Created
November 8, 2019 22:25
-
-
Save mateusfg7/74e66e357f38aa86c09f3338e81cf8ff to your computer and use it in GitHub Desktop.
Introducao_a_machine_learn.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Introducao_a_machine_learn.ipynb", | |
"provenance": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/mateusfg7/74e66e357f38aa86c09f3338e81cf8ff/introducao_a_machine_learn.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ykR-APYwRiGd", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"# sabe JS\n", | |
"# sabe PYTHON\n", | |
"# sabe Assembly\n", | |
"# sabe C++\n", | |
"# sabe Pascal\n", | |
"\n", | |
"bom1 = [1, 1, 1, 1, 1]\n", | |
"bom2 = [1, 1, 0, 1, 0]\n", | |
"bom3 = [1, 0, 1, 1, 1]\n", | |
"bom4 = [0, 1, 1, 1, 1]\n", | |
"\n", | |
"ruim1 = [0, 0, 0, 0, 0]\n", | |
"ruim2 = [1, 0, 0, 0, 0]\n", | |
"ruim3 = [0, 0, 1, 0, 1]\n", | |
"ruim4 = [0, 0, 0, 1, 0]\n", | |
"ruim5 = [0, 1, 1, 0, 1]\n", | |
"\n", | |
"treino_x = [bom1, bom2, bom3, bom4, ruim1, ruim2, ruim3, ruim4, ruim5]\n", | |
"treino_y = [1, 1, 1, 1, 0, 0, 0, 0, 0]" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "cPMfLLhQl85h", | |
"colab_type": "code", | |
"outputId": "4c5381a6-1e58-4a55-c7ac-561a3e693688", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 86 | |
} | |
}, | |
"source": [ | |
"from sklearn.svm import LinearSVC\n", | |
"\n", | |
"modelo = LinearSVC()\n", | |
"modelo.fit(treino_x, treino_y)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,\n", | |
" intercept_scaling=1, loss='squared_hinge', max_iter=1000,\n", | |
" multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,\n", | |
" verbose=0)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 4 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Au94o6HzmhLl", | |
"colab_type": "code", | |
"outputId": "06552779-dd1c-4f55-b9c7-71c74754b635", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"programador_qualquer0 = [1, 1, 1, 1, 0] # 1 bom\n", | |
"programador_qualquer1 = [0, 0, 0, 1, 1] # 0 ruim\n", | |
"programador_qualquer2 = [1, 0, 0, 1, 1] # 1 bom\n", | |
"programador_qualquer3 = [0, 0, 1, 1, 0] # 0 ruim\n", | |
"programador_qualquer4 = [1, 0, 1, 1, 0] # 1 bom\n", | |
"programador_qualquer5 = [0, 1, 0, 0, 1] # 0 ruim\n", | |
"\n", | |
"teste_x = [programador_qualquer0, programador_qualquer1, programador_qualquer2, programador_qualquer3, programador_qualquer4, programador_qualquer5]\n", | |
"teste_y = [1, 0, 1, 0, 1, 0]\n", | |
"\n", | |
"previsoes = modelo.predict(teste_x)\n", | |
"previsoes" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([1, 0, 1, 0, 1, 0])" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 14 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "xa-251ftom5x", | |
"colab_type": "code", | |
"outputId": "b3f6392d-9331-4f8b-da7b-42f42bc78d25", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"from sklearn.metrics import accuracy_score\n", | |
"\n", | |
"accuracy_score(teste_y, previsoes) * 100" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"100.0" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 16 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "u1y4ZBeOtane", | |
"colab_type": "code", | |
"outputId": "fa0d4af6-a3ba-4bef-b960-0f295b75d2b0", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
} | |
}, | |
"source": [ | |
"import pandas as pd\n", | |
"\n", | |
"uri = \"https://raw.githubusercontent.com/alura-cursos/machine-learning-introducao-a-classificacao/master/acesso.csv\"\n", | |
"dados = pd.read_csv(uri)\n", | |
"dados.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>home</th>\n", | |
" <th>como_funciona</th>\n", | |
" <th>contato</th>\n", | |
" <th>comprou</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" home como_funciona contato comprou\n", | |
"0 1 1 0 0\n", | |
"1 1 1 0 0\n", | |
"2 1 1 0 0\n", | |
"3 1 1 0 0\n", | |
"4 1 1 0 0" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 17 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "up4iV5WtuozI", | |
"colab_type": "code", | |
"outputId": "b796e13e-85a9-4f64-adc2-bf8342a26ef2", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
} | |
}, | |
"source": [ | |
"dados.sample(5)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>home</th>\n", | |
" <th>como_funciona</th>\n", | |
" <th>contato</th>\n", | |
" <th>comprou</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>94</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>48</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" home como_funciona contato comprou\n", | |
"94 0 0 1 0\n", | |
"48 1 1 0 0\n", | |
"90 1 0 1 1\n", | |
"0 1 1 0 0\n", | |
"41 0 0 1 0" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 18 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "OzSLZ_aou4Ay", | |
"colab_type": "code", | |
"outputId": "b53b69f1-0e7b-43a4-e559-002bab518c13", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
} | |
}, | |
"source": [ | |
"x = dados[[\"home\", \"como_funciona\", \"contato\"]]\n", | |
"x.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>home</th>\n", | |
" <th>como_funciona</th>\n", | |
" <th>contato</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" home como_funciona contato\n", | |
"0 1 1 0\n", | |
"1 1 1 0\n", | |
"2 1 1 0\n", | |
"3 1 1 0\n", | |
"4 1 1 0" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 20 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ETtkipWzvcpp", | |
"colab_type": "code", | |
"outputId": "28147556-28c5-443b-ad83-43bafa227ab0", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 121 | |
} | |
}, | |
"source": [ | |
"y = dados[\"comprou\"]\n", | |
"y.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0 0\n", | |
"1 0\n", | |
"2 0\n", | |
"3 0\n", | |
"4 0\n", | |
"Name: comprou, dtype: int64" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 25 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "akG_8Gg8voEn", | |
"colab_type": "code", | |
"outputId": "2e5086e1-9f17-472e-e85f-d74899f329ea", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"from sklearn.svm import LinearSVC\n", | |
"from sklearn.model_selection import train_test_split\n", | |
"\n", | |
"modelo = LinearSVC()\n", | |
"treino_x, teste_x, treino_y, teste_y = train_test_split(x, y)\n", | |
"\n", | |
"modelo.fit(treino_x, treino_y)\n", | |
"\n", | |
"previsoes = modelo.predict(teste_x)\n", | |
"accuracy_score(teste_y, previsoes) * 100" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"92.0" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 29 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "uVTFDaLtv5tz", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment