YbreDqJFl2SDAjMdjrl27xm63I45j\nyrIczKPNf+BSStq2ZTKZcHBw0ItLGpq2Gqo2TBvV0dERr9+9h+/3CVbmP3tjbm2+RQAYjUZ9C1sU\n4zo+baNoW4XjeBweHtPUHVXVsNpsB9HIxNabYzFJBcb3KEkS8jwfhKL750gPLV8mTWsymQwVK0Yc\nMVUt63WfXNU0zWDCbDAeR3VdU5UNUTji9q07nBxfw5EeRV4RhSNG8YS7d84oi7o3nnYEoaP5098+\n5zd+5VPcvLbgC5/+5/zk//o3+c1f/lm+85lDbh64HIwakvNXuHP7Bao2Y1VlLJuKZjonGY3pVMnB\n4QTfB60rujrjcBbi6wKVrVj4/bFGUcRyuWQ2m3F8fDxUL83nc9brNXEcD8KWuX5FUTCZTAiCYGjN\nu3HjxlDtVZRlX3EW+IM5d14Wg4hmKs7quk8dA4aqLpP6ZlLNPM8jSRLatmW9XtO2LfP5nCiKaKsa\n19vvs64QrkPVNkOSXNc1OFKC44L4xr9herfnpsVi+cawc9NiuZzYuXn1MOErpgoojuNBDDIpfBfT\n+haLBfP5nNlsxmQyYTKZPCAMmQoiyzuLnZsWy+Ph7aSMCeATwJ9orf/WheXXL6z2fcAX9vd/Cfh+\nIUQghHg/8CHg97/mIPaCjTF22+12lGXJiy++iFKKu3fvUtc1t27dYjqdEoYRTdOhOnBkwHg0x3EC\nXn75FkJ7yM5FdpIqrah2JdNwRKgdQi2JcCCvKDsfLQM2aUo4ChCyZjaPydINke9xfuceo9kho/GC\nIJwwnswRuLRtR1e3lFlOut2RrDeossSR4PkOwhU4vkOrWzzf4akb1/ngzZscH5xSFy3pLiUMo96P\nRnV0aPxRQDAO2RXJ3gi6o20bfN/DdR2iKKTrWjzPxd1XLplKlzzNCDwfoSH2AmSrUGWNj8QLfIIo\nRLoOjueSZCmdVkMFk3AkYeRweu2A6zeOcFw4X95ltT4jSbcsDmaDN9O9ck0Te7z48ov8he/5MN/3\nHXN+6Yd/gMPnP8W/e93hpKs4f+kVdnfuMg4nnO9y1nnLMq0RMkIqiVtUTKqWbJmwvbtmEc3Y3l3j\nC5/NeUIcH5HmmtWuQ7oB622KdAPSvMIPY15+9RZ+FOJHIUVdEY7CIUrXVIIZ/5+LUaFlWfPMM9+G\nxGE+XRC4AbrVJNuUUTRms9oyn8yp6xaloOk02yRDOB7nmy210mRNQ+c4rPeVYXmeMxqNKMsS6Cuu\nNpsNYRiy2WwYBw6x6xL6AV3dobSkrAWv3lnRyJis9djVEjpFV+Zvf8Y+4rlpsVi+fuzctFguJ3Zu\nXl2MGDQajRiPx0Nl0Gw2Yz6fDxVCD4tC8/l8EIWMMGS+kLS8c9i5abE8Pt5OytifAf4T4PNCiM/u\nl/23wA8IIT4GaOAl4IcAtNZfFEL8Y+CP6R3j//O3cnzXmvvePkIwGo1wXZfdbsdkMhkqMnbJmqLo\nqzmUavEDF627vT9QwGq16tvJPA+l2sGPp+s66BRC9O1Ak+mUqqqIR/5QieO6ckgVGI8n1H5f9RH5\nwb4KpeyjyB0HZ+/bo7VGOg5VVQHsx6WGZCrTMuS6Ll3bR5Y77v3oet/3hzY00yo2jad0XUcURWy3\n26FVzXgXAbj71AOtNU3bDdVDcRAOPc5d11Hv2+hMpZHxuHFdF6UUeZ7ju/fTE9q24ujoiM1mAzCk\njCVJghPe9+8Jw5CnnnqKg4MDdtvtkMBmjnc0GlEU2dCjDVCW/flL05TZ/jqbY26aZjgeY9LsBj5V\n1W+raRqKouD09HRopavrmvPzcxbTxfD8OI4fMJw2YzG/a637Y7ngj2Q8mYq6Gtr/1N6vyFRv5XlO\nGIZD6p00xtH7GHrTcmaqyTzPo2haUA2t7D2FSiWZTyd4LmzWS+bTEdFkRLJd44TjtzENH8/ctFgs\n3xB2bloslxM7N68oF9PEjOfmxc/YF8NpzN8PJsjmYsuZMaS2vOPYuWmxPCbeUhDSWv8u8EZNsv/3\n13jOXwf++tsdhBAMptCe5w1+P0Y0MC7+s9mM9WbJ8fExRV4xmQRoLXCA+XzKc899iTt3BE899RRN\n1fvypEqxmE+RvkdX1ziOw3g85tb5mvlijOuG5EWC1g5K9a1UbdsSRj6vPPcSTz75JB2aYG8OXVcF\n0vcZjUZD0pfeiy7G+8ckiU2nU7Iso65rfC/sRRHVrzebTQdTZKV7Ucb3fQS9SXHTNJRlyWg0GryR\njKG2Wde0xmmte78b2R9z07Z0bUvRNcMbmvm52+2GtqbdbkeSJEynU4IgYL3ecvPmTVzX5e7du4OY\nUhQF81mf8nX9+nXu3bvHfDrj3r17BHtRy3EcJpMJZ2dnhGFImuZ4Xv9GOp/PB6GmKAqqpuuPAcls\ncchyuWQ6nbLa7Dg8POTu3bu4gY8QDtBf/z7tzOHO6/eIRyHXrl0bqnOgf/2YFkNjSK6U6g2fm72J\ntucOaW/pbse1a9eoyoqTkxM2mw1e0MfYm3Yxk2CWZRkn1045Ozvj6OgI1XUURTHEkZr2RCNWTSYT\n7iQNooNQOMSBj6hLtKgIAsl0EiCF4tWXnkeefpQXXnnh7U6Vh+fZuz43LRbL14+dmxbL5cTOzauN\n8fI0gSAmmMV4jyqlBruIi4JQFEVDeu14/A1/iWf5Gti5abE8Pt5OhdC7TtcpxuMxm82GIAgoy5LV\najV4Cd24cYMkSUjSFVVVsVoJptM5ZZXhyF6ll1LyxJMnFFmfSjWbTSnLkiov+koY38fzXFB6EEjW\n6zVRFICA2ayvGprNZty7dw6Mmc1muK5LWZbMZkc0ZYVWvReP9Pp0MvPGYapWfN9nPp8P1TAm2ctU\nyEinryTabrdDlLoZvxCC3Wo3iDXG7wgYhCqzL1OJ5Ps+Tdcvz8oCqRmSrnbbwlzZkgAAIABJREFU\nnKqqWCwWDyRhFUXRVzvtv+UQQjCbzaiqhtdff50bN26QphlJkhDHMc8//zzxQW+MvZjOBn+e0WiE\noN9fmqacHF/jnr7H2dkZBwcHQ0XOtWvXhkqhOBqTrFdD+tZsNqPeC3Wm1WsymVCWJYvFYm+sHQ+J\nbmVZEAYhQvRVUQ4Oi8UhZVmyXm9xXZ/NZocQgslkRppmSCTjccB8viD3c9JdQhDFZGmfXua5PgIJ\nWqCUpusUZdl7MYVxhJQOm/WWxfyA3TYh9Dyk6/epaELQaSiqBun6bJOMyWSCM57idBWB25InW3wa\nRp5ChBFl26KcEBFO+Se/9TmSJHmk881isVgsFovlKmLSf016b1VVQxX+w4KQ8Rk1ScDGW9JisVje\nS1ySvESN1noQg4x7v0kTS/ZJXUqpoZLIdfs2p7LqE8NcT7I4mBGEIbskecD5v26bQZDRUiBchzD0\nybKsj6wXfXuQ6/SiSxRFtG3NaDwm2VcBGSNr4VyIbfc9GnX/WwXT9qSUGspOzTcMwFBuapYDwzi1\n1kNLVtu2QwWSicQ07WwmTn5405KyT81y9y1Ljhy2ayLTjZm1GUvTNEObmzFkBh7w4plOp0PyW99S\n5uI4HnleohRkWUEQREjhIoXLdDInTdPelDnrPXbKshyqkoqiHN5kW9XRaUVeFrSqQ7oOnVb4YUDV\n1PhhgFYC1bGvuKp7cW8/5q7rqMpmSFhzHIeiKIZzYiqsTJy7HwRs9ylvdV3T6f51ZFLFsiKnVd3Q\nImbOixBiaFG86E9krrMx5/Y8bxDYTNqdi6KuMpoiJ/AEriNQQpLVNbUI+MyXvsxvf+YLrJKCYDx/\n96aWxWKxWCwWi2XAcRzCMBwi5k2i7cVbGIbD8iAIrBhksVjes1wKQUhKSbIXcZRSQzKWES6WyyVF\nUaC1HipKehFD0beLKuq6xPMcTk5O0Fqz3m5AChy/T5pCiiFivBc8xhweLlitVnheQJ5VVFWz97GJ\n8H2Xk5MTuq6j7ToUGj8Ke8FAChR66EU23yD4vj8kiNV1zWg0GryGjJAD94UXIwoZMQkY+pmn0+kg\n4Jg0LOOLE8QRaZGTlX3bEkKgtSYe98lXVdsg3N5TZzweU9c10ItOZn/m2xDjEWTa03zf54UXXhgq\nkYqiGM5p0zTDMUkpuXfvHpPJhN1uRxiGeF6A43gsFguytMCRHm2r2O12+7aqmPV6QxyPUQp8P+Tu\n3TM8L6BpOkCiFJRlTZZlLJdLVMc+IU2y2exwXY8s6z19HOlRVw1FXhL4IZ7rs93sKIsKR7qsVxui\nMEZr0YtXjkdR1qgOmlahpUNWVtR1v/2iqACJ6/p4XkBVNey2KWmSo7WgaTq0FuRlie77HOm0pqxr\nFKCFQDgOt15/naOwJe5ynCZH1RV4MV10zE7M+OlPfYbffWHHV4opfhjRKv0op5vFYrFYLBbLlSeK\noiFh7GLK2EVj6fF4bD2DLBbLe5pLIQix983Jst6IOMuyoVojiqJB1HjyiafJ0oqDxQmvvnqLKBoN\ngslQYRP4+GFvMF2WZS8KeR7d3menrCuqpqYoc5RSzOcH7HYpZ2dL6rpFCKf/5iAKeP3uHcI4olW9\nZ8w22dFpTb2vuCnrirKuhrayPO/Tosqy7BPA8nyIe++6bjBpNsLKK6+8MlQSGePnk5MTHMfhhRde\noKoqpOwrkpIkGY5xtVn3gojjsN5tmc1mZHnOarVCug7xeDRUNHVdN7ReGT8mYyJtxrrdbsnzvn3q\n5s2bvUdTUezbyCpOT085P1sxiiesV1vQEs8LiOMxSZIxnc7J83KIvBeiN9re7XaslhuapuP8fMVy\nuezb9fwAP4yo2w7huKR5Qas0VdPSdIq8rJDSRaneCDvPSqqy2SfQpft2vw113XB4eDicY8dxuHHj\nxlCFZdrQtBEGpeD4+JgwjvYvu746q+5a6q4dro0QYjAXnE6ng5F2URSDcbX5BilJkqHtriiKIdo0\nX77OYhKzzmo6f8JLm47/45d+mx//uU+xFlNSb0bmzdBtiW5LLBaLxWKxWCyPHlNVf9E8+mJYiMVi\nsbyXuRSCkNb6ARNpkz5lKm5M5VBV1XieDwg8N6AsaoIgwvPuV+HUdc1sNiNJU/I8J8/zYbumjcjz\nvKG1azQaMZlMiON48PsRshcXTGuQqU4yrWKmZQsYxAezPXM8Zsxwf1tGuDJ+QaPRaH9c1SBqSCkZ\njUZD0poxTr7Y+mWELpNwZTyD2Pc8e55HUd0XGeq6RgjxQBqa2FcVKaUIw3CouqrrmvF4PPgVGZGk\nKIreuHof5W6ql8qyHAz5uk6hlN6/sQZDFVRZlvuqJMVkMqGu66FKyZxLIcRwfruuYz6fE4YhUrrD\nMZhyXfPTtHBtNpvh3Fxs+TLXuW0UqgPVQRyPCYIIrUVvWi2c4TG0HNbVStC1GpB0nUYpKIoKrQVK\na5q2RToO7b6CTAOO6yKkJMtzpB+wSis6f8SyFPz6v/wCZ3lLdHCK44ZIDb7roXWHDUWwWCwWi8Vi\nsVgsFsuj5lIIQkaY8X2fpmmGKgyTEmXiyG/fOudgcUJVdsxmB9y6dRtHekjh0rYKIRzCUdwLQknF\nrdu3e4PiuvfJyauSsul9X1xXMp1Omc1mLM/XHB4cU5V9i1pd11RVwfG1U4B9Elgv5Ei3TxxotaJs\n6gdaukwLmGnFMhU5xmfGVOxcFEmqqhrW3W63nJ2dIYTg5s2bgwhlBCZTFeS6bu/9o3sxZ5PsEG7f\ncnaxwsX0RRsDayPCXKQoiqECq2ka0jQdot/TNMVxHF599VV8P+Ds7JyiKEmSlGSX4nsBdd3QNC1V\n1Rtql2WJlA7Xrl0jika9F1FeDVVOXacHjyiTjmYqwYwgZTyTALbbLWEY92LP3lOorluCINpXkdEn\nzTkevh/StgrX9Yd1uk6Tl311V1EU1PuUsbpthnPQdO0gJBkhz7TxlWU5iGCm4sgYVxdFRRjGFEVF\n2yqyrEApmM0WrLqYZnKDf/hrf8j/9gu/wXNbgZjdJNc+ZbrlyG9wkts0UtNI2zJmsVgsFovFYrFY\nLJZHy6UQhIQQbDabQSAwfjqmUqSqKsqyZDyestulHB+fcvdO7z2TJClpmuG5AUVekWUZm2THxz72\nkaFaxUSCLxYLwjCk1YrFYtELO/tkq7KsOTk5GapWTEXReDbl5ORkqJAxrVBGCEqLfNi+8Q8yFT+m\noqYXmKohncsYIMdx3Jsw7w2Y5/N577+TZaxWq6H6x4zFVPpMJpOhzaxV3QNVVXlR7JO5xmRZNlQP\nmQh1I8AYP6HpdEq6N84+Pz9nsVg8UPG0Wq0IgoAPfehDQ+vZYrEgSRJ2ux0AeZ4zHo/7dK29ADYa\njTg9PeWll17q95HkuK7b+0I1NVVTowW0qsMLfKJRPPwexhHb7Q4h5CAQ9e1pySCcRVFEXffHcu3a\nNbbbLcvlEug9mqIoGpaZ/m/XdfuKMdNKtj9OrTVaMLTVmXNt9mW8rEaj0WB6bhLUwjBkt9sNcfbm\nNfA7f/g8/+Pf+Wl2TNgxxT+8ydkuo6xaJoHAq9Y8ORUo6aCk83gmnsVisVgsFovFYrFYriyXQhCS\nSFwVIduAUE6g9piGh8g2oMkgEGNCOcF3aop0SVvtmE9CYt+lTFNC16UpSkLXww9Ef4s9Dk7mvHz7\nZfAknQtF17Arc0rVkm4KyqwkcD0O5mOqYkvgCSbxiHxXEHljZLOFaotHzfF8SlsWzEZj4jAgDnwc\n0eCIhqItUI7Ciz0aGvAgb3LwoKGh1jWnRxOqfE3sS6SqacsMlw5VF8xHIxylyLfb/Tg0oQ+6Kzg6\nGCN0xfHhhN3mHqHfV/WYGPmqqqjbhiRLCScj0qqg0h3+OEa2is29c7qiIhAOkePR5iU+klC6tHnJ\nebbEGbvkuqAWJet8ybZcc3RthpYVSXGGG7bcfvl5ZrFLlpxT5mvCELJsyXQW0LQpZbUlX65ZhDHZ\n+YpQOIi6pc4rfOkxCkes7m1w8TkYj0iW5xxNJ8SuQ5XsUGXB2PcIpSBdLVGqYbtdcXR0wO3XXyEK\nHFA1uqk5XsxJV0tmUUgYeGTpDt9zmE3HVGXObrtmMo7ZrJcEvounNbqq8AS4aDwBgecyHsdICVp3\nnJ/fo9YNlapxPAlS0+mWIOjbunzXoSpyosBnqR1E6KN0Q7V5neNxgNN1yPAaLxdH/N1ffZl//pWM\nbnydvG4ZRx4kZ0zdhshVJC2cM+aVMiBA4qnHPQMtFovFYrFYLBaLxXLVuBSCEFIgA4EbOXixS1an\nrJIlnWxJyh3xLCJvMtxgjJYBjXLwwgllA1oGaBkgvZgOD1f5RM4In5Cj6QldoVElyNZFNA6BiAhE\nhHIUd1d3Od+eMzmYcG99jzvLO6zTNdE0Ag/SsiGeLChbxe27K9KiY5MU7LKa1S5FiQA/nkAnkNrB\nwWUUjnGFh+8ECCVxcHGFxzorCCYzdmWNDGPwQ3ZlTed4rNKcRji48ZhGCcpGUbWacDTltdfv4fgR\nZ6st73/m21nvMiQSRzigQGgx/JRIpuMpXdOxXW9xgoDxfI4TBHRCUDQN4/mcTghqpZC+j+eEJNuc\nqmgZhROSTcYsnhOHE8qs4UMf+DCuCHj19l1u3z3nfR/4EElekZUN49kBy02CG8TEkzm7PGe53TI9\nOuSFl16i6jqOr1/n1Tt3EJ5H1XWsdjvunC+ZLA5YbncUTYt2XM7WG4LRmNnhEWXbIbyAWkHVaZR2\nePX1ewTRhA6XXV6Q5CVpUXH33jmO69MpSLOCToFGkmYFR8enIBzSvGA8nVFUNfF4gusHTOcLvvzS\nyzieD9JhcXhEkuVI16OsG9K8AOnQdIqsKAfja4VAJjmBcgjdiF0J4eGTVP6Yf/aFL/LT/9c/4bnb\nLyF0h0QhNQiloWsRWu1vGqE7hO5oqpqmqh/3DLRYLBaLxWKxWCwWyxXjUghCbVfTypKiS0jrDZPD\niPPdHVbpPZRbU3QJ0cwjLRtqJVgnOdKPUNKjxaFoFEp64AZUaU1bdNRZQ+hE1FlDVypc7UEjUJWm\nyVuSMuX4xgnhJGKb72hoqVQNniCrc9bphngyJykqxvNDbjz1fpR0kX6EH0+IpwuUdNmmBSNviqdD\nqB1UKaB2cDofXUlk6yFbjw6PvFLghKRFy3h2RKMcRtNDgniGG4wpak2NRLk+nePRCIdwOud8l9I5\nHqUCfzyFRhNIn0D6TMIxkRuiqg5dK0QLbdHgaodGaXBcOgQdglbDLsup2o4OgeMHuMpFNIKu6GjK\nDl8GbNcJHh43Tp/g9Vdep0orgsmMu+stNZJtUXHrbIk3mnC2TTjbJrx275zjJ56g0hpcD280opWS\n2dExtdLcOV8iw5B7mw3S8cnyiqbVnJzeIIoneH7E2fma7S5jNJ6RZgXzxSFn5ysOT09RCLTjIhyX\nqlYgXaqmQzs+6yRHSY9GS+6ttkwWRzRa0mjZvzaEy2qbUrWaTZKzSXLcICYcTQdhq9WSTZJzvt7h\nBjF+NGa1TXH8iCCe4AYxSrgo4RKXLW7nEYYHtMExv/LpZ/nkL/8O/+z5V8jDEDUJQelBAEJ1qK4F\npdFdu78p0Hs3a2VNpS0Wi8VisVgsFovF8mi5FIJQ1ymE0HieQ9c1tG2N5zmAGlp2gsAD+lQvk/RV\n1/VgsiyE6A2NEUgEjpB4jkscRpR5AUoPyzynN3U2vjLGT6coCoDBM2a73Q4+OUIIVqvV4G9kIuE9\nz6OpanSnEJoH9u27Hp7j4krnAYNoYxJtvH3quh48a9pWARLH8XBdnzCMcV0fzwvIsqI3WFYtUmi0\nammbiizdMR5FJLsNvudwsJiRZwkdHXVXU3c1rW7BgVa3aKkRrkC4YjBkltJFd+BIj6ZsaFvFKBrT\ntmow7G6ajrZVBEFEGMYkSYbr+nSdxnV9kmSL4wi07qiqgqoqEFLjBy55laF0i9Itnuuiug5HSrq2\nRQBt06CVQvcu0TRNcz/FzOtNqLu9x4/jCOI4xnEcQt+jqUoCz+1b+cKAKPAJfY9RFKK7Fs91aJua\nwPfo2oa6KqmrkulkTJFntE1NXZUEvkdTV7iOxPdc2qYGrXAdiVYdTV3RNnUfLT+eM5qd8Nwr53zm\n2Ze5m9Z0bkAnJJ1WwIN9YL1vUy/8aK1BqAc8jCwWi8VisVgsFovFYnmUXApByPc86rSkySqarMLp\nBO+7fpOT+RHUimS55bUvv0IgNdPIR9cFqso5mMSoKme3vEdbpExCDy+UCFfhBgLpaQ5P5pRNhhIN\nSjTUXUFRpxyOD9idbSm3BfNoxo3D64gaQhHga48ub7l57Rrvf+IJiu0Wj44P3nySYrslcgW6qpBd\nw8j3yZuMVjS0oqGhplIlnWzRrkK7ilY0lGlC6DoUyY5xGJBu1kjV0ZYF8/EIF01XlYSugy8FtA2i\na7l76zWOF3Oy7Ybdakm+21J1JcID6QucQNLSsEnXTBZjdvmWvM7oREsUuOiupmtK2rrAEYrAk3RN\nSV1m/XLRoV3wYp9wHFI0BdJ3yKqcoi356Mf+FbQLVZYSOJLQdYg8l9PDA1b37nI4m6KbmtB1yNIt\nvifZ7lYs5hO0auiaEldqXAc263M8V7BdnxOHHr4rePXlLyPpcITCc0DoFlSDQJGlOwQddVkg0dx9\n/TZlkaDqitB3UW3NZBQhUai2BtUyjkN8V5KnO3TXEAUe6+UZVZEhUfiuRHcNdZmzmE1AtWxW5wSe\nw8F8itAdebqjKrKh7ctzBEWWUBUZumuQh0f87rMv8qP/6Bf4fz79J5TBCZmYgpwiS8FY+6AEUggE\ngNagNCix/6mhE9D1aXBGZLRYLBaLxWKxWCwWi+VR4T7uAQBI6ZJlmtlsTBBAmiqCQNC2Lk2j8f05\n0HvDdAqieEynoOtaHNfH9QJ2SUYUj6kEqLbB933wXNzphLPlOToKieOY8cGCsizZ7RRBMEZKHylj\nDg7mdF1E23pUVYUQLmfnS7pO4wU+212KQpDmBdJ1cD3wHJe8KBFRSK5UX23kSkrVUrY1uukrP4QQ\njMOIqu0IR2MUID2fRmm0dMirGhAoIWk7DQI6BY7jcO36EyRpThDGKC1oWsX45JgkSdBa4wpQYdCn\nXnUtXeCjggApBXlZE4Yx0vV7E2oFjhegm46ybnF9hTObkOY5XdcRuQ6Z7hAStlnCtdNTNm1NiurP\nbVWRpDlSSjSSKB5zdr5isViwSzLGoU+SF7iuS910CM8niCKyqma+OGS5WZOWFaqoUbpPAgujGefL\npK8A6hRSCpQW1B2oqkXhssv6ai4R7NvtxiPunK8ZjUakdYc3mpK3LZHnUTWKl27fRQiXooNGuBRd\nSxiNWCYZQRDgRCMAsqZjcXqd27dv05R95Y/2ArZFnyimXJ+kavAUzI5P2W63JFXDP/gXv8pXXk+R\nbgjjQ7YlBMGcOmmYEOF1HZnUNG1L13WAGiqbhBBIh76VDOguhyZrsVgsFovFYrFYLJYrxqURhNxg\njvQmCCH66Hl/hHAVZZMQ+AFhGCJE33IllQOOh5R9TH0Ux2TlkrxSOKMI1bY09FUXygkIJwu0G1Jr\nh1Z44Ak87YGUdDiUjewFAJFQteCFM7quw/HBdxxc10c4FVXVsMtKlPDRUqKERAkBbi/IdE7fGhYv\nRg+0AgkhaIveOFggcF0XZx99rpRC7CtEFC3a9VCOgxYKJSXj8ZhWJH38euzTti0iGiM7+ohzIehE\nLzxI4aJdB9cLEY6PLhpq7aClBM9B7cciA4HQGu2GVMKDcIxQCuW4VFQQjqm7jLyT+MEYJ55B1eA5\nITIY98cqHcLJhFVym7AVeNGUYBL110dKpOfhdR0tIIMRKIUbtdTaIfRCauET+iM838d1SrwgwFF9\nG5XjecwmC7IsIw5DatWC43P85AdIdztGB8c0qzXBdEFZV/iRD21LrTXxYkZVVf35dxyEdkG5OPEI\nqTWNUjiegxACTwhE2xKkFUop3CDABdq2RUYRoRfjui5d11EowbMv3WKz2XAnrXHGUxw/oulcVKOQ\nWoCmb3tD48YBQro4qhd+pMMgCPW3vm1Q28h5i8VisVgsFovFYrE8Bi6FIHRvnfDLv5d8zXXE/vZw\nQrcDXLTk1ft1BCBFv6y7YNEi9utc/DNc7m/tQ+tcfFxduM9D43g7lsDeG4zd7OfiNh+uF3l43wJ4\nOJPq4fGKC7e3orrwHMcx/sZfxt3v13ehbu+fr4vjMefeFa/Q6v6xi+PQF35K0V8HzYMvuovbu0h7\n4b45jtCBuntw2cVzqC4sf9iV5+J+zHPEfnl/DNC+gZWPWTfyYa/psXMBXYPu/aVQ+/O3v0m++hq9\nGTZx3mKxWCwWi8VisVgsj4NLIQgpIHNcUBf+PBai915xnH651iC8++vIvXSidb+uUgjXRbctwsgC\nel8R48i+EkcIun2ik/DEYGCMMfWV8v7vQvQpUEai0Q4PSDeiA9GvJ5W7H4re7/arlYVSiPvHZe6b\nfZljUeqC0rFfr+seelzg6PtSj9Lq/vHSH6/atyNp56Fz9ND5GpASlELioOgQCEo0EkHRaqSQdEa6\nuLid/flyPI+urr9ahREPre/sr+mF8Q/X+eHf5VdLbxmAD3T7a91UIN37zzfPUw/JLNLrz+PD23/4\nHFx8LTzETrsgWsLxGNIcR+r+9aHVMNROQCsAIaF5ePxvIv28mYJlsVgsFovFYrFYLBbLu8ilEIR6\n0UD0fTUPLGdfyiH3fzh7IC+IN44DTQOeB02Dli4gQUi0EUU0CFyUbvdCRL8Prar7+xai3xbcF2DE\nfl2l94KCqSfZ/2HvaFANoFH64XFfEEEu7sPcLgoPYvinF5j0hToWDUP9klL9OIDuAcHDQfS2yvvf\n+nQ2jd6ft72ohHhQBBFGRAG0BK321UES6fu9wCMdtOoQwgXd3l9f7C+M05/3rtlfm8EceX98jtmf\nvl+CpPW+JMeFtn1Q8Lt43V13P+4Ly7Xqn+sIdNuBCO6PR+/3IZ29kHfxerj9fqTstynYC06qX26u\nuZT3x6T1IMChNbi9UXRZNqBdVFcjUX1VlNpXppkSruEwRH/uhELrh+vb9uLhw68Vi8VisVgsFovF\nYrFYHgGXQxDSmr2q8BZcWEdxv6/I9D3V9zd3ke6NeroeXta1b7CSeewNxvZAwcdDz334b3v9Bsve\niovrdw/9/BpDudge9/Cw3rS37eHzVRf9dvcbbh8ubjHr79cbfn94+w8/7+Lj9ZusY6jeZPkb7eet\nHuveYGMPn9PuDR67SFE88Jje331g1SFtvr+j2b8Wv9a1t0KQxWKxWCwWi8VisVgeAzbiyGKxWCwW\ni8VisVgsFovlimEFIYvFYrFYLBaLxWKxWCyWK8ZbCkJCiFAI8ftCiD8SQnxRCPHf75e/Xwjxe0KI\nF4QQ/0gI4e+XB/vfX9g//vS7ewgWy9XEzk2L5XJi56bFcjmxc9NiuZzYuWmxPD7eToVQBfw5rfV3\nAh8D/oIQ4t8A/ifgR7TWzwBr4K/s1/8rwHq//Ef261kslnceOzctlsuJnZsWy+XEzk2L5XJi56bF\n8ph4S0FI96T7X739TQN/Dvi5/fK/B/zl/f2/tP+d/eN/XghxIXvJYrG8E9i5abFcTuzctFguJ3Zu\nWiyXEzs3LZbHx9vyEBJCOEKIzwL3gF8FXgQ2Wpsscl4DntjffwJ4FWD/+BY4fCcHbbFYeuzctFgu\nJ3ZuWiyXEzs3LZbLiZ2bFsvj4W0JQlrrTmv9MeBJ4HuAD3+zOxZC/FUhxKeFEJ/+ZrdlsVxV3u25\neXZ29k2P0WK5iti5abFcTuzctFguJ3ZuWiyPh68rZUxrvQF+A/heYC6EcPcPPQnc2t+/BdwE2D8+\nA5ZvsK2f0Fp/XGv98W9w7BaLZc+7NTePj4/f9bFbLO9l7Ny0WC4ndm5aLJcTOzctlkfL20kZOxZC\nzPf3I+DfBv6EfqL+h/vV/lPgn+7v/9L+d/aP/7rWWr+Tg7ZYLHZuWiyXFTs3LZbLiZ2bFsvlxM5N\ni+Xx4b71KlwH/p4QwqEXkP6x1vqXhRB/DPysEOJ/AP4Q+MR+/U8Af18I8QKwAr7/XRi3xWKxc9Ni\nuazYuWmxXE7s3LRYLid2blosj4m3FIS01p8DvusNln+Zvr/z4eUl8B+9I6OzWCxvip2bFsvlxM5N\ni+VyYuemxXI5sXPTYnl8fF0eQhaLxWKxWCwWi8VisVgslm99rCBksVgsFovFYrFYLBaLxXLFsIKQ\nxWKxWCwWi8VisVgsFssVwwpCFovFYrFYLBaLxWKxWCxXDCsIWSwWi8VisVgsFovFYrFcMawgZLFY\nLBaLxWKxWCwWi8VyxbCCkMVisVgsFovFYrFYLBbLFcMKQhaLxWKxWCwWi8VisVgsVwwrCFksFovF\nYrFYLBaLxWKxXDGE1vpxjwEhRAI8+7jH8Qg5As4f9yAeEVfpWOEbP973aa2P3+nBfLPYufme5iod\nK9i5+a3OVXq92mN9ay7lvAQ7N9/j2GN9a+zcvBxcpdcqXK3jfcfnpvvNjecd41mt9ccf9yAeFUKI\nT1+V471KxwrvyeO1c/M9ylU6VnhPHq+dm+9R7LF+y2Pn5nsUe6zf8lyZufkevX5vylU63nfjWG3L\nmMVisVgsFovFYrFYLBbLFcMKQhaLxWKxWCwWi8VisVgsV4zLIgj9xOMewCPmKh3v/9/e/cdsVdZx\nHH9/FBUV589yqBS5TNNQfCQVUtJSZ1ZrGZs6KzS3pm0pmk2czrTZUhtamA4tf6VkQLWyVSIptiaI\nOkFAHUhlI39k6ETNssBvf5zrxuOjDw/38zzc59zX+by2M8+5zrnv+/rC+ewcrvPDJtUK+dWbWz39\naVK9TaoV8qs3t3r606R6XWt3y7GmjWlSva61u+VYU1+aVCs0q94hr7UWL5U2MzMzMzMzM7POqcsd\nQmZmZmZmZmZm1iGVDwhJOl7SCkmrJE2tuj9DQdLNkl6QtLzUtoukeZJy2W34AAAJrklEQVSeSv/d\nObVL0vRU/1JJPdX1vH2SRkmaL+kJSY9LOie1Z1evpOGSHpL0WKr1stT+AUmLUk2zJG2d2rdJy6vS\n+tFV9r9duWXTucy6XmezizmbWdfrbHYxZzPrep3NLuZsZl1v57MZEZVNwJbAn4G9ga2Bx4D9q+zT\nENU1EegBlpfargKmpvmpwJVp/gTg94CAw4FFVfe/zVpHAj1pfgdgJbB/jvWmPo9I81sBi1INs4GT\nU/sM4Kw0/zVgRpo/GZhVdQ1t1JpdNp3LPHOZ+u9s1qBvg6jJ2cy3XmezBn0bRE3OZr71Ops16Nsg\nanI2862349msuuDxwNzS8oXAhVX/RQxRbaN7hXQFMDLNjwRWpPkbgFPebbtunIBfA8fmXi+wHfAo\ncBiwBhiW2jfs08BcYHyaH5a2U9V938T6ssymc5l/vc5md07OZv71OpvdOTmb+dfrbHbn5GzmX2+n\nsln1I2N7AqtLy39PbTnaPSKeS/PPA7un+Wz+DNItagdTjGRmWa+kLSUtAV4A5lFccXg5ItalTcr1\nbKg1rV8L7NrZHg9YV/89tSHL/bSsCbkEZ7OivmxO2e6rLc6ms9mlst1XW5xNZ7NLZbuvtjibmyeb\nVQ8INVIUQ3hRdT+GkqQRwC+AKRHxSnldTvVGxPqIGAvsBRwK7Fdxl2yI5LSftjQll+Bs5iy3fRWc\nzYq7ZEMkt30VnM2Ku2RDJLd9FZzNzfl7VQ8IPQOMKi3vldpy9A9JIwHSf19I7V3/ZyBpK4qAzoyI\nX6bmbOsFiIiXgfkUt+ztJGlYWlWuZ0Otaf2OwIsd7upAZfH3tAmy3U+bmEtwNjOS7b7qbDqbXS7b\nfdXZdDa7XLb7qrO5ebNZ9YDQw8A+6a3ZW1O8COmuivu0udwFTE7zkymef2y1fzm9Ef1wYG3p9rfa\nkyTgJuDJiLi6tCq7eiW9R9JOaX5biudXn6QI6qS0We9aW38Gk4D70gh2N2hKNrPbT6FZuQRnE2ez\nm/ZVZ9PZ7Ha57qvOprPZ7XLdV53NzZ3Nzf0ypP4mijeBr6R4Nu6iqvszRDXdCTwH/I/iGb8zKJ7l\nuxd4CvgDsEvaVsB1qf5lwLiq+99mrUdQ3KK3FFiSphNyrBc4EFical0OXJLa9wYeAlYBc4BtUvvw\ntLwqrd+76hrarDerbDqXeeYy9d/Z7OLJ2XQ2nc16Ts6ms+ls1nNyNp3Nocym0heZmZmZmZmZmVlD\nVP3ImJmZmZmZmZmZdZgHhMzMzMzMzMzMGsYDQmZmZmZmZmZmDeMBITMzMzMzMzOzhvGAkJmZmZmZ\nmZlZw3hAKBOSdpW0JE3PS3qmtLygn8/eL2lcG781RdJ2g++1WfeRFJKmlZbPl3Rpm99xlKQJpeVb\nJU3q5zPXSJpSWp4r6cel5WmSzmunH+lzzrNlpaqMpu3Wl469SyRNbavz7/LbZjmQdJGkxyUtTdk4\nbIDf42yaDYEqM+lz2nrxgFAmIuLFiBgbEWOBGcA1reWIGOqD1xTAYbOmegM4UdJuA/mwpGHAUUC7\nuXyg9RlJWwC7AQeU1k8ANjr42wfn2XJTVUYB/l069o6NiCsG8B0D/W2zWpI0HvgM0BMRBwLHAKsH\n+HVH4WyaDUoNMulz2hrxgFADSHqtNH+BpGWSHpN0Ra/ttkijupen5eMkLZT0qKQ5kkZIOhvYA5gv\naX5nKzGrhXXAjcC5vVdIGi3pvnS15V5J70vtt0qaIWkRMBs4Ezg3XZE5Mn18oqQFkv7Sx5WVBcD4\nNH8AsBx4VdLOkrYBPgw8mn7vm5IeTv24LLVtL+m3KfvLJZ3kPFumqsponyRdkjK5XNKNkpTaz5b0\nROrPzySN7uO3zbrZSGBNRLwBEBFrIuJZAEmflLQ4nZvenI5nSHq6NagraZyKu9lH42yaDYWqM+lz\n2hrxgFCDSPoU8DngsIg4CLiqtHoYMBN4KiIuToG/GDgmInqAR4DzImI68CxwdEQc3dkKzGrjOuBU\nSTv2ar8WuC1dbZkJTC+t2wuYEBEn8va7+P6U1o8EjqC4YvOOK5fpQL0u/QN2ArAQWERxQB0HLIuI\n/0o6DtgHOBQYCxwiaSJwPPBsRBwUER8B7naeLWMdz2iyrd7+WMpJqf2HEfHRlL1t03cATAUOTv05\nMyKe7uO3zbrZPcAoSSslXS/p4wCShgO3AidFxBiKc9Gz+vqSjeTD2TRrT6WZ9DltvXhAqFmOAW6J\niNcBIuKl0robgOUR8Z20fDiwP/CApCXAZOD9neysWV1FxCvAT4Cze60aD/w0zd9OcTBsmRMR6zfy\ntb+KiDcj4glg9z62WUBx4GwdPBeWlh9I2xyXpsUUV1f2oziYLgOOlXSlpCMjYm2/hZp1qQoz2vux\nlFmp/WhJiyQtAz7BW7fGLwVmSvoixZ1NZtmJiNeAQ4CvAv8EZkk6DdgX+GtErEyb3gZMHMBPOJtm\nbahJJn1OWxPDqu6A1cYCioPitIj4DyBgXkScUnG/zOrq+xQHp1s2cft/9bP+jdK8+tim9cz1GIrb\na1cD3wBeKfVDwHcj4obeH5bUA5wAXC7p3oj49ib23awbVZHRd0hXXK8HxkXEahUvuB6eVn+a4mT7\ns8BFksZs6veadZM02Ho/cH8afJlM8Y+8vqzjrQvXwzeyHTibZm2rQSZ9TlsTvkOoWeYBpyu9fV3S\nLqV1NwG/A2areKHmg8DHJH0wbbu9pA+lbV8Fduhct83qJ91hNxs4o9S8ADg5zZ8K9HVL+UAztIDi\n9tuXImJ96sNOFHc9tF6+Nxf4iqQRAJL2lPReSXsAr0fEHcD3gJ5B9sWs1irK6LtpnTivSbmcBBte\npDkqIuYDFwA7AiOG+LfNKidpX0n7lJrGAn8DVgCjW+eawJeAP6b5pynuYAD4QumzzqbZINUkkz6n\nrQkPCDVIRNwN3AU8kh4DO7/X+qspRoZvB14ETgPulLSU4ja+/dKmNwJ3+4VdZkyj+D8jtHydYtB1\nKcVB9Jw+Pvcb4PMDeDHlsvR7D/ZqWxsRawAi4h6KR2IWpis+P6c4OI4BHkrZ/xZwefq882w563RG\ne7+n5IqIeBn4EcUV0LnAw2nbLYE7Uk4XA9PTtgP9bbO6GgHcpvSSZopXElya7kg/HZiTcvAmxftI\nAC4DfiDpEaD8KKezaTZ4dcikz2lrQhFRdR/MzMzMzMzMzKyDfIeQmZmZmZmZmVnDeEDIzMzMzMzM\nzKxhPCBkZmZmZmZmZtYwHhAyMzMzMzMzM2sYDwiZmZmZmZmZmTWMB4TMzMzMzMzMzBrGA0JmZmZm\nZmZmZg3jASEzMzMzMzMzs4b5Pzax7Wo5Mqv2AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1440x1440 with 5 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "u3YNXy8i60Oi",
"colab_type": "code",
"colab": {}
},
"source": [
"func split(tensor t: Tensor<Float>, trainingPercentage p: Double) -> (Tensor<Float>, Tensor<Float>) {\n",
" let length = Double(t.shape[0])\n",
" let trainingP = Int32(ceil(length * p))\n",
" let testP = Int32(ceil(length * (1 - p)))\n",
" let splitted = t.split(sizes: Tensor([trainingP, testP]))\n",
" return (splitted[0], splitted[1])\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "PV0rMUfQD_mm",
"colab_type": "code",
"colab": {}
},
"source": [
"let (trainingImages, testImages) = split(tensor: x, trainingPercentage: 0.8)\n",
"let (trainingCorners, testCorners) = split(tensor: y, trainingPercentage: 0.8)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "fpOFyLpNEb_n",
"colab_type": "code",
"outputId": "d9a44bce-0fba-490d-d3ac-923c9e298177",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 90
}
},
"source": [
"print(trainingImages.shape)\n",
"print(trainingCorners.shape)\n",
"print(testImages.shape)\n",
"print(testCorners.shape)"
],
"execution_count": 16,
"outputs": [
{
"output_type": "stream",
"text": [
"[1280, 324, 324, 3]\r\n",
"[1280, 324, 324, 4]\r\n",
"[320, 324, 324, 3]\r\n",
"[320, 324, 324, 4]\r\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "UR3X5u39EmxK",
"colab_type": "code",
"colab": {}
},
"source": [
"// This cell is just boilerplate code..\n",
"struct TicketsBatch {\n",
" let images: Tensor<Float>\n",
" let corners: Tensor<Float>\n",
"}\n",
"\n",
"extension TicketsBatch: TensorGroup {\n",
" public static var _typeList: [TensorDataType] = [\n",
" Float.tensorFlowDataType,\n",
" Float.tensorFlowDataType\n",
" ]\n",
" public static var _unknownShapeList: [TensorShape?] = [nil, nil]\n",
" public var _tensorHandles: [_AnyTensorHandle] {\n",
" fatalError(\"unimplemented\")\n",
" }\n",
" public func _unpackTensorHandles(into address: UnsafeMutablePointer<CTensorHandle>?) {\n",
" address!.advanced(by: 0).initialize(to: images.handle._cTensorHandle)\n",
" address!.advanced(by: 1).initialize(to: corners.handle._cTensorHandle)\n",
" }\n",
" public init(_owning tensorHandles: UnsafePointer<CTensorHandle>?) {\n",
" images = Tensor(handle: TensorHandle(_owning: tensorHandles!.advanced(by: 0).pointee))\n",
" corners = Tensor(handle: TensorHandle(_owning: tensorHandles!.advanced(by: 1).pointee))\n",
" }\n",
" public init<C: RandomAccessCollection>(_handles: C) where C.Element: _AnyTensorHandle {\n",
" fatalError(\"unimplemented\")\n",
" }\n",
"}\n",
"\n",
"extension Dataset where Element == TicketsBatch {\n",
" init(images: Tensor<Float>, corners: Tensor<Float>) {\n",
" self.init(elements: TicketsBatch(images: images, corners: corners))\n",
" }\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "GRRj8GlIGixD",
"colab_type": "code",
"colab": {}
},
"source": [
"let batchSize = 32\n",
"let trainingDataset = Dataset<TicketsBatch>(images: trainingImages, corners: trainingCorners).batched(batchSize)\n",
"let testDataset = Dataset<TicketsBatch>(images: testImages, corners: testCorners).batched(batchSize)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "8EKABlfCmTd9",
"colab_type": "code",
"colab": {}
},
"source": [
"@differentiable\n",
"func depthwiseSoftmax<S: TensorFlowFloatingPoint>(_ input: Tensor<S>) -> Tensor<S> {\n",
" softmax(input, alongAxis: 3)\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "EcSOg_DojOOJ",
"colab_type": "code",
"colab": {}
},
"source": [
"class LatestResult {\n",
" var value: Tensor<Float>!\n",
"}\n",
"\n",
"public struct DownBlock: Layer {\n",
"\n",
" var conv1: Conv2D<Float>\n",
" var conv2: Conv2D<Float>\n",
"\n",
" init(inputSize: Int, outputSize: Int) {\n",
" conv1 = Conv2D<Float>(filterShape: (3, 3, inputSize, outputSize), padding: .same, activation: relu)\n",
" conv2 = Conv2D<Float>(filterShape: (3, 3, outputSize, outputSize), padding: .same, activation: relu)\n",
" }\n",
"\n",
" @noDerivative\n",
" var latestResult = LatestResult()\n",
"\n",
" @differentiable\n",
" public func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {\n",
" let result = input.sequenced(through: conv1, conv2)\n",
" self.latestResult.value = result\n",
" return result\n",
" }\n",
"}\n",
"\n",
"struct UNet: Layer {\n",
"\n",
" var down1 = DownBlock(inputSize: 3, outputSize: 8)\n",
" var down2 = DownBlock(inputSize: 8, outputSize: 16)\n",
" var down3 = DownBlock(inputSize: 16, outputSize: 32)\n",
" var down4 = DownBlock(inputSize: 32, outputSize: 64)\n",
" \n",
" var pool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))\n",
"\n",
" var trans1 = TransposedConv2D<Float>(filterShape: (3, 3, 32, 64), strides: (2, 2), padding: .valid)\n",
" var trans2 = TransposedConv2D<Float>(filterShape: (3, 3, 16, 32), strides: (2, 2), padding: .same)\n",
" var trans3 = TransposedConv2D<Float>(filterShape: (3, 3, 8, 16), strides: (2, 2), padding: .same)\n",
"\n",
" var up1 = DownBlock(inputSize: 64, outputSize: 32)\n",
" var up2 = DownBlock(inputSize: 32, outputSize: 16)\n",
" var up3 = DownBlock(inputSize: 16, outputSize: 8)\n",
"\n",
" var output = Conv2D<Float>(filterShape: (3, 3, 8, 4), padding: .same, activation: depthwiseSoftmax)\n",
"\n",
" @differentiable\n",
" public func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {\n",
" let down = input\n",
" .sequenced(through: down1, pool)\n",
" .sequenced(through: down2, pool)\n",
" .sequenced(through: down3, pool)\n",
" .sequenced(through: down4, trans1)\n",
" guard let d3val = down3.latestResult.value,\n",
" let d2val = down2.latestResult.value,\n",
" let d1val = down1.latestResult.value else {\n",
" fatalError()\n",
" }\n",
" \n",
" let up = down\n",
" .concatenated(with: d3val, alongAxis: 3).sequenced(through: up1, trans2)\n",
" .concatenated(with: d2val, alongAxis: 3).sequenced(through: up2, trans3)\n",
" .concatenated(with: d1val, alongAxis: 3).sequenced(through: up3, output)\n",
"\n",
" return up\n",
" }\n",
"}\n"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "UQYSrBQSuyse",
"colab_type": "code",
"colab": {}
},
"source": [
"let firstTrainExamples = trainingDataset.first(where: { _ in true })!\n",
"let firstTrainFeatures = firstTrainExamples.images\n",
"let firstTrainLabels = firstTrainExamples.corners"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "LpXd_nkWBBPf",
"colab_type": "code",
"colab": {}
},
"source": [
"let epochCount = 2\n",
"var trainAccuracyResults: [Float] = []\n",
"var trainLossResults: [Float] = []"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "nJHdmM3Rqm2D",
"colab_type": "code",
"colab": {}
},
"source": [
"func IoUAccuracy(predictions: Tensor<Float>, truths: Tensor<Float>) -> Float {\n",
" let axes = [1, 2, 3]\n",
" let intersection = (predictions * truths).sum(alongAxes: axes)\n",
" let union = predictions.sum(alongAxes: axes) + truths.sum(alongAxes: axes) - intersection\n",
" let iou = ((intersection + 1) / (union + 1)).mean(alongAxes: 0)\n",
" return iou.flattened().scalarized()\n",
"}"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "a8GtCgEUkRXO",
"colab_type": "text"
},
"source": [
"# Problemer \n",
"\n",
"Her begynder jeg at træne, og der er nogle problemer:\n",
"\n",
"* Det er ikke lykkedes mig at få en accuracy på over 0.25, forslag modtages med kyshånd.\n",
"* Kan det gøres hurtigere?\n",
"\n",
"Nogen gange så fejler den bare lige pludselig, se følgende output: (tror dette problem er løst)\n",
"\n",
"```\n",
"epoch: 1, batch: 0, with accuracy: 0.24982814, is nan: false\n",
"epoch: 1, batch: 1, with accuracy: 0.24983129, is nan: false\n",
"epoch: 1, batch: 2, with accuracy: -nan, is nan: true\n",
"epoch: 1, batch: 3, with accuracy: -nan, is nan: true\n",
"epoch: 1, batch: 4, with accuracy: -nan, is nan: true\n",
"```\n",
"\n",
"Pludselig begynder den bare at blive `nan`"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0w_bC83NBEa2",
"colab_type": "code",
"outputId": "d48e1947-9cea-4f3e-af82-8b94a46ef0b2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"var model = UNet()\n",
"let optimizer = Adam(for: model, learningRate: 0.1)\n",
"let train = true\n",
"guard train else { fatalError() }\n",
"\n",
"var lastAcc: Float = 0\n",
"for epoch in 1...epochCount {\n",
" var epochLoss: Float = 0\n",
" var epochAccuracy: Float = 0\n",
" var batchCount: Int = 0\n",
" \n",
" Context.local.learningPhase = .training\n",
" for batch in trainingDataset {\n",
" let (loss, grad) = model.valueWithGradient { (model: UNet) -> Tensor<Float> in\n",
" let logits = model(batch.images)\n",
" let thisloss = sigmoidCrossEntropy(\n",
" logits: logits,//.reshaped(to: [batchSize * 324 * 324, 4]), \n",
" labels: batch.corners//.reshaped(to: [batchSize * 324 * 324, 4])\n",
" )\n",
" return thisloss\n",
" }\n",
" optimizer.update(&model, along: grad)\n",
" \n",
" let logits = model(batch.images)\n",
" let accuracy = IoUAccuracy(predictions: logits, truths: batch.corners)\n",
" \n",
" print(\"epoch: \\(epoch), batch: \\(batchCount), with accuracy: \\(accuracy), is nan: \\(accuracy.isNaN)\")\n",
" epochAccuracy += accuracy\n",
" epochLoss += loss.scalarized()\n",
" batchCount += 1\n",
" }\n",
" epochAccuracy /= Float(batchCount)\n",
" epochLoss /= Float(batchCount)\n",
" trainAccuracyResults.append(epochAccuracy)\n",
" trainLossResults.append(epochLoss)\n",
" print(\"Epoch \\(epoch): Loss: \\(epochLoss), Accuracy: \\(epochAccuracy), deltaAcc: \\(lastAcc - epochAccuracy)\")\n",
" lastAcc = epochAccuracy\n",
"}\n",
"print(\"trained!\")"
],
"execution_count": 24,
"outputs": [
{
"output_type": "stream",
"text": [
"tcmalloc: large alloc 1934925824 bytes == 0x1bdd68000 @ 0x7f331d09e1e7 0x7f32fcd51c62 0x7f33032ae2f8 0x7f33032e51e2 0x7f33032e7401 0x7f33032e7d87 0x7f3303339e35 0x7f330333a4d3 0x7f330333b8f8 0x7f32ff433ca5 0x7f32ff4346f8 0x7f32ff415ffb 0x7f32ff4166af 0x7f32ff411f6c 0x7f32ff413a10 0x7f32fcc24725 0x7f3317b5c382 0x7f3317b5beb8 0x7f3317b5c454 0x7f3317b65074 0x7f3317b935e4 0x7f3317d3f173 0x7f3317de78b8 0x7f3317de7a90 0x7f3317e9c69c 0x7f3317e24e40 0x7f3317d491d9 0x7f3317e9595a 0x7f3317e17c8e 0x7f32e0de39ca 0x7f32e0dcdc64\n",
"tcmalloc: large alloc 1934925824 bytes == 0x1bdd68000 @ 0x7f331d09e1e7 0x7f32fcd51c62 0x7f33032ae2f8 0x7f33032e51e2 0x7f33032e7401 0x7f33032e7d87 0x7f3303339e35 0x7f330333a4d3 0x7f330333b8f8 0x7f32ff433ca5 0x7f32ff4346f8 0x7f32ff415ffb 0x7f32ff4166af 0x7f32ff411f6c 0x7f32ff413a10 0x7f32fcc24725 0x7f3317b5c382 0x7f3317b5beb8 0x7f3317b5c454 0x7f3317b65074 0x7f3317b935e4 0x7f3317d3f173 0x7f3317d4518c 0x7f3317d48e52 0x7f3317d3d0d3 0x7f32e0dcba06 0x7f32e0dcda47 0x7f3317d3d0d3 0x7f32e0dd3150 0x7f32dfdbe012 0x400490\n",
"epoch: 1, batch: 0, with accuracy: 0.24983045, is nan: false\n",
"tcmalloc: large alloc 1934925824 bytes == 0x1bdd68000 @ 0x7f331d09e1e7 0x7f32fcd51c62 0x7f33032ae2f8 0x7f33032e51e2 0x7f33032e7401 0x7f33032e7d87 0x7f3303339e35 0x7f330333a4d3 0x7f330333b8f8 0x7f32ff433ca5 0x7f32ff4346f8 0x7f32ff415ffb 0x7f32ff4166af 0x7f32ff411f6c 0x7f32ff413a10 0x7f32fcc24725 0x7f3317b5c382 0x7f3317b5beb8 0x7f3317b5c454 0x7f3317b65074 0x7f3317b935e4 0x7f3317d3f173 0x7f3317de78b8 0x7f3317de7a90 0x7f3317e9c69c 0x7f3317e24e40 0x7f3317d491d9 0x7f3317e9595a 0x7f3317e17c8e 0x7f32e0de39ca 0x7f32e0dcdc64\n",
"tcmalloc: large alloc 1934925824 bytes == 0x1bdd68000 @ 0x7f331d09e1e7 0x7f32fcd51c62 0x7f33032ae2f8 0x7f33032e51e2 0x7f33032e7401 0x7f33032e7d87 0x7f3303339e35 0x7f330333a4d3 0x7f330333b8f8 0x7f32ff433ca5 0x7f32ff4346f8 0x7f32ff415ffb 0x7f32ff4166af 0x7f32ff411f6c 0x7f32ff413a10 0x7f32fcc24725 0x7f3317b5c382 0x7f3317b5beb8 0x7f3317b5c454 0x7f3317b65074 0x7f3317b935e4 0x7f3317d3f173 0x7f3317d4518c 0x7f3317d48e52 0x7f3317d3d0d3 0x7f32e0dcba06 0x7f32e0dcda47 0x7f3317d3d0d3 0x7f32e0dd3150 0x7f32dfdbe012 0x400490\n",
"epoch: 1, batch: 1, with accuracy: 0.24982975, is nan: false\n",
"epoch: 1, batch: 2, with accuracy: 0.24983144, is nan: false\n",
"epoch: 1, batch: 3, with accuracy: 0.24983117, is nan: false\n",
"epoch: 1, batch: 4, with accuracy: 0.2498321, is nan: false\n",
"epoch: 1, batch: 5, with accuracy: 0.2498312, is nan: false\n",
"epoch: 1, batch: 6, with accuracy: 0.24982932, is nan: false\n",
"epoch: 1, batch: 7, with accuracy: 0.24983111, is nan: false\n",
"epoch: 1, batch: 8, with accuracy: 0.24983059, is nan: false\n",
"epoch: 1, batch: 9, with accuracy: 0.24983193, is nan: false\n",
"epoch: 1, batch: 10, with accuracy: 0.24983108, is nan: false\n",
"epoch: 1, batch: 11, with accuracy: 0.2498306, is nan: false\n",
"epoch: 1, batch: 12, with accuracy: 0.2498319, is nan: false\n",
"epoch: 1, batch: 13, with accuracy: 0.2498317, is nan: false\n",
"epoch: 1, batch: 14, with accuracy: 0.2498318, is nan: false\n",
"epoch: 1, batch: 15, with accuracy: 0.24983126, is nan: false\n",
"epoch: 1, batch: 16, with accuracy: 0.24983075, is nan: false\n",
"epoch: 1, batch: 17, with accuracy: 0.24983096, is nan: false\n",
"epoch: 1, batch: 18, with accuracy: 0.24982989, is nan: false\n",
"epoch: 1, batch: 19, with accuracy: 0.24983257, is nan: false\n",
"epoch: 1, batch: 20, with accuracy: 0.2498317, is nan: false\n",
"epoch: 1, batch: 21, with accuracy: 0.24983154, is nan: false\n",
"epoch: 1, batch: 22, with accuracy: 0.2498293, is nan: false\n",
"epoch: 1, batch: 23, with accuracy: 0.24983037, is nan: false\n",
"epoch: 1, batch: 24, with accuracy: 0.24983212, is nan: false\n",
"epoch: 1, batch: 25, with accuracy: 0.24983063, is nan: false\n",
"epoch: 1, batch: 26, with accuracy: 0.24983117, is nan: false\n",
"epoch: 1, batch: 27, with accuracy: 0.24983189, is nan: false\n",
"epoch: 1, batch: 28, with accuracy: 0.2498306, is nan: false\n",
"epoch: 1, batch: 29, with accuracy: 0.2498311, is nan: false\n",
"epoch: 1, batch: 30, with accuracy: 0.2498306, is nan: false\n",
"epoch: 1, batch: 31, with accuracy: 0.24983251, is nan: false\n",
"epoch: 1, batch: 32, with accuracy: 0.24983117, is nan: false\n",
"epoch: 1, batch: 33, with accuracy: 0.24983203, is nan: false\n",
"epoch: 1, batch: 34, with accuracy: 0.24983117, is nan: false\n",
"epoch: 1, batch: 35, with accuracy: 0.24983117, is nan: false\n",
"epoch: 1, batch: 36, with accuracy: 0.24982977, is nan: false\n",
"epoch: 1, batch: 37, with accuracy: 0.24983048, is nan: false\n",
"epoch: 1, batch: 38, with accuracy: 0.24983117, is nan: false\n",
"epoch: 1, batch: 39, with accuracy: 0.24983051, is nan: false\n",
"Epoch 1: Loss: 0.5766345, Accuracy: 0.24983104, deltaAcc: -0.24983104\n",
"epoch: 2, batch: 0, with accuracy: 0.24983114, is nan: false\n",
"epoch: 2, batch: 1, with accuracy: 0.24982978, is nan: false\n",
"epoch: 2, batch: 2, with accuracy: 0.24983256, is nan: false\n",
"epoch: 2, batch: 3, with accuracy: 0.24982977, is nan: false\n",
"epoch: 2, batch: 4, with accuracy: 0.24982974, is nan: false\n",
"epoch: 2, batch: 5, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 6, with accuracy: 0.24983196, is nan: false\n",
"epoch: 2, batch: 7, with accuracy: 0.24983196, is nan: false\n",
"epoch: 2, batch: 8, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 9, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 10, with accuracy: 0.24983034, is nan: false\n",
"epoch: 2, batch: 11, with accuracy: 0.24983254, is nan: false\n",
"epoch: 2, batch: 12, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 13, with accuracy: 0.24983057, is nan: false\n",
"epoch: 2, batch: 14, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 15, with accuracy: 0.24983105, is nan: false\n",
"epoch: 2, batch: 16, with accuracy: 0.24983251, is nan: false\n",
"epoch: 2, batch: 17, with accuracy: 0.24983159, is nan: false\n",
"epoch: 2, batch: 18, with accuracy: 0.2498311, is nan: false\n",
"epoch: 2, batch: 19, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 20, with accuracy: 0.24983045, is nan: false\n",
"epoch: 2, batch: 21, with accuracy: 0.24983196, is nan: false\n",
"epoch: 2, batch: 22, with accuracy: 0.2498317, is nan: false\n",
"epoch: 2, batch: 23, with accuracy: 0.24983189, is nan: false\n",
"epoch: 2, batch: 24, with accuracy: 0.24983129, is nan: false\n",
"epoch: 2, batch: 25, with accuracy: 0.24983017, is nan: false\n",
"epoch: 2, batch: 26, with accuracy: 0.24982974, is nan: false\n",
"epoch: 2, batch: 27, with accuracy: 0.24983156, is nan: false\n",
"epoch: 2, batch: 28, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 29, with accuracy: 0.2498317, is nan: false\n",
"epoch: 2, batch: 30, with accuracy: 0.24982975, is nan: false\n",
"epoch: 2, batch: 31, with accuracy: 0.24983172, is nan: false\n",
"epoch: 2, batch: 32, with accuracy: 0.24983114, is nan: false\n",
"epoch: 2, batch: 33, with accuracy: 0.2498331, is nan: false\n",
"epoch: 2, batch: 34, with accuracy: 0.24983072, is nan: false\n",
"epoch: 2, batch: 35, with accuracy: 0.24982975, is nan: false\n",
"epoch: 2, batch: 36, with accuracy: 0.2498317, is nan: false\n",
"epoch: 2, batch: 37, with accuracy: 0.24983057, is nan: false\n",
"epoch: 2, batch: 38, with accuracy: 0.24983117, is nan: false\n",
"epoch: 2, batch: 39, with accuracy: 0.24983123, is nan: false\n",
"Epoch 2: Loss: 0.5766206, Accuracy: 0.24983113, deltaAcc: -8.940697e-08\n",
"trained!\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "4g04z3IEfhve",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 306
},
"outputId": "0e2777f3-92e0-43f6-daec-c82045685f04"
},
"source": [
"let output = model(firstTrainFeatures)\n",
"print(IoUAccuracy(predictions: output, truths: firstTrainLabels))\n",
"print(output.shape)\n",
"\n",
"if let randomIndex = (0 ..< output.shape[0]).randomElement() {\n",
" let img = output[randomIndex].makeNumpyArray()\n",
" plt.imshow(img)\n",
"\n",
" plt.show()\n",
"}"
],
"execution_count": 25,
"outputs": [
{
"output_type": "stream",
"text": [
"0.24983123\r\n",
"[32, 324, 324, 4]\r\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOr0lEQVR4nO3db4xc1X3G8e9T2zhVQB27UGtrW8XQ\njSpHamxr5boKimhQAviNQWqReRGsyNJGrZFASl+YRGqoVKSkKiAhtURGWDERYNwCworcNo6DhPIC\nm4Ua4z912ICRvTLeJrBAG5XU5tcX9yzcOGvveGfuzEi/5yON5sy558757bX9cO+dYY8iAjPL67f6\nXYCZ9ZdDwCw5h4BZcg4Bs+QcAmbJOQTMkmssBCTdJOm4pHFJW5uax8w6oya+JyBpHvBT4EvAKeAl\n4PaIONr1ycysI02dCawFxiPijYj4FbAT2NDQXGbWgfkNve9S4GTt9SngTy40eNGiRTE0NNRQKWYG\ncOzYsZ9HxFXn9zcVArOSNAqMAgwNDfHEE0/0qxSzFFavXv3WTP1NXQ5MAMtrr5eVvo9FxLaIGImI\nkVar1VAZZjabpkLgJWBY0gpJlwEbgd0NzWVmHWjkciAizkq6E/h3YB6wPSKONDGXmXWmsXsCEbEH\n2NPU+5tZd/gbg2bJOQTMknMImCXnEDBLziFglpxDwCw5h4BZcg4Bs+QcAmbJOQTMknMImCXnEDBL\nziFglpxDwCw5h4BZcg4Bs+QcAmbJOQTMknMImCXnEDBLziFglpxDwCw5h4BZcg4Bs+QcAmbJdbQC\nkaQTwAfAOeBsRIxIWgw8BVwNnABui4h3OyvTzJrSjTOBP4uIVRExUl5vBfZFxDCwr7w2swHVxOXA\nBmBHae8AbmlgDjPrkk5DIIAfSnpZ0mjpWxIRp0v7bWDJTDtKGpU0JmlsamqqwzLMbK46XZX4uoiY\nkPR7wF5J/1nfGBEhKWbaMSK2AdsAVq5cOeMYM2teR2cCETFRnieBZ4G1wBlJQwDlebLTIs2sOXMO\nAUmflnTFdBv4MnAY2A1sKsM2Ac91WqSZNaeTy4ElwLOSpt/niYj4N0kvAbskbQbeAm7rvEwza8qc\nQyAi3gA+N0P/L4AbOinKzHrH3xg0S84hYJacQ8AsOYeAWXIOAbPkHAJmyTkEzJJzCJgl5xAwS84h\nYJacQ8AsOYeAWXIOAbPkHAJmyTkEzJJzCJgl5xAwS84hYJacQ8AsOYeAWXIOAbPkHAJmyTkEzJJz\nCJglN2sISNouaVLS4VrfYkl7Jb1enheVfkl6SNK4pEOS1jRZvJl1rp0zge8BN53XtxXYFxHDwL7y\nGuBmYLg8RoGHu1OmmTVl1hCIiBeAd87r3gDsKO0dwC21/sei8iLQml6h2MwG01zvCSyJiNOl/TbV\n4qQAS4GTtXGnSp+ZDaiObwxGRABxqftJGpU0Jmlsamqq0zLMbI7mGgJnpk/zy/Nk6Z8AltfGLSt9\nvyEitkXESESMtFqtOZZhZp2aawjsBjaV9ibguVr/HeVTgnXAe7XLBjMbQPNnGyDpSeB64EpJp4Bv\nAd8GdknaDLwF3FaG7wHWA+PAL4GvNlCzmXXRrCEQEbdfYNMNM4wNYEunRZlZ7/gbg2bJOQTMknMI\nmCXnEDBLziFglpxDwCw5h4BZcg4Bs+QcAmbJOQTMknMImCXnEDBLziFglpxDwCw5h4BZcg4Bs+Qc\nAmbJOQTMknMImCXnEDBLziFglpxDwCw5h4BZcg4Bs+QcAmbJzRoCkrZLmpR0uNZ3r6QJSQfLY31t\n2z2SxiUdl3RjU4WbWXe0cybwPeCmGfofjIhV5bEHQNJKYCPw2bLPP0ma161izaz7Zg2BiHgBeKfN\n99sA7IyIDyPiTaqFSdd2UJ+ZNayTewJ3SjpULhcWlb6lwMnamFOl7zdIGpU0JmlsamqqgzLMrBNz\nDYGHgWuBVcBp4P5LfYOI2BYRIxEx0mq15liGmXVqTiEQEWci4lxEfAQ8wien/BPA8trQZaXPzAbU\nnEJA0lDt5a3A9CcHu4GNkhZKWgEMAwc6K9HMmjR/tgGSngSuB66UdAr4FnC9pFVAACeArwFExBFJ\nu4CjwFlgS0Sca6Z0M+uGWUMgIm6fofvRi4y/D7ivk6LMrHf8jUGz5BwCZsk5BMyScwiYJecQMEvO\nIWCWnEPALDmHgFlyDgGz5BwCZsk5BMyScwiYJecQMEvOIWCWnEPALDmHgFlyDgGz5BwCZsk5BMyS\ncwiYJecQMEvOIWCWnEPALDmHgFlys4aApOWSnpd0VNIRSXeV/sWS9kp6vTwvKv2S9JCk8bJq8Zqm\nfwgzm7t2zgTOAl+PiJXAOmCLpJXAVmBfRAwD+8prgJup1iAcBkapVjA2swE1awhExOmIeKW0PwCO\nAUuBDcCOMmwHcEtpbwAei8qLQOu8BUzNbIBc0j0BSVcDq4H9wJKIOF02vQ0sKe2lwMnabqdKn5kN\noLZDQNLlwNPA3RHxfn1bRATVCsVtkzQqaUzS2NTU1KXsamZd1FYISFpAFQCPR8QzpfvM9Gl+eZ4s\n/RPA8truy0rfr4mIbRExEhEjrVZrrvWbWYfa+XRAVEuRH4uIB2qbdgObSnsT8Fyt/47yKcE64L3a\nZYOZDZj5bYz5PPAV4DVJB0vfN4BvA7skbQbeAm4r2/YA64Fx4JfAV7tasZl11awhEBE/AXSBzTfM\nMD6ALR3WZWY94m8MmiXnEDBLziFglpxDwCw5h4BZcg4Bs+QcAmbJOQTMknMImCXnEDBLziFglpxD\nwCw5h4BZcg4Bs+QcAmbJOQTMknMImCXnEDBLziFglpxDwCw5h4BZcg4Bs+QcAmbJOQTMknMImCXX\nzlqEyyU9L+mopCOS7ir990qakHSwPNbX9rlH0rik45JubPIHMLPOtLMW4Vng6xHxiqQrgJcl7S3b\nHoyIf6gPlrQS2Ah8Fvh94EeSPhMR57pZuJl1x6xnAhFxOiJeKe0PgGPA0ovssgHYGREfRsSbVAuT\nru1GsWbWfZd0T0DS1cBqYH/pulPSIUnbJS0qfUuBk7XdTjFDaEgalTQmaWxqauqSCzez7mg7BCRd\nDjwN3B0R7wMPA9cCq4DTwP2XMnFEbIuIkYgYabVal7KrmXVRWyEgaQFVADweEc8ARMSZiDgXER8B\nj/DJKf8EsLy2+7LSZ2YDqJ1PBwQ8ChyLiAdq/UO1YbcCh0t7N7BR0kJJK4Bh4ED3Sjazbmrn04HP\nA18BXpN0sPR9A7hd0ioggBPA1wAi4oikXcBRqk8WtviTAbPBNWsIRMRPAM2wac9F9rkPuK+Dusys\nR/yNQbPkHAJmyTkEzJJzCJgl5xAwS84hYJacQ8AsOYeAWXIOAbPkHAJmyTkEzJJzCJgl5xAwS84h\nYJacQ8AsOYeAWXIOAbPkHAJmyTkEzJJzCJgl5xAwS84hYJacQ8AsOYeAWXIOAbPk2lmL8FOSDkh6\nVdIRSX9b+ldI2i9pXNJTki4r/QvL6/Gy/epmfwQz60Q7ZwIfAl+MiM9RLUN+k6R1wHeAByPiD4F3\ngc1l/Gbg3dL/YBlnZgNq1hCIyn+XlwvKI4AvAv9S+ncAt5T2hvKasv2GsrKxmQ2gtu4JSJpXViSe\nBPYCPwOmIuJsGXIKWFraS4GTAGX7e8DvzvCeo5LGJI1NTU119lOY2Zy1FQIRcS4iVgHLgLXAH3U6\ncURsi4iRiBhptVqdvp2ZzdElfToQEVPA88CfAi1J00ubLwMmSnsCWA5Qtv8O8IuuVGtmXdfOpwNX\nSWqV9m8DXwKOUYXBn5dhm4DnSnt3eU3Z/uOIiG4WbWbdM3/2IQwBOyTNowqNXRHxA0lHgZ2S/g74\nD+DRMv5R4PuSxoF3gI0N1G1mXTJrCETEIWD1DP1vUN0fOL//f4G/6Ep1ZtY4f2PQLDmHgFlyDgGz\n5BwCZsk5BMyScwiYJecQMEvOIWCWnEPALDmHgFlyGoT/t0fSfwH/A/y8z6VcOQA1wGDUMQg1wGDU\nMQg1QOd1/EFEXHV+50CEAICksYgYyV7DoNQxCDUMSh2DUEOTdfhywCw5h4BZcoMUAtv6XQCDUQMM\nRh2DUAMMRh2DUAM0VMfA3BMws/4YpDMBM+uDvoeApJskHS8rFm3t8dwnJL0m6aCksdK3WNJeSa+X\n50VdnnO7pElJh2t9M86pykPl2ByStKbhOu6VNFGOx0FJ62vb7il1HJd0Y5dqWC7peUlHy+pWd5X+\nnh6Pi9TRs+PR15W+IqJvD2Ae1RoG1wCXAa8CK3s4/wngyvP6/h7YWtpbge90ec4vAGuAw7PNCawH\n/hUQsA7Y33Ad9wJ/PcPYleXPZiGwovyZzetCDUPAmtK+Avhpmaunx+MidfTseJSf6fLSXgDsLz/j\nLmBj6f8u8Jel/VfAd0t7I/DUXOfu95nAWmA8It6IiF8BO6lWMOqn+gpK9ZWVuiIiXqD6BaztzLkB\neCwqL1L9mvehBuu4kA3Azoj4MCLeBMaZ4fdLzqGG0xHxSml/QPVbrJfS4+NxkToupOvHo/xMfVnp\nq98h8PFqRUV9JaNeCOCHkl6WNFr6lkTE6dJ+G1jSgzouNGc/js+d5VR7e+1SqPE6yunsaqr/Avbt\neJxXB/TweDSx0lc7+h0C/XZdRKwBbga2SPpCfWNU51o9/fikH3PWPAxcS7Xw7Gng/l5MKuly4Gng\n7oh4v76tl8djhjp6ejyigZW+2tHvEPh4taKivpJR4yJiojxPAs9SHfgz06eY5XmyB6VcaM6eHp+I\nOFP+In4EPMInp7iN1SFpAdU/vMcj4pnS3fPjMVMd/TgeZd6ervTV7xB4CRgud0Avo7rBsbsXE0v6\ntKQrptvAl4HD/PoKSvWVlZp0oTl3A3eUu+LrgPdqp8ldd9719a1Ux2O6jo3ljvQKYBg40IX5RLVY\nzbGIeKC2qafH40J19PJ4qJ8rfXXj7mqHd0XXU92N/RnwzR7Oew3VHd5XgSPTc1NdV+0DXgd+BCzu\n8rxPUp1a/h/VNd7mC81Jdcf4H8uxeQ0YabiO75d5DpW/ZEO18d8sdRwHbu5SDddRneofAg6Wx/pe\nH4+L1NGz4wH8MdVKXoeowuZvan9PD1DdfPxnYGHp/1R5PV62XzPXuf2NQbPk+n05YGZ95hAwS84h\nYJacQ8AsOYeAWXIOAbPkHAJmyTkEzJL7f3+cxfDdaAuRAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "CoyVqw0pTZEq",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "a45a5e2d-f0c7-4dfc-b62d-a2e4f373306a"
},
"source": [
"print(model)"
],
"execution_count": 26,
"outputs": [
{
"output_type": "stream",
"text": [
"UNet(down1: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.20478329, -0.12418474, 0.21595398, -0.105370075, -0.23311165, 0.05528714,\r\n",
" -0.13415167, 0.23103398],\r\n",
" [ 0.07442516, -0.1812778, 0.21345665, 0.2308124, -0.04336498, 0.16348852,\r\n",
" -0.11407959, 0.20712878],\r\n",
" [ -0.21373433, 0.19482604, 0.15398276, 0.18929595, -0.10235082, -0.052807942,\r\n",
" -0.05088669, 0.15728673]],\r\n",
"\r\n",
" [[ -0.031106906, 0.15631282, 0.2263147, 0.11751081, -0.22694743, -0.06479103,\r\n",
" -0.029364321, 0.19911492],\r\n",
" [ -0.18637994, -0.12027803, -0.07908622, -0.07128482, 0.012730917, -0.0117609305,\r\n",
" -0.04835948, 0.100923546],\r\n",
" [ 0.2443509, 0.044257607, 0.23763712, 0.23457038, -0.2158802, 0.10495029,\r\n",
" -0.21963912, 0.18928868]],\r\n",
"\r\n",
" [[ 0.24276033, 0.21257487, 0.12825662, -0.24136417, 0.13192603, 0.08079335,\r\n",
" -0.01666868, -0.0034946178],\r\n",
" [ 0.03938396, 0.09374842, -0.22504313, 0.10973049, 0.09550474, -0.043597527,\r\n",
" -0.031427436, -0.13680537],\r\n",
" [ -0.21810468, -0.11869069, -0.03328641, 0.05552914, 0.18469988, 0.13010655,\r\n",
" -0.053936873, -0.10249867]]],\r\n",
"\r\n",
"\r\n",
" [[[ 0.2411275, 0.12452869, 0.053548843, -0.07009098, -0.23701185, 0.0858,\r\n",
" 0.12700062, -0.025951875],\r\n",
" [ -0.23712777, -0.106972374, 0.0063298605, -0.24306573, -0.22833654, 0.14900452,\r\n",
" 0.16033597, -0.12764649],\r\n",
" [ -0.025342744, -0.13113089, -0.057014585, 0.032446668, -0.113389224, 0.028658224,\r\n",
" 0.10170987, -0.23141713]],\r\n",
"\r\n",
" [[ 0.1025299, -0.18716311, -0.15176557, 0.11759428, -0.24572653, -0.22267029,\r\n",
" 0.18734477, -0.044923145],\r\n",
" [ 0.20530696, 0.21315835, -0.0031570063, 0.13944857, -0.15914705, -0.014477962,\r\n",
" 0.062928945, -0.13835585],\r\n",
" [ 0.09301315, 0.1644537, 0.12672257, -0.11845603, 0.13939686, -0.0060191313,\r\n",
" 0.19423217, -0.14654604]],\r\n",
"\r\n",
" [[ 0.2317764, -0.22744621, 0.03062467, 0.048798338, -0.21985036, -0.021513449,\r\n",
" 0.1165707, -0.06166807],\r\n",
" [ -0.23188558, 0.09432152, 0.06805457, -0.23426946, -0.04596251, 0.18581067,\r\n",
" -0.17957132, 0.13592725],\r\n",
" [ 0.15622501, 0.21035041, 0.19285737, -0.12952355, 0.19920707, 0.10304841,\r\n",
" -0.217098, 0.2129659]]],\r\n",
"\r\n",
"\r\n",
" [[[ -0.21058707, -0.014729351, -0.07313875, 0.072716326, -0.07968467, 0.1467247,\r\n",
" 0.21344309, -0.18977378],\r\n",
" [ -0.00499808, 0.038701516, 0.09606181, 0.12796268, 0.12785673, 0.064836286,\r\n",
" 0.060165368, -0.094038844],\r\n",
" [ -0.121002436, 0.08221928, -0.032518744, -0.17642969, -0.19418633, 0.072129145,\r\n",
" 0.23459932, -0.18850645]],\r\n",
"\r\n",
" [[ 0.22325659, 0.17169796, 0.21942107, -0.19795951, 0.10652723, -0.02813825,\r\n",
" 0.21500465, 0.07290292],\r\n",
" [ -0.073617876, -0.21374062, -0.23583561, -0.1717496, 0.17063218, -0.18849853,\r\n",
" -0.05895796, 0.1829138],\r\n",
" [ 0.016667211, 0.2182875, 0.22973742, 0.14848876, -0.22861958, 0.14241517,\r\n",
" -0.1963683, 0.07680652]],\r\n",
"\r\n",
" [[ -0.05463845, -0.18705148, 0.07532842, -0.08497939, -0.16973956, -0.11358608,\r\n",
" 0.1380885, -0.2143498],\r\n",
" [ 0.17529887, -0.032273225, -0.01113818, 0.06247142, -0.08109351, 0.2052306,\r\n",
" -0.030409731, -0.13009189],\r\n",
" [ 0.22507031, 0.023678165, -0.0055376594, 0.09580068, -0.028112952, 0.036651198,\r\n",
" 0.1026973, -0.19337393]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.15304995, 0.018127577, 0.07617085, -0.18177491, -0.060884256,\r\n",
" 0.0691592, -0.07726746, -0.037002828],\r\n",
" [ 0.12075842, -0.07557867, 0.107322834, 0.08215718, 0.1035671,\r\n",
" 0.028396312, -0.19995889, -0.17917697],\r\n",
" [ -0.152137, 0.056719676, 0.0907762, 0.16291256, -0.08706773,\r\n",
" -0.061693978, 0.07790714, 0.15246317],\r\n",
" [ 0.19601993, 0.10569599, 0.07356094, 0.0014922273, 0.10878313,\r\n",
" 0.05187103, 0.04595726, 0.082690276],\r\n",
" [ 0.16712634, 0.1997049, 0.035664678, 0.12496744, -0.049684178,\r\n",
" 0.17767525, 0.18811403, -0.1913989],\r\n",
" [ 0.111441225, -0.075124554, 0.02525369, -0.1370877, -0.1942814,\r\n",
" 0.010325335, 0.15031384, -0.079462536],\r\n",
" [ -0.12208601, -0.17130557, -0.13240965, -0.041384365, -0.14627618,\r\n",
" 0.06840155, -0.18433785, 0.117226176],\r\n",
" [ 0.13967577, -0.027487116, 0.20011482, 0.15392089, 0.17330986,\r\n",
" -0.1303833, 0.029260833, 0.034623496]],\r\n",
"\r\n",
" [[ -0.163161, -0.14482138, 0.14287718, 0.036341395, -0.08489046,\r\n",
" -0.047825247, -0.071828485, 0.14504218],\r\n",
" [ 0.13732661, 0.012496515, -0.16435772, -0.19037105, 0.082287945,\r\n",
" 0.069628835, 0.008141744, 0.1946444],\r\n",
" [ 0.17525406, -0.2001829, -0.13640904, -0.080068976, 0.061123356,\r\n",
" -0.08463058, -0.02527788, 0.18461637],\r\n",
" [ 0.015635926, -0.0040052445, -0.095227964, -0.15966603, -0.088941455,\r\n",
" 0.18421546, 0.029445574, 0.10086404],\r\n",
" [ -0.16688228, -0.04604564, -0.1853238, 0.028059147, 0.11857415,\r\n",
" -0.0682337, 0.054073505, -0.14739178],\r\n",
" [ 0.19142601, -0.13510993, 0.14018151, -0.026002482, 0.106986985,\r\n",
" -0.13613115, -0.022973496, -0.0680894],\r\n",
" [ 0.17026637, -0.20403534, 0.108324446, -0.056002468, -0.18841815,\r\n",
" 0.047891043, 0.07081607, -0.08084527],\r\n",
" [ 0.060526114, -0.010658606, -0.05046767, 0.11000628, -0.18502104,\r\n",
" -0.0952138, -0.03518195, -0.014855356]],\r\n",
"\r\n",
" [[ 0.037377954, 0.030392973, 0.16435038, -0.16763933, -0.099137776,\r\n",
" -0.15545127, -0.059833094, 0.13380322],\r\n",
" [ -0.12541844, 0.057924863, -0.18539977, 0.04254069, 0.0011639685,\r\n",
" -0.0725583, 0.13297997, 0.10454618],\r\n",
" [ -0.14563179, -0.11034077, 0.049662035, -0.113487184, -0.13880877,\r\n",
" 0.07343635, 0.16995136, -0.1927353],\r\n",
" [ 0.06391484, 0.011708597, 0.0860901, -0.14196147, -0.14284045,\r\n",
" -0.11152756, 0.014384843, 0.15948844],\r\n",
" [ 0.029507866, -0.17096563, 0.07378076, -0.17502445, 0.05107625,\r\n",
" 0.053441077, -0.0398898, -0.092792764],\r\n",
" [ 0.07152271, -0.014701957, -0.19189374, -0.19132566, -0.2005519,\r\n",
" 0.07399061, 0.03347233, 0.021701438],\r\n",
" [ -0.19704135, -0.041742604, -0.0652037, 0.020969925, 0.13440192,\r\n",
" 0.0910006, 0.20308983, 0.17973664],\r\n",
" [ -0.15333796, -0.1632888, 0.09712642, 0.11889122, 0.054715957,\r\n",
" 0.052484185, 0.10918201, 0.034271635]]],\r\n",
"\r\n",
"\r\n",
" [[[ -0.059759803, 0.12082198, -0.017149566, 0.07238266, 0.15268227,\r\n",
" -0.0575366, -0.11054789, 0.1471827],\r\n",
" [ 0.18059571, 0.17652291, 0.19742183, 0.042106096, -0.042561036,\r\n",
" -0.13398334, -0.13739216, 0.12549898],\r\n",
" [ -0.1945313, 0.19303879, -0.020952161, 0.08712175, -0.15702838,\r\n",
" 0.19161703, -0.15452203, 0.022019623],\r\n",
" [ -0.12241909, 0.16696082, 0.09132341, 0.040523104, -0.010355411,\r\n",
" 0.049412277, 0.19808453, -0.10158918],\r\n",
" [ 0.10165167, 0.06440935, -0.20170195, 0.16188905, -0.06872373,\r\n",
" 0.1471879, 0.13364501, -0.055877734],\r\n",
" [ -0.14903794, -0.049899045, 0.11640477, 0.0577793, 0.083337404,\r\n",
" 0.09867588, -0.0042041955, -0.13538821],\r\n",
" [ 0.056744736, 0.046834193, 0.0207609, -0.12475919, 0.1176121,\r\n",
" 0.06614214, -0.13143241, 0.15450232],\r\n",
" [ -0.15954056, 0.11737222, -0.17145327, 0.12059281, 0.13321981,\r\n",
" -0.16460271, -0.10986899, 0.1583491]],\r\n",
"\r\n",
" [[ -0.0012510823, -0.036104873, 0.13010974, 0.12204459, -0.021596026,\r\n",
" -0.050400704, -0.07276158, -0.002964501],\r\n",
" [ 0.08998746, -0.14643459, -0.14316924, -0.00012921086, -0.015216367,\r\n",
" 0.07935055, -0.09866731, 0.20283604],\r\n",
" [ 0.12765862, 0.091080956, 0.17921, 0.00036748443, 0.09955855,\r\n",
" -0.03436308, -2.068347e-05, -0.010543947],\r\n",
" [ -0.15855661, 0.13692798, -0.07131451, -0.0654935, 0.20132254,\r\n",
" -0.19078107, -0.06830198, -0.1693714],\r\n",
" [ 0.0911288, 0.0514815, -0.0081537645, -0.13496417, -0.016132863,\r\n",
" 0.1974652, 0.16323663, -0.126241],\r\n",
" [ -0.070435, -0.04532021, -0.03993988, -0.00841097, -0.043048777,\r\n",
" -9.2564616e-05, 0.007547131, 0.1865471],\r\n",
" [ 0.013331397, -0.1033919, 0.12637314, 0.104419455, 0.17799918,\r\n",
" -0.19350068, -0.13503732, -0.17929435],\r\n",
" [ -0.102562614, -0.0038541823, -0.07508504, 0.037554953, 0.19003682,\r\n",
" 0.1162924, 0.12151822, -0.1362192]],\r\n",
"\r\n",
" [[ -0.14840727, 0.0668682, -0.15133132, -0.15097007, 0.078005545,\r\n",
" 0.12259994, -0.18906114, 0.05731677],\r\n",
" [ 0.122925125, 0.00089595927, -0.078506134, -0.050362937, 0.01652877,\r\n",
" -0.052172426, 0.115764365, 0.15055756],\r\n",
" [ -0.11027697, -0.08336656, 0.16784018, -0.10280551, 0.08803766,\r\n",
" -0.13862374, -0.12041328, 0.10796144],\r\n",
" [ -0.1020447, 0.0146292, -0.1849496, 0.031815752, 0.08502926,\r\n",
" -0.15194409, -0.09236863, -0.08090902],\r\n",
" [ -0.011333958, 0.1555231, -0.09194075, 0.05162565, 0.057370156,\r\n",
" 0.04413142, -0.0095842825, -0.1449648],\r\n",
" [ 0.049432132, -0.14205247, 0.20106095, 0.10419666, -0.10523371,\r\n",
" -0.11880537, 0.0023151373, 0.15140183],\r\n",
" [ -0.096349694, -0.007649283, -0.13996364, 0.08929454, 0.12616606,\r\n",
" -0.18156242, -0.20408687, 0.09317003],\r\n",
" [ -0.13540086, 0.0155152315, -0.15141702, 0.18415336, -0.06313685,\r\n",
" 0.13368243, -0.0349044, 0.06767213]]],\r\n",
"\r\n",
"\r\n",
" [[[ -0.062041022, -0.12609933, -0.13219634, -0.10190921, 0.19821462,\r\n",
" -0.06928754, 0.18566588, 0.059297223],\r\n",
" [ 0.16275415, 0.104363345, 0.024004117, -0.0070799277, 0.06229253,\r\n",
" -0.026112517, -0.09273369, 0.19839084],\r\n",
" [ 0.03294765, 0.07533275, -0.11001105, 0.17776538, 0.06323876,\r\n",
" 0.12881607, -0.15295826, 0.19696802],\r\n",
" [ -0.18022944, 0.13022926, -0.10592867, -0.036017075, -0.11342105,\r\n",
" 0.028255569, 0.09320532, 0.0009357689],\r\n",
" [ 0.13451785, 0.010258661, -0.032655843, -0.16478707, -0.012971359,\r\n",
" 0.03826982, 0.14853516, 0.05241294],\r\n",
" [ -0.10438262, 0.1820032, -0.18585373, -0.06788753, -0.15304011,\r\n",
" -0.12181903, 0.103737585, 0.16166668],\r\n",
" [ -0.15245825, -0.15935543, 0.03566132, 0.0033256589, 0.041899163,\r\n",
" 0.16747236, -0.053265437, -0.1345799],\r\n",
" [ -0.07698135, 0.06574185, 0.18174021, -0.0266754, 0.083610915,\r\n",
" -0.08247979, 0.051287513, -0.17360936]],\r\n",
"\r\n",
" [[ 0.027990138, -0.11191154, 0.026649605, 0.05851529, 0.06821915,\r\n",
" -0.17095979, -0.031736083, -0.04971265],\r\n",
" [ -0.025406748, 0.2000568, -0.17043366, 0.14904591, -0.0061495122,\r\n",
" 0.07003676, 0.078515425, 0.023665443],\r\n",
" [ 0.07524194, -0.10678613, -0.05691483, -0.043829102, -0.006849149,\r\n",
" -0.08967073, -0.17814942, -0.15600155],\r\n",
" [ 0.09092833, 0.09768142, -0.1357247, -0.08150368, 0.023841228,\r\n",
" -0.15115261, -0.08756783, -0.04962213],\r\n",
" [ -0.10072247, -0.04870782, 0.09521049, -0.15073958, -0.014177424,\r\n",
" 0.06830777, -0.084853135, -0.1376468],\r\n",
" [ -0.10158426, 0.1826494, 0.026804416, -0.10020577, 0.017276976,\r\n",
" 0.15829605, -0.07867847, 0.14074202],\r\n",
" [ 0.19505943, -0.080527514, 0.15963396, -0.060216885, -0.14583136,\r\n",
" -0.16627583, 0.1109475, -0.056502666],\r\n",
" [ 0.18383338, 0.198865, 0.13316008, -0.19393733, 0.13695967,\r\n",
" 0.17180143, 0.0668647, -0.20365185]],\r\n",
"\r\n",
" [[ -0.0015904859, -0.19926076, 0.022490378, 0.04534104, -0.030223222,\r\n",
" 0.09055793, -0.20068671, 0.039106164],\r\n",
" [ 0.18994872, 0.14646725, 0.14343004, -0.049273867, -0.20059969,\r\n",
" 0.0144565785, 0.010217489, 0.16000651],\r\n",
" [ 0.19632342, -0.17534946, 0.015948806, -0.04443296, 0.04636777,\r\n",
" 0.14209905, -0.09520203, -0.06359593],\r\n",
" [ 0.025684394, -0.19445382, -0.08940175, 0.12688594, -0.09158451,\r\n",
" -0.15177585, -0.13925928, 0.06876656],\r\n",
" [ -0.16476993, -0.053970817, 0.053787585, 0.16117193, -0.088823825,\r\n",
" 0.054637894, 0.13181075, 0.05275755],\r\n",
" [ 0.057052847, -0.032738283, -0.16064754, 0.1099399, -0.028321754,\r\n",
" 0.1145564, -0.07697361, 0.061141215],\r\n",
" [ 0.18307568, -0.07062281, 0.15227084, 0.13007742, -0.17355393,\r\n",
" 0.021989694, -0.16942152, -0.19536789],\r\n",
" [ -0.0869956, -0.11173678, -0.08717255, 0.15767789, -0.11365767,\r\n",
" 0.19200106, -0.07199118, 0.19975477]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), down2: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ -0.13546836, 0.13832831, 0.06531291, ..., -0.029306095,\r\n",
" 0.084732495, -0.12594604],\r\n",
" [ 0.15147087, -0.03910339, 0.034314435, ..., 0.05461526,\r\n",
" -0.055752598, 0.16642079],\r\n",
" [ 0.045378648, 0.1391987, -0.006619255, ..., 0.0969313,\r\n",
" -0.045448266, -0.16135573],\r\n",
" ...,\r\n",
" [ -0.047430158, 0.06019485, -0.039632242, ..., -0.15210323,\r\n",
" -0.16037893, 0.026165128],\r\n",
" [ -0.11662328, 0.012631377, 0.066163704, ..., 0.03496691,\r\n",
" -0.06734173, 0.102118894],\r\n",
" [ -0.11201473, -0.10147917, -0.085565016, ..., -0.083459616,\r\n",
" 0.06523657, 0.084995985]],\r\n",
"\r\n",
" [[ 0.021450281, -0.085692845, 0.066296935, ..., 0.018190425,\r\n",
" -0.16608986, 0.1428934],\r\n",
" [ 0.0048650107, 0.15793371, 0.106103145, ..., 0.0018411081,\r\n",
" -0.1576891, -0.06724846],\r\n",
" [ 0.15122104, 0.084876105, 0.16462438, ..., 0.06742239,\r\n",
" 0.09675952, -0.13987684],\r\n",
" ...,\r\n",
" [ -0.07602601, 0.005434513, -0.14771168, ..., -0.0511506,\r\n",
" 0.07872999, -0.13394038],\r\n",
" [ -0.110750005, -0.028255105, -0.09195372, ..., 0.0035291116,\r\n",
" 0.078127146, 0.11480685],\r\n",
" [ -0.09423252, -0.14362308, -0.15789497, ..., -0.14876053,\r\n",
" -0.04216091, -0.09279072]],\r\n",
"\r\n",
" [[ 0.041279554, 0.09233471, -0.12091637, ..., 0.12453298,\r\n",
" -0.032402437, -0.15439987],\r\n",
" [ 0.11981817, 0.092898175, 0.02615738, ..., 0.09818666,\r\n",
" 0.031256877, 0.12563352],\r\n",
" [ 0.13792968, -0.070357524, -0.1305362, ..., -0.086546585,\r\n",
" -0.13086379, 0.054932833],\r\n",
" ...,\r\n",
" [ -0.013801655, -0.07729479, -0.028854728, ..., 0.11657441,\r\n",
" 0.1619064, 0.098563954],\r\n",
" [ 0.0070006847, 0.12996253, -0.13614139, ..., 0.07241838,\r\n",
" 0.1560725, -0.0022989116],\r\n",
" [ 0.009341359, -0.07374358, -0.056569856, ..., -0.14833304,\r\n",
" -0.11337125, -0.078129135]]],\r\n",
"\r\n",
"\r\n",
" [[[ -0.066685006, -0.09406491, 0.10533409, ..., -0.009281675,\r\n",
" -0.09422966, 0.024978718],\r\n",
" [ 0.11241031, 0.14651677, 0.124482796, ..., -0.095457554,\r\n",
" 0.06385481, 0.14617383],\r\n",
" [ 0.05355398, -0.12438866, 0.0060151024, ..., 0.0117811365,\r\n",
" 0.11771413, 0.050446987],\r\n",
" ...,\r\n",
" [ 0.15982485, 0.122147046, -0.07848959, ..., 0.12899244,\r\n",
" -0.08669107, -0.0520527],\r\n",
" [ 0.10310733, -0.16090629, -0.047962945, ..., -0.07903473,\r\n",
" 0.13418233, 0.16492626],\r\n",
" [ 0.040331006, 0.043272298, 0.06216725, ..., 0.11292156,\r\n",
" -0.06566648, -0.15418641]],\r\n",
"\r\n",
" [[ -0.018531045, 0.0621204, -0.06410313, ..., 0.110189125,\r\n",
" -0.04230281, -0.1622082],\r\n",
" [ 0.14285259, -0.061037146, -0.026803374, ..., 0.026696285,\r\n",
" 0.12686066, -0.019288462],\r\n",
" [ 0.10073932, -0.0082280245, -0.12582032, ..., 0.16071133,\r\n",
" 0.024072886, -0.07068837],\r\n",
" ...,\r\n",
" [ -0.12571594, 0.0936081, -0.05446192, ..., -0.15141651,\r\n",
" -0.08779816, -0.041898333],\r\n",
" [ 0.16247332, 0.15816331, 0.085085, ..., 0.13978052,\r\n",
" 0.123162076, 0.104525805],\r\n",
" [ -0.023260474, 0.09730701, -0.16350365, ..., 0.050332747,\r\n",
" -0.15487449, 0.09363314]],\r\n",
"\r\n",
" [[ -0.13189983, 0.07072648, 0.068571016, ..., -0.09948385,\r\n",
" 0.10188671, 0.06971733],\r\n",
" [ 0.08902876, -0.03247261, 0.081945896, ..., -0.1255916,\r\n",
" 0.1025885, -0.13266787],\r\n",
" [ 0.123417735, 0.03230139, 0.120422326, ..., -0.05892428,\r\n",
" -0.026699146, 0.026310127],\r\n",
" ...,\r\n",
" [ 0.14880002, 0.033047836, 0.057370346, ..., 0.054219842,\r\n",
" -0.09245174, -0.06380308],\r\n",
" [ 0.065824114, 0.055481236, -0.081164084, ..., 0.11758761,\r\n",
" -0.018273473, 0.042700768],\r\n",
" [ 0.100234315, 0.11059638, 0.090039775, ..., -0.06270711,\r\n",
" -0.049970787, 0.15520105]]],\r\n",
"\r\n",
"\r\n",
" [[[ 0.105218455, -0.04419915, -0.067853495, ..., 0.129319,\r\n",
" -0.10387846, -0.09511459],\r\n",
" [ 0.069036804, 0.15610898, -0.09589724, ..., 0.1627028,\r\n",
" 0.015286287, -0.08622714],\r\n",
" [ 0.03120017, -0.030820092, -0.047261357, ..., 0.14112091,\r\n",
" 0.082461, 0.102620564],\r\n",
" ...,\r\n",
" [ -0.14870822, -0.030570984, -0.04907314, ..., 0.112296104,\r\n",
" -0.029660385, 0.01887266],\r\n",
" [ -0.06213407, -0.028902253, 0.08522217, ..., 0.07163914,\r\n",
" -0.044064842, -0.09742916],\r\n",
" [ 0.090635896, 0.13307576, -0.16648006, ..., -0.05305783,\r\n",
" -0.07078274, -0.090402484]],\r\n",
"\r\n",
" [[ 0.070009515, -0.07265588, 0.15035316, ..., -0.0009935697,\r\n",
" 0.067446075, 0.08738732],\r\n",
" [ 0.004138112, -0.013342977, 0.101557896, ..., 0.16340733,\r\n",
" 0.095493004, -0.07937475],\r\n",
" [ -0.061257802, 0.109794855, -0.006967624, ..., 0.15115854,\r\n",
" 0.15749797, -0.040511172],\r\n",
" ...,\r\n",
" [ -0.030404568, -0.09101276, 0.16515589, ..., 0.057152074,\r\n",
" -0.13061552, -0.11194452],\r\n",
" [ -0.14668028, 0.058323383, -0.013896903, ..., 0.012315433,\r\n",
" 0.0946459, -0.060418963],\r\n",
" [ 0.0050187907, -0.12725954, -0.14871733, ..., -0.05737233,\r\n",
" 0.14877836, 0.13153856]],\r\n",
"\r\n",
" [[ -0.091744505, -0.15650961, -0.13000695, ..., -0.04947754,\r\n",
" 0.10612341, 0.09566331],\r\n",
" [ 0.054189485, -0.039607167, 0.11624086, ..., 0.107912384,\r\n",
" -0.008643627, -0.015463233],\r\n",
" [ 0.05669574, 0.08610078, -0.14313218, ..., -0.08502551,\r\n",
" -0.10928035, 0.1091284],\r\n",
" ...,\r\n",
" [ -0.020147284, -0.09888788, -0.09929224, ..., -0.0936337,\r\n",
" -0.09495497, -0.08251735],\r\n",
" [ -0.11062281, 0.15137021, 0.097859144, ..., -0.02035141,\r\n",
" 0.08018963, 0.03602318],\r\n",
" [ -0.13324122, 0.15007913, 0.05579416, ..., 0.15273973,\n",
" 0.036892854, 0.025504073]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.10332258, -0.06092414, 0.10880839, ..., -0.11477522,\n",
" -0.08446202, 0.11080316],\n",
" [ -0.132459, 0.10247235, 0.10976782, ..., 0.008854024,\n",
" -0.08464079, 0.0371154],\n",
" [ 0.04926069, 0.027477933, -0.13134517, ..., 0.13369997,\n",
" 0.06284881, -0.10437558],\n",
" ...,\n",
" [ 0.021005547, 0.06753015, -0.12967563, ..., 0.083594196,\n",
" 0.13138595, 0.067695156],\n",
" [ 0.1266342, 0.1095611, -0.079505585, ..., 0.06476391,\n",
" -0.038892336, -0.048358113],\n",
" [ 0.05664109, 0.019220935, -0.06497307, ..., -0.07425172,\n",
" -0.016143369, -0.07455961]],\n",
"\n",
" [[ 0.13164862, 0.13058963, -0.12832934, ..., 0.12684022,\n",
" 0.07483267, -0.05883057],\n",
" [ 0.048586372, 0.044895846, 0.102023326, ..., -0.04894671,\n",
" 0.07122818, 0.1027407],\n",
" [ 0.068600245, 0.08643989, -0.074651666, ..., -0.030679248,\n",
" 0.11365935, -0.033612523],\n",
" ...,\n",
" [ -0.017391484, -0.08994737, -0.10909491, ..., -0.14129768,\n",
" 0.09020854, 0.10323314],\n",
" [ -0.08749722, -0.002033037, 0.14085655, ..., -0.016616303,\n",
" 0.09855975, 0.096449904],\n",
" [ 0.06074609, -0.05885225, -0.065371886, ..., -0.10156193,\n",
" 0.14152347, 0.116117455]],\n",
"\n",
" [[ -0.003206615, 0.039641295, 0.11681923, ..., 0.08152224,\n",
" -0.020121723, -0.00215885],\n",
" [ -0.0224663, 0.14325722, -0.07446377, ..., 0.07190622,\n",
" 0.11806724, 0.09393971],\n",
" [ 0.045491014, 0.12085726, -0.08142365, ..., -0.02557064,\n",
" -0.04148726, 0.13782154],\n",
" ...,\n",
" [ 0.09683846, 0.09278391, 0.10516387, ..., -0.102050446,\n",
" 0.12699474, 0.107737534],\n",
" [ -0.0002605734, 0.14416151, 0.12538315, ..., -0.023359207,\n",
" -0.02406484, -0.108132936],\n",
" [ 0.024429273, -0.10089751, -0.05182365, ..., -0.063702144,\n",
" 0.093320414, -0.02254803]]],\n",
"\n",
"\n",
" [[[ 0.012216838, -0.0010935342, 0.12106239, ..., -0.07813134,\n",
" -0.116501845, 0.08803079],\n",
" [ -0.10191201, -0.14372739, -0.02294302, ..., -0.0780108,\n",
" -0.051843543, -0.13128343],\n",
" [ 0.057812124, 0.14169419, -0.061975688, ..., 0.08789018,\n",
" -0.110529885, -0.06457777],\n",
" ...,\n",
" [ 0.04763242, 0.13858956, 0.08241339, ..., -0.090418346,\n",
" -0.13270853, -0.07575937],\n",
" [ 0.07496, 0.12896456, 0.02015913, ..., 0.14293511,\n",
" -0.095571004, -0.04752622],\n",
" [ -0.13748209, -0.0027294133, -0.13632618, ..., 0.059884805,\n",
" 0.11389904, 0.015928771]],\n",
"\n",
" [[ 0.13553843, -0.114782445, -0.062242147, ..., -0.13418043,\n",
" -0.0523194, 0.071207084],\n",
" [ -0.10089538, -0.019722192, 0.039887242, ..., 0.0667857,\n",
" -0.06983918, -0.11154685],\n",
" [ -0.024370804, -0.050967805, 0.12080082, ..., -0.043894745,\n",
" -0.041595113, -0.12131629],\n",
" ...,\n",
" [ -0.14391969, -0.08175398, 0.009516297, ..., -0.117010534,\n",
" 0.07084372, -0.0645052],\n",
" [ 0.09117756, -0.10195523, 0.03821681, ..., -0.12894729,\n",
" -0.1311607, -0.015472664],\n",
" [ -0.0780854, 0.14261968, 0.07174757, ..., 0.037953038,\n",
" -0.13453537, -0.09133861]],\n",
"\n",
" [[ -0.13994598, 0.13529254, 0.005732924, ..., -0.005235075,\n",
" 0.0143825365, 0.090533495],\n",
" [ -0.0092959525, -0.07826139, -0.05694857, ..., 0.013410066,\n",
" -0.1269624, 0.14157236],\n",
" [ 0.038028575, -0.056363452, -0.0057093175, ..., -0.00653247,\n",
" -0.052259628, -0.14267948],\n",
" ...,\n",
" [ -0.068819426, 0.12516254, -0.018874193, ..., -0.1315652,\n",
" 0.13683803, 0.04266731],\n",
" [ 0.017995188, -0.02219141, 0.07468945, ..., 0.00799842,\n",
" -0.04810566, 0.035857096],\n",
" [ 0.11545656, 0.117284216, 0.08594345, ..., -0.04488184,\n",
" 0.097938225, 0.089468695]]],\n",
"\n",
"\n",
" [[[ -0.046139628, 0.07581681, -0.037817314, ..., -0.05229335,\n",
" -0.06681478, -0.026402809],\n",
" [ -0.0672726, 0.09667972, 0.017549887, ..., 0.037660908,\n",
" 0.066654176, -0.09961096],\n",
" [ -0.030864663, 0.12930474, 0.06055778, ..., -0.10577759,\n",
" -0.09154464, -0.0013607837],\n",
" ...,\n",
" [ 0.052362554, -0.10294745, 0.1411476, ..., -0.1195535,\n",
" 0.08282745, 0.038383506],\n",
" [ 0.09487549, 0.01734138, -0.05953899, ..., -0.14420219,\n",
" 0.115551464, -0.089561336],\n",
" [ -0.029451711, -0.050240938, -0.11968413, ..., 0.07940231,\n",
" 0.056513973, -0.111720875]],\n",
"\n",
" [[ 0.08463095, -0.06706668, -0.041571885, ..., 0.10042981,\n",
" -0.07580979, 0.119644314],\n",
" [ -0.06406213, 0.117988504, -0.01058564, ..., -0.01313442,\n",
" 0.082473785, 0.028431889],\n",
" [ 0.13869928, 0.12425844, 0.07323128, ..., 0.077745646,\n",
" 0.10755539, 0.04534686],\n",
" ...,\n",
" [ -0.0079142805, -0.055730633, -0.07790277, ..., -0.048732627,\n",
" -0.03470671, -0.041974925],\n",
" [ 0.039963845, 0.112009324, -0.12841436, ..., 0.051295035,\n",
" 0.03183579, -0.04647405],\n",
" [ 0.0979426, 0.083569966, 0.107376784, ..., -0.063656166,\n",
" 0.1314897, 0.006332429]],\n",
"\n",
" [[ 0.12650323, -0.02065409, 0.033704888, ..., -0.115398124,\n",
" 0.13914461, 0.098767675],\n",
" [ -0.07668965, 0.035419468, 0.12684116, ..., -0.049434476,\n",
" 0.121011734, -0.033306386],\n",
" [ 0.12630436, 0.059290152, -0.08719673, ..., 0.11479548,\n",
" 0.010843735, 0.13899134],\n",
" ...,\n",
" [ 0.079787455, 0.020406317, 0.05421193, ..., 0.07071202,\n",
" 0.094166726, -0.027093405],\n",
" [ -0.08411056, -0.129649, -0.11934523, ..., -0.012365743,\n",
" 0.120477654, -0.010478581],\n",
" [ -0.14346324, -0.022877945, -0.014517985, ..., 0.010584503,\n",
" 0.038802, -0.072316416]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), down3: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.09375319, -0.11765492, -0.007979269, ..., 0.066396765,\n",
" -0.044913705, -0.0077821068],\n",
" [ -0.042105798, 0.015934234, -0.08712085, ..., 0.11309183,\n",
" -0.0311715, -0.09682224],\n",
" [ 0.04979633, 0.03222458, 0.08386998, ..., 0.07120879,\n",
" 0.04876143, 0.051700782],\n",
" ...,\n",
" [ -0.07808142, 0.011695666, 0.08763024, ..., 0.017176807,\n",
" -0.04814443, 0.07836119],\n",
" [ -0.11466913, -0.096770145, 0.06784426, ..., 0.007878847,\n",
" -0.049732916, 0.097074024],\n",
" [ 0.008125294, -0.046075467, 0.109056346, ..., -0.027534565,\n",
" -0.04471727, 0.0016309706]],\n",
"\n",
" [[ -0.11094037, 0.108255416, -0.08462264, ..., 0.10063397,\n",
" -0.09935035, 0.023957336],\n",
" [ -0.06578423, -0.036490403, 0.0023497993, ..., -0.0072479094,\n",
" 0.07495668, -0.082975596],\n",
" [ 0.028534371, 0.09709103, -0.053869657, ..., -0.108001634,\n",
" -0.08770436, 0.094986014],\n",
" ...,\n",
" [ -0.08730211, -0.05377612, 0.061630607, ..., 0.11077574,\n",
" -0.11499661, 0.06118857],\n",
" [ 0.024627274, -0.04707699, -0.045395557, ..., 0.11655812,\n",
" 0.0657835, 0.07339795],\n",
" [ 0.021361737, 0.064328425, 2.7395452e-05, ..., -0.085997775,\n",
" 0.005187659, 0.018226799]],\n",
"\n",
" [[ -0.08185817, -0.019825287, -0.11569032, ..., -0.032256417,\n",
" 0.026038885, -0.09418087],\n",
" [ -0.039836977, 0.04137719, -0.016599564, ..., -0.04548713,\n",
" -0.083136685, -0.09504457],\n",
" [ -0.012887607, 0.1144231, 0.094739065, ..., -0.08795156,\n",
" -0.074709676, -0.035430662],\n",
" ...,\n",
" [ -0.07678813, -0.017582934, -0.032681003, ..., -0.06711371,\n",
" 0.08175749, -0.09851374],\n",
" [ -0.10414433, 0.09907794, 0.11055574, ..., 0.039997134,\n",
" -0.083439045, -0.0074224533],\n",
" [ -0.08683619, -0.036334656, -0.010906621, ..., -0.03306926,\n",
" 0.039022308, 0.06572382]]],\n",
"\n",
"\n",
" [[[ -0.02995531, 0.027993599, -0.06783406, ..., 0.008201327,\n",
" -0.078156866, -0.022343758],\n",
" [ 0.10449865, 0.042855337, 0.04245067, ..., -0.049772058,\n",
" -0.034668874, 0.08818104],\n",
" [ -0.06816497, 0.0852837, 0.049427547, ..., 0.057204682,\n",
" 0.007459599, -0.063336685],\n",
" ...,\n",
" [ -0.07826625, 0.06641045, -0.07230132, ..., -0.10330412,\n",
" -0.006792892, 0.045670073],\n",
" [ -0.10879996, -0.02247326, 0.09845164, ..., 0.088554494,\n",
" -0.10419319, 0.09144515],\n",
" [ -0.0080505535, -0.10528024, -0.015316923, ..., 0.045243997,\n",
" -0.06827191, 0.09666189]],\n",
"\n",
" [[ -0.00904477, -0.11650269, -0.022918051, ..., -0.024190942,\n",
" 0.08648067, -0.07689282],\n",
" [ 0.07365965, -0.09379194, 0.04390024, ..., 0.099925235,\n",
" 0.10859313, -0.09559495],\n",
" [ -0.0067912624, 0.07000645, -0.006026269, ..., -0.06723049,\n",
" 0.08766927, -0.08524459],\n",
" ...,\n",
" [ -0.08657078, -0.027115766, -0.07521403, ..., 0.11294555,\n",
" 0.09261138, -0.097931296],\n",
" [ -0.112619445, 0.05926521, 0.039289854, ..., 0.0009840446,\n",
" 0.06540612, -0.06983694],\n",
" [ 0.09080685, -0.09934425, -0.029551769, ..., -0.03669198,\n",
" -0.093282044, 0.022485316]],\n",
"\n",
" [[ -0.050976727, -0.0774078, 0.033701856, ..., 0.06669436,\n",
" -0.0026099014, 0.04396245],\n",
" [ -0.10678992, -0.079330735, -0.076638564, ..., -0.11192236,\n",
" -0.1024489, 0.006140487],\n",
" [ -0.062349323, -0.08352949, 0.04680652, ..., 0.0069561126,\n",
" 0.09718962, 0.022950869],\n",
" ...,\n",
" [ -0.008559323, -0.11253315, 0.067861736, ..., -0.064043626,\n",
" 0.065741666, -0.052681144],\n",
" [ 0.07455628, -0.010385686, -0.010424911, ..., 0.06566482,\n",
" -0.05340503, 0.09890865],\n",
" [ -0.0734306, 0.11335162, -0.03437292, ..., -0.09210261,\n",
" -0.026487356, -0.11124006]]],\n",
"\n",
"\n",
" [[[ -0.016928535, 0.024058573, 0.02467299, ..., 0.026659848,\n",
" 0.0044948207, 0.039044335],\n",
" [ -0.025705785, 0.04481213, -0.08688809, ..., 0.04256576,\n",
" -0.032899916, 0.081032455],\n",
" [ 0.09850814, 0.10841299, 0.10259937, ..., -0.043448877,\n",
" -0.031401537, -0.045771703],\n",
" ...,\n",
" [ -0.10404759, 0.083645396, 0.092213064, ..., -0.022437857,\n",
" 0.0657848, 0.0460873],\n",
" [ 0.028153842, 0.09961722, 0.07974734, ..., 0.027297363,\n",
" -0.06703712, 0.07511437],\n",
" [ 0.023415076, 0.048259098, -0.06111549, ..., 0.049718447,\n",
" 0.08895806, -0.06604369]],\n",
"\n",
" [[ 0.04122965, -0.058896177, 0.070474446, ..., 0.005129749,\n",
" 0.055941455, 0.10933356],\n",
" [ -0.04349198, 0.052121095, -0.09994246, ..., -0.033598203,\n",
" 0.11019909, 0.06081085],\n",
" [ -0.10445293, -0.01337106, -0.0857157, ..., 0.10764072,\n",
" 0.09418163, 0.09781415],\n",
" ...,\n",
" [ 0.018148378, 0.027598936, 0.02965059, ..., 0.005819749,\n",
" -0.08179605, 0.07163733],\n",
" [ 0.08928526, -0.104894035, -0.114656314, ..., -0.09384999,\n",
" 0.03424322, -0.083114006],\n",
" [ 0.05487073, -0.019615846, -0.09408652, ..., -0.098077066,\n",
" -0.09726456, -0.01315774]],\n",
"\n",
" [[ -0.07855605, -0.0029922014, -0.077392995, ..., -0.080872804,\n",
" -0.09164414, 0.06977458],\n",
" [ -0.07299711, -0.04503017, 0.09752416, ..., 0.003324712,\n",
" 0.0762296, 0.05824894],\n",
" [ -0.01322703, -0.10044813, -0.011155062, ..., -0.017306423,\n",
" 0.066649534, 0.03879134],\n",
" ...,\n",
" [ 0.048231, -0.11010884, 0.06367312, ..., 0.102655284,\n",
" 0.012318035, 0.060808744],\n",
" [-0.00036968407, 0.06718587, -0.049618136, ..., -0.07422967,\n",
" -0.030013895, -0.04140043],\n",
" [ -0.09325355, 0.03518346, 0.027103795, ..., -0.051688503,\n",
" -0.08171049, -0.10382401]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.096648626, -0.093466364, 0.091259, ..., 0.03638164,\n",
" 0.0254569, -0.055180337],\n",
" [ -0.067652784, 0.020189354, 0.07010911, ..., -0.060978305,\n",
" 0.0042442726, -0.03621622],\n",
" [ -0.06452552, 0.06733463, -0.09964041, ..., 0.041255545,\n",
" -0.044365752, 0.087132186],\n",
" ...,\n",
" [ -0.06257356, 0.06748374, 0.060213916, ..., 0.083874464,\n",
" -0.07980909, 0.030534472],\n",
" [ -0.033087764, 0.035654336, 0.026227761, ..., 0.04522594,\n",
" 0.07339437, -0.05125773],\n",
" [ -0.098736055, -0.034265213, 0.087799534, ..., -0.058478303,\n",
" -0.086452335, 0.021078696]],\n",
"\n",
" [[ 0.08363225, -0.07260015, 0.0152127175, ..., -0.01297625,\n",
" 0.014105275, -0.09002135],\n",
" [ -0.09214369, 0.008671582, 0.017113334, ..., 0.03416199,\n",
" 0.023106819, 0.02851017],\n",
" [ -0.0456646, 0.05892071, -0.0574134, ..., -0.08680721,\n",
" -0.023232453, -0.07381099],\n",
" ...,\n",
" [ -0.0017860542, 0.094748765, 0.09323109, ..., -0.0874037,\n",
" 0.026408412, 0.09112319],\n",
" [ 0.064054884, 0.031412594, -0.049865585, ..., -0.097440004,\n",
" 0.097722195, 0.052851938],\n",
" [ -0.024842406, 0.031341273, 0.09753376, ..., -0.09641632,\n",
" 0.046996422, -0.02710087]],\n",
"\n",
" [[ 0.076469176, -0.08726081, 0.060872573, ..., 0.004750604,\n",
" -0.097344324, -0.015275717],\n",
" [ 0.031397946, 0.07009319, 0.057301, ..., 0.059394803,\n",
" 0.018221164, -0.0893313],\n",
" [ -0.02666591, -0.07820031, -0.069093354, ..., -0.037498258,\n",
" -0.065564826, 0.00042350014],\n",
" ...,\n",
" [ -0.04437417, 0.053321257, 0.0017054616, ..., 0.005836705,\n",
" 0.036833636, -0.028438823],\n",
" [ -0.08511346, -0.024892947, 0.0008181164, ..., -0.063835494,\n",
" 0.09934634, -0.04116276],\n",
" [ 0.009302573, -0.005649751, 0.08431558, ..., -0.057489414,\n",
" 0.069671616, -0.018744772]]],\n",
"\n",
"\n",
" [[[ 0.05973839, -0.09375246, -0.08501907, ..., 0.0867337,\n",
" -0.08311344, 0.054445174],\n",
" [ -0.027476994, 0.039573904, -0.06028862, ..., 0.0076377243,\n",
" 0.05154983, 0.056083962],\n",
" [ 0.09588655, -0.016061615, -0.07910257, ..., -0.016179973,\n",
" -0.027121773, 0.02393591],\n",
" ...,\n",
" [ 0.00043498556, 0.041806918, 0.09373067, ..., -0.056937166,\n",
" -0.089506574, -0.08564794],\n",
" [ -0.0061874967, -0.042721927, -0.061726995, ..., 0.07407457,\n",
" -0.09513017, 0.015229483],\n",
" [ 0.06617888, -0.052345023, -0.0037805492, ..., -0.027635405,\n",
" 0.08153419, 0.05271584]],\n",
"\n",
" [[ 0.02517227, -0.01413175, 0.014276413, ..., -0.0074021034,\n",
" 0.094572395, 0.012870959],\n",
" [ -0.0012871203, 0.07411737, -0.09837521, ..., 0.05733884,\n",
" -0.060572006, -0.08423314],\n",
" [ 0.007957393, 0.04928978, 0.09577065, ..., 0.09960829,\n",
" -0.025690623, -0.07086199],\n",
" ...,\n",
" [ 0.075512044, -0.04895644, -0.008002118, ..., 0.09144189,\n",
" 0.09873089, -0.06143195],\n",
" [ -0.042859875, -0.025747905, -0.007817014, ..., -0.094442405,\n",
" 0.0277287, -0.04278758],\n",
" [ 0.06612221, -0.06327059, -0.08199091, ..., -0.012844241,\n",
" 0.085278295, -0.044733822]],\n",
"\n",
" [[ -0.027309505, -0.07573745, 0.047038324, ..., -0.066573136,\n",
" -0.051040746, -0.062048562],\n",
" [ -0.06538013, 0.033936076, -0.049499292, ..., 0.047604226,\n",
" -0.09330915, -0.029677788],\n",
" [ -0.0011668397, 0.012895098, 0.054117497, ..., 0.008043899,\n",
" 0.085993916, 0.08421752],\n",
" ...,\n",
" [ -0.054564383, 0.09157974, -0.0022252495, ..., -0.039815754,\n",
" -0.029964047, -0.08807864],\n",
" [ 0.055912655, 0.076439805, 0.012380079, ..., 0.012096399,\n",
" -0.047115877, -0.08937272],\n",
" [ -0.054815043, -0.010268808, 0.07814765, ..., -0.08986189,\n",
" 0.06509877, -0.0341086]]],\n",
"\n",
"\n",
" [[[ -0.087607175, -0.043647792, 0.06700442, ..., 0.06802365,\n",
" -0.04083623, 0.045040276],\n",
" [ -0.038070314, 0.08073469, 0.05568066, ..., -0.06594034,\n",
" -0.048570897, -0.065669045],\n",
" [ 0.028439457, -0.07092428, 0.07571418, ..., 0.023486324,\n",
" -0.04810435, -0.061422974],\n",
" ...,\n",
" [ -0.069737166, -0.04607985, -0.02162822, ..., 0.07028095,\n",
" -0.09494312, -0.050114907],\n",
" [ 0.096614905, -0.025533428, 0.03300026, ..., 0.0039283508,\n",
" -0.03385361, -0.071763806],\n",
" [ -0.07219902, -0.050058622, -0.10168639, ..., 0.092474826,\n",
" 0.048632145, 0.010866098]],\n",
"\n",
" [[ 0.050576683, -0.031003453, -0.058978237, ..., 0.098819174,\n",
" 0.02075876, 0.015101611],\n",
" [ 0.06484777, 0.043273058, 0.005793075, ..., -0.002102633,\n",
" 0.09423411, -0.036730755],\n",
" [ 0.06378094, 0.054605335, 0.07000868, ..., 0.050217863,\n",
" 0.070272505, 0.096533336],\n",
" ...,\n",
" [ 0.09049016, 0.006049842, -0.047290005, ..., 0.07229956,\n",
" 0.06456231, -0.014837446],\n",
" [ 0.02082261, -0.012355284, 0.04660772, ..., 0.016428225,\n",
" 0.06257402, 0.06054395],\n",
" [ -0.015500923, 0.044540785, -0.022999898, ..., 0.08374236,\n",
" -0.079453245, -0.08637053]],\n",
"\n",
" [[ 0.007422081, -0.06930919, -0.046247024, ..., 0.066606954,\n",
" -0.06099828, -0.08471353],\n",
" [ -0.06717456, -0.0046230233, -0.005520662, ..., 0.06943181,\n",
" 0.037562497, -0.04508919],\n",
" [ 0.08345661, 0.10025188, -0.06281047, ..., 0.08334721,\n",
" 0.009576423, -0.023085114],\n",
" ...,\n",
" [ -0.0923634, 0.017728971, 0.10076737, ..., 0.005351325,\n",
" -0.08940087, 0.08828248],\n",
" [ -0.09863813, -0.009059288, -0.0076600625, ..., -0.034636248,\n",
" -0.09842049, 0.004471596],\n",
" [ 0.078602955, -0.05407954, 0.07186827, ..., 0.012957319,\n",
" 0.062678315, 0.052423377]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), down4: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.028805992, 0.06763949, -0.013649206, ..., -0.025631806,\n",
" -0.070999645, -0.010838648],\n",
" [ 0.009554824, 0.0076780124, 0.038210593, ..., -0.07817954,\n",
" -0.010728955, -0.07152045],\n",
" [ -0.049006246, 0.05510398, -0.013021469, ..., -0.079798505,\n",
" -0.009146154, 0.005236149],\n",
" ...,\n",
" [ -0.079499505, 0.008544564, 0.03518667, ..., 0.00688837,\n",
" -0.0123353, -0.07397203],\n",
" [ -0.045260094, -0.068415284, 0.0463626, ..., 0.024588566,\n",
" -0.028532287, -0.067644894],\n",
" [ -0.06628847, -0.0069846315, -0.015876472, ..., 0.044602774,\n",
" -0.07387686, 0.02356404]],\n",
"\n",
" [[ 0.006446501, -0.011342804, -0.07502475, ..., 0.076567635,\n",
" 0.028448245, 0.0016197761],\n",
" [ -0.018702865, 0.029466968, -0.0375611, ..., 0.040641487,\n",
" -0.033307254, -0.07057019],\n",
" [ -0.033371072, -0.065367065, -0.058290523, ..., -0.05115553,\n",
" 0.04728351, -0.0048220754],\n",
" ...,\n",
" [ 0.025539279, 0.075327694, 0.014974356, ..., 0.0025468867,\n",
" -0.081712864, 0.055831235],\n",
" [ -0.047192633, 0.0028637052, 0.024925968, ..., 0.011351109,\n",
" -0.08179085, -0.0029497943],\n",
" [ 0.057657182, 0.049029827, -0.0073194904, ..., 0.05200684,\n",
" 0.08097043, 0.04085201]],\n",
"\n",
" [[ 0.0109811425, 0.06892507, 0.06845965, ..., -0.059424322,\n",
" -0.047508977, 0.04122591],\n",
" [ -0.009190957, -0.05966278, -0.07407087, ..., 0.016952833,\n",
" 0.07692339, 0.015511036],\n",
" [ 0.026038568, -0.0022621155, -0.04326461, ..., 0.024497569,\n",
" 0.07161103, 0.01475203],\n",
" ...,\n",
" [ 0.024549406, 0.027513605, 0.003402273, ..., 0.048965674,\n",
" 0.075780734, 0.02577138],\n",
" [ 0.06602075, -0.07634648, 0.0545548, ..., 0.06906186,\n",
" 0.016828617, -0.02795003],\n",
" [ 0.017392438, -0.032464843, -0.058983944, ..., 0.049059056,\n",
" -0.021318357, 0.076282546]]],\n",
"\n",
"\n",
" [[[ 0.008274834, 0.06784713, 0.042908072, ..., -0.04182887,\n",
" 0.07649648, 0.0018001398],\n",
" [ 0.025140723, -0.042487286, 0.080512546, ..., -0.002768457,\n",
" -0.016086798, 0.024255356],\n",
" [ -0.06923594, -0.03551986, -0.06442356, ..., 0.027729433,\n",
" -0.038227916, 0.0019253691],\n",
" ...,\n",
" [ 0.00029569864, -0.0552335, -0.05978992, ..., -0.059727073,\n",
" -0.0073452396, -0.071375236],\n",
" [ -0.07014003, -0.015065472, -0.046258908, ..., 0.040924095,\n",
" 0.0074497066, -0.008944134],\n",
" [ -0.06548401, -0.022365075, 0.03874598, ..., -0.021627646,\n",
" 0.0275503, 0.026418328]],\n",
"\n",
" [[ -0.071551085, -0.06441216, 0.004733821, ..., 0.06565567,\n",
" 0.075444505, -0.06614703],\n",
" [ -0.07909912, -0.06413206, -0.024508994, ..., 0.062440954,\n",
" -0.037410896, -0.002747814],\n",
" [ -0.0029881995, 0.048380338, -0.003185451, ..., 0.054670036,\n",
" 0.044153094, 0.00046590966],\n",
" ...,\n",
" [ -0.024453184, -0.024321478, 0.04456433, ..., 0.012200098,\n",
" -0.012831251, 0.07593542],\n",
" [ -0.030649167, -0.0522696, 0.08283602, ..., -0.03441491,\n",
" 0.07390754, 0.038049918],\n",
" [ -0.0628193, 0.0211611, -0.049226545, ..., 0.021776637,\n",
" -0.07453011, -0.019153079]],\n",
"\n",
" [[ 0.05601875, -0.07883483, 0.072678946, ..., 0.002481103,\n",
" 0.019098481, -0.029982269],\n",
" [ 0.0027645628, -0.079222284, 0.082958125, ..., -0.03964589,\n",
" 0.023005646, -0.029502332],\n",
" [ -0.044447403, -0.01892535, -0.08227929, ..., 0.009733598,\n",
" -0.06378518, -0.04229782],\n",
" ...,\n",
" [ -0.03579847, 0.04496344, 0.045372628, ..., 0.008274337,\n",
" -0.0002816717, 0.006869535],\n",
" [ 0.069068894, -0.07188398, 0.0006560683, ..., -0.011856715,\n",
" 0.07267527, 0.065441534],\n",
" [ -0.058738552, 0.034675937, -0.022287687, ..., 0.0020334325,\n",
" -0.0447433, 0.060295105]]],\n",
"\n",
"\n",
" [[[ 0.042720698, -0.03006371, 0.016437372, ..., 0.056283575,\n",
" -0.0013154944, 0.03605346],\n",
" [ -0.056800723, -0.0009825826, -0.03975622, ..., 0.053919416,\n",
" -0.024790525, 0.0013986429],\n",
" [ -0.0015233557, 0.048111998, -0.07002169, ..., -0.06979494,\n",
" -0.020163437, -0.011334917],\n",
" ...,\n",
" [ -0.07620937, 0.0020334523, 0.045807462, ..., 0.0124569535,\n",
" -0.02942141, -0.03431227],\n",
" [ -0.018490016, -0.05840206, -0.01944836, ..., 0.04563868,\n",
" 0.07625054, 0.08266469],\n",
" [ 0.006568293, -0.012656788, 0.045291685, ..., -0.051399034,\n",
" 0.023050984, -0.0068130693]],\n",
"\n",
" [[ -0.0809356, 0.005812764, 0.014286539, ..., -0.072178945,\n",
" -0.050812304, 0.08064469],\n",
" [ 0.009999971, -0.060557626, 0.06888145, ..., -0.028674781,\n",
" 0.044974785, 0.055595677],\n",
" [ -0.061041713, -0.07570039, -0.04674866, ..., 0.0375615,\n",
" 0.027183235, -0.069918334],\n",
" ...,\n",
" [ -0.007580658, 0.043582916, 0.0062289834, ..., 0.074067056,\n",
" 0.074468896, -0.033016525],\n",
" [ 0.052839756, -0.0015898943, -0.06305494, ..., 0.063689314,\n",
" 0.07606121, 0.046406984],\n",
" [ -0.042565268, -0.005443692, 0.05960407, ..., -0.061208546,\n",
" 0.054949425, -0.06479695]],\n",
"\n",
" [[ -0.07290344, 0.08268641, -0.0744022, ..., -0.06489891,\n",
" 0.0622469, 0.005141735],\n",
" [ 0.0140788555, -0.023619017, 0.0046598515, ..., 0.000298361,\n",
" -0.049152255, -0.033540867],\n",
" [ 0.011155347, -0.06566751, 0.0031637154, ..., 0.007949352,\n",
" -0.044509172, 0.032268606],\n",
" ...,\n",
" [ 0.07784049, 0.0135927005, -0.024921995, ..., -0.0051608086,\n",
" 0.04461837, 0.07464938],\n",
" [ 0.07778945, 0.051431756, -0.060906135, ..., 0.022410035,\n",
" 0.0055269003, 0.008819422],\n",
" [ 0.0705878, 0.0018017888, -0.061519384, ..., -0.00015316407,\n",
" 0.018067837, 0.013164422]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ -0.040897857, 0.0036835414, 0.0029153628, ..., -0.04438241,\n",
" -0.005600969, 0.026597034],\n",
" [ 0.012949624, -0.012910255, 7.87536e-05, ..., 0.029331353,\n",
" 0.06099176, -0.03708226],\n",
" [ -0.06332976, -0.024154296, -0.0029826397, ..., 0.017373918,\n",
" -0.058963574, -0.031613227],\n",
" ...,\n",
" [ 0.054799873, -0.05233616, -0.06153185, ..., 0.05229082,\n",
" 0.044911917, -0.04797116],\n",
" [ -0.06282169, 0.045712978, 0.014394925, ..., 0.036971413,\n",
" -0.05880827, 0.016865967],\n",
" [ -0.004634366, -0.046730854, -0.0691136, ..., 0.02997506,\n",
" -0.07164614, 0.0034177029]],\n",
"\n",
" [[ -0.014895631, 0.06527123, -0.054594737, ..., -0.054867286,\n",
" 0.04201672, -0.028711854],\n",
" [ -0.058339104, 0.0355395, 0.054680098, ..., -0.029601958,\n",
" 0.048306134, 0.044488776],\n",
" [ -0.013096893, 0.07033904, -0.061409876, ..., -0.0650009,\n",
" -0.016407864, 0.0052944887],\n",
" ...,\n",
" [ -0.06370889, -0.07028775, -0.040537607, ..., -0.03888662,\n",
" -0.035695527, 0.01465937],\n",
" [ -0.056748822, 0.05773399, 0.003375444, ..., 0.022756193,\n",
" -0.018700046, -0.0007573732],\n",
" [ -0.029212043, 0.049450703, 0.051396552, ..., -0.06000031,\n",
" 0.070146225, 0.056542654]],\n",
"\n",
" [[ 0.050749715, 0.031866163, 0.049456432, ..., 0.025921805,\n",
" 0.02225263, -0.03229398],\n",
" [ -0.06303997, -0.064973176, -0.0035726635, ..., -0.0704408,\n",
" 0.02146883, -0.021359792],\n",
" [ 0.041963104, -0.0039854962, -0.06487864, ..., 0.053075224,\n",
" -0.05402037, -0.06391034],\n",
" ...,\n",
" [ -0.032979485, -0.024476692, 0.04270754, ..., 0.050983876,\n",
" 0.06360789, 0.02786215],\n",
" [ -0.033472255, -0.06625474, -0.009149836, ..., -0.01660665,\n",
" -0.056431588, -0.04050903],\n",
" [ -0.06646515, 0.06858686, -0.03852658, ..., -0.007867221,\n",
" -0.06498701, 0.017069604]]],\n",
"\n",
"\n",
" [[[ -0.012716374, -0.06127577, -0.057000585, ..., 0.04858448,\n",
" 0.06351308, -0.021595778],\n",
" [ -0.024595743, 0.01956453, 0.020668423, ..., -0.051189784,\n",
" 0.013735422, -0.060360424],\n",
" [ -0.012236918, -0.03734235, 0.06658968, ..., -0.04932372,\n",
" -0.0636169, 0.047026563],\n",
" ...,\n",
" [ 0.021893224, -0.043657485, 0.013934396, ..., 0.06491308,\n",
" -0.009382415, 0.022160182],\n",
" [ -0.039190847, 0.01337617, -0.060588013, ..., -0.009824808,\n",
" -0.018037584, -0.008319921],\n",
" [ -0.055362727, 0.053374343, -0.025911016, ..., 0.036310896,\n",
" -0.06903123, -0.047172043]],\n",
"\n",
" [[ 0.043101773, 0.010545549, 0.038920175, ..., -0.039758436,\n",
" -0.011100334, 0.050247822],\n",
" [ -0.05225386, 0.051973294, -0.02916631, ..., -0.061583642,\n",
" 0.03931926, 0.06941946],\n",
" [ 0.015029634, -0.015006887, 0.06840429, ..., -0.048331168,\n",
" 0.027894275, -0.025071723],\n",
" ...,\n",
" [ 0.004892393, -0.00498018, 0.06630624, ..., -0.05792118,\n",
" 0.044228755, -0.008677728],\n",
" [ -0.010231463, 0.037215486, 0.06386564, ..., 0.03318546,\n",
" 0.071814574, -0.026495742],\n",
" [ -0.01828668, 0.04793468, 0.045968924, ..., 0.05756079,\n",
" -0.010359719, 0.036772955]],\n",
"\n",
" [[ 0.031173741, -0.05616489, -0.046089675, ..., 0.0667077,\n",
" -0.067028806, -0.055373188],\n",
" [ 0.06634774, -0.015203453, -0.04901134, ..., -0.007206668,\n",
" -0.055647563, -0.036380254],\n",
" [ 0.045529455, 0.06745267, -0.06868605, ..., 0.029124033,\n",
" -0.027618542, 0.044625137],\n",
" ...,\n",
" [ -0.0038478968, 0.0117163565, 0.027557908, ..., -0.026809826,\n",
" 0.046523087, 0.0032765418],\n",
" [ 0.043020196, 0.036944933, -0.056071218, ..., -0.011406229,\n",
" 0.0010263949, 0.026246833],\n",
" [ -0.069761455, 0.015451018, 0.06425973, ..., -0.063182645,\n",
" 0.029911414, -0.014139789]]],\n",
"\n",
"\n",
" [[[ 0.007816273, -0.042864256, 0.057272, ..., -0.07026858,\n",
" -0.0032022619, 0.054306082],\n",
" [ -0.064816944, -0.061495356, -0.021419497, ..., -0.032823578,\n",
" 0.034608085, -0.015356641],\n",
" [ -0.037616793, 0.028210012, -0.056680635, ..., 0.028742395,\n",
" -0.028374437, 0.039296806],\n",
" ...,\n",
" [ 0.0712587, -0.049173936, -0.016912786, ..., -0.002285248,\n",
" -0.033833984, 0.059107043],\n",
" [ 0.015650699, 0.05209288, -0.04052928, ..., 0.06825192,\n",
" -0.015099836, -0.025964873],\n",
" [ 0.06306021, -0.015285183, 0.067393064, ..., -0.060699973,\n",
" 0.011565216, 0.061385028]],\n",
"\n",
" [[ -0.06400167, -0.013497423, -0.047870573, ..., 0.030351777,\n",
" 0.030834725, 0.0040041306],\n",
" [ -0.0015926568, -0.012602123, 0.01750281, ..., 0.005370954,\n",
" 0.06871443, 0.01696],\n",
" [ 0.05481417, 0.018480288, 0.00091001095, ..., 0.04367297,\n",
" -0.0032901177, -0.06668504],\n",
" ...,\n",
" [ 0.054333113, 0.0041374112, -0.052643, ..., -0.02314122,\n",
" -0.009023077, -0.01194219],\n",
" [ 0.022400502, 0.011506732, 0.01549006, ..., -0.049939897,\n",
" -0.0032550683, 0.06736285],\n",
" [ 0.00507466, 0.019536827, 0.052807994, ..., 0.023223862,\n",
" -0.051016327, -0.02668847]],\n",
"\n",
" [[ 0.058332995, -0.030449027, 0.035493955, ..., -0.03304105,\n",
" -0.028136162, -0.049429107],\n",
" [ -0.0014009089, -0.038560852, -0.069934085, ..., -0.030747145,\n",
" 0.042004537, -0.045513984],\n",
" [ 0.048169, -0.02418871, 0.0018930974, ..., -0.03140123,\n",
" -0.034674156, -0.059566658],\n",
" ...,\n",
" [ 0.016276391, -0.026053192, 0.04279352, ..., -0.05424001,\n",
" -0.034459405, -0.03675076],\n",
" [ 0.033893123, 0.023214553, -0.063657954, ..., 0.055142984,\n",
" -0.014688999, 0.015350137],\n",
" [ -0.046255305, 0.0684717, 0.0258802, ..., -0.017633148,\n",
" -0.03753914, -0.008899363]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), pool: TensorFlow.MaxPool2D<Swift.Float>(poolSize: (1, 2, 2, 1), strides: (1, 2, 2, 1), padding: TensorFlow.Padding.valid), trans1: TensorFlow.TransposedConv2D<Swift.Float>(filter: [[[[ 0.0208839, -0.07913562, 0.02792859, ..., -0.0069508357,\n",
" -0.067577325, -0.077251576],\n",
" [ -0.035033405, -0.08316897, 0.07936488, ..., -0.063562274,\n",
" 0.013948202, 0.042808555],\n",
" [ -0.022804499, -0.07824373, 0.011865179, ..., 0.029069126,\n",
" 0.059833787, 0.004495899],\n",
" ...,\n",
" [ 0.044739686, 0.011083822, 0.06875964, ..., 0.0032690167,\n",
" 0.05214542, -0.057156228],\n",
" [ -0.032957613, 0.009417018, 0.003389001, ..., -0.082606435,\n",
" -0.063526414, 0.07546072],\n",
" [ 0.022940874, 0.024700284, -0.003521959, ..., -0.060961843,\n",
" -0.04385235, 0.02384176]],\n",
"\n",
" [[ 0.026459059, 0.05413113, -0.047215264, ..., -0.015158594,\n",
" 0.0758729, 0.019467872],\n",
" [ -0.0032329957, -0.03171931, -0.017614445, ..., 0.058744967,\n",
" 0.0364186, -0.01775539],\n",
" [ 0.00058345, -0.025378367, 0.019948464, ..., -0.0032605927,\n",
" 0.043758295, -0.0249695],\n",
" ...,\n",
" [ 0.00053743523, 0.062025867, 0.06561401, ..., -0.03630992,\n",
" -0.030276895, -0.017133158],\n",
" [ 0.009585917, -0.030435383, -0.060203515, ..., -0.07602857,\n",
" 0.028949063, -0.04682104],\n",
" [ -0.041141212, 0.06914787, -0.008880695, ..., -0.06786512,\n",
" 0.042703193, -0.050152324]],\n",
"\n",
" [[ -0.032001477, 0.07816305, 0.0787767, ..., 0.046281558,\n",
" 0.0007209381, 0.048458856],\n",
" [ 0.08309134, 0.029604277, -0.014700254, ..., -0.07735755,\n",
" 0.044894617, -0.06843923],\n",
" [ -0.03440839, 0.05471202, -0.022637626, ..., 0.0035297673,\n",
" 0.035759866, -0.07214701],\n",
" ...,\n",
" [ -0.015589058, -0.04804784, 0.045426093, ..., -0.036848508,\n",
" -0.077838704, 0.009300411],\n",
" [ -0.05366121, -0.03741771, -0.022577941, ..., 0.05771943,\n",
" 0.019756615, 0.07359084],\n",
" [ 0.076666914, 0.07197299, -0.05631288, ..., -0.021893363,\n",
" -0.029083451, 0.037218593]]],\n",
"\n",
"\n",
" [[[ 0.037011825, -0.016777119, 0.05583465, ..., -0.055841964,\n",
" 0.003673792, 0.030273935],\n",
" [ -0.011191547, 0.013604621, 0.055941105, ..., -0.0159839,\n",
" 0.045269273, 0.005313059],\n",
" [ -0.019957703, 0.03576579, -0.008705914, ..., -0.035547756,\n",
" -0.013516149, 0.012386402],\n",
" ...,\n",
" [ 0.061855517, 0.05026108, -0.025231283, ..., 0.00889959,\n",
" 0.025600117, 0.017568987],\n",
" [ -0.06724211, 0.05009681, -0.081569396, ..., -0.0087375445,\n",
" 0.037122272, -0.020387512],\n",
" [ -0.008868953, 0.064796135, 0.047236465, ..., 0.030862372,\n",
" -0.00824815, -0.058681846]],\n",
"\n",
" [[ 0.02828908, -0.063705646, 0.033998154, ..., 0.035123073,\n",
" 0.040249508, 0.05991455],\n",
" [ 0.017181259, 0.01610454, -0.0041865706, ..., -0.02323246,\n",
" -0.04140697, -0.012625119],\n",
" [ 0.0014808774, -0.036648415, 0.029275417, ..., 0.017776867,\n",
" 0.035094064, 0.00832057],\n",
" ...,\n",
" [ -0.018341642, -0.043386757, -0.042900763, ..., -0.014625013,\n",
" 0.075607836, -0.026176613],\n",
" [ 0.06603579, 0.045276225, -0.06683048, ..., -0.06151869,\n",
" -0.06196835, 0.041265905],\n",
" [ -0.08204325, 0.047714632, 0.0628893, ..., 0.011045377,\n",
" 0.07176791, 0.07350241]],\n",
"\n",
" [[ 0.0131364465, 0.027803838, -0.03999909, ..., -0.06488733,\n",
" 0.05142524, 0.038944446],\n",
" [ -0.017584026, 0.03298533, 0.01972143, ..., -0.038526695,\n",
" -0.011327228, 0.08252792],\n",
" [ -0.04390804, 0.06306519, -0.048203647, ..., -0.016700983,\n",
" -0.0052244067, 0.02046603],\n",
" ...,\n",
" [ -0.063777685, 0.035448372, 0.03924489, ..., -0.067165434,\n",
" -0.0035243235, 0.07242908],\n",
" [ 0.0034270883, 0.037392758, 0.016563892, ..., 0.050393205,\n",
" -0.062680826, -0.056506675],\n",
" [ 0.021735549, -0.02888324, -0.039903007, ..., 0.059046447,\n",
" -0.00062050426, 0.06339403]]],\n",
"\n",
"\n",
" [[[ 0.032543086, 0.07625743, -0.0498273, ..., -0.061997533,\n",
" -0.0045965714, 0.003041486],\n",
" [ -0.017968219, -0.037894785, -0.06671004, ..., 0.07530811,\n",
" 0.008623223, -0.06725852],\n",
" [ 0.017712316, -0.058243673, 0.044694982, ..., -0.07970824,\n",
" 0.05229318, 0.077181324],\n",
" ...,\n",
" [ 0.007924239, -0.07354798, -0.028543692, ..., -0.007544677,\n",
" -0.00043735903, 0.068962395],\n",
" [ 0.06270766, -0.0461758, -0.050033174, ..., 0.049120367,\n",
" -0.00970004, -0.07239628],\n",
" [ 0.047184765, -0.024219513, -0.00923725, ..., -0.03462593,\n",
" -0.026569208, 0.062060893]],\n",
"\n",
" [[ -0.0064711175, -0.07322278, 0.034275495, ..., -0.0035728812,\n",
" -0.052374285, 0.017511528],\n",
" [ -0.013449848, 0.048088532, -0.0006791949, ..., 0.058831096,\n",
" -0.050308168, -0.036997616],\n",
" [ -0.042669516, -0.0036010942, 0.020914078, ..., 0.062110722,\n",
" -0.013735235, 0.06944116],\n",
" ...,\n",
" [ -0.064964496, -0.07903095, -0.002565086, ..., 0.03359165,\n",
" 0.024930915, 0.03413419],\n",
" [ -0.031520985, -0.07555988, 0.022791725, ..., 0.08223896,\n",
" 0.057412546, -0.054091275],\n",
" [ 0.045109473, -0.06309386, -0.018230718, ..., -0.07338544,\n",
" -0.048529487, 0.035336714]],\n",
"\n",
" [[ 0.0529419, 0.07567108, 0.060331307, ..., 0.03589952,\n",
" 0.014777025, -0.062358916],\n",
" [ -0.014621636, -0.064573094, 0.036548357, ..., -0.059058808,\n",
" -0.043750763, 0.043638747],\n",
" [ -0.054581128, 0.039039336, -0.07955563, ..., -0.024207732,\n",
" -0.07351147, -0.004761398],\n",
" ...,\n",
" [ 0.03432274, 0.017930668, 0.019260626, ..., -0.017424148,\n",
" 0.0052107377, 0.030221265],\n",
" [ -0.033138257, -0.035614114, 0.038706265, ..., -0.027543565,\n",
" 0.031091034, 0.02132678],\n",
" [ -0.044423163, 0.08273505, -0.07063379, ..., 0.025425335,\n",
" -0.07393666, -0.0069767637]]]], bias: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n",
" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], activation: (Function), strides: (2, 2), padding: TensorFlow.Padding.valid, paddingIndex: 1), trans2: TensorFlow.TransposedConv2D<Swift.Float>(filter: [[[[ -0.09755521, -0.024202388, 0.05238347, ..., 0.073530756,\n",
" 0.10185203, 0.114689626],\n",
" [ 0.03136282, -0.0002950935, -0.090100005, ..., 0.10060785,\n",
" 0.06787863, 0.06255039],\n",
" [ -0.07909772, -0.014340797, 0.045163807, ..., -0.036348686,\n",
" 0.07122814, -0.015923359],\n",
" ...,\n",
" [ -0.09935064, 0.084456176, -0.11623545, ..., 0.13545474,\n",
" -0.061884385, -0.035606865],\n",
" [ 0.057510015, 0.07923761, -0.110814124, ..., 0.08435053,\n",
" 0.06681932, -0.03908298],\n",
" [ 0.071368545, -0.06575321, -0.070823126, ..., 0.038239073,\n",
" 0.01726077, -0.0691621]],\n",
"\n",
" [[ 0.07811335, 0.0748784, 0.095686264, ..., 0.078134865,\n",
" 0.048761327, -0.05580359],\n",
" [ 0.044849224, 0.09837336, 0.06675739, ..., -0.080494806,\n",
" 0.07796371, -0.07152821],\n",
" [ 0.12575875, -0.05673214, 0.05954199, ..., -0.023852931,\n",
" 0.09149369, -0.009342565],\n",
" ...,\n",
" [ 0.1256118, 0.034514926, -0.11198787, ..., 0.09430929,\n",
" -0.07939877, 0.074942306],\n",
" [ -0.10876565, 0.10556931, -0.03690768, ..., 0.068812534,\n",
" 0.07397529, -0.08191247],\n",
" [ -0.10554851, -0.030135784, 0.036810696, ..., 0.08043607,\n",
" 0.04098895, -0.10408022]],\n",
"\n",
" [[ -0.07024349, 0.023491459, 0.07564549, ..., -0.0078083724,\n",
" 0.010601738, 0.1034735],\n",
" [ -0.014719169, 0.10849263, -0.024268163, ..., 0.105723806,\n",
" -0.0052466486, 0.019572664],\n",
" [ 0.085386515, 0.009485442, -0.08535963, ..., -0.05826983,\n",
" 0.1668266, 0.10970016],\n",
" ...,\n",
" [ 0.07348067, -0.04917733, 0.025036097, ..., 0.13903585,\n",
" 0.15761097, 0.055676673],\n",
" [ -0.0734242, -0.0662774, 0.08353119, ..., 0.0027586042,\n",
" -0.065288015, -0.044769727],\n",
" [ 0.022110969, -0.014804184, -0.06194856, ..., -0.058083143,\n",
" 0.044642285, 0.114456855]]],\n",
"\n",
"\n",
" [[[ 0.00635016, -0.09340356, 0.09163342, ..., -0.07420197,\n",
" -0.040824205, -0.058123637],\n",
" [ -0.09189294, 0.05831979, 0.08694698, ..., -0.099796645,\n",
" 0.09213218, 0.08477083],\n",
" [ -0.04833615, -0.007892431, -0.052325413, ..., 0.027969984,\n",
" 0.13365401, 0.027966266],\n",
" ...,\n",
" [ -0.037328817, 0.07056353, -0.012974456, ..., 0.044400677,\n",
" 0.05169716, -0.021181485],\n",
" [ 0.025243383, 0.050322294, 0.027760968, ..., -0.11408385,\n",
" -0.018617371, 0.010917548],\n",
" [ 0.07494757, -0.070229165, -0.089161225, ..., -0.099492356,\n",
" 0.058257174, 0.080151185]],\n",
"\n",
" [[ 0.042891707, 0.0389087, -0.10970633, ..., 0.0038832442,\n",
" 0.018454282, -0.0030651495],\n",
" [ -0.08574234, 0.11947926, -0.034835022, ..., 0.067338765,\n",
" 0.07534821, -0.09868637],\n",
" [ 0.063754156, -0.024498733, 0.034540717, ..., 0.029008504,\n",
" 0.031913634, -0.06591341],\n",
" ...,\n",
" [ -0.084697746, -0.018227093, 0.009691054, ..., 0.07840484,\n",
" 0.023749622, 0.04857803],\n",
" [ -0.011366828, -0.010839214, 0.041340824, ..., -0.12668085,\n",
" -0.13775924, 0.0017155594],\n",
" [ -0.11943625, -0.08620069, -0.059322055, ..., -0.04372416,\n",
" 0.074990384, -0.105245665]],\n",
"\n",
" [[ 0.08255172, 0.08772833, -0.06961431, ..., -0.05937363,\n",
" 0.029374052, 0.03265729],\n",
" [ 0.036973324, 0.088054284, 0.042675864, ..., 0.11292211,\n",
" -0.0997204, -0.07890127],\n",
" [ 0.013383311, 0.09152074, 0.10827341, ..., 0.116517335,\n",
" -0.016322646, 0.08303419],\n",
" ...,\n",
" [ -0.0655988, 0.10836634, 0.03264141, ..., 0.06689655,\n",
" 0.04516155, -0.016276592],\n",
" [ -0.0684126, 0.029253839, 0.004036676, ..., 0.021509342,\n",
" 0.09055795, 0.002505709],\n",
" [ -0.06109097, -0.03856898, -0.079978384, ..., -0.013981431,\n",
" -0.1366999, 0.066841766]]],\n",
"\n",
"\n",
" [[[ 0.09296042, 0.028904475, -0.101765245, ..., -0.11751487,\n",
" -0.0064791096, 0.07573219],\n",
" [ 0.06977827, 0.07355491, 0.087007694, ..., -0.055904243,\n",
" -0.04891944, 0.041595656],\n",
" [ -0.05660159, 0.060705602, -0.0747938, ..., -0.042859137,\n",
" 0.112297945, -0.03598066],\n",
" ...,\n",
" [ -0.07805382, -0.03537303, 0.09122381, ..., 0.063332774,\n",
" -0.046224516, 0.107413195],\n",
" [ 0.09975159, -0.094291024, 0.026448166, ..., 0.010442176,\n",
" -0.040166847, -0.020562725],\n",
" [ 0.038640775, 0.07369395, 0.021411024, ..., 0.0812641,\n",
" -0.07561306, -0.110267825]],\n",
"\n",
" [[ 0.06637173, 0.10314276, 0.094711326, ..., 0.077837005,\n",
" -0.046702426, -0.09650179],\n",
" [ 0.08912564, -0.098831855, 0.089888126, ..., 0.06587947,\n",
" -0.004037915, -0.0010509251],\n",
" [ -0.06484245, 0.037441295, 0.10241452, ..., -0.06265332,\n",
" 0.11333405, 0.04727687],\n",
" ...,\n",
" [ -0.030133171, 0.0057213996, 0.092961766, ..., -0.0025312963,\n",
" -0.03486794, 0.066532046],\n",
" [ -0.066307396, -0.08165183, -0.026096212, ..., -0.052258313,\n",
" 0.08165777, 0.10909147],\n",
" [ 0.0548783, -0.114513166, -0.0233333, ..., -0.0382938,\n",
" -0.054638486, -0.03650081]],\n",
"\n",
" [[ 0.048587427, -0.010065718, -0.00057715044, ..., 0.044963185,\n",
" -0.018623274, 0.05458905],\n",
" [ 0.10931011, -0.018860701, -0.09813879, ..., 0.041267898,\n",
" 0.08599529, -0.10169399],\n",
" [ -0.028929532, 0.09988826, 0.020927114, ..., -0.0017266955,\n",
" 0.16358116, 0.052188713],\n",
" ...,\n",
" [ 0.06445227, -0.067605704, 0.11711805, ..., 0.063296385,\n",
" 0.1032356, 0.086828835],\n",
" [ 0.010875676, 0.10399106, 0.0098671485, ..., 0.05236981,\n",
" 0.067406155, -0.06849926],\n",
" [ -0.068773, -0.0643704, 0.05254902, ..., 0.018601175,\n",
" 0.094034426, -0.11260195]]]], bias: [ -0.4580873, 0.3927371, 0.5811719, -0.5065535, 0.5812149, -0.54824126, 0.5616767,\n",
" -0.37630805, 0.47030967, 0.5732538, -0.38329282, -0.44637883, -0.57159716, 0.56369025,\n",
" -0.46913034, -0.5300394], activation: (Function), strides: (2, 2), padding: TensorFlow.Padding.same, paddingIndex: 0), trans3: TensorFlow.TransposedConv2D<Swift.Float>(filter: [[[[ 0.23627783, 0.34178513, 0.37522694, ..., 0.14641625,\n",
" -0.074488975, 0.034433678],\n",
" [ -0.36910447, -0.4364149, -0.38957933, ..., -0.062323295,\n",
" -0.1307675, -0.0012665689],\n",
" [ -0.55063426, -0.40691632, -0.535825, ..., -0.14610432,\n",
" 0.050683614, 0.08865876],\n",
" ...,\n",
" [ 0.4067482, 0.40856856, 0.6299471, ..., -0.121213384,\n",
" 0.15814257, -0.10991219],\n",
" [ 0.52379847, 0.41692138, 0.5343817, ..., -0.017985743,\n",
" 0.079716645, 0.20173234],\n",
" [ 0.0079466505, -0.4147689, -0.48256418, ..., 0.11770922,\n",
" 0.080931865, 0.081009425]],\n",
"\n",
" [[ 0.2929619, 0.32319564, 0.3842308, ..., -0.15593815,\n",
" 0.09314267, 0.0794121],\n",
" [ -0.05788109, 0.076055214, -0.054225005, ..., -0.14358142,\n",
" -0.059424043, 0.10473993],\n",
" [ -0.6645505, -0.5690783, -0.5341278, ..., -0.1247272,\n",
" -0.022502303, -0.025460975],\n",
" ...,\n",
" [ 0.5836441, 0.68328655, 0.72062737, ..., -0.0038676204,\n",
" -0.0987939, 0.032851335],\n",
" [ 0.31540397, 0.66728956, 0.44378927, ..., -0.07837989,\n",
" -0.100879915, 0.19177625],\n",
" [ 0.2931042, 0.30024284, 0.442728, ..., 0.046296142,\n",
" -0.08946804, -0.063091055]],\n",
"\n",
" [[ 0.21708381, 0.2831456, 0.6067156, ..., -0.15739329,\n",
" 0.07277932, -0.0472656],\n",
" [ -0.5787753, -0.36403236, -0.53148806, ..., -0.08486551,\n",
" 0.0042726994, -0.111438684],\n",
" [ -0.54740804, -0.42681858, -0.72980446, ..., -0.008296228,\n",
" -0.12995388, 0.039904494],\n",
" ...,\n",
" [ 0.39227206, 0.5466901, 0.54631114, ..., 0.07508943,\n",
" 0.1298098, 0.20727408],\n",
" [ 0.44191444, 0.67965335, 0.7230612, ..., 0.025712807,\n",
" -0.06296858, 0.08787729],\n",
" [ 0.0045238067, -0.42466858, -0.5045872, ..., 0.14790362,\n",
" 0.09614208, 0.0034788533]]],\n",
"\n",
"\n",
" [[[ 0.3206958, 0.2589938, 0.52091044, ..., -0.022768697,\n",
" 0.009226769, -0.10428967],\n",
" [ -0.28728166, -0.37781435, -0.54053795, ..., 0.0097200675,\n",
" 0.020496832, 0.09022403],\n",
" [ -0.32506734, -0.42035857, -0.3911943, ..., 0.094725825,\n",
" 0.06951785, 0.11431361],\n",
" ...,\n",
" [ 0.3126553, 0.61223286, 0.4454377, ..., -0.15497988,\n",
" 0.0018486718, 0.16330175],\n",
" [ 0.43330783, 0.66861534, 0.44654283, ..., -0.002882927,\n",
" -0.07510312, 0.052223645],\n",
" [ -0.418045, -0.5124831, -0.60729325, ..., 0.0021268006,\n",
" 0.15135461, 0.10081733]],\n",
"\n",
" [[ -0.10453231, -0.26824042, -0.48575166, ..., -0.15435183,\n",
" 0.1028681, 0.033951093],\n",
" [ -0.05082702, 0.17214933, 0.29895517, ..., 0.07987497,\n",
" -0.08656159, 0.029525131],\n",
" [ -0.601175, -0.51201826, -0.6925178, ..., -0.14216341,\n",
" 0.089057095, -0.09342367],\n",
" ...,\n",
" [ 0.29629692, 0.4268767, 0.5263252, ..., -0.02702206,\n",
" -0.105476685, 0.0704176],\n",
" [ 0.58518416, 0.39750925, 0.50187474, ..., -0.0765304,\n",
" 0.15132862, 0.03687963],\n",
" [ 0.3394674, 0.35045046, 0.5645955, ..., 0.056160416,\n",
" -0.04143659, 0.06471602]],\n",
"\n",
" [[ 0.060550783, 0.24915971, 0.27818203, ..., -0.04909406,\n",
" 0.07003495, -0.14114834],\n",
" [ -0.1167388, -0.3096321, -0.5331995, ..., 0.110871084,\n",
" -0.041577876, 0.06159766],\n",
" [ -0.32046384, -0.5883906, -0.60371155, ..., -0.08316456,\n",
" 0.114241526, -0.06498395],\n",
" ...,\n",
" [ 0.5508882, 0.59038675, 0.549854, ..., -0.054040488,\n",
" 0.11941518, 0.041786663],\n",
" [ 0.610963, 0.62295204, 0.48929268, ..., -0.072013386,\n",
" 0.01594851, 0.025674904],\n",
" [ -0.30919868, -0.6019887, -0.46545842, ..., 0.102796204,\n",
" 0.024938354, 0.08806045]]],\n",
"\n",
"\n",
" [[[ 0.25983736, 0.5461323, 0.37870747, ..., -0.15207788,\n",
" 0.07847736, -0.11431234],\n",
" [ -0.45863417, -0.4141946, -0.45377424, ..., -0.09386037,\n",
" 0.13046429, 0.08852953],\n",
" [ -0.40746972, -0.6874838, -0.6473819, ..., 0.012675282,\n",
" 0.024031593, -0.005093515],\n",
" ...,\n",
" [ 0.26371148, 0.42291763, 0.68976295, ..., -0.15793982,\n",
" -0.12307058, 0.1997059],\n",
" [ 0.5376627, 0.6054529, 0.58224785, ..., 0.17203853,\n",
" -0.047623172, 0.0033300335],\n",
" [ -0.17959772, -0.25110668, -0.39896387, ..., 0.024908576,\n",
" 0.006577422, -0.12754264]],\n",
"\n",
" [[ 0.2584814, 0.33607066, 0.56321824, ..., -0.10664622,\n",
" -0.10321533, -0.10782644],\n",
" [ 0.031310383, -0.0129314475, -0.098233, ..., 0.080456376,\n",
" -0.09781087, -0.13441968],\n",
" [ -0.3858949, -0.45754158, -0.5428729, ..., 0.031037826,\n",
" 0.07344725, -0.20999356],\n",
" ...,\n",
" [ 0.35659197, 0.59620273, 0.5303674, ..., -0.04127117,\n",
" -0.079684995, 0.12555493],\n",
" [ 0.43709254, 0.59691805, 0.70954376, ..., -0.058537524,\n",
" 0.05947698, -0.03141007],\n",
" [ 0.20965935, 0.46961448, 0.45039013, ..., 0.017158907,\n",
" 0.010842717, 0.050567724]],\n",
"\n",
" [[ 0.1490001, 0.3475279, 0.5861114, ..., 0.1052481,\n",
" -0.01820414, 0.13216576],\n",
" [ -0.38456595, -0.55790234, -0.40778497, ..., -0.08307806,\n",
" 0.069140285, -0.06839774],\n",
" [ -0.3961103, -0.51443744, -0.7319709, ..., 0.14060095,\n",
" 0.07422354, -0.102683954],\n",
" ...,\n",
" [ 0.48669794, 0.43843517, 0.65683997, ..., -0.08251948,\n",
" -0.09496949, 0.07197076],\n",
" [ 0.5039439, 0.39251173, 0.41137525, ..., 0.14031729,\n",
" 0.104167275, 0.047630176],\n",
" [ -0.16704115, -0.24137461, -0.20899276, ..., -0.015464236,\n",
" -0.11061201, -0.055740003]]]], bias: [ 0.59422165, -0.59617907, -0.5992654, 0.59857, -0.5983839, 0.5986751, 0.5988724,\n",
" -0.5840756], activation: (Function), strides: (2, 2), padding: TensorFlow.Padding.same, paddingIndex: 0), up1: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.07013556, -0.03213879, -0.004657778, ..., -0.081672765,\n",
" 0.03729628, -0.06600694],\n",
" [ -0.012686387, 0.050654765, 0.038362216, ..., -0.019970749,\n",
" 0.059640225, -0.039715573],\n",
" [ 0.0366929, -0.023763262, 0.081701525, ..., -0.03761475,\n",
" -0.05849135, -0.0026948268],\n",
" ...,\n",
" [ -0.032936502, -0.06831846, 0.039521668, ..., 0.060535993,\n",
" 0.064043105, -0.07098782],\n",
" [ 0.03957636, -0.024468271, -0.022562156, ..., -0.0268948,\n",
" -0.005183887, -0.03216737],\n",
" [ 0.06599573, 0.05125013, 0.0071597355, ..., -0.013247531,\n",
" 0.03618702, -0.070958234]],\n",
"\n",
" [[ 0.03306977, 0.083042994, -0.007815938, ..., 0.0813401,\n",
" -0.0620268, -0.01570279],\n",
" [ 0.0053496375, 0.05231525, 0.023253925, ..., 0.069782,\n",
" 0.029990764, 0.049923226],\n",
" [ 0.009139007, 0.0039754147, 0.034915682, ..., -0.075564936,\n",
" 0.07296263, 0.052883785],\n",
" ...,\n",
" [ 0.003241614, -0.073757, -0.060510516, ..., -0.035417672,\n",
" -0.019471008, 0.010226828],\n",
" [ -0.012752953, -0.07266875, 0.022893224, ..., -0.014096696,\n",
" -0.05178346, -0.026062245],\n",
" [ 0.012416816, 0.07818086, 0.0809201, ..., 0.069482684,\n",
" -0.01691436, -0.02782504]],\n",
"\n",
" [[ -0.0015170336, 0.06934806, 0.05548651, ..., -0.050870985,\n",
" 0.07234094, -0.07803515],\n",
" [ -0.05128266, -0.03805603, -0.03429369, ..., -0.07970175,\n",
" -0.06269672, 0.02388052],\n",
" [ -0.018695533, -0.041389186, -0.003735098, ..., -0.04008899,\n",
" 0.053540543, 0.015555136],\n",
" ...,\n",
" [ 0.015754363, -0.0072261943, -0.034851443, ..., 0.053742312,\n",
" -0.077156186, -0.04635828],\n",
" [ 0.07218124, -0.037716314, 0.03401698, ..., 0.042996474,\n",
" -0.016366934, -0.022219973],\n",
" [ 0.077347316, 0.08013095, -0.07836616, ..., 0.04970407,\n",
" -0.058035254, 0.021462955]]],\n",
"\n",
"\n",
" [[[ 0.074670635, -0.0071829064, -0.04525592, ..., -0.04019012,\n",
" -0.009620755, -0.043611288],\n",
" [ -0.015728962, 0.05712536, -0.07210262, ..., -0.058961622,\n",
" 0.06547395, -0.053502373],\n",
" [ 0.01847525, -0.06917439, -0.07502031, ..., -0.0060329014,\n",
" 0.07946569, 0.07390825],\n",
" ...,\n",
" [ -0.07915623, -0.03696481, -0.073873885, ..., -0.017464545,\n",
" 0.023336329, 0.047080673],\n",
" [ -0.038747597, 0.073065005, -0.035797387, ..., 0.0071502123,\n",
" -0.011601206, -0.068025],\n",
" [ -0.05212621, 0.07417406, -0.03521839, ..., 0.02036098,\n",
" 0.078210525, -0.058617495]],\n",
"\n",
" [[ 0.038703613, 0.020814957, 0.011539596, ..., 0.055705808,\n",
" -0.054943707, -0.0037386038],\n",
" [ -0.024697948, -0.08314335, 0.044062097, ..., -0.004250329,\n",
" -0.016571164, -0.071514085],\n",
" [ -0.05712897, 0.0794303, -0.06568772, ..., 0.069202974,\n",
" -0.055156793, 0.018348306],\n",
" ...,\n",
" [ -0.06734531, 0.07583708, -0.0123815155, ..., -0.032315668,\n",
" -0.042703923, 0.051011834],\n",
" [ -0.027039554, -0.010214616, 0.038389873, ..., 0.057606846,\n",
" 0.00066106406, 0.016016347],\n",
" [ 0.016314756, 0.029364504, -0.025801383, ..., -0.0015203304,\n",
" 0.022854988, -0.03445089]],\n",
"\n",
" [[ 0.07961155, 0.058159728, 0.028426738, ..., -0.022905227,\n",
" -0.028697407, -0.05085401],\n",
" [ 0.05273095, 0.040426396, -0.026071291, ..., 0.05455128,\n",
" 0.008186963, 0.07125919],\n",
" [ 0.036732197, 0.068837106, 0.03197441, ..., 0.08064285,\n",
" -0.021013035, -0.028169474],\n",
" ...,\n",
" [ -0.06870771, -0.004146902, -0.039135106, ..., 0.06409058,\n",
" 0.026117455, 0.033799615],\n",
" [ -0.07663125, 0.0057755834, -0.048688702, ..., 0.0045883525,\n",
" 0.0035511204, 0.023996009],\n",
" [ 0.016459523, -0.0053776028, -0.0042349254, ..., 0.046624016,\n",
" -0.0429998, 0.042898796]]],\n",
"\n",
"\n",
" [[[ 0.033119366, -0.073858626, 0.012285418, ..., -0.044233873,\n",
" 0.011127402, -0.067803405],\n",
" [ -0.0430285, -0.0062348605, -0.046543315, ..., -0.05724075,\n",
" -0.010722728, 0.041263826],\n",
" [ -0.071490064, 0.059893444, 0.082654886, ..., -0.062482744,\n",
" 0.013542648, -0.06889132],\n",
" ...,\n",
" [ 0.06118715, -0.0022977898, 0.025275044, ..., -0.050813664,\n",
" 0.040021814, -0.0035126237],\n",
" [ -0.0012374778, -0.07051738, 0.08027311, ..., -0.0018129763,\n",
" 0.004078299, -0.054667667],\n",
" [ 0.00082829746, -0.042630732, 0.013708805, ..., -0.06758041,\n",
" 0.011801129, 0.021770408]],\n",
"\n",
" [[ 0.031135557, 0.076328464, 0.028162466, ..., 0.032712918,\n",
" 0.04050707, -0.0040970263],\n",
" [ 0.02635072, -0.049148057, 0.06171435, ..., 0.031943914,\n",
" -0.02968312, -0.072763905],\n",
" [ 0.014138631, -0.05362388, -0.056637447, ..., 0.062384326,\n",
" 0.0039594527, 0.0077662775],\n",
" ...,\n",
" [ -0.007818812, 0.005837612, 0.008245702, ..., 0.07626951,\n",
" 0.08153843, 0.061360326],\n",
" [ -0.040895827, 0.018068898, -0.053584315, ..., 0.0002251341,\n",
" -0.036674865, -0.08006127],\n",
" [ 0.0032681588, 0.041519683, 0.033737604, ..., 0.0018144598,\n",
" -0.079717845, 0.06530349]],\n",
"\n",
" [[ -0.05122165, 0.07213914, -0.036554918, ..., 0.0020684686,\n",
" 0.0116982, -0.071662],\n",
" [ -0.056980547, -0.006161372, 0.07629036, ..., 0.054469,\n",
" -0.081703134, 0.05256089],\n",
" [ 0.07027436, -0.065917656, -0.016993698, ..., 0.06355419,\n",
" -0.02664912, -0.013656938],\n",
" ...,\n",
" [ -0.0680572, 0.0051664924, -0.00800727, ..., 0.050930493,\n",
" 0.021253174, -0.04734349],\n",
" [ 0.07292855, -0.039666004, 0.0028605724, ..., -0.033460725,\n",
" -0.056495126, 0.016597934],\n",
" [ 0.024956262, -0.020885855, -0.010254087, ..., -0.0124565195,\n",
" 0.008725066, 0.0747988]]]], bias: [ -0.008623928, -0.025428189, -0.007827018, 0.032110356, -0.3219018, 0.23448408,\n",
" -0.015841622, -0.023822231, -0.039131187, 0.46092293, -0.1421141, -0.15678437,\n",
" 0.005438767, -0.036631934, 0.30294743, 0.011917808, 8.0668986e-05, -0.13683222,\n",
" -0.4970633, 0.18546996, -0.021550786, 0.00047850882, 0.46591008, -0.112362854,\n",
" -0.4341972, -0.5140915, -0.3396232, 0.0010713019, -0.034426186, -0.08968466,\n",
" -0.003656635, -0.0066174953], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.09791258, -0.052772067, -0.040460043, ..., 0.08259367,\n",
" 0.042245533, -0.05154043],\n",
" [ -0.05737956, 0.035801474, -0.03883233, ..., 0.013137358,\n",
" -0.0818923, -0.029822636],\n",
" [ -0.082051344, 0.068661936, 0.071508, ..., 0.039197046,\n",
" 0.06597637, -0.099182665],\n",
" ...,\n",
" [ 0.05198637, -0.03598419, -0.013121472, ..., 0.003102881,\n",
" -0.019288799, -0.059773125],\n",
" [ -0.022715256, 0.05300002, 0.07245537, ..., -0.00660006,\n",
" -0.08761688, 0.0285385],\n",
" [ -0.06912069, -0.074265175, 0.07174016, ..., 0.015087196,\n",
" 0.04001, -0.09065383]],\n",
"\n",
" [[ 0.08409429, 0.011806107, -0.057546705, ..., -0.07144162,\n",
" -0.06050903, -0.09788776],\n",
" [ 0.008168284, -0.098602556, 0.01673126, ..., -0.07899382,\n",
" -0.022606676, -0.094472244],\n",
" [ 0.03803763, 0.018108342, -0.034943487, ..., 0.019909251,\n",
" 0.045974966, -0.03907272],\n",
" ...,\n",
" [ 0.0025116932, 0.060963415, -0.026322521, ..., -0.031971294,\n",
" -0.086735025, -0.022060279],\n",
" [ 0.0022489573, 0.001876926, 0.060325194, ..., -0.07890768,\n",
" -0.033355605, -0.0046437704],\n",
" [ 0.026438482, -0.062139574, 0.09474498, ..., -0.056615695,\n",
" -0.07886624, 0.019515274]],\n",
"\n",
" [[ 0.011165211, 0.060080383, -0.0033391342, ..., -0.08841992,\n",
" -0.022092575, -0.08625193],\n",
" [ 0.04676118, -0.024700986, -0.10204306, ..., 0.08809254,\n",
" -0.09478269, -0.02705574],\n",
" [ 0.081815034, -0.095753536, 0.036111828, ..., 0.09795921,\n",
" 0.024481596, 0.017769763],\n",
" ...,\n",
" [ 0.06882793, -0.08031209, -0.04029591, ..., 0.025870036,\n",
" -0.036637615, -0.07678011],\n",
" [ -0.025510862, 0.011212574, 0.06929992, ..., 0.019792588,\n",
" 0.07981093, 0.02489969],\n",
" [ -0.010198569, -0.06625665, -0.04294954, ..., 0.08054648,\n",
" 0.07697243, -0.073409334]]],\n",
"\n",
"\n",
" [[[ -0.066811815, 0.07504789, -0.053261984, ..., -0.057482608,\n",
" -0.09967862, -0.0639915],\n",
" [ -0.004402495, -0.045216735, -0.024773225, ..., 0.02784491,\n",
" -0.05492426, 0.023159243],\n",
" [ 0.05595851, -0.058878656, -0.099980965, ..., 0.0862399,\n",
" -0.01394691, 0.028650684],\n",
" ...,\n",
" [ -0.09768397, 0.06852244, -0.05320396, ..., -0.09602436,\n",
" 0.05324015, 0.07039547],\n",
" [ -0.10183519, 0.0028122547, 0.0385382, ..., 0.049593173,\n",
" 0.05941835, 0.09321346],\n",
" [ 0.09914078, 0.0593509, 0.09464508, ..., 0.0037791685,\n",
" -0.018836599, 0.0011615005]],\n",
"\n",
" [[ -0.025317572, 0.03972971, -0.002751928, ..., -0.039899305,\n",
" -0.056581814, 0.032388594],\n",
" [ 0.05887277, 0.064348996, 0.08291596, ..., 0.00061001285,\n",
" -0.08353224, -0.10177642],\n",
" [ -0.07323522, 0.00036965648, -0.059816476, ..., 0.042604983,\n",
" 0.06211981, 0.08396423],\n",
" ...,\n",
" [ 0.03506517, -0.05203246, 0.1015657, ..., -0.06819945,\n",
" 0.021948265, -0.046720054],\n",
" [ 0.08863942, -0.030220589, -0.0003557008, ..., 0.098877855,\n",
" -0.03423449, -0.09523525],\n",
" [ 0.10090197, 0.0022126061, 0.03584393, ..., 0.023453088,\n",
" -0.06427737, -0.09073686]],\n",
"\n",
" [[ -0.010658932, 0.06547614, 0.049966265, ..., -0.009712694,\n",
" -0.06212383, 0.09924315],\n",
" [ 0.07329381, 0.0076103345, 0.0871823, ..., -0.052907135,\n",
" 0.013187118, -0.036855508],\n",
" [ -0.08116104, -0.07086289, -0.08300694, ..., 0.04799688,\n",
" 0.06765074, -0.0036866188],\n",
" ...,\n",
" [ 0.07205528, -0.08466887, 0.0047202986, ..., -0.010717797,\n",
" 0.015488021, -0.0052113165],\n",
" [ 0.05510438, -0.09939348, -0.038588293, ..., 0.01323319,\n",
" 0.08044413, 0.08345557],\n",
" [ 0.055802476, 0.022790069, -0.0076559125, ..., 0.092153735,\n",
" -0.012247928, 0.080904834]]],\n",
"\n",
"\n",
" [[[ -0.0075997873, 0.036392085, -0.021613512, ..., -0.095767185,\n",
" 0.070905976, 0.07977558],\n",
" [ 0.03236115, 0.015180257, -0.055220503, ..., 0.076504014,\n",
" -0.012925294, -0.0926773],\n",
" [ 0.08096433, -0.052879732, -0.0055160434, ..., -0.09610528,\n",
" -0.01930173, -0.09424787],\n",
" ...,\n",
" [ -0.025018813, -0.0041011376, -0.072821036, ..., 0.04800654,\n",
" 0.047320075, -0.009741413],\n",
" [ 0.051283006, -0.03166412, 0.009400386, ..., 0.098605365,\n",
" -0.021272687, 0.05212029],\n",
" [ -0.08094821, 0.0011651529, -0.05162621, ..., -0.08221919,\n",
" 0.09136616, -0.044881403]],\n",
"\n",
" [[ -0.057177182, -0.022543265, 0.07522284, ..., -0.08432483,\n",
" 0.037636332, -0.00950684],\n",
" [ -0.050242662, 0.024520218, -0.08355193, ..., -0.035970602,\n",
" 0.008780832, 0.08632035],\n",
" [ 0.068230286, 0.044917896, -0.033173956, ..., -0.08574556,\n",
" 0.030460894, -0.10101002],\n",
" ...,\n",
" [ -0.068806976, -0.027759785, 0.038607046, ..., -0.09060543,\n",
" 0.020329773, 0.035945177],\n",
" [ -0.093155935, -0.08913377, 0.090353586, ..., 0.08989089,\n",
" 0.05387269, -0.06835859],\n",
" [ 0.0030377957, 0.054264765, 0.09054388, ..., 0.054897998,\n",
" -0.049777128, -0.03707731]],\n",
"\n",
" [[ 0.083697066, -0.01751503, 0.046470523, ..., 0.058347527,\n",
" -0.01309286, 0.099721275],\n",
" [ -0.015801556, -0.06642852, 0.05422459, ..., -0.081402384,\n",
" 0.05578808, -0.044754002],\n",
" [ -0.054381225, 0.053547364, 0.015037109, ..., -0.06577842,\n",
" 0.05137022, -0.0689766],\n",
" ...,\n",
" [ -0.051020257, -0.078633, 0.065521754, ..., 0.06585311,\n",
" -0.06573246, 0.045867123],\n",
" [ -0.007821884, 0.0028559226, 0.06107179, ..., -0.009273368,\n",
" -0.04824983, -0.05269892],\n",
" [ 0.0702503, -0.04471223, -0.051270016, ..., -0.047570594,\n",
" 0.061582588, -0.03250471]]]], bias: [ -0.51170194, -0.5147447, 0.021338722, 0.39208293, 0.0070306007, -0.44645134,\n",
" 0.0010774093, -0.37313432, 0.004633158, -0.41073337, 0.105475634, 0.105316125,\n",
" -0.023672076, 0.0039629624, -0.5212489, -0.2479841, 0.002274726, -0.0003018842,\n",
" -0.48145232, -0.0031293947, -0.046066083, -0.0008267593, 0.0063218884, -0.42787978,\n",
" 0.2438646, -0.48036838, 0.1470286, 0.48952192, 0.0028888942, -0.4580909,\n",
" 0.12944746, 0.44393468], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), up2: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.008369192, -0.032951564, -0.029715048, ..., -0.001668952,\n",
" 0.087360986, -0.15299031],\n",
" [ 0.015626345, 0.08305436, -0.007669445, ..., 0.08114818,\n",
" 0.115461335, 0.271097],\n",
" [ -0.017220711, -0.019276984, -0.026591353, ..., -0.100278035,\n",
" 0.14704251, 0.040503442],\n",
" ...,\n",
" [ -0.079396605, 0.05496402, 0.0847301, ..., 0.013727362,\n",
" -0.008380363, 0.031089853],\n",
" [ 0.07105249, -0.091006495, -0.033277627, ..., -0.08419246,\n",
" -0.3858273, -0.42698827],\n",
" [ 0.014947576, -0.059605114, -0.033390075, ..., -0.10725521,\n",
" -0.41542533, -0.59406084]],\n",
"\n",
" [[ 0.04175199, -0.0002397569, 0.050891247, ..., -0.040611856,\n",
" -0.1310993, -0.104447015],\n",
" [ 0.015520519, 0.006670397, 0.06609448, ..., -0.023059843,\n",
" 0.20470218, 0.18164572],\n",
" [ 0.045598056, 0.11971251, -0.10214249, ..., -0.0358733,\n",
" -0.007251822, 0.044744883],\n",
" ...,\n",
" [ 0.0758979, -0.089482576, -0.0925174, ..., -0.090306506,\n",
" 0.017135391, -0.06833658],\n",
" [ -0.032281607, 0.11248533, -0.00023188828, ..., -0.082155086,\n",
" -0.34827217, -0.3548624],\n",
" [ -0.055294205, -0.103767134, -0.043513514, ..., 0.03768848,\n",
" -0.478346, -0.46387956]],\n",
"\n",
" [[ 0.038928527, 0.046519384, -0.021109695, ..., -0.0131994095,\n",
" 0.03305533, -0.12215267],\n",
" [ -0.07488716, 0.09678524, -0.10890654, ..., 0.017970813,\n",
" 0.116827026, 0.124847256],\n",
" [ -0.034838554, 0.058826998, 0.06578517, ..., 0.07376819,\n",
" -0.014739388, 0.05856833],\n",
" ...,\n",
" [ 0.09745868, -0.09448688, 0.0071551907, ..., 0.03943104,\n",
" 0.04842426, -0.0115385],\n",
" [ 0.02796003, 0.06349177, 0.10542029, ..., -0.06947245,\n",
" -0.3150691, -0.28544235],\n",
" [ -0.037032723, -0.06861265, -0.11345476, ..., -0.11736531,\n",
" -0.5851062, -0.45080775]]],\n",
"\n",
"\n",
" [[[ -0.07108222, -0.045365695, 0.07941821, ..., -0.098857366,\n",
" 0.023014842, 0.06374415],\n",
" [ -0.048672494, -0.03832373, -0.07390097, ..., 0.04136042,\n",
" 0.19080079, 0.26238364],\n",
" [ -0.06766617, -0.00610788, -0.059078258, ..., 0.06181495,\n",
" 0.19617282, 0.16877967],\n",
" ...,\n",
" [ 0.113079354, 0.002419187, -0.017876199, ..., -0.031711582,\n",
" 0.10781182, -0.09720447],\n",
" [ 0.045667738, -0.013229914, -0.05335904, ..., -0.07253771,\n",
" -0.30051216, -0.32432324],\n",
" [ 0.12518382, -0.009114516, -0.03919524, ..., 0.0027495332,\n",
" -0.5278875, -0.48973972]],\n",
"\n",
" [[ 0.10035588, 0.10047272, 0.10350334, ..., 0.03153847,\n",
" 0.010934086, -0.13861357],\n",
" [ 0.057643685, 0.029710758, 0.052537534, ..., 0.090981625,\n",
" 0.14047325, 0.13904935],\n",
" [ -0.008020663, -0.057976156, -0.052823313, ..., -0.01211795,\n",
" 0.037017956, 0.232941],\n",
" ...,\n",
" [ -0.014151178, -0.086755596, 0.10094051, ..., -0.1149383,\n",
" 0.02945408, 0.047024824],\n",
" [ 0.1454136, -0.020136908, -0.06969599, ..., 0.08194789,\n",
" -0.38650638, -0.44650528],\n",
" [ 0.21181424, 0.09544126, -0.025888, ..., -0.10039988,\n",
" -0.49003646, -0.48946717]],\n",
"\n",
" [[ 0.10745437, 0.10879285, 0.047896713, ..., -0.0606529,\n",
" -0.013365333, -0.0359344],\n",
" [ 0.07118874, 0.059493694, -0.037400994, ..., 0.08615346,\n",
" 0.10476921, 0.14833315],\n",
" [ -0.018125098, 0.11862783, -0.10814157, ..., 0.08633038,\n",
" 0.14630902, 0.060078207],\n",
" ...,\n",
" [ -0.046805866, -0.087458625, 0.041821517, ..., -0.09266006,\n",
" -0.10756749, -0.06694062],\n",
" [ 0.06675985, -0.05376485, 0.079739116, ..., 0.03800552,\n",
" -0.26684064, -0.39339006],\n",
" [ 0.11531486, -0.038913503, 0.022626512, ..., -0.018068103,\n",
" -0.61668277, -0.4815786]]],\n",
"\n",
"\n",
" [[[ -0.067689076, 0.07991235, -0.0020394712, ..., -0.0988116,\n",
" -0.13459991, -0.12405517],\n",
" [ -0.034580495, -0.096363336, 0.02469648, ..., -0.05420053,\n",
" 0.24130054, 0.05425285],\n",
" [ 0.01003706, -0.04346365, 0.027846748, ..., -0.03228524,\n",
" 0.036187522, 0.070196815],\n",
" ...,\n",
" [ 0.09383312, -0.044039775, -0.020034188, ..., 0.035840172,\n",
" 0.046912048, -0.10769627],\n",
" [ 0.08432622, -0.06713332, -0.031674147, ..., 0.09807065,\n",
" -0.20095973, -0.34275666],\n",
" [ 0.02232673, 0.00839159, -0.020243479, ..., -0.033441395,\n",
" -0.5768269, -0.435543]],\n",
"\n",
" [[ -0.09904662, 0.005143065, 0.003805093, ..., -0.077523455,\n",
" 0.029677354, 0.044963416],\n",
" [ 0.058521673, -0.048717357, 0.10168718, ..., -0.09366182,\n",
" 0.1551587, 0.20193192],\n",
" [ 0.105710596, 0.047898665, -0.012610523, ..., -0.0285049,\n",
" 0.019467797, 0.11011135],\n",
" ...,\n",
" [ 0.11577626, -0.10474024, -0.0819827, ..., 0.06862568,\n",
" 0.07353445, 0.015269669],\n",
" [ -0.008572724, -0.096629016, 0.03505293, ..., -0.025521586,\n",
" -0.2515462, -0.24754265],\n",
" [ 0.15672185, 0.06085466, -0.028878035, ..., -0.07429177,\n",
" -0.5776868, -0.43619463]],\n",
"\n",
" [[ 0.11929856, -0.061718743, 0.044839017, ..., 0.04622267,\n",
" 0.018413577, -0.072367474],\n",
" [ 0.1030197, 0.044582374, -0.1129905, ..., 0.10289942,\n",
" 0.16168165, 0.1037114],\n",
" [ -0.078223184, -0.05280371, -0.036312304, ..., -0.03638797,\n",
" 0.04666597, 0.07971707],\n",
" ...,\n",
" [ -0.017281428, -0.026815413, -0.03879251, ..., 0.061464813,\n",
" -0.08794937, 0.012746931],\n",
" [ 0.16337116, 0.059015732, -0.11158072, ..., -0.059204962,\n",
" -0.28943014, -0.4809544],\n",
" [ 0.092870496, -0.014939524, -0.01931195, ..., -0.11037772,\n",
" -0.5991892, -0.515501]]]], bias: [ 0.35422316, -0.004748756, -0.010507552, -0.56191564, -0.024111286, 0.47524202,\n",
" -0.5257827, 0.31552175, -0.0922236, -0.3261122, -0.5576769, -0.4923184,\n",
" -0.5432772, 0.0061703003, -0.5883855, -0.59260166], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.002521807, -0.17366332, -0.025981352, ..., 0.06646399,\n",
" 0.012082948, 0.1173076],\n",
" [ 0.03838359, -0.10538955, 0.031831097, ..., -0.075567596,\n",
" -0.1141349, -0.09971008],\n",
" [ 0.10858104, 0.14363377, 0.13684583, ..., -0.05639812,\n",
" -0.07252273, -0.056191772],\n",
" ...,\n",
" [ 0.10758601, -0.092314884, 0.038469255, ..., -0.03401151,\n",
" -0.12273365, 0.08788641],\n",
" [ 0.057258483, -0.51036304, -0.40191117, ..., 0.08562447,\n",
" -0.13648678, -0.013379573],\n",
" [ 0.27530494, -0.48527905, -0.48862004, ..., -0.12811933,\n",
" -0.08062273, -0.45994318]],\n",
"\n",
" [[ 0.047623307, 0.09693254, 0.10230857, ..., 0.02192949,\n",
" -0.06546076, 0.034352563],\n",
" [ -0.08680769, 0.03981954, 0.09512523, ..., 0.03681263,\n",
" 0.056021556, -0.038588945],\n",
" [ 0.020333724, 0.021421414, 0.010549909, ..., -0.007881408,\n",
" -0.14060645, -0.13168986],\n",
" ...,\n",
" [ -0.117594264, -0.11793409, 0.119344145, ..., -0.11416939,\n",
" -0.00097219227, 0.007999442],\n",
" [ 0.085154265, -0.5523341, -0.30305827, ..., -0.05800937,\n",
" 0.10275002, -0.19482061],\n",
" [ 0.32795888, -0.5810526, -0.5611321, ..., -0.054742463,\n",
" -0.20526907, -0.30200195]],\n",
"\n",
" [[ -0.091012135, 0.024237406, -0.101988256, ..., 0.14265181,\n",
" 0.10055076, -0.016038802],\n",
" [ -0.014807771, 0.038647886, 0.10131209, ..., 0.0012638917,\n",
" 0.042022247, -0.045309775],\n",
" [ -0.06374101, -0.02299176, 0.13681915, ..., 0.073049344,\n",
" -0.045060974, -0.06777056],\n",
" ...,\n",
" [ 0.050502002, -0.0029000812, 0.0052814665, ..., 0.14109273,\n",
" 0.08972805, 0.13693435],\n",
" [ 0.119319744, -0.43851498, -0.27064282, ..., -0.033545963,\n",
" 0.09454624, -0.028125025],\n",
" [ 0.30857825, -0.43406755, -0.45214844, ..., -0.009036138,\n",
" -0.12610206, -0.4460226]]],\n",
"\n",
"\n",
" [[[ 0.039579686, -0.00951864, 0.08429265, ..., 0.13801101,\n",
" -0.11467697, 0.119460255],\n",
" [ 0.061848763, 0.058038957, 0.04082332, ..., 0.09416525,\n",
" 0.07371402, 0.047839966],\n",
" [ 0.118091345, 0.12556815, -0.089420795, ..., -0.111321874,\n",
" 0.072017044, 0.047229886],\n",
" ...,\n",
" [ -0.113058, 0.08609696, 0.025287824, ..., 0.024647363,\n",
" -0.12465791, -0.12160642],\n",
" [ 0.122567885, -0.4305401, -0.4565638, ..., 0.053448476,\n",
" 0.03136018, -0.19071129],\n",
" [ 0.52226955, -0.61350447, -0.54253626, ..., 0.0053574964,\n",
" -0.10800096, -0.4543829]],\n",
"\n",
" [[ 0.045461845, -0.18969251, 0.07058577, ..., -0.064094424,\n",
" -0.103925414, 0.08921299],\n",
" [ -0.15014187, 0.067698695, 0.033842888, ..., -0.10230434,\n",
" -0.045535706, -0.011280601],\n",
" [ 0.07725908, 0.13236746, -0.024327619, ..., 0.071833365,\n",
" 0.061258916, -0.019292552],\n",
" ...,\n",
" [ -0.09139672, -0.117358714, 0.06809475, ..., 0.11605162,\n",
" -0.11544574, 0.06926771],\n",
" [ 0.3071028, -0.4854009, -0.39058116, ..., 0.036000483,\n",
" -0.12950101, -0.025320228],\n",
" [ 0.548157, -0.7060801, -0.61860436, ..., -0.07768104,\n",
" 0.036612116, -0.2813078]],\n",
"\n",
" [[ 0.022074947, -0.14210215, -0.14632343, ..., -0.1177961,\n",
" 0.056388974, 0.028264942],\n",
" [ 0.012867837, 0.11273806, 0.13250288, ..., -0.113429725,\n",
" -0.12333079, -0.10786918],\n",
" [ -0.090187564, 0.008422318, 0.12931444, ..., 0.027027017,\n",
" -0.13469517, 0.07060233],\n",
" ...,\n",
" [ 0.123889856, 0.049040455, -0.084993966, ..., -0.005217306,\n",
" -0.016020263, 0.027544715],\n",
" [ 0.22739443, -0.4153067, -0.4109011, ..., 0.06942751,\n",
" -0.11717623, -0.18040027],\n",
" [ 0.30076042, -0.45588443, -0.57724017, ..., -0.08042815,\n",
" -0.19919315, -0.24270181]]],\n",
"\n",
"\n",
" [[[ 0.15065627, -0.096665226, -0.13778622, ..., -0.063832544,\n",
" 0.09305198, -0.14240879],\n",
" [ 0.07378309, 0.047162477, 0.02947048, ..., 0.06577941,\n",
" -0.0018824299, -0.05896851],\n",
" [ -0.048137557, -0.1377153, 0.040131472, ..., -0.07175062,\n",
" -0.114086725, 0.08418477],\n",
" ...,\n",
" [ 0.005795939, -0.114594266, 0.00060884916, ..., -0.09656549,\n",
" -0.046788227, 0.03332268],\n",
" [ 0.24701144, -0.4013772, -0.4183092, ..., -0.06018882,\n",
" -0.10918714, -0.16199304],\n",
" [ 0.534073, -0.6288928, -0.40861848, ..., -0.013527041,\n",
" -0.062025353, -0.23809478]],\n",
"\n",
" [[ -0.101147965, -0.07091044, -0.034272872, ..., 0.10898704,\n",
" -0.14651714, 0.06389886],\n",
" [ 0.0018490363, 0.086649634, 0.08782622, ..., -0.05468467,\n",
" -0.023702443, 0.09594077],\n",
" [ 0.07968317, 0.009489384, -0.041147508, ..., -0.10988323,\n",
" 0.12107876, 0.1438361],\n",
" ...,\n",
" [ -0.08927442, 0.065071285, -0.10382171, ..., 0.015044938,\n",
" -0.016954195, -0.041653465],\n",
" [ 0.28594422, -0.43565384, -0.30192786, ..., 0.027648978,\n",
" -0.036085613, -0.033914432],\n",
" [ 0.53464365, -0.53269583, -0.42312664, ..., -0.090128854,\n",
" -0.11829483, -0.36398593]],\n",
"\n",
" [[ -0.08201566, 0.049535103, 0.05323555, ..., 0.043504424,\n",
" -0.04460363, -0.014380538],\n",
" [ -0.02554477, 0.11797345, 0.120458394, ..., -0.052152622,\n",
" -0.030474598, 0.026565172],\n",
" [ -0.048089087, -0.13189544, 0.033379182, ..., 0.007043509,\n",
" 0.037601035, 0.11292821],\n",
" ...,\n",
" [ 0.055346817, -0.08341919, 0.011419729, ..., -0.0861946,\n",
" -0.0994308, 0.059076156],\n",
" [ 0.084994264, -0.59952694, -0.3292279, ..., 0.020260366,\n",
" -0.046189737, -0.24457219],\n",
" [ 0.47250387, -0.4847717, -0.4803702, ..., -0.16934891,\n",
" -0.01288892, -0.39816523]]]], bias: [ 0.5229238, -0.59504867, -0.58629227, 0.2768706, 0.011765374, 0.11363231,\n",
" -0.40805697, -0.0023725284, -0.07547882, -0.06940013, -0.59407586, -0.5922613,\n",
" 0.5310184, -0.24512391, -0.3791667, -0.5070855], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), up3: __lldb_expr_135.DownBlock(conv1: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.1789938, -0.6621623, -0.032682497, ..., 0.6180409, -0.67595446,\n",
" 0.6419512],\n",
" [ -0.16635291, 0.35013852, 0.18794993, ..., -0.40789023, 0.54044247,\n",
" -0.41691253],\n",
" [ 0.20108312, -0.47336707, 0.15107547, ..., 0.60532135, -0.2982416,\n",
" 0.6543139],\n",
" ...,\n",
" [ -0.24850412, 0.13869095, -0.14948028, ..., -0.16506939, 0.21458665,\n",
" -0.62733227],\n",
" [ 0.061654136, 0.15443006, 0.141265, ..., 0.099176936, -0.023868108,\n",
" 0.028586457],\n",
" [ -0.47564256, 0.7610211, 0.34772587, ..., -0.6582227, 0.7465157,\n",
" -0.54046315]],\n",
"\n",
" [[ 0.32053152, -0.4327373, -0.22790727, ..., 0.6404213, -0.59325224,\n",
" 0.47048092],\n",
" [ -0.29032752, 0.33823392, 0.21282502, ..., -0.4311247, 0.17833585,\n",
" -0.502629],\n",
" [ 0.01152353, -0.0605207, 0.1388402, ..., 0.3238041, -0.5015741,\n",
" 0.3598744],\n",
" ...,\n",
" [ -0.026680613, 0.09005023, 0.031488396, ..., -0.21318874, 0.37161267,\n",
" -0.4681261],\n",
" [ -0.036899514, -0.13172649, 0.11963926, ..., 0.13977812, -0.10716259,\n",
" -0.01675196],\n",
" [ -0.5526201, 0.44182938, 0.22494487, ..., -0.72436553, 0.65930456,\n",
" -0.4515477]],\n",
"\n",
" [[ 0.10888205, -0.6928004, 0.015432225, ..., 0.5343088, -0.39896837,\n",
" 0.43025652],\n",
" [ -0.08741982, 0.62192845, 0.06399592, ..., -0.46350092, 0.45186296,\n",
" -0.637294],\n",
" [ -0.03865639, -0.45397604, 0.03937399, ..., 0.5071068, -0.32028866,\n",
" 0.6893196],\n",
" ...,\n",
" [ -0.10785863, 0.29920876, -0.1360522, ..., -0.27894735, 0.2313913,\n",
" -0.3648559],\n",
" [ 0.10809425, 0.043467235, 0.095526665, ..., -0.16081652, 0.077952914,\n",
" 0.19889663],\n",
" [ -0.57314277, 0.46728826, 0.15474752, ..., -0.7130825, 0.69408876,\n",
" -0.69564706]]],\n",
"\n",
"\n",
" [[[ 0.3036388, -0.41004634, 0.06097774, ..., 0.63150954, -0.4863057,\n",
" 0.6624655],\n",
" [ -0.09224402, 0.46612567, 0.04641, ..., 0.3058021, 0.57130367,\n",
" -0.56897205],\n",
" [ 0.050797608, -0.08295059, 0.018665925, ..., -0.06879631, -0.42926198,\n",
" 0.32285634],\n",
" ...,\n",
" [ -0.1910982, 0.0010764165, 0.08600197, ..., -0.25404736, 0.38321158,\n",
" -0.5866758],\n",
" [ -0.09677737, -0.0845189, 0.072127886, ..., -0.02648523, 0.038742974,\n",
" 0.042370647],\n",
" [ -0.59714645, 0.68058914, 0.013646363, ..., -0.68794245, 0.65822357,\n",
" -0.5752859]],\n",
"\n",
" [[ 0.109736204, -0.6518228, 0.05426873, ..., 0.65032136, -0.4587369,\n",
" 0.701766],\n",
" [ -0.08610986, 0.5666803, -0.079351015, ..., -0.4228514, 0.4262313,\n",
" -0.45107844],\n",
" [ 0.14821184, -0.38346016, -0.060080938, ..., 0.39951232, -0.683224,\n",
" 0.59423196],\n",
" ...,\n",
" [ -0.2000047, -0.09638171, -0.14557715, ..., -0.3860538, 0.5532208,\n",
" -0.5795289],\n",
" [ -0.1403857, -0.04057865, 0.1406087, ..., 0.14876446, 0.11889331,\n",
" -0.03983496],\n",
" [ -0.54234314, 0.66705424, -0.14285979, ..., -0.65184784, 0.5936452,\n",
" -0.524251]],\n",
"\n",
" [[ 0.09299182, -0.42194358, -0.022207577, ..., 0.45948416, -0.6845487,\n",
" 0.46421725],\n",
" [ 0.04076201, 0.38157955, 0.10663705, ..., 0.33170366, 0.59005183,\n",
" -0.6222465],\n",
" [ -0.13162003, -0.010187824, 0.032548897, ..., -0.052013647, -0.43291363,\n",
" 0.42296115],\n",
" ...,\n",
" [ -0.06851875, 0.046362467, 0.047259413, ..., -0.23644626, 0.34743878,\n",
" -0.54373294],\n",
" [ 0.07944806, 0.022416463, -0.094025545, ..., 0.060867846, 0.15178002,\n",
" -0.041622512],\n",
" [ -0.48272696, 0.6403966, 0.007912655, ..., -0.48940474, 0.7625947,\n",
" -0.6356684]]],\n",
"\n",
"\n",
" [[[ 0.2566004, -0.42075932, -0.16454251, ..., 0.6262456, -0.6357755,\n",
" 0.67191994],\n",
" [ -0.1311169, 0.3614704, 0.017364873, ..., -0.40366203, 0.49912938,\n",
" -0.69334567],\n",
" [ 0.019942634, -0.5954254, 0.027304992, ..., 0.6379842, -0.39025143,\n",
" 0.4024971],\n",
" ...,\n",
" [ -0.14268343, 0.2632292, -0.121917404, ..., -0.36057144, 0.44322383,\n",
" -0.395438],\n",
" [ -0.120995715, -0.14023544, 0.13240851, ..., -0.047151197, -0.048426528,\n",
" 0.011929663],\n",
" [ -0.6929905, 0.56536454, -0.29381886, ..., -0.5286796, 0.49805632,\n",
" -0.5857327]],\n",
"\n",
" [[ 0.2148204, -0.5096493, 0.1387883, ..., 0.44158715, -0.6090987,\n",
" 0.72998303],\n",
" [ 0.020661322, 0.39752322, 0.052075922, ..., -0.6957541, 0.17827284,\n",
" -0.6608191],\n",
" [ -0.016381761, -0.22244182, 0.12771265, ..., 0.38782328, -0.39544025,\n",
" 0.52195716],\n",
" ...,\n",
" [ -0.0284425, 0.1617271, 0.00045999588, ..., -0.31821728, 0.5453292,\n",
" -0.3129792],\n",
" [ -0.12103545, 0.14212771, 0.16078855, ..., 0.063430496, -0.045518257,\n",
" 0.14013113],\n",
" [ -0.4729381, 0.6378878, -0.40512222, ..., -0.48052824, 0.44676423,\n",
" -0.5218458]],\n",
"\n",
" [[ 0.10904745, -0.38310444, -0.028788643, ..., 0.46136567, -0.47212678,\n",
" 0.6066384],\n",
" [ -0.22360039, 0.66805434, -0.061275795, ..., -0.45052072, 0.31041032,\n",
" -0.56691724],\n",
" [ 0.18578534, -0.46169457, -0.0019270655, ..., 0.38077214, -0.402695,\n",
" 0.44438386],\n",
" ...,\n",
" [ -0.094212055, 0.005864614, 0.02921795, ..., -0.42501792, 0.2923354,\n",
" -0.62225187],\n",
" [ 0.11182639, 0.036753077, 0.06126939, ..., -0.028429667, 0.026084088,\n",
" 0.13385601],\n",
" [ -0.6297255, 0.6970994, -0.14650424, ..., -0.5471705, 0.6337528,\n",
" -0.6085714]]]], bias: [ -0.5668264, 0.59750575, 0.028587682, 0.59966356, -0.5999335, -0.598446, 0.5998608,\n",
" -0.5995955], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), conv2: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ -0.17046301, -0.18876344, -0.0076256082, -0.3543252, -0.015940405, -0.14482643,\n",
" -0.07373113, -0.095183566],\n",
" [ -0.68185836, -0.7696608, -0.09782457, -0.6209786, -0.66427207, -0.044097673,\n",
" -0.45775175, -0.5546013],\n",
" [ -0.07340529, 0.056357067, 0.042206064, -0.12134898, -0.17089626, 0.16546166,\n",
" -0.12375308, -0.13043058],\n",
" [ -0.54286575, -0.6937073, -0.24584082, -0.67520356, -0.5168184, -0.029081987,\n",
" -0.50140923, -0.40737447],\n",
" [ -0.41458464, -0.42680907, -0.16629359, -0.5747659, -0.4461672, -0.18505351,\n",
" -0.4140036, -0.48022756],\n",
" [ -0.6649515, -0.5326211, 0.0455219, -0.48752943, -0.4436567, -0.27535322,\n",
" -0.4864423, -0.59217465],\n",
" [ -0.7236942, -0.43587148, -0.14960471, -0.772923, -0.47578192, -0.039654803,\n",
" -0.4686004, -0.7679014],\n",
" [ -0.53300405, -0.6177244, -0.41327316, -0.44108394, -0.68512905, -0.10023497,\n",
" -0.4781599, -0.56985873]],\n",
"\n",
" [[ -0.09089954, -0.13145158, -0.18383634, -0.36734858, -0.26336798, 0.11286912,\n",
" 0.034862835, -0.08714067],\n",
" [ -0.7064186, -0.6079504, -0.26720834, -0.78408885, -0.5199521, -0.123535514,\n",
" -0.27875605, -0.38745925],\n",
" [ -0.06972531, -0.12701334, 0.03458223, -0.14882554, -0.07050487, 0.10681294,\n",
" -0.2369306, -0.092976764],\n",
" [ -0.59914356, -0.6848709, -0.18408658, -0.52489483, -0.78862906, -0.16133864,\n",
" -0.43199608, -0.46511483],\n",
" [ -0.790703, -0.6123959, -0.39249733, -0.44604504, -0.47019207, 0.06301466,\n",
" -0.5537203, -0.4559603],\n",
" [ -0.41576356, -0.6679108, -0.12386176, -0.39424112, -0.41929668, -0.17598666,\n",
" -0.72731686, -0.41382256],\n",
" [ -0.71062154, -0.50466996, -0.3360404, -0.7294684, -0.4475428, 0.22915643,\n",
" 0.22960971, -0.60552764],\n",
" [ -0.6830921, -0.7668391, -0.077076524, -0.6209917, -0.4557694, -0.18336233,\n",
" -0.29366904, -0.66270715]],\n",
"\n",
" [[ -0.11699393, -0.08307035, -0.080533415, -0.2794237, -0.3049614, 0.03762212,\n",
" 0.15523833, 0.07632481],\n",
" [ -0.48976436, -0.41800264, -0.029503163, -0.5372366, -0.7187026, -0.17838182,\n",
" 0.20617376, -0.7485159],\n",
" [ -0.0206318, -0.26724023, 0.043158337, 0.024165547, -0.15988947, 0.049054053,\n",
" -0.07926506, -0.18228954],\n",
" [ -0.46406713, -0.7312873, -0.26213005, -0.7042949, -0.67665464, -0.17798077,\n",
" -0.123516954, -0.5649946],\n",
" [ -0.50755095, -0.69872874, -0.18405077, -0.5673648, -0.45813942, -0.2506667,\n",
" 0.18670934, -0.49076816],\n",
" [ -0.59360594, -0.46496996, -0.2419995, -0.5460177, -0.6184303, -0.008221995,\n",
" -0.40424567, -0.4726766],\n",
" [ -0.75452936, -0.5697428, -0.23757516, -0.77031636, -0.5164937, -0.05419482,\n",
" -0.3606374, -0.4506207],\n",
" [ -0.44662923, -0.41016105, -0.024506768, -0.6264842, -0.64450425, -0.10283681,\n",
" -0.45122072, -0.54792166]]],\n",
"\n",
"\n",
" [[[ -0.12297015, -0.14563796, -0.20250006, -0.3277132, -0.29618108, -0.08988044,\n",
" 0.13051464, -0.17571086],\n",
" [ -0.5657715, -0.776054, -0.21494438, -0.6165936, -0.49360502, -0.24274601,\n",
" -0.41254264, -0.47773895],\n",
" [ -0.14000645, 0.10405997, -0.12680347, 0.11529057, -0.24994373, -0.07566923,\n",
" -0.16246782, -0.104888454],\n",
" [ -0.60123056, -0.5664698, -0.042740222, -0.71158504, -0.52698755, -0.17608307,\n",
" -0.6335903, -0.59726197],\n",
" [ -0.5744, -0.58130485, -0.26489407, -0.45020437, -0.5264913, -0.20523797,\n",
" -0.5445568, -0.60966253],\n",
" [ -0.49800184, -0.75032943, -0.19730726, -0.50995183, -0.5352423, -0.16712661,\n",
" -0.55921394, -0.7144859],\n",
" [ -0.7726401, -0.42478138, -0.1240583, -0.680594, -0.54232883, -0.18579696,\n",
" -0.44528615, -0.66757756],\n",
" [ -0.67879856, -0.5913078, -0.007584338, -0.6024812, -0.4858805, 0.08177036,\n",
" -0.67512727, -0.5944422]],\n",
"\n",
" [[ -0.18029548, -0.28370634, 0.06393636, -0.0059243254, -0.11018541, -0.053567387,\n",
" 0.25759792, -0.18375789],\n",
" [ -0.4508114, -0.58778435, -0.18833129, -0.68084484, -0.6424148, -0.19194211,\n",
" -0.35083413, -0.4686908],\n",
" [ -0.235856, 0.09201011, -0.13344745, -0.046582133, -0.15288301, -0.090753354,\n",
" -0.01614032, -0.18773964],\n",
" [ -0.41183513, -0.6109236, -0.16202456, -0.6650224, -0.7922677, -0.18564212,\n",
" -0.32831404, -0.48747286],\n",
" [ -0.7426074, -0.5122465, -0.26905084, -0.4986594, -0.7159099, -0.17038396,\n",
" -0.45723674, -0.53559124],\n",
" [ -0.4543521, -0.62886333, -0.17813008, -0.7950695, -0.57665104, -0.13463189,\n",
" -0.46091357, -0.4898351],\n",
" [ -0.50050974, -0.48984078, -0.21781152, -0.5946755, -0.6007654, -0.041757595,\n",
" -0.5435956, -0.50931096],\n",
" [ -0.74324405, -0.51125324, -0.17043185, -0.70842075, -0.5687638, 0.08399256,\n",
" -0.35926196, -0.3976069]],\n",
"\n",
" [[ -0.08533643, -0.035308495, -0.13305824, 0.030066801, 0.023494355, 0.054758154,\n",
" 0.10741617, -0.0631886],\n",
" [ -0.55162233, -0.45618254, 0.0014829698, -0.5340403, -0.7736075, -0.31584728,\n",
" -0.3914356, -0.57785606],\n",
" [ -0.18064603, -0.19205865, -0.0889363, -0.12733337, -0.16815282, -0.12670703,\n",
" -0.04431794, 0.00014751237],\n",
" [ -0.6349731, -0.75657505, -0.2557604, -0.39463723, -0.7529545, -0.15205468,\n",
" -0.33150855, -0.6195047],\n",
" [ -0.666036, -0.64683133, -0.32044557, -0.45874006, -0.44828102, -0.36506453,\n",
" -0.45829016, -0.7889233],\n",
" [ -0.46203148, -0.79843116, 0.08356414, -0.7878387, -0.634863, -0.12766843,\n",
" -0.5224175, -0.48227566],\n",
" [ -0.7971969, -0.678844, -0.07402197, -0.7959708, -0.7087081, 0.10414882,\n",
" 0.05446521, -0.7244024],\n",
" [ -0.5131992, -0.5077553, -0.3280149, -0.4212619, -0.6387491, -0.16022262,\n",
" -0.4879147, -0.41753548]]],\n",
"\n",
"\n",
" [[[ -0.30456063, -0.36755997, 0.13418159, -0.25225842, -0.27334303, 0.13581684,\n",
" 0.073850766, 0.0022856595],\n",
" [ -0.6219541, -0.5974321, -0.010517532, -0.48015383, -0.41297916, 0.012815103,\n",
" -0.6007998, -0.64367443],\n",
" [-0.0003212021, -0.27573502, 0.179737, -0.0700561, -0.23634347, -0.05470987,\n",
" 0.06189437, 0.07570446],\n",
" [ -0.6881062, -0.56507295, -0.23894127, -0.5797854, -0.68626195, -0.22388203,\n",
" -0.6135959, -0.7168366],\n",
" [ -0.43931565, -0.5538603, -0.024503404, -0.49437433, -0.5689756, -0.2789971,\n",
" -0.51172113, -0.46952042],\n",
" [ -0.5253312, -0.79042846, 0.007155722, -0.74669886, -0.6916707, -0.13397212,\n",
" -0.72225326, -0.4668633],\n",
" [ -0.5475396, -0.49798796, -0.09128864, -0.6707562, -0.610614, -0.10279428,\n",
" -0.6329242, -0.67128384],\n",
" [ -0.7640535, -0.50337005, -0.0534847, -0.669452, -0.76086295, -0.026092198,\n",
" -0.34829864, -0.6340991]],\n",
"\n",
" [[ -0.20023137, -0.35657415, -0.04294841, -0.131105, -0.33475885, -0.07680999,\n",
" -0.042484183, -0.1099753],\n",
" [ -0.4709226, -0.6937076, -0.21524599, -0.4495691, -0.7133674, -0.26579893,\n",
" -0.35257018, -0.366364],\n",
" [ 0.07009686, -0.2978177, 0.08947355, -0.20420489, -0.24823228, 0.081377454,\n",
" -0.22252469, -0.23158605],\n",
" [ -0.47785422, -0.46636403, -0.08342407, -0.7159822, -0.5334141, -0.2619021,\n",
" -0.38442147, -0.40043247],\n",
" [ -0.41740543, -0.5541153, -0.25864485, -0.7762816, -0.68582296, -0.33181122,\n",
" -0.40656447, -0.6169701],\n",
" [ -0.7318358, -0.7751427, 0.11056274, -0.3978861, -0.48275056, -0.14438193,\n",
" -0.5905399, -0.38556057],\n",
" [ -0.632263, -0.46922764, -0.2032818, -0.54051113, -0.564175, 0.087790154,\n",
" -0.5691885, -0.6418563],\n",
" [ -0.6022803, -0.53433925, -0.18125172, -0.4900095, -0.68508446, -0.1822735,\n",
" -0.65996504, -0.752446]],\n",
"\n",
" [[ -0.16749851, -0.11678862, -0.18991248, -0.29319906, -0.28403366, 0.1010756,\n",
" -0.05077022, 0.04997378],\n",
" [ -0.6232713, -0.7490872, -0.12378739, -0.73972183, -0.5159671, -0.2407978,\n",
" -0.30859652, -0.7339645],\n",
" [ -0.14668319, -0.12102992, -0.09745442, -0.11916974, -0.0070561506, -0.122066006,\n",
" -0.21638699, -0.0024621617],\n",
" [ -0.50064075, -0.7860907, -0.06429163, -0.7740401, -0.6614576, 0.021570047,\n",
" -0.53156555, -0.37473887],\n",
" [ -0.607312, -0.5424697, -0.16334198, -0.53581303, -0.68601584, -0.11943822,\n",
" -0.6178398, -0.76444435],\n",
" [ -0.40162098, -0.5817203, 0.026613992, -0.50475097, -0.75907147, -0.1641216,\n",
" -0.6178206, -0.560537],\n",
" [ -0.685132, -0.58656687, -0.21825604, -0.43348637, -0.6693542, -0.1917548,\n",
" -0.40290675, -0.74058324],\n",
" [ -0.40191644, -0.41102844, -0.20008798, -0.4407936, -0.6987691, -0.17222436,\n",
" -0.3119998, -0.5634476]]]], bias: [ -0.5999163, -0.5998808, -0.43834186, -0.5997967, -0.59952277, -0.37925735, -0.608477,\n",
" -0.5957449], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)), latestResult: __lldb_expr_135.LatestResult), output: TensorFlow.Conv2D<Swift.Float>(filter: [[[[ 0.54350626, 0.36912644, -0.6387129, -0.5631491],\n",
" [ 0.66139305, 0.44911283, -0.53021055, -0.76226085],\n",
" [ -0.2501363, -0.08318057, 0.021244489, -0.19799529],\n",
" [ 0.37758243, 0.4451282, -0.48947576, -0.5127232],\n",
" [ 0.7845043, 0.48424825, -0.44672057, -0.76299304],\n",
" [ -0.011697962, 0.33718976, 0.07779811, -0.2217781],\n",
" [ 0.4538745, 0.5951113, -0.77038, -0.58726126],\n",
" [ 0.68863076, 0.68405795, -0.4927777, -0.5103857]],\n",
"\n",
" [[ 0.6771741, 0.4177961, -0.38307053, -0.503904],\n",
" [ 0.691365, 0.73282415, -0.38954356, -0.73210907],\n",
" [ 0.08455588, 0.24361292, 0.07988151, -0.06919021],\n",
" [ 0.5721985, 0.53853905, -0.3777241, -0.46437103],\n",
" [ 0.40141928, 0.4837508, -0.65778947, -0.5114651],\n",
" [ -0.16479668, -0.0942526, 0.11963467, 0.02091566],\n",
" [ 0.78107864, 0.7334399, -0.3930217, -0.7909532],\n",
" [ 0.5728891, 0.5998243, -0.7130681, -0.55498105]],\n",
"\n",
" [[ 0.46837303, 0.5079451, -0.6017683, -0.6873601],\n",
" [ 0.47831333, 0.47704187, -0.77050364, -0.53056616],\n",
" [ 0.0022420038, 0.2211996, -0.26627856, -0.058284115],\n",
" [ 0.68229866, 0.43813175, -0.42957944, -0.7715595],\n",
" [ 0.6962746, 0.7863049, -0.51530814, -0.4079552],\n",
" [ 0.109203026, -0.033205368, 0.026082976, -0.08189419],\n",
" [ 0.6171406, 0.36945978, -0.3867584, -0.73041993],\n",
" [ 0.73056966, 0.7131593, -0.7246948, -0.7576386]]],\n",
"\n",
"\n",
" [[[ 0.5189882, 0.47748834, -0.38496318, -0.47614747],\n",
" [ 0.35417625, 0.47263256, -0.6405072, -0.4251601],\n",
" [ -0.24306138, -0.039193217, 0.036665678, 0.080214255],\n",
" [ 0.7102015, 0.53253174, -0.6385763, -0.6721286],\n",
" [ 0.7894302, 0.44022915, -0.8246856, -0.4934092],\n",
" [ -0.055057004, 0.04119336, -0.05024686, 0.08659095],\n",
" [ 0.7209338, 0.5298335, -0.7829244, -0.7282564],\n",
" [ 0.4557156, 0.47210628, -0.50076157, -0.4354677]],\n",
"\n",
" [[ 0.47510478, 0.6929867, -0.66835916, -0.541769],\n",
" [ 0.6657957, 0.3804939, -0.73857844, -0.5002131],\n",
" [ 0.09884149, 0.33964127, -0.099822186, 0.09939251],\n",
" [ 0.7042677, 0.7117351, -0.82771486, -0.37682566],\n",
" [ 0.79062307, 0.6132387, -0.73981214, -0.81839657],\n",
" [ 0.14940467, 0.16878009, 0.18441717, -0.29895493],\n",
" [ 0.79524565, 0.55483806, -0.76385325, -0.39774883],\n",
" [ 0.559042, 0.43773994, -0.59146357, -0.6482264]],\n",
"\n",
" [[ 0.810372, 0.6433294, -0.36230907, -0.50711143],\n",
" [ 0.3729471, 0.5412034, -0.4352192, -0.5392546],\n",
" [ -0.12581989, 0.040613934, -0.065969355, 0.097153455],\n",
" [ 0.5725759, 0.8238927, -0.45702362, -0.58162904],\n",
" [ 0.67387867, 0.78583187, -0.36339238, -0.45392656],\n",
" [ -0.08631225, -0.109342225, -0.1724692, -0.30817217],\n",
" [ 0.3759356, 0.39811447, -0.6437498, -0.37875476],\n",
" [ 0.4985876, 0.66777813, -0.52234745, -0.79127383]]],\n",
"\n",
"\n",
" [[[ 0.5423673, 0.4527935, -0.6905824, -0.674515],\n",
" [ 0.3612162, 0.58419883, -0.6508376, -0.75919443],\n",
" [ -0.10413934, 0.21704614, -0.0031718016, 0.21902002],\n",
" [ 0.59899753, 0.37461725, -0.4116813, -0.57418936],\n",
" [ 0.48832682, 0.540494, -0.3928253, -0.3557282],\n",
" [ -0.1318777, 0.0899538, -0.1654059, -0.19719338],\n",
" [ 0.7211881, 0.54378605, -0.6283414, -0.74319625],\n",
" [ 0.67787623, 0.60121775, -0.7937138, -0.59888846]],\n",
"\n",
" [[ 0.7852921, 0.8083031, -0.7177438, -0.40098268],\n",
" [ 0.5667264, 0.48001924, -0.56729954, -0.4519939],\n",
" [ -0.0090753, 0.14827995, -0.35091615, -0.14106083],\n",
" [ 0.4500678, 0.60572124, -0.7677216, -0.6996991],\n",
" [ 0.7440587, 0.6639964, -0.4947259, -0.8189637],\n",
" [ -0.08285226, 0.10302072, -0.19435684, 0.21681444],\n",
" [ 0.38063002, 0.6474018, -0.8184031, -0.754548],\n",
" [ 0.57392, 0.73711634, -0.5449789, -0.5596254]],\n",
"\n",
" [[ 0.45058614, 0.68562025, -0.42984316, -0.65833396],\n",
" [ 0.6315661, 0.6060795, -0.59290326, -0.705428],\n",
" [ 0.04561249, 0.35577047, -0.052293967, 0.11709543],\n",
" [ 0.39523727, 0.53980243, -0.7594655, -0.5063309],\n",
" [ 0.54705566, 0.4264751, -0.55677474, -0.5807183],\n",
" [ -0.16957296, 0.14155506, 0.15511025, -0.1713847],\n",
" [ 0.38752383, 0.3972916, -0.7803603, -0.59685004],\n",
" [ 0.65207857, 0.38148814, -0.36647528, -0.53217363]]]], bias: [0.0022283846, 0.0013209125, 0.0017073716, 0.0007471752], activation: (Function), strides: (1, 1), padding: TensorFlow.Padding.same, dilations: (1, 1)))\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "T2TOOg-ATLFx",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "6a4990df-bfe1-464b-95cb-d8b77e05880f"
},
"source": [
"let (loss, grad) = model.valueWithGradient { (model: UNet) -> Tensor<Float> in\n",
" let logits = model(firstTrainFeatures)\n",
" print(logits)\n",
" return softmaxCrossEntropy(logits: \n",
" logits.reshaped(to: [batchSize, 324 * 324 * 4]), \n",
" probabilities: firstTrainLabels.reshaped(to: [batchSize, 324 * 324 * 4])\n",
" )\n",
"}"
],
"execution_count": 27,
"outputs": [
{
"output_type": "stream",
"text": [
"[[[[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]]],\r\n",
"\r\n",
"\r\n",
" [[[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]]],\r\n",
"\r\n",
"\r\n",
" [[[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]]],\r\n",
"\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
"\r\n",
" [[[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]]],\r\n",
"\r\n",
"\r\n",
" [[[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]]],\r\n",
"\r\n",
"\r\n",
" [[[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" ...,\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]],\r\n",
"\r\n",
" [[0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" ...,\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157],\r\n",
" [0.25018188, 0.24995495, 0.25005156, 0.24981157]]]]\r\n"
],
"name": "stdout"
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment