I hereby claim:
- I am mahasak on github.
- I am mahasak (https://keybase.io/mahasak) on keybase.
- I have a public key ASCt9xcks3C7Mt7Q6t5hdIrr4H-unFSMgnUJdX56qg6HIAo
To claim this, I am signing this object:
from platform import python_version | |
print(python_version()) |
const banList = ['avenger', 'infinity', 'endgame']; | |
const rule = new RegExp(banList.join('|'),'i') | |
setInterval(function() { | |
Array.from(document.querySelectorAll('[role="article"]')) | |
.filter(d => rule.test(d.innerText)) | |
.forEach(d => d.remove()) | |
}, 2000) |
docker run -u root --rm -d -p 8080:8080 -p 50000:50000 -v $HOME/dockers/jenkins:/var/jenkins_home -v /var/run/docker.sock:/var/run/docker.sock --name jenkins_dev jenkinsci/blueocean |
import * as vscode from 'vscode'; | |
export function activate(context: vscode.ExtensionContext) { | |
console.log('Congratulations, your extension "idenExt" is now active!'); | |
let disposable = vscode.commands.registerCommand('extension.helloWorld', () => { | |
vscode.window.showInformationMessage('Hello World!'); | |
}); | |
context.subscriptions.push(disposable); |
{ | |
"name": "bigbears-toolbox", | |
"displayName": "BigBears Toolbox", | |
"description": "BigBears Toolbox", | |
"version": "0.0.1", | |
"publisher": "bigbears", | |
"author": { | |
"name": "Mahasak Pijittum" | |
}, | |
"repository": {"url": "https://github.com/mahasak/bigbear-toolbox-vscode"}, |
from rx import Observable, Observer | |
import json | |
import unittest | |
from rx.testing import TestScheduler, ReactiveTest | |
from rx.core import Observer, ObservableBase, Observable | |
from rx.subjects import Subject | |
MAX_LIVE = 7 | |
class game_status: |
def hangman(secret_word, letters): | |
max_score = 7 | |
return max_score - len([ch for ch in letters if ch not in secret_word]) > 0 | |
secret = "bigbears" | |
tries = ['a','b', 'c', 'd', 'e', 'f', 'g', 'h'] | |
print(hangman("bigbears",tries)) |
I hereby claim:
To claim this, I am signing this object:
# Resize the input image nad preprocess it. | |
image = T.Resize(target_size=(224, 224))(image) | |
image = T.ToTensor()(image) | |
# Convert to Torch.Tensor and normalize. | |
image = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(image) | |
with torch.no_grad(): | |
image = torch.autograd.Variable(image[None]) | |
import torch | |
from torch import nn | |
from torchvision.models import resnet50 | |
def load_model(): | |
global model | |
model = resnet50(pretrained=False) | |
model_path = "./models/resnet50-19c8e357.pth" | |
checkpoint = torch.load(model_path) | |
model.load_state_dict(checkpoint) |