Skip to content

Instantly share code, notes, and snippets.

View mango314's full-sized avatar
💭
https://retrocomputing.stackexchange.com/questions/tagged/6502

JM mango314

💭
https://retrocomputing.stackexchange.com/questions/tagged/6502
View GitHub Profile
@mango314
mango314 / _.md
Last active August 29, 2015 14:27
Lissajous Curve

Hello World!

@mango314
mango314 / README.md
Last active August 29, 2015 14:23
exercise capture animaged gif

today's exercise is to capture the animated gif. Beautiful example from codepen.io

In order to save animaged gif, we need program like Byzanz.

sudo add-apt-repository ppa:fossfreedom/byzanz
sudo apt-get update && sudo apt-get install byzanz
byzanz-record --duration=15 --x=200 --y=300 --width=700 --height=400 out.gif
@mango314
mango314 / 05.txt
Last active August 29, 2015 14:20
expansion in the group SL(2,Fp) with A = [[[1,1],[0,1]],[[1,-1],[0,1]],[[1,0],[1,1]],[[1,0],[-1,1]]]
13
34
81
113
120
@mango314
mango314 / english.txt
Last active August 29, 2015 14:18
translating preface from Minkowski's "Diophantisce Approximationen"
The source of all mathematics are integers.
This I understand, not only in your traditional sense that the concept of the continuum is albeitet from consideration of discrete quantities.
Rather, I think these words on results of recent date.
Mastering the exponential function of the number of segments from the acquisition of elliptic functions by means of modular equations can confidently believe that the deepest relationships in the Analysis of arithmetic in nature.
This confidence has already paying off.
@mango314
mango314 / blogs.txt
Created March 25, 2015 22:29
blogs related to work and business
http://blog.domini.io/
from sympy import symbols
from sympy.matrices import *
from sympy import collect
x,t = symbols('x a b c d')
V = Matrix([[2*x+a, 1, 0,0], [1, 2*x+b, 1,0], [0, 1, 2*x+c,1], [0,0,1,2*x+d]])
collect(V.det(),a)
"""a*(b*c*d + 2*b*c*x + 2*b*d*x + 4*b*x**2 - b + 2*c*d*x + 4*c*x**2 + 4*d*x**2 - d + 8*x**3 - 4*x) + 2*b*c*d*x + 4*b*c*x**2 + 4*b*d*x**2 + 8*b*x**3 - 2*b*x + 4*c*d*x**2 - c*d + 8*c*x**3 - 2*c*x + 8*d*x**3 - 4*d*x + 16*x**4 - 12*x**2 + 1"""
@mango314
mango314 / README.md
Last active August 29, 2015 14:17
navigating cabal hell for iHaskell