Skip to content

Instantly share code, notes, and snippets.

@mathyourlife
Created December 3, 2013 05:00
Show Gist options
  • Save mathyourlife/7764107 to your computer and use it in GitHub Desktop.
Save mathyourlife/7764107 to your computer and use it in GitHub Desktop.
Basic Heatmap of a Periodic Signal
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline\n",
"import pylab as pl\n",
"import numpy as np"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Create a heatmap of a signal with some random noise"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import time\n",
"\n",
"end_time = time.time() + 10 \n",
"x_bins, y_bins = 50, 25\n",
"heatmap = np.zeros((y_bins, x_bins))\n",
"time_window = 2\n",
"wave_period = 1\n",
"\n",
"class OutOfBounds(Exception):\n",
" pass\n",
"\n",
"def binnum(range_min, range_max, bins, value):\n",
" width = (range_max - range_min) / float(bins)\n",
" bin_num = int((value - range_min) / width)\n",
" if 0 <= bin_num < bins:\n",
" return bin_num\n",
" raise OutOfBounds\n",
"\n",
"def signal():\n",
" x = mod(time.time(), time_window)\n",
" y = 0.6 * np.sin((2*np.pi)/wave_period*x) + np.random.randn() * 0.2\n",
" return (x, y)\n",
" \n",
"while time.time() < end_time:\n",
" x, y = signal()\n",
" \n",
" try:\n",
" x_bin = binnum(0, time_window, x_bins, x)\n",
" y_bin = binnum(-1, 1, y_bins, y)\n",
" \n",
" heatmap[y_bin, x_bin] += 1\n",
" except OutOfBounds:\n",
" pass\n",
" \n",
" time.sleep(0.001)\n",
"\n",
"pl.pcolor(heatmap, cmap=plt.cm.Blues)\n",
"pl.colorbar()\n",
"pl.show()\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAEACAYAAADsjY5UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UVOe9L/DvhqCCIBAiMygkECIqLzLTEDEefAtBk6ZY\nc8hKY1JKhZxzl2v13mX0nhvSl8T0nChpVutBa3uzUptL4qmpZ7VamxcajIARYzlViAkxmjaQAJkh\nAgLyorzt+4cn0+DzbGbPsGGYne8na9aSH/t1ZvPLs/f8nudRVFVVQUREExbg6wMgIjILJlQiIoMw\noRIRGYQJlYjIIEyoREQGYUIlIjLIuAm1ubkZa9asQUpKClJTU7F7924AwPbt2xEbGwu73Q673Y7y\n8vIpOVgioulMGa8O1el0wul0wmazobe3F7fffjsOHz6MgwcPIiwsDFu3bp3KYyUimtZuGO+XVqsV\nVqsVABAaGorFixejtbUVAMD+AEREY+l+htrU1IS6ujosW7YMALBnzx6kp6ejqKgIXV1dk3aARET+\nQldC7e3txQMPPIDS0lKEhoZi8+bNaGxsRH19PWJiYrBt27bJPk4ioulPdWNwcFBdu3atumvXLunv\nGxsb1dTUVCGecGuiCoAvvvjiy+0rMTHRXSpyC4Ezde8vMjJywvuTGfcZqqqqKCoqQnJyMrZs2eKK\nOxwOxMTEAAAOHTqEtLQ0Yd3Gj/+GgSF1vM271TMwJMSCAsVG9dDIqHT97v5hyfqKEIsKm6H7mJ59\n5sf44ZPbdS/vL/7tx9v94rxk1wQgvy6e3v4UtvyfHwrxkJmButbvHxyR7isqVP/1Mhn85bPyRHCQ\n+HfpsZGrmGX/n7oWvVS3R76JkRFkZGQgNjYWf/zjH9HZ2Ylvfetb+OSTTxAfH4+DBw8iIiJCc7vj\n3vLX1NRg//79qKysdJVIvfHGG3j88cexZMkSpKeno7q6Grt27dJ1EkREk0pR9L00lJaWIjk5Gcp/\nL1NSUoKcnBxcuHAB2dnZKCkpGXf347ZQs7KyMDoqtv7uvfdePadGRDS1FO/7KrW0tOD111/HD37w\nA/zsZz8DABw5cgTV1dUAgIKCAqxevXrcpDpuQiXRylWrfX0Ik8KM57XsH1b6+hAmhRk/K8MEiI9z\n9Hrsscfw3HPPoaenxxVra2uDxWIBAFgsFrS1tY27DSZUD5n1YjbjeTGhfgVp3M6P9HyK0Z5mzdVe\nffVVREdHw263o6qqSmPTiutRgBYmVCIyD41b/sDweASGx7t+HvnsnTG/P3nyJI4cOYLXX38dV65c\nQU9PD/Lz82GxWOB0OmG1WuFwOBAdHT3u7jk4ChGZh5dfSu3YsQPNzc1obGzEK6+8grvuugsvv/wy\n1q9fj7KyMgBAWVkZNmzYMO7umVCJyDyUAH0vd5v576RbXFyMiooKJCUl4dixYyguLh5/PVWdnE75\niqLorkMd0Kj3k9UBOruuCDGtOtSeQbFmMS48RIh5Uoc6JzhI97Kkn+wzlF0XwTPkXzp0XB4UYj0D\nYh2yJ/vXqjeVXS+yOlbSLzhImfD4IIqiYNby7+ta9srJHZMyHgmfoRKReUygbMoITKhEZB4TKJsy\nAhMqEZkHW6hERAYJMGBMgAlgQiUi82ALlYjIIG56Mk02JlQiMg+2UIEbJGOUAkCIpOZQFusekNeh\nvn/xshBz9ol1rFeG5euvvc0ixGT1hlrHz9pE/WTv1XCgWCeoVbP8rkOchidypryOtKmnT4jNukH2\n7XCodH1ZfWtcVLAQ43XhA2yhEhEZhGVTREQG4S0/EZFBeMtPRGQQtlCJiAzCFioRkUHYQiUiMggT\nKhGRQb5qZVOywuzufnEgaABwdotF+AcbnBPb/5BYxL8i7kbd+7dGzBJiWgNc08TI3td3mjqky/7t\nUr8kKosBiZHiIOPdV8VrUOtzlcXbJQNc36QxcHmQb//mzY3PUImIDOLjW372gSMi8/Bykr4rV64g\nMzMTNpsNycnJeOKJJwAA27dvR2xsLOx2O+x2O8rLy8fdPVuoRGQaipe3/LNmzUJlZSVCQkIwPDyM\nrKwsnDhxAoqiYOvWrdi6dauu7TChEpFpeJtQASAk5Nqz9cHBQYyMjCAyMhIAPJrMj7f8RGQaSoCi\n6yUzOjoKm80Gi8WCNWvWICUlBQCwZ88epKeno6ioCF1d4qhmX8aESkSmoSiK9DVy8UMMNhx2vWQC\nAgJQX1+PlpYWHD9+HFVVVdi8eTMaGxtRX1+PmJgYbNu2bdz985afiExD65Y/yJKMIEuy6+ehD/6g\nuY3w8HDcd999+Mtf/oLVq1e74o8++ihyc3PH3T9bqERkGlot1Otf12tvb3fdzg8MDKCiogJ2ux1O\n59/r3g8dOoS0tLRx9z/lLVRZAfSwRgH1W03tQiw4SPx/wF8aL0nXj5wtFlYfOvaZEOtft0C6fm5S\ntBBr7hgQYtaImdL1Sb/Gz8VR9C/2XhViwdKR9YGWLvG6WhQtjqIPAP/078eF2PI7b5Us2SZd/9Zo\ncST/4jWJQixYMrsETTIvv5NyOBwoKCjA6OgoRkdHkZ+fj+zsbHznO99BfX09FEVBQkICnn/++XG3\nw1t+IjINb7/lT0tLw5kzZ4T4Sy+95NF2mFCJyDQmUjZlBCZUIjKNgACONkVEZAzfNlDH/5a/ubnZ\nVeCampqK3bt3AwA6OzuRk5ODpKQkrF271m2xKxHRVPD2W36jjJtQg4KCsGvXLjQ0NODUqVPYu3cv\nzp07h5KSEuTk5ODChQvIzs5GSUnJpB0gEZFe0zqhWq1W2Gw2AEBoaCgWL16M1tZWHDlyBAUFBQCA\ngoICHD4s73lARDSVfJ1QdT9DbWpqQl1dHTIzM9HW1gaLxQIAsFgsaGuT1+sREU0pHz9D1ZVQe3t7\nkZeXh9LSUoSFhY353XgZ/+ntT7n+vWLlKqxYtVq63Bt/lSfk/2oUn8129YoF3B0dYlE4AFyNmi3E\nkpJuEmJ/kxSVA8CnMeKI7z2D4sjuQYHy84+SjNgeFPjV7pymNQr+DZL35dJV8bN+8c8tuvfV0NIt\njb+wZaUQ+5eX64VYsuRaAYAHU6xCTDaTwJ3xUdL1ZQX/X7Xr4nh1FY5XVxm+3WlfNjU0NIS8vDzk\n5+djw4YNAK61Sp1OJ6xWKxwOB6KjxR5FAPD9Hz0ljRPRV9vKVaux8ksNrGf+9WlDtuvrsqlx966q\nKoqKipCcnIwtW7a44uvXr0dZWRkAoKyszJVoiYh8aVo/Q62pqcH+/fuxZMkS2O12AMDOnTtRXFyM\nBx98EPv27UN8fDwOHjw4aQdIRKTbdH6GmpWVhdFR+TOvo0ePTsoBERF5a9o/QyUi8hdMqEREBmFC\nJSIyynR+hkpE5E98XTY1qQm1Z2BYiFU2fi7EahvlBdgRkhH3ZaOlBy+UF2A3tPboWl+rAPytv4oz\nAWTfFinEBgZHpOsPj8imnxW/5DNDUbesYF92XrJr4lpc7DBRLenYIfv8ACBqtngpV7wnXmsA8Iu3\nPxFi38iKF2J9Gp/r/639VIjdtUC8Loaknz8gn0eAjMBbfiIig/g6ofp/04iI6AuKztd1rly5gszM\nTNhsNiQnJ+OJJ54A4PlQpUyoRGQa3vaUmjVrFiorK1FfX4+zZ8+isrISJ06c8HioUiZUIjKNiXQ9\nDQkJAQAMDg5iZGQEkZGRHg9VyoRKRKahKPpeMqOjo7DZbLBYLK6ZSjwdqpRfShGRaQQEyLNl/6dn\nMdB81s26Aaivr0d3dzfWrVuHysrKMb/XM7AKEyoRmYZWwpt9Szpm35Lu+rnz5H9obiM8PBz33Xcf\nTp8+rXuo0i/wlp+ITMPbW/729nbXN/gDAwOoqKiA3W73eKjSSW2hykayv9gnFnBrmR8xS4iFzBD/\nH/DppavS9Vcm3ahrP5198lLr//zDu0Ls0AzxLat9dr2u/QDmKOKXkRfxi5/10LB89DJZx4DgIHGb\nss4aAHDPP9zi7hBdjp8XR9eX7UtLZW2zEHvYFiPEXvvQIV1/TYLYyrFGzBRiZr1WtGZtMILWLb87\nDocDBQUFGB0dxejoKPLz85GdnQ273e7RUKW85Sci0/C2rj8tLQ1nzpwR4jfeeKNHQ5UyoRKRafi6\npxQTKhGZhre3/EZhQiUi02ALlYjIID7Op0yoRGQebKESERmELVQiIoOYuoVa3yKOHSgrwg+XjMwP\nAANDYgGwrLB/k32+7mMalBQVJ0aGSJddEL1UiL3XclmI/f6Dz6Tr5y4Ui71vCpOfq0zwjEDdy/qa\n3mLtdx3y8SQPvS+Orn/07Y+FWEFusnT9X9e2CLGvp8hncvj1w3Yh9rfPe4WYs/+KdP2+pXFC7HcN\n4vHnpci7Kco6PMgK+82qoUXeOcMIbKESERmEZVNERAYx9S0/EdFU4i0/EZFB2EIlIjIIW6hERAZh\nC5WIyCBsoRIRGSQgwLeDck9qQq1uuiTEzrd0C7GZGgXseV+zCrFFN4YJsahQeVG0rFi64/KgELvk\nEGMAcE+iWJj9X41iYXpH37B0/TqHeP5LA8VZBKI0iv1lxfLTdRT3ngHxPei/OiLE3pcU0ANA9Z/F\nUfCf/I5YgK8lN0n8rMKDg6TL9vSLhfVzJdfQbMnsDAAQkSJuV3aty2IA8E933CzEZJ+rVmeJ6XoN\nyMjO4dbo2ZO2P7ZQiYgM4utnqP7zvzoiIje8naSvubkZa9asQUpKClJTU7F7924AwPbt2xEbGwu7\n3Q673Y7y8vJx988WKhGZhrct1KCgIOzatQs2mw29vb24/fbbkZOTA0VRsHXrVmzdulXXdty2UAsL\nC2GxWJCWluaKeZq1iYimgrctVKvVCpvNBgAIDQ3F4sWL0draCgBQVVX3/t0m1E2bNgkJ84usXVdX\nh7q6Otxzzz26d0hENFkCFEXXazxNTU2oq6vDsmXLAAB79uxBeno6ioqK0NUlHy3NtX93B7hixQpE\nRkYKcU+yNhHRVAgIUHS9tPT29uKBBx5AaWkpQkNDsXnzZjQ2NqK+vh4xMTHYtm3buPv3+hnqnj17\n8NJLLyEjIwM//elPERER4e2miIgMoZUrOy6cRueFM+OuOzQ0hLy8PHz729/Ghg0bAADR0X8vx3v0\n0UeRm5s7/v49O9xrPM3aRERTQVEU6eumhRlIyv1n1+t6qqqiqKgIycnJ2LJliyvucDhc/z506NCY\n75JkvGqh6s3aLz73jOvfYQk2hCXYEGsVC/PvSJC3bm+3io8aokLFInhrxCy3x/yF8BCxKDs5Oly6\nrKN7QIjdGh0qxGrOt0vXXzg3WIgNjYiPSmRF8YD8XKeSrCh7WHL8gLyIX9axQdYxAgBWZYqj4Ms6\ncWgV28dFie+11owHss4dQTeIbYv+QfGctPzmTx8JsaQk+YwBslkn7pgnXoN33CJ2AgGAoCmcyGGi\nnUtk13ZzRz/OnDqBM38+MaFjk/G2DLWmpgb79+/HkiVLYLdf61CyY8cOHDhwAPX19VAUBQkJCXj+\n+efH3Y5XCdXhcCAm5tr0HuNl7Xl3fdebzRORyX1tWRa+tizL9fO+Pc8asl0F3mXUrKwsjI6K//O4\n9957PdqO24S6ceNGVFdXo729HXFxcXj66adRVVXlUdYmIpoKPp4BxX1CPXDggBArLCyclIMhIpoI\nX3c9ZU8pIjKNQE7SR0RkDI42RURkEN7yExEZhC1UIiKDuOunP9mmPKHKCuOz4+UF0LICYllhvidu\nCBTf8Js0RszvGRBHdt+wSBwZvrNPPuL/6w1iwX+7ZLT4f0yeJ11/QFJYrlWsPlW0RpGXHetbfxUL\n+1Pmz5GuL+sE4ey/IsTSQuWdMGQdJuZoFKDLOoLIzmtoWH5dyDpcPPFQqhD75NJV6fqvnf5MiMlm\nh3B2iecPALGSTgyTNYq/3pkEZJ8/cK2I/3pvNck7whjBxw1UtlCJyDz4LT8RkUH4pRQRkUH4pRQR\nkUHYQiUiMsi078tPROQv2EIlIjIIy6aIiAxi6rKpqBtDhNg9C6LE5UJnSte3RojxyShg1ipWlxVw\nzxkROxbctUCcWQAA/vcv3xFi4bNThFjtnE7p+ktjxRHbtY5VVvDvyXultd3ryUa7B4CjjZ/rWr+9\nT+zYAABRs8VLMXeh2OFDdk0A8pkEtIrN9b5XURodPmT7ks0u8LszTun6js8uC7HfnxOX/Xb6fOn6\nslHwQyTn5EknEL2fv9b+tTohXLgknusvf/e+7n15irf8REQGYdkUEZFBfN2Xf3I6ABMR+YCi6Htd\nr7m5GWvWrEFKSgpSU1Oxe/duAEBnZydycnKQlJSEtWvXoqtLPsnkF5hQicg0tKaRvv51vaCgIOza\ntQsNDQ04deoU9u7di3PnzqGkpAQ5OTm4cOECsrOzUVJSMu7+mVCJyDQCdL6uZ7VaYbPZAAChoaFY\nvHgxWltbceTIERQUFAAACgoKcPjw4XH3z2eoRGQaRpRNNTU1oa6uDpmZmWhra4PFYgEAWCwWtLW1\njbsuEyoRmYZWPm1+rxYt79e6Xb+3txd5eXkoLS1FWNjYUjitxwVfxoRKRKahlfBuXpKJm5dkun4+\n9cpeYZmhoSHk5eUhPz8fGzZsAHCtVep0OmG1WuFwOBAdLQ4E/mWTmlAzEsSC96S5YgG0VgG13sJ0\nraJk2frSWLAnBfBiUff5iwPSZb9+9yIh1i0Z3f8jyajmALA6ca64fr9YVA1onau4nNZ7JStWb5cU\n8Td3y4/1bGuvEFsQLXbsOH6+Q7r+luXxQkxrJgUZ2UwME+0EorW+7H1NixVnEihaHiddvyVV/Fxr\nG7t1H5esc8UcyXvtSbG+7PPX2oasE0FDu/z4f18v3iLfliQmpVZ3B6iTt3f8qqqiqKgIycnJ2LJl\niyu+fv16lJWV4fHHH0dZWZkr0WphC5WITMPbMtSamhrs378fS5Ysgd1uBwDs3LkTxcXFePDBB7Fv\n3z7Ex8fj4MGD426HCZWITMPbwv6srCyMjspb9EePHtW9HSZUIjINX9eBMqESkWmYerQpIqKpxMFR\niIgMwilQiIgM4uvRpphQicg0TH3LLxuFXVYYr1VALRtxfaIj03tiTrA4Or/MPy62SuMdA1eF2O8a\nxJHtO/rkxfofOsTRzmfPkH9k4SFiPBgTG7G9Z0AcXf8XNZ9I14+YLRbhy4r4H1k6T7q+7HP1pFjf\nkyL2qWKPkc/k8FGHWMbe8Nd2IfbvkvcUALJvE7cre/9k1wQg/xuUFesDQP9V8W9wYFDsWKDVuUV2\nXdyRECHEqqVre463/EREBlF8PE0fEyoRmcYNPi5EZUIlItPw9SR9bvN5YWEhLBYL0tLSXDFPpwUg\nIpoKAYq+16Tt390CmzZtQnl5+ZiYp9MCEBFNBW/nlDKK24S6YsUKREaO/VbR02kBiIimQoCi6HpN\nFq+eoXo6LQAR0VTw+7IpPdMCEBFNhUB/7Cmld1qAjw79yvXvjDtX4I47V8AaMVNYTlbAD8iLlaej\nW6NnS+N9LWLBfluXWADd1SsWSgPAspvniEH5gPlSUaHi+xoyU/6eOrvETgiyjgktTrGzAQDcuiRG\niM2PmCXE7oy7Sbq+1nHpNVmdO/SSXavDGp0NHkmPFWKyThBNn4uzIACAVfJeyzphaP1dyWbIOC/p\nRALI39e/dcmPS8ZxSbze50fMwidn/4xPzrqf48lTvm7beZVQ9U4LsHnr9yd0cERkTrcsycQtX5rj\n6cRvfm7Idn19y+/2f+sbN27E8uXLcf78ecTFxeHFF19EcXExKioqkJSUhGPHjqG4uHgqjpWIaFzT\n/kupAwcOSOOeTAtARDQVvM2VhYWFeO211xAdHY333nsPALB9+3b86le/wty51yZV3LlzJ+65555x\nt+PrGQOIiAzjbQtVVm+vKAq2bt2Kuro61NXVuU2mABMqEZmIt4X9snp74Nr00p5gQiUi0whUFF0v\nvfbs2YP09HQUFRXp6mLPwVGIyDS0UuW50+/gw9PveLStzZs348knnwQA/OhHP8K2bduwb9++8fev\netqm1UlRFLRcEusYZQPZ+ku9KSAfyLjjsryOVDaQ7wefdwux9zXqDfsHxX2FzJDfVNyTKNYCy97r\nfo3axN+fcwqxhtYeISYbMBiQ15yuihdvoZLmhknXl9VG+rq21BOeDHDd0CK+rz2DYh3ptt/US9dP\nvEV8X1cm3SjEVt0sr/mV1RdHBYv14QDQclksfK6VHH9r1xXp+rI61LyviQOy/4874z2+vb6eoih4\n+S/NupbNz4gT9tfU1ITc3FzXl1J6f/dl/nPFEhG5oeh86eFwOFz/PnTo0JgR97Twlp+ITMPbsqmN\nGzeiuroa7e3tiIuLw9NPP42qqirU19dDURQkJCTg+eefd7sdJlQiMg1vxxWR1dsXFhZ6vB0mVCIy\nDV8/w2RCJSLTmMxupXowoRKRafh6KFEmVCIyDd7yExEZxNQt1DnB4ub9qVhbL1lROiAftNkSIhbA\nX42SF4XvOykWKcdEBkuXXRAldg6ImBkkxKqbLknX1yrMFvYTHSKN3zEvXIjNChQ7FoSHiMdkBp5c\n19Zw8RqA2N8D82IkA4wD+NPe/yfEvv7LfxFip53yzzo+XPwMG9olBwAgXHINRc0W/67/dFocIBsA\nHl55ixBbe5tFuqwRfD13CFuoRGQafjliPxHRdBTg4zYqEyoRmQbLpoiIDMJbfiIig/CWn4jIIGyh\nEhEZhAmViMggCm/5/YsnBdw3aRT8X6+tX15UHx8dKm5ztrww/l2HWNhf+Z44Cr+WGTPESyHeIu5/\nQZS8sH9gWJwJ4I5bxFHk/Wl2hsmi1RHketvW3CqNZyT8LyF2ukX8/E+++5l0/eXp84RYd5981olP\n2y4LMcdnYuzhdQvk+5ovXgOymSyMEsAWKhGRMVg2RURkEN7yExEZxNe3/OYbqYSIvrIUnf9dr7Cw\nEBaLZcxEfJ2dncjJyUFSUhLWrl2Lrq4ut/tnQiUi01AUfa/rbdq0CeXl5WNiJSUlyMnJwYULF5Cd\nnY2SkhK3+2dCJSLT8HYa6RUrViAyMnJM7MiRIygoKAAAFBQU4PDhw273z2eoRGQagQZ+y9/W1gaL\n5drYrRaLBW1tbW7XYUIlIvPQyKdnTp3AmT+f8H6ziqJrNoBJTahmHJ3fE7IidmvETCHW0SsZwR3y\nIv72viHpsudbxBHXk+IihFiXRgF3i1Ms1l6+bL4Q+6ijX7p+bpJViA2NiDMRBIOF/bK/C1mxuzVU\nPjvDwJA4On7T52Jh//rl4mj5ANDQ2iPE3n1f3vpKSrpJiKVlRQmxdYnicoB8dgJrhPx6N4JW2dTt\ny1bg9mUrXD/v2/Os221ZLBY4nU5YrVY4HA5ER0e7XeernfGIyFS8/VJKZv369SgrKwMAlJWVYcOG\nDW7XYUIlItPw9kupjRs3Yvny5Th//jzi4uLw4osvori4GBUVFUhKSsKxY8dQXFzsdv98hkpE5uHl\nd1IHDhyQxo8ePerRdphQicg0/LrraXx8PObMmYPAwEAEBQWhtrbWqOMiIvKYr7ueTiihKoqCqqoq\n3HijOEQXEdGU8+eECgCqOnljGxIRecLXt/wT+pZfURTcfffdyMjIwAsvvGDUMRERecXIsilvTKiF\nWlNTg5iYGFy8eBE5OTlYtGgRVqz4e/Hsv/14u+vfK1etxspVqyeyO1MYlhRwhwfLR+FfOFcs7B4Y\nEovlAWCmpBOB49KAENMaMf+f7xZHh78o6UQgK+DX2i5H59dP1uFjYFCcBQEANiwSC8xPffi5EPvT\n6Vbd+8+0i6P4A8Cx4x8JsZUPf033dsNDxGt7aGQUb1dX4e3j1bq3o5eP7/gnllBjYmIAAHPnzsX9\n99+P2traMQn1h09un9DBEZE5rVi1Giu+1MAqeebHxmzYX8dD7e/vx+XL17or9vX14c033xwzliAR\n0VTzdjxUo3jdQm1ra8P9998PABgeHsYjjzyCtWvXGnZgRESe8tuyqYSEBNTX1xt5LEREE+OvCZWI\naLrxddkUEyoRmYaPZ5FmQiUi8/DrsikiomnFxxlVUSep76iiKBgYYrfU68lGse8ZGJYu23FZPrq+\nzM9OfCzELjSL095+d6V8FPcPPxc7ASy7eY4Qy0mySNdnEf/EyK4LrcJ+mQ8d4owLv3jnE+myidGz\nhdiq+EjJksCsQPFzvTIiHpctVpwdApBfF7IZC4KDlAl3Y1cUBec+69O17OJ5syel2zxbqERkGn5b\nNkVENO0woRIRGYNlU0REBplI2ZQRA+YzoRKRaUykfWrEgPlMqERkHhO845/oN/+cRpqITGMio00Z\nMWA+W6hEZBoTKZtyN2C+Hkyo00BU6Axp3Nl1RYjJCsAB4OuLbxJiD9tihFhTd790/e/aY8c7RLf7\nDwYL+/XSeg+vp9VZQlbw39QjFrQXLpV/ps4+8bqaM0M+a0TIjImlCNkMFUGTealoJNRTJ47jVM3x\ncVd1N2C+HkyoRGQaWrfzd2atwp1Zq1w/lz73zJjf9/f3Y2RkBGFhYa4B85966imP98+ESkSm4W3Z\nlFED5jOhEpFpePsI1agB85lQicg0OB4qEZFh2PWUiMgQHG2KiMggvOUnIjIIR5v6ipGNVq5V6J0S\nK46Y39ErH8Vftt05wfJibZmoMLFzQVCgeHFyZP6Jk31WMpqdKCSfwZ1xYseOkJnyzyrhaqgQc3SL\nMzYAQJzO68KTa21SsYVKRGQMTtJHRGQQPkMlIjKI4uOMyoRKRKbBW34iIoPwlp+IyCAsmyIiMoiv\nW6icAoWIyCBsoU4DWoXePQNDQixEo7BeNur/p53i6PwpMeHS9YeGxSLyqNBZ4nI6R5uniZONdg/I\nC/tvkhTgd/eL1w8AdPReFWJzQ2dKl5VdF9O5HebrFioTKhGZRgDLpoiIjMGyKSIio/jrl1Ll5eVY\ntGgRFixYgGeffdbIYyIi8oqi8z8ZI3KaVwl1ZGQE3/ve91BeXo4PPvgABw4cwLlz57w6AH9zvLrK\n14cwKdxNseuPzPpZmfW8jKAo+l7XMyqneZVQa2trcdtttyE+Ph5BQUF46KGH8Ic//MGbTfkds17M\nTKj+w6w+ae3CAAAEmElEQVTnZQRF5+t6RuU0rxJqa2sr4uLiXD/HxsaitbXVm00RERnHy4xqVE7z\n6kspX4/oQkQk423ZlFE5zauEOn/+fDQ3N7t+bm5uRmxs7JhlEhMTERxkzsT7zL8+7etDmBSlzz3j\n60MwnFk/K7OdV2JioiHb0ZtzQkPHzlqgJ6fpoaiqKu+OMY7h4WEsXLgQb731FubNm4elS5fiwIED\nWLx4sccHQETka0blNK9aqDfccAN+/vOfY926dRgZGUFRURGTKRH5LaNymlctVCIiEk3KKAdmKfov\nLCyExWJBWlqaK9bZ2YmcnBwkJSVh7dq16Orq8uEReq65uRlr1qxBSkoKUlNTsXv3bgD+f15XrlxB\nZmYmbDYbkpOT8cQTTwDw//MCrtVI2u125ObmAjDHOcXHx2PJkiWw2+1YunQpAHOcl+EJ1UxF/5s2\nbUJ5efmYWElJCXJycnDhwgVkZ2ejpKTER0fnnaCgIOzatQsNDQ04deoU9u7di3Pnzvn9ec2aNQuV\nlZWor6/H2bNnUVlZiRMnTvj9eQFAaWkpkpOTXd9Em+GcFEVBVVUV6urqUFtbC8Ac5wXVYCdPnlTX\nrVvn+nnnzp3qzp07jd7NlGlsbFRTU1NdPy9cuFB1Op2qqqqqw+FQFy5c6KtDM8Q3v/lNtaKiwlTn\n1dfXp2ZkZKjvv/++359Xc3Ozmp2drR47dkz9xje+oaqqOa7B+Ph4tb29fUzMDOdleAvV7EX/bW1t\nsFgsAACLxYK2tjYfH5H3mpqaUFdXh8zMTFOc1+joKGw2GywWi+uxhr+f12OPPYbnnnsOAQF//1P1\n93MCrrVQ7777bmRkZOCFF14AYI7zMny0qa9S0b+iKH57vr29vcjLy0NpaSnCwsLG/M5fzysgIAD1\n9fXo7u7GunXrUFlZOeb3/nZer776KqKjo2G321FVVSVdxt/O6Qs1NTWIiYnBxYsXkZOTg0WLFo35\nvb+el+EtVKMKZKcri8UCp9MJAHA4HIiOjvbxEXluaGgIeXl5yM/Px4YNGwCY47y+EB4ejvvuuw+n\nT5/26/M6efIkjhw5goSEBGzcuBHHjh1Dfn6+X5/TF2JiYgAAc+fOxf3334/a2lpTnJfhCTUjIwMf\nffQRmpqaMDg4iN/+9rdYv3690bvxmfXr16OsrAwAUFZW5kpI/kJVVRQVFSE5ORlbtmxxxf39vNrb\n213fCg8MDKCiogJ2u92vz2vHjh1obm5GY2MjXnnlFdx11114+eWX/fqcAKC/vx+XL18GAPT19eHN\nN99EWlqa358XAOO/lFJVVX399dfVpKQkNTExUd2xY8dk7GJKPPTQQ2pMTIwaFBSkxsbGqr/+9a/V\njo4ONTs7W12wYIGak5OjXrp0ydeH6ZG3335bVRRFTU9PV202m2qz2dQ33njD78/r7Nmzqt1uV9PT\n09W0tDT1Jz/5iaqqqt+f1xeqqqrU3NxcVVX9/5w+/vhjNT09XU1PT1dTUlJcOcLfz0tVVZWF/URE\nBpm+0xcSEfkZJlQiIoMwoRIRGYQJlYjIIEyoREQGYUIlIjIIEyoRkUGYUImIDPL/AR/q1YjRzypj\nAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x4382990>"
]
}
],
"prompt_number": 61
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment