Skip to content

Instantly share code, notes, and snippets.

View malcolmgreaves's full-sized avatar

Malcolm Greaves malcolmgreaves

View GitHub Profile
@bastman
bastman / docker-cleanup-resources.md
Created March 31, 2016 05:55
docker cleanup guide: containers, images, volumes, networks

Docker - How to cleanup (unused) resources

Once in a while, you may need to cleanup resources (containers, volumes, images, networks) ...

delete volumes

// see: https://github.com/chadoe/docker-cleanup-volumes

$ docker volume rm $(docker volume ls -qf dangling=true)

$ docker volume ls -qf dangling=true | xargs -r docker volume rm

object DiffieHellmanMerkle {
import java.math.BigInteger
import scala.language.implicitConversions
import scala.util.Random
def main(args: Array[String]): Unit =
println(
diffieHellmanMerkle(generator = 3, modulus = 17, alicePrivateKey = 54, bobPrivateKey = 24)
)
@subfuzion
subfuzion / curl.md
Last active November 20, 2025 12:10
curl POST examples

Common Options

-#, --progress-bar Make curl display a simple progress bar instead of the more informational standard meter.

-b, --cookie <name=data> Supply cookie with request. If no =, then specifies the cookie file to use (see -c).

-c, --cookie-jar <file name> File to save response cookies to.

@myme5261314
myme5261314 / rbm_MNIST_test.py
Last active April 10, 2020 06:59
RBM procedure using tensorflow
import tensorflow as tf
import numpy as np
import input_data
import Image
from util import tile_raster_images
def sample_prob(probs):
return tf.nn.relu(
tf.sign(
@krishnanraman
krishnanraman / RESULTS.txt
Last active February 13, 2016 22:23
Image Detection using Statistical Moments + KMeans dominant color + Binary SVM
Dataset: COREL subset ( 7 classes, 100 images per class => 7*100 = 700 jpgs )
COREL: https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval
Training Test Ratio: 80-20
Equal number of true & false samples ie. train on 80 dinos & 80 random non-dinos out of 700-100 = 600 non-dinos.
So training sample size = 80 + 80 = 160
Test sample = 20 dinos + 20 non-dinos
Train 1 SVM classifier per class => 7 SVM classifiers
from botocore.credentials import RefreshableCredentials
from botocore.session import get_session
from boto3 import Session
def assumed_session(role_arn, session_name, session=None):
"""STS Role assume a boto3.Session
With automatic credential renewal.
@tedsta
tedsta / deep_learn_xor.rs
Last active February 2, 2016 20:16
Example of untrained xor circuit using deeplearn-rs
extern crate deeplearn;
extern crate matrix;
use deeplearn::Graph;
use deeplearn::op::{MatMul, Relu};
fn main() {
let ctx = matrix::Context::new();
// Setup the graph
@Chandler
Chandler / slack_history.py
Last active March 27, 2025 01:16
Download Slack Channel/PrivateChannel/DirectMessage History
print("UPDATE AUG 2023: this script is beyond old and broken")
print("You may find interesting and more up to date resources in the comments of the gist")
exit()
from slacker import Slacker
import json
import argparse
import os
# This script finds all channels, private channels and direct messages
@inanna-malick
inanna-malick / pusher.scala
Last active August 11, 2016 00:27 — forked from gre/pusher.scala
Using Pusher API with Play framework in scala for publishing events
//send messages via Pusher API in play 2.4
import play.api.libs.json.{ Writes, Json }
import play.api.libs.ws.{ WSResponse, WSClient }
import play.api.libs.ws.ning.NingWSClient
import java.security.MessageDigest
import java.math.BigInteger
import javax.crypto.Mac
import javax.crypto.spec.SecretKeySpec
import scala.concurrent.{ ExecutionContext, Future }
@saliksyed
saliksyed / autoencoder.py
Created November 18, 2015 03:30
Tensorflow Auto-Encoder Implementation
""" Deep Auto-Encoder implementation
An auto-encoder works as follows:
Data of dimension k is reduced to a lower dimension j using a matrix multiplication:
softmax(W*x + b) = x'
where W is matrix from R^k --> R^j
A reconstruction matrix W' maps back from R^j --> R^k