Created
February 2, 2015 10:43
-
-
Save matael/317e4dfa1cfc912bd514 to your computer and use it in GitHub Desktop.
Des fois,... j'ai la flemme
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:622a7dd52adbdb627c02dbce4290f0942e491f3c05b9e03a764a8cddcb0e99b1" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Interpolation Lagrangienne et fonctions de forme\n", | |
"================================================" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline\n", | |
"from sympy import symbols" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"a,b,phi1,x,h = symbols('a b \\phi_1 x h')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"x1,x2,x3 = symbols('x_1 x_2 x_3')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"phi1 = (x-x2)/(x1-x2)*(x-x3)/(x1-x3)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"phi1_repl = phi1.replace(x1, a).replace(x2, (a+b)/2).replace(x3, b)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"phi1_simpl = phi1_repl.simplify()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"phi1_simpl" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"latex": [ | |
"$$\\frac{1}{\\left(a - b\\right)^{2}} \\left(b - x\\right) \\left(a + b - 2 x\\right)$$" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAPkAAAAzBAMAAACnErNxAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAVO8Qq5l2zWYiu91E\niTJVJ+QZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADwUlEQVRYCe1XTWgTQRh96bbNf6iKB/FQ0YO/\n4FIqBUFSEIPFQ3uwCkIxWOJJMWI1aMXmIiq95KAg9lKQ4s+pglhKDwYPXkQpSHpTc/VkSkEUW+M3\nM7vZzO5Me9klHvqB25n3vfe97Ozszifwf8VWs3W/xzgx2EJ34Mqme4se/ubKt2jhN/d8qxa+tSt/\n+vBYUXnnj5UogQ+shJagEdo6TVqCo9M4elBC7El7iY+I4A2PJDr8smrRLJ1XpEDC5DGmwAEjz2FG\n8IZb0ovkqsWydF6NArlL2LICJ2iJw4zQiFDWGrolx4HdNkvo7Nm6f+eBxIqa0cNhIjhhu3sk9PAG\nqxZP6ByRfhSdBZL0TxXhMqGM4ITt7pFMmI471zmadUadQ0A4k+uSKMbFgfe0fB2UAyPgUeWCyRm2\nu0dC2bdms47TN7rEikD6mvFb4h3DZHYOiOQJZYTEfkwIgu3ukRBpDc06qaBuEu8Cuk2sSfnP+Gbu\nAEKzhDJCTxHnBMF290iI2A9HV984alSxrQychUHuxvgCxVyVQBO36IqUTThv4g3Nk4XC+N5CoZ+G\nQoI+Jlm4QwAwLOs4ttGFuV9Hwv0C/WS6hvsBGH9FIfvevRK+P+DoBF93rcyYLMUW9hc6XO9cipsl\nZgWBVibEloHCdvdKtiNaQpNO8DXXZKk9z1JsU62yB9sc2zprGHV2nbGMWJ72AYXt7pGkhtBZatY1\n1/OM46UU3+fJIeAkZqR8YjlWixbpjVskmBFuYLKfjR13twRTXyqnJB2n6y7xcpR/l9nqHskVJZqR\nGc3dJyRcpQsj9F7+ninT2HF3SzBRr/+RdJyuv4TEs57XM6Z4SiLYK68XUUbo1qUgnuV56RCRFUte\nglGSKcqZ0ClTDbAiRjFtPeuk1BMapeSB0LGNo4wIM4wMiZyyeeApy1ZPUBan14jfzxNVljclA5T5\niE8ir22c7A5JS1DVJ0zobiqzrCnpo+/Y1S1PlXmfQHtpXeXYNzWZRVu9XnNlfJ3G+fK7S/KmxNjl\nhn2fq9860ZTc9t3NXTBHQHTkzB4ZF00JnYYBx3Oq/64Udj1d0ZTcC9gbeEUNwz50TMtGoinZKYMB\nzA7RIbUivqdNbYtoSn4E4CeXJPe2aaSrMiqakuDdaeXTi+iWza0+5oML9X9Kuy7dhWch+bUXTUnw\nu47OsHA28jop35doSkZkMIAZra6R+frwklxaNCWiB5Yz/s7UX1ruIf/fzF9bq5rmlGFZOmUCjxda\nBzphAw9ld8Fd9b/Lvx+1fmfln4+i0j/CRA6JNQBhSQAAAABJRU5ErkJggg==\n", | |
"prompt_number": 7, | |
"text": [ | |
"(b - x)\u22c5(a + b - 2\u22c5x)\n", | |
"\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n", | |
" 2 \n", | |
" (a - b) " | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"phi1_h = phi1_simpl.replace(a,0).replace(b,1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from sympy.plotting import plot" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"p = plot(phi1_h, xlim=(0,1), ylim=(-.5,1.5))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD6CAYAAABd9xscAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG8dJREFUeJzt3Xl8VPW9//HXFxJ2K2vZEkUIWwQiKItQ2iCoLD/AqtcC\nt2jVi0gvosVrXXtFr1qp9cqtS42KuBREURRQFlEBl7IJCqgoalFZZFMwCAgBPr8/vsGEmJCTkJkz\ny/v5eMxjMpkzcz45DHnne77LcWaGiIhIEJXCLkBEROKHQkNERAJTaIiISGAKDRERCUyhISIigSk0\nREQkMIWGiIgElhJkI+dcQ6AH0ATYC3wAvGtmhyNYm4iIxBh3rMl9zrlewA1APWAlsA2oBrQCMoBp\nwL1mlhv5UkVEJGylhcY9wP1m9lUxz6UC/w+obGbPl2vnzj0ODAC2mVn7Yp7PBmYA/8r/1gtmdkd5\n9iUiIsfvmKER8Z071xP4HnjqGKEx1swGRbs2ERH5qUAd4c65fzjnahd63Mw598bx7tzM3gJ2lrb7\n492PiIhUjKCjp94CljrnBjjnrgBeBe6LXFk/MqC7c26Vc262cy4zCvsUEZESBBo9ZWY5zrmPgDeA\nHUAnM/s6opV5K4F0M9vrnOsHvITvhBcRkRAEHXI7HPhv4GKgAzDbOXepmb0fyeLMbHehr+c45x5y\nztU1s2+L1Ge33nrrj4+zs7PJzs6OZGkiIvGuXKf+A3WEO+deAq4ws235j7sAj5jZaeXZaZH3bgbM\nKqEjvCF+ZJXl7/M5M2tWzHam64KIiJRJ5EKj2Bc6V9XM9pfrxQXv8QzwK6A+sBW4FUiFH0+J/Scw\nCjiIn1Q41syWFPM+Cg0RkbKp+NBwzv0JeLDo6aBCz/cGapjZrPLsvKIoNEREyqxcoVFan8YaYJZz\nbj++U3o7fkZ4BtAReA24qzw7FhGR+FNaS+NpMxvunPsjfgmRxsA+YC3wlpntjU6Zx6aWhohImUWk\npXG6c64J8Fsgu9BODN/iiInQEBGR6CgtNB4GXgeaAyuKPGf53xcRkSQRdMjtw2Z2ZRTqKRednhIR\nKbPoDrmNJQoNEZEyK1do6Mp9IiISmEJDREQCU2iIiEhgCg0REQlMoSEiIoEpNEREJDCFhoiIBKbQ\nEBGRwBQaIiISmEJDREQCU2iIiEhgCg0REQlMoSEiIoEpNEREJDCFhoiIBKbQEBGRwBQaIiISmEJD\nREQCU2iIiEhgCg0REQlMoSEiIoEpNEREJDCFhoiIBKbQEBGRwBQaIiISmEJDREQCU2iIiEhgCg0R\nEQlMoSEiIoEpNEREJDCFhoiIBKbQEBGRwBQaIiISmEJDREQCU2iIiEhgCg0REQlMoSEiIoEpNERE\nJDCFhoiIBKbQEBGRwBQaIiISWGih4Zx73Dm31Tm35hjb/M0596lzbpVzrmM06xMRkZ8Ks6UxCehb\n0pPOuf5Ahpm1BK4A/h6twkREpHihhYaZvQXsPMYmg4An87ddCtR2zjWMRm0iIlK8WO7TaApsKPR4\nI5BW0saHDkW8HhGRpJcSdgGlcEUeW0kbduo0jvPOA+cgOzub7OzsyFYmIpKEYjk0NgHphR6n5X+v\nWHXqjGPzZsjJgUqx3H4SEYljsfzrdSZwMYBzrhuwy8y2lrTxyy/D2rUwejRYie0RERE5Hs5C+g3r\nnHsG+BVQH9gK3AqkAphZTv42D+BHWO0BLjWzlSW8l5kZublwzjnQrRvcd58/VSUiIsUq12/I0EKj\nIh0JDYBdu6BPH+jVC/7yFwWHiEgJyvXbMZZPT5VL7drw6qswfz7ccotOVYmIVKRY7ggvt7p14bXX\nfGujShW49dawKxIRSQwJGRoA9ev74MjOhtRUuOmmsCsSEYl/CRsaAA0bwhtv+OCoUgX+67/CrkhE\nJL4ldGgANG4Mr79eEBxjxoRdkYhI/Er40ABISysIjtRUGDUq7IpEROJTUoQGwMknHx0c//EfYVck\nIhJ/kiY0AJo398Fx1lk+OC65JOyKRETiS1KFBkDLln4OR+/ePjiGDQu7IhGR+JF0oQHQpo2fANin\njw+Of/u3sCsSEYkPSRkaAKeeCnPnwrnn+uA477ywKxIRiX1JGxoAWVkwezb06+eDY8CAsCsSEYlt\nCbf2VFl16gSzZsGll8K8eWFXIyIS25I+NAC6dIGXXoLhw/3oKhERKZ5CI1/37vD883D99f6CTiIi\n8lMJdz2N47VkCZx/Plx7LYwdq+txiEjC0kWYKspXX8GgQb6/4+9/h6pVK+ytRURihS7CVFFOOgne\nfrvgKoDbt4ddkYhIbFBolKBWLd/H8atf+Y7yNWvCrkhEJHw6PRXAlClwzTUwcSIMHBix3YiIRFO5\nTk8l9eS+oIYNgxYtfAf52rVw3XXqIBeR5KSWRhls3AiDB0P79pCTow5yEYlr6giPtLQ0ePNN2LPH\nL6++bVvYFYmIRJdCo4xq1oRnn/Wjqrp0gdWrw65IRCR6dHrqODz7LFx1FTz6qD9tJSISRzS5Lwzv\nvgu//jX8/vdwww3qIBeRuKHQCMumTf56HG3a+FZHtWqhlSIiEpQ6wsPStCksWgR5edCrF2zZEnZF\nIiKRodCoIDVqwDPP+As6de0K770XdkUiIhVPp6ciYNo038eRk+MnBIqIxCD1acSSFSt8P8fIkXDz\nzeogF5GYo9CINV9/7YfiZmT4dauqVw+7IhGRH6kjPNY0buw7yMGvlrt5c7j1iIgcL4VGhFWvDpMn\n+xZHt26wcmXYFYmIlJ9OT0XR9Olw5ZXw0ENw4YVhVyMiSU59GvHg/fd9q+Pyy+FPf1IHuYiERqER\nL7Zs8UuPnHQSTJrk53iIiESZOsLjRaNGsGABVKniO8g3bQq7IhGRYBQaIalWDZ56Ci64wHeQL18e\ndkUiIqXT6akYMGMGjBgB998Pv/lN2NWISJJQn0Y8W70aBg2Ciy+GceOgktqAIhJZCo14t22bX6uq\nUSN48kl/lUARkQhRR3i8+/nP4fXXoVYt6NkTNm4MuyIRkaMpNGJM1ap+GO6wYX6J9aVLw65IRKSA\nTk/FsJdfhssugwkTfIiIiFQg9Wkkog8+8B3kQ4fC//yPOshFpMIoNBLV9u1+Pkf9+n5uR61aYVck\nIgkg/jrCnXN9nXMfO+c+dc5dX8zz2c6575xz7+XfbgmjzrA1aACvvQZ16sAvfgFffRV2RSKSrEIL\nDedcZeABoC+QCQx1zrUtZtNFZtYx/3ZHVIuMIVWqwGOP+XkcZ54JixeHXZGIJKMwWxpdgM/M7Asz\nywOmAoOL2U7rwOZzDsaOhUcf9SvlPv102BWJSLIJMzSaAhsKPd6Y/73CDOjunFvlnJvtnMuMWnUx\nrH9/WLjQzxy/4QY4fDjsikQkWaSEuO8gPdcrgXQz2+uc6we8BLQqbsNx48b9+HV2djbZ2dkVUGLs\nysz0czguushfm+Ouu/zlZUVEIim00VPOuW7AODPrm//4RuCwmY0/xmvWA6eb2bdFvp/Qo6eOJS/P\nD8XNyYG//U0LHopIYPE15NY5lwJ8AvQGNgPLgKFmtrbQNg2BbWZmzrkuwHNm1qyY90ra0Dhi2TLf\nSX7aafDgg1CvXtgViUiMi68ht2Z2EBgNzAM+Ap41s7XOuZHOuZH5m10IrHHOvQ9MAIaEU23s69IF\n3nvPL3bYoQPMnh12RSKSiDS5LwG98YZffuScc+Dee+GEE8KuSERiUHy1NCRyzjoLVq2CgwchKwve\nfDPsikQkUailkeBmzoQrr/RrV915p7/MrIgIamlIcQYN8q2OL7+E00+HFSvCrkhE4plCIwk0aADT\npsFNN0G/fnD77X6orohIWen0VJLZuNFPBvz2W79ibtviVvsSkWSg01NSurQ0mDvXj67q2dNf4EnL\nkIhIUGppJLHPPoNLLvEr6E6aBM2ahV2RiESRWhpSNhkZfjhu377QuTNMnAjKXhE5FrU0BIA1a2D4\ncEhP90uvN2oUdkUiEmFqaUj5tW/v16/q0MFPCJw2LeyKRCQWqaUhP7FkiV/88Iwz4IEHoG7dsCsS\nkQhQS0MqRrdu8P77UL++b3nMmxd2RSISK9TSkGN6/XU/PLd/f7jnHqhVK+yKRKSCqKUhFa93b1i9\nGvbt89fqePvtsCsSkTCppSGBvfQSjBrlR1ndfrsWPxSJc/F15b6KpNCInm3b/Kq5KSkwcqRviYhI\nXFJoSHSYwYsvwrXXQseO8Ne/QvPmYVclImWkPg2JDufg/PNh7Vo/LLdzZ7jxRti9O+zKRCTSFBpS\nbtWq+eXW16yBzZuhTRt48kktgCiSyHR6SirM0qUwZow/ffV//wdnnhl2RSJyDDo9JeHq2hUWL4ar\nroILL/SjrDZtCrsqEalICg2pUJUq+bD45BM4+WQ/o/yOO/w8DxGJfwoNiYhatXxYvPuuX5IkMxOe\nf15Lr4vEO/VpSFQsWABXX+0XP5wwwc8uF5FQqU9DYlevXrByJQwZAuee6ycGbt8edlUiUlYKDYma\nlBQ/m/zjj6FGDX/K6r774MCBsCsTkaB0ekpCs3Yt/OEP8MUXPjz69Qu7IpGkomVEJP6YwezZPjxa\ntoT//V9o3TrsqkSSgvo0JP44BwMGwAcfwFlnQY8eMHYs7NoVdmUiUhyFhsSEKlX8AogffQTffw+n\nngoPPQQ//BB2ZSJSmEJDYsrPfw6PPAJz58KcOf6U1UMPwf79YVcmIqDQkBjVvj3MmgXTp8Mrr/jw\nePhhhYdI2BQaEtM6d/ahMW0azJwJrVpBTo6G6YqERaEhcaFrVz/K6tln/QWgWrWCRx9VeIhEm0JD\n4kq3br6/45lnfOujdWt47DHIywu7MpHkoHkaEtfeeQfGjYPPP/cXhLr4Yj8SS0RKpXkaknx69ID5\n8/0VAxctgowMuPdeyM0NuzKRxKTQkITQsyc8/bTv71ixAk45Ba67DjZsCLsykcSi0JCEcvrpMGUK\nvPeev1Z5Vhb89rf+sYgcP4WGJKSTTvKnqf71Lx8cAwdCnz6+E13dXyLlp45wSQoHDvjhun/9q2+B\nXHstDB0KVauGXZlIaLTKrUhpzOC113x4rFkD118PF10EjRuHXZlI1Gn0lEhpnIOzz4Z58/zaVh9/\n7C8GdcEF8OqrvhUiIiVTS0OSXm6u7zzPyYHvvoMRI+Cyy6Bhw7ArE4konZ4SOR5msHy5D48XXvAt\nkpEj/XU+KqlNLolHoSFSUb77DiZP9gGyZ49vfVx6qV+6XSRBKDREKpoZLF3qw+PFF+Hcc+GKK6BX\nL7U+JO7FX0e4c66vc+5j59ynzrnrS9jmb/nPr3LOdYx2jfFm4cKFYZcQMyriWDjnF0mcNAm++MLP\nPJ84EdLT/WVply+P/Xkf+kwU0LEo4JzLLs/rQgsN51xl4AGgL5AJDHXOtS2yTX8gw8xaAlcAf496\noXFG/ykKVPSxqF0bRo/2nebz50OtWjBsmL9A1C23+OucxyJ9JgroWBwluzwvCrOl0QX4zMy+MLM8\nYCowuMg2g4AnAcxsKVDbOacxLRK6zEy4/XZYt85PGty/H/r181ccvOsuPxNdJBGFGRpNgcLLyW3M\n/15p26RFuC6RwJzz613dcw98+aW/nvmmTf6UVteucN99sHlz2FWKFMjL83OUyiu0jnDn3AVAXzMb\nkf/4t0BXM7uq0DazgLvN7J38x68BfzSzlUXeK8bPKouIxB4zK3NneEokCgloE5Be6HE6viVxrG3S\n8r/3Exo9JbHqhx/8QokvvOD/wmvZEgYM8LfTTvOtFZGKtnOnv0TyzJl+tYO2bf2Kz/36+UsHEG9D\nbp1zKcAnQG9gM7AMGGpmawtt0x8YbWb9nXPdgAlm1q2Y99KQW4kL+/fDW2/Byy/DK6/Avn3Qv78P\nkD59oGbNsCuUePb55zBrlg+Kd9/1Q8MHD/afr2JWOIiv0ABwzvUDJgCVgYlm9mfn3EgAM8vJ3+bI\nCKs9wKVFT03lb6PQkLi0bp0Pj5df9sN3u3cvaIU0bx52dRLrdu2ChQv9aL758+Hkk/1t8GDo3Rtq\n1Djmy+MvNCqKQkMSQW6u/4//yiv+tEJWFrRuDdnZ8MtfQv36YVcoYcvLgyVLCkLigw/8Hxp9+vhl\nbzp0KNOk0/ib3FcWQSYCjhkzhpYtW5KVlcV7CXyptrlz59KmTRtatmzJ+PHjf/L85MmTycrKokOH\nDvTo0YPVq1eHUGV0lHYsjli+fDkpKSlMnz49itWVzc9+5lfbffxxP+Lqz3+GtDR47DFo0cL/Qhgz\nBqZPhx07fvr6IMdi4cKFdOzYkXbt2pGdnR3ZHyhEpR2L7777joEDB3LaaafRrl07nnjiiegXGcCh\nQ7BqFTzyiL+QWP36cM01/vowd9wB27f7FZuvu873jxUNjMsuu4yGDRvSvn37EvdR5gnUZhbzN/zp\nq8+AZkAq8D7QttDz9sorr1i/fv3MzGzJkiXWtWtXS0QHDx60Fi1a2Pr16+3AgQOWlZVlH3300VHb\n/POf/7Rdu3aZmdmcOXOS+lgc2a5Xr142YMAAe/7550Oo9PgdOGC2ZInZ3Xeb9e1rdsIJZh06mI0Z\nYzZ9utnmzaUfi507d1pmZqZt2LDBzMy2b98exo8ScUE+F3feeafdcMMNZuaPQ926dS0vLy+Mco+y\nd6/ZokVmd97p/51PPNGsdWuzm282mzrVrKz/ZG+++aatXLnS2rVrV9zTAP2B2flfdwWWWCm/j+Ol\npVHqRMCZM2dyySWXANC1a1d27drF1q1bo19phC1btoyMjAyaNWtGamoqQ4YMYcaMGUdtc+aZZ3Li\niScC/lhs3Fh0UFpiCHIsAO6//34uvPBCGjRoEEKVFSM11c/7uP56PwLrm2/8X59NmviWR6tWy9i8\nOYObb27Gww+n8otfDGH69KOPxZQpU7jgggtIS/NTneon6PmuIJ+LSpUqkZubC0Bubi716tUjJSW6\ng0kPH/Z9WlOmwB/+AP/+79CggW81fPONX+Ps00/9NV/uuAN+85uyn6Ls2bMnderUOdYmZZ5AHeaQ\n27IobpJf18IbbNq0ifT0gtG5aWlpbNy4kYYJdlGE4n7OpUuXlrj9xIkT6d+/fzRKi7ogx2LTpk3M\nmDGDN954g+XLl+MSZHzrkRDpmv+/4LnnNjFtWjp9+vhz3nPmpGG2lBkzoFMnPwHx7bc/5cQT8+jV\nqxe7d+/m6quvZvjw4eH+IBEQ5HMxevRoBg4cSJMmTdi9ezfPPfdcRGsyg6++ghUr/ICH5cv91z/7\nGXTu7G+//rX/QyDKI+hKmkBd4l/c8RIagXq5rUhneKL8giisLD/TggULePzxx3nnnXciWFF4ghyL\na665hrvvvhvnXOHTnQmncmVH7dp++fZLL4V//MMP7b34Yli5Et55B+bNy2PXrpWcddbrnHLKXsaO\nPZN9+7rRt29L0tMTZ75IkM/F3Llz6dSpEwsWLODzzz/n7LPPZtWqVZxwwgnHvf/cXN9BvXq1v6Tw\nkVv37v4Yd+7sF7s844yYWWq/6AE75n+SeAmNUicCNm3alA0bCgJz48aNNG1adFWS+Ff059ywYcOP\npxsKW716NSNGjGDu3LmlNU/jVpBjsWLFCoYMGQLAjh07mDNnDqmpqQwaNCiqtUZacceiefM0evSA\nHj3898aPTyc3tz7nnVedDz+szscf/5IHH1zFuHEt2bPHj9CqWxdatfKjtlq3howMqF49pB+qnIJ8\nLp544gluvPFGAFq0aMEpp5zCJ598whlnnBFoH4cO+ZbDunXwySf+ft06qFIFFiyAU0/165C1bw/n\nn+/vYyQgigo8gfpHpXV6xMINH26f4zvCq1BKR/jixYsTtvM3Ly/PmjdvbuvXr7f9+/cX28n35Zdf\nWosWLWzx4sUhVRkdQY5FYb/73e/shRdeiGKF0RPkWKxdu9Z69+5tBw8etD179li7du3sww8/NDOz\nHTvM3nzT7LHHzP74R7PBg83atjXr0cOsSROz7t3Nhg0zu+kms0ceMXv1VbN163zHbawJcixGjRpl\n48aNMzOzLVu2WNOmTe2bb7758fmDB802bDB7+22zyZPN7rrLbORI3zk9cKBZtWpm6elmvXub/f73\nZhMmmM2ebfbpp/61sWT9+vVBO8K7EaAjPC5aGmZ20Dk3GphHwUTAtUcmAgL079+f2bNnk5GRQc2a\nNZk0aVJo9UZSSkoKDzzwAOeeey6HDh3i8ssvp23btuTk5AAwcuRIbr/9dnbu3MmoUaMASE1NZdmy\nZWGWHRFBjkWyCHIs2rRpQ9++fenQoQOVKlVixIgRZGZmAlCvnr9WSM+eR7/vwYPw9df+WiJHbkuW\nwNSp/q/tJUugWjVo3Pjo2ymn+Ill9er51suR+7p1fX9MtI9Fy5ZtuffeHPbuhb59R9Kz558YP/53\n5OR04OBBIzPzLwwfXpctW2DLFt/KWru2YLJcs2Z+yPPAgf7rqVNLnTgXE4YOHcqiRYvYsWMH6enp\n3HbbbeTl5QH+M2Fms51z/Z1zn5E/gbq099TkPhEpNzO/xtHXX/vb5s3+fu9ev+rvN9/At98W3Ldo\n4ecd1Kr101udOj6IUlMLblWq+PuaNf17Hj7stzl8uOBWr57f1969flmWI/f79vnRRu+/778+8US/\nj9q1/f2pp/pQbNTo6FvDhv5UUtWqYR/diNOMcBGJbWb+F/j33//09sMPftLagQN+5vOR24EDULmy\nD4tKlQpulSv7+yOjjWrU8P0vR+6rV/fP1akDJ5yQOB39FUihISIigSX2MiIiIhI+hYaIiASm0BAR\nkcAUGiIiEphCQ0REAlNoiIhIYAoNEZEksnz5crKysnDOVXXO1XTOfeCcywz6eoWGiEgS6dy585EF\nO+8AxgNPm9lHQV+vyX0iIkkmLy+PKlWqrAb2AWeW5ReoWhoiIklmh7/IfE2gFlCmxe8VGiIiSSZ/\nBehbgCn4U1SBxcXS6CIiUjGeeuopqlatiplNdc5VAv7pnMs2s4VBXq8+DRGR5KQFC0VEJLIUGiIi\nEphCQ0REAlNoiIhIYAoNEREJTKEhIiKBKTRERCQwhYaIiASm0BARkcAUGiIiEphCQ0REAlNoiIhI\nYAoNEREJTKEhIiKBKTRERCQwhYaIiASm0BARkcAUGiIiEphCQ0REAlNoiIhIYAoNEREJTKEhIiKB\npYSxU+dcXeBZ4GTgC+AiM9tVzHZfALnAISDPzLpEsUwRESkirJbGDcB8M2sFvJ7/uDgGZJtZRwWG\niEj4wgqNQcCT+V8/CZx3jG1d5MsREZEgwgqNhma2Nf/rrUDDErYz4DXn3LvOuRHRKU1EREoSsT4N\n59x8oFExT91c+IGZmXPOSnibHmb2tXOuATDfOfexmb1V0bWKiEgwEQsNMzu7pOecc1udc43MbItz\nrjGwrYT3+Dr/frtz7kWgC1BsaDjnbiv0cKGZLSx38SIiUqxQRk8BM4FLgPH59y8V3cA5VwOobGa7\nnXM1gXOA24puB2Bm6vcQEYkCZ1bSmaEI7tQPuX0OOIlCQ26dc02AR81sgHOuOTA9/yUpwGQz+3PU\nixURkR+FEhoiIhKfNCNcREQCU2iIiEhgCg0REQlMoSEiIoEpNEREJDCFhoiIBKbQEBGRwBQaIiIS\n2P8HHKbWkA69aMEAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fea28ca4ef0>" | |
] | |
} | |
], | |
"prompt_number": 17 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment