Last active
July 8, 2024 06:21
-
-
Save mattharrison/ddbd73c13ad0e76ec638311c669bc96b to your computer and use it in GitHub Desktop.
Idiomatic Pandas: 5 tips for better pandas code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Idiomatic Pandas\n", | |
"## 5 Tips for Better Pandas Code" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## About Matt Harrison @\\_\\_mharrison\\_\\_\n", | |
"\n", | |
"* Author of Pandas 1.x Cookbook, Machine Learning Pocket Reference, and Learning the Pandas Library.\n", | |
"* Corporate trainer at MetaSnake. Taught Pandas to 1000's of students." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<img src=\"https://d31ezp3r8jwmks.cloudfront.net/bqr8mz52iamflifihoc7086xc79c\"/>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Practice this on your data!\n", | |
"* 4 two hour sessions\n", | |
"* Coming soon!\n", | |
"* Follow on Twitter @\\_\\_mharrison\\_\\_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Outline\n", | |
"\n", | |
"* Load Data\n", | |
"* Types\n", | |
"* Chaining\n", | |
"* Mutation\n", | |
"* Apply\n", | |
"* Aggregation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"from IPython.display import display\n", | |
"import numpy as np\n", | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'1.3.2'" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pd.__version__" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"pd.options.display.min_rows = 20" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/home/matt/envs/menv/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3418: DtypeWarning: Columns (68,70,71,72,73,74,76,79) have mixed types.Specify dtype option on import or set low_memory=False.\n", | |
" exec(code_obj, self.user_global_ns, self.user_ns)\n" | |
] | |
} | |
], | |
"source": [ | |
"autos = pd.read_csv('https://github.com/mattharrison/datasets/raw/master/data/vehicles.csv.zip')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>barrels08</th>\n", | |
" <th>barrelsA08</th>\n", | |
" <th>charge120</th>\n", | |
" <th>charge240</th>\n", | |
" <th>city08</th>\n", | |
" <th>city08U</th>\n", | |
" <th>cityA08</th>\n", | |
" <th>cityA08U</th>\n", | |
" <th>cityCD</th>\n", | |
" <th>cityE</th>\n", | |
" <th>...</th>\n", | |
" <th>mfrCode</th>\n", | |
" <th>c240Dscr</th>\n", | |
" <th>charge240b</th>\n", | |
" <th>c240bDscr</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>modifiedOn</th>\n", | |
" <th>startStop</th>\n", | |
" <th>phevCity</th>\n", | |
" <th>phevHwy</th>\n", | |
" <th>phevComb</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>15.695714</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>19</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>29.964545</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>9</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>12.207778</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>23</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>29.964545</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>10</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17.347895</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>17</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>14.982273</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>21</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>13.184400</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>22</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>13.733750</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>23</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>12.677308</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>23</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>13.184400</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>23</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>16.480500</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>18</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>12.677308</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>23</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>13.733750</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>21</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>11.771786</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>24</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>13.184400</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>21</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>14.982273</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>19</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>14.330870</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>20</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>15.695714</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>18</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>15.695714</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>18</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>18.311667</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>16</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 83 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" barrels08 barrelsA08 charge120 charge240 city08 city08U cityA08 \\\n", | |
"0 15.695714 0.0 0.0 0.0 19 0.0 0 \n", | |
"1 29.964545 0.0 0.0 0.0 9 0.0 0 \n", | |
"2 12.207778 0.0 0.0 0.0 23 0.0 0 \n", | |
"3 29.964545 0.0 0.0 0.0 10 0.0 0 \n", | |
"4 17.347895 0.0 0.0 0.0 17 0.0 0 \n", | |
"5 14.982273 0.0 0.0 0.0 21 0.0 0 \n", | |
"6 13.184400 0.0 0.0 0.0 22 0.0 0 \n", | |
"7 13.733750 0.0 0.0 0.0 23 0.0 0 \n", | |
"8 12.677308 0.0 0.0 0.0 23 0.0 0 \n", | |
"9 13.184400 0.0 0.0 0.0 23 0.0 0 \n", | |
"... ... ... ... ... ... ... ... \n", | |
"41134 16.480500 0.0 0.0 0.0 18 0.0 0 \n", | |
"41135 12.677308 0.0 0.0 0.0 23 0.0 0 \n", | |
"41136 13.733750 0.0 0.0 0.0 21 0.0 0 \n", | |
"41137 11.771786 0.0 0.0 0.0 24 0.0 0 \n", | |
"41138 13.184400 0.0 0.0 0.0 21 0.0 0 \n", | |
"41139 14.982273 0.0 0.0 0.0 19 0.0 0 \n", | |
"41140 14.330870 0.0 0.0 0.0 20 0.0 0 \n", | |
"41141 15.695714 0.0 0.0 0.0 18 0.0 0 \n", | |
"41142 15.695714 0.0 0.0 0.0 18 0.0 0 \n", | |
"41143 18.311667 0.0 0.0 0.0 16 0.0 0 \n", | |
"\n", | |
" cityA08U cityCD cityE ... mfrCode c240Dscr charge240b c240bDscr \\\n", | |
"0 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"1 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"2 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"3 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"4 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"5 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"6 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"7 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"8 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"9 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"... ... ... ... ... ... ... ... ... \n", | |
"41134 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41135 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41136 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41137 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41138 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41139 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41140 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41141 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41142 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"41143 0.0 0.0 0.0 ... NaN NaN 0.0 NaN \n", | |
"\n", | |
" createdOn modifiedOn startStop \\\n", | |
"0 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"1 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"2 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"3 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"4 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"5 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"6 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"7 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"8 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"9 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"... ... ... ... \n", | |
"41134 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41135 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41136 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41137 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41138 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41139 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41140 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41141 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41142 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"41143 Tue Jan 01 00:00:00 EST 2013 Tue Jan 01 00:00:00 EST 2013 NaN \n", | |
"\n", | |
" phevCity phevHwy phevComb \n", | |
"0 0 0 0 \n", | |
"1 0 0 0 \n", | |
"2 0 0 0 \n", | |
"3 0 0 0 \n", | |
"4 0 0 0 \n", | |
"5 0 0 0 \n", | |
"6 0 0 0 \n", | |
"7 0 0 0 \n", | |
"8 0 0 0 \n", | |
"9 0 0 0 \n", | |
"... ... ... ... \n", | |
"41134 0 0 0 \n", | |
"41135 0 0 0 \n", | |
"41136 0 0 0 \n", | |
"41137 0 0 0 \n", | |
"41138 0 0 0 \n", | |
"41139 0 0 0 \n", | |
"41140 0 0 0 \n", | |
"41141 0 0 0 \n", | |
"41142 0 0 0 \n", | |
"41143 0 0 0 \n", | |
"\n", | |
"[41144 rows x 83 columns]" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Index(['barrels08', 'barrelsA08', 'charge120', 'charge240', 'city08',\n", | |
" 'city08U', 'cityA08', 'cityA08U', 'cityCD', 'cityE', 'cityUF', 'co2',\n", | |
" 'co2A', 'co2TailpipeAGpm', 'co2TailpipeGpm', 'comb08', 'comb08U',\n", | |
" 'combA08', 'combA08U', 'combE', 'combinedCD', 'combinedUF', 'cylinders',\n", | |
" 'displ', 'drive', 'engId', 'eng_dscr', 'feScore', 'fuelCost08',\n", | |
" 'fuelCostA08', 'fuelType', 'fuelType1', 'ghgScore', 'ghgScoreA',\n", | |
" 'highway08', 'highway08U', 'highwayA08', 'highwayA08U', 'highwayCD',\n", | |
" 'highwayE', 'highwayUF', 'hlv', 'hpv', 'id', 'lv2', 'lv4', 'make',\n", | |
" 'model', 'mpgData', 'phevBlended', 'pv2', 'pv4', 'range', 'rangeCity',\n", | |
" 'rangeCityA', 'rangeHwy', 'rangeHwyA', 'trany', 'UCity', 'UCityA',\n", | |
" 'UHighway', 'UHighwayA', 'VClass', 'year', 'youSaveSpend', 'guzzler',\n", | |
" 'trans_dscr', 'tCharger', 'sCharger', 'atvType', 'fuelType2', 'rangeA',\n", | |
" 'evMotor', 'mfrCode', 'c240Dscr', 'charge240b', 'c240bDscr',\n", | |
" 'createdOn', 'modifiedOn', 'startStop', 'phevCity', 'phevHwy',\n", | |
" 'phevComb'],\n", | |
" dtype='object')" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos.columns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Types\n", | |
"Getting the right types will enable analysis and correctness." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"cols = ['city08', 'comb08', 'highway08', 'cylinders', 'displ', 'drive', 'eng_dscr', \n", | |
" 'fuelCost08', 'make', 'model', 'trany', 'range', 'createdOn', 'year']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"city08 int64\n", | |
"comb08 int64\n", | |
"highway08 int64\n", | |
"cylinders float64\n", | |
"displ float64\n", | |
"drive object\n", | |
"eng_dscr object\n", | |
"fuelCost08 int64\n", | |
"make object\n", | |
"model object\n", | |
"trany object\n", | |
"range int64\n", | |
"createdOn object\n", | |
"year int64\n", | |
"dtype: object" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos[cols].dtypes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Index 128\n", | |
"city08 329152\n", | |
"comb08 329152\n", | |
"highway08 329152\n", | |
"cylinders 329152\n", | |
"displ 329152\n", | |
"drive 3028369\n", | |
"eng_dscr 2135693\n", | |
"fuelCost08 329152\n", | |
"make 2606267\n", | |
"model 2813134\n", | |
"trany 2933276\n", | |
"range 329152\n", | |
"createdOn 3497240\n", | |
"year 329152\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos[cols].memory_usage(deep=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"19647323" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos[cols].memory_usage(deep=True).sum()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Ints" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>18.369045</td>\n", | |
" <td>20.616396</td>\n", | |
" <td>24.504667</td>\n", | |
" <td>2362.335942</td>\n", | |
" <td>0.793506</td>\n", | |
" <td>2001.535266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>7.905886</td>\n", | |
" <td>7.674535</td>\n", | |
" <td>7.730364</td>\n", | |
" <td>654.981925</td>\n", | |
" <td>13.041592</td>\n", | |
" <td>11.142414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>7.000000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>500.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1984.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>15.000000</td>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>1900.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1991.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>2350.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2002.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>20.000000</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>2700.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2011.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>150.000000</td>\n", | |
" <td>136.000000</td>\n", | |
" <td>124.000000</td>\n", | |
" <td>7400.000000</td>\n", | |
" <td>370.000000</td>\n", | |
" <td>2020.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 fuelCost08 range \\\n", | |
"count 41144.000000 41144.000000 41144.000000 41144.000000 41144.000000 \n", | |
"mean 18.369045 20.616396 24.504667 2362.335942 0.793506 \n", | |
"std 7.905886 7.674535 7.730364 654.981925 13.041592 \n", | |
"min 6.000000 7.000000 9.000000 500.000000 0.000000 \n", | |
"25% 15.000000 17.000000 20.000000 1900.000000 0.000000 \n", | |
"50% 17.000000 20.000000 24.000000 2350.000000 0.000000 \n", | |
"75% 20.000000 23.000000 28.000000 2700.000000 0.000000 \n", | |
"max 150.000000 136.000000 124.000000 7400.000000 370.000000 \n", | |
"\n", | |
" year \n", | |
"count 41144.000000 \n", | |
"mean 2001.535266 \n", | |
"std 11.142414 \n", | |
"min 1984.000000 \n", | |
"25% 1991.000000 \n", | |
"50% 2002.000000 \n", | |
"75% 2011.000000 \n", | |
"max 2020.000000 " | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos[cols].select_dtypes(int).describe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>18.369045</td>\n", | |
" <td>20.616396</td>\n", | |
" <td>24.504667</td>\n", | |
" <td>2362.335942</td>\n", | |
" <td>0.793506</td>\n", | |
" <td>2001.535266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>7.905886</td>\n", | |
" <td>7.674535</td>\n", | |
" <td>7.730364</td>\n", | |
" <td>654.981925</td>\n", | |
" <td>13.041592</td>\n", | |
" <td>11.142414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>7.000000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>500.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1984.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>15.000000</td>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>1900.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1991.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>2350.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2002.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>20.000000</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>2700.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2011.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>150.000000</td>\n", | |
" <td>136.000000</td>\n", | |
" <td>124.000000</td>\n", | |
" <td>7400.000000</td>\n", | |
" <td>370.000000</td>\n", | |
" <td>2020.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 fuelCost08 range \\\n", | |
"count 41144.000000 41144.000000 41144.000000 41144.000000 41144.000000 \n", | |
"mean 18.369045 20.616396 24.504667 2362.335942 0.793506 \n", | |
"std 7.905886 7.674535 7.730364 654.981925 13.041592 \n", | |
"min 6.000000 7.000000 9.000000 500.000000 0.000000 \n", | |
"25% 15.000000 17.000000 20.000000 1900.000000 0.000000 \n", | |
"50% 17.000000 20.000000 24.000000 2350.000000 0.000000 \n", | |
"75% 20.000000 23.000000 28.000000 2700.000000 0.000000 \n", | |
"max 150.000000 136.000000 124.000000 7400.000000 370.000000 \n", | |
"\n", | |
" year \n", | |
"count 41144.000000 \n", | |
"mean 2001.535266 \n", | |
"std 11.142414 \n", | |
"min 1984.000000 \n", | |
"25% 1991.000000 \n", | |
"50% 2002.000000 \n", | |
"75% 2011.000000 \n", | |
"max 2020.000000 " | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# chaining\n", | |
"(autos\n", | |
" [cols]\n", | |
" .select_dtypes(int)\n", | |
" .describe()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"iinfo(min=-128, max=127, dtype=int8)" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# can comb08 be and int8?\n", | |
"np.iinfo(np.int8)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"iinfo(min=-32768, max=32767, dtype=int16)" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.iinfo(np.int16)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>highway08</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>24.504667</td>\n", | |
" <td>2362.335942</td>\n", | |
" <td>0.793506</td>\n", | |
" <td>2001.535266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>7.730364</td>\n", | |
" <td>654.981925</td>\n", | |
" <td>13.041592</td>\n", | |
" <td>11.142414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>9.000000</td>\n", | |
" <td>500.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1984.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>20.000000</td>\n", | |
" <td>1900.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1991.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>24.000000</td>\n", | |
" <td>2350.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2002.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>28.000000</td>\n", | |
" <td>2700.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2011.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>124.000000</td>\n", | |
" <td>7400.000000</td>\n", | |
" <td>370.000000</td>\n", | |
" <td>2020.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" highway08 fuelCost08 range year\n", | |
"count 41144.000000 41144.000000 41144.000000 41144.000000\n", | |
"mean 24.504667 2362.335942 0.793506 2001.535266\n", | |
"std 7.730364 654.981925 13.041592 11.142414\n", | |
"min 9.000000 500.000000 0.000000 1984.000000\n", | |
"25% 20.000000 1900.000000 0.000000 1991.000000\n", | |
"50% 24.000000 2350.000000 0.000000 2002.000000\n", | |
"75% 28.000000 2700.000000 0.000000 2011.000000\n", | |
"max 124.000000 7400.000000 370.000000 2020.000000" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# chaining\n", | |
"(autos\n", | |
" [cols]\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16' })\n", | |
" .select_dtypes([int, 'int8'])\n", | |
" .describe()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>18.369045</td>\n", | |
" <td>20.616396</td>\n", | |
" <td>24.504667</td>\n", | |
" <td>2362.335942</td>\n", | |
" <td>0.793506</td>\n", | |
" <td>2001.535266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>7.905886</td>\n", | |
" <td>7.674535</td>\n", | |
" <td>7.730364</td>\n", | |
" <td>654.981925</td>\n", | |
" <td>13.041592</td>\n", | |
" <td>11.142414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>7.000000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>500.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1984.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>15.000000</td>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>1900.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1991.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>2350.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2002.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>20.000000</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>2700.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2011.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>150.000000</td>\n", | |
" <td>136.000000</td>\n", | |
" <td>124.000000</td>\n", | |
" <td>7400.000000</td>\n", | |
" <td>370.000000</td>\n", | |
" <td>2020.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 fuelCost08 range \\\n", | |
"count 41144.000000 41144.000000 41144.000000 41144.000000 41144.000000 \n", | |
"mean 18.369045 20.616396 24.504667 2362.335942 0.793506 \n", | |
"std 7.905886 7.674535 7.730364 654.981925 13.041592 \n", | |
"min 6.000000 7.000000 9.000000 500.000000 0.000000 \n", | |
"25% 15.000000 17.000000 20.000000 1900.000000 0.000000 \n", | |
"50% 17.000000 20.000000 24.000000 2350.000000 0.000000 \n", | |
"75% 20.000000 23.000000 28.000000 2700.000000 0.000000 \n", | |
"max 150.000000 136.000000 124.000000 7400.000000 370.000000 \n", | |
"\n", | |
" year \n", | |
"count 41144.000000 \n", | |
"mean 2001.535266 \n", | |
"std 11.142414 \n", | |
"min 1984.000000 \n", | |
"25% 1991.000000 \n", | |
"50% 2002.000000 \n", | |
"75% 2011.000000 \n", | |
"max 2020.000000 " | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# chaining\n", | |
"# use 'integer' so see all int-like columns\n", | |
"(autos\n", | |
" [cols]\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16'})\n", | |
" .select_dtypes(['integer']) # see https://numpy.org/doc/stable/reference/arrays.scalars.html\n", | |
" .describe()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"18124995" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# chaining\n", | |
"(autos\n", | |
" [cols]\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16'})\n", | |
" .memory_usage(deep=True)\n", | |
" .sum() # was 19,647,323\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Floats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>12.0</td>\n", | |
" <td>4.9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>8.0</td>\n", | |
" <td>5.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.8</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.8</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.8</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 2 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" cylinders displ\n", | |
"0 4.0 2.0\n", | |
"1 12.0 4.9\n", | |
"2 4.0 2.2\n", | |
"3 8.0 5.2\n", | |
"4 4.0 2.2\n", | |
"5 4.0 1.8\n", | |
"6 4.0 1.8\n", | |
"7 4.0 1.6\n", | |
"8 4.0 1.6\n", | |
"9 4.0 1.8\n", | |
"... ... ...\n", | |
"41134 4.0 2.1\n", | |
"41135 4.0 1.9\n", | |
"41136 4.0 1.9\n", | |
"41137 4.0 1.9\n", | |
"41138 4.0 1.9\n", | |
"41139 4.0 2.2\n", | |
"41140 4.0 2.2\n", | |
"41141 4.0 2.2\n", | |
"41142 4.0 2.2\n", | |
"41143 4.0 2.2\n", | |
"\n", | |
"[41144 rows x 2 columns]" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(autos\n", | |
"[cols]\n", | |
".select_dtypes('float'))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"count 40938.000000\n", | |
"mean 5.717084\n", | |
"std 1.755517\n", | |
"min 2.000000\n", | |
"25% 4.000000\n", | |
"50% 6.000000\n", | |
"75% 6.000000\n", | |
"max 16.000000\n", | |
"Name: cylinders, dtype: float64" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# surprise! cylinders looks int-like\n", | |
"autos.cylinders.describe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"4.0 15938\n", | |
"6.0 14284\n", | |
"8.0 8801\n", | |
"5.0 771\n", | |
"12.0 626\n", | |
"3.0 279\n", | |
"NaN 206\n", | |
"10.0 170\n", | |
"2.0 59\n", | |
"16.0 10\n", | |
"Name: cylinders, dtype: int64" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# opps! missing values\n", | |
"autos.cylinders.value_counts(dropna=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>eng_dscr</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>trany</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>7138</th>\n", | |
" <td>81</td>\n", | |
" <td>85</td>\n", | |
" <td>91</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>800</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Altra EV</td>\n", | |
" <td>NaN</td>\n", | |
" <td>90</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7139</th>\n", | |
" <td>81</td>\n", | |
" <td>72</td>\n", | |
" <td>64</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>900</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>RAV4 EV</td>\n", | |
" <td>NaN</td>\n", | |
" <td>88</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8143</th>\n", | |
" <td>81</td>\n", | |
" <td>72</td>\n", | |
" <td>64</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>900</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>RAV4 EV</td>\n", | |
" <td>NaN</td>\n", | |
" <td>88</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8144</th>\n", | |
" <td>74</td>\n", | |
" <td>65</td>\n", | |
" <td>58</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1000</td>\n", | |
" <td>Ford</td>\n", | |
" <td>Th!nk</td>\n", | |
" <td>NaN</td>\n", | |
" <td>29</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8146</th>\n", | |
" <td>45</td>\n", | |
" <td>39</td>\n", | |
" <td>33</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1700</td>\n", | |
" <td>Ford</td>\n", | |
" <td>Explorer USPS Electric</td>\n", | |
" <td>NaN</td>\n", | |
" <td>38</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8147</th>\n", | |
" <td>84</td>\n", | |
" <td>75</td>\n", | |
" <td>66</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>900</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Hyper-Mini</td>\n", | |
" <td>NaN</td>\n", | |
" <td>33</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9212</th>\n", | |
" <td>87</td>\n", | |
" <td>78</td>\n", | |
" <td>69</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>850</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>RAV4 EV</td>\n", | |
" <td>NaN</td>\n", | |
" <td>95</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2002</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9213</th>\n", | |
" <td>45</td>\n", | |
" <td>39</td>\n", | |
" <td>33</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1700</td>\n", | |
" <td>Ford</td>\n", | |
" <td>Explorer USPS Electric</td>\n", | |
" <td>NaN</td>\n", | |
" <td>38</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2002</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10329</th>\n", | |
" <td>87</td>\n", | |
" <td>78</td>\n", | |
" <td>69</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>850</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>RAV4 EV</td>\n", | |
" <td>NaN</td>\n", | |
" <td>95</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2003</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21413</th>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>4-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1750</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>RX Turbo</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34407</th>\n", | |
" <td>73</td>\n", | |
" <td>72</td>\n", | |
" <td>71</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>900</td>\n", | |
" <td>BYD</td>\n", | |
" <td>e6</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>187</td>\n", | |
" <td>Wed Mar 13 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34408</th>\n", | |
" <td>118</td>\n", | |
" <td>108</td>\n", | |
" <td>97</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>600</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Leaf (62 kW-hr battery pack)</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>226</td>\n", | |
" <td>Wed Mar 13 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34409</th>\n", | |
" <td>114</td>\n", | |
" <td>104</td>\n", | |
" <td>94</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>650</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Leaf SV/SL (62 kW-hr battery pack)</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>215</td>\n", | |
" <td>Wed Mar 13 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34538</th>\n", | |
" <td>74</td>\n", | |
" <td>74</td>\n", | |
" <td>73</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>All-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>900</td>\n", | |
" <td>Audi</td>\n", | |
" <td>e-tron</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>204</td>\n", | |
" <td>Tue Apr 16 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34561</th>\n", | |
" <td>80</td>\n", | |
" <td>76</td>\n", | |
" <td>72</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>4-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>850</td>\n", | |
" <td>Jaguar</td>\n", | |
" <td>I-Pace</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>234</td>\n", | |
" <td>Thu May 02 00:00:00 EDT 2019</td>\n", | |
" <td>2020</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34563</th>\n", | |
" <td>138</td>\n", | |
" <td>131</td>\n", | |
" <td>124</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>500</td>\n", | |
" <td>Tesla</td>\n", | |
" <td>Model 3 Standard Range</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>220</td>\n", | |
" <td>Thu May 02 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34564</th>\n", | |
" <td>140</td>\n", | |
" <td>133</td>\n", | |
" <td>124</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>500</td>\n", | |
" <td>Tesla</td>\n", | |
" <td>Model 3 Standard Range Plus</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>240</td>\n", | |
" <td>Thu May 02 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34565</th>\n", | |
" <td>115</td>\n", | |
" <td>111</td>\n", | |
" <td>107</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>All-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>600</td>\n", | |
" <td>Tesla</td>\n", | |
" <td>Model S Long Range</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>370</td>\n", | |
" <td>Thu May 02 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34566</th>\n", | |
" <td>104</td>\n", | |
" <td>104</td>\n", | |
" <td>104</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>All-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>650</td>\n", | |
" <td>Tesla</td>\n", | |
" <td>Model S Performance (19\" Wheels)</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>345</td>\n", | |
" <td>Thu May 02 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34567</th>\n", | |
" <td>98</td>\n", | |
" <td>97</td>\n", | |
" <td>96</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>All-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>700</td>\n", | |
" <td>Tesla</td>\n", | |
" <td>Model S Performance (21\" Wheels)</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>325</td>\n", | |
" <td>Thu May 02 00:00:00 EDT 2019</td>\n", | |
" <td>2019</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>206 rows × 14 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ drive \\\n", | |
"7138 81 85 91 NaN NaN NaN \n", | |
"7139 81 72 64 NaN NaN 2-Wheel Drive \n", | |
"8143 81 72 64 NaN NaN 2-Wheel Drive \n", | |
"8144 74 65 58 NaN NaN NaN \n", | |
"8146 45 39 33 NaN NaN 2-Wheel Drive \n", | |
"8147 84 75 66 NaN NaN NaN \n", | |
"9212 87 78 69 NaN NaN 2-Wheel Drive \n", | |
"9213 45 39 33 NaN NaN 2-Wheel Drive \n", | |
"10329 87 78 69 NaN NaN 2-Wheel Drive \n", | |
"21413 22 24 28 NaN NaN 4-Wheel Drive \n", | |
"... ... ... ... ... ... ... \n", | |
"34407 73 72 71 NaN NaN Front-Wheel Drive \n", | |
"34408 118 108 97 NaN NaN Front-Wheel Drive \n", | |
"34409 114 104 94 NaN NaN Front-Wheel Drive \n", | |
"34538 74 74 73 NaN NaN All-Wheel Drive \n", | |
"34561 80 76 72 NaN NaN 4-Wheel Drive \n", | |
"34563 138 131 124 NaN NaN Rear-Wheel Drive \n", | |
"34564 140 133 124 NaN NaN Rear-Wheel Drive \n", | |
"34565 115 111 107 NaN NaN All-Wheel Drive \n", | |
"34566 104 104 104 NaN NaN All-Wheel Drive \n", | |
"34567 98 97 96 NaN NaN All-Wheel Drive \n", | |
"\n", | |
" eng_dscr fuelCost08 make model \\\n", | |
"7138 NaN 800 Nissan Altra EV \n", | |
"7139 NaN 900 Toyota RAV4 EV \n", | |
"8143 NaN 900 Toyota RAV4 EV \n", | |
"8144 NaN 1000 Ford Th!nk \n", | |
"8146 NaN 1700 Ford Explorer USPS Electric \n", | |
"8147 NaN 900 Nissan Hyper-Mini \n", | |
"9212 NaN 850 Toyota RAV4 EV \n", | |
"9213 NaN 1700 Ford Explorer USPS Electric \n", | |
"10329 NaN 850 Toyota RAV4 EV \n", | |
"21413 NaN 1750 Subaru RX Turbo \n", | |
"... ... ... ... ... \n", | |
"34407 NaN 900 BYD e6 \n", | |
"34408 NaN 600 Nissan Leaf (62 kW-hr battery pack) \n", | |
"34409 NaN 650 Nissan Leaf SV/SL (62 kW-hr battery pack) \n", | |
"34538 NaN 900 Audi e-tron \n", | |
"34561 NaN 850 Jaguar I-Pace \n", | |
"34563 NaN 500 Tesla Model 3 Standard Range \n", | |
"34564 NaN 500 Tesla Model 3 Standard Range Plus \n", | |
"34565 NaN 600 Tesla Model S Long Range \n", | |
"34566 NaN 650 Tesla Model S Performance (19\" Wheels) \n", | |
"34567 NaN 700 Tesla Model S Performance (21\" Wheels) \n", | |
"\n", | |
" trany range createdOn year \n", | |
"7138 NaN 90 Tue Jan 01 00:00:00 EST 2013 2000 \n", | |
"7139 NaN 88 Tue Jan 01 00:00:00 EST 2013 2000 \n", | |
"8143 NaN 88 Tue Jan 01 00:00:00 EST 2013 2001 \n", | |
"8144 NaN 29 Tue Jan 01 00:00:00 EST 2013 2001 \n", | |
"8146 NaN 38 Tue Jan 01 00:00:00 EST 2013 2001 \n", | |
"8147 NaN 33 Tue Jan 01 00:00:00 EST 2013 2001 \n", | |
"9212 NaN 95 Tue Jan 01 00:00:00 EST 2013 2002 \n", | |
"9213 NaN 38 Tue Jan 01 00:00:00 EST 2013 2002 \n", | |
"10329 NaN 95 Tue Jan 01 00:00:00 EST 2013 2003 \n", | |
"21413 Manual 5-spd 0 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"... ... ... ... ... \n", | |
"34407 Automatic (A1) 187 Wed Mar 13 00:00:00 EDT 2019 2019 \n", | |
"34408 Automatic (A1) 226 Wed Mar 13 00:00:00 EDT 2019 2019 \n", | |
"34409 Automatic (A1) 215 Wed Mar 13 00:00:00 EDT 2019 2019 \n", | |
"34538 Automatic (A1) 204 Tue Apr 16 00:00:00 EDT 2019 2019 \n", | |
"34561 Automatic (A1) 234 Thu May 02 00:00:00 EDT 2019 2020 \n", | |
"34563 Automatic (A1) 220 Thu May 02 00:00:00 EDT 2019 2019 \n", | |
"34564 Automatic (A1) 240 Thu May 02 00:00:00 EDT 2019 2019 \n", | |
"34565 Automatic (A1) 370 Thu May 02 00:00:00 EDT 2019 2019 \n", | |
"34566 Automatic (A1) 345 Thu May 02 00:00:00 EDT 2019 2019 \n", | |
"34567 Automatic (A1) 325 Thu May 02 00:00:00 EDT 2019 2019 \n", | |
"\n", | |
"[206 rows x 14 columns]" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# where are they missing?\n", | |
"(autos\n", | |
" [cols]\n", | |
" .query('cylinders.isna()')\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>18.369045</td>\n", | |
" <td>20.616396</td>\n", | |
" <td>24.504667</td>\n", | |
" <td>5.688460</td>\n", | |
" <td>3.277904</td>\n", | |
" <td>2362.335942</td>\n", | |
" <td>0.793506</td>\n", | |
" <td>2001.535266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>7.905886</td>\n", | |
" <td>7.674535</td>\n", | |
" <td>7.730364</td>\n", | |
" <td>1.797009</td>\n", | |
" <td>1.373415</td>\n", | |
" <td>654.981925</td>\n", | |
" <td>13.041592</td>\n", | |
" <td>11.142414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>7.000000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>500.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1984.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>15.000000</td>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>2.200000</td>\n", | |
" <td>1900.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1991.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>2350.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2002.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>20.000000</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>4.300000</td>\n", | |
" <td>2700.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2011.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>150.000000</td>\n", | |
" <td>136.000000</td>\n", | |
" <td>124.000000</td>\n", | |
" <td>16.000000</td>\n", | |
" <td>8.400000</td>\n", | |
" <td>7400.000000</td>\n", | |
" <td>370.000000</td>\n", | |
" <td>2020.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"count 41144.000000 41144.000000 41144.000000 41144.000000 41144.000000 \n", | |
"mean 18.369045 20.616396 24.504667 5.688460 3.277904 \n", | |
"std 7.905886 7.674535 7.730364 1.797009 1.373415 \n", | |
"min 6.000000 7.000000 9.000000 0.000000 0.000000 \n", | |
"25% 15.000000 17.000000 20.000000 4.000000 2.200000 \n", | |
"50% 17.000000 20.000000 24.000000 6.000000 3.000000 \n", | |
"75% 20.000000 23.000000 28.000000 6.000000 4.300000 \n", | |
"max 150.000000 136.000000 124.000000 16.000000 8.400000 \n", | |
"\n", | |
" fuelCost08 range year \n", | |
"count 41144.000000 41144.000000 41144.000000 \n", | |
"mean 2362.335942 0.793506 2001.535266 \n", | |
"std 654.981925 13.041592 11.142414 \n", | |
"min 500.000000 0.000000 1984.000000 \n", | |
"25% 1900.000000 0.000000 1991.000000 \n", | |
"50% 2350.000000 0.000000 2002.000000 \n", | |
"75% 2700.000000 0.000000 2011.000000 \n", | |
"max 7400.000000 370.000000 2020.000000 " | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# chaining - add cylinders and displ columns\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0))\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', \n", | |
" 'fuelCost08': 'int16', 'range': 'int16', 'year': 'int16', })\n", | |
" .describe()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>40938.000000</td>\n", | |
" <td>40940.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" <td>41144.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>18.369045</td>\n", | |
" <td>20.616396</td>\n", | |
" <td>24.504667</td>\n", | |
" <td>5.717084</td>\n", | |
" <td>3.294238</td>\n", | |
" <td>2362.335942</td>\n", | |
" <td>0.793506</td>\n", | |
" <td>2001.535266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>7.905886</td>\n", | |
" <td>7.674535</td>\n", | |
" <td>7.730364</td>\n", | |
" <td>1.755517</td>\n", | |
" <td>1.357151</td>\n", | |
" <td>654.981925</td>\n", | |
" <td>13.041592</td>\n", | |
" <td>11.142414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>6.000000</td>\n", | |
" <td>7.000000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>500.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1984.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>15.000000</td>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>2.200000</td>\n", | |
" <td>1900.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1991.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>17.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>24.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>2350.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2002.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>20.000000</td>\n", | |
" <td>23.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>4.300000</td>\n", | |
" <td>2700.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>2011.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>150.000000</td>\n", | |
" <td>136.000000</td>\n", | |
" <td>124.000000</td>\n", | |
" <td>16.000000</td>\n", | |
" <td>8.400000</td>\n", | |
" <td>7400.000000</td>\n", | |
" <td>370.000000</td>\n", | |
" <td>2020.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"count 41144.000000 41144.000000 41144.000000 40938.000000 40940.000000 \n", | |
"mean 18.369045 20.616396 24.504667 5.717084 3.294238 \n", | |
"std 7.905886 7.674535 7.730364 1.755517 1.357151 \n", | |
"min 6.000000 7.000000 9.000000 2.000000 0.000000 \n", | |
"25% 15.000000 17.000000 20.000000 4.000000 2.200000 \n", | |
"50% 17.000000 20.000000 24.000000 6.000000 3.000000 \n", | |
"75% 20.000000 23.000000 28.000000 6.000000 4.300000 \n", | |
"max 150.000000 136.000000 124.000000 16.000000 8.400000 \n", | |
"\n", | |
" fuelCost08 range year \n", | |
"count 41144.000000 41144.000000 41144.000000 \n", | |
"mean 2362.335942 0.793506 2001.535266 \n", | |
"std 654.981925 13.041592 11.142414 \n", | |
"min 500.000000 0.000000 1984.000000 \n", | |
"25% 1900.000000 0.000000 1991.000000 \n", | |
"50% 2350.000000 0.000000 2002.000000 \n", | |
"75% 2700.000000 0.000000 2011.000000 \n", | |
"max 7400.000000 370.000000 2020.000000 " | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"autos[cols].describe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"finfo(resolution=0.001, min=-6.55040e+04, max=6.55040e+04, dtype=float16)" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# use this to inspect float sizes\n", | |
"np.finfo(np.float16)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>eng_dscr</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>trany</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>19</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9</td>\n", | |
" <td>11</td>\n", | |
" <td>14</td>\n", | |
" <td>12</td>\n", | |
" <td>4.898438</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(GUZZLER)</td>\n", | |
" <td>3850</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>23</td>\n", | |
" <td>27</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1550</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10</td>\n", | |
" <td>11</td>\n", | |
" <td>12</td>\n", | |
" <td>8</td>\n", | |
" <td>5.199219</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>3850</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>23</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>22</td>\n", | |
" <td>25</td>\n", | |
" <td>29</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1750</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>31</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1600</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>23</td>\n", | |
" <td>25</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.099609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2100</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>1600</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>1750</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>1500</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>32</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>19</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>20</td>\n", | |
" <td>23</td>\n", | |
" <td>28</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1850</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 14 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"0 19 21 25 4 2.000000 \n", | |
"1 9 11 14 12 4.898438 \n", | |
"2 23 27 33 4 2.199219 \n", | |
"3 10 11 12 8 5.199219 \n", | |
"4 17 19 23 4 2.199219 \n", | |
"5 21 22 24 4 1.799805 \n", | |
"6 22 25 29 4 1.799805 \n", | |
"7 23 24 26 4 1.599609 \n", | |
"8 23 26 31 4 1.599609 \n", | |
"9 23 25 30 4 1.799805 \n", | |
"... ... ... ... ... ... \n", | |
"41134 18 20 24 4 2.099609 \n", | |
"41135 23 26 33 4 1.900391 \n", | |
"41136 21 24 30 4 1.900391 \n", | |
"41137 24 28 33 4 1.900391 \n", | |
"41138 21 25 32 4 1.900391 \n", | |
"41139 19 22 26 4 2.199219 \n", | |
"41140 20 23 28 4 2.199219 \n", | |
"41141 18 21 24 4 2.199219 \n", | |
"41142 18 21 24 4 2.199219 \n", | |
"41143 16 18 21 4 2.199219 \n", | |
"\n", | |
" drive eng_dscr fuelCost08 make \\\n", | |
"0 Rear-Wheel Drive (FFS) 2000 Alfa Romeo \n", | |
"1 Rear-Wheel Drive (GUZZLER) 3850 Ferrari \n", | |
"2 Front-Wheel Drive (FFS) 1550 Dodge \n", | |
"3 Rear-Wheel Drive NaN 3850 Dodge \n", | |
"4 4-Wheel or All-Wheel Drive (FFS,TRBO) 2700 Subaru \n", | |
"5 Front-Wheel Drive (FFS) 1900 Subaru \n", | |
"6 Front-Wheel Drive (FFS) 1700 Subaru \n", | |
"7 Front-Wheel Drive (FFS) 1750 Toyota \n", | |
"8 Front-Wheel Drive (FFS) 1600 Toyota \n", | |
"9 Front-Wheel Drive (FFS) 1700 Toyota \n", | |
"... ... ... ... ... \n", | |
"41134 Front-Wheel Drive (FFS) 2100 Saab \n", | |
"41135 Front-Wheel Drive (TBI) (FFS) 1600 Saturn \n", | |
"41136 Front-Wheel Drive (MFI) (FFS) 1750 Saturn \n", | |
"41137 Front-Wheel Drive (TBI) (FFS) 1500 Saturn \n", | |
"41138 Front-Wheel Drive (MFI) (FFS) 1700 Saturn \n", | |
"41139 Front-Wheel Drive (FFS) 1900 Subaru \n", | |
"41140 Front-Wheel Drive (FFS) 1850 Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive (FFS) 2000 Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive (FFS) 2000 Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive (FFS,TRBO) 2900 Subaru \n", | |
"\n", | |
" model trany range \\\n", | |
"0 Spider Veloce 2000 Manual 5-spd 0 \n", | |
"1 Testarossa Manual 5-spd 0 \n", | |
"2 Charger Manual 5-spd 0 \n", | |
"3 B150/B250 Wagon 2WD Automatic 3-spd 0 \n", | |
"4 Legacy AWD Turbo Manual 5-spd 0 \n", | |
"5 Loyale Automatic 3-spd 0 \n", | |
"6 Loyale Manual 5-spd 0 \n", | |
"7 Corolla Automatic 3-spd 0 \n", | |
"8 Corolla Manual 5-spd 0 \n", | |
"9 Corolla Automatic 4-spd 0 \n", | |
"... ... ... ... \n", | |
"41134 900 Manual 5-spd 0 \n", | |
"41135 SL Automatic 4-spd 0 \n", | |
"41136 SL Automatic 4-spd 0 \n", | |
"41137 SL Manual 5-spd 0 \n", | |
"41138 SL Manual 5-spd 0 \n", | |
"41139 Legacy Automatic 4-spd 0 \n", | |
"41140 Legacy Manual 5-spd 0 \n", | |
"41141 Legacy AWD Automatic 4-spd 0 \n", | |
"41142 Legacy AWD Manual 5-spd 0 \n", | |
"41143 Legacy AWD Turbo Automatic 4-spd 0 \n", | |
"\n", | |
" createdOn year \n", | |
"0 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"1 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"2 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"3 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"4 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"5 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"6 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"7 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"8 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"9 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"... ... ... \n", | |
"41134 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41135 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41136 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41137 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41138 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41139 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41140 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41141 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41142 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41143 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"\n", | |
"[41144 rows x 14 columns]" | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# chaining - convert displ to float16\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'))\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16'})\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"17590123" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# new memory usage\n", | |
"(autos\n", | |
" .loc[:, cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'))\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16'})\n", | |
" .memory_usage(deep=True)\n", | |
" .sum() # was 19,647,323\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Objects" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>drive</th>\n", | |
" <th>eng_dscr</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>trany</th>\n", | |
" <th>createdOn</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(GUZZLER)</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 6 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" drive eng_dscr make \\\n", | |
"0 Rear-Wheel Drive (FFS) Alfa Romeo \n", | |
"1 Rear-Wheel Drive (GUZZLER) Ferrari \n", | |
"2 Front-Wheel Drive (FFS) Dodge \n", | |
"3 Rear-Wheel Drive NaN Dodge \n", | |
"4 4-Wheel or All-Wheel Drive (FFS,TRBO) Subaru \n", | |
"5 Front-Wheel Drive (FFS) Subaru \n", | |
"6 Front-Wheel Drive (FFS) Subaru \n", | |
"7 Front-Wheel Drive (FFS) Toyota \n", | |
"8 Front-Wheel Drive (FFS) Toyota \n", | |
"9 Front-Wheel Drive (FFS) Toyota \n", | |
"... ... ... ... \n", | |
"41134 Front-Wheel Drive (FFS) Saab \n", | |
"41135 Front-Wheel Drive (TBI) (FFS) Saturn \n", | |
"41136 Front-Wheel Drive (MFI) (FFS) Saturn \n", | |
"41137 Front-Wheel Drive (TBI) (FFS) Saturn \n", | |
"41138 Front-Wheel Drive (MFI) (FFS) Saturn \n", | |
"41139 Front-Wheel Drive (FFS) Subaru \n", | |
"41140 Front-Wheel Drive (FFS) Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive (FFS) Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive (FFS) Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive (FFS,TRBO) Subaru \n", | |
"\n", | |
" model trany createdOn \n", | |
"0 Spider Veloce 2000 Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"1 Testarossa Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"2 Charger Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"3 B150/B250 Wagon 2WD Automatic 3-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"4 Legacy AWD Turbo Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"5 Loyale Automatic 3-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"6 Loyale Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"7 Corolla Automatic 3-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"8 Corolla Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"9 Corolla Automatic 4-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"... ... ... ... \n", | |
"41134 900 Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41135 SL Automatic 4-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41136 SL Automatic 4-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41137 SL Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41138 SL Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41139 Legacy Automatic 4-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41140 Legacy Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41141 Legacy AWD Automatic 4-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41142 Legacy AWD Manual 5-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"41143 Legacy AWD Turbo Automatic 4-spd Tue Jan 01 00:00:00 EST 2013 \n", | |
"\n", | |
"[41144 rows x 6 columns]" | |
] | |
}, | |
"execution_count": 25, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(autos\n", | |
" [cols]\n", | |
" .select_dtypes(object)\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Front-Wheel Drive 14236\n", | |
"Rear-Wheel Drive 13831\n", | |
"4-Wheel or All-Wheel Drive 6648\n", | |
"All-Wheel Drive 3015\n", | |
"4-Wheel Drive 1460\n", | |
"NaN 1189\n", | |
"2-Wheel Drive 507\n", | |
"Part-time 4-Wheel Drive 258\n", | |
"Name: drive, dtype: int64" | |
] | |
}, | |
"execution_count": 26, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# looks categorical\n", | |
"(autos.drive.value_counts(dropna=False))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>eng_dscr</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>trany</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>7138</th>\n", | |
" <td>81</td>\n", | |
" <td>85</td>\n", | |
" <td>91</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>800</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Altra EV</td>\n", | |
" <td>NaN</td>\n", | |
" <td>90</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8144</th>\n", | |
" <td>74</td>\n", | |
" <td>65</td>\n", | |
" <td>58</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1000</td>\n", | |
" <td>Ford</td>\n", | |
" <td>Th!nk</td>\n", | |
" <td>NaN</td>\n", | |
" <td>29</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8147</th>\n", | |
" <td>84</td>\n", | |
" <td>75</td>\n", | |
" <td>66</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>900</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Hyper-Mini</td>\n", | |
" <td>NaN</td>\n", | |
" <td>33</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18217</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18218</th>\n", | |
" <td>20</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.5</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Bertone</td>\n", | |
" <td>X1/9</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18219</th>\n", | |
" <td>13</td>\n", | |
" <td>15</td>\n", | |
" <td>20</td>\n", | |
" <td>8.0</td>\n", | |
" <td>5.7</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(350 V8) (FFS)</td>\n", | |
" <td>2800</td>\n", | |
" <td>Chevrolet</td>\n", | |
" <td>Corvette</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18220</th>\n", | |
" <td>13</td>\n", | |
" <td>15</td>\n", | |
" <td>20</td>\n", | |
" <td>8.0</td>\n", | |
" <td>5.7</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(350 V8) (FFS)</td>\n", | |
" <td>2800</td>\n", | |
" <td>Chevrolet</td>\n", | |
" <td>Corvette</td>\n", | |
" <td>Manual 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18221</th>\n", | |
" <td>15</td>\n", | |
" <td>17</td>\n", | |
" <td>20</td>\n", | |
" <td>6.0</td>\n", | |
" <td>3.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2500</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>300ZX</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18222</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>6.0</td>\n", | |
" <td>3.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2350</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>300ZX</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18223</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>22</td>\n", | |
" <td>6.0</td>\n", | |
" <td>3.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2350</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>300ZX</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20063</th>\n", | |
" <td>13</td>\n", | |
" <td>15</td>\n", | |
" <td>19</td>\n", | |
" <td>8.0</td>\n", | |
" <td>5.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS) CA model</td>\n", | |
" <td>2800</td>\n", | |
" <td>Mercury</td>\n", | |
" <td>Grand Marquis Wagon</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20064</th>\n", | |
" <td>13</td>\n", | |
" <td>15</td>\n", | |
" <td>20</td>\n", | |
" <td>8.0</td>\n", | |
" <td>5.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(GM-OLDS) CA model</td>\n", | |
" <td>2800</td>\n", | |
" <td>Oldsmobile</td>\n", | |
" <td>Custom Cruiser Wagon</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20065</th>\n", | |
" <td>14</td>\n", | |
" <td>16</td>\n", | |
" <td>19</td>\n", | |
" <td>8.0</td>\n", | |
" <td>5.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(GM-CHEV) CA model</td>\n", | |
" <td>2650</td>\n", | |
" <td>Pontiac</td>\n", | |
" <td>Parisienne Wagon</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20387</th>\n", | |
" <td>14</td>\n", | |
" <td>14</td>\n", | |
" <td>15</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.4</td>\n", | |
" <td>NaN</td>\n", | |
" <td>(FFS) CA model</td>\n", | |
" <td>3000</td>\n", | |
" <td>Nissan</td>\n", | |
" <td>Pickup Cab Chassis</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1984</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21129</th>\n", | |
" <td>14</td>\n", | |
" <td>16</td>\n", | |
" <td>21</td>\n", | |
" <td>8.0</td>\n", | |
" <td>3.5</td>\n", | |
" <td>NaN</td>\n", | |
" <td>GUZZLER FFS,TURBO</td>\n", | |
" <td>3250</td>\n", | |
" <td>Lotus</td>\n", | |
" <td>Esprit V8</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2002</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23029</th>\n", | |
" <td>79</td>\n", | |
" <td>85</td>\n", | |
" <td>94</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Lead Acid</td>\n", | |
" <td>800</td>\n", | |
" <td>GMC</td>\n", | |
" <td>EV1</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>55</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1999</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23030</th>\n", | |
" <td>35</td>\n", | |
" <td>37</td>\n", | |
" <td>39</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NiMH</td>\n", | |
" <td>1750</td>\n", | |
" <td>GMC</td>\n", | |
" <td>EV1</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>105</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1999</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23032</th>\n", | |
" <td>49</td>\n", | |
" <td>48</td>\n", | |
" <td>46</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1400</td>\n", | |
" <td>Honda</td>\n", | |
" <td>EV Plus</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>81</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1999</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23037</th>\n", | |
" <td>49</td>\n", | |
" <td>48</td>\n", | |
" <td>46</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1400</td>\n", | |
" <td>Honda</td>\n", | |
" <td>EV Plus</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>81</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1998</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23040</th>\n", | |
" <td>102</td>\n", | |
" <td>98</td>\n", | |
" <td>94</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>650</td>\n", | |
" <td>MINI</td>\n", | |
" <td>MiniE</td>\n", | |
" <td>Automatic (A1)</td>\n", | |
" <td>100</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>2008</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1189 rows × 14 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ drive eng_dscr \\\n", | |
"7138 81 85 91 NaN NaN NaN NaN \n", | |
"8144 74 65 58 NaN NaN NaN NaN \n", | |
"8147 84 75 66 NaN NaN NaN NaN \n", | |
"18217 18 21 25 4.0 2.0 NaN (FFS) \n", | |
"18218 20 22 26 4.0 1.5 NaN (FFS) \n", | |
"18219 13 15 20 8.0 5.7 NaN (350 V8) (FFS) \n", | |
"18220 13 15 20 8.0 5.7 NaN (350 V8) (FFS) \n", | |
"18221 15 17 20 6.0 3.0 NaN (FFS,TRBO) \n", | |
"18222 16 18 20 6.0 3.0 NaN (FFS) \n", | |
"18223 16 18 22 6.0 3.0 NaN (FFS,TRBO) \n", | |
"... ... ... ... ... ... ... ... \n", | |
"20063 13 15 19 8.0 5.0 NaN (FFS) CA model \n", | |
"20064 13 15 20 8.0 5.0 NaN (GM-OLDS) CA model \n", | |
"20065 14 16 19 8.0 5.0 NaN (GM-CHEV) CA model \n", | |
"20387 14 14 15 4.0 2.4 NaN (FFS) CA model \n", | |
"21129 14 16 21 8.0 3.5 NaN GUZZLER FFS,TURBO \n", | |
"23029 79 85 94 NaN NaN NaN Lead Acid \n", | |
"23030 35 37 39 NaN NaN NaN NiMH \n", | |
"23032 49 48 46 NaN NaN NaN NaN \n", | |
"23037 49 48 46 NaN NaN NaN NaN \n", | |
"23040 102 98 94 NaN NaN NaN NaN \n", | |
"\n", | |
" fuelCost08 make model trany range \\\n", | |
"7138 800 Nissan Altra EV NaN 90 \n", | |
"8144 1000 Ford Th!nk NaN 29 \n", | |
"8147 900 Nissan Hyper-Mini NaN 33 \n", | |
"18217 2000 Alfa Romeo Spider Veloce 2000 Manual 5-spd 0 \n", | |
"18218 1900 Bertone X1/9 Manual 5-spd 0 \n", | |
"18219 2800 Chevrolet Corvette Automatic 4-spd 0 \n", | |
"18220 2800 Chevrolet Corvette Manual 4-spd 0 \n", | |
"18221 2500 Nissan 300ZX Automatic 4-spd 0 \n", | |
"18222 2350 Nissan 300ZX Automatic 4-spd 0 \n", | |
"18223 2350 Nissan 300ZX Manual 5-spd 0 \n", | |
"... ... ... ... ... ... \n", | |
"20063 2800 Mercury Grand Marquis Wagon Automatic 4-spd 0 \n", | |
"20064 2800 Oldsmobile Custom Cruiser Wagon Automatic 4-spd 0 \n", | |
"20065 2650 Pontiac Parisienne Wagon Automatic 4-spd 0 \n", | |
"20387 3000 Nissan Pickup Cab Chassis Manual 5-spd 0 \n", | |
"21129 3250 Lotus Esprit V8 Manual 5-spd 0 \n", | |
"23029 800 GMC EV1 Automatic (A1) 55 \n", | |
"23030 1750 GMC EV1 Automatic (A1) 105 \n", | |
"23032 1400 Honda EV Plus Automatic (A1) 81 \n", | |
"23037 1400 Honda EV Plus Automatic (A1) 81 \n", | |
"23040 650 MINI MiniE Automatic (A1) 100 \n", | |
"\n", | |
" createdOn year \n", | |
"7138 Tue Jan 01 00:00:00 EST 2013 2000 \n", | |
"8144 Tue Jan 01 00:00:00 EST 2013 2001 \n", | |
"8147 Tue Jan 01 00:00:00 EST 2013 2001 \n", | |
"18217 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"18218 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"18219 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"18220 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"18221 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"18222 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"18223 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"... ... ... \n", | |
"20063 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"20064 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"20065 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"20387 Tue Jan 01 00:00:00 EST 2013 1984 \n", | |
"21129 Tue Jan 01 00:00:00 EST 2013 2002 \n", | |
"23029 Tue Jan 01 00:00:00 EST 2013 1999 \n", | |
"23030 Tue Jan 01 00:00:00 EST 2013 1999 \n", | |
"23032 Tue Jan 01 00:00:00 EST 2013 1999 \n", | |
"23037 Tue Jan 01 00:00:00 EST 2013 1998 \n", | |
"23040 Tue Jan 01 00:00:00 EST 2013 2008 \n", | |
"\n", | |
"[1189 rows x 14 columns]" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# where are the values missing for drive?\n", | |
"(autos\n", | |
" [cols]\n", | |
" .query('drive.isna()'))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"12093275" | |
] | |
}, | |
"execution_count": 31, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# drive and make (in .astype) to category\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .memory_usage(deep=True)\n", | |
" .sum() # was 19,647,323\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Automatic 4-spd 11047\n", | |
"Manual 5-spd 8361\n", | |
"Automatic 3-spd 3151\n", | |
"Automatic (S6) 3106\n", | |
"Manual 6-spd 2757\n", | |
"Automatic 5-spd 2203\n", | |
"Automatic (S8) 1665\n", | |
"Automatic 6-spd 1619\n", | |
"Manual 4-spd 1483\n", | |
"Automatic (S5) 833\n", | |
"Automatic (variable gear ratios) 826\n", | |
"Automatic 7-spd 724\n", | |
"Automatic 8-spd 433\n", | |
"Automatic (AM-S7) 424\n", | |
"Automatic (S7) 327\n", | |
"Automatic 9-spd 293\n", | |
"Automatic (AM7) 245\n", | |
"Automatic (S4) 233\n", | |
"Automatic (AV-S6) 208\n", | |
"Automatic (A1) 201\n", | |
"Automatic (AM6) 151\n", | |
"Automatic (AV-S7) 139\n", | |
"Automatic (S10) 124\n", | |
"Automatic (AM-S6) 116\n", | |
"Manual 7-spd 114\n", | |
"Automatic (S9) 86\n", | |
"Manual 3-spd 77\n", | |
"Automatic (AM-S8) 60\n", | |
"Automatic (AV-S8) 47\n", | |
"Automatic 10-spd 25\n", | |
"Manual 4-spd Doubled 17\n", | |
"Automatic (AM5) 14\n", | |
"NaN 11\n", | |
"Automatic (AV-S10) 11\n", | |
"Automatic (AM8) 6\n", | |
"Automatic (AM-S9) 3\n", | |
"Automatic (L3) 2\n", | |
"Automatic (L4) 2\n", | |
"Name: trany, dtype: int64" | |
] | |
}, | |
"execution_count": 28, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# let's inspect trany\n", | |
"# looks like it has two pieces of information embedded in column\n", | |
"(autos.trany.value_counts(dropna=False))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"10631047" | |
] | |
}, | |
"execution_count": 29, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# add automatic, speeds from trany, then drop trany\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany'])\n", | |
" .memory_usage(deep=True)\n", | |
" .sum() # was 19,647,323\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Dates" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/home/matt/envs/menv/lib/python3.8/site-packages/dateutil/parser/_parser.py:1213: UnknownTimezoneWarning: tzname EST identified but not understood. Pass `tzinfos` argument in order to correctly return a timezone-aware datetime. In a future version, this will raise an exception.\n", | |
" warnings.warn(\"tzname {tzname} identified but not understood. \"\n", | |
"/home/matt/envs/menv/lib/python3.8/site-packages/dateutil/parser/_parser.py:1213: UnknownTimezoneWarning: tzname EDT identified but not understood. Pass `tzinfos` argument in order to correctly return a timezone-aware datetime. In a future version, this will raise an exception.\n", | |
" warnings.warn(\"tzname {tzname} identified but not understood. \"\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"7462959" | |
] | |
}, | |
"execution_count": 30, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# add createdOn\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'),\n", | |
" createdOn=pd.to_datetime(autos.createdOn).dt.tz_localize('America/New_York')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany'])\n", | |
" .memory_usage(deep=True)\n", | |
" .sum() # was 19,647,323\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 Tue Jan 01 00:00:00 EST 2013\n", | |
"1 Tue Jan 01 00:00:00 EST 2013\n", | |
"2 Tue Jan 01 00:00:00 EST 2013\n", | |
"3 Tue Jan 01 00:00:00 EST 2013\n", | |
"4 Tue Jan 01 00:00:00 EST 2013\n", | |
"5 Tue Jan 01 00:00:00 EST 2013\n", | |
"6 Tue Jan 01 00:00:00 EST 2013\n", | |
"7 Tue Jan 01 00:00:00 EST 2013\n", | |
"8 Tue Jan 01 00:00:00 EST 2013\n", | |
"9 Tue Jan 01 00:00:00 EST 2013\n", | |
" ... \n", | |
"41134 Tue Jan 01 00:00:00 EST 2013\n", | |
"41135 Tue Jan 01 00:00:00 EST 2013\n", | |
"41136 Tue Jan 01 00:00:00 EST 2013\n", | |
"41137 Tue Jan 01 00:00:00 EST 2013\n", | |
"41138 Tue Jan 01 00:00:00 EST 2013\n", | |
"41139 Tue Jan 01 00:00:00 EST 2013\n", | |
"41140 Tue Jan 01 00:00:00 EST 2013\n", | |
"41141 Tue Jan 01 00:00:00 EST 2013\n", | |
"41142 Tue Jan 01 00:00:00 EST 2013\n", | |
"41143 Tue Jan 01 00:00:00 EST 2013\n", | |
"Name: createdOn, Length: 41144, dtype: object" | |
] | |
}, | |
"execution_count": 31, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Python doesn't like EST/EDT\n", | |
"autos[cols].createdOn" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"NaN 16153\n", | |
"(FFS) 8827\n", | |
"SIDI 5526\n", | |
"(FFS) CA model 926\n", | |
"(FFS) (MPFI) 734\n", | |
"FFV 701\n", | |
"(FFS,TRBO) 666\n", | |
"(350 V8) (FFS) 411\n", | |
"(GUZZLER) (FFS) 366\n", | |
"SOHC 354\n", | |
" ... \n", | |
"B234L/R4 (FFS,TRBO) 1\n", | |
"GUZZLER V8 FFS,TURBO 1\n", | |
"4.6M FFS MPFI 1\n", | |
"CNG FFS 1\n", | |
"POLICE FFS MPFI 1\n", | |
"B308E5 FFS,TURBO 1\n", | |
"5.4E-R FFS MPFI 1\n", | |
"V-6 FFS 1\n", | |
"(GUZZLER) (FFS) (S-CHARGE) 1\n", | |
"R-ENG (FFS,TRBO) 1\n", | |
"Name: eng_dscr, Length: 558, dtype: int64" | |
] | |
}, | |
"execution_count": 33, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Fix date warnings - move on to eng_dscr\n", | |
"# http://www.fueleconomy.gov/feg/findacarhelp.shtml#trany\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'),\n", | |
" createdOn=pd.to_datetime(autos.createdOn.replace({' EDT': '-04:00',\n", | |
" ' EST': '-05:00'}, regex=True), utc=True).dt.tz_convert('America/New_York')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany'])\n", | |
" .eng_dscr\n", | |
" .value_counts(dropna=False)\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"6701302" | |
] | |
}, | |
"execution_count": 35, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# add ffs (Feedback fuel system), drop eng_descr\n", | |
"(autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'),\n", | |
" createdOn=pd.to_datetime(autos.createdOn.replace({' EDT': '-04:00',\n", | |
" ' EST': '-05:00'}, regex=True), utc=True).dt.tz_convert('America/New_York'),\n", | |
" ffs=autos.eng_dscr.str.contains('FFS')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany', 'eng_dscr'])\n", | |
" .memory_usage(deep=True)\n", | |
" .sum() # was 19,647,323\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": { | |
"lines_to_next_cell": 0, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" <th>automatic</th>\n", | |
" <th>speeds</th>\n", | |
" <th>ffs</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>19</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9</td>\n", | |
" <td>11</td>\n", | |
" <td>14</td>\n", | |
" <td>12</td>\n", | |
" <td>4.898438</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>3850</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>23</td>\n", | |
" <td>27</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1550</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10</td>\n", | |
" <td>11</td>\n", | |
" <td>12</td>\n", | |
" <td>8</td>\n", | |
" <td>5.199219</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>3850</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>23</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>22</td>\n", | |
" <td>25</td>\n", | |
" <td>29</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1750</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>31</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1600</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>23</td>\n", | |
" <td>25</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.099609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>2100</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1600</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1750</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1500</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>32</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>19</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>20</td>\n", | |
" <td>23</td>\n", | |
" <td>28</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1850</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 15 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"0 19 21 25 4 2.000000 \n", | |
"1 9 11 14 12 4.898438 \n", | |
"2 23 27 33 4 2.199219 \n", | |
"3 10 11 12 8 5.199219 \n", | |
"4 17 19 23 4 2.199219 \n", | |
"5 21 22 24 4 1.799805 \n", | |
"6 22 25 29 4 1.799805 \n", | |
"7 23 24 26 4 1.599609 \n", | |
"8 23 26 31 4 1.599609 \n", | |
"9 23 25 30 4 1.799805 \n", | |
"... ... ... ... ... ... \n", | |
"41134 18 20 24 4 2.099609 \n", | |
"41135 23 26 33 4 1.900391 \n", | |
"41136 21 24 30 4 1.900391 \n", | |
"41137 24 28 33 4 1.900391 \n", | |
"41138 21 25 32 4 1.900391 \n", | |
"41139 19 22 26 4 2.199219 \n", | |
"41140 20 23 28 4 2.199219 \n", | |
"41141 18 21 24 4 2.199219 \n", | |
"41142 18 21 24 4 2.199219 \n", | |
"41143 16 18 21 4 2.199219 \n", | |
"\n", | |
" drive fuelCost08 make \\\n", | |
"0 Rear-Wheel Drive 2000 Alfa Romeo \n", | |
"1 Rear-Wheel Drive 3850 Ferrari \n", | |
"2 Front-Wheel Drive 1550 Dodge \n", | |
"3 Rear-Wheel Drive 3850 Dodge \n", | |
"4 4-Wheel or All-Wheel Drive 2700 Subaru \n", | |
"5 Front-Wheel Drive 1900 Subaru \n", | |
"6 Front-Wheel Drive 1700 Subaru \n", | |
"7 Front-Wheel Drive 1750 Toyota \n", | |
"8 Front-Wheel Drive 1600 Toyota \n", | |
"9 Front-Wheel Drive 1700 Toyota \n", | |
"... ... ... ... \n", | |
"41134 Front-Wheel Drive 2100 Saab \n", | |
"41135 Front-Wheel Drive 1600 Saturn \n", | |
"41136 Front-Wheel Drive 1750 Saturn \n", | |
"41137 Front-Wheel Drive 1500 Saturn \n", | |
"41138 Front-Wheel Drive 1700 Saturn \n", | |
"41139 Front-Wheel Drive 1900 Subaru \n", | |
"41140 Front-Wheel Drive 1850 Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive 2000 Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive 2000 Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive 2900 Subaru \n", | |
"\n", | |
" model range createdOn year automatic \\\n", | |
"0 Spider Veloce 2000 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"1 Testarossa 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"2 Charger 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"3 B150/B250 Wagon 2WD 0 2013-01-01 00:00:00-05:00 1985 True \n", | |
"4 Legacy AWD Turbo 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"5 Loyale 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"6 Loyale 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"7 Corolla 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"8 Corolla 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"9 Corolla 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"... ... ... ... ... ... \n", | |
"41134 900 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41135 SL 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41136 SL 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41137 SL 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41138 SL 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41139 Legacy 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41140 Legacy 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41141 Legacy AWD 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41142 Legacy AWD 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41143 Legacy AWD Turbo 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"\n", | |
" speeds ffs \n", | |
"0 5 True \n", | |
"1 5 False \n", | |
"2 5 True \n", | |
"3 3 NaN \n", | |
"4 5 True \n", | |
"5 3 True \n", | |
"6 5 True \n", | |
"7 3 True \n", | |
"8 5 True \n", | |
"9 4 True \n", | |
"... ... ... \n", | |
"41134 5 True \n", | |
"41135 4 True \n", | |
"41136 4 True \n", | |
"41137 5 True \n", | |
"41138 5 True \n", | |
"41139 4 True \n", | |
"41140 5 True \n", | |
"41141 4 True \n", | |
"41142 5 True \n", | |
"41143 4 True \n", | |
"\n", | |
"[41144 rows x 15 columns]" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# a glorious function\n", | |
"def tweak_autos(autos):\n", | |
" cols = ['city08', 'comb08', 'highway08', 'cylinders', 'displ', 'drive', 'eng_dscr', \n", | |
" 'fuelCost08', 'make', 'model', 'trany', 'range', 'createdOn', 'year']\n", | |
" return (autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'),\n", | |
" createdOn=pd.to_datetime(autos.createdOn.replace({' EDT': '-04:00',\n", | |
" ' EST': '-05:00'}, regex=True), utc=True).dt.tz_convert('America/New_York'),\n", | |
" ffs=autos.eng_dscr.str.contains('FFS')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16',\n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany', 'eng_dscr'])\n", | |
" )\n", | |
"\n", | |
"tweak_autos(autos)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Chain\n", | |
"\n", | |
"Chaining is also called \"flow\" programming. Rather than making intermediate variables, just leverage the fact that most operations return a new object and work on that.\n", | |
"\n", | |
"The chain should read like a recipe of ordered steps.\n", | |
"\n", | |
"(BTW, this is actually what we did above.)\n", | |
"\n", | |
"<div class='alert alert-warning'>\n", | |
" Hint: Leverage <tt>.pipe</tt> if you can't find a way to chain 😉🐼💪\n", | |
"</div>\n", | |
" \n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" <th>automatic</th>\n", | |
" <th>speeds</th>\n", | |
" <th>ffs</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>19</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9</td>\n", | |
" <td>11</td>\n", | |
" <td>14</td>\n", | |
" <td>12</td>\n", | |
" <td>4.898438</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>3850</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>23</td>\n", | |
" <td>27</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1550</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10</td>\n", | |
" <td>11</td>\n", | |
" <td>12</td>\n", | |
" <td>8</td>\n", | |
" <td>5.199219</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>3850</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>23</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>22</td>\n", | |
" <td>25</td>\n", | |
" <td>29</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1750</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>31</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1600</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>23</td>\n", | |
" <td>25</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.099609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>2100</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1600</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1750</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1500</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>32</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>19</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>20</td>\n", | |
" <td>23</td>\n", | |
" <td>28</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1850</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 15 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"0 19 21 25 4 2.000000 \n", | |
"1 9 11 14 12 4.898438 \n", | |
"2 23 27 33 4 2.199219 \n", | |
"3 10 11 12 8 5.199219 \n", | |
"4 17 19 23 4 2.199219 \n", | |
"5 21 22 24 4 1.799805 \n", | |
"6 22 25 29 4 1.799805 \n", | |
"7 23 24 26 4 1.599609 \n", | |
"8 23 26 31 4 1.599609 \n", | |
"9 23 25 30 4 1.799805 \n", | |
"... ... ... ... ... ... \n", | |
"41134 18 20 24 4 2.099609 \n", | |
"41135 23 26 33 4 1.900391 \n", | |
"41136 21 24 30 4 1.900391 \n", | |
"41137 24 28 33 4 1.900391 \n", | |
"41138 21 25 32 4 1.900391 \n", | |
"41139 19 22 26 4 2.199219 \n", | |
"41140 20 23 28 4 2.199219 \n", | |
"41141 18 21 24 4 2.199219 \n", | |
"41142 18 21 24 4 2.199219 \n", | |
"41143 16 18 21 4 2.199219 \n", | |
"\n", | |
" drive fuelCost08 make \\\n", | |
"0 Rear-Wheel Drive 2000 Alfa Romeo \n", | |
"1 Rear-Wheel Drive 3850 Ferrari \n", | |
"2 Front-Wheel Drive 1550 Dodge \n", | |
"3 Rear-Wheel Drive 3850 Dodge \n", | |
"4 4-Wheel or All-Wheel Drive 2700 Subaru \n", | |
"5 Front-Wheel Drive 1900 Subaru \n", | |
"6 Front-Wheel Drive 1700 Subaru \n", | |
"7 Front-Wheel Drive 1750 Toyota \n", | |
"8 Front-Wheel Drive 1600 Toyota \n", | |
"9 Front-Wheel Drive 1700 Toyota \n", | |
"... ... ... ... \n", | |
"41134 Front-Wheel Drive 2100 Saab \n", | |
"41135 Front-Wheel Drive 1600 Saturn \n", | |
"41136 Front-Wheel Drive 1750 Saturn \n", | |
"41137 Front-Wheel Drive 1500 Saturn \n", | |
"41138 Front-Wheel Drive 1700 Saturn \n", | |
"41139 Front-Wheel Drive 1900 Subaru \n", | |
"41140 Front-Wheel Drive 1850 Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive 2000 Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive 2000 Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive 2900 Subaru \n", | |
"\n", | |
" model range createdOn year automatic \\\n", | |
"0 Spider Veloce 2000 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"1 Testarossa 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"2 Charger 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"3 B150/B250 Wagon 2WD 0 2013-01-01 00:00:00-05:00 1985 True \n", | |
"4 Legacy AWD Turbo 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"5 Loyale 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"6 Loyale 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"7 Corolla 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"8 Corolla 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"9 Corolla 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"... ... ... ... ... ... \n", | |
"41134 900 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41135 SL 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41136 SL 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41137 SL 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41138 SL 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41139 Legacy 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41140 Legacy 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41141 Legacy AWD 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41142 Legacy AWD 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41143 Legacy AWD Turbo 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"\n", | |
" speeds ffs \n", | |
"0 5 True \n", | |
"1 5 False \n", | |
"2 5 True \n", | |
"3 3 NaN \n", | |
"4 5 True \n", | |
"5 3 True \n", | |
"6 5 True \n", | |
"7 3 True \n", | |
"8 5 True \n", | |
"9 4 True \n", | |
"... ... ... \n", | |
"41134 5 True \n", | |
"41135 4 True \n", | |
"41136 4 True \n", | |
"41137 5 True \n", | |
"41138 5 True \n", | |
"41139 4 True \n", | |
"41140 5 True \n", | |
"41141 4 True \n", | |
"41142 5 True \n", | |
"41143 4 True \n", | |
"\n", | |
"[41144 rows x 15 columns]" | |
] | |
}, | |
"execution_count": 38, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"def tweak_autos(autos):\n", | |
" cols = ['city08', 'comb08', 'highway08', 'cylinders', 'displ', 'drive', 'eng_dscr', \n", | |
" 'fuelCost08', 'make', 'model', 'trany', 'range', 'createdOn', 'year']\n", | |
" return (autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'),\n", | |
" createdOn=pd.to_datetime(autos.createdOn.replace({' EDT': '-04:00',\n", | |
" ' EST': '-05:00'}, regex=True), utc=True).dt.tz_convert('America/New_York'),\n", | |
" ffs=autos.eng_dscr.str.contains('FFS')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany', 'eng_dscr'])\n", | |
" )\n", | |
"\n", | |
"tweak_autos(autos)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"<ipython-input-39-c7c24d2ec7ba>:5: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['cylinders'] = cyls2\n", | |
"/home/matt/envs/menv/lib/python3.8/site-packages/pandas/core/generic.py:5516: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" self[name] = value\n", | |
"<ipython-input-39-c7c24d2ec7ba>:11: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['automatic'] = autos.trany.str.contains('Auto')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:15: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['speeds'] = speedint\n", | |
"/home/matt/envs/menv/lib/python3.8/site-packages/dateutil/parser/_parser.py:1213: UnknownTimezoneWarning: tzname EST identified but not understood. Pass `tzinfos` argument in order to correctly return a timezone-aware datetime. In a future version, this will raise an exception.\n", | |
" warnings.warn(\"tzname {tzname} identified but not understood. \"\n", | |
"/home/matt/envs/menv/lib/python3.8/site-packages/dateutil/parser/_parser.py:1213: UnknownTimezoneWarning: tzname EDT identified but not understood. Pass `tzinfos` argument in order to correctly return a timezone-aware datetime. In a future version, this will raise an exception.\n", | |
" warnings.warn(\"tzname {tzname} identified but not understood. \"\n", | |
"<ipython-input-39-c7c24d2ec7ba>:17: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access\n", | |
" a1.ffs=autos.eng_dscr.str.contains('FFS')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:18: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['highway08'] = autos.highway08.astype('int8')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:19: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['city08'] = autos.city08.astype('int8')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:20: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['comb08'] = autos.comb08.astype('int16')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:21: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['fuelCost08'] = autos.fuelCost08.astype('int16')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:22: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['range'] = autos.range.astype('int16')\n", | |
"<ipython-input-39-c7c24d2ec7ba>:23: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", | |
"Try using .loc[row_indexer,col_indexer] = value instead\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" a1['make'] = autos.make.astype('category')\n" | |
] | |
} | |
], | |
"source": [ | |
"# compare chain to this mess\n", | |
"a1 = autos[cols]\n", | |
"cyls = autos.cylinders.fillna(0)\n", | |
"cyls2 = cyls.astype('int8')\n", | |
"a1['cylinders'] = cyls2\n", | |
"displ = a1.displ\n", | |
"displ2 = displ.fillna(0)\n", | |
"displ3 = displ2.astype('float16')\n", | |
"a1.displ = displ3\n", | |
"a1.drive = autos.drive.fillna('Other').astype('category')\n", | |
"a1['automatic'] = autos.trany.str.contains('Auto') \n", | |
"speed = autos.trany.str.extract(r'(\\d)+')\n", | |
"speedfill = speed.fillna('20')\n", | |
"speedint = speedfill.astype('int8')\n", | |
"a1['speeds'] = speedint\n", | |
"a1.createdOn=pd.to_datetime(autos.createdOn).dt.tz_localize('America/New_York')\n", | |
"a1.ffs=autos.eng_dscr.str.contains('FFS')\n", | |
"a1['highway08'] = autos.highway08.astype('int8')\n", | |
"a1['city08'] = autos.city08.astype('int8')\n", | |
"a1['comb08'] = autos.comb08.astype('int16')\n", | |
"a1['fuelCost08'] = autos.fuelCost08.astype('int16')\n", | |
"a1['range'] = autos.range.astype('int16')\n", | |
"a1['make'] = autos.make.astype('category')\n", | |
"a3 = a1.drop(columns=['trany', 'eng_dscr'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>eng_dscr</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>trany</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" <th>automatic</th>\n", | |
" <th>speeds</th>\n", | |
" <th>ffs</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>19</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9</td>\n", | |
" <td>11</td>\n", | |
" <td>14</td>\n", | |
" <td>12</td>\n", | |
" <td>4.898438</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(GUZZLER)</td>\n", | |
" <td>3850</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>23</td>\n", | |
" <td>27</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1550</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10</td>\n", | |
" <td>11</td>\n", | |
" <td>12</td>\n", | |
" <td>8</td>\n", | |
" <td>5.199219</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>3850</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>23</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>22</td>\n", | |
" <td>25</td>\n", | |
" <td>29</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1750</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>31</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1600</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>23</td>\n", | |
" <td>25</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.099609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2100</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>1600</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>1750</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>1500</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>32</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>19</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>20</td>\n", | |
" <td>23</td>\n", | |
" <td>28</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1850</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 17 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"0 19 21 25 4 2.000000 \n", | |
"1 9 11 14 12 4.898438 \n", | |
"2 23 27 33 4 2.199219 \n", | |
"3 10 11 12 8 5.199219 \n", | |
"4 17 19 23 4 2.199219 \n", | |
"5 21 22 24 4 1.799805 \n", | |
"6 22 25 29 4 1.799805 \n", | |
"7 23 24 26 4 1.599609 \n", | |
"8 23 26 31 4 1.599609 \n", | |
"9 23 25 30 4 1.799805 \n", | |
"... ... ... ... ... ... \n", | |
"41134 18 20 24 4 2.099609 \n", | |
"41135 23 26 33 4 1.900391 \n", | |
"41136 21 24 30 4 1.900391 \n", | |
"41137 24 28 33 4 1.900391 \n", | |
"41138 21 25 32 4 1.900391 \n", | |
"41139 19 22 26 4 2.199219 \n", | |
"41140 20 23 28 4 2.199219 \n", | |
"41141 18 21 24 4 2.199219 \n", | |
"41142 18 21 24 4 2.199219 \n", | |
"41143 16 18 21 4 2.199219 \n", | |
"\n", | |
" drive eng_dscr fuelCost08 make \\\n", | |
"0 Rear-Wheel Drive (FFS) 2000 Alfa Romeo \n", | |
"1 Rear-Wheel Drive (GUZZLER) 3850 Ferrari \n", | |
"2 Front-Wheel Drive (FFS) 1550 Dodge \n", | |
"3 Rear-Wheel Drive NaN 3850 Dodge \n", | |
"4 4-Wheel or All-Wheel Drive (FFS,TRBO) 2700 Subaru \n", | |
"5 Front-Wheel Drive (FFS) 1900 Subaru \n", | |
"6 Front-Wheel Drive (FFS) 1700 Subaru \n", | |
"7 Front-Wheel Drive (FFS) 1750 Toyota \n", | |
"8 Front-Wheel Drive (FFS) 1600 Toyota \n", | |
"9 Front-Wheel Drive (FFS) 1700 Toyota \n", | |
"... ... ... ... ... \n", | |
"41134 Front-Wheel Drive (FFS) 2100 Saab \n", | |
"41135 Front-Wheel Drive (TBI) (FFS) 1600 Saturn \n", | |
"41136 Front-Wheel Drive (MFI) (FFS) 1750 Saturn \n", | |
"41137 Front-Wheel Drive (TBI) (FFS) 1500 Saturn \n", | |
"41138 Front-Wheel Drive (MFI) (FFS) 1700 Saturn \n", | |
"41139 Front-Wheel Drive (FFS) 1900 Subaru \n", | |
"41140 Front-Wheel Drive (FFS) 1850 Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive (FFS) 2000 Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive (FFS) 2000 Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive (FFS,TRBO) 2900 Subaru \n", | |
"\n", | |
" model trany range createdOn \\\n", | |
"0 Spider Veloce 2000 Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"1 Testarossa Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"2 Charger Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"3 B150/B250 Wagon 2WD Automatic 3-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"4 Legacy AWD Turbo Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"5 Loyale Automatic 3-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"6 Loyale Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"7 Corolla Automatic 3-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"8 Corolla Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"9 Corolla Automatic 4-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"... ... ... ... ... \n", | |
"41134 900 Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41135 SL Automatic 4-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41136 SL Automatic 4-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41137 SL Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41138 SL Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41139 Legacy Automatic 4-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41140 Legacy Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41141 Legacy AWD Automatic 4-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41142 Legacy AWD Manual 5-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"41143 Legacy AWD Turbo Automatic 4-spd 0 2013-01-01 00:00:00-05:00 \n", | |
"\n", | |
" year automatic speeds ffs \n", | |
"0 1985 False 5 True \n", | |
"1 1985 False 5 False \n", | |
"2 1985 False 5 True \n", | |
"3 1985 True 3 NaN \n", | |
"4 1993 False 5 True \n", | |
"5 1993 True 3 True \n", | |
"6 1993 False 5 True \n", | |
"7 1993 True 3 True \n", | |
"8 1993 False 5 True \n", | |
"9 1993 True 4 True \n", | |
"... ... ... ... ... \n", | |
"41134 1993 False 5 True \n", | |
"41135 1993 True 4 True \n", | |
"41136 1993 True 4 True \n", | |
"41137 1993 False 5 True \n", | |
"41138 1993 False 5 True \n", | |
"41139 1993 True 4 True \n", | |
"41140 1993 False 5 True \n", | |
"41141 1993 True 4 True \n", | |
"41142 1993 False 5 True \n", | |
"41143 1993 True 4 True \n", | |
"\n", | |
"[41144 rows x 17 columns]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" <th>automatic</th>\n", | |
" <th>speeds</th>\n", | |
" <th>ffs</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>19</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9</td>\n", | |
" <td>11</td>\n", | |
" <td>14</td>\n", | |
" <td>12</td>\n", | |
" <td>4.898438</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>3850</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>23</td>\n", | |
" <td>27</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1550</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10</td>\n", | |
" <td>11</td>\n", | |
" <td>12</td>\n", | |
" <td>8</td>\n", | |
" <td>5.199219</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>3850</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1985</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>23</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>22</td>\n", | |
" <td>25</td>\n", | |
" <td>29</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1750</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>3</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>31</td>\n", | |
" <td>4</td>\n", | |
" <td>1.599609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1600</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>23</td>\n", | |
" <td>25</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.799805</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.099609</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>2100</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1600</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>30</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1750</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>33</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1500</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>32</td>\n", | |
" <td>4</td>\n", | |
" <td>1.900391</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1700</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>19</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>20</td>\n", | |
" <td>23</td>\n", | |
" <td>28</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>1850</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>False</td>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>4</td>\n", | |
" <td>2.199219</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>2900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>0</td>\n", | |
" <td>2013-01-01 00:00:00-05:00</td>\n", | |
" <td>1993</td>\n", | |
" <td>True</td>\n", | |
" <td>4</td>\n", | |
" <td>True</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 15 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"0 19 21 25 4 2.000000 \n", | |
"1 9 11 14 12 4.898438 \n", | |
"2 23 27 33 4 2.199219 \n", | |
"3 10 11 12 8 5.199219 \n", | |
"4 17 19 23 4 2.199219 \n", | |
"5 21 22 24 4 1.799805 \n", | |
"6 22 25 29 4 1.799805 \n", | |
"7 23 24 26 4 1.599609 \n", | |
"8 23 26 31 4 1.599609 \n", | |
"9 23 25 30 4 1.799805 \n", | |
"... ... ... ... ... ... \n", | |
"41134 18 20 24 4 2.099609 \n", | |
"41135 23 26 33 4 1.900391 \n", | |
"41136 21 24 30 4 1.900391 \n", | |
"41137 24 28 33 4 1.900391 \n", | |
"41138 21 25 32 4 1.900391 \n", | |
"41139 19 22 26 4 2.199219 \n", | |
"41140 20 23 28 4 2.199219 \n", | |
"41141 18 21 24 4 2.199219 \n", | |
"41142 18 21 24 4 2.199219 \n", | |
"41143 16 18 21 4 2.199219 \n", | |
"\n", | |
" drive fuelCost08 make \\\n", | |
"0 Rear-Wheel Drive 2000 Alfa Romeo \n", | |
"1 Rear-Wheel Drive 3850 Ferrari \n", | |
"2 Front-Wheel Drive 1550 Dodge \n", | |
"3 Rear-Wheel Drive 3850 Dodge \n", | |
"4 4-Wheel or All-Wheel Drive 2700 Subaru \n", | |
"5 Front-Wheel Drive 1900 Subaru \n", | |
"6 Front-Wheel Drive 1700 Subaru \n", | |
"7 Front-Wheel Drive 1750 Toyota \n", | |
"8 Front-Wheel Drive 1600 Toyota \n", | |
"9 Front-Wheel Drive 1700 Toyota \n", | |
"... ... ... ... \n", | |
"41134 Front-Wheel Drive 2100 Saab \n", | |
"41135 Front-Wheel Drive 1600 Saturn \n", | |
"41136 Front-Wheel Drive 1750 Saturn \n", | |
"41137 Front-Wheel Drive 1500 Saturn \n", | |
"41138 Front-Wheel Drive 1700 Saturn \n", | |
"41139 Front-Wheel Drive 1900 Subaru \n", | |
"41140 Front-Wheel Drive 1850 Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive 2000 Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive 2000 Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive 2900 Subaru \n", | |
"\n", | |
" model range createdOn year automatic \\\n", | |
"0 Spider Veloce 2000 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"1 Testarossa 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"2 Charger 0 2013-01-01 00:00:00-05:00 1985 False \n", | |
"3 B150/B250 Wagon 2WD 0 2013-01-01 00:00:00-05:00 1985 True \n", | |
"4 Legacy AWD Turbo 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"5 Loyale 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"6 Loyale 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"7 Corolla 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"8 Corolla 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"9 Corolla 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"... ... ... ... ... ... \n", | |
"41134 900 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41135 SL 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41136 SL 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41137 SL 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41138 SL 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41139 Legacy 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41140 Legacy 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41141 Legacy AWD 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"41142 Legacy AWD 0 2013-01-01 00:00:00-05:00 1993 False \n", | |
"41143 Legacy AWD Turbo 0 2013-01-01 00:00:00-05:00 1993 True \n", | |
"\n", | |
" speeds ffs \n", | |
"0 5 True \n", | |
"1 5 False \n", | |
"2 5 True \n", | |
"3 3 NaN \n", | |
"4 5 True \n", | |
"5 3 True \n", | |
"6 5 True \n", | |
"7 3 True \n", | |
"8 5 True \n", | |
"9 4 True \n", | |
"... ... ... \n", | |
"41134 5 True \n", | |
"41135 4 True \n", | |
"41136 4 True \n", | |
"41137 5 True \n", | |
"41138 5 True \n", | |
"41139 4 True \n", | |
"41140 5 True \n", | |
"41141 4 True \n", | |
"41142 5 True \n", | |
"41143 4 True \n", | |
"\n", | |
"[41144 rows x 15 columns]" | |
] | |
}, | |
"execution_count": 40, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# easy to debug\n", | |
"# - assign to var (df3)\n", | |
"# - comment out\n", | |
"# - pipe to display\n", | |
"\n", | |
"\n", | |
"from IPython.display import display\n", | |
"\n", | |
"def get_var(df, var_name):\n", | |
" globals()[var_name] = df\n", | |
" return df\n", | |
"\n", | |
"def tweak_autos(autos):\n", | |
" return (autos\n", | |
" [cols]\n", | |
" # create var \n", | |
" .pipe(get_var, 'df3')\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'), \n", | |
" createdOn=pd.to_datetime(autos.createdOn.replace({' EDT': '-04:00',\n", | |
" ' EST': '-05:00'}, regex=True), utc=True).dt.tz_convert('America/New_York'),\n", | |
" ffs=autos.eng_dscr.str.contains('FFS')\n", | |
" )\n", | |
" # debug pipe \n", | |
" .pipe(lambda df: display(df) or df)\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16', \n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany', 'eng_dscr'])\n", | |
" )\n", | |
"\n", | |
"tweak_autos(autos)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>drive</th>\n", | |
" <th>eng_dscr</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>make</th>\n", | |
" <th>model</th>\n", | |
" <th>trany</th>\n", | |
" <th>range</th>\n", | |
" <th>createdOn</th>\n", | |
" <th>year</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>19</td>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Alfa Romeo</td>\n", | |
" <td>Spider Veloce 2000</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9</td>\n", | |
" <td>11</td>\n", | |
" <td>14</td>\n", | |
" <td>12.0</td>\n", | |
" <td>4.9</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>(GUZZLER)</td>\n", | |
" <td>3850</td>\n", | |
" <td>Ferrari</td>\n", | |
" <td>Testarossa</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>23</td>\n", | |
" <td>27</td>\n", | |
" <td>33</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1550</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>Charger</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>10</td>\n", | |
" <td>11</td>\n", | |
" <td>12</td>\n", | |
" <td>8.0</td>\n", | |
" <td>5.2</td>\n", | |
" <td>Rear-Wheel Drive</td>\n", | |
" <td>NaN</td>\n", | |
" <td>3850</td>\n", | |
" <td>Dodge</td>\n", | |
" <td>B150/B250 Wagon 2WD</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>23</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>24</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>22</td>\n", | |
" <td>25</td>\n", | |
" <td>29</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Loyale</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.6</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1750</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 3-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>31</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.6</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1600</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>23</td>\n", | |
" <td>25</td>\n", | |
" <td>30</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Toyota</td>\n", | |
" <td>Corolla</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41134</th>\n", | |
" <td>18</td>\n", | |
" <td>20</td>\n", | |
" <td>24</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.1</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2100</td>\n", | |
" <td>Saab</td>\n", | |
" <td>900</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41135</th>\n", | |
" <td>23</td>\n", | |
" <td>26</td>\n", | |
" <td>33</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>1600</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41136</th>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>30</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>1750</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41137</th>\n", | |
" <td>24</td>\n", | |
" <td>28</td>\n", | |
" <td>33</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(TBI) (FFS)</td>\n", | |
" <td>1500</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41138</th>\n", | |
" <td>21</td>\n", | |
" <td>25</td>\n", | |
" <td>32</td>\n", | |
" <td>4.0</td>\n", | |
" <td>1.9</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(MFI) (FFS)</td>\n", | |
" <td>1700</td>\n", | |
" <td>Saturn</td>\n", | |
" <td>SL</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41139</th>\n", | |
" <td>19</td>\n", | |
" <td>22</td>\n", | |
" <td>26</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41140</th>\n", | |
" <td>20</td>\n", | |
" <td>23</td>\n", | |
" <td>28</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>Front-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>1850</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41141</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41142</th>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>24</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS)</td>\n", | |
" <td>2000</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD</td>\n", | |
" <td>Manual 5-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41143</th>\n", | |
" <td>16</td>\n", | |
" <td>18</td>\n", | |
" <td>21</td>\n", | |
" <td>4.0</td>\n", | |
" <td>2.2</td>\n", | |
" <td>4-Wheel or All-Wheel Drive</td>\n", | |
" <td>(FFS,TRBO)</td>\n", | |
" <td>2900</td>\n", | |
" <td>Subaru</td>\n", | |
" <td>Legacy AWD Turbo</td>\n", | |
" <td>Automatic 4-spd</td>\n", | |
" <td>0</td>\n", | |
" <td>Tue Jan 01 00:00:00 EST 2013</td>\n", | |
" <td>1993</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>41144 rows × 14 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"0 19 21 25 4.0 2.0 \n", | |
"1 9 11 14 12.0 4.9 \n", | |
"2 23 27 33 4.0 2.2 \n", | |
"3 10 11 12 8.0 5.2 \n", | |
"4 17 19 23 4.0 2.2 \n", | |
"5 21 22 24 4.0 1.8 \n", | |
"6 22 25 29 4.0 1.8 \n", | |
"7 23 24 26 4.0 1.6 \n", | |
"8 23 26 31 4.0 1.6 \n", | |
"9 23 25 30 4.0 1.8 \n", | |
"... ... ... ... ... ... \n", | |
"41134 18 20 24 4.0 2.1 \n", | |
"41135 23 26 33 4.0 1.9 \n", | |
"41136 21 24 30 4.0 1.9 \n", | |
"41137 24 28 33 4.0 1.9 \n", | |
"41138 21 25 32 4.0 1.9 \n", | |
"41139 19 22 26 4.0 2.2 \n", | |
"41140 20 23 28 4.0 2.2 \n", | |
"41141 18 21 24 4.0 2.2 \n", | |
"41142 18 21 24 4.0 2.2 \n", | |
"41143 16 18 21 4.0 2.2 \n", | |
"\n", | |
" drive eng_dscr fuelCost08 make \\\n", | |
"0 Rear-Wheel Drive (FFS) 2000 Alfa Romeo \n", | |
"1 Rear-Wheel Drive (GUZZLER) 3850 Ferrari \n", | |
"2 Front-Wheel Drive (FFS) 1550 Dodge \n", | |
"3 Rear-Wheel Drive NaN 3850 Dodge \n", | |
"4 4-Wheel or All-Wheel Drive (FFS,TRBO) 2700 Subaru \n", | |
"5 Front-Wheel Drive (FFS) 1900 Subaru \n", | |
"6 Front-Wheel Drive (FFS) 1700 Subaru \n", | |
"7 Front-Wheel Drive (FFS) 1750 Toyota \n", | |
"8 Front-Wheel Drive (FFS) 1600 Toyota \n", | |
"9 Front-Wheel Drive (FFS) 1700 Toyota \n", | |
"... ... ... ... ... \n", | |
"41134 Front-Wheel Drive (FFS) 2100 Saab \n", | |
"41135 Front-Wheel Drive (TBI) (FFS) 1600 Saturn \n", | |
"41136 Front-Wheel Drive (MFI) (FFS) 1750 Saturn \n", | |
"41137 Front-Wheel Drive (TBI) (FFS) 1500 Saturn \n", | |
"41138 Front-Wheel Drive (MFI) (FFS) 1700 Saturn \n", | |
"41139 Front-Wheel Drive (FFS) 1900 Subaru \n", | |
"41140 Front-Wheel Drive (FFS) 1850 Subaru \n", | |
"41141 4-Wheel or All-Wheel Drive (FFS) 2000 Subaru \n", | |
"41142 4-Wheel or All-Wheel Drive (FFS) 2000 Subaru \n", | |
"41143 4-Wheel or All-Wheel Drive (FFS,TRBO) 2900 Subaru \n", | |
"\n", | |
" model trany range \\\n", | |
"0 Spider Veloce 2000 Manual 5-spd 0 \n", | |
"1 Testarossa Manual 5-spd 0 \n", | |
"2 Charger Manual 5-spd 0 \n", | |
"3 B150/B250 Wagon 2WD Automatic 3-spd 0 \n", | |
"4 Legacy AWD Turbo Manual 5-spd 0 \n", | |
"5 Loyale Automatic 3-spd 0 \n", | |
"6 Loyale Manual 5-spd 0 \n", | |
"7 Corolla Automatic 3-spd 0 \n", | |
"8 Corolla Manual 5-spd 0 \n", | |
"9 Corolla Automatic 4-spd 0 \n", | |
"... ... ... ... \n", | |
"41134 900 Manual 5-spd 0 \n", | |
"41135 SL Automatic 4-spd 0 \n", | |
"41136 SL Automatic 4-spd 0 \n", | |
"41137 SL Manual 5-spd 0 \n", | |
"41138 SL Manual 5-spd 0 \n", | |
"41139 Legacy Automatic 4-spd 0 \n", | |
"41140 Legacy Manual 5-spd 0 \n", | |
"41141 Legacy AWD Automatic 4-spd 0 \n", | |
"41142 Legacy AWD Manual 5-spd 0 \n", | |
"41143 Legacy AWD Turbo Automatic 4-spd 0 \n", | |
"\n", | |
" createdOn year \n", | |
"0 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"1 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"2 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"3 Tue Jan 01 00:00:00 EST 2013 1985 \n", | |
"4 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"5 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"6 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"7 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"8 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"9 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"... ... ... \n", | |
"41134 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41135 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41136 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41137 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41138 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41139 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41140 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41141 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41142 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"41143 Tue Jan 01 00:00:00 EST 2013 1993 \n", | |
"\n", | |
"[41144 rows x 14 columns]" | |
] | |
}, | |
"execution_count": 44, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# inspect intermediate data frame\n", | |
"df3" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Don't Mutate\n", | |
"\n", | |
"> \"you are missing the point, inplace rarely actually does something inplace, you are thinking that you are saving memory but you are not.\"\n", | |
">\n", | |
"> **jreback** - Pandas core dev\n", | |
"\n", | |
"\n", | |
"\n", | |
"https://github.com/pandas-dev/pandas/issues/16529#issuecomment-676518136\n", | |
"\n", | |
"* In general, no performance benefits\n", | |
"* Prohibits chaining\n", | |
"* ``SettingWithCopyWarning`` fun\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Don't Apply (if you can)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def tweak_autos(autos):\n", | |
" return (autos\n", | |
" [cols]\n", | |
" .assign(cylinders=autos.cylinders.fillna(0).astype('int8'),\n", | |
" displ=autos.displ.fillna(0).astype('float16'),\n", | |
" drive=autos.drive.fillna('Other').astype('category'),\n", | |
" automatic=autos.trany.str.contains('Auto'),\n", | |
" speeds=autos.trany.str.extract(r'(\\d)+').fillna('20').astype('int8'),\n", | |
" createdOn=pd.to_datetime(autos.createdOn.replace({' EDT': '-04:00',\n", | |
" ' EST': '-05:00'}, regex=True), utc=True).dt.tz_convert('America/New_York'),\n", | |
" ffs=autos.eng_dscr.str.contains('FFS')\n", | |
" )\n", | |
" .astype({'highway08': 'int8', 'city08': 'int16', 'comb08': 'int16', 'fuelCost08': 'int16',\n", | |
" 'range': 'int16', 'year': 'int16', 'make': 'category'})\n", | |
" .drop(columns=['trany', 'eng_dscr'])\n", | |
" )\n", | |
"\n", | |
"\n", | |
"autos2 = tweak_autos(autos)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 12.379737\n", | |
"1 26.135000\n", | |
"2 10.226739\n", | |
"3 23.521500\n", | |
"4 13.836176\n", | |
"5 11.200714\n", | |
"6 10.691591\n", | |
"7 10.226739\n", | |
"8 10.226739\n", | |
"9 10.226739\n", | |
" ... \n", | |
"41134 13.067500\n", | |
"41135 10.226739\n", | |
"41136 11.200714\n", | |
"41137 9.800625\n", | |
"41138 11.200714\n", | |
"41139 12.379737\n", | |
"41140 11.760750\n", | |
"41141 13.067500\n", | |
"41142 13.067500\n", | |
"41143 14.700938\n", | |
"Name: city08, Length: 41144, dtype: float64" | |
] | |
}, | |
"execution_count": 42, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# try to me more Euro-centric\n", | |
"def to_lper100km(val):\n", | |
" return 235.215 / val\n", | |
"autos2.city08.apply(to_lper100km)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 12.379737\n", | |
"1 26.135000\n", | |
"2 10.226739\n", | |
"3 23.521500\n", | |
"4 13.836176\n", | |
"5 11.200714\n", | |
"6 10.691591\n", | |
"7 10.226739\n", | |
"8 10.226739\n", | |
"9 10.226739\n", | |
" ... \n", | |
"41134 13.067500\n", | |
"41135 10.226739\n", | |
"41136 11.200714\n", | |
"41137 9.800625\n", | |
"41138 11.200714\n", | |
"41139 12.379737\n", | |
"41140 11.760750\n", | |
"41141 13.067500\n", | |
"41142 13.067500\n", | |
"41143 14.700938\n", | |
"Name: city08, Length: 41144, dtype: float64" | |
] | |
}, | |
"execution_count": 43, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# this gives the sames results\n", | |
"235.215 / autos2.city08 " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"6.07 ms ± 236 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"autos2.city08.apply(to_lper100km)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"110 µs ± 1.52 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"235.215 / autos2.city08 " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"56.54545454545455" | |
] | |
}, | |
"execution_count": 46, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# ~50x slower!\n", | |
"6_220 / 110" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def is_american(val):\n", | |
" return val in {'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"772 µs ± 13 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"autos2.make.apply(is_american)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"630 µs ± 32.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"autos2.make.isin({'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'})" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"autos3 = autos2.assign(make=autos2.make.astype(str))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.42 ms ± 25.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"# converted to string\n", | |
"autos3.make.isin({'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'})" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 55, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"4.88 ms ± 56.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"autos3.make.apply(is_american)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def country(val):\n", | |
" if val in {'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'}:\n", | |
" return 'US'\n", | |
" return 'Other'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 57, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.97 ms ± 68.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"# Might be ok for strings, since they are not vectorized...\n", | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 58, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"4.82 ms ± 224 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"values = {'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'}\n", | |
"(autos2\n", | |
" .assign(country='US')\n", | |
" .assign(country=lambda df_:df_.country.where(df_.make.isin(values), 'Other'))\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 59, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"3.91 ms ± 41.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"\n", | |
"(autos2\n", | |
" .assign(country=np.select([autos2.make.isin({'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'})], \n", | |
" ['US'], 'Other'))\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 60, | |
"metadata": { | |
"lines_to_next_cell": 0 | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"3.91 ms ± 25.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"\n", | |
"(autos2\n", | |
" .assign(country=np.where(autos2.make.isin({'Chevrolet', 'Ford', 'Dodge', 'GMC', 'Tesla'}), \n", | |
" 'US', 'Other'))\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Master Aggregation\n", | |
"\n", | |
"Let's compare mileage by country by year...🤔" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 61, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>speeds</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>year</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1984</th>\n", | |
" <td>17.982688</td>\n", | |
" <td>19.881874</td>\n", | |
" <td>23.075356</td>\n", | |
" <td>5.385438</td>\n", | |
" <td>3.164062</td>\n", | |
" <td>2313.543788</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.928208</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1985</th>\n", | |
" <td>17.878307</td>\n", | |
" <td>19.808348</td>\n", | |
" <td>23.042328</td>\n", | |
" <td>5.375661</td>\n", | |
" <td>3.164062</td>\n", | |
" <td>2334.509112</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.924750</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1986</th>\n", | |
" <td>17.665289</td>\n", | |
" <td>19.550413</td>\n", | |
" <td>22.699174</td>\n", | |
" <td>5.425620</td>\n", | |
" <td>3.183594</td>\n", | |
" <td>2354.049587</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.984298</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1987</th>\n", | |
" <td>17.310345</td>\n", | |
" <td>19.228549</td>\n", | |
" <td>22.445068</td>\n", | |
" <td>5.412189</td>\n", | |
" <td>3.173828</td>\n", | |
" <td>2403.648757</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.037690</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1988</th>\n", | |
" <td>17.333628</td>\n", | |
" <td>19.328319</td>\n", | |
" <td>22.702655</td>\n", | |
" <td>5.461947</td>\n", | |
" <td>3.195312</td>\n", | |
" <td>2387.035398</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.129204</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1989</th>\n", | |
" <td>17.143972</td>\n", | |
" <td>19.125759</td>\n", | |
" <td>22.465742</td>\n", | |
" <td>5.488291</td>\n", | |
" <td>3.208984</td>\n", | |
" <td>2433.434519</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.166522</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1990</th>\n", | |
" <td>17.033395</td>\n", | |
" <td>19.000928</td>\n", | |
" <td>22.337662</td>\n", | |
" <td>5.496289</td>\n", | |
" <td>3.216797</td>\n", | |
" <td>2436.178108</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.238404</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1991</th>\n", | |
" <td>16.848940</td>\n", | |
" <td>18.825972</td>\n", | |
" <td>22.253534</td>\n", | |
" <td>5.598940</td>\n", | |
" <td>3.267578</td>\n", | |
" <td>2490.856890</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.301237</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1992</th>\n", | |
" <td>16.805531</td>\n", | |
" <td>18.862623</td>\n", | |
" <td>22.439786</td>\n", | |
" <td>5.623550</td>\n", | |
" <td>3.275391</td>\n", | |
" <td>2494.736842</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.318466</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1993</th>\n", | |
" <td>16.998170</td>\n", | |
" <td>19.104300</td>\n", | |
" <td>22.780421</td>\n", | |
" <td>5.602928</td>\n", | |
" <td>3.248047</td>\n", | |
" <td>2454.620311</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.339433</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1994</th>\n", | |
" <td>16.918534</td>\n", | |
" <td>19.012220</td>\n", | |
" <td>22.725051</td>\n", | |
" <td>5.704684</td>\n", | |
" <td>3.333984</td>\n", | |
" <td>2461.507128</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.332994</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1995</th>\n", | |
" <td>16.569804</td>\n", | |
" <td>18.797311</td>\n", | |
" <td>22.671148</td>\n", | |
" <td>5.892451</td>\n", | |
" <td>3.472656</td>\n", | |
" <td>2497.828335</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.356774</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1996</th>\n", | |
" <td>17.289780</td>\n", | |
" <td>19.584735</td>\n", | |
" <td>23.569211</td>\n", | |
" <td>5.627426</td>\n", | |
" <td>3.234375</td>\n", | |
" <td>2375.032342</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.364812</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1997</th>\n", | |
" <td>17.135171</td>\n", | |
" <td>19.429134</td>\n", | |
" <td>23.451444</td>\n", | |
" <td>5.666667</td>\n", | |
" <td>3.226562</td>\n", | |
" <td>2405.511811</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.402887</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1998</th>\n", | |
" <td>17.113300</td>\n", | |
" <td>19.518473</td>\n", | |
" <td>23.546798</td>\n", | |
" <td>5.633005</td>\n", | |
" <td>3.201172</td>\n", | |
" <td>2382.635468</td>\n", | |
" <td>0.229064</td>\n", | |
" <td>4.419951</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1999</th>\n", | |
" <td>17.272300</td>\n", | |
" <td>19.611502</td>\n", | |
" <td>23.552817</td>\n", | |
" <td>5.667840</td>\n", | |
" <td>3.189453</td>\n", | |
" <td>2392.194836</td>\n", | |
" <td>0.570423</td>\n", | |
" <td>4.421362</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2000</th>\n", | |
" <td>17.221429</td>\n", | |
" <td>19.526190</td>\n", | |
" <td>23.414286</td>\n", | |
" <td>5.713095</td>\n", | |
" <td>3.201172</td>\n", | |
" <td>2429.702381</td>\n", | |
" <td>0.348810</td>\n", | |
" <td>4.508333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001</th>\n", | |
" <td>17.275521</td>\n", | |
" <td>19.479693</td>\n", | |
" <td>23.328211</td>\n", | |
" <td>5.720088</td>\n", | |
" <td>3.193359</td>\n", | |
" <td>2448.463227</td>\n", | |
" <td>0.261251</td>\n", | |
" <td>4.660812</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002</th>\n", | |
" <td>16.893333</td>\n", | |
" <td>19.168205</td>\n", | |
" <td>23.030769</td>\n", | |
" <td>5.827692</td>\n", | |
" <td>3.263672</td>\n", | |
" <td>2479.794872</td>\n", | |
" <td>0.136410</td>\n", | |
" <td>4.757949</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003</th>\n", | |
" <td>16.780651</td>\n", | |
" <td>19.000958</td>\n", | |
" <td>22.836207</td>\n", | |
" <td>5.942529</td>\n", | |
" <td>3.357422</td>\n", | |
" <td>2525.574713</td>\n", | |
" <td>0.090996</td>\n", | |
" <td>4.911877</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004</th>\n", | |
" <td>16.740642</td>\n", | |
" <td>19.067736</td>\n", | |
" <td>23.064171</td>\n", | |
" <td>5.957219</td>\n", | |
" <td>3.394531</td>\n", | |
" <td>2512.566845</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.976827</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005</th>\n", | |
" <td>16.851630</td>\n", | |
" <td>19.193825</td>\n", | |
" <td>23.297599</td>\n", | |
" <td>5.944254</td>\n", | |
" <td>3.400391</td>\n", | |
" <td>2518.610635</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.192110</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006</th>\n", | |
" <td>16.626812</td>\n", | |
" <td>18.959239</td>\n", | |
" <td>23.048913</td>\n", | |
" <td>6.100543</td>\n", | |
" <td>3.548828</td>\n", | |
" <td>2539.175725</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.315217</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007</th>\n", | |
" <td>16.605684</td>\n", | |
" <td>18.978686</td>\n", | |
" <td>23.083481</td>\n", | |
" <td>6.166075</td>\n", | |
" <td>3.628906</td>\n", | |
" <td>2535.923623</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.610124</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008</th>\n", | |
" <td>16.900590</td>\n", | |
" <td>19.276327</td>\n", | |
" <td>23.455771</td>\n", | |
" <td>6.192923</td>\n", | |
" <td>3.638672</td>\n", | |
" <td>2536.436394</td>\n", | |
" <td>0.084246</td>\n", | |
" <td>5.773378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009</th>\n", | |
" <td>17.334459</td>\n", | |
" <td>19.735642</td>\n", | |
" <td>24.017736</td>\n", | |
" <td>6.122466</td>\n", | |
" <td>3.625000</td>\n", | |
" <td>2427.027027</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>6.043074</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010</th>\n", | |
" <td>18.105500</td>\n", | |
" <td>20.588819</td>\n", | |
" <td>24.947701</td>\n", | |
" <td>5.965735</td>\n", | |
" <td>3.501953</td>\n", | |
" <td>2351.082056</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>6.271416</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011</th>\n", | |
" <td>18.669027</td>\n", | |
" <td>21.011504</td>\n", | |
" <td>25.169912</td>\n", | |
" <td>5.980531</td>\n", | |
" <td>3.521484</td>\n", | |
" <td>2333.982301</td>\n", | |
" <td>0.259292</td>\n", | |
" <td>6.560177</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012</th>\n", | |
" <td>19.362847</td>\n", | |
" <td>21.819444</td>\n", | |
" <td>26.105035</td>\n", | |
" <td>5.910590</td>\n", | |
" <td>3.460938</td>\n", | |
" <td>2289.973958</td>\n", | |
" <td>0.782118</td>\n", | |
" <td>6.706597</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013</th>\n", | |
" <td>20.661318</td>\n", | |
" <td>23.125000</td>\n", | |
" <td>27.504223</td>\n", | |
" <td>5.762669</td>\n", | |
" <td>3.328125</td>\n", | |
" <td>2210.768581</td>\n", | |
" <td>1.255068</td>\n", | |
" <td>6.896959</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014</th>\n", | |
" <td>21.033469</td>\n", | |
" <td>23.531429</td>\n", | |
" <td>27.978776</td>\n", | |
" <td>5.745306</td>\n", | |
" <td>3.289062</td>\n", | |
" <td>2198.040816</td>\n", | |
" <td>1.405714</td>\n", | |
" <td>6.985306</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015</th>\n", | |
" <td>21.445830</td>\n", | |
" <td>24.038971</td>\n", | |
" <td>28.586906</td>\n", | |
" <td>5.635230</td>\n", | |
" <td>3.205078</td>\n", | |
" <td>2148.869836</td>\n", | |
" <td>2.208106</td>\n", | |
" <td>7.035853</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016</th>\n", | |
" <td>22.591918</td>\n", | |
" <td>25.150555</td>\n", | |
" <td>29.606973</td>\n", | |
" <td>5.463550</td>\n", | |
" <td>3.054688</td>\n", | |
" <td>2091.204437</td>\n", | |
" <td>4.546751</td>\n", | |
" <td>7.080032</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2017</th>\n", | |
" <td>22.761021</td>\n", | |
" <td>25.249033</td>\n", | |
" <td>29.554524</td>\n", | |
" <td>5.453210</td>\n", | |
" <td>3.025391</td>\n", | |
" <td>2096.558391</td>\n", | |
" <td>4.336427</td>\n", | |
" <td>7.225058</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2018</th>\n", | |
" <td>22.564732</td>\n", | |
" <td>25.019345</td>\n", | |
" <td>29.273065</td>\n", | |
" <td>5.438988</td>\n", | |
" <td>2.992188</td>\n", | |
" <td>2103.980655</td>\n", | |
" <td>3.519345</td>\n", | |
" <td>7.017113</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019</th>\n", | |
" <td>23.318147</td>\n", | |
" <td>25.627942</td>\n", | |
" <td>29.664389</td>\n", | |
" <td>5.368261</td>\n", | |
" <td>2.964844</td>\n", | |
" <td>2093.545938</td>\n", | |
" <td>5.565680</td>\n", | |
" <td>7.136674</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2020</th>\n", | |
" <td>22.679426</td>\n", | |
" <td>25.267943</td>\n", | |
" <td>29.617225</td>\n", | |
" <td>5.071770</td>\n", | |
" <td>2.644531</td>\n", | |
" <td>2023.444976</td>\n", | |
" <td>2.282297</td>\n", | |
" <td>7.746411</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ fuelCost08 \\\n", | |
"year \n", | |
"1984 17.982688 19.881874 23.075356 5.385438 3.164062 2313.543788 \n", | |
"1985 17.878307 19.808348 23.042328 5.375661 3.164062 2334.509112 \n", | |
"1986 17.665289 19.550413 22.699174 5.425620 3.183594 2354.049587 \n", | |
"1987 17.310345 19.228549 22.445068 5.412189 3.173828 2403.648757 \n", | |
"1988 17.333628 19.328319 22.702655 5.461947 3.195312 2387.035398 \n", | |
"1989 17.143972 19.125759 22.465742 5.488291 3.208984 2433.434519 \n", | |
"1990 17.033395 19.000928 22.337662 5.496289 3.216797 2436.178108 \n", | |
"1991 16.848940 18.825972 22.253534 5.598940 3.267578 2490.856890 \n", | |
"1992 16.805531 18.862623 22.439786 5.623550 3.275391 2494.736842 \n", | |
"1993 16.998170 19.104300 22.780421 5.602928 3.248047 2454.620311 \n", | |
"1994 16.918534 19.012220 22.725051 5.704684 3.333984 2461.507128 \n", | |
"1995 16.569804 18.797311 22.671148 5.892451 3.472656 2497.828335 \n", | |
"1996 17.289780 19.584735 23.569211 5.627426 3.234375 2375.032342 \n", | |
"1997 17.135171 19.429134 23.451444 5.666667 3.226562 2405.511811 \n", | |
"1998 17.113300 19.518473 23.546798 5.633005 3.201172 2382.635468 \n", | |
"1999 17.272300 19.611502 23.552817 5.667840 3.189453 2392.194836 \n", | |
"2000 17.221429 19.526190 23.414286 5.713095 3.201172 2429.702381 \n", | |
"2001 17.275521 19.479693 23.328211 5.720088 3.193359 2448.463227 \n", | |
"2002 16.893333 19.168205 23.030769 5.827692 3.263672 2479.794872 \n", | |
"2003 16.780651 19.000958 22.836207 5.942529 3.357422 2525.574713 \n", | |
"2004 16.740642 19.067736 23.064171 5.957219 3.394531 2512.566845 \n", | |
"2005 16.851630 19.193825 23.297599 5.944254 3.400391 2518.610635 \n", | |
"2006 16.626812 18.959239 23.048913 6.100543 3.548828 2539.175725 \n", | |
"2007 16.605684 18.978686 23.083481 6.166075 3.628906 2535.923623 \n", | |
"2008 16.900590 19.276327 23.455771 6.192923 3.638672 2536.436394 \n", | |
"2009 17.334459 19.735642 24.017736 6.122466 3.625000 2427.027027 \n", | |
"2010 18.105500 20.588819 24.947701 5.965735 3.501953 2351.082056 \n", | |
"2011 18.669027 21.011504 25.169912 5.980531 3.521484 2333.982301 \n", | |
"2012 19.362847 21.819444 26.105035 5.910590 3.460938 2289.973958 \n", | |
"2013 20.661318 23.125000 27.504223 5.762669 3.328125 2210.768581 \n", | |
"2014 21.033469 23.531429 27.978776 5.745306 3.289062 2198.040816 \n", | |
"2015 21.445830 24.038971 28.586906 5.635230 3.205078 2148.869836 \n", | |
"2016 22.591918 25.150555 29.606973 5.463550 3.054688 2091.204437 \n", | |
"2017 22.761021 25.249033 29.554524 5.453210 3.025391 2096.558391 \n", | |
"2018 22.564732 25.019345 29.273065 5.438988 2.992188 2103.980655 \n", | |
"2019 23.318147 25.627942 29.664389 5.368261 2.964844 2093.545938 \n", | |
"2020 22.679426 25.267943 29.617225 5.071770 2.644531 2023.444976 \n", | |
"\n", | |
" range speeds \n", | |
"year \n", | |
"1984 0.000000 3.928208 \n", | |
"1985 0.000000 3.924750 \n", | |
"1986 0.000000 3.984298 \n", | |
"1987 0.000000 4.037690 \n", | |
"1988 0.000000 4.129204 \n", | |
"1989 0.000000 4.166522 \n", | |
"1990 0.000000 4.238404 \n", | |
"1991 0.000000 4.301237 \n", | |
"1992 0.000000 4.318466 \n", | |
"1993 0.000000 4.339433 \n", | |
"1994 0.000000 4.332994 \n", | |
"1995 0.000000 4.356774 \n", | |
"1996 0.000000 4.364812 \n", | |
"1997 0.000000 4.402887 \n", | |
"1998 0.229064 4.419951 \n", | |
"1999 0.570423 4.421362 \n", | |
"2000 0.348810 4.508333 \n", | |
"2001 0.261251 4.660812 \n", | |
"2002 0.136410 4.757949 \n", | |
"2003 0.090996 4.911877 \n", | |
"2004 0.000000 4.976827 \n", | |
"2005 0.000000 5.192110 \n", | |
"2006 0.000000 5.315217 \n", | |
"2007 0.000000 5.610124 \n", | |
"2008 0.084246 5.773378 \n", | |
"2009 0.000000 6.043074 \n", | |
"2010 0.000000 6.271416 \n", | |
"2011 0.259292 6.560177 \n", | |
"2012 0.782118 6.706597 \n", | |
"2013 1.255068 6.896959 \n", | |
"2014 1.405714 6.985306 \n", | |
"2015 2.208106 7.035853 \n", | |
"2016 4.546751 7.080032 \n", | |
"2017 4.336427 7.225058 \n", | |
"2018 3.519345 7.017113 \n", | |
"2019 5.565680 7.136674 \n", | |
"2020 2.282297 7.746411 " | |
] | |
}, | |
"execution_count": 61, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(autos2\n", | |
" .groupby('year')\n", | |
" .mean()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 62, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>comb08</th>\n", | |
" <th>speeds</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>year</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1984</th>\n", | |
" <td>19.881874</td>\n", | |
" <td>3.928208</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1985</th>\n", | |
" <td>19.808348</td>\n", | |
" <td>3.924750</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1986</th>\n", | |
" <td>19.550413</td>\n", | |
" <td>3.984298</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1987</th>\n", | |
" <td>19.228549</td>\n", | |
" <td>4.037690</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1988</th>\n", | |
" <td>19.328319</td>\n", | |
" <td>4.129204</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1989</th>\n", | |
" <td>19.125759</td>\n", | |
" <td>4.166522</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1990</th>\n", | |
" <td>19.000928</td>\n", | |
" <td>4.238404</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1991</th>\n", | |
" <td>18.825972</td>\n", | |
" <td>4.301237</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1992</th>\n", | |
" <td>18.862623</td>\n", | |
" <td>4.318466</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1993</th>\n", | |
" <td>19.104300</td>\n", | |
" <td>4.339433</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1994</th>\n", | |
" <td>19.012220</td>\n", | |
" <td>4.332994</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1995</th>\n", | |
" <td>18.797311</td>\n", | |
" <td>4.356774</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1996</th>\n", | |
" <td>19.584735</td>\n", | |
" <td>4.364812</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1997</th>\n", | |
" <td>19.429134</td>\n", | |
" <td>4.402887</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1998</th>\n", | |
" <td>19.518473</td>\n", | |
" <td>4.419951</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1999</th>\n", | |
" <td>19.611502</td>\n", | |
" <td>4.421362</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2000</th>\n", | |
" <td>19.526190</td>\n", | |
" <td>4.508333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001</th>\n", | |
" <td>19.479693</td>\n", | |
" <td>4.660812</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002</th>\n", | |
" <td>19.168205</td>\n", | |
" <td>4.757949</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003</th>\n", | |
" <td>19.000958</td>\n", | |
" <td>4.911877</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004</th>\n", | |
" <td>19.067736</td>\n", | |
" <td>4.976827</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005</th>\n", | |
" <td>19.193825</td>\n", | |
" <td>5.192110</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006</th>\n", | |
" <td>18.959239</td>\n", | |
" <td>5.315217</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007</th>\n", | |
" <td>18.978686</td>\n", | |
" <td>5.610124</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008</th>\n", | |
" <td>19.276327</td>\n", | |
" <td>5.773378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009</th>\n", | |
" <td>19.735642</td>\n", | |
" <td>6.043074</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010</th>\n", | |
" <td>20.588819</td>\n", | |
" <td>6.271416</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011</th>\n", | |
" <td>21.011504</td>\n", | |
" <td>6.560177</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012</th>\n", | |
" <td>21.819444</td>\n", | |
" <td>6.706597</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013</th>\n", | |
" <td>23.125000</td>\n", | |
" <td>6.896959</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014</th>\n", | |
" <td>23.531429</td>\n", | |
" <td>6.985306</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015</th>\n", | |
" <td>24.038971</td>\n", | |
" <td>7.035853</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016</th>\n", | |
" <td>25.150555</td>\n", | |
" <td>7.080032</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2017</th>\n", | |
" <td>25.249033</td>\n", | |
" <td>7.225058</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2018</th>\n", | |
" <td>25.019345</td>\n", | |
" <td>7.017113</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019</th>\n", | |
" <td>25.627942</td>\n", | |
" <td>7.136674</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2020</th>\n", | |
" <td>25.267943</td>\n", | |
" <td>7.746411</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" comb08 speeds\n", | |
"year \n", | |
"1984 19.881874 3.928208\n", | |
"1985 19.808348 3.924750\n", | |
"1986 19.550413 3.984298\n", | |
"1987 19.228549 4.037690\n", | |
"1988 19.328319 4.129204\n", | |
"1989 19.125759 4.166522\n", | |
"1990 19.000928 4.238404\n", | |
"1991 18.825972 4.301237\n", | |
"1992 18.862623 4.318466\n", | |
"1993 19.104300 4.339433\n", | |
"1994 19.012220 4.332994\n", | |
"1995 18.797311 4.356774\n", | |
"1996 19.584735 4.364812\n", | |
"1997 19.429134 4.402887\n", | |
"1998 19.518473 4.419951\n", | |
"1999 19.611502 4.421362\n", | |
"2000 19.526190 4.508333\n", | |
"2001 19.479693 4.660812\n", | |
"2002 19.168205 4.757949\n", | |
"2003 19.000958 4.911877\n", | |
"2004 19.067736 4.976827\n", | |
"2005 19.193825 5.192110\n", | |
"2006 18.959239 5.315217\n", | |
"2007 18.978686 5.610124\n", | |
"2008 19.276327 5.773378\n", | |
"2009 19.735642 6.043074\n", | |
"2010 20.588819 6.271416\n", | |
"2011 21.011504 6.560177\n", | |
"2012 21.819444 6.706597\n", | |
"2013 23.125000 6.896959\n", | |
"2014 23.531429 6.985306\n", | |
"2015 24.038971 7.035853\n", | |
"2016 25.150555 7.080032\n", | |
"2017 25.249033 7.225058\n", | |
"2018 25.019345 7.017113\n", | |
"2019 25.627942 7.136674\n", | |
"2020 25.267943 7.746411" | |
] | |
}, | |
"execution_count": 62, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# watch order of column filtering/aggregation\n", | |
"(autos2\n", | |
" .groupby('year')\n", | |
" [['comb08', 'speeds']]\n", | |
" .mean()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 63, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"2.02 ms ± 36.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"# watch order of column filtering/aggregation\n", | |
"(autos2\n", | |
" .groupby('year')\n", | |
" [['comb08', 'speeds']]\n", | |
" .mean()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 64, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"4.52 ms ± 49.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"# watch order of column filtering/aggregation\n", | |
"(autos2\n", | |
" .groupby('year')\n", | |
" .mean()\n", | |
" [['comb08', 'speeds']]\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7f16802a4fd0>]" | |
] | |
}, | |
"execution_count": 65, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"findfont: Font family [\"['Lato']\"] not found. Falling back to DejaVu Sans.\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAADPCAYAAAAXib2xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAag0lEQVR4nO3deZRcZZ3G8e/tPd1N2ERAFlGRHziOAgIBYYCAwsiijBBkk00gJM45IzOOzoyozDhzlOMozHFIAmENsiRkMAMjDA6bDpsIsoUxr4AsymaAJKSX9PrOH+/bVHVRna6qrq5by/M5J6eS99bt+gGhn75V994n8d4jIiKNrSntAUREJH0KAxERURiIiIjCQEREgJa0ByjRMCHI3k57EBGRGjITGCXP9/6kRs8mGgWStIcQEalBnjzvCtXq20Q6IhARKU3e75+1GgYiIlJGCgMREVEYiIiIwkBERFAYiIjUDD/8Er7vRvzourJ/7Vq9zkBEpGH44efwPYtgw38BIzD8O5KZ/1DW11AYiIhUKT/k8L0LYMN/Ey4PAJreRzLjs2V/LYWBiEiV8UMr8T0LYODOzGLzjiRdc2HG50iStrK/psJARKRK+MHH8D2XwOAvMovNHyTpngcdR5Ik0/ctW2EgIpIi7z0MPozvvQQGH8psaDGS7vnQfhhJ0jztcygMRERSEELg/nAkMPRoZkPLR2MIHEKSVO6ET4WBiEgFee9h4J7wwfDQk5kNrXuGEGj7M5Kk8vfhVBiIiFSA96Mw8LPwwfDwqsyGtn1JuuaFxxRCYIzCQERkGnk/Ahtuw/cuhOFnMxva/oykez5J2yfSGy6LwkBEZBp4PwT9t+B7L4WRFzIb2g8l6Z5H0vqx1GbLR2EgIlJG3g9C/8343stg5A9xNYH2w2MI7JbqfBNRGIiIlIH3G6BvGb53MYy+HleboOMoku5zSVp2TnW+ySgMRESmwI/2Qv8N+N4rYfSNuNoCM44h6TqHpGWnNMcrmMJARKQEfnQ99P0Y33sV+LVxtRVmHEfSdTZJy/Zpjlc0hYGISBH86Fp87zXQtwT8+rjaDp0nkHR9iaR5m1TnK5XCQESkAH7kTXzfldB3PfjesJh0QudJJJ1nkjS/J90Bp0hhICKyEX7kdXzvFdB3I7AhLCbd0HkqSddpJE2bpzpfuSgMRETy8CMv43sWQ/9NwFBYTDYj6TodOk8haZqZ5nhlpzAQEcnih1/C9y6C/hXAcFhs2pKk80zoPJGkqTvN8aaNwkBEBPDDz2ZVS46Gxab3knSdDZ3HkyQzUp1vuhUUBmZ2NXDaRp6yvXPu5Qn2vQD4dp5NrzvnavNjdxGpG35oVbhv0Lhqye1Ius+BGZ8nSdpTna9SCj0yuBS4M2ctARYBL0wUBDnmAn1Zf+4v8LVFRMrODz0VqyXvyiw270jSdW6slmxNb7gUFBQGzrkHgQez18zsAKATuK7A11rmnFtb1HQiImXmB38dqyX/N7PY/KFYLXnEtFZLVrOp/FOfRDimur7A5ydmNhNY75zzU3hdEZGihFaxX4ZCmbzVkodXtFWsGpUUBmbWChwPPOCce6HA3V4CuoH1ZrYc+Kpz7q1SXl9EpBAhBO6L1ZK/zmxo+ShJ95ehfXbDh8CYUo8MDge2pLC3iNYAPwIeAgaBQwifH+xpZrOccwMlziAikleolrw7Vks+ldnQumcIgbYDUm0Vq0alhsFJhKswlk32ROfcv+UsLTezlcAlwKnA4hJnEBEZJ1RL3oHvWZinWnI+tM1SCEyg6DAws27gc8Adzrk3S3zdRcD3gUNRGIjIFHk/HKolexbCyHOZDVVWLVnNSjkyOIbiziJ6F+fcqJm9DGxR6tcQEQnVkv8ZqyVfzGyo0mrJalZKGJwM9AC3lPqi8QPoHYBflfo1RKRxhWrJ/8D3XAajY5c5JdDx5yRd51ZttWQ1KyoMzGwr4FPADc65vjzbdwQ6nXOrsvdxzq3OeerfAh3AHcWPLCKNyvv+rGrJP8bV2qmWrGbFHhl8Ie4z0VtES4CDCFcnj3nRzG4EVgIDwGzgWOA+Cr9GQUQamB/tgb4bQp/A6NhHlWPVknNJWt6f6nz1oNgwOBn4I+++NcXGXAfsD8wB2oAXgO8A33XODRf5+iLSQEK15LX43qtzqiXnkHSfTdK8XYrT1ZfE+5q8GHgtsGnaQ4jI9PCja2K15LVZ1ZIdWdWSW6c6X41bB2yWu9iYN+EQkarkR97A912VUy3ZFaslz6j5aslqpjAQkdT5kdditeRSMtWSm8RqyVPrplqymikMRCQ1oVryMuhfzvhqyTNiteQmqc7XSBQGIlJxfvjFcKFYbrVk15dgxokkTV1pjteQFAYiUjH5qyW3zqqW7Eh1vkamMBCRaeeHfhPuGzRwB+OrJefGasm2VOcThYGITCM/9GQMgexqyffHasnPNly1ZDVTGIhI2fnBR0O/cHa1ZMvOJF3zoOMzDVstWc30X0REyiK0ij2E712YUy25a6yWPEytYlVMYSAiUxJC4H/DkUB2tWTrn5J0jVVLqlCm2ikMRKQkoVryrhACwyszG1QtWZMUBiJSlEy15AIYdpkNbfuGI4G2fRQCNUhhICIFCdWSPw3XCYyrljwwVkvumd5wMmUKAxHZqNAqdgu+dxGMvJTZ0P6pWC35p+kNJ2WjMBCRvLwfyKqWfCWujlVLziNp3TXV+aS8FAYiMk6ollyK7708q1qyOata8kOpzifTQ2EgIsBk1ZLnkrTsmOp8Mr0UBiINzo++HaslrxlfLdk5h6RL1ZKNQmEg0qBCteTVsVqyJ66qWrJRKQxEGkyolrwyVkv2hcV3qiXPJGneMt0BJRUKA5EGEaolL4/VkgNhUdWSEikMROqcH/4Dvvcy6P8PVC0pE1EYiNQpP/xCrJb8TzLVku+J1ZInqFpSxlEYiNSZUC25EDb8FFVLSqEUBiJ1wg/9X7hvUHa1ZPP2JF3nqFpSJqUwEKlxfvCJUCgzcHdmsXmnWC15tKolpSAKA5Ea5QcfidWS92UWW3Ym6ZofqyWb0xtOao7CQKSGZKolF8DgLzMbWnaL1ZKfVrWklGTSMDCzg4F7Jti8m3Nu1ST7bwdcBBwGNAF3A+c5554vblSRxhVC4BexWvKxzIbWj8VqyYNVKCNTUsyRwcXAozlrr+R53jvMrJsQJJsA/0I4v+084F4z2905t6aI1xdpOKFV7K5wdtC4aslPxGrJ/RUCUhbFhMHPnXMrivz684GdgU845x4DMLPbgZWEUPhWkV9PpCF4PwIb7ggfDI+rltyPpPvLJG37pDec1KWi3lw0s03MrJgAOQ54aCwIAOLbSncBxxfz2iKNwPthfP8K/BtH4td9JRME7QeRbLGUpi2uURDItCgmDK4F3gb6zexnZrbRrjszawI+BjySZ/PDwC5m1lnE64vULe8H8X3L8G8cjl/3NRj5XdjQ/mmSLW+mafPFJG17pDuk1LVCfsofBJYDtwNvEL7BfxW4z8z2ds79doL9tgDagVfzbHsVSIBtgefybBdpCKFacjm+Z3FOteRnYrWkpTqfNI5Jw8A59wDwQNbSLWZ2K+En/m8DJ0+w64z4OJBn24ac54g0lFAteSO+94qcasmjY7XkB1OdTxpPSdcZOOeeMLM7gUM38rT++NieZ1tHznNEGkKolrw+Vku+FVdbY7XkXFVLSmqmctHZ79l4GLxFOCrYNs+2bQk3T8n3FpJI3QnVkktiteS6uNqWVS35vlTnE5lKGHwQWD3RRufcqJk9BeyVZ/Ms4BnnXN8UXl+k6vnRt2K15I8z1ZLJjHAL6a4zVS0pVWPSs4nMbKs8awcAs4E7stZ2NLNdc566HNjXzPbIep4BhwA3lTq0SLXzI6sZfftC/OpDoHdRCIKkC7rOIdnqHppm/r2CQKpKIUcGS82sj/Ah8hvAR4Fz4u8vyHreEuAgwllCYxYAZwO3mdkPCFcg/zXh7aGLpjq8SLUJ1ZKLoW8ZmWrJmVnVkpulOZ7IhAoJgxWEM4b+BpgJ/BG4HrjAOffSxnZ0zq2P9za6CPgm4UjkHuArzrk3Sx9bpLr44d+HEBhXLbl5rJY8WdWSUvUS733aM5RiLbBp2kOIhGrJRbFaciQsvlMteSJJk66rlKqzDtgsd1G3sBYpgR96JoTAuGrJbWK15BxVS0rNURiIFCFUSy6M1ZKRqiWlDigMRAoQqiUXwEBWtUfzB0i654arhlUtKTVOYSCyEX7wV+FIYFy15IdJuuapWlLqisJAJEdoFXswtoo9nNnQ8hGS7nmqlpS6pDAQiUII/DwcCYyrlvx4KJlXtaTUMYWBNLyJqyX3itWSn1QISN1TGEjDCtWS/x1OER1XLfnJWC25d3rDiVSYwkAajvfDsOFWfM8iGHk+s6H94FAoo0YxaUAKA2kY3g9C/wp876Uw8vvMhvZPk3TPJ2n9k/SGE0mZwkDqnvcD0HdTuHfQ6FiFRgIdR8RqyV1SnU+kGigMpG750T7oH6uWHKveaIaOz5J0z1W1pEgWhYHUnVAteR2+76qcasm/IOk6R9WSInkoDKRu+NF1sVpySU615PGxWjJfA6uIgMJA6sDE1ZInxmrJ96Y6n0gtUBhIzfIjq8PnAf03gO8Pi0kXdJ5C0nUGSdMW6Q4oUkMUBlJz/Mir+N7L31UtmXSdFuolm9R7JFIshYHUjFAteRn038z4askzY7Vkd6rzidQyhYFUPT/8fLhaeMMtZKolt4rVkieoWlKkDBQGUrX80G9jteRtZKolt43VksepWlKkjBQGUnVCteQCGPhZZrF5e5KuueFaAVVLipSdwkCqxsTVkudCx1GqlhSZRgoDSV2ollwAg/dnFlUtKVJRCgNJRWgVeyBWS/4qs6HlIyTd86H9U6qWFKkghYFUlPceBu7F9y6EocczG1QtKZIqhYFURKiWvDNWSz6d2dC6dzgSULWkSKoUBjKtQrXk7bFa8reZDW37h0IZVUuKVIVJw8DM9gZOB2YD7wfeBB4AznfOPTvJvhcA386z6XXn3DbFDiu1I1RL3oLvuTRPteR8krbdU5tNRN6tkCODrwP7AzcBTwLbAH8JPGZm+zjnflPA15gL9GX9ub/YQaU2hGrJn8RqyT9kNqhaUqSqFRIGPwROcs4Nji2Y2VLgKUJQnF7A11jmnFtbyoBSG0K15LJYLflaXFW1pEitmDQMnHMP5Fl7xsyeBnYr8HUSM5sJrHfO+SJnlCqmakmR+lDSB8hmlgBbA08UuMtLQDew3syWA191zr01yT5SxUK15I/xvVeBXxNXVS0pUqtKPZvoZGA74BuTPG8N8CPgIWAQOITw+cGeZjbLOTdQ4utLSlQtKVKfEu+Le9fGzHYFfkn4MPkg59xokfvPBy4BznHOLS7qxTPWAmowqaBQLXlVrJbsDYuqlhSpReuAzXIXizoyMLNtgJ8SfuKfU2wQRIuA7wOHAqWGgVSIH/ljrJa8UdWSInWs4DAws02B2wk/ke/vnHttkl3ycs6NmtnLgL6LVLFQLbk4VkvGE8lULSlStwoKAzPrAG4FdgEOdc65Ul/QzFqBHYBfTfZcqTw//FKslvwJqpYUaRyFXIHcDCwF9gM+55x7aILn7Qh0OudWZa1t5ZxbnfPUvwU6gDtKnlrKzg//LlwtrGpJkYZUyJHBD4DPEo4MtjCzU7K29TjnVsTfLwEOArLvNvaimd0IrAQGCLe0OBa4D7h+aqNLOYRqyYWxWjKeTPBOteQckqQ91flEpDIKCYPd4+PR8Ve2F4EVG9n3OsKtLOYAbcALwHeA7zrnhouYU8rMDz0dqyX/J7OoakmRhlX0qaVVYi06tbQkfvDxWC15b2bxnWrJo0kS3chWpM5N/dRSqV2hWvISGMy6u0jLLrFa8s9VLSnS4BQGdUzVkiJSKIVBHcpUSy6AoazbR7XuHlvFDlKrmIiMozCoIxNXS+4TQ2A/hYCI5KUwqAOqlhSRqVIY1DDvh2DDrXmqJWfHasmPpzeciNQUhUENCtWSN4fbRoyrljwsVkt+JL3hRKQmKQxqiPcboO+mnGrJpqxqyQ+nOp+I1C6FQQ0I1ZI34HuvHF8tOeNzJF1zSVo+kOp8IlL7FAZVbOJqyc/HaskdUp1PROqHwqAK+dG1oVaybwn4t+Nqe1a15Dapzici9UdhUEVCteSV0HddTrXkSbFacqt0BxSRuqUwqAITV0t+kaTrdFVLisi0UxikyI+8EqslbyJTLblprJb8oqolRaRiFAYpCNWSl0L/Ct6plmzagqTzTOg8SdWSIlJxCoMK8sPP4XsWwYb/IlMt+d5YLfkFVUuKSGoUBhXgh1yslrwdVUuKSDVSGEwjP7QyVkvemVls3iFWSx6jakkRqRoKg2ngBx+L1ZI/zyw2f4Ckex50HKVqSRGpOvquVEZ+8OFYLflgZrHFYrXk4aqWFJGqpTCYolAteX+slnwks6Hlo+FIoP1QVUuKSNVTGJQoUy15CQw9mdnQukdsFTtQrWIiUjMUBkUK1ZL/E44Ehn+T2dA2i6RrPrTtqxAQkZqjMChQqJa8LZwiOvxsZkPbAbFacq/0hhMRmSKFwSS8H4L+W0O/8MgLmQ3th4RCGVVLikgdUBhMIH+1ZALth5N0n6tqSRGpKwqDHKFaclmslnw9rjZBx5Ek3fNIWnZOdT4RkelQUBiYWTvwT8AXgc2BJ4BvOOfuKmDf7YCLgMOAJuBu4Dzn3POlDj0d/Ggv9N8YbiU9+kZcbcmqltwpzfFERKZV4r2f9ElmdgNwLHAx8CxwOrAXcJBz7sGN7NcN/BrYBPghMAycR7hBz+7OuTUT7TuJtUBZ7u/sR9dnVUuujautMOPYWC25fTleRkSkWqwDNstdnPTIwMz2AU4g/DR/cVxbAqwELgQO3Mju84GdgU845x6L+94e9z0P+FYx/wTlFKolr4G+a3OqJb9A0nWWqiVFpKEUcmnscYSb7l8+tuCc2wBcARxgZttOsu9DY0EQ910F3AUcX9LEU+RH1zC6/vv41bOh95IQBEkndJ1FstU9NM08X0EgIg2nkDDYA1jlnOvJWX8YSIDd8+1kZk3Ax4BH8mx+GNjFzCp+A3+/Zh70Lg4dw0k3dM0j2epumjb5Gknzeyo9johIVSjkA+RtgZfzrL8aH983wX5bAO1Zz8vdN4lf+7kCZiiflp1g5FWSzuNjteTMir68iEg1KiQMZgADedY3ZG2faD9K3HfaNG36vUq/pIhI1SvkbaJ+wk/4uTqytk+0HyXuKyIiFVRIGLxKeDsn19jaKxPs9xbhqGCifT3530ISEZEKKyQMHgd2jdcMZJsVH5/It5NzbhR4inA9Qq5ZwDPOub4C5xQRkWlUSBgsB1qBs8YW4hXJZwD3O+deiWs7mtmuefbd18z2yNrXgEOAm6Y4u4iIlEmhVyAvA44h3FbiOeA0YG9gtnPu/vicewlXJCdZ+20CPAZ0AT8gXIH818RTUp1zb5Y492j8GiIiUhxPngOBQm9Udyrwnfi4OfAkcMRYEEzEObfezA4mhMg34wD3AF+ZQhBACIMm4O3JnigiIu+YSfj++S4FHRmIiEh9U1O7iIgoDERERGEgIiIoDEREBIWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiIUPgtrGteLOT5J+CLhNtwPwF8wzl3V6qDpcDM9gZOB2YD7wfeBB4AznfOPZviaFXBzL4GXAg84ZzbPeVxUhH/jlwAfJJQbvUccJFz7uoUx0qFmX0Y+Gdgf8L3jheBJYR/HwNpzlZOjXRkcDVwHvBj4K8I9/S+3cz2S3OolHwd+DxwJ+HfxWXAwcBjZrZbinOlzsy2Ac4HetOeJS1m9hngfkIIfBP4G8LflR3SnCsNZrYd8DChqvffCd9DHgW+C1ye4mhl1xBHBma2D3ACcJ5z7uK4tgRYSfgJ8MD0pkvFD4GTnHODYwtmtpTQWf11wlFDo/oe8AjhB6XN0h2l8sxsU8IPTgudc3+V8jjV4BTC34MDnHNPx7XLzGwGcIKZnemcG0ptujJqlCOD44AhspLcObcBuAI4wMy2TWuwNDjnHsgOgrj2DPA00LBHBvGHhlMI1ayN6iTCN79vQaiuNbNGrpidGR9fz1l/jfA9ZaSy40yfRgmDPYBVzrmenPWHiX3MFZ+oysT/4bcG3kh7ljTEf/4fAdc45x5PeZw0fQpYBRxhZr8nVMu+ZWbfM7PmdEdLxc/j4xVm9nEz28HMTiYcPV/onMtbIVmLGiUMtgVezbM+tva+Cs5SrU4GtgOWpT1ISk4FPkL4vKCR7Uz4bODq+OtY4CeEtw9/kNpUKXHO/YzwucmngceBlwifO17onPvHFEcru4b4zACYAeT71H9D1vaGZWa7ApcA9wHXpjxOxZnZJoTPCr7nnMv3Q0Mj6SacMfN3zrkL49rNZtYNzDezf3bONdrR4/PAvYRQfBM4EvhHM1vtnFuU5mDl1Chh0A+051nvyNrekOLZMz8F1gBz6umwtwjnA4OED9Yb3dj/CzfkrF8HzAH2AW6r6EQpMrMTgEuBXZxzr8Tlm82sCfhXM1vqnFuT3oTl0yhvE71KeKso19jaK3m21b145sjtwKbA4c6511IeqeLiyQNfIRwZbW1mO5nZToQfFNrinzdPccRKGzsyyv3AdOzPjfTvAmA+8GhWEIy5BegCPl75kaZHo4TB48Cu8VA326z4+ERlx0mfmXUAtwK7AEc551zKI6Vla6CNcIrx81m/ZhHOrHqe8H55o3g0Pm6Xs759fFxdwVmqwdZAvg/OW+Nj3by70ihhsJzwH++ssYV4RfIZwP15Ur+uxbNClgL7Ed4aeijlkdL0PPAXeX49DbwQf78kreFScFN8/NLYQjzT6izChXiN9nflt8BeZvahnPUTCaeVPln5kaZH4r1Pe4aKMLNlwDHARYRL608D9gZmO+fuT3G0ijOziwlXHt/Ku88e6nHOraj0TNXGzO4FNmvE21GY2TWE27ZcAfya8IHpkcDXnHPfT3O2SjOzA4G7Cadc/zvwFnAU8BlgkXNuXorjlVXdHOIU4FTgO/Fxc0KiH9FoQRDtHh+Pjr+yvQisqOQwUnXOJpxCeVr89TvgXOfcpalOlQLn3C/M7JOE+zR9GdiScDT590BdBWPDHBmIiMjEGuUzAxER2QiFgYiIKAxERERhICIiKAxERASFgYiIoDAQEREUBiIigsJARESA/wc+2RnlLK9YIgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x216 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"plt.style.use('pandas1book') \n", | |
"sns.set_context('talk')\n", | |
"plt.plot(range(10))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 66, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<AxesSubplot:xlabel='year'>" | |
] | |
}, | |
"execution_count": 66, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"findfont: Font family [\"['Lato']\"] not found. Falling back to DejaVu Sans.\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADlCAYAAABTYoCYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwS0lEQVR4nO3deZwU1b3w/0/1MvsKCIzsg3iAgAoSDYoLqBCXoGK8yGZEfOJykxgT/Qk/vVcTo7km+oghiUqumqgxolGDEo0LRo2YuIBLRDmCsu8wMwyz9PRS5/njVDc9CzIz9Mz0zHzfr1e/qrvq9KlTNT31rXPqVB3HGIMQQgjh6+gCCCGESA8SEIQQQgASEIQQQngkIAghhAAg0NEFaIYoNnBVdnRBhBCiEykAXFpwnHc6QS8jF3A6uhBCCNEJGVrQEtQZmoykZiCEEK3TouNnZwgIQggh2oEEBCGEEIAEBCGEEB4JCEIIIYDO0e1UCCG6FONWQ91LQAZkTsDxFXV0kQAJCEII0W6MWwU1j2KqHwZT4c31YYLH4WSeDpmnQWA4jtMxPe07w30IFUBhRxdCCCFay7iVUPMHTPUfwMR7gmZ607r6iX19IPM0GyAyxuP4cg9n1fuAouYmloAghBBJjHEh8m9wd4BbDm45xi0Ht8z77E19+fZsPjgcAiMgOBzH16N+Xm65DQI1j4CpsjOdbMiZhZNzOfhyIfwOpu51CL0B7tb6hXEKcHo+gRM4qrWbIwFBCCFaw7hVmIrvQfjt1mXg6wPBERAYDiYCtU+AqbbLnFzImY2TO7dR4AAwxkDsC6h7wwaI8EoghtPjCZyMMa3dJAkIQgjRUia2G1N+BUQ/szOcfPAVe68eduoU24O5rwjcvZjoZxBZA7EN2KdENMHJh5xLcXK/06KLx8bdD6Yax9/3cDarRQFBLioLIbo9E12PKZ8HsS2AH6fgdpycaYf8XvzSr3FrILoWop9hImsgugbccpzsqZAzB8dX0OIyOb58IL/F3zscUkMQQnRrJvwRpvy7YMrBycYputde0O0apIYghBDNYerewFT8AEwtOEU4xb/DyTi2o4vVYeROZSFEt2Rqn8GUX2WDgb8/Ts8l3ToYgNQQhBDdjDEGqhdjqu62MwIjbM3A37tjC5YGJCAIIboNE92Cqf4t1P7Zzsj4Bk7Rb3F8eR1bsDQhAUEI0aUZE4O6NzG1f4K6N0h0D806F6fwThwno0PLl04kIAghuiQT2wO1T2Fqnqx/B7CvN07OdyB3Ho4jl1GTSUAQQnQZxhiIvI+peRxCLwORAwszTsLJmQGZk3CcYIeVMZ1JQBBCdGr22UMfYEIvQeglcLcfWOgUQvaFODkzcAJDOq6QnYQEBCFEp2NMDCIrMaG/2ZqAu6t+guAxONkzIfscHCerYwrZCUlAEEJ0GibyKaZmCdS9DO7e+gsDw3GyvglZkw/n6aDdmgQEIUSnYOpW2EdMJF8XCIzCyZoCWVNwAoM7qmhdhgQEIUTaM+GVmIprgIi9qzhnFmROxgkM6OiidSkSEIQQac1EVmPK/8+BR0z0ePxwHwktDkI64Qoh0paJrsOUXW5HG/P1xin+vQSDNiQBQQiRlkx0E6bsMu+x1MU4PX6PExjY0cXq0iQgCCHSjontwJRfZruTOvk4PR6WnkPtQAKCECKtmNheTNl37OhlTo59EmlwZEcXq1uQgCCESBvG3Ycpnwux9UDQPok0Y2xHF6vbkIAghEgLxq20vYmiawA/TtGvcDJP6uhidSsSEIQQHc6EXsPsOQciHwIOTuEvcbLO6OhidTtyH4IQosMYtwxT+TMILbMznGycgp/gZJ/XsQXrpiQgCCHanTEGQi9gKn9qu5UCZIzHKbhNupZ2IAkIQoh2ZWI7MZW3Qt1yO8PJw8mfD9kX4zhORxat25OAIIRoF8YYqH0as//nYPbbmZmTcApulbuP04QEBCFEmzKx7RB6EVP7PERX25lOEU7Bf9txjaVWkDYkIAghUs7EdkPob5jQXyGyqv7CrHNx8m/G8ffsmMKJg5KAIIRICeOWQ+glTOgFCL8LuAcWOsWQ9U2c7G/hZIzrsDKKr3bIgKCU+jpwGTARGATsBd4GbtZar2uQ9iTgF8BYoBJYAizQWtektthCiHRhTAyqH8JU3QuEDyxwCuzoZVnnQMY3cBw5/0x3zfkL3QicDDwFfAz0Bb4HfKCUOkFr/RmAUuo4YDmwGvgR0B+4HigFvpXykgshOpyJbsLs+/8ONAs5uZB5Bk7WuZB5Mo6T0bEFFC3SnIDwf4GZWutE6FdKLQH+jQ0Wl3mz78DWHk7XWld56TYAv1NKTdJav5bCcgshOpDtMfSk12PIawDImYmTdwOOL7djCyda7ZCPrtBav50cDLx5a7E1gREASqkC4CzgkXgw8DwCVAH/kbISCyE6lIntxlRcian8LxsMfL1xih/EV3CrBINOrlXPMlJKOUAfYI83azS2tvF+cjovkHwIjGl9EVvPxPZgwh9hol/aH7EJ2TMbIUSrmNDfMHvOhbrX7Yysc3F6LcPJPKVDyyVSo7VXeWYB/YCbvM8l3nR7E2m3A+NbuZ5WM24ZZvckINRgSRDjywfHe/mKITgcJ3gMBI8BX1/pFy1EA8at8J459Jyd4RTiFNwizxzqYlocEJRSw4HfAG8Bj3qzs71pXRNfCSUtbz9OLgQGQvTzBgsi4JYBZQdmhf9Bot7g64UJjvYCxGgIjsbxFbdPmbsBY6IQ2wC+HnZYxBQEX2NiYPaBWw5uhTetBCcDfIX25cSn+TiO/7DX2R0YE4XwW5jaZyG0nEQPooxTcArvwPH36dDyidRrUUBQSvUF/gqUAxdrreMdjWu9aWYTX8tKWt5uHCcTej5v2zjNfjtIt7vfvncrE5+NuxMin0BkNVAH7h6o+zum7u+JvIx/CGSOx8kYDxkn4viK2ntzugQTfg+z72Zv8BPAycH4+4H3cvz9wd8f/Efa5e4+7wBfAWYfJvG+4sB8b1nzORgn3wsOBeBkgpMNTpb3yk7Mc5xsCCjI+Hq3OikwEe0FgefB3X1ggZOLk38DZM+QWnQX1eyAoJQqBF4ECoGTtdY7khbHm4pKGn3RztvW6hIeBsdxbE2Bg1/oiv+sjYlAdC1E/o2J/BsiH9vPxOwBrGY9puZxwMEERtp+1ZnjITgOx5fj5WHA1NoaiCnzzlTL7EHL1wsCQyFQiuNktfGWpxfjVmL2/xJqlzRYUGP3cXSt/ZiqFTo5tkZA2AYVoskrBVMJscpDl/tAhpiAsicDGSd6AaIwVaVNCya2F0LLbCCIflp/YcY3cLIvgMwpctG4i2tWQFBKZQHPA0cDZ2itdYMkn2D/68YBzyR9LwM4Dng8FYVtS44ThOBICI7EYToAxtTamkP4XUz4nxBeBUTs81iiqzE1DwJBTGCIrX24ZTTdalZvTRj/AAgcBYGhOIGh9r2/FMeX18Zb2b6MMVD3MqbyNjtYOtgmuPz/ss05sS0Q24qJbYXYVu/zFjDVXg4B70y+yGv6KbIvp9DW0nzF3uek977ien3fbZCu8ZqUKrzaoffeVIEJYUwITMgG88T7kE0X+RT7N18D0TWYmj9gA8QIyDgBJ2MM+AeBf2BK/n7GrbH7yt0FsV3g7sS4lTiBwRAY6Z1QBA9/PbGdEH4fE3kPwish2uBf2j8IJ/tCyD4fx9/vsNcnOgfnUL1ulFJ+7EH+HOB8rfULB0n3IjAKGJF0H8I84H+Bs7TWr7ayjBXYWkmHMyYE4ZVecPiXbWpKvj2/kaBtK/cVQmznoZs2nBzw9bYvv506/qTP/v7eRe/UDHRn3HJ7wIusxkRXQ+QzrxthkXeQPfByfMXevB4QKAV//69sizexHZjKnyQ94jgHJ++HkDPnq79nvDN4/LaJooObJuzf/ANM+B0Iv2NrjkSaTuwUQ2AA+AeCfwCOf6DX/BX1miirbLAzVRi3ygtIVfZEIuYFAVPVdN4JGRA42naECIyE4AgIqHrByP5Px+zLRO3ULbO/3ch7EH4fYpuaKH8+ZJ1jA0FwTIfve5ES+4Ci5iZuTkBYCFyLrSE82WBxldb6L166sdhHWnyCDQL9gR8Df9dan9PcAjWhgjQJCA0Zt9I+syW20R4MfMVeAPCmSQc0Ywy4eyG6DqLrMLF1EP3Cfnb3tmCtGfZiefysNDAo8R5fDyAMJgymLum999lUQVRjIqttIHC3HsbWZ9maTfBonMDR9iAVONo2jdX+CbP/rgNn+hmn4hT+pEucaRpTC+FVmPC7NkBEdVKNJsV8Pe3JgJNjfyum4iAJHWoiI6gMjSAay8M1za1B+MHfy/7NfL3B11MuuKc5n89HVlYWvXr1am7ATnlAeB047SCLN2qtByelnQDcSeNnGR3Of0wFaRoQUsW4ZRDdbC/gubsw8bPF2E6v+WC31xzVFnzetY2ROMGv2WDmVtgLuKacehdv3Qp70T35eTUNOdm26QXA1wMn/+Yu/YhjW6Mph+gmiG2G2CZM0nvbVBa017J8eeB4L1+enefkga8Qx9fHqxXGp70aN325O2wgj36GiXwKkc9wY7vYXnkR+8Mn4Q8UEgwG8fkPdlB3gAA4AVsm/F3279JVxWIx6urqyM/Pp1+/fs35+6U2IKSBCrp4QGgOY+ps+3p0I8Q2YmIbvYPQRtv+/pVNV3GZ9uAf9A7+ga9BUNneNM0uR8we7KIaomsxkc9t197YhvplyJ6Gk39jt+qd0xRjYm161l1WtpWdO/bQs2cxPXsW4vPF1+VwoMuEA44PyJAA0AWUlZWxc+dOevXqxRFHHHGo5BIQuhtjwjYouJVel8kMO8WbOplAMGXXHpouQ53XBPYlBAbhBEe32brEAZs3byYcDlNaWioH+27kyy+/JBgMMmDAgEMlbVFAkOfRdgGOkwGBIR1chsxELy3RflzXJRAISDDoZvx+P67bnFaBlmm7U0YhhBCdigQEIYQQgAQEIYQQHgkIQgghAAkIQghxSM888wxKKT777LOOLkqbkl5GQgiRYl988QV33HEHq1atIhgMMnHiRG688UZ69OhRL92uXbv41a9+xdtvv83evXvp06cPkydP5rvf/S4FBQXtXm4JCEIIkUI7duxg1qxZFBQUcN1111FTU8NDDz3E559/zpNPPkkwaB8tUlNTwyWXXEJNTQ2zZs2ib9++fPrppzz88MOsWrWKxx9v/2eCSkAQQogUuv/++6mrq+PRRx+lTx87iNAxxxzD3LlzWbp0Kd/+9rcBeP3119m6dSsPPPAAp59+euL7WVlZPPTQQ2zevLk5N56llFxDEEKkte3bt7NgwQImTJjA6NGjOeuss/jZz36WWL569WrmzZvHmDFjGDNmDPPmzWPNmjX18li0aBFKKTZu3Mh1113H2LFjOemkk1i8eDEA69ev5/LLL+e4447j9NNPZ+nSpU2Wpaamhptvvpmvf/3rjBs3jptuuomqqvpPqH355ZeZNGlSIhgAnHTSSQwePJgXX3wxMS/+vZ49e9b7fq9evQAbGNqb1BCE6KKMidgHJHY0f59Wj+Gwc+dOLr74Yqqrq5k+fTpDhgxh27ZtvPDCC9x8882sXbuW2bNnU1BQwJVXXgnAn/70J2bOnMlTTz3F0KFD6+X3gx/8gGHDhnH99dfzyiuvcPfdd1NQUMDixYs566yzOOOMM3jiiSdYsGABxx9/PP3796/3/VtvvZWioiKuvfZa1q5dy5IlS9i9e3cisOzcuZO9e/cyatSoRttyzDHHsGLFisTn448/Hp/Px+233878+fPrNRlNmzatOc8pSjkJCEJ0QcZEMHvObnrcg/bmHwi9XmxVULjrrrsoKyvj6aefZsSIEYn5P/zhDwFYuHAhsViMxx9/nH797OPVzzvvPM4++2wWLlzIokWL6uU3duxYbrnlFgAuuugiTjnlFG699VZuu+02Lr74YgDGjx/P2WefzdKlS/nP//zPet/Pysri4YcfJhCwh84jjjiCRYsW8e6773LCCSewa9euxPyGjjjiCPbu3UssFsPv9zN06FB++tOf8otf/ILp06cn0k2fPp1bb721xfsqFaTJSAiRllzXZfny5Zx55pn1ggHY4XFjsRgrVqzgrLPOSgQDgP79+3PWWWfx1ltvEYvF6n0vftAHyMzMRCmF3+/nggsuSMwvLS2loKCALVu2NCrT9OnTE8EAYNasWQC8+eabANTV2RETMzIyGn03M9MOOR8KhRLz+vbty7HHHstNN93Eb37zG+bOncvTTz/NPffc89U7p41IDUGILshxgtDrxU7dZFRWVkZ1dTXDhg076PLa2lqGDGn8YMfS0lL++te/Ul5enmiTBygpqT/se35+Pr169Ur0/EmeX1nZeNztwYMH1/tcXFxMYWEhW7fawabiB/1wuPGYIfFgEb82sHLlSq666ir+/Oc/JwLemWeeSV5eHr/+9a+58MILKS0tbXLb24oEBCG6KMcJQqD/oRN2I/4mBg9qah7EhyJtmd69ewOwe/fuRst2795Nz549E+tbsmQJvXv3blT7mTRpEosWLeLDDz9s94AgTUZCiLTUo0cPcnNzWbt27UGXZ2dns379+kbL1q9fT05ODsXFqR2gacOGDfU+l5eXs2/fPo488kgA+vTpQ48ePfjkk08afffjjz+ud/CPX09oKBqNAjS5rK1JQBBCpCWfz8cZZ5zBq6++yqefflpvmTEGv9/PySefzCuvvMK2bdsSy7Zt28Yrr7zChAkTDnr231pLlixJHLAB/vjHPwJw6qmnJuZNnjyZ1157jZ07DzTX/fOf/2TDhg1885vfTMwbPHgwO3fu5P3336+3jmXLlgE0qjm0B2kyEkKkrR/96EesWLGCWbNmcckllzBkyBC2b9/OCy+8wEsvvcQPf/hD3n77bWbOnMmMGTMA2+3U7/cneiKlUigUYu7cuUyZMiXR7XTChAmceOKJiTRXXXUVf/vb37j00kuZPXs2NTU1PPjggwwfPpzzzz8/kW7WrFk888wzXHnllcyePZuSkhLee+89li1bximnnNJk19W2JgFBCJG2SkpKePLJJ1m4cCHPPvss1dXVlJSUJO7sHTZsGI899hh33303999/P2C7ll5//fWN7kFIhVtuuYVnn32We++9F9d1ufDCC7npppsalfmxxx7jf/7nf7j77rsJBoOcfvrpLFiwoF7vo9LSUp5++mkWLlzI0qVL2bNnD7179+aKK67g+9//fsrL3hwyprIQndjGjRsBGDRoUAeXRLSnFvzdWzSmslxDEEIIAUhAEEII4ZGAIIQQApCAIIQQwiMBQQghBCABQQghhEcCghBCCEACghBCCI8EBCGEEIAEBCGEEB4JCEIIIQAJCEIIkTJbtmxBKcUzzzzT0UVpFQkIQgghAAkIQgghPBIQhBBCABIQhBBprKqqittvv51JkyYxatQoxo8fz9y5c1m9ejVgB6S/5ppreOONN5g6dSqjR4/mW9/6Fm+88UajvCoqKrjttts49dRTGTVqFFOmTOGRRx5plC4UCnHPPfdwxhlnMGrUKCZOnMi9995bb+hMgMrKSubPn8/xxx/PuHHjuPHGG9m/f3+j/Hbv3s2CBQsS650wYQJXX301W7ZsSdFeSh0ZMU2ILso1Eeqiuzq6GGQGeuNzgq367i233MLrr7/O7NmzGTBgAGVlZaxcuZJ169bxta99DYAvv/ySG264gRkzZnDhhRfy1FNPcc011/Doo48yduxYAGpqapgzZw579uzhkksuoU+fPrzzzjvcfvvtVFZW8r3vfQ8A13W56qqr+Oijj7jkkksYPHgwq1ev5v7772fHjh38/Oc/B+yYztdccw0rV65kxowZlJaW8sorr3DjjTc22obvf//7bNmyhRkzZtC7d2/27NnD22+/zfbt2+nfv3+r9ktbkYAgRBfkmghvbTmP2ujmji4K2YEBTOi/rFVB4Y033uDqq6/miiuuOGia9evXc9999zFp0iQApk2bxuTJk7nnnnt49NFHAXj44YfZunUrS5cuZcCAAQBccsklFBQUsHjxYubMmUNhYSHPPfcc7777Ln/605849thjE+vo378/d999N1dccQVDhw5l+fLlvPfeeyxYsIDLLrsMgBkzZnDppZfWK1tlZSUffPABCxcu5Oyzz07Mv/rqq1u8L9qDNBkJIdJWQUEB7777LuXl5QdNc+SRRyaCAUBhYSHnnXce77//PjU1NQC89NJLnHDCCeTm5lJWVpZ4TZgwgbq6Oj766KNEumHDhiVqI/HX+PHjAXj33XcBePPNNwkGg0yfPj2xXr/fz+zZs+uVLSsri2AwyD/+8Y9EWdKZ1BCE6IJ8TpAJ/Zd1+iaj66+/nvnz5zNhwgRGjx7NaaedxtSpU+nXr18izcCBAxt9b9CgQbiuy/bt2xk6dCgbN25Ea504sDdUVlYG2LGKv/jii0Om27p1K3369CE7O7ve8iFDhtT7nJGRwfXXX8+dd97JsmXLGDNmDBMnTmTq1Kn06NGj+TuinUhAEKKL8jlBsoP9Dp0wjZ1zzjmMGzeOV199lRUrVrB48WIeeOABFi1axCmnnNLsfFzX5ZRTTuHyyy9vcvlRRx2VSDdy5EhuuOGGJtPFm5ta4rLLLuOMM87g1Vdf5a233uKuu+7ivvvu4w9/+APDhw9vcX5tSQKCECKt9e7dm5kzZzJz5kzKysqYNm0a9913XyIgbNq0qdF3Nm7ciM/no6SkBLC1iLq6Ok466aSvXNfAgQNZt27dIdP169ePd955h9ra2nq1hPXr1zeZfsCAAcydO5e5c+eyefNmpk6dyoMPPsgvf/nLr1xPe5NrCEKItBSLxRp14+zRowd9+/alrq4uMW/btm289tpric/79u1j2bJljBs3jpycHACmTJnCe++9xzvvvNNoPWVlZRhjEum2bt3Ks88+2yhddXV1Yr2nnnoqkUiEJUuW1CvvY489Vu87tbW1hEKhevP69etHfn5+vW1IF1JDEEKkperqak477TQmT57M8OHDyc3N5V//+hcffPAB8+fPT6QbMmQI8+fPZ8aMGRQXF/Pkk09SVVXFtddem0hzxRVXsHz5cubNm8dFF13EiBEjqKqqYs2aNbz88susWrWKQCDABRdcwAsvvMCCBQtYsWIFY8aMIRKJsG7dOl588UWeeeYZBg0axKRJkxg7dix33nknmzZtYujQobz88suNAtiGDRu47LLLmDJlCkcddRTBYJBXX32VnTt3cu6557bbvmwuJx4Z01gFUNjRhRAiHW3cuBGwF1G7mnA4zMKFC1mxYgWbN2/GGMPAgQOZPn06M2fOBOyNacOHD2f69OncddddbNiwgUGDBvHjH/+YiRMn1suvqqqK++67j5deeokdO3ZQUFBAaWkpkydPZs6cOTiOk1jvQw89xHPPPcemTZvIzc1l4MCBnHnmmXznO98hKysLsDe63XHHHSxfvhzHcZg0aRJz587lggsu4Oc//znTpk2jvLycRYsW8c9//pMdO3bg9/spLS1l7ty59bqhtlQL/u77gKLm5isBQYhOrCsHhOaIB4Tf/va3HV2UdtVWAUGuIQghhAAkIAghhPBIQBBCCAFILyMhRCeW3N1UHD6pIQghhAAkIAjRqfl8PqLRKJ2gt6BIoVgshs+X+sO3BAQhOrG8vDzC4TC7d+/Gdd2OLo5oB2VlZdTV1SXuh0ilZl1DUEqVANcCJwLjgDxgotb69SbSTgVuBUYCu4AHgdu11tGGaYUQh6ewsJCamhr27t1LeXk5wWAQv9/f0cUSbSQWi1FXV0d+fj69evVKef7NrSEo4EagP/DxQRMpdTbwF6AM+L73/r+Bew6nkEKIpvl8Pvr168fAgQMpKCggGGzdY6ZF5xAMBunVqxf9+vVL3FmdSs3tZbQS6KW13quUugBo/OQn6y7gA2CK1joGoJSqBBYopX6ltV57uAUWQjSWm5tLbm5uRxdDdHLNqiForfdrrfd+VRql1EhsM9ED8WDg+a23notaXUohhBBtLpUXlcd40/eTZ2qttwFbkpYLIYRIQ6kMCCXedHsTy7YDR6ZwXUIIIVIslQEhPmxQU6M+hJKWCyGESEOpDAi13jSziWVZScuFEEKkoVQGhHhTUUkTy0qAbSlclxBCiBRLZUD40JuOS56plDoSe//ChwghhEhbKQsIWuvVwBrgu0qp5FslrwZc4OlUrUsIIUTqNfvx10qpm723I7zpHKXUBKBCa/1rb94NwHPAS0qpJcAo4HvYexM+T1GZhRBCtIFmj6mslDpYwo1a68FJ6S4AbsEGjt3AQ8Bth/EsowpkTGUhhGiNFo2p3OyA0IEqkIAghBCt0aKAII+/FkIIAUhAEEII4ZGAIIQQApCAIIQQwiMBQQghBCABQQgh0lIoupOK0Eftus5m35gmhBCi7dVGtvLlvsVs3f8shijj+j5Iz+zx7bJuCQhCCJEGaiKb+LJiMduqnsNg7+PN8vclJzCw3cogAUEIITpQdWQDX1YsZnvV8xjs6MNZ/r4MKbqCfnkX4fc1NaJA25CAIIQQBxF1awhFdxCKbicU205tdLt9H92O38kiN+Mo8oJHkZdxFHnBUvy+Q48DZowhaqqoiWxi474/sL36BezzPyHLX0Jp0Xfpl38hPiejjbeuMXl0hRCiSzAmRsTdT8StIObWEjO1xEwI160lampxTajB/BAxU2fnmzpiphbXrSNmQsRMNaHoTiJuRQtK4JAd6O8Fh6FkB44k7FYQju2hLrqHuthu6mJ26ppQvW9mB/pTWnQlR+Z9K9WBQJ5lJIToOlwTpiayherIl1RHNlAX20E4to+Iu49IbB8Rt4KIu4+oW9lmZXDwkxnoQ7a/hKxACVmBvkTdaqoi66gKryPilrcq35zAQEqLrqQk7zx8TjDFpQZaGBCkyUgI0eFcE6UutotQdBvVkQ1UR9bbafhLaqNbEm3rLefD72Tj92XbqZON35eF38nG52Tid7Ls1JeV9DmLgC+bTH8fsgIlZAdKyPQfgeP4D7qWutheqsLrqIqsozq8jqrIF4SiO8nwF5HpP4JM/xFk+I8g09+LzMAR3rxeZPp74zjp0/tfaghCiHZRG91OVfhzQtF4W/y2RJt8XWzXIQ/6PieT3OBgsgP9CPqKCfoLCfq8l78o6X0BAScXvy8bhyCO47TTFqYlqSEIITqWMTGqIusoD62iIrSK8tAqQrHth/4ikOnvQ25wMLnBUm86hNzgELICJWl1Nt0VSUAQQhy2SGwfleE1VNR9QEVoFRV1HxF19zdK5xDw2uBLyA4cmWiSyQoc6bXP921WTx3RNiQgCCGazRiXmuhm9ofXsD+s7atuzUHP/jP8vSjOHEtx1vEUZY0lP0Phc+Swk67kLyOEaJIxhtroFirqPmJf3cdU1n3C/vDnxEzNQb+TGxxKcdZYijLHUpw1luxA/+7eht+pSEAQQgAQdavYV/dvLwD8m32hjwi7ZU2m9TvZ5GUMIz9DkZ8xwpseTcCX286lFqkkAUGIbiTqVlMb3UptZDM10S3URjdTG9lKTXQT1ZENQONeh34nl8LMURRmjqYgYwT5mSPICQz4ym6YonOSgCBEFxWK7qI8tJLy0Eoqw59QG9ly0DP+AxzygkdRmHkMRVnHUph5LHnBUjn4dxMSEIToAowx1EQ3JgJAeWgltdHNB03vc7LICfQnO9Cf7GB/cgIDyMsYSmHmMQR8ee1YcpFOJCAI0Qm4Jko4tpe62C7qorvtNLabkPe+MryacGxvo+/5nWzvbH+sd1NXf3IC/cnw95KLvaIRCQhCpJGoW8X+8FqqwmupinzO/vBaqiNfEo6V0VT7fkNBXyFFWbabZ3Hm8RRkjmyrZ+SILkgCghBtyBiDa+qImmqibhUxt5qoW0PUxN9XURvdSlV4LfvDnzfrbl6/k02GvxdZ/t7ec3F6kxscTHHW8eQGh8rdvKLVJCAIcRiMiRGK7bTP5Ylssz14olupjdr3oegODJEW55vl70texjD7Ch5FlveAtaxAb/xOrjT3iDYhAUGIBlwTJhTdQW10G+FYORG3PGlaQThWlvR+b2K4w5awT93MIeDkkenvRV7G0eQnAsAwgv6CNtgyIb6aBATRbdjmm5B9jr67j7roHu8sPn5mv53a6FbqYrtoTnt9Qxn+nmQH+iW97LN6gr4iAr4c/L5cAk4efl+OPL5BpCX5VXZj9tHnLq6JYohiTAyDi4MDOF5btG2acDjw3hDDNRHvO/Z7LhGMieKaKOBisHkb43rfcbHDBBqMcb2RqupwTdh72ffx+cZEMcTsyzQ1dRtuTaPPUbfKG0DlwMs14RbsIYegr5AMfzFBX3HStCjpfTwIlMhD2USnJwEhzbgmTMTdT9TdT9StSpp6L1NNzK0h6lYTM9VE3erE+5gJY7wDcuLAbGK4RMG4uImDfsw74La8qaMrcfCTFehrn7TpHdSzA/0Sn7MCfTpkXFshOooEhBSIuXXeMH4VhGN2Goklf96XGLfVNRHvbLj+2XHMDRE1+1t4Btt5OQTxO5n4nEx8TgY+X6Y3YlUGPjJwnCCO48fBf2CKD8cJeFM/8RrLwQR8eUmDphQ2eF9E0Jcvd+AKkaRLB4RQdCfVkS+9Tw4Hmj+cxGdDzA66nTjrrrHvvTPxmKkh6tZ4aWq95fGBuu28tj3Tdgj48gg4eQR8uV47tDf15dq2ace+9zlZOI4fH37Aj8+x0wMHVh8+At5B1U59jj/x3iF+kDXEm2BMvJkHA97oeo73HZ9zIK/k93a5z9vTDuDzesU4B+ZL10gh0k6XDQjhWDn/2DKlQ864A74CMnxF3rB+dmi/gC8Hx8nwzoozDpwZx8+KnSx74PflE/Tl4fflEfTl43dy5OAphGgXXTYg+J0c8oJHURleQ/IZb9Nps/E7ObYboHfGbbsE2nl2mR2gO5AYrDu+zHYfPBAACqQZQgjRKTnGtLx7XTurAApTmaHd5gPbLWfgQoguah9Q1NzEXbaG8FXi7dlCCCEOkFNjIYQQgAQEIYQQHgkIQgghgM5xUdlFGvyFEKI1DC048e8MF5Vd7AZVdnRBhBCiEymARg/9+kqdoYYghBCiHcg1BCGEEIAEBCGEEB4JCEIIIQAJCEIIITwSEIQQQgASEIQQQngkIAghhAAkIAghhPBIQBBCCAFIQBBCCOGRgCCEEAKQgCCEEMIjAUEIIQTQOR5/3akppUqAa4ETgXFAHjBRa/16g3SFwB3ANKAY0MCdWuvHm8jzUuB64GigHHgK+P+11lUN0vm8dFcDJcDnwO1a6yUp3MR2o5T6OnAZMBEYBOwF3gZu1lqva5D2JOAXwFjso9OXAAu01jUN0mUCPwXmYPf7R8BNWuvlTay/WXl2Jqnep839vSelnwrcCowEdgEPYn+j0VRtY3trg33a7Pyam+fBSA2h7SngRqA/8HGTCZQKAK8AVwCPA9cB64E/egf/5LTXAn8AdgA/Ah4G5gFLlVINBxK6HbgTeBn4PrAJeEIp9e2UbFn7uxEbMF/FHnQWA6cDHyilRsQTKaWOA5YDWdh99L/Aldh/jIZ+j93fj3l5usCLSqnxyYlamGdnkup9esjfe1KeZwN/Acqwv8+/AP8N3HM4G5QGUr1Pm5VfC/NsktQQ2t5KoJfWeq9S6gLg2SbSXAR8HfiO1voRb959Sqk/A79USj2htQ57Z7M/AV4DpmitDYBS6m3geeB87D8VSql+wI+Be7XWP/Tm/S/wBnCXUuoZrXWLBs9IA/8XmKm1DsdnKKWWAP/G/tNc5s2+A3sWdXq81qSU2gD8Tik1SWv9mjfvBOAS4Dqt9UJv3iPAJ9hAemrSupuVZyeU0n1K837vcXcBH2B/yzEvz0pggVLqV1rrtanZxHaX6n3a3PxakmeTpIbQxrTW+7XWew+R7GTsUHdPNpj/BNAbW1UE+BpQCCyJBwNvHcuAKmB60nfPB4LAb5PSGeA+bLXzhBZvTAfTWr+d/E/hzVsLrAZGACilCoCzgEcaNKE9gt1H/5E079tABHsWFc8vhG22mOA1f7Q0z04l1fu0mb93lFIjsc1ED8SDgee32OPSRa3boo7XBvv0kPm1NM+DkYCQHjKBKBBuMD/e5jc2KR1AbRN51CalAxgDVGqtP2+Q7t2k5Z2e10zWB9jjzRqNrfm+n5zO+4f6kPrbPQZY0/DaC3YfOcBxrciz0zvMfdpc8e80zHMbsKWVeaatVO/TJvI77DxBAkK60Niz+YZn7ad40yO96VpsTeLk5ERKKQUckZQO7EXkHU2sa3uDPDu7WUA/DtSuSrzp9ibSbqfxPjpYOpLStiTPruBw9mlzyT61Wrv9DfNLRZ5yDSFNPI69mPZ7pdT3gHXAZOAab3k2gNZ6j1LqSWCeUkoDS7E/ikXYpo/spDyzgbom1hVKzrMzU0oNB34DvAU86s2Ob9fBtr01+6gleXZqKdinzXWoPHNakWdaSvU+PUh+h5VnnNQQ0oDWegcwFfsHewXbw+iX2J4XYNv/4q4EXsBeaPoCeBN7cen5BulqOdDElCwraXmnpZTqC/wV2+324qQL5PHtOti2J293c/dRS/LstFK0T5tL9qnVou3/ivxanWcyCQhpQmv9JlCKbeebgD3z/5e3eG1Sun1a6/OxF4ZPAwZrredgq4vJvTK2A32bWFW8WrktpRvQjrx7Nl7EXmCf4gXUuHh1uaTRF+28bQ3SHiwdSWlbkmenlMJ92lyyT61mb/8h8mtVng1JQEgjWuuY1vpDrfUK70Lnmd6iRl3FtNabtNZvaq03KqWKgOOx/Y/jPgQKlFJHN/jqiUnLOx2lVBa2NnQ0cJ7WWjdI8gn2Av24Bt/LwF4k/jBp9ofAcKVUXoM84vvoo1bk2emkeJ82V/w7DfM8EnsPQ2vyTBup3qfNyK/FeTZFAkKaUkodge1j/JLW+rNDJP859oaqB5LmLcVeV4hfh4j3TLgKe4PaOyktcDtQSvmxN9iMx1aX/9UwjdZ6H/YGnjkNDvRzsHfNPpU078/Yi/lXJK0jE5gLrPB6vLQ0z06lDfZps2itVwNrgO96ZYi7GvtbfrqleaaLVO/T5uTX0jwPxjHGHCqNOExKqZu9tyOAmcBD2OsEFVrrX3tp3sJeJFqHbeq5EhuwT9Jab0zK6yYvn3ewZwMXYC9AX6m1Xtxgvb/APrpiMbYr2gXAucB0rXXDex7SnlJqIfZOzedpfM9Gldb6L166sdhb+z/B3mPQH3uT3t+11uc0yPNJ7H65B3tN5jvYmwQnaq1XJKVrdp6dSRvt00P+3r105wHPYWvAS4BRwPew9yZcQyeV6n3a3PxakufBSC+j9nFbg8+Xe9ONQPwfZCX2xpF+2AtGfwX+K36WmuRj7E1n53ufVwFna63/1sR653t5XYk96/0ce8djpwsGnuO86be8V7KNeHdpa61XKaXOxN5tfA/2eS6/AxY0keel2L/PpdhnGX0MnJMcDFqRZ2dynDdN5T5tzu8drfUypdQ04BZsT7ndwM+a+H5nc5w3TdU+bVZ+LcyzSVJDEEIIAcg1BCGEEB4JCEIIIQAJCEIIITwSEIQQQgASEIQQQngkIAghhAAkIAghhPBIQBBCCAFIQBBCCOGRgCCEEAKQgCBEWlBKBb1HHAvRYeThdqJbUUpdCDwDfFdr/bsmlq/Gjjg1TGttlFLDsMObngn0xA4y8hRwq9a6Oul7w4EfYActGgj4gc+A+7TW/9tgHbdiH+g2CpiHfahhCXAG8HoKN1eIFpEaguhungd2cOAJnAlKqW8AI4GHvGBwPPax4adix5r4T2AZ9sD/ilIqmPT10710y4AbgP/CjkfxO6XUwZ40+UfsM+7vxj6iuKnB0YVoN1JDEN2K1jqqlHoYWKCUGqm1/jRp8TwgBvze+/wQ9iD9da31/ngipdRybC1jVlLaR7XW9yevSyl1D/ZZ//OVUndprSMNilMBnKm1jqZi24Q4XFJDEN3R7wCDDQAAKKVygenAi1rrbUqp0cAxwONAplKqV/yFHcioGjswEQANmo+ylFI9gR7Ay0ABMLyJciyUYCDSiQQE0e1orddzYKjBeLPPfwD52FGmwI72BfAT7MAtya9dQC7QJ56nUipPKXWXUmoTUAvs8dLe7iUpbqIon6dqm4RIBWkyEt3VYuzF4anY8XvnYa8t/NVb7njTu4GmRqMDOxpd3OPAeV6+bwJ7sc1P5wDX0fTJV03riy9E6klAEN3VUuyZ/jyl1CfAycCdSU04a71pTGv96ldlpJQqwgaDR7XWVzVYdmZKSy1EG5ImI9EteRd4fw9MwXYBBXgwKckH2IHKr1JKlTb8vlIqoJTq4X2MeVOnQZoS4IoUFluINiU1BNGd/Q7bRXQG8IbWOl4rwOt2OgfbS+hjpdRDwGogBzgKmIYduPz3Wuv9SqmXgdlKqVrgPWAQcCWwHnv/ghBpT2oIotvSWq8D/u59fLCJ5R8CY4DHsNcaFgE3A9/A1i6WJyWfje2m+i3g18AFwE3Ab9qi7EK0BccY09FlEKLDKKVewN4cdqTWurajyyNER5Iagui2lFJHYa8hPCbBQAi5hiC6IaXUidj7DH4AhLFdS4Xo9qSGILqjq7Ht/QXALK31ho4tjhDpQa4hCCGEAKSGIIQQwiMBQQghBCABQQghhEcCghBCCEACghBCCM//AzPEMhP/ag2fAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x216 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"(autos2\n", | |
" .groupby('year')\n", | |
" [['comb08', 'speeds']]\n", | |
" .mean()\n", | |
" .plot()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 68, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<AxesSubplot:xlabel='year'>" | |
] | |
}, | |
"execution_count": 68, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADlCAYAAABTYoCYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwS0lEQVR4nO3deZwU1b3w/0/1MvsKCIzsg3iAgAoSDYoLqBCXoGK8yGZEfOJykxgT/Qk/vVcTo7km+oghiUqumqgxolGDEo0LRo2YuIBLRDmCsu8wMwyz9PRS5/njVDc9CzIz9Mz0zHzfr1e/qrvq9KlTNT31rXPqVB3HGIMQQgjh6+gCCCGESA8SEIQQQgASEIQQQngkIAghhAAg0NEFaIYoNnBVdnRBhBCiEykAXFpwnHc6QS8jF3A6uhBCCNEJGVrQEtQZmoykZiCEEK3TouNnZwgIQggh2oEEBCGEEIAEBCGEEB4JCEIIIYDO0e1UCCG6FONWQ91LQAZkTsDxFXV0kQAJCEII0W6MWwU1j2KqHwZT4c31YYLH4WSeDpmnQWA4jtMxPe07w30IFUBhRxdCCCFay7iVUPMHTPUfwMR7gmZ607r6iX19IPM0GyAyxuP4cg9n1fuAouYmloAghBBJjHEh8m9wd4BbDm45xi0Ht8z77E19+fZsPjgcAiMgOBzH16N+Xm65DQI1j4CpsjOdbMiZhZNzOfhyIfwOpu51CL0B7tb6hXEKcHo+gRM4qrWbIwFBCCFaw7hVmIrvQfjt1mXg6wPBERAYDiYCtU+AqbbLnFzImY2TO7dR4AAwxkDsC6h7wwaI8EoghtPjCZyMMa3dJAkIQgjRUia2G1N+BUQ/szOcfPAVe68eduoU24O5rwjcvZjoZxBZA7EN2KdENMHJh5xLcXK/06KLx8bdD6Yax9/3cDarRQFBLioLIbo9E12PKZ8HsS2AH6fgdpycaYf8XvzSr3FrILoWop9hImsgugbccpzsqZAzB8dX0OIyOb58IL/F3zscUkMQQnRrJvwRpvy7YMrBycYputde0O0apIYghBDNYerewFT8AEwtOEU4xb/DyTi2o4vVYeROZSFEt2Rqn8GUX2WDgb8/Ts8l3ToYgNQQhBDdjDEGqhdjqu62MwIjbM3A37tjC5YGJCAIIboNE92Cqf4t1P7Zzsj4Bk7Rb3F8eR1bsDQhAUEI0aUZE4O6NzG1f4K6N0h0D806F6fwThwno0PLl04kIAghuiQT2wO1T2Fqnqx/B7CvN07OdyB3Ho4jl1GTSUAQQnQZxhiIvI+peRxCLwORAwszTsLJmQGZk3CcYIeVMZ1JQBBCdGr22UMfYEIvQeglcLcfWOgUQvaFODkzcAJDOq6QnYQEBCFEp2NMDCIrMaG/2ZqAu6t+guAxONkzIfscHCerYwrZCUlAEEJ0GibyKaZmCdS9DO7e+gsDw3GyvglZkw/n6aDdmgQEIUSnYOpW2EdMJF8XCIzCyZoCWVNwAoM7qmhdhgQEIUTaM+GVmIprgIi9qzhnFmROxgkM6OiidSkSEIQQac1EVmPK/8+BR0z0ePxwHwktDkI64Qoh0paJrsOUXW5HG/P1xin+vQSDNiQBQQiRlkx0E6bsMu+x1MU4PX6PExjY0cXq0iQgCCHSjontwJRfZruTOvk4PR6WnkPtQAKCECKtmNheTNl37OhlTo59EmlwZEcXq1uQgCCESBvG3Ycpnwux9UDQPok0Y2xHF6vbkIAghEgLxq20vYmiawA/TtGvcDJP6uhidSsSEIQQHc6EXsPsOQciHwIOTuEvcbLO6OhidTtyH4IQosMYtwxT+TMILbMznGycgp/gZJ/XsQXrpiQgCCHanTEGQi9gKn9qu5UCZIzHKbhNupZ2IAkIQoh2ZWI7MZW3Qt1yO8PJw8mfD9kX4zhORxat25OAIIRoF8YYqH0as//nYPbbmZmTcApulbuP04QEBCFEmzKx7RB6EVP7PERX25lOEU7Bf9txjaVWkDYkIAghUs7EdkPob5jQXyGyqv7CrHNx8m/G8ffsmMKJg5KAIIRICeOWQ+glTOgFCL8LuAcWOsWQ9U2c7G/hZIzrsDKKr3bIgKCU+jpwGTARGATsBd4GbtZar2uQ9iTgF8BYoBJYAizQWtektthCiHRhTAyqH8JU3QuEDyxwCuzoZVnnQMY3cBw5/0x3zfkL3QicDDwFfAz0Bb4HfKCUOkFr/RmAUuo4YDmwGvgR0B+4HigFvpXykgshOpyJbsLs+/8ONAs5uZB5Bk7WuZB5Mo6T0bEFFC3SnIDwf4GZWutE6FdKLQH+jQ0Wl3mz78DWHk7XWld56TYAv1NKTdJav5bCcgshOpDtMfSk12PIawDImYmTdwOOL7djCyda7ZCPrtBav50cDLx5a7E1gREASqkC4CzgkXgw8DwCVAH/kbISCyE6lIntxlRcian8LxsMfL1xih/EV3CrBINOrlXPMlJKOUAfYI83azS2tvF+cjovkHwIjGl9EVvPxPZgwh9hol/aH7EJ2TMbIUSrmNDfMHvOhbrX7Yysc3F6LcPJPKVDyyVSo7VXeWYB/YCbvM8l3nR7E2m3A+NbuZ5WM24ZZvckINRgSRDjywfHe/mKITgcJ3gMBI8BX1/pFy1EA8at8J459Jyd4RTiFNwizxzqYlocEJRSw4HfAG8Bj3qzs71pXRNfCSUtbz9OLgQGQvTzBgsi4JYBZQdmhf9Bot7g64UJjvYCxGgIjsbxFbdPmbsBY6IQ2wC+HnZYxBQEX2NiYPaBWw5uhTetBCcDfIX25cSn+TiO/7DX2R0YE4XwW5jaZyG0nEQPooxTcArvwPH36dDyidRrUUBQSvUF/gqUAxdrreMdjWu9aWYTX8tKWt5uHCcTej5v2zjNfjtIt7vfvncrE5+NuxMin0BkNVAH7h6o+zum7u+JvIx/CGSOx8kYDxkn4viK2ntzugQTfg+z72Zv8BPAycH4+4H3cvz9wd8f/Efa5e4+7wBfAWYfJvG+4sB8b1nzORgn3wsOBeBkgpMNTpb3yk7Mc5xsCCjI+Hq3OikwEe0FgefB3X1ggZOLk38DZM+QWnQX1eyAoJQqBF4ECoGTtdY7khbHm4pKGn3RztvW6hIeBsdxbE2Bg1/oiv+sjYlAdC1E/o2J/BsiH9vPxOwBrGY9puZxwMEERtp+1ZnjITgOx5fj5WHA1NoaiCnzzlTL7EHL1wsCQyFQiuNktfGWpxfjVmL2/xJqlzRYUGP3cXSt/ZiqFTo5tkZA2AYVoskrBVMJscpDl/tAhpiAsicDGSd6AaIwVaVNCya2F0LLbCCIflp/YcY3cLIvgMwpctG4i2tWQFBKZQHPA0cDZ2itdYMkn2D/68YBzyR9LwM4Dng8FYVtS44ThOBICI7EYToAxtTamkP4XUz4nxBeBUTs81iiqzE1DwJBTGCIrX24ZTTdalZvTRj/AAgcBYGhOIGh9r2/FMeX18Zb2b6MMVD3MqbyNjtYOtgmuPz/ss05sS0Q24qJbYXYVu/zFjDVXg4B70y+yGv6KbIvp9DW0nzF3uek977ien3fbZCu8ZqUKrzaoffeVIEJYUwITMgG88T7kE0X+RT7N18D0TWYmj9gA8QIyDgBJ2MM+AeBf2BK/n7GrbH7yt0FsV3g7sS4lTiBwRAY6Z1QBA9/PbGdEH4fE3kPwish2uBf2j8IJ/tCyD4fx9/vsNcnOgfnUL1ulFJ+7EH+HOB8rfULB0n3IjAKGJF0H8I84H+Bs7TWr7ayjBXYWkmHMyYE4ZVecPiXbWpKvj2/kaBtK/cVQmznoZs2nBzw9bYvv506/qTP/v7eRe/UDHRn3HJ7wIusxkRXQ+QzrxthkXeQPfByfMXevB4QKAV//69sizexHZjKnyQ94jgHJ++HkDPnq79nvDN4/LaJooObJuzf/ANM+B0Iv2NrjkSaTuwUQ2AA+AeCfwCOf6DX/BX1miirbLAzVRi3ygtIVfZEIuYFAVPVdN4JGRA42naECIyE4AgIqHrByP5Px+zLRO3ULbO/3ch7EH4fYpuaKH8+ZJ1jA0FwTIfve5ES+4Ci5iZuTkBYCFyLrSE82WBxldb6L166sdhHWnyCDQL9gR8Df9dan9PcAjWhgjQJCA0Zt9I+syW20R4MfMVeAPCmSQc0Ywy4eyG6DqLrMLF1EP3Cfnb3tmCtGfZiefysNDAo8R5fDyAMJgymLum999lUQVRjIqttIHC3HsbWZ9maTfBonMDR9iAVONo2jdX+CbP/rgNn+hmn4hT+pEucaRpTC+FVmPC7NkBEdVKNJsV8Pe3JgJNjfyum4iAJHWoiI6gMjSAay8M1za1B+MHfy/7NfL3B11MuuKc5n89HVlYWvXr1am7ATnlAeB047SCLN2qtByelnQDcSeNnGR3Of0wFaRoQUsW4ZRDdbC/gubsw8bPF2E6v+WC31xzVFnzetY2ROMGv2WDmVtgLuKacehdv3Qp70T35eTUNOdm26QXA1wMn/+Yu/YhjW6Mph+gmiG2G2CZM0nvbVBa017J8eeB4L1+enefkga8Qx9fHqxXGp70aN325O2wgj36GiXwKkc9wY7vYXnkR+8Mn4Q8UEgwG8fkPdlB3gAA4AVsm/F3279JVxWIx6urqyM/Pp1+/fs35+6U2IKSBCrp4QGgOY+ps+3p0I8Q2YmIbvYPQRtv+/pVNV3GZ9uAf9A7+ga9BUNneNM0uR8we7KIaomsxkc9t197YhvplyJ6Gk39jt+qd0xRjYm161l1WtpWdO/bQs2cxPXsW4vPF1+VwoMuEA44PyJAA0AWUlZWxc+dOevXqxRFHHHGo5BIQuhtjwjYouJVel8kMO8WbOplAMGXXHpouQ53XBPYlBAbhBEe32brEAZs3byYcDlNaWioH+27kyy+/JBgMMmDAgEMlbVFAkOfRdgGOkwGBIR1chsxELy3RflzXJRAISDDoZvx+P67bnFaBlmm7U0YhhBCdigQEIYQQgAQEIYQQHgkIQgghAAkIQghxSM888wxKKT777LOOLkqbkl5GQgiRYl988QV33HEHq1atIhgMMnHiRG688UZ69OhRL92uXbv41a9+xdtvv83evXvp06cPkydP5rvf/S4FBQXtXm4JCEIIkUI7duxg1qxZFBQUcN1111FTU8NDDz3E559/zpNPPkkwaB8tUlNTwyWXXEJNTQ2zZs2ib9++fPrppzz88MOsWrWKxx9v/2eCSkAQQogUuv/++6mrq+PRRx+lTx87iNAxxxzD3LlzWbp0Kd/+9rcBeP3119m6dSsPPPAAp59+euL7WVlZPPTQQ2zevLk5N56llFxDEEKkte3bt7NgwQImTJjA6NGjOeuss/jZz36WWL569WrmzZvHmDFjGDNmDPPmzWPNmjX18li0aBFKKTZu3Mh1113H2LFjOemkk1i8eDEA69ev5/LLL+e4447j9NNPZ+nSpU2Wpaamhptvvpmvf/3rjBs3jptuuomqqvpPqH355ZeZNGlSIhgAnHTSSQwePJgXX3wxMS/+vZ49e9b7fq9evQAbGNqb1BCE6KKMidgHJHY0f59Wj+Gwc+dOLr74Yqqrq5k+fTpDhgxh27ZtvPDCC9x8882sXbuW2bNnU1BQwJVXXgnAn/70J2bOnMlTTz3F0KFD6+X3gx/8gGHDhnH99dfzyiuvcPfdd1NQUMDixYs566yzOOOMM3jiiSdYsGABxx9/PP3796/3/VtvvZWioiKuvfZa1q5dy5IlS9i9e3cisOzcuZO9e/cyatSoRttyzDHHsGLFisTn448/Hp/Px+233878+fPrNRlNmzatOc8pSjkJCEJ0QcZEMHvObnrcg/bmHwi9XmxVULjrrrsoKyvj6aefZsSIEYn5P/zhDwFYuHAhsViMxx9/nH797OPVzzvvPM4++2wWLlzIokWL6uU3duxYbrnlFgAuuugiTjnlFG699VZuu+02Lr74YgDGjx/P2WefzdKlS/nP//zPet/Pysri4YcfJhCwh84jjjiCRYsW8e6773LCCSewa9euxPyGjjjiCPbu3UssFsPv9zN06FB++tOf8otf/ILp06cn0k2fPp1bb721xfsqFaTJSAiRllzXZfny5Zx55pn1ggHY4XFjsRgrVqzgrLPOSgQDgP79+3PWWWfx1ltvEYvF6n0vftAHyMzMRCmF3+/nggsuSMwvLS2loKCALVu2NCrT9OnTE8EAYNasWQC8+eabANTV2RETMzIyGn03M9MOOR8KhRLz+vbty7HHHstNN93Eb37zG+bOncvTTz/NPffc89U7p41IDUGILshxgtDrxU7dZFRWVkZ1dTXDhg076PLa2lqGDGn8YMfS0lL++te/Ul5enmiTBygpqT/se35+Pr169Ur0/EmeX1nZeNztwYMH1/tcXFxMYWEhW7fawabiB/1wuPGYIfFgEb82sHLlSq666ir+/Oc/JwLemWeeSV5eHr/+9a+58MILKS0tbXLb24oEBCG6KMcJQqD/oRN2I/4mBg9qah7EhyJtmd69ewOwe/fuRst2795Nz549E+tbsmQJvXv3blT7mTRpEosWLeLDDz9s94AgTUZCiLTUo0cPcnNzWbt27UGXZ2dns379+kbL1q9fT05ODsXFqR2gacOGDfU+l5eXs2/fPo488kgA+vTpQ48ePfjkk08afffjjz+ud/CPX09oKBqNAjS5rK1JQBBCpCWfz8cZZ5zBq6++yqefflpvmTEGv9/PySefzCuvvMK2bdsSy7Zt28Yrr7zChAkTDnr231pLlixJHLAB/vjHPwJw6qmnJuZNnjyZ1157jZ07DzTX/fOf/2TDhg1885vfTMwbPHgwO3fu5P3336+3jmXLlgE0qjm0B2kyEkKkrR/96EesWLGCWbNmcckllzBkyBC2b9/OCy+8wEsvvcQPf/hD3n77bWbOnMmMGTMA2+3U7/cneiKlUigUYu7cuUyZMiXR7XTChAmceOKJiTRXXXUVf/vb37j00kuZPXs2NTU1PPjggwwfPpzzzz8/kW7WrFk888wzXHnllcyePZuSkhLee+89li1bximnnNJk19W2JgFBCJG2SkpKePLJJ1m4cCHPPvss1dXVlJSUJO7sHTZsGI899hh33303999/P2C7ll5//fWN7kFIhVtuuYVnn32We++9F9d1ufDCC7npppsalfmxxx7jf/7nf7j77rsJBoOcfvrpLFiwoF7vo9LSUp5++mkWLlzI0qVL2bNnD7179+aKK67g+9//fsrL3hwyprIQndjGjRsBGDRoUAeXRLSnFvzdWzSmslxDEEIIAUhAEEII4ZGAIIQQApCAIIQQwiMBQQghBCABQQghhEcCghBCCEACghBCCI8EBCGEEIAEBCGEEB4JCEIIIQAJCEIIkTJbtmxBKcUzzzzT0UVpFQkIQgghAAkIQgghPBIQhBBCABIQhBBprKqqittvv51JkyYxatQoxo8fz9y5c1m9ejVgB6S/5ppreOONN5g6dSqjR4/mW9/6Fm+88UajvCoqKrjttts49dRTGTVqFFOmTOGRRx5plC4UCnHPPfdwxhlnMGrUKCZOnMi9995bb+hMgMrKSubPn8/xxx/PuHHjuPHGG9m/f3+j/Hbv3s2CBQsS650wYQJXX301W7ZsSdFeSh0ZMU2ILso1Eeqiuzq6GGQGeuNzgq367i233MLrr7/O7NmzGTBgAGVlZaxcuZJ169bxta99DYAvv/ySG264gRkzZnDhhRfy1FNPcc011/Doo48yduxYAGpqapgzZw579uzhkksuoU+fPrzzzjvcfvvtVFZW8r3vfQ8A13W56qqr+Oijj7jkkksYPHgwq1ev5v7772fHjh38/Oc/B+yYztdccw0rV65kxowZlJaW8sorr3DjjTc22obvf//7bNmyhRkzZtC7d2/27NnD22+/zfbt2+nfv3+r9ktbkYAgRBfkmghvbTmP2ujmji4K2YEBTOi/rFVB4Y033uDqq6/miiuuOGia9evXc9999zFp0iQApk2bxuTJk7nnnnt49NFHAXj44YfZunUrS5cuZcCAAQBccsklFBQUsHjxYubMmUNhYSHPPfcc7777Ln/605849thjE+vo378/d999N1dccQVDhw5l+fLlvPfeeyxYsIDLLrsMgBkzZnDppZfWK1tlZSUffPABCxcu5Oyzz07Mv/rqq1u8L9qDNBkJIdJWQUEB7777LuXl5QdNc+SRRyaCAUBhYSHnnXce77//PjU1NQC89NJLnHDCCeTm5lJWVpZ4TZgwgbq6Oj766KNEumHDhiVqI/HX+PHjAXj33XcBePPNNwkGg0yfPj2xXr/fz+zZs+uVLSsri2AwyD/+8Y9EWdKZ1BCE6IJ8TpAJ/Zd1+iaj66+/nvnz5zNhwgRGjx7NaaedxtSpU+nXr18izcCBAxt9b9CgQbiuy/bt2xk6dCgbN25Ea504sDdUVlYG2LGKv/jii0Om27p1K3369CE7O7ve8iFDhtT7nJGRwfXXX8+dd97JsmXLGDNmDBMnTmTq1Kn06NGj+TuinUhAEKKL8jlBsoP9Dp0wjZ1zzjmMGzeOV199lRUrVrB48WIeeOABFi1axCmnnNLsfFzX5ZRTTuHyyy9vcvlRRx2VSDdy5EhuuOGGJtPFm5ta4rLLLuOMM87g1Vdf5a233uKuu+7ivvvu4w9/+APDhw9vcX5tSQKCECKt9e7dm5kzZzJz5kzKysqYNm0a9913XyIgbNq0qdF3Nm7ciM/no6SkBLC1iLq6Ok466aSvXNfAgQNZt27dIdP169ePd955h9ra2nq1hPXr1zeZfsCAAcydO5e5c+eyefNmpk6dyoMPPsgvf/nLr1xPe5NrCEKItBSLxRp14+zRowd9+/alrq4uMW/btm289tpric/79u1j2bJljBs3jpycHACmTJnCe++9xzvvvNNoPWVlZRhjEum2bt3Ks88+2yhddXV1Yr2nnnoqkUiEJUuW1CvvY489Vu87tbW1hEKhevP69etHfn5+vW1IF1JDEEKkperqak477TQmT57M8OHDyc3N5V//+hcffPAB8+fPT6QbMmQI8+fPZ8aMGRQXF/Pkk09SVVXFtddem0hzxRVXsHz5cubNm8dFF13EiBEjqKqqYs2aNbz88susWrWKQCDABRdcwAsvvMCCBQtYsWIFY8aMIRKJsG7dOl588UWeeeYZBg0axKRJkxg7dix33nknmzZtYujQobz88suNAtiGDRu47LLLmDJlCkcddRTBYJBXX32VnTt3cu6557bbvmwuJx4Z01gFUNjRhRAiHW3cuBGwF1G7mnA4zMKFC1mxYgWbN2/GGMPAgQOZPn06M2fOBOyNacOHD2f69OncddddbNiwgUGDBvHjH/+YiRMn1suvqqqK++67j5deeokdO3ZQUFBAaWkpkydPZs6cOTiOk1jvQw89xHPPPcemTZvIzc1l4MCBnHnmmXznO98hKysLsDe63XHHHSxfvhzHcZg0aRJz587lggsu4Oc//znTpk2jvLycRYsW8c9//pMdO3bg9/spLS1l7ty59bqhtlQL/u77gKLm5isBQYhOrCsHhOaIB4Tf/va3HV2UdtVWAUGuIQghhAAkIAghhPBIQBBCCAFILyMhRCeW3N1UHD6pIQghhAAkIAjRqfl8PqLRKJ2gt6BIoVgshs+X+sO3BAQhOrG8vDzC4TC7d+/Gdd2OLo5oB2VlZdTV1SXuh0ilZl1DUEqVANcCJwLjgDxgotb69SbSTgVuBUYCu4AHgdu11tGGaYUQh6ewsJCamhr27t1LeXk5wWAQv9/f0cUSbSQWi1FXV0d+fj69evVKef7NrSEo4EagP/DxQRMpdTbwF6AM+L73/r+Bew6nkEKIpvl8Pvr168fAgQMpKCggGGzdY6ZF5xAMBunVqxf9+vVL3FmdSs3tZbQS6KW13quUugBo/OQn6y7gA2CK1joGoJSqBBYopX6ltV57uAUWQjSWm5tLbm5uRxdDdHLNqiForfdrrfd+VRql1EhsM9ED8WDg+a23notaXUohhBBtLpUXlcd40/eTZ2qttwFbkpYLIYRIQ6kMCCXedHsTy7YDR6ZwXUIIIVIslQEhPmxQU6M+hJKWCyGESEOpDAi13jSziWVZScuFEEKkoVQGhHhTUUkTy0qAbSlclxBCiBRLZUD40JuOS56plDoSe//ChwghhEhbKQsIWuvVwBrgu0qp5FslrwZc4OlUrUsIIUTqNfvx10qpm723I7zpHKXUBKBCa/1rb94NwHPAS0qpJcAo4HvYexM+T1GZhRBCtIFmj6mslDpYwo1a68FJ6S4AbsEGjt3AQ8Bth/EsowpkTGUhhGiNFo2p3OyA0IEqkIAghBCt0aKAII+/FkIIAUhAEEII4ZGAIIQQApCAIIQQwiMBQQghBCABQQgh0lIoupOK0Eftus5m35gmhBCi7dVGtvLlvsVs3f8shijj+j5Iz+zx7bJuCQhCCJEGaiKb+LJiMduqnsNg7+PN8vclJzCw3cogAUEIITpQdWQDX1YsZnvV8xjs6MNZ/r4MKbqCfnkX4fc1NaJA25CAIIQQBxF1awhFdxCKbicU205tdLt9H92O38kiN+Mo8oJHkZdxFHnBUvy+Q48DZowhaqqoiWxi474/sL36BezzPyHLX0Jp0Xfpl38hPiejjbeuMXl0hRCiSzAmRsTdT8StIObWEjO1xEwI160lampxTajB/BAxU2fnmzpiphbXrSNmQsRMNaHoTiJuRQtK4JAd6O8Fh6FkB44k7FYQju2hLrqHuthu6mJ26ppQvW9mB/pTWnQlR+Z9K9WBQJ5lJIToOlwTpiayherIl1RHNlAX20E4to+Iu49IbB8Rt4KIu4+oW9lmZXDwkxnoQ7a/hKxACVmBvkTdaqoi66gKryPilrcq35zAQEqLrqQk7zx8TjDFpQZaGBCkyUgI0eFcE6UutotQdBvVkQ1UR9bbafhLaqNbEm3rLefD72Tj92XbqZON35eF38nG52Tid7Ls1JeV9DmLgC+bTH8fsgIlZAdKyPQfgeP4D7qWutheqsLrqIqsozq8jqrIF4SiO8nwF5HpP4JM/xFk+I8g09+LzMAR3rxeZPp74zjp0/tfaghCiHZRG91OVfhzQtF4W/y2RJt8XWzXIQ/6PieT3OBgsgP9CPqKCfoLCfq8l78o6X0BAScXvy8bhyCO47TTFqYlqSEIITqWMTGqIusoD62iIrSK8tAqQrHth/4ikOnvQ25wMLnBUm86hNzgELICJWl1Nt0VSUAQQhy2SGwfleE1VNR9QEVoFRV1HxF19zdK5xDw2uBLyA4cmWiSyQoc6bXP921WTx3RNiQgCCGazRiXmuhm9ofXsD+s7atuzUHP/jP8vSjOHEtx1vEUZY0lP0Phc+Swk67kLyOEaJIxhtroFirqPmJf3cdU1n3C/vDnxEzNQb+TGxxKcdZYijLHUpw1luxA/+7eht+pSEAQQgAQdavYV/dvLwD8m32hjwi7ZU2m9TvZ5GUMIz9DkZ8xwpseTcCX286lFqkkAUGIbiTqVlMb3UptZDM10S3URjdTG9lKTXQT1ZENQONeh34nl8LMURRmjqYgYwT5mSPICQz4ym6YonOSgCBEFxWK7qI8tJLy0Eoqw59QG9ly0DP+AxzygkdRmHkMRVnHUph5LHnBUjn4dxMSEIToAowx1EQ3JgJAeWgltdHNB03vc7LICfQnO9Cf7GB/cgIDyMsYSmHmMQR8ee1YcpFOJCAI0Qm4Jko4tpe62C7qorvtNLabkPe+MryacGxvo+/5nWzvbH+sd1NXf3IC/cnw95KLvaIRCQhCpJGoW8X+8FqqwmupinzO/vBaqiNfEo6V0VT7fkNBXyFFWbabZ3Hm8RRkjmyrZ+SILkgCghBtyBiDa+qImmqibhUxt5qoW0PUxN9XURvdSlV4LfvDnzfrbl6/k02GvxdZ/t7ec3F6kxscTHHW8eQGh8rdvKLVJCAIcRiMiRGK7bTP5Ylssz14olupjdr3oegODJEW55vl70texjD7Ch5FlveAtaxAb/xOrjT3iDYhAUGIBlwTJhTdQW10G+FYORG3PGlaQThWlvR+b2K4w5awT93MIeDkkenvRV7G0eQnAsAwgv6CNtgyIb6aBATRbdjmm5B9jr67j7roHu8sPn5mv53a6FbqYrtoTnt9Qxn+nmQH+iW97LN6gr4iAr4c/L5cAk4efl+OPL5BpCX5VXZj9tHnLq6JYohiTAyDi4MDOF5btG2acDjw3hDDNRHvO/Z7LhGMieKaKOBisHkb43rfcbHDBBqMcb2RqupwTdh72ffx+cZEMcTsyzQ1dRtuTaPPUbfKG0DlwMs14RbsIYegr5AMfzFBX3HStCjpfTwIlMhD2USnJwEhzbgmTMTdT9TdT9StSpp6L1NNzK0h6lYTM9VE3erE+5gJY7wDcuLAbGK4RMG4uImDfsw74La8qaMrcfCTFehrn7TpHdSzA/0Sn7MCfTpkXFshOooEhBSIuXXeMH4VhGN2Goklf96XGLfVNRHvbLj+2XHMDRE1+1t4Btt5OQTxO5n4nEx8TgY+X6Y3YlUGPjJwnCCO48fBf2CKD8cJeFM/8RrLwQR8eUmDphQ2eF9E0Jcvd+AKkaRLB4RQdCfVkS+9Tw4Hmj+cxGdDzA66nTjrrrHvvTPxmKkh6tZ4aWq95fGBuu28tj3Tdgj48gg4eQR8uV47tDf15dq2ace+9zlZOI4fH37Aj8+x0wMHVh8+At5B1U59jj/x3iF+kDXEm2BMvJkHA97oeo73HZ9zIK/k93a5z9vTDuDzesU4B+ZL10gh0k6XDQjhWDn/2DKlQ864A74CMnxF3rB+dmi/gC8Hx8nwzoozDpwZx8+KnSx74PflE/Tl4fflEfTl43dy5OAphGgXXTYg+J0c8oJHURleQ/IZb9Nps/E7ObYboHfGbbsE2nl2mR2gO5AYrDu+zHYfPBAACqQZQgjRKTnGtLx7XTurAApTmaHd5gPbLWfgQoguah9Q1NzEXbaG8FXi7dlCCCEOkFNjIYQQgAQEIYQQHgkIQgghgM5xUdlFGvyFEKI1DC048e8MF5Vd7AZVdnRBhBCiEymARg/9+kqdoYYghBCiHcg1BCGEEIAEBCGEEB4JCEIIIQAJCEIIITwSEIQQQgASEIQQQngkIAghhAAkIAghhPBIQBBCCAFIQBBCCOGRgCCEEAKQgCCEEMIjAUEIIQTQOR5/3akppUqAa4ETgXFAHjBRa/16g3SFwB3ANKAY0MCdWuvHm8jzUuB64GigHHgK+P+11lUN0vm8dFcDJcDnwO1a6yUp3MR2o5T6OnAZMBEYBOwF3gZu1lqva5D2JOAXwFjso9OXAAu01jUN0mUCPwXmYPf7R8BNWuvlTay/WXl2Jqnep839vSelnwrcCowEdgEPYn+j0VRtY3trg33a7Pyam+fBSA2h7SngRqA/8HGTCZQKAK8AVwCPA9cB64E/egf/5LTXAn8AdgA/Ah4G5gFLlVINBxK6HbgTeBn4PrAJeEIp9e2UbFn7uxEbMF/FHnQWA6cDHyilRsQTKaWOA5YDWdh99L/Aldh/jIZ+j93fj3l5usCLSqnxyYlamGdnkup9esjfe1KeZwN/Acqwv8+/AP8N3HM4G5QGUr1Pm5VfC/NsktQQ2t5KoJfWeq9S6gLg2SbSXAR8HfiO1voRb959Sqk/A79USj2htQ57Z7M/AV4DpmitDYBS6m3geeB87D8VSql+wI+Be7XWP/Tm/S/wBnCXUuoZrXWLBs9IA/8XmKm1DsdnKKWWAP/G/tNc5s2+A3sWdXq81qSU2gD8Tik1SWv9mjfvBOAS4Dqt9UJv3iPAJ9hAemrSupuVZyeU0n1K837vcXcBH2B/yzEvz0pggVLqV1rrtanZxHaX6n3a3PxakmeTpIbQxrTW+7XWew+R7GTsUHdPNpj/BNAbW1UE+BpQCCyJBwNvHcuAKmB60nfPB4LAb5PSGeA+bLXzhBZvTAfTWr+d/E/hzVsLrAZGACilCoCzgEcaNKE9gt1H/5E079tABHsWFc8vhG22mOA1f7Q0z04l1fu0mb93lFIjsc1ED8SDgee32OPSRa3boo7XBvv0kPm1NM+DkYCQHjKBKBBuMD/e5jc2KR1AbRN51CalAxgDVGqtP2+Q7t2k5Z2e10zWB9jjzRqNrfm+n5zO+4f6kPrbPQZY0/DaC3YfOcBxrciz0zvMfdpc8e80zHMbsKWVeaatVO/TJvI77DxBAkK60Niz+YZn7ad40yO96VpsTeLk5ERKKQUckZQO7EXkHU2sa3uDPDu7WUA/DtSuSrzp9ibSbqfxPjpYOpLStiTPruBw9mlzyT61Wrv9DfNLRZ5yDSFNPI69mPZ7pdT3gHXAZOAab3k2gNZ6j1LqSWCeUkoDS7E/ikXYpo/spDyzgbom1hVKzrMzU0oNB34DvAU86s2Ob9fBtr01+6gleXZqKdinzXWoPHNakWdaSvU+PUh+h5VnnNQQ0oDWegcwFfsHewXbw+iX2J4XYNv/4q4EXsBeaPoCeBN7cen5BulqOdDElCwraXmnpZTqC/wV2+324qQL5PHtOti2J293c/dRS/LstFK0T5tL9qnVou3/ivxanWcyCQhpQmv9JlCKbeebgD3z/5e3eG1Sun1a6/OxF4ZPAwZrredgq4vJvTK2A32bWFW8WrktpRvQjrx7Nl7EXmCf4gXUuHh1uaTRF+28bQ3SHiwdSWlbkmenlMJ92lyyT61mb/8h8mtVng1JQEgjWuuY1vpDrfUK70Lnmd6iRl3FtNabtNZvaq03KqWKgOOx/Y/jPgQKlFJHN/jqiUnLOx2lVBa2NnQ0cJ7WWjdI8gn2Av24Bt/LwF4k/jBp9ofAcKVUXoM84vvoo1bk2emkeJ82V/w7DfM8EnsPQ2vyTBup3qfNyK/FeTZFAkKaUkodge1j/JLW+rNDJP859oaqB5LmLcVeV4hfh4j3TLgKe4PaOyktcDtQSvmxN9iMx1aX/9UwjdZ6H/YGnjkNDvRzsHfNPpU078/Yi/lXJK0jE5gLrPB6vLQ0z06lDfZps2itVwNrgO96ZYi7GvtbfrqleaaLVO/T5uTX0jwPxjHGHCqNOExKqZu9tyOAmcBD2OsEFVrrX3tp3sJeJFqHbeq5EhuwT9Jab0zK6yYvn3ewZwMXYC9AX6m1Xtxgvb/APrpiMbYr2gXAucB0rXXDex7SnlJqIfZOzedpfM9Gldb6L166sdhb+z/B3mPQH3uT3t+11uc0yPNJ7H65B3tN5jvYmwQnaq1XJKVrdp6dSRvt00P+3r105wHPYWvAS4BRwPew9yZcQyeV6n3a3PxakufBSC+j9nFbg8+Xe9ONQPwfZCX2xpF+2AtGfwX+K36WmuRj7E1n53ufVwFna63/1sR653t5XYk96/0ce8djpwsGnuO86be8V7KNeHdpa61XKaXOxN5tfA/2eS6/AxY0keel2L/PpdhnGX0MnJMcDFqRZ2dynDdN5T5tzu8drfUypdQ04BZsT7ndwM+a+H5nc5w3TdU+bVZ+LcyzSVJDEEIIAcg1BCGEEB4JCEIIIQAJCEIIITwSEIQQQgASEIQQQngkIAghhAAkIAghhPBIQBBCCAFIQBBCCOGRgCCEEAKQgCBEWlBKBb1HHAvRYeThdqJbUUpdCDwDfFdr/bsmlq/Gjjg1TGttlFLDsMObngn0xA4y8hRwq9a6Oul7w4EfYActGgj4gc+A+7TW/9tgHbdiH+g2CpiHfahhCXAG8HoKN1eIFpEaguhungd2cOAJnAlKqW8AI4GHvGBwPPax4adix5r4T2AZ9sD/ilIqmPT10710y4AbgP/CjkfxO6XUwZ40+UfsM+7vxj6iuKnB0YVoN1JDEN2K1jqqlHoYWKCUGqm1/jRp8TwgBvze+/wQ9iD9da31/ngipdRybC1jVlLaR7XW9yevSyl1D/ZZ//OVUndprSMNilMBnKm1jqZi24Q4XFJDEN3R7wCDDQAAKKVygenAi1rrbUqp0cAxwONAplKqV/yFHcioGjswEQANmo+ylFI9gR7Ay0ABMLyJciyUYCDSiQQE0e1orddzYKjBeLPPfwD52FGmwI72BfAT7MAtya9dQC7QJ56nUipPKXWXUmoTUAvs8dLe7iUpbqIon6dqm4RIBWkyEt3VYuzF4anY8XvnYa8t/NVb7njTu4GmRqMDOxpd3OPAeV6+bwJ7sc1P5wDX0fTJV03riy9E6klAEN3VUuyZ/jyl1CfAycCdSU04a71pTGv96ldlpJQqwgaDR7XWVzVYdmZKSy1EG5ImI9EteRd4fw9MwXYBBXgwKckH2IHKr1JKlTb8vlIqoJTq4X2MeVOnQZoS4IoUFluINiU1BNGd/Q7bRXQG8IbWOl4rwOt2OgfbS+hjpdRDwGogBzgKmIYduPz3Wuv9SqmXgdlKqVrgPWAQcCWwHnv/ghBpT2oIotvSWq8D/u59fLCJ5R8CY4DHsNcaFgE3A9/A1i6WJyWfje2m+i3g18AFwE3Ab9qi7EK0BccY09FlEKLDKKVewN4cdqTWurajyyNER5Iagui2lFJHYa8hPCbBQAi5hiC6IaXUidj7DH4AhLFdS4Xo9qSGILqjq7Ht/QXALK31ho4tjhDpQa4hCCGEAKSGIIQQwiMBQQghBCABQQghhEcCghBCCEACghBCCM//AzPEMhP/ag2fAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x216 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"(autos2\n", | |
" .groupby('year')\n", | |
" [['comb08', 'speeds']]\n", | |
" .mean()\n", | |
" #.median()\n", | |
" #.quantile(.3)\n", | |
" #.std()\n", | |
" #.var()\n", | |
" .plot()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 69, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>city08</th>\n", | |
" <th>comb08</th>\n", | |
" <th>highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>displ</th>\n", | |
" <th>fuelCost08</th>\n", | |
" <th>range</th>\n", | |
" <th>speeds</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>year</th>\n", | |
" <th>country</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1984</th>\n", | |
" <th>Other</th>\n", | |
" <td>19.384615</td>\n", | |
" <td>21.417330</td>\n", | |
" <td>24.847038</td>\n", | |
" <td>4.908046</td>\n", | |
" <td>2.691406</td>\n", | |
" <td>2118.125553</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.969054</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>16.079232</td>\n", | |
" <td>17.797119</td>\n", | |
" <td>20.669868</td>\n", | |
" <td>6.033613</td>\n", | |
" <td>3.808594</td>\n", | |
" <td>2578.871549</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.872749</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1985</th>\n", | |
" <th>Other</th>\n", | |
" <td>19.284768</td>\n", | |
" <td>21.373068</td>\n", | |
" <td>24.816777</td>\n", | |
" <td>4.871965</td>\n", | |
" <td>2.636719</td>\n", | |
" <td>2141.997792</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.958057</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>16.275472</td>\n", | |
" <td>18.025157</td>\n", | |
" <td>21.020126</td>\n", | |
" <td>5.949686</td>\n", | |
" <td>3.765625</td>\n", | |
" <td>2553.899371</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.886792</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1986</th>\n", | |
" <th>Other</th>\n", | |
" <td>19.167183</td>\n", | |
" <td>21.213622</td>\n", | |
" <td>24.650155</td>\n", | |
" <td>4.804954</td>\n", | |
" <td>2.537109</td>\n", | |
" <td>2149.148607</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.069659</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>15.945035</td>\n", | |
" <td>17.645390</td>\n", | |
" <td>20.464539</td>\n", | |
" <td>6.136525</td>\n", | |
" <td>3.925781</td>\n", | |
" <td>2588.741135</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.886525</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1987</th>\n", | |
" <th>Other</th>\n", | |
" <td>18.633381</td>\n", | |
" <td>20.710414</td>\n", | |
" <td>24.186876</td>\n", | |
" <td>4.825963</td>\n", | |
" <td>2.583984</td>\n", | |
" <td>2227.318117</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.142653</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>15.611722</td>\n", | |
" <td>17.326007</td>\n", | |
" <td>20.208791</td>\n", | |
" <td>6.164835</td>\n", | |
" <td>3.931641</td>\n", | |
" <td>2630.036630</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.902930</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1988</th>\n", | |
" <th>Other</th>\n", | |
" <td>18.668224</td>\n", | |
" <td>20.814642</td>\n", | |
" <td>24.437695</td>\n", | |
" <td>4.819315</td>\n", | |
" <td>2.531250</td>\n", | |
" <td>2207.476636</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.205607</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>15.577869</td>\n", | |
" <td>17.372951</td>\n", | |
" <td>20.420082</td>\n", | |
" <td>6.307377</td>\n", | |
" <td>4.066406</td>\n", | |
" <td>2623.258197</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.028689</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2016</th>\n", | |
" <th>Other</th>\n", | |
" <td>21.903749</td>\n", | |
" <td>24.439716</td>\n", | |
" <td>28.866261</td>\n", | |
" <td>5.493414</td>\n", | |
" <td>2.992188</td>\n", | |
" <td>2127.608916</td>\n", | |
" <td>1.017224</td>\n", | |
" <td>7.296859</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>25.061818</td>\n", | |
" <td>27.701818</td>\n", | |
" <td>32.265455</td>\n", | |
" <td>5.356364</td>\n", | |
" <td>3.277344</td>\n", | |
" <td>1960.545455</td>\n", | |
" <td>17.214545</td>\n", | |
" <td>6.301818</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2017</th>\n", | |
" <th>Other</th>\n", | |
" <td>22.423795</td>\n", | |
" <td>24.910521</td>\n", | |
" <td>29.208456</td>\n", | |
" <td>5.431662</td>\n", | |
" <td>2.919922</td>\n", | |
" <td>2114.110128</td>\n", | |
" <td>1.243854</td>\n", | |
" <td>7.474926</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>24.003623</td>\n", | |
" <td>26.496377</td>\n", | |
" <td>30.829710</td>\n", | |
" <td>5.532609</td>\n", | |
" <td>3.419922</td>\n", | |
" <td>2031.884058</td>\n", | |
" <td>15.731884</td>\n", | |
" <td>6.304348</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2018</th>\n", | |
" <th>Other</th>\n", | |
" <td>22.310442</td>\n", | |
" <td>24.779868</td>\n", | |
" <td>29.042333</td>\n", | |
" <td>5.396990</td>\n", | |
" <td>2.886719</td>\n", | |
" <td>2121.448730</td>\n", | |
" <td>1.135466</td>\n", | |
" <td>7.391345</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>23.526690</td>\n", | |
" <td>25.925267</td>\n", | |
" <td>30.145907</td>\n", | |
" <td>5.597865</td>\n", | |
" <td>3.390625</td>\n", | |
" <td>2037.900356</td>\n", | |
" <td>12.537367</td>\n", | |
" <td>5.601423</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2019</th>\n", | |
" <th>Other</th>\n", | |
" <td>23.084221</td>\n", | |
" <td>25.456922</td>\n", | |
" <td>29.560503</td>\n", | |
" <td>5.315586</td>\n", | |
" <td>2.839844</td>\n", | |
" <td>2093.659245</td>\n", | |
" <td>2.581801</td>\n", | |
" <td>7.545983</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>24.169014</td>\n", | |
" <td>26.250000</td>\n", | |
" <td>30.042254</td>\n", | |
" <td>5.559859</td>\n", | |
" <td>3.419922</td>\n", | |
" <td>2093.133803</td>\n", | |
" <td>16.419014</td>\n", | |
" <td>5.647887</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2020</th>\n", | |
" <th>Other</th>\n", | |
" <td>22.579487</td>\n", | |
" <td>25.174359</td>\n", | |
" <td>29.543590</td>\n", | |
" <td>5.148718</td>\n", | |
" <td>2.693359</td>\n", | |
" <td>2050.256410</td>\n", | |
" <td>2.446154</td>\n", | |
" <td>7.743590</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>24.071429</td>\n", | |
" <td>26.571429</td>\n", | |
" <td>30.642857</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>1.978516</td>\n", | |
" <td>1650.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>7.785714</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>74 rows × 8 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 cylinders displ \\\n", | |
"year country \n", | |
"1984 Other 19.384615 21.417330 24.847038 4.908046 2.691406 \n", | |
" US 16.079232 17.797119 20.669868 6.033613 3.808594 \n", | |
"1985 Other 19.284768 21.373068 24.816777 4.871965 2.636719 \n", | |
" US 16.275472 18.025157 21.020126 5.949686 3.765625 \n", | |
"1986 Other 19.167183 21.213622 24.650155 4.804954 2.537109 \n", | |
" US 15.945035 17.645390 20.464539 6.136525 3.925781 \n", | |
"1987 Other 18.633381 20.710414 24.186876 4.825963 2.583984 \n", | |
" US 15.611722 17.326007 20.208791 6.164835 3.931641 \n", | |
"1988 Other 18.668224 20.814642 24.437695 4.819315 2.531250 \n", | |
" US 15.577869 17.372951 20.420082 6.307377 4.066406 \n", | |
"... ... ... ... ... ... \n", | |
"2016 Other 21.903749 24.439716 28.866261 5.493414 2.992188 \n", | |
" US 25.061818 27.701818 32.265455 5.356364 3.277344 \n", | |
"2017 Other 22.423795 24.910521 29.208456 5.431662 2.919922 \n", | |
" US 24.003623 26.496377 30.829710 5.532609 3.419922 \n", | |
"2018 Other 22.310442 24.779868 29.042333 5.396990 2.886719 \n", | |
" US 23.526690 25.925267 30.145907 5.597865 3.390625 \n", | |
"2019 Other 23.084221 25.456922 29.560503 5.315586 2.839844 \n", | |
" US 24.169014 26.250000 30.042254 5.559859 3.419922 \n", | |
"2020 Other 22.579487 25.174359 29.543590 5.148718 2.693359 \n", | |
" US 24.071429 26.571429 30.642857 4.000000 1.978516 \n", | |
"\n", | |
" fuelCost08 range speeds \n", | |
"year country \n", | |
"1984 Other 2118.125553 0.000000 3.969054 \n", | |
" US 2578.871549 0.000000 3.872749 \n", | |
"1985 Other 2141.997792 0.000000 3.958057 \n", | |
" US 2553.899371 0.000000 3.886792 \n", | |
"1986 Other 2149.148607 0.000000 4.069659 \n", | |
" US 2588.741135 0.000000 3.886525 \n", | |
"1987 Other 2227.318117 0.000000 4.142653 \n", | |
" US 2630.036630 0.000000 3.902930 \n", | |
"1988 Other 2207.476636 0.000000 4.205607 \n", | |
" US 2623.258197 0.000000 4.028689 \n", | |
"... ... ... ... \n", | |
"2016 Other 2127.608916 1.017224 7.296859 \n", | |
" US 1960.545455 17.214545 6.301818 \n", | |
"2017 Other 2114.110128 1.243854 7.474926 \n", | |
" US 2031.884058 15.731884 6.304348 \n", | |
"2018 Other 2121.448730 1.135466 7.391345 \n", | |
" US 2037.900356 12.537367 5.601423 \n", | |
"2019 Other 2093.659245 2.581801 7.545983 \n", | |
" US 2093.133803 16.419014 5.647887 \n", | |
"2020 Other 2050.256410 2.446154 7.743590 \n", | |
" US 1650.000000 0.000000 7.785714 \n", | |
"\n", | |
"[74 rows x 8 columns]" | |
] | |
}, | |
"execution_count": 69, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# add country\n", | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
" .groupby(['year', 'country'])\n", | |
" .mean()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 84, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead tr th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead tr:last-of-type th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th colspan=\"3\" halign=\"left\">city08</th>\n", | |
" <th colspan=\"3\" halign=\"left\">comb08</th>\n", | |
" <th colspan=\"3\" halign=\"left\">highway08</th>\n", | |
" <th>cylinders</th>\n", | |
" <th>...</th>\n", | |
" <th>displ</th>\n", | |
" <th colspan=\"3\" halign=\"left\">fuelCost08</th>\n", | |
" <th colspan=\"3\" halign=\"left\">range</th>\n", | |
" <th colspan=\"3\" halign=\"left\">speeds</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>min</th>\n", | |
" <th>mean</th>\n", | |
" <th>second_to_last</th>\n", | |
" <th>min</th>\n", | |
" <th>mean</th>\n", | |
" <th>second_to_last</th>\n", | |
" <th>min</th>\n", | |
" <th>mean</th>\n", | |
" <th>second_to_last</th>\n", | |
" <th>min</th>\n", | |
" <th>...</th>\n", | |
" <th>second_to_last</th>\n", | |
" <th>min</th>\n", | |
" <th>mean</th>\n", | |
" <th>second_to_last</th>\n", | |
" <th>min</th>\n", | |
" <th>mean</th>\n", | |
" <th>second_to_last</th>\n", | |
" <th>min</th>\n", | |
" <th>mean</th>\n", | |
" <th>second_to_last</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>year</th>\n", | |
" <th>country</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1984</th>\n", | |
" <th>Other</th>\n", | |
" <td>7</td>\n", | |
" <td>19.384615</td>\n", | |
" <td>14</td>\n", | |
" <td>8</td>\n", | |
" <td>21.417330</td>\n", | |
" <td>14</td>\n", | |
" <td>9</td>\n", | |
" <td>24.847038</td>\n", | |
" <td>15</td>\n", | |
" <td>2</td>\n", | |
" <td>...</td>\n", | |
" <td>2.400391</td>\n", | |
" <td>1050</td>\n", | |
" <td>2118.125553</td>\n", | |
" <td>3000</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>3.969054</td>\n", | |
" <td>5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>8</td>\n", | |
" <td>16.079232</td>\n", | |
" <td>15</td>\n", | |
" <td>9</td>\n", | |
" <td>17.797119</td>\n", | |
" <td>17</td>\n", | |
" <td>10</td>\n", | |
" <td>20.669868</td>\n", | |
" <td>19</td>\n", | |
" <td>4</td>\n", | |
" <td>...</td>\n", | |
" <td>4.101562</td>\n", | |
" <td>1200</td>\n", | |
" <td>2578.871549</td>\n", | |
" <td>2500</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>3.872749</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1985</th>\n", | |
" <th>Other</th>\n", | |
" <td>7</td>\n", | |
" <td>19.284768</td>\n", | |
" <td>19</td>\n", | |
" <td>8</td>\n", | |
" <td>21.373068</td>\n", | |
" <td>20</td>\n", | |
" <td>9</td>\n", | |
" <td>24.816777</td>\n", | |
" <td>22</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>1000</td>\n", | |
" <td>2141.997792</td>\n", | |
" <td>2100</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>3.958057</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>8</td>\n", | |
" <td>16.275472</td>\n", | |
" <td>14</td>\n", | |
" <td>10</td>\n", | |
" <td>18.025157</td>\n", | |
" <td>15</td>\n", | |
" <td>10</td>\n", | |
" <td>21.020126</td>\n", | |
" <td>17</td>\n", | |
" <td>3</td>\n", | |
" <td>...</td>\n", | |
" <td>3.699219</td>\n", | |
" <td>1000</td>\n", | |
" <td>2553.899371</td>\n", | |
" <td>2800</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>3.886792</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1986</th>\n", | |
" <th>Other</th>\n", | |
" <td>6</td>\n", | |
" <td>19.167183</td>\n", | |
" <td>10</td>\n", | |
" <td>7</td>\n", | |
" <td>21.213622</td>\n", | |
" <td>11</td>\n", | |
" <td>9</td>\n", | |
" <td>24.650155</td>\n", | |
" <td>12</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>4.199219</td>\n", | |
" <td>900</td>\n", | |
" <td>2149.148607</td>\n", | |
" <td>3850</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>4.069659</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>9</td>\n", | |
" <td>15.945035</td>\n", | |
" <td>16</td>\n", | |
" <td>10</td>\n", | |
" <td>17.645390</td>\n", | |
" <td>17</td>\n", | |
" <td>11</td>\n", | |
" <td>20.464539</td>\n", | |
" <td>19</td>\n", | |
" <td>3</td>\n", | |
" <td>...</td>\n", | |
" <td>4.300781</td>\n", | |
" <td>900</td>\n", | |
" <td>2588.741135</td>\n", | |
" <td>2500</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>3.886525</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1987</th>\n", | |
" <th>Other</th>\n", | |
" <td>6</td>\n", | |
" <td>18.633381</td>\n", | |
" <td>12</td>\n", | |
" <td>7</td>\n", | |
" <td>20.710414</td>\n", | |
" <td>12</td>\n", | |
" <td>9</td>\n", | |
" <td>24.186876</td>\n", | |
" <td>12</td>\n", | |
" <td>2</td>\n", | |
" <td>...</td>\n", | |
" <td>2.400391</td>\n", | |
" <td>900</td>\n", | |
" <td>2227.318117</td>\n", | |
" <td>3500</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>4.142653</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>8</td>\n", | |
" <td>15.611722</td>\n", | |
" <td>12</td>\n", | |
" <td>9</td>\n", | |
" <td>17.326007</td>\n", | |
" <td>13</td>\n", | |
" <td>10</td>\n", | |
" <td>20.208791</td>\n", | |
" <td>14</td>\n", | |
" <td>3</td>\n", | |
" <td>...</td>\n", | |
" <td>2.800781</td>\n", | |
" <td>900</td>\n", | |
" <td>2630.036630</td>\n", | |
" <td>3250</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>3.902930</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1988</th>\n", | |
" <th>Other</th>\n", | |
" <td>6</td>\n", | |
" <td>18.668224</td>\n", | |
" <td>12</td>\n", | |
" <td>7</td>\n", | |
" <td>20.814642</td>\n", | |
" <td>12</td>\n", | |
" <td>10</td>\n", | |
" <td>24.437695</td>\n", | |
" <td>12</td>\n", | |
" <td>2</td>\n", | |
" <td>...</td>\n", | |
" <td>2.400391</td>\n", | |
" <td>950</td>\n", | |
" <td>2207.476636</td>\n", | |
" <td>3500</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>4.205607</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>8</td>\n", | |
" <td>15.577869</td>\n", | |
" <td>14</td>\n", | |
" <td>9</td>\n", | |
" <td>17.372951</td>\n", | |
" <td>14</td>\n", | |
" <td>10</td>\n", | |
" <td>20.420082</td>\n", | |
" <td>15</td>\n", | |
" <td>3</td>\n", | |
" <td>...</td>\n", | |
" <td>2.800781</td>\n", | |
" <td>900</td>\n", | |
" <td>2623.258197</td>\n", | |
" <td>3000</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>4.028689</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2016</th>\n", | |
" <th>Other</th>\n", | |
" <td>10</td>\n", | |
" <td>21.903749</td>\n", | |
" <td>28</td>\n", | |
" <td>12</td>\n", | |
" <td>24.439716</td>\n", | |
" <td>30</td>\n", | |
" <td>13</td>\n", | |
" <td>28.866261</td>\n", | |
" <td>32</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>550</td>\n", | |
" <td>2127.608916</td>\n", | |
" <td>1700</td>\n", | |
" <td>0</td>\n", | |
" <td>1.017224</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>7.296859</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>11</td>\n", | |
" <td>25.061818</td>\n", | |
" <td>91</td>\n", | |
" <td>12</td>\n", | |
" <td>27.701818</td>\n", | |
" <td>93</td>\n", | |
" <td>16</td>\n", | |
" <td>32.265455</td>\n", | |
" <td>94</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>550</td>\n", | |
" <td>1960.545455</td>\n", | |
" <td>700</td>\n", | |
" <td>0</td>\n", | |
" <td>17.214545</td>\n", | |
" <td>200</td>\n", | |
" <td>1</td>\n", | |
" <td>6.301818</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2017</th>\n", | |
" <th>Other</th>\n", | |
" <td>10</td>\n", | |
" <td>22.423795</td>\n", | |
" <td>21</td>\n", | |
" <td>11</td>\n", | |
" <td>24.910521</td>\n", | |
" <td>24</td>\n", | |
" <td>11</td>\n", | |
" <td>29.208456</td>\n", | |
" <td>28</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>2.500000</td>\n", | |
" <td>500</td>\n", | |
" <td>2114.110128</td>\n", | |
" <td>2150</td>\n", | |
" <td>0</td>\n", | |
" <td>1.243854</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>7.474926</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>11</td>\n", | |
" <td>24.003623</td>\n", | |
" <td>131</td>\n", | |
" <td>12</td>\n", | |
" <td>26.496377</td>\n", | |
" <td>126</td>\n", | |
" <td>15</td>\n", | |
" <td>30.829710</td>\n", | |
" <td>120</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>500</td>\n", | |
" <td>2031.884058</td>\n", | |
" <td>500</td>\n", | |
" <td>0</td>\n", | |
" <td>15.731884</td>\n", | |
" <td>310</td>\n", | |
" <td>0</td>\n", | |
" <td>6.304348</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2018</th>\n", | |
" <th>Other</th>\n", | |
" <td>9</td>\n", | |
" <td>22.310442</td>\n", | |
" <td>11</td>\n", | |
" <td>11</td>\n", | |
" <td>24.779868</td>\n", | |
" <td>12</td>\n", | |
" <td>11</td>\n", | |
" <td>29.042333</td>\n", | |
" <td>15</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>5.000000</td>\n", | |
" <td>500</td>\n", | |
" <td>2121.448730</td>\n", | |
" <td>4300</td>\n", | |
" <td>0</td>\n", | |
" <td>1.135466</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.391345</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>11</td>\n", | |
" <td>23.526690</td>\n", | |
" <td>120</td>\n", | |
" <td>14</td>\n", | |
" <td>25.925267</td>\n", | |
" <td>116</td>\n", | |
" <td>15</td>\n", | |
" <td>30.145907</td>\n", | |
" <td>112</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>500</td>\n", | |
" <td>2037.900356</td>\n", | |
" <td>550</td>\n", | |
" <td>0</td>\n", | |
" <td>12.537367</td>\n", | |
" <td>310</td>\n", | |
" <td>0</td>\n", | |
" <td>5.601423</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2019</th>\n", | |
" <th>Other</th>\n", | |
" <td>9</td>\n", | |
" <td>23.084221</td>\n", | |
" <td>19</td>\n", | |
" <td>11</td>\n", | |
" <td>25.456922</td>\n", | |
" <td>22</td>\n", | |
" <td>14</td>\n", | |
" <td>29.560503</td>\n", | |
" <td>27</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>500</td>\n", | |
" <td>2093.659245</td>\n", | |
" <td>2150</td>\n", | |
" <td>0</td>\n", | |
" <td>2.581801</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.545983</td>\n", | |
" <td>8</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>11</td>\n", | |
" <td>24.169014</td>\n", | |
" <td>104</td>\n", | |
" <td>14</td>\n", | |
" <td>26.250000</td>\n", | |
" <td>104</td>\n", | |
" <td>15</td>\n", | |
" <td>30.042254</td>\n", | |
" <td>104</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>500</td>\n", | |
" <td>2093.133803</td>\n", | |
" <td>650</td>\n", | |
" <td>0</td>\n", | |
" <td>16.419014</td>\n", | |
" <td>345</td>\n", | |
" <td>0</td>\n", | |
" <td>5.647887</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2020</th>\n", | |
" <th>Other</th>\n", | |
" <td>13</td>\n", | |
" <td>22.579487</td>\n", | |
" <td>17</td>\n", | |
" <td>15</td>\n", | |
" <td>25.174359</td>\n", | |
" <td>20</td>\n", | |
" <td>18</td>\n", | |
" <td>29.543590</td>\n", | |
" <td>24</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>600</td>\n", | |
" <td>2050.256410</td>\n", | |
" <td>2100</td>\n", | |
" <td>0</td>\n", | |
" <td>2.446154</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.743590</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>US</th>\n", | |
" <td>20</td>\n", | |
" <td>24.071429</td>\n", | |
" <td>21</td>\n", | |
" <td>22</td>\n", | |
" <td>26.571429</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" <td>30.642857</td>\n", | |
" <td>28</td>\n", | |
" <td>4</td>\n", | |
" <td>...</td>\n", | |
" <td>2.300781</td>\n", | |
" <td>1300</td>\n", | |
" <td>1650.000000</td>\n", | |
" <td>1750</td>\n", | |
" <td>0</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7.785714</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>74 rows × 24 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 \\\n", | |
" min mean second_to_last min mean \n", | |
"year country \n", | |
"1984 Other 7 19.384615 14 8 21.417330 \n", | |
" US 8 16.079232 15 9 17.797119 \n", | |
"1985 Other 7 19.284768 19 8 21.373068 \n", | |
" US 8 16.275472 14 10 18.025157 \n", | |
"1986 Other 6 19.167183 10 7 21.213622 \n", | |
" US 9 15.945035 16 10 17.645390 \n", | |
"1987 Other 6 18.633381 12 7 20.710414 \n", | |
" US 8 15.611722 12 9 17.326007 \n", | |
"1988 Other 6 18.668224 12 7 20.814642 \n", | |
" US 8 15.577869 14 9 17.372951 \n", | |
"... ... ... ... ... ... \n", | |
"2016 Other 10 21.903749 28 12 24.439716 \n", | |
" US 11 25.061818 91 12 27.701818 \n", | |
"2017 Other 10 22.423795 21 11 24.910521 \n", | |
" US 11 24.003623 131 12 26.496377 \n", | |
"2018 Other 9 22.310442 11 11 24.779868 \n", | |
" US 11 23.526690 120 14 25.925267 \n", | |
"2019 Other 9 23.084221 19 11 25.456922 \n", | |
" US 11 24.169014 104 14 26.250000 \n", | |
"2020 Other 13 22.579487 17 15 25.174359 \n", | |
" US 20 24.071429 21 22 26.571429 \n", | |
"\n", | |
" highway08 cylinders \\\n", | |
" second_to_last min mean second_to_last min \n", | |
"year country \n", | |
"1984 Other 14 9 24.847038 15 2 \n", | |
" US 17 10 20.669868 19 4 \n", | |
"1985 Other 20 9 24.816777 22 0 \n", | |
" US 15 10 21.020126 17 3 \n", | |
"1986 Other 11 9 24.650155 12 0 \n", | |
" US 17 11 20.464539 19 3 \n", | |
"1987 Other 12 9 24.186876 12 2 \n", | |
" US 13 10 20.208791 14 3 \n", | |
"1988 Other 12 10 24.437695 12 2 \n", | |
" US 14 10 20.420082 15 3 \n", | |
"... ... ... ... ... ... \n", | |
"2016 Other 30 13 28.866261 32 0 \n", | |
" US 93 16 32.265455 94 0 \n", | |
"2017 Other 24 11 29.208456 28 0 \n", | |
" US 126 15 30.829710 120 0 \n", | |
"2018 Other 12 11 29.042333 15 0 \n", | |
" US 116 15 30.145907 112 0 \n", | |
"2019 Other 22 14 29.560503 27 0 \n", | |
" US 104 15 30.042254 104 0 \n", | |
"2020 Other 20 18 29.543590 24 0 \n", | |
" US 24 26 30.642857 28 4 \n", | |
"\n", | |
" ... displ fuelCost08 range \\\n", | |
" ... second_to_last min mean second_to_last min \n", | |
"year country ... \n", | |
"1984 Other ... 2.400391 1050 2118.125553 3000 0 \n", | |
" US ... 4.101562 1200 2578.871549 2500 0 \n", | |
"1985 Other ... 2.000000 1000 2141.997792 2100 0 \n", | |
" US ... 3.699219 1000 2553.899371 2800 0 \n", | |
"1986 Other ... 4.199219 900 2149.148607 3850 0 \n", | |
" US ... 4.300781 900 2588.741135 2500 0 \n", | |
"1987 Other ... 2.400391 900 2227.318117 3500 0 \n", | |
" US ... 2.800781 900 2630.036630 3250 0 \n", | |
"1988 Other ... 2.400391 950 2207.476636 3500 0 \n", | |
" US ... 2.800781 900 2623.258197 3000 0 \n", | |
"... ... ... ... ... ... ... \n", | |
"2016 Other ... 2.000000 550 2127.608916 1700 0 \n", | |
" US ... 0.000000 550 1960.545455 700 0 \n", | |
"2017 Other ... 2.500000 500 2114.110128 2150 0 \n", | |
" US ... 0.000000 500 2031.884058 500 0 \n", | |
"2018 Other ... 5.000000 500 2121.448730 4300 0 \n", | |
" US ... 0.000000 500 2037.900356 550 0 \n", | |
"2019 Other ... 3.000000 500 2093.659245 2150 0 \n", | |
" US ... 0.000000 500 2093.133803 650 0 \n", | |
"2020 Other ... 3.000000 600 2050.256410 2100 0 \n", | |
" US ... 2.300781 1300 1650.000000 1750 0 \n", | |
"\n", | |
" speeds \n", | |
" mean second_to_last min mean second_to_last \n", | |
"year country \n", | |
"1984 Other 0.000000 0 3 3.969054 5 \n", | |
" US 0.000000 0 3 3.872749 4 \n", | |
"1985 Other 0.000000 0 3 3.958057 4 \n", | |
" US 0.000000 0 3 3.886792 4 \n", | |
"1986 Other 0.000000 0 3 4.069659 4 \n", | |
" US 0.000000 0 3 3.886525 4 \n", | |
"1987 Other 0.000000 0 3 4.142653 4 \n", | |
" US 0.000000 0 3 3.902930 4 \n", | |
"1988 Other 0.000000 0 3 4.205607 4 \n", | |
" US 0.000000 0 3 4.028689 4 \n", | |
"... ... ... ... ... ... \n", | |
"2016 Other 1.017224 0 1 7.296859 7 \n", | |
" US 17.214545 200 1 6.301818 1 \n", | |
"2017 Other 1.243854 0 1 7.474926 7 \n", | |
" US 15.731884 310 0 6.304348 1 \n", | |
"2018 Other 1.135466 0 0 7.391345 0 \n", | |
" US 12.537367 310 0 5.601423 1 \n", | |
"2019 Other 2.581801 0 0 7.545983 8 \n", | |
" US 16.419014 345 0 5.647887 1 \n", | |
"2020 Other 2.446154 0 0 7.743590 0 \n", | |
" US 0.000000 0 0 7.785714 0 \n", | |
"\n", | |
"[74 rows x 24 columns]" | |
] | |
}, | |
"execution_count": 84, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# can go deeper and apply multiple aggregates\n", | |
"def second_to_last(ser):\n", | |
" return ser.iloc[-2]\n", | |
"\n", | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
" .groupby(['year', 'country'])\n", | |
" .agg(['min', 'mean', second_to_last])\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 70, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<AxesSubplot:xlabel='year,country'>" | |
] | |
}, | |
"execution_count": 70, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEiCAYAAAA8ij+xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9wElEQVR4nO2dd3hUxdrAf9tSSAgQEiD06kQBkSJKLyKISkeagKBYr9iwwKdevWK5KpYL9oqCIIgoiigiCiggVUVADtI7AUJ623K+P+aczdnNBlKlze958mx2Zs7MnNlz5p1533dmbLquo1AoFApFabCf6QooFAqF4txHCROFQqFQlBolTBQKhUJRapQwUSgUCkWpUcJEoVAoFKXGeaYrcLayYcMGJ3AzIICKZ7g6inOXLCAJWNy6desNZ7oyCkV5YVOuwQUxBMmzLpdrREREhMvpdKoZnKJEeL1e3e12k5eXl+r1ej8HnmzdunXOma6XQlHWqJlJaG52uVwjEhIS8uLj44+c6coozm18Pp8tKSkpLikp6Ua3270WmH+m66RQlDVqxB0aERER4YqPj08+0xVRnPvY7Xa9evXqxyIiIiKALme6PgpFeaCESWgqKtWWoiyx2Ww4nU6AyDNdF4WiPFAdpkKhUChKjRImCoVCoSg1SpgoFAqFotQoYaIowHPPPVdTCNH6TNdDoVCcOyhhoigSL730Uo0FCxZULk0eBw4ccN16660NW7Zsedlll13WcsyYMY127doVFpwuJSXF8e9//7t2165dmzVv3rxVp06dmk+YMKHuwYMHXaUpX6FQlB9q0WIINmzY8E6VKlUGNGzYcO+ZrsuZwO124/F4bJGRkf6Ho2XLlpd17NgxZdq0aXtKkmd6erq9b9++l2RnZ9uHDRt21OFw6J9++ml1m83GV199tTU2NtYL4PV6GTBgQOLevXsj+/Xrd6xBgwY5u3fvjliwYEF8lSpV3N99992WiIiIc/Kh3bVrV72TJ09+0bp169vOdF0UirJGLVpUFMDlcuFyucq0w37vvffiDx8+HD5r1qytrVq1ygbo0aNH2sCBA5u++eab1R999NFDAOvWrYvSNC3qgQce2Hf77bcfM6+vWbNm7iuvvFJ39erV0d26dUsvy7opFIrSo9RcFyj79u1zjR8/vv6VV155abNmzVp17dq12aRJk+pAQZuJEKJ1VlaW4/vvv68qhGgthGg9fvz4+h999FFVIUTrjRs3Flg7MXny5FrNmjVrlZyc7AD48ccfYxMTEzNNQQJw8cUX51x22WVpS5curWKGpaenOwDi4uI81vzi4+M9ABEREb6ybguFQlF61MzkAuTAgQOuIUOGXJydne3o06fPsQYNGuQcOnQo3OjU9wenf+KJJ3b/97//rdekSZOsQYMGHQOoX79+btOmTbOnTJlS98svv6zaqlWrA2Z6n8/H999/H9u2bdvU2NhYr9frZffu3ZHXX3/9seC8mzZtmvnbb7/FZGZm2qOionytWrXKjIiI8L3xxhs1q1Sp4rnoootytm/fHvHGG2/UbNGiRfoVV1yRWa6No1AoSoQSJsVE1/NseA+ceUOwo7bbZgsrkSrq2WefrZ2amuqaNWvW1pYtW/pnCo8++ujBUOlHjBiR/OKLL9atWbNm7ogRIwK2mGnfvn3K0qVLY5988skDdruc6K5atSoqKSkp7IEHHtgPkJyc7HS73bb4+Hh3cN7VqlVz67rO4cOHXY0bN86tWrWq99lnn901efLkenfeeedFZrorr7wy9c0339xplqFQKM4ulDApBrqeZ9OPXd0U3+HwM10X7Am5xC/ZUlyB4vV6WbVqVeX27duftAoSgJJ01P379z+xbNmy2BUrVlTs2rVrOsCCBQuqRkVFeXv37p0KkJ2dbQMICytY1/DwcJ81DUB8fLz7oosuymrRokVGkyZNcrZu3Ro5a9asGvfff3/9t99+e3exK6lQKModJUwuMI4dO+bMzs62N27cuEy2Qb/66qvTKleu7FmwYEFs165d0/Py8mw//fRTlS5dupw0va5Mr7C8vDxb8PW5ubl2a5qdO3eGjRs3Tjz99NO7+/btmwLQt2/flFq1auU9/fTT9ZcsWXLi6quvTiuLuisUirJDCZNiYLOF6cQv2XKuq7nKEqfTSY8ePU589913cbm5ufuWLFkSk56e7uzXr98JM01sbKzH5XLpx44dK9BuSUlJLpvNRkJCghvg008/jXO73fZrrrkm1ZruuuuuS3n66adZv359tBImCsXZhxImxcRmC9NxNsw70/UoKfHx8Z7IyEjfjh07Iopznc1WYFLhZ9CgQSfmzZtXffHixZW++eabKvHx8XmdO3fOMOMdDgf169fP3rZtW1TwtVu2bImqWbNmblRUlA/gxIkTLpBGfCtut9sG4PF4grNQKBRnAcqaeYHhcDho3759yqpVq6oEu/QGd+BWIiIifKbbbjCtWrXKrlevXvbcuXPjVq9eXblHjx7JwfaX7t27n9y2bVuUtcxt27aF//777zHdunXzG/Xr16+f4/P5mD9/fhXr9fPmzYsFaNq0aVZx7lehUPwzqJnJBcjEiRMPrF+/Pmbs2LGJffv2PdagQYOcw4cPh/3www+xP/300+ZQ1zRp0iTzt99+i5k2bVr1atWq5dWrVy/vyiuv9Lvp9u7d+8Rbb71VG+RMJfj6cePGJX311Vdxd911V5Phw4cfdTgc+uzZs6vHxsa677zzzqNmuhEjRhyfNWtW9Weeeab+5s2boxo1apS9devWCosWLYqvX79+9vXXX58anLdCoTjzqJnJBUjdunXdc+bM+atDhw4p3333XdWXX3657pIlS2LbtWtXaEf96KOPHmjSpEnWO++8U/Pf//53w08++STeGn/DDTck2+12GjRokN28efMCxv2YmBjfjBkztGbNmmVMnz494d13363VuHHj7I8//nhbXFyc10wXFxfnnTdv3l89evQ48csvv1R++eWX665cubJy7969j3/yySdaKI8whUJx5lF7c4XgQt+bqyQcPXrU2bVr1xZ33HHHgXvvvffo6a+48FB7cynOZ9TMRFEmzJw5Mw5g8ODByadLq1Aozj+UzURRKn788ceKmqZFzpw5s0bnzp2Ta9WqVWCVu0KhOP9RwkRRKt54442af/31V1TTpk0znnjiiQOnv0KhUJyPKGGiKBXz5s3TznQdFArFmUfZTBQKhUJRapQwUSgUCkWpUcJEoVAoFKVGCROFQqFQlBolTBQKhUJRapQwUSgUCkWpUcJEoVAoFKVGCRPFGePjjz+uKoRo/dtvv0WePrVCoTibUYsWFecMW7dujXj66afrbNmyJdrpdOrt2rVLeeKJJw7Ex8cHnJh16NAh14svvlhz/fr1MSkpKc6qVau6u3btevLee+89UqVKFW9h+SsUipKjhIninGD//v2um266SURFRXlvv/32g1lZWfbZs2fXuOmmmyK//PLLbebW9BkZGfahQ4cm5uTk2AcOHHisRo0aeVu3bq0wd+7c6ps2bYqeP3++WrGvUJQDSpgozgmmTp2akJeXZ//iiy+21q5d2w1w2WWXZf7rX/+6aPbs2bE33XTTCYBFixZVSkpKCnv55Zd3XHfddf7zWSIiInxz586tvmvXrrCGDc/dY5cVirMVZTO5QNm3b59r/Pjx9a+88spLmzVr1qpr167NJk2aVMeM37BhQ4Xhw4c3adGiRcsWLVq0HDFiRJPff/89wLbx3HPP1RRCtP7777/Db7vttoaXXXZZy7Zt27Z4+eWXawBomhY+fPjwJpdeemnLDh06NJ81a1ZsqLpkZmba77///nqtWrW6rGXLlpfdd9999dLS0gKezeXLl1dp165diilIAHr06JFeq1at3MWLF/vzzcjIcABUq1YtYPfiuLg4N0BkZGThZxMrFIoSo2YmFyAHDhxwDRky5OLs7GxHnz59jjVo0CDn0KFD4UuXLq0C7N+8eXPEzTffLKKjo72jRo06DPDFF19UGzNmTOKsWbP+uuSSSwJOUhw/fnyjhg0bZt91110Hfvzxx8pvv/12rZiYGM9HH32U0Llz55Ndu3ZN+fzzz+MnT57coF27dhkNGjQImBlMnjy5XkxMjOe22247uGPHjsiFCxfGHz9+3DVz5swdZn1TU1Odoc5/T0xMzFy/fn2M+b1du3YZdrudZ555pu4jjzyyv3bt2nm///57hdmzZ1fv2bPniYSEBE9wHgqFovQoYVJMfHqeLdt90HWm6xHpquW220p2hO2zzz5bOzU11TVr1qytLVu2zDbDH3300YMAL730Ui2fz2f75JNPttWvXz8PYNCgQcl9+vRp9tJLL9V6//33d1rza968ecaLL764D2DUqFHHO3bs2GLKlCn1Jk6cuHfMmDHHAbp06ZLWr1+/ZnPnzq36yCOPHLZeHxYW5ps1a9Z2l0s2a1xcnPvDDz+suWzZsuiuXbtmHD582AUFZxtm2tTUVKfH48HpdHLxxRfnPPLII3unTp1ae8yYMYlmuuuuu+74iy++qE7OVCjKCSVMioFPz7P9vP+apjneI+Fnui4Rjhq5nep8t6W4AsXr9bJq1arK7du3P2kVJAB2ux2Px8OGDRtiOnbseNIUJAANGjTI69Chw8lff/21stlxmwwfPvyY+X9kZKTesGHDrC1btkSPGDHihBmemJiYGxUV5T148GCBths8ePAxU5AAjBs3LskQJpW6du2akZ2dbQcpdIKvDQ8P9wFkZ2fbK1as6ANISEjIu/jiizM7dOiQWqtWrbx169ZFz58/v1qlSpU8TzzxxMHitJdCoSgaSphcYBw7dsyZnZ1tb9y4cU5h8bm5ufZ69eoViG/QoEHOsmXL7MePH3fWqFHDry6qW7dugNoqKirKW6VKFY/pYWUNT09Pd4TIN9f6PS4uzhsdHe09dOhQOOTbOfLy8grY+HJzc+3WNL/88kvU/fff3/iTTz75yxSW/fr1S4mOjvZOnz695tChQ48nJibmBuejUChKhxImxcBuC9M71fluy7mu5iprHI4C8gG73R6ybrpe/ConJCS4AZKSkgq0+/Hjx12VKlXymDOl2bNnx8fGxrqDZ109e/ZM+fDDD2uuXbs2WgkThaLsUcKkmNhtYXpUWINz1rU0Pj7eExkZ6duxY0dEYfHh4eG+vXv3Fojfs2dPREREhC8uLq5Mjdi7d+8O79y5c4b5/fjx446MjAxHQkJCLkDt2rXdlSpV8mzZsqVC8LXbtm2LatSokd8wn5yc7PL5fLbgdG632wbg9XoLxCkUitKjXIMvMBwOB+3bt09ZtWpVlY0bNwa4+vp8PpxOJ61bt0775ZdfquzduzfMjNu7d2/YypUrq7Rp0ybNai8pC+bNmxfvdufb1t97771qAN26dUszwzp37nxy9erVlQ8cOOCfnSxdurTiwYMHw3v27HnSDKtbt27OiRMnXCtWrIi2lrFgwYKqAM2bNy/gEaZQKEqPmplcgEycOPHA+vXrY8aOHZvYt2/fYw0aNMg5fPhw2A8//BD7008/bZ4wYcLBG2+8MWbEiBFi4MCBxwDmz58fb7fb9QkTJpS5ATsvL88+YsSIi6666qqTpmtw69at07p27ZpuprnnnnsOL1u2rMqoUaPEkCFDkrKysuyzZs2q0aBBg2yroX/s2LFJ3333Xdy9997beODAgccSEhJy169fX/Gnn36KbdOmTVqbNm2UMFEoygElTC5A6tat654zZ85fL774Yq3vvvuuanZ2tiMuLi6vffv2qQDNmjXL+eCDD7QpU6bU+vjjjxMALrnkkoyHH374QPAak7Lgscce2/f5559Xfeedd2rpuk7Pnj1PTJ48eV9wnadPn64988wzdd58881aTqdTv/LKK1OffPLJ/eHh4X5DTGJiYu6cOXO2TpkypdZ3330Xm5KS4oqNjXUPGzbsyCOPPHKorOuuUCgktpIYRM93NmzY8E6VKlUGNGzYUK1LUJQZu3btqnfy5MkvWrdufduZrotCUdYom4lCoVAoSo0SJgqFQqEoNUqYKBQKhaLUKGGiUCgUilKjhIlCoVAoSo0SJgqFQqEoNUqYKBQKhaLUKGGiUCgUilKjhIlCoVAoSo0SJgqFQqEoNUqYKBQKhaLUXKgbPXqQgjQtVGTVqlUjbTabC6jyj9bqH2Dq1Kn2119/3bZu3TpvTExMoemEEI5//etf+j333FPgqNzTIYRwjB49Wn/00UeLfe35jMPhsFetWvUmYMiZrotCUUJiAB8hZMeFKkzsgA2oFCrSZvOfn1TwCMFznOLcm00mLmkblObaf5ylS5fy2muvsWPHDqpWrcrgwYO54447CD67ZfPmzUydOpXNmzeTnZ1NvXr1GDp0KEOHDsVuP/1E32azhQFhp02oUJy9hHzQL1RhkkYhgkQh2bRpU8jjeM9Hli9fzr/+9S+uvPJKHn/8cbZv387rr7/OyZMnefzxx/3ptmzZwrBhw2jQoAG33XYb4eHhLFu2jCeffJKjR49y3333nbmbUCj+OUJqdC5UYaI4DeHh4We6Cv8YL7zwApdccgnvv/++X4BGRUXxzjvvMGrUKOrXrw/A3LlzAZgxYwaVK1cGYNiwYQwePJgFCxYoYaK4oFEG+AuU1NRUHn74YVq3bk3r1q2ZNGkS2dnZ/nghBNOmTQu4Zs2aNQwcOJDmzZvTo0cPPv30U6ZNm4YQImQZixcv5rrrrqNZs2Zcd911rFixwh+3ZcsWhBAsX77cH7Zu3TqEEIwePTogn0GDBjF+/Hj/988//5zRo0fTrl07mjVrxrXXXsusWbMCrhk5ciR9+/YtUCdd1+nSpQv33nsvADt27GDHjh0MHTo0YCY2YsQIfD4f33//vT8sIyOD8PBwrLYmm81GXFzcBSV8FYpQKGFygXLPPfeQk5PDhAkT6N27N/Pnz+e1114rNP3WrVsZN24caWlpjB8/nsGDB/P666/zww8/hEy/bt06nn76aa6//noeeughcnNzueeeezh5Uh7XnpiYSFRUFOvXr/dfs379eux2O5s2bcI8Ez4zM5O//vqL1q1b+9PNnj2bWrVqcfvttzNx4kQSEhL4z3/+wyeffOJP069fPzRNY8eOHQH1Wrt2LUeOHPELmq1btwLQrFmzgHTVq1enRo0a/niAtm3bkpGRwb///W927tzJgQMHmDFjBr/88gu33npr4Y2tUFwAKDVXMfHqHlLdyWe6GlRyxeKwlfzna968OU899ZT/e0pKCvPmzeOhhx4KmX7q1Kk4nU5mz55NfHw8AL179+baa68NmX7nzp0sWrSIOnXqAHDFFVfQr18/vvnmG0aOHInD4aBly5YFhMnVV1/N4sWL2bp1Ky1atOD333/H6/UGCJOZM2cSERHh/z5y5EhuueUWPvzwQ2688UYArrnmGiZPnszXX3/N/fff70/79ddfU7lyZTp37gzAsWPHAPz3ZCU+Pp6kpCT/98GDB7N9+3bmzJnDZ599BoDL5eKpp55i0KBBIdtBobhQUMKkGHh1Dy9su58TeUfPdFWoGladhxNfKbFAGTZsWMD3Nm3asGTJEjIyMoiOjg6I83q9rF69mmuuuSag061Xrx6dOnXip59+KpB/x44d/YIE5EwkOjqa/fv3+8NatWrFm2++SW5uLi6Xi99//53JkyejaRobNmygRYsWrF+/ngoVKnDxxRej6zopuTlEOPLvOT09HbfbTdu2bfnll19IT0+nYsWKVKxYke7du7Nw4UK/MMnLy/Or3lwuFwA5OfJI+7Cwgg5W4eHhAao/h8NBnTp16NixI9dccw1hYWF88803PPHEE1SpUoXu3bufvuEVivMUJUwuUBISEgK+m3aA1NTUAsLkxIkT5OTkULdu3QL51KtXL2T+NWvWLBBWqVIl0tLyHUHatGmD2+1m06ZNREVFkZGR4bfhrF+/nptvvpn169fTokULnE4n6Xm57E9LZcfmzXz18Ux+//33gM4e8AsTkKqub7/9lo0bN9KqVSuWL19OWloaffr08ac3Zzh5eXkF6pubmxswA3rnnXeYOXMmixcvJjIyEoBrr72WUaNG8dRTT9GlS5cLxgNOoQhGCZNi4LA5eTjxlfNCzRXc6aXmyhG6z1f4OsP0vFxyvR7CHacvt7A1F7qu+/9v0aIFLpeL9evXEx0dTZ06dahevTpt2rThhRdeIC8vj02bNvntEZluN0cOHuTf995Pw4YN/PYSl8vF8uXLmT59ekD9O3XqRGxsLAsXLqRVq1Z8/fXX1K5dO0BlZs60jh07RrVq1QLqeuzYMVq2bOn/PmvWLNq1a+cXJCZXXXUVzz33HIcPH6Z27dqnbRuF4nxECZNi4rA5iQ2rdvqEZxkenxeHLXQH7/X5SMvNBSDDXXCEXrVqVcLCw9m1Zw/HMjOpHZO/RGfv3r3+/1Nzcwgvxsg8IiKCSy65xC9M2rRpg8fno3Xr1pw8eZKvvvqKnJwcf+ef43GzYeUq3Hl5vDx1Go0ts6I1a9YUyN/pdHLdddfxzTffMH78eJYtW8bNN98ckObiiy8G5GLEpk2b+sOPHj3KkSNH/PEAx48fx+v1FijHdBYIFadQXCgob64LgGy3m7+OH2N36smQ8blej///HMv/Jna7nUvbtGbN8hUcOHLEH753715+/vlnANJyc9mbmsKe1JRi1a1169b89ttvbNiwgYuaN2fr8SSiq8UTHx/Pu+++i9PppEWLFsZ9ePwznlyP259Heno6n3/+ecj8+/fvT3JyMk8++SS5ubkBKi6AJk2a0LBhQ+bMmRMgDGbPno3dbqdnz57+sAYNGvDLL7+QmprqD/N6vXz77bfExMSoWYnigkbNTC4A0t156EBmXl6Amskkx5Pfiea4CwoTt8/H4LFj+H3tOh6+/Q5uHD4cdJ2ZM2fSpEkT/vrrLzLy5Mwmr5DRua7reHxeUnNz8Pi8OO1yBtO6dWs++OADMjMzadTsEgBScnNo1aoVixcvpnnz5lSoUAGPz4vb5+XStpfjdLl48J57GTliBJmZmXz22WdUrVrV75llpVmzZjRu3JjvvvuOpk2b0qhRowJpHn74Ye68805uueUWrr32WrZv384nn3zC0KFDadCggT/drbfeykMPPcQNN9zAkCFDCA8P55tvvmHLli1MmDBB2UsUFzRqZnIBkOuRAkIHPCFsItaZSa7XU0DgZHvcNBKC/3vxBSpERTFt6lTmzZvHPffcQ7t27QgPDyfT7Q7ONgC3z4dPB69P96vUQAoTm81G1apViTWM9tlut1+1ZX5mG/dQq25dJkz+Dzrw/PPP8+mnnzJkyJACCx2t9OvXDyDkIkaAbt268dprr5GSksLkyZNZsmQJd955J4899lhAur59+/Lee+9RvXp13nvvPZ5//nmysrKYPHkyt9122ynvX6E437GFGqleAKRwir25TDtAYZ5K/zQZebm4fT6qRESGjNd1Ha/u84/2g/k7+bi/M64TU6lAPntSTwZ08IlV4wizGNkPZ6RzLCvT/716VDTVo6TH11133cXff//Ny5/MwHyS4itEkRBdMaCMlJxs9qVJ9VBsZCS1KwY2f5Y7jx0n8x0bGlepSgXDfRcgKSuDIxkZ/u/hDieialzItoCADS354IMPmDJlCitWrCAuruA1/xRl+Vwt27eb//zyI49c2YlrGl5U6vwUimKQClQODlQzk7Mcn8/HntQU9qelklXI6D8pK5Otx4+RnJ1VIE7XdXIsqidzlmIlOCw7SNWVbdgn8gyBk2kY6ffs2cOKFStodXkbrEOSUPW0hoWKzw6qQ1aQI0COEe80bCZ5Pg++EAOh3akn2XrimF/dpus68+bNo3379mdUkBSX7cnH+X73jpBqSbfXy2MrlrA79SRP/PJjwMzSyt/Jx0nKzAgZp1CUNcpmchaQ7Xbjcjj8HWVAnDe/08z2uANG6yZphltvWl4usZEVAuJyvd6ADinYwO7TdX/Ha7PZ0HWdLI+bSsj1Fbquk+124/V4GD9sBJ179SKhVk18qWnMmTMHl8vFDaNGBdbZ40bX9YDZgVUNluPx4PX5cFjuN1jAZHkCv2cb8ZXCIziRnYWuS/tMhGWLeLfXS4axXuRIykk2rf6V1atXs3PnTiZNmgRAem4uhzPTqRldkeiws3M/rWy3m2EL5pCck81/u/Rk2CWXBsR/sX0rB9Llep2jmRnM27aFG5u2CEiz6sA+Ri78jNiISL4dchPxFaIKlLMp6QhbjicxUFxSJHdvheJUqJlJKUnKzOBAemrIEWRRyMjL5e+TJ9hTiKdVjmXEnu0pOKL3WWYeWW53gXoEzzpygr7neT3+WUWM0blay8nzevHqOnaHg3bt27Ny6VLee/V/fPLJJzRv3pyZM2cSm1BDXm9sdujT9YDRstfnI8dzGmFhfHcZRmyrcPH6fOQa9xgTHu4XUnlBgtGa56Gko0yYMIElS5Zw11130alTJ0Cqy3I8HpIsajsrPl3nQHoqJ0LM8kwOpqfxd/Jx3KVwBT6Wlemf4QXz1Y5tJOfIxZjPr/mZkzn5CzM9Ph+vbfwVgDBDrfnmb2sC6pLn9fL4zz/g03WOZ2cxafn3BZ6LzceOMvjL2Uxa/j2jvp4Xcla7KyWZV9at5Of9e0LOAhUKK2o4Ugo8Pi9HDDVC5fCIkCNdj0+OlmPCwkMu5MswOs0stxuPz1dgdmLt2IMFAQQazD0+H26fjzCLV5E5E7HZ8I/mfT5fvout0QnZbTZiwsNJzc0h250/szDLd9rtvPTCC/x14hgen4/aFWOIjayAT9fZejzJ3wbmfWS53UQ4XcY95AusMIeDPK+XLLebikZ7SWEj6xkXWYHDGenkeb3keb2EORwB9x3pdBFuhOUGdebZFgFUMS6Obdu2BcyOvEa9zPb26Tp2SzxI205ydjY2sqkUHlHg98jzev2C5kR2FjWCbENFYcvxJAbOn0WdmBgWDh4dMLvSdZ2PNv/m/34yJ5sX1/zCs12uBuDL7VvZl5aKDXizV19u/e5LDqSn8dWObQwScp3MR39uZGdKvv3phz07+VzbwuDEZv57vGPxAv+MdO3hA/Sf/wnv9x5Ak9g4cjxuXt+4hrd/W0eeT6apXTGGGxKbcUNiM2pGF35C597UFDw+H42qxBa7XRTnNmpmUgqsnVyojh7gUEY6+9JSOVbISNc6c8gOZUtwB5YRPMIMLjc4DzO+okXQhbKhhDucVDA6f69F9WWO9iNcLmw2m1/NZobneNz+UWsFVxiRTjM+v16m/SPc6STa2APLOvOwCswqEZH+Dt5MY8aHGapAUyUTPOuyzky8ul5gJpdhuEiDnIGEst2YizZ18Ls7W0m3hJ3MyS50Ruo9xU4Cb2z8lVyvhx0nk5lhERwAG44c8gvngRdJV+nZW/9gU9KRgFlJn8aJXFW/Edc3ktv/v75xDV6fj6TMDF5dvwqA0c0u45oGTQD4z8ofOZSRhk/XuW/pIg6kpxHhdPLIlZ2IcDrZl5bKwC9m8dZva7n60+lM2/AreT6vf7Z6ID2NV9atosOMd7hl0Xx+ObA34N73pJ7k3h++oeus97h6zod8sGlDiWfrinMTNTMpBUURJmaHVZhKw6r+yfK4qWg5F0OqsDwB3/O8XsItI9ngDtNq77DWK8oV5p815Ho9fqFgju7DnQ7CHA4cNpu/Iw53Ov3CyRQ0kU4Xabm5lvvK7+jDHA4quFyk5+UGCDWzk49yuqjgDCOZbLIsdpUsi0Bz2u1Eulxk5uWR5cmjMhH+ezBH8OYqe6sqzbTtWMlw51HBlb+BY3rQ/luZ7jy/cDPzyLCkSc/Lo3KQ55s13u3zkZ6XS0x4RECaY1mZHM5Ip0Z0NNUqBO5zlp6Xy7e7/vZ/f23jGoZc3JxKRh4fG8KlRbUavNDtGrYeT2Jb8nEe//kHRjdryZ7UFGzA+NZXAvCvVlfw1Y5t7EpJ5rvdf/PDnp1kut3ERkQyoW1HPD4f6w4f4ERONg//tJhW1WuybN9uAJ7r0pMBF11Ch1r1GPftFyRlZfLfX+WZMy67ndsva8u/Wl3B4cx05m7bzLxtmzmencXSvbtYuncXF1WpyqhmLdl6Iom5f/2J1xAeuq7z1Mqf+PvkCZ7qeJVfdak4v1Ezk1JgVbOEWjnu8fn8I/xQswqrLQAKGqFzLdeYyphgr6cCMxOLcPHpPr9dIcLp9AuhUEIw3OHEZrMRaZl56LruL8+ccUSZu+0aRnSzzlFGp22my/HKGYtumQFUcLn8Qsx679mWeJBCx9oe5j2ZeZv3kRtkJzA7M7MumZaOXwoKOaswZz7BW8dkezwB63DS83IDfjOfrvtnJmYeyTmBG026vV6OGqrPo5mZBWZP204cw6frJERVJNoVRmpuDm9slFvBJGVmsGjXdgBGN2uJ027nqU49APgj6QiPrlgCwLWNBE1ipWeaqBpPzwaNAXhq5U98sV2ev/LIlZ2pFB5B1cgKPNtVruL/5cBepm5YDcBNzVoywJj5XFqtBgsGjaRpnNwmqGPtenw3ZAwPXtGRSJeLhpVjmXhlZ1aPup23evWlbYJc6b/95Ake//kHZm/dhFfXqVUxhue79uK6RtJVefbWTYxaOC/A5qM4f1HCpBQEd8oFVVD5Hbtpz7AS7NJpekHlf893h430d+L5eVo7+4rGCDvbYoTP9Xj9ap0Ih9O/dbtZrm4xlJtxZoed7faQa/Ekq+AKjAcpcMwZlykIzHS6Lu8nz+v1d9AVXGGEOxx+L66CwsIZkFe2xy3tKV5PQLw5M/H4fP68zdmPw2Yj1tiIMdOdr4IzbTAAcRUq+Mv36fm/iSlszPp5fL4A4ZzlzvPnV8NYZ5Oemxuw6j8pK9OfRtd1DmWk+X8Pn66zO0U6Wtx22eXc3vJyAD78cyMH09OY/dcmPD4fsRGRXGeor9rWrO1Xd5nP2z3GrMTk7lbyuynEWlSrwQ2J+Yd99WrQxJ8HQKvqNXm0fdeAPBKiK7Jg0Eh+HH4zM64fHNLm4XI4uKbhRcztP4yFg0cxSDQlzO4gvkIUT3W6ih+H38zQi5sz7eo+3NumHQC/HtpP/88/YVPSkQL5Kc4vlDApIXohKigrBWcRoe0Zpg3YOpOxpo9wOi0j/vw83T6fXzdvugR7dd0/YjfTOu12nHa7X01klitXpcuOLtwpO2i/MPG4/Z29027HZXgOOSz5pOTk+Dtzc8bitDv8DgDZbrdfDeaw2wl3OKTdxZk/+3FbOvl8gRRmtLFplyCgbtYFlaYwNGc3kS4X0cb1Povqy5xROO124oy2ss6aQG47A9KRwLTLpAWpvcx6xEZWwGm3o4N/5J3r8fi9okzPtvS8PNKMsnM8Hry6TqXwCIZc3IxbLm1NtQpR5Hm9vLjmZ2Zt3QTA0IubBxjlJ7br4h8s9G7YBFE18CCvS6vVoFOd+oCcwT7V6aoCjgVPdOzORVWqUjemEm/07BPgpGHitNtpWDk2wGmhMJrFV+el7r3569Z7WTv6DkY3a+lvM7vNxv2Xd2Da1dcT7nCyNy2FgV/M4n/rV5XKA05xdqOESQnxWDpyk2CVU0EVVOj4KFeY/+W3joSt6h2zc8kOmA3JeJvNRsWwcBxBefhVWE6pwjJf9jyv11AzGcKM/A7anFn4dJ2TxvqVSON6E7PTT8mVnajDYhQ36wtSWGR5jJmL0+XPw2/Ed+f562qz4ff+shrZTxjnlZgCMfj/XE+go0Ck04XL4fCrwkxVlvkZHRaG0+7wt6cZLlV2+WkqhsvOO92yM4ApkCqGy9/L3EnANMQfycxAR9qP6sZU9guAwxnpeHxef3uPbnYZUa4wKrjCuO/y9gB8+fdfHM3MwG6zFVgzUq1CFFN7XM/1jQWPd+hGKP6vXRcaVKrCvW3a06JaQoH4SuERLB46huUjxpXIA60wHHZ7ocKnT+NE5g8cQZMqVfH4fLyybhWDv5zNzpNn/ggHRdmjhEkJsXbE/hF/CLWVmcb63STHYs/I72BlmkB7hdNfhtuiNjLjIxwO7FZ7hztQmEQaHXOEM380muv1+PX5Ycb1AC57vhrKtDlEBi2UNGcW5owhyuUKKWyy3W6LTcVVID7X4/F35hEOV8BoOsrvIJDfRtYy8gWjVMWZ92rmbc5OMg3VlGk4N73aTMO7eY+Z7jx0Xf5W0a6wgDU3cvbkKeAZF2sIkzyvl6SsTP+ZMDWiorHbbNSMjsFmk/G7Uk76XZFHN8s/I2VIYnMaVc5XKfWo36jAVjMA3eo15LWr+xTqlntx1Xh+GnGLXziFwmazFWnWUZY0javG14NHcculco+1P5KOcO1nH3PfD9+wZPeOQh1XFOceSpiUkBxLR2x2rtYXw7pwz/TQKmzmEuFwBYzmwVgPYvTWkU5XwFG1OUEzD3NEX8GiooJ8YWWO0p32/FX21nUaVu8wm83mt02YVHAGCRNX2Cm/m/eS6/UW6OSt+UkVUU6B+FDfI4PqYKrlcr1ecj2egLYCqzBxk5mXb+sww83PLMMuYwqbCi4XDrudCq4w/0wvPS/Xr+Jy2O3++oc7nUQZQsm0V0Q6nX7PrHCnk/hIufLcbIeGlasErEZ32u08cmVn/3eroDlfiHA6ebxDN2b1HULN6Irkej18+fdf3Prdl7SZ/gb3L13EqoP7lCvxOY4SJiXE2lHn2yLyZx7SE0v+X8UygjVnFdYZRqRlZpJtdIymQLDbbNJl17A5yHIMO0GQ4TrSkofH5/Xrp6369wiLJ5T/HhynFh4FOnLDhfiJ8ffyxPh7/bOINWvWIITgz40bsY5/bUF5WO0uXksbBNTB6Oy3/PYbN3TqwtbfAtdjhFucCUwBLG078pGOCjNnTzpHszL89266qVZwhWFDzq6yPG6/sDAXntptNv//6Xl5+SqusLCA0X3VINfhGtEVA+LjK0QFuMYmxgbaOwCurt+ISVd25uErOtGhVsGjkc8X2teqy+KhY3im89V0qFUXu81GhjuPL7ZvZcRXc+k5ZzozNv9eqBu94uxGrTMpIfmzCmdAB23uOWVdOR5tGbnneNxEh4Xnr0xHjrKdPtkJ6rpOjscdoOIyO6cIp4tcr5dswy03zy8sAmcmuq6TYoz4zTpa/88gjxyP27JgMdAYa1Vruez2AusErC7Eso6BwsZusxHudAasD7Huw2XW1TpTC56JWL2+5HdngXiQbW51PTbbyrSL5Hg8/njrwk3pkOAi2+PmZE52/izSsu6kYph03c3Iy/V7xVUM2uUgJjwChz0dr88nbS1B8Q67nVrRMexNSyHC6fS7LVux2Wzc3rJtgfDzkYph4dzYtAU3Nm3B8axMFu/ewfztW9hw5BB/G67GL6xZwSNXdmZk08vOdHUVxUDNTEqAruv+jjjCMjOBfB1/cEdqdoamkMhXkzmx22SHHWbZlyp4bYWZl3mttSM2w10Oh39kbnoYhQV3ykbaLMuaivCgWYG1zGB7iYk5anfYbX5bx+WXX86mTZu4/PLLA2Y3wWowGZYfb7c4B5hYvb6AAtuamOl1y9qPYKFmXZAIgYLCGm8KXofNFpCHf7sXXS+gJrPWvVZ0RaLDwqhViD0jJjycpnHVCsz4LnTiKkRxY9MWfD5gBAsHj2JoYnPCHU7S8/L4989LWX/44Cmvd3u9LNqpMeKruXSf9T4bjxz6h2quCIUSJiXA4/P5F8iFO5047fmdeL4KKnCxX6TLFCbB9o7QXlCh4/MN/cFbjPjTWFRdUHBEb85SrJ5owWlcFm+pwjrAuMgKhDscAdfa7XbCw+UeZJEhDO5WKgTNbEIZhq3CIDje5XAEuFSHqqu147fbbFRwhZGdnb+ALniWEB0WHlCOy+EIEC4VXK6Qq7krR0TSsHJsAaFsxX4GjN/nEs3iq/N8t178Ovp2Lomrhk/XuX/pooAdB0yOZWUydf1qOn7yLnd9/zWrDu5jV+pJRi+cd1oBpCg/lDApAQEqKqMzta4uN1VVYLFnOAM7+VDCwuxg0/PyLPaUgjMTXddJMTyHIoJtDUEdanC8Wc/jR5N4/dnnuK3/AFq2aMHVV1/N008/zeeff05iYiKp+w8QHRYWcJDWK6+8QvPmzUlNTcVus+GyeIFBvs1kzZo1/no8Mf5ebhoylO3btzNq1ChatGhBp06dmPHhdL+B27zvI0eOcNddd3HZZZfRrl073nn1VWIKEWa///Ybk++fwOhevRl5dS+euu8Bdm3fHpDm6X8/wU29r+Pw/gM8++DDtG7Viv/85z+APIvl/yZM4NZ+Axhx1dXcPnAwzz/+OOnp6QF5mC7CUFDFpSh7qkRE8upV1xLmcLA/PZWnVv4YEL98326umv0BL69bydHMDGzAVfUakhBVkQx3HqMXzmPNof3+9Lqus/7wQV5eu7LQnbkVZYOymZSAQBWV7BAjnS4y8vLI8XoCtvYw7Rlmp55n2DusLq8m/o0WDUFiM2wPJi57/t5Zph0gWLUTrJYKFiZOu520EyeYdNvtZGdnc+2A/rRMvJhDhw6xaNEi7rvvPp566ilWfL+ERx55xH+drut8/fXXdOnShUqVCj2kMqAeNaKiCXc4OJyayrhx47jmmmvo3bs33333HVOmTOH5unVo0qollcIjyMnJ4aabbuLw4cOMHj2a+Ph4FixYwJpf1xTIe9WqVdx2222Ipk0ZesvN+Hw+ln69kJtGjWLevHk0biy3F7HbbHg9Hp6e8CBXXHkF/a69lpiYGPLy8rjllltwOBwMGD6M8OhoTiQlsWXtOtLS0qhYMX8dRsWwcJIyM43/C6rrFGXPRbFxTLyyM0+t/Im52zZzVf1G9KzfmHd+X8fza37Gp+vEhIUz/JJLGdm0BXViKrMvLYXhC+ZwMCOdMd98zus9+3A4I4MZW35n24ljAMzfvoVvbhjt97ZTlC1KmBQTj8/L4awkUtw5VLSFk2TYuTO8uaS400j32tFt2aS407DbbKS6naR5pN49xS1HRrvSvSTnycONYj02cnXpbeTTdVLdJ/O3QHG6OJ4bqFbJ9mWQ5cmjojMGh81RQFgEC5cIR8Gf+JO33iEtNZX/vvs2bS5tQa2KUtd/3333YbPZuOqqq1i0aBEPP/ywXzWzceNGDh48yMSJE4vcVtWionE5HBw5coSXXnqJ66+/HoDBgwfTvXt3fvxmEf169sJms/HRrFns2bOH1157jauvltutDxkyxH9+u4nP5+PJJ5+kY8eOPDHlRf9xwgMHD+LWIcN4/fXXeeWVV/zpc3Ny6NO3Dw/d/4D/Xv766y8OHDjAZ599RrWGDUjKypTHAE+cVOAeKjhdVIuKLuCRpihfxjRvxdI9O1l5cB+Tln3PV7W28c1ODYBL46vz9jX9A46GrhtTmU/7DWPEV3PZn57KzYu+CMjPhtz5+P+WL+G1q69XKsdyQAmTYuDxebn/9yc5mnus6BftPU38vpLVpYqzCnfUvbuAS63TcCHO9XoNT7HAeJ/Px68//8zlHTvSoEmTAE8u8wXr168f33zzDWvXruWKK64A4OuvvyYmJoauXbsWu64VK1bkuuuu838PCwujefPm7N+/31/mihUrSEhIoEePHv50kZGRDBkyhBdffNEftm3bNvbu3cv48ePJTksjLUOqpapHRdO6dWvWrl1boPybbhwZ0HlER8t9tX766Sduu+givJEVqFzIaNVms/n34VL8c9htNqZ0702vOdNJzsn2C5KBF13Cs12u9s/4rdSJqcSc/kMZvmAue9NSCHc46dskkZFNW7D5WBKPrljCNzs1OtWuV+D0SkXpUcLkHMZhs/n3zLIS6ZIuxFY1nElycjJZmZnUbdgAKChsADp27EhcXBwLFy7kiiuuwO128+2339KrVy/CSqDqSUhIKDASrFSpEpqm+b8fPHiQunXrFkjXoEGDgO979uwB4MEHHwxZVvABZGFhYVSvXj0grE6dOowdO5Y33niD6dOn07ZtW7p168b111/vFzSKM09CdEWe6XI145csxG6z8X/tunDLpa1POauoGR3DgkE3surgPtrXqus/QuDS+BqsPLCXRbu28+TKH2ldo6Z/52VF2aCESTFw2h083/xx1iftBKBB5SoB3ky7U08GbDleI6oilSPyR7zHs7M4bjkutnJ4RIF9klJycjmSKVVg9SpVLqBayfZ42Jt6korOGKLCIkK+WJXCI0jJyfFvNngqQp397XA4uP766/niiy94/PHHWblyJSkpKfTt2/e0+YUi1AmTJcVcJT1p0iQaN27MgQzZVrUrViogOAHCC2mDiRMnMnDgQJYuXcovv/zCf/7zH9566y3mzJlTQPgozhx9GidSvUI0MeHhJAZtcFkYlSMiudbYddnEZrPxXNee/HHsCAfT0xi/ZCGfDRjO0cwMdqWc9Bvnq1eIplpUFNWjoqldsVLIDTEVoVHCpJh4fDqVXVWw2aBWheoBHVhOnjNgsWDtqNiANRYRthw87hT/95oVKhIXkb+1BkBll4dctwO7zU6dCnEFOmKf7iMtS25FEhlCEIAUJk3jqhVYKAgQGxtLVFQUR/fuo3pUdKEvS79+/Zg+fTorVqxg0aJF1KxZk8svv7zQdikttWrVYufOnf4Ds0x2794dkK5OnToAxMTE0LFjR//6j1CC5HRcdNFFXHTRRdx555388ccfDBkyhNmzZ3PfffeV/EYUZU7bmrXLJJ9K4RFM7XE9Q76czbbk4zR/f9op08dXiOKda/rTsnrBjTMVBVGuwcUk17IFSXAHZjV22yho/A7W8wYbz0F6iDWuXJXGlWNDjujttvw1HKEWA5qEEiQgZwlXXXUVK5cv58TeQIONdW+kSy65hIsuuoi5c+fy448/ct1115Wr0bJz584cPnyYH374wR+WnZ3N3LlzA9I1bdqUOnXq8MEHH5CdnY3dZgv4HZKTT78jbUZGBp6gfdKaNGmC0+kkN7fgUb2K84fWNWryQNuOAWHhDieJsXFcElfNfzwByPUsN341l1UHS2jYvMBQM5NiklPIYkAIFA5hTmcBYWAuBjTXkIQSJlD4qnOTujGVyfa4/TvbFpcHHniAlStXcuONNzJs2DAaNGjA4cOHWbRoEYsXL/an69u3L1OmTPH/X54MGTKETz75hAcffJDRo0cTFxfHggULiIgINIw7HA4mT57MbbfdRp8+fejfvz/VqlXjyJEjrFy5krp16wYY7EPx66+/8tRTT9GrVy8aNGiAz+fjq6++wmaz0atXr/K8TcVZwF0t23JJ1XjsNhsNK8dSq2JMwIAkz+tle/Jxbv/uS7+r8Rs9+9KjfiNArrxfc/gA2onjDE5sqlyNDZQwKSah1oeYhFqtbsVmsxHhdJKRl2ecyVEyfWyYZeuVkpCQkMDcuXN59dVX+eKLL8jMzCQhIaGAp1bfvn15+eWX/eqg8iQyMpLp06czefJkZsyYQUREBH369KFz586MGzcuIG27du349NNPef3115kxYwZZWVlUq1aNli1bMmzYsNOWJYSgY8eOLFu2jDlz5hAZGYkQgnfffZfLLrusnO5QcbZgs9noVq9hofFhDgfN4qvz2YDhjPzqM3alnuSOxQu4//IO7Ek9yZLdO/yLhudu+5OZfW4I2An6QsV2gW77nAIUuvJu717pz1uvXr2AcF3X2XI8CZ+uUy+mMpWCRs26rrP1eBJeXadGdEWqhXjAjmSmk5SZSUx4OPUrVSn9nZQjJ06coFOnTkyYMIFbbrnlTFfnnKew50px9nI8K5NRC+fx14mCywHsNhs+Xadh5Vhm9bkhwJnmWFYm3+zUuDyhNk3jqpWobF3XOZaVSbWzzzU9FagcHKhsJsXA7fNajrkNPfOIqxBFhNNJ5UK8iOIio6gRXZGEqLI77a68+PzzzwH8iw0ViguNuApRfNpvKG0TamMD2ibU5okO3Vk96nbe692fMIeDXSnJDFnwKfvTUknKzGDyyp/o9Mm7PPnLj4z6+jP/0dFWdF3n+V9XMH7JQv+hala8Ph93L1lI24/f4slffjwnznpRaq5iYLfZsdts/oWBoageFU31U4wknHZ7yBnL2cTq1avZsWMHb7/9Ntdcc41ylVVc0FQKj+DTfkPJ8bgDnF4Soivy4bUDGfftF+xLS6X/5zNJd+f5j4YASM7JZu62P7mpeauAPFcd3Mebv8kFtgfT05jRZ3DAxqPPrF7uX6g5/c+NxISFFXAc2J+WyrQNqzmWlYnNZsOO3Ez04qrx3NKi9T9uyzmtmksIcTkwBugG1ANOAKuAxzRN2xGUtj3wAtAKSAPmAJM0TcsKShcOPAWMAqoAfwCPapq2NET5RcqzmKRQAjUXyFXwNmyFekudD4waNYrffvuNVq1aMWXKFKpVK9k0XRGIUnOdn6w9dICbF833H0FdNSKSWy+7nO3Jx5m/fSu1K8awbMQ4/07cuq5zw5efsv5I/g7HHWrV5f1rBxLhdDL9z408+Yvc4LJuTCX2paUC8Fj7roxr0QaAr/7exqMrvvcf6hZM5fAI7mnTjpFNLyuPtTIh1VxFESbzgA7AZ8AmoAZwNxAFtNU07S8j3WXAamAL8B5QG3gQWKJpWp+gPGcDg4BXgR1IYdUG6KJp2mpLuiLnWUxSKKEwUShKinquzl82JR1h2oZfaZtQixubtqCCK4zdKSfpPvt9dOB/V11Hv4suBmDF/j2MXjgPgOGXXMrsrZsA6FG/EYNFU+76/mt8uk6vBk2YevV1/Ov7r/lhj1wo/VSnq/gj6Qifa1sAeRRE/4suxobNOKHVw4K/t5JpqNbqxVTm8Q7d/J5oZUSJhUl7YL2maXmWsCbAn8CnmqaNMcIWAZcCiZqmZRhh44B3gas0TfvRCGsLrAHu1zTtVSMsAtgMHNI0rbOlnCLlWQJSUMJE8Q+jnqsLj7sWf8WiXdu5uGo8i24YDcDAL2bx29HDXFmzDp/2G8p7f6zn6VXLAq5rUa0Gn/YdSqRLnkg65pvP+dWytT5At7oNeLHbNcQFqc2PZWXyv/WrmL11E15dx2GzsXjoGBpXqVpWt1UyA7ymaausgsQI+xs5W7gYQAgRA1wNfGx2+gYfAxnAEEvYYMCNnGmY+eUA7wMdhRAJJchToVAozjpubyl3jfjrxDFW7N/Dsn27+e3oYQDuv7w9AONatOHeNu3819SpWIn3eg/wrzeLcDp5r/cALo2Xtsswu4MnOnTng2sHFhAkIFfuP935ahYPHUPViEi8ul5AEJUHJTLACyFsQHWkrQOguZHXems6TdPyhBC/Ay0twS2BbUECAmAtcuH4ZcDhYuapUCgUZx0tqiXQrmYdVh/az5u/rfWfkNqhVl2uqFnHn+6+Nu2JdLpYeXAfT3ToVmDdSnRYGDP63MDn2hY61q7HRUXYpLJxlaq0rF6TH/buZMvxpLK9sRCU1Ip8I1ALMPe6MDevORwi7WGgpuV7winSYUlbnDwVCoXirOSOlm0B+PXQfv5IOgLA/Zd3CEhjs9m4o2VbZlw/uFB1VKXwCG6+tHWRBIlJ03jpPLPl2NGSVL1YFFuYCCESgdeBX4AZRrB5tmuojY1yLPFm2sLSWfMqTp4KhUJxVtK5Tn0usSxc7FSnPm0Sav0jZTeNk6qxbSeO47a4LJcHxRImQogawDfASeAGTdN8RlS28RlqpV6EJd5MW1g6a17FyVOhUCjOSmw2G7dflr/j9v1t2v9jZTczZiZ5Pi87Uk6/CWppKLLNRAhRCfgW6QXVQdO0I5ZoUxUVaq/mBOBQUNrC0mFJW5w8FQqF4qzl+kaCvakpVImIpFWNf05DnxBVkdiISJJzstl87CgXF/FMmJJQpJmJ4br7NXARcL1mPSJPshnwINeKWK8LQxrUf7cE/w4kCiGCl4lfYXyaRv3i5KkoA6ZNm4YQ+YcKCSGYNu3UZz6UlPnz5yOE4MCBA+WSv0JxNuGw27mnTTtGNbvsHy3XZrP59wbbcrx87SanFSZCCAdy1Xk7pGrr1+A0mqalAj8Ao4KExCggGrng0WQe4AL8W8EaK+LHAis1TTtUgjwVCoVCEYKmhkvxlmPl69FVFDXXS0Bf5MwkVggx0hKXoWnal8b/jyK3WVkmhDBXq08AvtU0zX/ikaZpa4QQnwEvGGtKdgI3IbdqGRNUdpHyVJQPmzZtwqGOLVUozmnMmcnWE3LH85KcSloUiqLmusz47IP03rL+vWom0jRtI9AD6X31CnArcqX6DSHyHA38z/icipypXKtp2kpromLmqShjwsPDcRZygJdCoTg3aGZ4dGW63f6z7suD0/YUmqZ1LWpmmqb9gtzH63TpcoCHjL8yyVNRPNavX89zzz3H9u3bqV69eoEDqEDaTO6++27Gjx8PyONu//e//7F06VKSkpKoWLEiiYmJPPjggzRt2hSA7t27k5iYyNChQ3nppZfYvXs39evX58EHH6RLly7/6D0qFAqoV6ky0a4wMtx5bD6WRMPKseVSzvm79a2iUDRN45ZbbuHkyZOMHz+egQMHMm3aNJYsWXLK65544gnmz59Pnz59ePLJJxk7dixhYWHs2BGweTS7du3ioYceolu3bjzwwAN4vV7uuusuNm7cWJ63pVAoQmC32fzrXMrTCK90GMXE7fOSlJ12pqtBtcgYXCU89nfq1KnYbDZmz57tP6ukV69e9Olz6o2Yly9fzp133hlyFmNl9+7dvPnmm3Tv3h2AgQMH0rNnT1555RVmzJhxymsVCkXZ0zSuGmsPHyjXbVWUMCkGbp+X65e+xv7M8tM7FpU6UVVYeNXdxRYoXq+XX375hZ49ewYcetWoUSM6duzI8uXLC702JiaGtWvXMmjQIKpUKfzI4Zo1a/oFCUClSpW4/vrrmTVrFllZWVSoUKFYdVYoFKXDNMJvPnYUXdexlYMRXqm5LjCSk5PJyckJuQ16gwYNTnntgw8+yK+//krHjh0ZNmwYb775JgcPHiyQrm7dugXC6tWrh8/n4/DhUFutKRSK8qSZ4R6ckpvDwYzy0ayomUkxcNkdLLzq7nNezVVSrr32Wtq0acMPP/zAypUreeedd3j77beZNm0anTp1+kfrolAoik7jKlUJdzjJ9XrYcjyJ2hULPc6pxChhUkxcdge1ogpX8ZztxMbGEhER4T+oycru3btPe321atUYMWIEI0aMIDk5mYEDB/Lmm28GCJN9+/YVuG7v3r3Y7XYSEkLtjqNQKMoTp91OYtU4/kg6wpZjR+nVoEmZl6HUXBcYDoeDjh07smTJEo4ezffs2LlzJ7/88kuh13m9XtLT0wPCYmNjqVGjBrm5gRs7Hzp0iB9/zD8EMzU1lYULF9KmTRtlL1EozhDmDsLlZYRXM5MLkPHjx/Pzzz8zfPhwhg0bhtfrZebMmTRu3JiC265JMjMz6dKlCz179iQxMZGoqCh+/fVXfvvtNyZOnBiQtkGDBkycOJHhw4dTpUoV5s6dS0ZGBvfee+8/cXsKhSIEfiO8EiaKsiIxMZH333+f5557jqlTp1KjRg3Gjx/PsWPHChUmERERDB8+nJUrV7JkyRJ0Xadu3bo88cQTjBgxIiBtw4YNmTRpElOmTGHPnj3Uq1eP1157jTZt2oTMW6FQlD/mdvRHMzM4lpVZ4DTH0mLTdb1MMzxHSEFupR8S054QyuNJcWrMFfBvvPHGma7KWYd6rhRnkhyPh6bv/Q+vrjP9ukF0rXtq781TkApUDg5UNhOFQqG4AIhwOsv1hEel5lIoFIoLhNev7sPOlGTaJtQu87yVMFEoFIoLhLgKUcSVsa3ERAkTRZlidQlWKBQXDspmolAoFIpSo4SJQqFQKEqNEiYKhUKhKDVKmCgUCoWi1ChholAoFIpSo4SJQqFQKEqNEiYKhUKhKDVKmFyA/PHHHwwZMoQWLVoghODAgQNlXoYQgmnTppV5vgqF4uxELVq8wHC73dx7771ER0fz6KOPEh4eTmxs7D9W/t69e3nvvfdYuXIlSUlJhIeHk5iYyHXXXcfgwYMJCwsr0/J27tzJokWLGDBgALVrF9xCYufOnTz77LNs3LgRl8tFt27deOSRRwq0SVJSElOnTmXVqlWcOHGC6tWr07NnT2677TZiYmLKtM4KxbmIEiYXGPv27ePw4cP897//ZcCAAf9o2T/++CP33XcfkZGR9OvXjyZNmpCTk8O6det4+umnOXDgAA8//HCZlrl7925ee+012rZtW0CYHDlyhBtvvJGYmBjuv/9+srKy+OCDD9i+fTtz587F5XIBkJWVxbBhw8jKyuLGG2+kRo0abN26lQ8//JCNGzcya9asMq2zQnEuooTJBUZycjIAFStW/EfL3bdvHxMmTKBOnTp8/PHHVK1a1R83atQoduzYwbp16/7ROr311lvk5uYyY8YMqleXp9BdeumljB07lgULFjB48GAAli1bxsGDB3n77bfp2rWr//qIiAg++OAD9u/fT506df7RuisUZxtKmFxATJw4kS+++AKAf/3rXwC0bdvWHz9jxowC6deuXRuw35bP5+PDDz9k3rx57N+/n8qVK9OrVy8eeOABoqIK30DuvffeIysri2eeeSZAkJg0btyYxo0b+797PB7eeustvvjiC44ePUqNGjUYMGAAd9xxBw6Hw59u5cqVvPbaa/z99994vV6qVavmr8/8+fOZNGkSAKNHj/Zf8/HHH3PFFVfw/fff0717d78gAWjfvj3169fn22+/9QuTjIwMgAL1jouLA6RQUSgudJQwuYAYOnQo1atX56233uKmm26iadOmxMXF8dZbbxU5j0cffZSvv/6aQYMGcdNNN7F3715mzpzJjh07mD59OjabLeR1P/30E3Xr1uWyyy4rUjmPPfYYX3zxBddddx2tW7dm/fr1TJ06lcOHD/P0008D8Pfff3P77bfTqlUr7r//fux2O3v37mXDhg0AXH755dx000189NFH3HHHHTRs2BCARo0acfToUU6cOEGzZs0KlH3ppZeycuVK//fWrVtjt9t55plnmDhxYoCaa+DAgcTHxxe5/RSK8xUlTIqJ2+vlSGbGma4GNaKicVlG6EWhZcuW5OXl8dZbb9G2bVt69OgBUGRhsn79eubPn8/UqVPp1auXP7x58+bcf//9/Pzzz3Tu3LnAdRkZGSQlJXHVVVcVqZxt27bxxRdfMGzYMP7zn/8AcOONN1KxYkXmzJnDyJEjSUxMZOXKlYSHh/Phhx8GzFZM6tSpQ9u2bfnoo49o3749V1xxhT/uzz//BAgpCOLj4zlx4gRerxeHw0GjRo146qmneOGFFxg6dKg/3dChQ3nyySeLdE8KxfmOEibFwO310uPTD9mblnKmq0K9mMr8MGxssQVKafjuu++oXLkyl19+ud/2AtCmTRscDgdr164tVJgAp1SDWVm+fDkAY8eODQgfM2YMc+bMYcWKFSQmJhITE0N2djY///xzgC2jKOTm5gKE9B4LDw8HICcnx1/nGjVq0KJFCzp37kzNmjVZv349M2bMoFKlSkyYMKFYZSsU5yNKmCiKzN69e0lJSaFdu3Yh460Cxkp0dDQAmZmZRSrn4MGDOJ1O6tatGxBer149nE4nBw8eBODaa6/ls88+4/bbbyc+Pp727dtz9dVX06NHj0LVbSamwMjLyysQZwoa0xayYcMG7rjjDubNm8fFF18MQI8ePYiOjua1115jwIABfhWaQnGhooRJMXA5HPwwbOw5q+YqLl6vN+C7z+cjPj6eF154IWT6atWqhQyPjo4mPj6ev//+u0zrFxERwSeffMKaNWtYvnw5P//8MwsWLKBDhw68++67IVVfwXU9duxYgbhjx45RtWpV//Vz5syhWrVqfkFi0r17d6ZNm8bvv/+uhInigkcJk2LicjioE1PpTFejTKlUqRL79+8vEH7o0KGA73Xr1mXNmjW0adOm2IsLu3Xrxty5c/njjz9o0aLFKdPWqlULj8fDvn37qF+/vj983759eDweatWq5Q+z2+20a9eOdu3aMXHiRN59912mTJnC2rVrC51BAVSvXp3Y2Fg2b95cIG7Tpk0BgsO0nwTj8XiAgkJXobgQUdupKKhTpw67du0KUFNt27aNjRs3BqTr1asXbrebd955p0AeeXl5fttIKMaNG0dkZCSPPfZYSHXYzp07+fTTTwHo0qULAB999FFAmo8//jgg/uTJkwXyMYWAqaqqUKECAOnp6QXS9uzZkx9//JGjR4/6w1avXs2ePXu45ppr/GH169fn6NGjrF+/PuD6hQsXBpSpUFzIqJmJgsGDBzN9+nRuueUWBg8ezIkTJ/j0009p3LhxgJ3jyiuv5IYbbmDatGls3ryZdu3aYbfb2bNnD99++y1Tpkyhffv2IcuoV68eU6ZM4f7776d3797079+fxo0bk5uby4YNG/j+++8ZM2YMAImJiQwYMIBZs2aRlpZGq1at2LhxIwsXLmTw4MEIIQB44403WL9+PZ07d6Z27dokJycza9YsatSoQevWrf15OZ1O3n33XdLT0wkLC+PKK6+katWq3HHHHXz33XeMHj2akSNHkpWVxfvvv09iYiL9+vXz1/3GG29k/vz53H777YwcOZKEhATWrVvHwoUL6dSpU0j3YoXiQsOm6/qZrsOZIAUoVFe1d+9eQHaA5xtr1qxh9OjRvP76637XYICvvvqKqVOncuTIERo3bsyDDz7IwoULCyxa1HWdTz/9lLlz57Jz507CwsKoXbs2Xbp04aabbvLvaSWE4O6772b8+PEB5e/atYv333+f1atX+/fmuvjii+nTpw8DBw70b2FiLlqcP38+SUlJVKtWjUGDBgUsWly9ejUzZszgzz//5OTJk1SpUoW2bdsyfvz4APXY559/zptvvsmhQ4fwer3+RYsg16r897//ZcOGDbhcLrp27cqkSZMK7M21a9cuXn31VTZt2sTx48epVq0avXv3Zvz48UVetHg+P1eKC4pUoHJwoBImIVAvvaI8UM+V4jwhpDBRNhOFQqFQlBolTBQKhUJRapQwUSgUCkWpKZI3lxAiAbgXuAJoA0QD3TRNWxYibV/gSeASIAl4H3hG0zRPULrKwAvAAKACsAZ4QNO030uap0KhUCjODEWdmQjgEaA2sKnQREL0Br4EkoHxxv//Bl4JSmcHvgGGAdOAh4HqwDIhRKOS5KlQKBSKM0dR15lsAOI0TTshhOgPfFFIuinAb0AvTdO8AEKINGCSEGKqpmnmfhqDgfbAAE3TvjTSzQW2A08Ao0uQp0KhUCjOEEWamWialq5p2olTpRFCXIJUQ71tdvoGbxjlDLKEDQYOAQssZRwD5gL9hRCuEuSpUCgUijNEWRrgWxqfAXtOaJp2CDhgiTfTbtA0LXiRy1qgItDYkq6oeSoUCoXiDFGWwiTB+DwcIu4wUDMobWHpsKQtTp4KhUKhOEOUpTCJND5zQ8TlWOLNtIWls+ZVnDwVCoVCcYYoS2GSbXyGh4iLsMSbaQtLZ82rOHkqFAqF4gxRlsLEVEUlhIhLQBrcrWkLS4clbXHyVCgUCsUZoiyFye/GZxtroBCiJnJ9yu9BaVsLIYLPVr0CyAB2lCBPhUKhUJwhykyYaJq2BdgG3CaEsJ6XeifgAz63hM1DGs/9h0YIIeKAG4AFmqa5S5CnQqFQKM4QRT4cSwjxmPGveazcKCFERyBF07TXjLCHgK+AxUKIOUAz4G7kOpHtluzmAb8CHwshpgDHgbuQwu3JoKKLmqeihGRlZflPJFQoFIqSUJyZyWTjb4Tx/Wbj+4NmAk3TFgIDgarIbVIGAk8D91gzMhYgXotcpHgP8CJwDLnf146gtEXKU1E0pk2bhhCCXbt2cd9999G6dWtuv/12tm3bxsSJE7nqqqto3rw5HTp0YNKkSQWOxjWv379/Pw8//DCtW7emdevWTJo0iezsQH+InJwcnn76aa644gpatmzJHXfcwdGjRxFCMG3atIC0hw8f5uGHH6Zdu3Y0a9aMPn36+I/FVSgUZz9FnplomhZs3ygs3ZfI/bNOl+4kMM74K5M8FUVn/PjxNGrUiAcffBCn08mqVavYv38/AwcOJD4+nr///pu5c+eyY8cO5s6di80W+PPfc8891KlThwkTJrB161Y+++wzYmNjeeihh/xpJk6cyLfffsuAAQNo3rw569at47bbbitQl6SkJIYMGYLL5WL06NFUqlSJpUuXMmHCBPLy8hg4cGC5t4dCoSgd6gz4YuL2eklKyzjT1aBaTDQuh+P0CQuhadOmvPDCC/7vOTk53HzzzQFpLrvsMh544AE2bNhAmzYBPhA0b96cp556yv89JSWFefPm+YXJli1b+Pbbb7n55pt55JFHAHmW+qRJk9i2bVtAXq+++ip2u50vv/ySmJgYAEaMGMG4ceN4+eWX6d+/P3a7Oi1BoTibUcKkGLi9Xq6f9hH7klPPdFWoG1uJheNvKrFAGTZsWMB36znmubm5ZGZm0qJFC0AKhmBhEnx9mzZtWLJkCRkZGURHR/Pzzz8DUihYGTlyJPPnz/d/13WdJUuWcP311+PxeEhOTvbHderUiZ9//pndu3fTqFHAZtIKheIsQwmTC5TatWsHfE9JSeG1115j0aJFnDgRuKdnenp6gesTEgKX/pgzitTUVKKjozl06BBOp5NatWoFpAs+/zw5OZm0tDRmzZrFrFmzQtY12G6jUCjOPpQwKQYuh4OF4286L9Rc1pkIwH333cdvv/3GLbfcwsUXX0yFChXw+XyMGzcOXQ/ejxMchZQdKu2p8Pl8AAwcOJA+ffqETNOkSZNi5alQKP55lDApJi6Hg1pVKp3papQpqamprF69mvHjx3P33Xf7w/fs2VPiPGvWrInH4+HgwYPUqVPHH753796AdLGxsURFRaHrOu3bty9xeQqF4syirJqKQmcZH330UYnz7NixI0AB1dXMmTMLlH311VezaNEidu3aVSAfqw1FoVCcvaiZiYLo6Gguv/xy3nvvPdxuN9WrV2flypUcOHCgxHk2a9aMXr168cEHH3Dy5Em/a7A527G6Gk+YMIE1a9YwaNAghg4dSsOGDTl58iR//vknW7du5ccffyztLSoUinJGCRMFAC+99BKTJ09m1qxZ6LpOhw4dePfdd+nUqVOJ83z++eeJi4vjm2++YfHixbRv355XXnmFa665hrCwMH+6atWq8dlnn/Haa6/x7bffcuLECSpXrowQgnvvvbcsbk+hUJQztuIaTM8TUoBCDR+mXj/Y80hRev766y/69+/Piy++SN++fc90df5R1HOlOE9IBSoHByqbiaLcyMnJKRD20UcfYbfbufzyy89AjRQKRXmh1FyKcuPtt99m27ZtXHHFFdjtdn7++WdWrFjB0KFDC6xTUSgU5zZKmCjKjZYtW7J69WreeOMNsrKySEhIYPz48dxxxx1numoKhaKMUcJEUW507tyZzp07n+lqKBSKfwBlM1EoFApFqVHCRKFQKBSlRgkThUKhUJQaJUwUCoVCUWqUMFEoFApFqVHCRKFQKBSlRgkThUKhUJQaJUwUCoVCUWqUMFGc9Rw4cAAhRMDZ8QqF4uxCCROFQqFQlBolTBQKhUJRapQwUSgUCkWpUcLkAiQjI4NnnnmG7t2706xZM9q1a8fYsWPZsmULAN27d+euu+5i+fLl9O3bl+bNm9OnTx+WL19eIK+UlBQmT55M586d/Uf1fvzxxwXS5eTk8Morr3DVVVfRrFkzunXrxv/+9z88Hk9AurS0NCZOnEjr1q1p06YNjzzyCOnp6QXyO3bsGJMmTfKX27FjR+68885SHTWsUChKjto1+ALkiSeeYNmyZYwcOZI6deqQnJzMhg0b2LFjB02bNgVg165dPPTQQwwfPpwBAwbw2WefcddddzFjxgxatWoFQFZWFqNGjeL48eMMGzaM6tWrs2bNGp555hnS0tK4++67AfD5fNxxxx388ccfDBs2jPr167Nlyxbeeustjhw5wnPPPQeAruvcddddbNiwgeHDh9OwYUOWLFnCI488UuAexo8fz4EDBxg+fDjVqlXj+PHjrFq1isOHD1O7du1/qCUVCoWJEibFxOPxkpSScaarQbXK0TidjhJdu3z5cu68807GjRtXaJrdu3fz5ptv0r17dwAGDhxIz549eeWVV5gxYwYAH374IQcPHmTBggXUqVMHgGHDhhETE8M777zDqFGjqFSpEl999RVr165l9uzZtGjRwl9G7dq1eemllxg3bhyNGjVi6dKlrFu3jkmTJjFmzBgAhg8fzujRowPqlpaWxm+//carr75K7969/eF33nlnidpDoVCUHiVMioHH42Xw49M5cCz1TFeF2vGVmDd5TIkESkxMDGvXrmXQoEFUqVIlZJqaNWv6BQlApUqVuP7665k1axZZWVlUqFCBxYsX07ZtW6KiokhOTvan7dixI59++il//PEHnTt3ZvHixTRp0sQ/CzJp164dAGvXrqVRo0asWLECl8vF0KFD/WkcDgcjR45k/fr1/rCIiAhcLhc///wzXbp0oUKFCsVuA4VCUbYoYXIB8uCDDzJx4kQ6duxI8+bN6dKlC3379qVWrVr+NHXr1i1wXb169fD5fBw+fJhGjRqxd+9eNE3zC4VgTMGxd+9edu7cedp0Bw8epHr16kRGRgbEN2jQIOB7WFgYDz74IM8//zwLFy6kZcuWdOvWjb59+xIbG1v0hlAoFGWGEibFwOl0MG/ymHNezXXttdfSpk0bfvjhB1auXMk777zD22+/zbRp0+jUqVOR8/H5fHTq1Imbb745ZHzjxo396S655BIeeuihkOlMFVlxGDNmDFdddRU//PADv/zyC1OmTOHNN9/ko48+IjExsdj5KRSK0qGESTFxOh3UjKt0pqtRaqpVq8aIESMYMWIEycnJDBw4kDfffNMvTPbt21fgmr1792K320lISADk7CU3N5f27dufsqy6deuyY8eO06arVasWa9asITs7O2B2snv37pDp69Spw9ixYxk7diz79++nb9++vP/++7z44ounLEehUJQ9yjX4AsPr9RZwtY2NjaVGjRrk5ub6ww4dOsSPP/7o/56amsrChQtp06aN30bRq1cv1q1bx5o1awqUk5ycjK7r/nQHDx7kiy++KJAuMzPTX27nzp1xu93MmTMnoL4zZ84MuCY7O5ucnJyAsFq1alGxYsWAe1AoFP8camZygZGZmUmXLl3o2bMniYmJREVF8euvv/Lbb78xceJEf7oGDRowceJEhg8fTpUqVZg7dy4ZGRnce++9/jTjxo1j6dKl3HLLLQwaNIiLL76YjIwMtm3bxvfff8/GjRtxOp3079+fRYsWMWnSJFauXEnLli1xu93s2LGDb7/9lvnz51OvXj26d+9Oq1ateP7559m3bx+NGjXi+++/LyD89uzZw5gxY+jVqxeNGzfG5XLxww8/cPToUa677rp/rC0VCkU+NnP0eIGRAhSqq9q7dy8gDc7nG3l5ebz66qusXLmS/fv3o+s6devWZejQoYwYMQKQixYTExMZOnQoU6ZMYc+ePdSrV48JEybQrVu3gPwyMjJ48803Wbx4MUeOHCEmJoaGDRvSs2dPRo0ahc1m85f7wQcf8NVXX7Fv3z6ioqKoW7cuPXr04KabbiIiIgKQiyCfffZZli5dis1mo3v37owdO5b+/fvz3HPPMXDgQE6ePMm0adNYvXo1R44cweFw0LBhQ8aOHRvgKny2cT4/V4oLilSgcnCgEiYhuNBfelOYvPHGG2e6KucVF/pzpThvCClMlM1EoVAoFKVGCROFQqFQlBolTBQKhUJRapQ3l6IAVpdghUKhKArnhDARQoQDTwGjgCrAH8CjmqYtPaMVUygUCgVw7qi5pgP3AzOBewEf8K0QIvRmTwqFQqH4RznrhYkQoi0wDHhY07SHNU17B+gO7AOeL48y7XY7Xq+3PLJWXKDouo7H48FuP+tfOYWiRJwLaq7BgBt4zwzQNC1HCPE+8IwQIkHTtMNlWWBERAQZGRkkJycX2IU2PS+JPD0HO3bsNgc27Niw4cOLT/eh40NHx4YNO3ZsNgc2bDJc9+ELirfbHNhsDkDHp3v9afDH5+fh072WcvT8eBzYbHZ03YduqYcNm1FHB3ZLGWYeAHabHTtO7DancR8eox5eWU+bHbtxvQ2Hkb/MQ9d98v5tdn88+Ix4+SnLcAS0hU/3WuqpG3H2AmXo+PAZZdiNeDtOI9yD16gH4G9LeZ92dN3jr0N+Gfn10I06mp+yrexGW9nRdQLaEghIg2xNfx3NeJvNbjwTdtkW+OQWNiezSM1KJtm3mb8OpRNhj8are8nzZZLryyLPK7eHiXBEEe6IJtIRg8PmIsebTo43nVxfJh5fHuGOCkQ4KhLpqESYoyJ53gyyvalGuiycNhcRjigiHDGEO2PQfV5yvKlke9PJ9WWh4yPcHkm4UY6DMHJ9mbh92eT6svD63Djt4YTZIwmzR+KyR+Dx5ZLnyyLPl43bl4fd5sBlD8dlj8Bli8Cne3Hr2eT5cnD7cgAdpz0cpy0Mlz0cG3bcPjM+F4/uxmlz4bSH4bKF47SH4fHlkuvLxu3Lwe3LA8Bhc2C3OXHYHOj48Pjy8OhuPLo8ndNlDyPMJuthtzn87Zjry8Gje3DYHLhsTpx2Fw6bC48vj1xfLnm+XPJ0j/EO2nDYHEYZOl7di1f34dXN91T+snZj8a1P19HR/Z86yM9Clut58OHx6bh1nYzsMBx2nchwN06bDafNht0m8/Tq4NV1vF47YU4duw0cGPHIwYgP0MGok/y0GWEY9cjNc2C367icuhFv1Nuoow+dCg4HtzR8jriIhkXsEYvGuSBMWgLbNE0L3qp3LbItLwPKVJjExcWRm5vL0aNHSUlJweGQnYdPd5Oem4vus50mh38W63NcWM30IsYXlqa08cXNI1Sa08WXtoxQ/cHp4oPTBafxeX3kufNIz85mw+H9LNp1GI/Ph05aQKegE2Z8d6NzEmwn8zPUjVR6ONi8YEuRf9aK6YAeZvQwWUAW2A4b15nxxutu8wCpYJPn8ui6UX/dBjgAD9jS0EnLvz+fTXZkut0YZOSg23Lyb9xn1sXsUnSw5ci/gDpGYCPCaCcd3ZaHzZYn66C7AFfhP6IeZWkPwGZ0pf7Gj0anIjYjTcBvEdjrBkbo+U0MyOvN+vnLCa6SDroN3Qc+3Y7us6H7bNhsOja7jt2uY7Pp+Lx2fG47HrcD3SdnpXaHD4fLi93p86fxuh14PXbQbdgdPuxOLw6XD7vdh0+34/PaZF5eu8zf4cNu17HbdHy6DZ/HjtdjDyzD6cVu92GzyzrJ29CJqJhHm8HTuarhU5Ql54IwSQAOhgg3BUjNsi7QZrNRq1Ytjh8/Tk5ODj6ffFMOpaWy7o9DZV2c4jwmz+MjPdvN5n3J7D+eAUSd6SopygnrgCJYSR7Y0doBu1/+5ocUjC88jSOgHFsRyjBxH67A579W4aqynZicE8IkEgi1FWyOJb7MsdlsxMfHB4RVzqrO+OnL0bPLo0TFWY85ug01ZbKOfENdBxBmSR8cF0xpp5KF5XGaevpvL8QUrkCQfup4axrdOg0Lrh8h4qyEavNTUdS0/nRSJaT728ZmaTo9P6kRr1ti5EwEsMmRvw7gs0k1qc8mZwROHZtDx+6Qsyifx4butaF7DCWaQ8fmMD5toHvB5zPipcbbH2ezycaQ+csysOvY7flpQM42fV6bMWMyb9OYhbl0+l3ethgNWjTOBWGSDYSHCI+wxP8jVKoQwYaX7sd3Ye5ndl5h6pLNl89mK05vVXx0XT9tGUXdJ89Mpp9S8fbPYTtN710W9ZT2qIK/k67rhn1Lx26zlfvveK5jPmPl0U7ngjA5jFR1BWOG/aN6J5vNhkM9sIpiUpSXt6gveH6yc+U5LL962mw2oz3OlbY4s5SnsD0X/BR/BxKFENFB4VcYn3/8s9VRKBQKRTDngjCZB7iAcWaAsSJ+LLBS0zRlEVcoFIozzDlxnokQYi7QH3gF2AncBFwOdNM0bWUJskzhFOeZKBQKhaJQQp5nci7YTABGA5ONzyrAJuDaEgoSgJiyqphCoVBcYITsP8+JmUk54EGq+NJOl1ChUCgUfmKQDssFJiIXqjBRKBQKRRlyLhjgFQqFQnGWo4SJQqFQKEqNEiYKhUKhKDVKmCgUCoWi1ChholAoFIpSo4SJQqFQKEqNEiYKhUKhKDVKmCgUCoWi1ChholAoFIpSo4SJQqFQKEqNEiYKhUKhKDXlLkyEEP8nhPhTCKGOQisCQognhRC6EKJyiLgybUshhFMIsUcIcWdZ5He2IYSYLoRIOUV8mbWnEKKKECJdCNG7tHmdrQghuhrPZv8QcWX+ngshPhFCzCmr/M4mhBBjjLa87B8qb6UQ4vnyLKNct6AXQlQCHgTu0TRNt4TfAXRHnpZYF/hI07QxheQx2sjjIuAk8Bnwf5qmZQSlSwCeAq4GqgEHgc+B/2qallJI3g7gN6A5cL+maa+W8FYRQtiBMcAtRn4OQANmAq9pmpYXlH4isE3TtC+LmH95teXrwP8JIT7QNC3XSHcx8BzQFfmMrAEe1jRtwynqFwNsB6oDA4p6X4XkFQbcDYw06uoDNgPvAdM1TfNZ0kYAE4FlmqYtK0YZBdpTCFEVuBnoCyQiD2X7C3hZ07TPQuRRGXgBGABUAE4ALwLfhkjbF3gSuARIAt4HntE0zXOKOr4B3Aks0DStf1HvrZC8ugATgHZAReT78TXwrKZpSUFphwE1ivo+lFNbrgHeAmYLIZprmvanka7Iz3tQ/ouA3sD/NE27ryj3dYq8+iOfz9ZABLAbeYjfi5qmpQelvQPI0TRtemnKLANeAD4RQrwU/HuXFeU9M7kFeTjz3KDwiUAP5MOVF3yRiRDiXuAj4AjwAPChkecC6whICBEFrEIeoDUduAf4HvnyfH2K+t0BNCzG/RRWTyeyY34fyAUeM8reDbwELA1x7PBEo75Fpbza8jqk8B1qpKsPrATaIh/AR4GqwDIhxCWnqN/jQPA9FhujnX5EttteZCf1f0AWsn3nGoMAkwjgCaTgKw6h2rMd8AxSKDyNvPdso8zHg+ppB74BhgHTgIeRv31TozO2pu0NfAkkA+ON//+NPOwtJEKIS5Gni+YU875C5XU/sAwQRpn/AhYBtwG/G4MHK8OA+4pRRHm0ZXXgHeTZRfdbkhfpeQ/K/zqgczHu51R5/Q/4Ank41NPIvmYN8hldawxqrdyBHGSeab5GHrlxR3kVUN6HY40BvgwelQNdgH2apumFqSGMo3n/g+xYellGPKuQDdMP+VICXA/UB67XNO0bSx7ZwAQhRANN03YH5R+LnMm8YJRTGh4BBgLPaZr2f5bwt4QQtwFvAy8jX96SMoYyaksjOAIpgL8G1hv5f2zcSxTQVtO0Hcb17wLbgGcJIQCFEBchX6pnkaPv0vAK0AG4Q9O0ty3hrwkhngUmGXV8tpTljKFge24BmmiattcMMGYHPwCThBBTNE3LNqIGA+2BQcA3mqblGieCHkF2Mp9a8p2CnAH30jTNa+SbZuQ5VdO0v0PU73/IWW330tykEKITUjD/hDxQLscS9yGwAvhMCNFS0zR3CYsZQ9m05QBN074UQlRACqbtgBcYLIS4W9O0LIrwvAfdfxjymSr1ey6EuBH5nH8CjLbMkN81fvuFyAFbz9KUU5YIISpompalaZpPCPE5MFoIMdmq3Sgrym1mIoRogFT3/BAcp2na3iLcTFPk0bpzrGk1TVsIZGCMpA3Mk7+OBuVxxPjMpiCTgV3AjNPU45QYD/6DyM728eB4TdPeAZYCNwsh6hjX6Mh7u8nQm+pCiOlBl1YRQnwshEg1Op7myBc/mO7ABkNwxgAdhRDVg9LsNsrbDGxAjnaHWtrSDnQx1BUdgA2mIDHuIQv4CugthKgYog6vIF+k5SEbqYgY7TMW+CFIkJg8jlQdPiSEqGDMok4acU9Y2vLJ4HyFEF8JITKEEMeEEO8Q9Gwao+NBwHdCiFwhxGEhxDSkYP0SiATqG/m/ipx5epCdXjsATdOOITvRhkIIl5HvJUjV1tumIDF4A9nug0K0ww3IY6kfLUq7nYbHkGrCsVZBYtR3I/Bf5Ls22Ch7GXKgVs/SnnuC8rQLIR4XQhwUQuQi2/LPoLx3A7WEEEuEEGlCiExgCfL5i0QO/jCe+5nId/cOIUQG8IbRlnORKrKKwFVGvkXpO6zca5Q3pRjXFMa/kbPLO62qVqNe3yJn+1cLIdoBGO3WAvlumW25LCjPCCHEq8ZzmSmE+EIIER9csBDieiHEKiNNqpGucVCaZUKI34UQbYUQvxh9wsOWJEuARkCzUrVCIZSnmqu98bmxhNeHG5+hBEE20Mry/WfkC/M/IcSVQojaQog+yBd+uqZpR6wXCyGaA7cj1T2lldAdkVPe2UGdhZUZSBuKOSsYhVTb/Gz8Pwo5e7HyOfIlmIicOYDs6P0IIZ5A2hG2IlUBeUg98k9CiEhLUlMleDNSvXEvUviBbMs45LPQDtnuodo8Cwgj6EEUQlyLVDs8HOKa4tIb2U4hBbzRvrOR7d0eOIb8HUGqHsy2nG+5zIVUeSYhhf4K4FYjzvpsvo9Uyywjf/R5K7AAqGGkOW589kTqy3cg1UGHLfn8imzvq43vLY3P9ZY0aJp2CDhgiQfA+N2mAM9rmmbNt9gYA53uwArrDCEIs62vMz6fQXb4x8lvz/uCrnkMaQt5ATmIALgpqOweyLYMR3bCjwO1LXkdtyR3IgXGAeQ7aWoX1iKFeQ5Bz35REELUMMr9P2NAVGKM2fdFSPtVeiHJgtvyPmAf8l0z2/KZoGveQArzJ4E3gT7Aa0Flj0EO5o4j37PnkGroX0IMHOORv8k65Hv+qyXOtHkWuy2LQnmquRKNz92nTFU4fyM7+g5YOhchhEA2mL+z1DRtm6FOmgKstuTxDtKAGcxU5LT8Z2N0WxpMffOmU6Qx4y4G0DRtphDiNWCXpmkzC7lmnaZptwMIIWoC3ZAqpnFGWH3ki/KwpmkvGWH/Rdo7eiNf7reMvEz1xU+apj1mFmBpy0wj6BLkyL+DECJK0zQzHKTQBKhpud6FnJVM0zRtpznzKgXFaktN034w1AtvA5sKacsKwMeapj1nfH9LCHEYKSB2G/fRCamqGaxp2ufmhUKIdUh1VSukgf+YbDIuQtpHVmiaFvDiky+kL0cKblOHHkowHMbSngYPI4VRWYykmyDf8ULbU9O0vcbM13w2lwgh/gXEneLZdAFXaJrmFkLEIVW8lwohmmmattmY5b0JLNY0rY95kaFm2QUkGTMPExvSGWVcUDlmmx1HPpvF5TnynWBKS0ne8y+NWXLKKdoyCehtUePbgXuEEJU0TUsV0ob4KvC6pmnjzYuE9HLbghxETrTkVxO4RdO0D4IL0jTtoBAij5K15WkpT2FSFenFUCIDoqZpx42O4hYhhIYcIdZCGujcWISJwQGkFP4WORrohBxhJiP17AAIIUz9bLDRsaSYap/CRivWuJhTpAnmLcv/VZH3XFUIEaNpWhrS68UGzDdeaIzvaciXsKslD59Rh95CGmOD2zLCSBdH/ujoUyHEv5GC5i6gjZHG2u73ArFIG0FZUF5tGTzrO4b0VjKfzcHI52S5pS1Bzhx1o173WMJ/RKpdckOUdcL4NPMx2ytU2hyksANACFEXaQ+61WJPKA1FaU8zvjjt+YHFvlIVeW/hSGeWzUjVTmOk6tH6bL5v/G91oDD5PUSY+ftkkt+eRUII0RYYDXQpI/tAuT2bQfX7GSkg6iGF09VIFfXcoGczHfiDgo4nWZxadX+SYrZlUSlvA3xpfc5vR76MLxt/IEcZOzF0qABCiA7Iqd3lmqb9bgR/aYy4nhBCTNc0TRPSjXQK0j1wVynrZmI+QKFsCQTFne6ltrIv6LvZllWQAqMJUjUVfB+mJ1Gw3nUd0j5SWFtWAnRN074VQoxH6tJNNdAOpP7+BSMPjOn148AkrRDX6xJQHm2ZoWlaclBYcMfeBCkUjxGan03XVIPdSFVgeIi0pmA2jdGmUCgsrVVovIi0PcwqpB7FpSjtacYXx130VM8myPYEqSoMRZUQYaFcpM221CmGOlpIT8//AZ9rmvZLUa87Df/Ue27aAIPbMpS9FAq+/wdO40hho/Sq/ZCUpzA5AYQLISJLOsrSNC0V6GeM2OoDe41p+SqkGszkduCQRZCYfIXURbZDTnfvQo6kPrGot2obn7FG2MFierWYao1LyfcuC+ZS43NrMfK12l9OkP9bmS+u3UjTm/yH40ukmutF8h9Kk3RN0/oX0pZ7kKPJ4wCapr0mpKfPpchO8Xek+yfkt/ujQCrwvaUtTdtCNSOsuMZSa1v+Xkia4rZlKDtWFkj7hPFs2pGzudGWNKOM7+8gOyYr2Ub6YDdQkCNKkG0K+aqaBAqquhKQHnUIIVoDQ4AbkcZvM40TMJ0NTpxCXx+KHchO+tLCEggh6iFH0qV5NsOM/63PJsgR9mYC27LAGhPkzDlUW5phkQTaWE7HAKRN4f9CqLFjjLCjxeyXrM9mYZT2PbcS3JYjCD3YCb6H091TZYrXlkWmPIWJ2fgNKF7jFkDTtH0YElzIxU2tCfTRr07oqbPL+DTvsy5yLcTvIdI+bvxdTH7di8IvyE51mBDimUKM8CORD81iS1hJOlkrO5H3/LemaXsAhBAe4LCmaQU86EwKacu5SGHylyVdJhb7k2FQPWxJUxeoQ6BQNzHVSpEUb53Et8h2Gol0Uw5AyPUlw4AUjE6Yko2yzJfJfDZ3Im1SPxsuvv9Cdn6vaJr2QCF5/A60F0LYggTmlcbnT5Z0INWEfoO/YQerbYk37U2hRvO1kLOhOwlUf54STdMyDe+hrkKIusZvH8xI4/MbS1hZPJsgfyfB6dvSC7QO0ZZXIGfC1bE8m0WgLrIT/jFE3FjjrzfwXVEzNDQbfyMHt9Fa0KJpg9K2ZSjMtjysFWNRbiiEELWQgr84bVlkytOby+yI2pwyVfF5DjmSserBtyPdEDsFpR1ufP5mfL6PHLVY/0xvoA+M7weKUxmj030ZKYSeDI4XQtyC9Hb6QNO0/ZaoTOQooSisDhH2BbId/h2iTLuQ62hOh9mWO5EP/a+hEgkh2iONrFMtLpHPUbAtTdfo/xrfi7SozMTo7D5GulfeEiLJk0jHjhct3jnZRt0rF6Mo8zc2n815yJdsohBiKNJB4xPkGqVwIVf3BzMPaezsZwYYOu32yPveYtzTFmSHe5sIXGx5J7LtTYP/Ggq25wDkaHSt8X+ROz8LzyAHHR8Iud7Ij5BbeUxECtR5lqhMpNqzKIR6Njci1S9PYWlLS7nBKlg3odvyBqS7ubkmqqh8Tei2BKkOH0DJvEyfRqpDXzcM5X6EEL2QQmqJpmnWNinOex6K75Fq7f8TcnF0AEF2lNPR2vgsTlsWmXKbmWiatksIsRnZkQaMMg233RbG13CkJ4jpZTTDdGMUQjyK7KTXIKfr/ZFumbdrgYsQX0P+kAsNL6l9yMVNw4HvNGMbEEPvHeAPb5kG/6kFbQEi5HqQ5ZqmdT3N7T6L9Ph5TEgf8y+RL0gPpHF3JdLl0coGoIcQ4gHgELBb07Q1oTI32vIA+So5NE3bYRjInxZCdEN2WBWQI67jSGPyfRaX0IuEEDMJ0ZZIg/tyTdNShBCNkDr7r5DrdJoZaVaQb2shVF1F/iKyNda2NNp4N0Xb+uI+pMB4z3A7XoLsDPsj23M+4N9jSNO0PCHEn8BQIcR2pCF9s6Zpm09RhqkC7IH09PpJCPEeUlj5MNRgyJnkFcAbQogtRl1M5iGF78dCiCnINr8LORv+ImiE/RCyPRcbXjjNkNtxvK1p2nbjPg4TQk0q5JqWwyGezWVI4/Ip7ZKapi0TQjyCtHf9IeS6jmNIlcytyFn1DUGq3Q3AjUKIlzFsbZqmhdxJwng2NeQMxAzzCiFeQm7V40W6975rDHCaA0eFEIM0TTPXhbkJ3ZZ2pBG6C3KtVpH6Dk3TdpI/ore2GcDOEG25x6h3/VD3aLmvjw3D/r+AS4QQs5EdfXvk7OtvglykkW053qjjDqQnW6gZU2Flpgoh7kYuhlxvPD8nkKrqvshn5rFCMwjkauR7+OfpEpaE8t5O5UOgr5CrUK0MQi4anIwcdbS0fG9gSbcJ6Yb5LPJliEC60b1jzUzTNA0pdb9H6menIX/gF5Aj6mIj8rc/Oa2vvyb3VxqIfDmjkKP2V5DGsweB7iGmxQ8i1x48jVw7cbrNFk1Doqm6Q9O0Z5Ajt/rANUZcNaTxrj+BbZlGiLYE5iCFykdGuhSkEBmP9IG/Htl5X6sVXH1fVIrTlmlIldNDSO+gl5AznWikW/QNIVSJtyFnGy8j23JwEetlfTZvQw567EZZNyJfvhjk6H0GFg9Aow7XIlWE9yDtVJnG9QHuwppcHDoQaa+bZvxvbsVRUqLJX5R7SjRNexG53uRv5HP3BnIA8S7QQtO0YDX020jnjDHIgcW00xRh2kGsM68sS1h/pM1tANLLqwMFvSmD2/IY8jnojjSkm27qRe07ikMURXg2ATRNuxv5fKUhtQKvIW2yzyJ3jQjO5xnkbOhh5LNZQJNQhDJnIJ/FY8hn8VWjDqsI3GmhUET+otyPy8i7rQA2XS+XfAG/Tn43cgO4Uq00/6cRQlyDXCfQIsiT50zVpzLl0JZCiHuQD3rjkrpxF6GMO5BedI0so9EzSnm0pzGS76xpWlmrdoPLiUbOru7TNO318iyriPWpTPk8my2Q6qiWmqadan1HacpIRNoQArZiOt8QcqPR2UDD8noHy3VmYriMvgg8LM69Lei7Ap+eDYIEyqctDR3sA8jda8tFkBh0RdpbzgpBAmXfnkKIKsiZaYEtdcqBjshdf9/9B8o6LeX4nj8MzCsvQWLQFVh9PgsSg0eQu5eX2ztYrjMThUKhUFwYlLfNRKFQKBQXAEqYKBQKhaLUKGGiUCgUilKjhIlCoVAoSo0SJgqFQqEoNUqYKBQKhaLUKGGiUCgKIIToL4KOP1YoToUSJgqFIhT9gSfOdCUU5w5KmCgUZYAQwmUcvnZBIoSIDLWrreLCQa2AV5xTCCEGIHcOvk3TtALbiRi7+4YDTTRN04UQTZCb6/VAbrR4CLkx4ZOWzQPNPZruQe5QWxe5QeFfwJuapr0XVMaTyFF7M+QGhkOQBzlddaozJ4ytRsYZf02N4N3IXYb/bUkXB/wHuStsdeAoctfhf2uadsKSzqxHA/NMG0vcHmCPdcdrYxfsj5AbOf4XuQV/DvI4g/vMzUjNHYlD3MJYTdOmGzsP34TcVPR54DrkyZ5XIjck/UzTtBtD3P/ryA1NGwbXV3Huo0YSinONr5G75d5M0N5UQogrgUuARw1B0hp5QFIKsgM9iNy+/B6ggxCii2Xr9a5AZ+QOr7uRO8negNw6PV7TtOdC1OUT5HkqLyHPVDndzrMzkLsRr0HuJpuC3G5/MMZuskKISsjdYBsjz9jZiNwZ906guxCibTFPWwzmMuQ9fojcEbgrUiD6kDsnY9TNDnRC7sJtEnwOxhLkbzEZ2V67kEJvoBCismY5ztmYtY0AflCC5PxECRPFOYWmaR4hjxSeJIS4JGj79FuQ52dMN75/gOzgL7d2wEKIpcjZzY2WtDM0TQs4xVAI8QpSGE0UQkzRCh7nnAL0MI4gOCVCCPNI3pnATZZDxsztwU0eRh5d8C9N096wpPkdud35w5RuM8lLgXaW82jeNg7/GiuEeEDTtAxN05YIIW4EOmmaNvMUeW3WNG2kNUAI8Q5yq/MRyK3uTQYhD4kKmOUpzh+UzURxLvIucibgP41RCBEFDAW+1TTtkBCiObLjnAWECyHizD+kKiYTeY4L4D8x08wrQghRFXmq3vfIM00SQ9Tj1aIIEgNT7fOgVZAYZVu/m6crBpzZg5xZHSP/xMCSsjrEwWY/IgeW9YuZ15QQYUuQM7vgkzJvQR7q9GUxy1CcIyhhojjnME7Z/AEYJYQwDwsbAlQkf+RrHr70H2QnbP1LQqplqpt5CiGihRBThBD7kKqr40baZ4wkVUJUZXsxqt0EeWLi6bYAb4A87y1ASBnftyMPDCsNu0KEmXaYqsXMq8D9GwcvvQe0Mo4FRgjREKlOm1GKA9YUZzlKzaU4V3kHaUjvizxH/Rak/t48l8I8V+MlCj87/aTl/1nIUyXfQR5RfAKpMrsWuJ/QA6+sEGH/JKfynins3Q4+pdJKsc4i0TStsPv/ACnEb0Ge2HmzkbdScZ3HKGGiOFdZgJxh3CKE2Iw8CvZ5y4j+b+PTq2naD6fKyDgp8HrkyPmOoLgeZVTf7UA/IUT108xOdslihdM6OzHcbi8icGaRbHzGAnssaSOQ3mU7SlHfErt5app2RAjxNfIc+YnI43/XaJq2pRT1UZzlKDWX4pzEMIZPB3qRv7jufUuS34DNwB2GmiUAIYRTCBFrfDVH67agNAlIN96y4BPj84Ugg7vpMmzyJdLNNrjcW43wLyxhppopWOAVNpMqDqabcOzpEhbCu0jV4FtALdSs5LxHzUwU5zLvAg8Bw4HlmqaZsxEM1+BRSOPyJiHEB8AWoALS7XYgMAmYrmlauhDie2CkECIbWAfUA25HGpOLZUuwrP8Yq2nadKM+nwkh5gCjgSZCiK+QaraLkAKxmXH5C0iX5NeFEK2QQrElUmWkGfEmPxhhTxkOA7uRR/peibT5lIZfgbuBN4QQ3wBu5OxidxGvXwzsBUYiBdOnpayP4ixHzUwU5yyapu0AfjK+vh8i/ndkRzwTaVuZBjyG7GynA0styUcidf19kC64/YFHgddLULWKxufBoPARyA46ArmuZApwNdL2Y9Y5Famyextpr5lqfL4FdLS6OGua5jXuaxnSNvFfIAy54NDvnVZCZiPtTR2RbTWb0AsZQ2J4qJm/yVxzQaTi/EWtgFec0wghFgHtgJqapmWf6foACCE2AumaphW58z0fEUI8jFwh317TtNVnuj6K8kWpuRTnLEKIxkgV0RtnkSCphlxlf8WZrsuZxHAYuB34UwmSCwMlTBTnHEKIK5DrSO4B8pDqmLMCTdOSkPt6XZAIIRogZ4r9kGtihp/ZGin+KZQwUZyL3Ik0ZO8CblR7PZ1VdEHu+3UceErTNGV4v0BQNhOFQqFQlBrlzaVQKBSKUqOEiUKhUChKjRImCoVCoSg1SpgoFAqFotQoYaJQKBSKUqOEiUKhUChKzf8DR74Ui5zaz8kAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x216 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# back to simpler example, adding plots\n", | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
" .groupby(['year', 'country'])\n", | |
" .mean()\n", | |
" .plot()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 71, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead tr th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead tr:last-of-type th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th colspan=\"2\" halign=\"left\">city08</th>\n", | |
" <th colspan=\"2\" halign=\"left\">comb08</th>\n", | |
" <th colspan=\"2\" halign=\"left\">highway08</th>\n", | |
" <th colspan=\"2\" halign=\"left\">cylinders</th>\n", | |
" <th colspan=\"2\" halign=\"left\">displ</th>\n", | |
" <th colspan=\"2\" halign=\"left\">fuelCost08</th>\n", | |
" <th colspan=\"2\" halign=\"left\">range</th>\n", | |
" <th colspan=\"2\" halign=\"left\">speeds</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>country</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" <th>Other</th>\n", | |
" <th>US</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>year</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1984</th>\n", | |
" <td>19.384615</td>\n", | |
" <td>16.079232</td>\n", | |
" <td>21.417330</td>\n", | |
" <td>17.797119</td>\n", | |
" <td>24.847038</td>\n", | |
" <td>20.669868</td>\n", | |
" <td>4.908046</td>\n", | |
" <td>6.033613</td>\n", | |
" <td>2.691406</td>\n", | |
" <td>3.808594</td>\n", | |
" <td>2118.125553</td>\n", | |
" <td>2578.871549</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.969054</td>\n", | |
" <td>3.872749</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1985</th>\n", | |
" <td>19.284768</td>\n", | |
" <td>16.275472</td>\n", | |
" <td>21.373068</td>\n", | |
" <td>18.025157</td>\n", | |
" <td>24.816777</td>\n", | |
" <td>21.020126</td>\n", | |
" <td>4.871965</td>\n", | |
" <td>5.949686</td>\n", | |
" <td>2.636719</td>\n", | |
" <td>3.765625</td>\n", | |
" <td>2141.997792</td>\n", | |
" <td>2553.899371</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>3.958057</td>\n", | |
" <td>3.886792</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1986</th>\n", | |
" <td>19.167183</td>\n", | |
" <td>15.945035</td>\n", | |
" <td>21.213622</td>\n", | |
" <td>17.645390</td>\n", | |
" <td>24.650155</td>\n", | |
" <td>20.464539</td>\n", | |
" <td>4.804954</td>\n", | |
" <td>6.136525</td>\n", | |
" <td>2.537109</td>\n", | |
" <td>3.925781</td>\n", | |
" <td>2149.148607</td>\n", | |
" <td>2588.741135</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.069659</td>\n", | |
" <td>3.886525</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1987</th>\n", | |
" <td>18.633381</td>\n", | |
" <td>15.611722</td>\n", | |
" <td>20.710414</td>\n", | |
" <td>17.326007</td>\n", | |
" <td>24.186876</td>\n", | |
" <td>20.208791</td>\n", | |
" <td>4.825963</td>\n", | |
" <td>6.164835</td>\n", | |
" <td>2.583984</td>\n", | |
" <td>3.931641</td>\n", | |
" <td>2227.318117</td>\n", | |
" <td>2630.036630</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.142653</td>\n", | |
" <td>3.902930</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1988</th>\n", | |
" <td>18.668224</td>\n", | |
" <td>15.577869</td>\n", | |
" <td>20.814642</td>\n", | |
" <td>17.372951</td>\n", | |
" <td>24.437695</td>\n", | |
" <td>20.420082</td>\n", | |
" <td>4.819315</td>\n", | |
" <td>6.307377</td>\n", | |
" <td>2.531250</td>\n", | |
" <td>4.066406</td>\n", | |
" <td>2207.476636</td>\n", | |
" <td>2623.258197</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.205607</td>\n", | |
" <td>4.028689</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1989</th>\n", | |
" <td>18.533040</td>\n", | |
" <td>15.139831</td>\n", | |
" <td>20.662261</td>\n", | |
" <td>16.908898</td>\n", | |
" <td>24.252570</td>\n", | |
" <td>19.887712</td>\n", | |
" <td>4.879589</td>\n", | |
" <td>6.366525</td>\n", | |
" <td>2.542969</td>\n", | |
" <td>4.171875</td>\n", | |
" <td>2250.000000</td>\n", | |
" <td>2698.093220</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.264317</td>\n", | |
" <td>4.025424</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1990</th>\n", | |
" <td>18.510109</td>\n", | |
" <td>14.850575</td>\n", | |
" <td>20.640747</td>\n", | |
" <td>16.577011</td>\n", | |
" <td>24.267496</td>\n", | |
" <td>19.485057</td>\n", | |
" <td>4.839813</td>\n", | |
" <td>6.466667</td>\n", | |
" <td>2.507812</td>\n", | |
" <td>4.265625</td>\n", | |
" <td>2238.258165</td>\n", | |
" <td>2728.735632</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.328149</td>\n", | |
" <td>4.105747</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1991</th>\n", | |
" <td>18.087943</td>\n", | |
" <td>14.803279</td>\n", | |
" <td>20.174468</td>\n", | |
" <td>16.599532</td>\n", | |
" <td>23.809929</td>\n", | |
" <td>19.683841</td>\n", | |
" <td>5.029787</td>\n", | |
" <td>6.538642</td>\n", | |
" <td>2.609375</td>\n", | |
" <td>4.351562</td>\n", | |
" <td>2348.581560</td>\n", | |
" <td>2725.761124</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.341844</td>\n", | |
" <td>4.234192</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1992</th>\n", | |
" <td>17.915374</td>\n", | |
" <td>14.895631</td>\n", | |
" <td>20.098731</td>\n", | |
" <td>16.735437</td>\n", | |
" <td>23.820874</td>\n", | |
" <td>20.063107</td>\n", | |
" <td>5.145275</td>\n", | |
" <td>6.446602</td>\n", | |
" <td>2.708984</td>\n", | |
" <td>4.250000</td>\n", | |
" <td>2373.272214</td>\n", | |
" <td>2703.762136</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.356841</td>\n", | |
" <td>4.252427</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1993</th>\n", | |
" <td>18.084866</td>\n", | |
" <td>15.007772</td>\n", | |
" <td>20.309760</td>\n", | |
" <td>16.896373</td>\n", | |
" <td>24.172560</td>\n", | |
" <td>20.230570</td>\n", | |
" <td>5.114569</td>\n", | |
" <td>6.497409</td>\n", | |
" <td>2.683594</td>\n", | |
" <td>4.281250</td>\n", | |
" <td>2333.097595</td>\n", | |
" <td>2677.202073</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.371994</td>\n", | |
" <td>4.279793</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1994</th>\n", | |
" <td>18.046474</td>\n", | |
" <td>14.952514</td>\n", | |
" <td>20.264423</td>\n", | |
" <td>16.829609</td>\n", | |
" <td>24.173077</td>\n", | |
" <td>20.201117</td>\n", | |
" <td>5.185897</td>\n", | |
" <td>6.608939</td>\n", | |
" <td>2.712891</td>\n", | |
" <td>4.414062</td>\n", | |
" <td>2326.041667</td>\n", | |
" <td>2697.625698</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.355769</td>\n", | |
" <td>4.293296</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1995</th>\n", | |
" <td>17.678914</td>\n", | |
" <td>14.533724</td>\n", | |
" <td>20.091054</td>\n", | |
" <td>16.422287</td>\n", | |
" <td>24.263578</td>\n", | |
" <td>19.747801</td>\n", | |
" <td>5.444089</td>\n", | |
" <td>6.715543</td>\n", | |
" <td>2.908203</td>\n", | |
" <td>4.507812</td>\n", | |
" <td>2355.191693</td>\n", | |
" <td>2759.677419</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.380192</td>\n", | |
" <td>4.313783</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1996</th>\n", | |
" <td>18.480545</td>\n", | |
" <td>14.926641</td>\n", | |
" <td>20.906615</td>\n", | |
" <td>16.961390</td>\n", | |
" <td>25.093385</td>\n", | |
" <td>20.544402</td>\n", | |
" <td>5.147860</td>\n", | |
" <td>6.579151</td>\n", | |
" <td>2.708984</td>\n", | |
" <td>4.277344</td>\n", | |
" <td>2250.291829</td>\n", | |
" <td>2622.586873</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.416342</td>\n", | |
" <td>4.262548</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1997</th>\n", | |
" <td>18.090909</td>\n", | |
" <td>14.978632</td>\n", | |
" <td>20.509470</td>\n", | |
" <td>16.991453</td>\n", | |
" <td>24.678030</td>\n", | |
" <td>20.683761</td>\n", | |
" <td>5.261364</td>\n", | |
" <td>6.581197</td>\n", | |
" <td>2.787109</td>\n", | |
" <td>4.218750</td>\n", | |
" <td>2319.128788</td>\n", | |
" <td>2600.427350</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>4.452652</td>\n", | |
" <td>4.290598</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1998</th>\n", | |
" <td>17.925267</td>\n", | |
" <td>15.288000</td>\n", | |
" <td>20.457295</td>\n", | |
" <td>17.408000</td>\n", | |
" <td>24.704626</td>\n", | |
" <td>20.944000</td>\n", | |
" <td>5.275801</td>\n", | |
" <td>6.436000</td>\n", | |
" <td>2.800781</td>\n", | |
" <td>4.105469</td>\n", | |
" <td>2295.373665</td>\n", | |
" <td>2578.800000</td>\n", | |
" <td>0.144128</td>\n", | |
" <td>0.420000</td>\n", | |
" <td>4.485765</td>\n", | |
" <td>4.272000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1999</th>\n", | |
" <td>17.925125</td>\n", | |
" <td>15.709163</td>\n", | |
" <td>20.386023</td>\n", | |
" <td>17.756972</td>\n", | |
" <td>24.577371</td>\n", | |
" <td>21.099602</td>\n", | |
" <td>5.377704</td>\n", | |
" <td>6.362550</td>\n", | |
" <td>2.832031</td>\n", | |
" <td>4.042969</td>\n", | |
" <td>2312.728785</td>\n", | |
" <td>2582.470120</td>\n", | |
" <td>0.251248</td>\n", | |
" <td>1.334661</td>\n", | |
" <td>4.507488</td>\n", | |
" <td>4.215139</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2000</th>\n", | |
" <td>17.881849</td>\n", | |
" <td>15.714844</td>\n", | |
" <td>20.301370</td>\n", | |
" <td>17.757812</td>\n", | |
" <td>24.416096</td>\n", | |
" <td>21.128906</td>\n", | |
" <td>5.441781</td>\n", | |
" <td>6.332031</td>\n", | |
" <td>2.859375</td>\n", | |
" <td>3.978516</td>\n", | |
" <td>2385.958904</td>\n", | |
" <td>2529.492188</td>\n", | |
" <td>0.304795</td>\n", | |
" <td>0.449219</td>\n", | |
" <td>4.619863</td>\n", | |
" <td>4.253906</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001</th>\n", | |
" <td>17.941267</td>\n", | |
" <td>15.643939</td>\n", | |
" <td>20.289026</td>\n", | |
" <td>17.496212</td>\n", | |
" <td>24.372488</td>\n", | |
" <td>20.768939</td>\n", | |
" <td>5.479134</td>\n", | |
" <td>6.310606</td>\n", | |
" <td>2.873047</td>\n", | |
" <td>3.976562</td>\n", | |
" <td>2399.536321</td>\n", | |
" <td>2568.371212</td>\n", | |
" <td>0.187017</td>\n", | |
" <td>0.443182</td>\n", | |
" <td>4.761978</td>\n", | |
" <td>4.412879</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002</th>\n", | |
" <td>17.644412</td>\n", | |
" <td>15.083916</td>\n", | |
" <td>20.076923</td>\n", | |
" <td>16.979021</td>\n", | |
" <td>24.207547</td>\n", | |
" <td>20.195804</td>\n", | |
" <td>5.576197</td>\n", | |
" <td>6.433566</td>\n", | |
" <td>2.935547</td>\n", | |
" <td>4.058594</td>\n", | |
" <td>2425.689405</td>\n", | |
" <td>2610.139860</td>\n", | |
" <td>0.137881</td>\n", | |
" <td>0.132867</td>\n", | |
" <td>4.920174</td>\n", | |
" <td>4.367133</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003</th>\n", | |
" <td>17.565101</td>\n", | |
" <td>14.826087</td>\n", | |
" <td>19.953020</td>\n", | |
" <td>16.628763</td>\n", | |
" <td>24.052349</td>\n", | |
" <td>19.806020</td>\n", | |
" <td>5.683221</td>\n", | |
" <td>6.588629</td>\n", | |
" <td>3.031250</td>\n", | |
" <td>4.171875</td>\n", | |
" <td>2480.604027</td>\n", | |
" <td>2637.625418</td>\n", | |
" <td>0.127517</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.154362</td>\n", | |
" <td>4.307692</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004</th>\n", | |
" <td>17.426290</td>\n", | |
" <td>14.928571</td>\n", | |
" <td>19.923833</td>\n", | |
" <td>16.805195</td>\n", | |
" <td>24.160934</td>\n", | |
" <td>20.165584</td>\n", | |
" <td>5.729730</td>\n", | |
" <td>6.558442</td>\n", | |
" <td>3.087891</td>\n", | |
" <td>4.199219</td>\n", | |
" <td>2476.719902</td>\n", | |
" <td>2607.305195</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.229730</td>\n", | |
" <td>4.308442</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005</th>\n", | |
" <td>17.412170</td>\n", | |
" <td>15.196610</td>\n", | |
" <td>19.892078</td>\n", | |
" <td>17.132203</td>\n", | |
" <td>24.189437</td>\n", | |
" <td>20.664407</td>\n", | |
" <td>5.773823</td>\n", | |
" <td>6.447458</td>\n", | |
" <td>3.152344</td>\n", | |
" <td>4.132812</td>\n", | |
" <td>2493.455798</td>\n", | |
" <td>2592.881356</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.362801</td>\n", | |
" <td>4.688136</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006</th>\n", | |
" <td>17.062575</td>\n", | |
" <td>15.300366</td>\n", | |
" <td>19.509025</td>\n", | |
" <td>17.285714</td>\n", | |
" <td>23.762936</td>\n", | |
" <td>20.875458</td>\n", | |
" <td>5.977136</td>\n", | |
" <td>6.476190</td>\n", | |
" <td>3.345703</td>\n", | |
" <td>4.171875</td>\n", | |
" <td>2527.496992</td>\n", | |
" <td>2574.725275</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.492178</td>\n", | |
" <td>4.776557</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007</th>\n", | |
" <td>16.996403</td>\n", | |
" <td>15.489726</td>\n", | |
" <td>19.452038</td>\n", | |
" <td>17.626712</td>\n", | |
" <td>23.742206</td>\n", | |
" <td>21.202055</td>\n", | |
" <td>6.044365</td>\n", | |
" <td>6.513699</td>\n", | |
" <td>3.423828</td>\n", | |
" <td>4.210938</td>\n", | |
" <td>2544.664269</td>\n", | |
" <td>2510.958904</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.864508</td>\n", | |
" <td>4.883562</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008</th>\n", | |
" <td>17.239869</td>\n", | |
" <td>15.770073</td>\n", | |
" <td>19.677985</td>\n", | |
" <td>17.937956</td>\n", | |
" <td>23.983571</td>\n", | |
" <td>21.697080</td>\n", | |
" <td>6.095290</td>\n", | |
" <td>6.518248</td>\n", | |
" <td>3.462891</td>\n", | |
" <td>4.222656</td>\n", | |
" <td>2551.369113</td>\n", | |
" <td>2486.678832</td>\n", | |
" <td>0.109529</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.969332</td>\n", | |
" <td>5.120438</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009</th>\n", | |
" <td>17.696803</td>\n", | |
" <td>16.148014</td>\n", | |
" <td>20.186329</td>\n", | |
" <td>18.259928</td>\n", | |
" <td>24.590959</td>\n", | |
" <td>22.140794</td>\n", | |
" <td>5.970232</td>\n", | |
" <td>6.620939</td>\n", | |
" <td>3.402344</td>\n", | |
" <td>4.351562</td>\n", | |
" <td>2433.076075</td>\n", | |
" <td>2407.220217</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>6.189636</td>\n", | |
" <td>5.563177</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010</th>\n", | |
" <td>18.325342</td>\n", | |
" <td>17.278970</td>\n", | |
" <td>20.851598</td>\n", | |
" <td>19.600858</td>\n", | |
" <td>25.256849</td>\n", | |
" <td>23.785408</td>\n", | |
" <td>5.897260</td>\n", | |
" <td>6.223176</td>\n", | |
" <td>3.357422</td>\n", | |
" <td>4.050781</td>\n", | |
" <td>2374.429224</td>\n", | |
" <td>2263.304721</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>6.378995</td>\n", | |
" <td>5.866953</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011</th>\n", | |
" <td>19.247387</td>\n", | |
" <td>16.817844</td>\n", | |
" <td>21.635308</td>\n", | |
" <td>19.014870</td>\n", | |
" <td>25.855981</td>\n", | |
" <td>22.973978</td>\n", | |
" <td>5.851336</td>\n", | |
" <td>6.394052</td>\n", | |
" <td>3.320312</td>\n", | |
" <td>4.167969</td>\n", | |
" <td>2326.248548</td>\n", | |
" <td>2358.736059</td>\n", | |
" <td>0.340302</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>6.714286</td>\n", | |
" <td>6.066914</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012</th>\n", | |
" <td>19.838052</td>\n", | |
" <td>17.802974</td>\n", | |
" <td>22.339751</td>\n", | |
" <td>20.111524</td>\n", | |
" <td>26.695357</td>\n", | |
" <td>24.167286</td>\n", | |
" <td>5.792752</td>\n", | |
" <td>6.297398</td>\n", | |
" <td>3.269531</td>\n", | |
" <td>4.085938</td>\n", | |
" <td>2282.502831</td>\n", | |
" <td>2314.498141</td>\n", | |
" <td>0.634202</td>\n", | |
" <td>1.267658</td>\n", | |
" <td>6.834655</td>\n", | |
" <td>6.286245</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013</th>\n", | |
" <td>20.982888</td>\n", | |
" <td>19.453815</td>\n", | |
" <td>23.471658</td>\n", | |
" <td>21.823293</td>\n", | |
" <td>27.860963</td>\n", | |
" <td>26.164659</td>\n", | |
" <td>5.658824</td>\n", | |
" <td>6.152610</td>\n", | |
" <td>3.179688</td>\n", | |
" <td>3.884766</td>\n", | |
" <td>2208.288770</td>\n", | |
" <td>2220.080321</td>\n", | |
" <td>0.853476</td>\n", | |
" <td>2.763052</td>\n", | |
" <td>7.033155</td>\n", | |
" <td>6.385542</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2014</th>\n", | |
" <td>21.159919</td>\n", | |
" <td>20.506329</td>\n", | |
" <td>23.655870</td>\n", | |
" <td>23.012658</td>\n", | |
" <td>28.088057</td>\n", | |
" <td>27.523207</td>\n", | |
" <td>5.719636</td>\n", | |
" <td>5.852321</td>\n", | |
" <td>3.210938</td>\n", | |
" <td>3.615234</td>\n", | |
" <td>2212.196356</td>\n", | |
" <td>2139.029536</td>\n", | |
" <td>0.859312</td>\n", | |
" <td>3.683544</td>\n", | |
" <td>7.210526</td>\n", | |
" <td>6.046414</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015</th>\n", | |
" <td>21.350000</td>\n", | |
" <td>21.817490</td>\n", | |
" <td>23.935294</td>\n", | |
" <td>24.441065</td>\n", | |
" <td>28.481373</td>\n", | |
" <td>28.996198</td>\n", | |
" <td>5.604902</td>\n", | |
" <td>5.752852</td>\n", | |
" <td>3.101562</td>\n", | |
" <td>3.605469</td>\n", | |
" <td>2164.215686</td>\n", | |
" <td>2089.353612</td>\n", | |
" <td>0.638235</td>\n", | |
" <td>8.296578</td>\n", | |
" <td>7.211765</td>\n", | |
" <td>6.353612</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2016</th>\n", | |
" <td>21.903749</td>\n", | |
" <td>25.061818</td>\n", | |
" <td>24.439716</td>\n", | |
" <td>27.701818</td>\n", | |
" <td>28.866261</td>\n", | |
" <td>32.265455</td>\n", | |
" <td>5.493414</td>\n", | |
" <td>5.356364</td>\n", | |
" <td>2.992188</td>\n", | |
" <td>3.277344</td>\n", | |
" <td>2127.608916</td>\n", | |
" <td>1960.545455</td>\n", | |
" <td>1.017224</td>\n", | |
" <td>17.214545</td>\n", | |
" <td>7.296859</td>\n", | |
" <td>6.301818</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2017</th>\n", | |
" <td>22.423795</td>\n", | |
" <td>24.003623</td>\n", | |
" <td>24.910521</td>\n", | |
" <td>26.496377</td>\n", | |
" <td>29.208456</td>\n", | |
" <td>30.829710</td>\n", | |
" <td>5.431662</td>\n", | |
" <td>5.532609</td>\n", | |
" <td>2.919922</td>\n", | |
" <td>3.419922</td>\n", | |
" <td>2114.110128</td>\n", | |
" <td>2031.884058</td>\n", | |
" <td>1.243854</td>\n", | |
" <td>15.731884</td>\n", | |
" <td>7.474926</td>\n", | |
" <td>6.304348</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2018</th>\n", | |
" <td>22.310442</td>\n", | |
" <td>23.526690</td>\n", | |
" <td>24.779868</td>\n", | |
" <td>25.925267</td>\n", | |
" <td>29.042333</td>\n", | |
" <td>30.145907</td>\n", | |
" <td>5.396990</td>\n", | |
" <td>5.597865</td>\n", | |
" <td>2.886719</td>\n", | |
" <td>3.390625</td>\n", | |
" <td>2121.448730</td>\n", | |
" <td>2037.900356</td>\n", | |
" <td>1.135466</td>\n", | |
" <td>12.537367</td>\n", | |
" <td>7.391345</td>\n", | |
" <td>5.601423</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019</th>\n", | |
" <td>23.084221</td>\n", | |
" <td>24.169014</td>\n", | |
" <td>25.456922</td>\n", | |
" <td>26.250000</td>\n", | |
" <td>29.560503</td>\n", | |
" <td>30.042254</td>\n", | |
" <td>5.315586</td>\n", | |
" <td>5.559859</td>\n", | |
" <td>2.839844</td>\n", | |
" <td>3.419922</td>\n", | |
" <td>2093.659245</td>\n", | |
" <td>2093.133803</td>\n", | |
" <td>2.581801</td>\n", | |
" <td>16.419014</td>\n", | |
" <td>7.545983</td>\n", | |
" <td>5.647887</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2020</th>\n", | |
" <td>22.579487</td>\n", | |
" <td>24.071429</td>\n", | |
" <td>25.174359</td>\n", | |
" <td>26.571429</td>\n", | |
" <td>29.543590</td>\n", | |
" <td>30.642857</td>\n", | |
" <td>5.148718</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>2.693359</td>\n", | |
" <td>1.978516</td>\n", | |
" <td>2050.256410</td>\n", | |
" <td>1650.000000</td>\n", | |
" <td>2.446154</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>7.743590</td>\n", | |
" <td>7.785714</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" city08 comb08 highway08 \\\n", | |
"country Other US Other US Other US \n", | |
"year \n", | |
"1984 19.384615 16.079232 21.417330 17.797119 24.847038 20.669868 \n", | |
"1985 19.284768 16.275472 21.373068 18.025157 24.816777 21.020126 \n", | |
"1986 19.167183 15.945035 21.213622 17.645390 24.650155 20.464539 \n", | |
"1987 18.633381 15.611722 20.710414 17.326007 24.186876 20.208791 \n", | |
"1988 18.668224 15.577869 20.814642 17.372951 24.437695 20.420082 \n", | |
"1989 18.533040 15.139831 20.662261 16.908898 24.252570 19.887712 \n", | |
"1990 18.510109 14.850575 20.640747 16.577011 24.267496 19.485057 \n", | |
"1991 18.087943 14.803279 20.174468 16.599532 23.809929 19.683841 \n", | |
"1992 17.915374 14.895631 20.098731 16.735437 23.820874 20.063107 \n", | |
"1993 18.084866 15.007772 20.309760 16.896373 24.172560 20.230570 \n", | |
"1994 18.046474 14.952514 20.264423 16.829609 24.173077 20.201117 \n", | |
"1995 17.678914 14.533724 20.091054 16.422287 24.263578 19.747801 \n", | |
"1996 18.480545 14.926641 20.906615 16.961390 25.093385 20.544402 \n", | |
"1997 18.090909 14.978632 20.509470 16.991453 24.678030 20.683761 \n", | |
"1998 17.925267 15.288000 20.457295 17.408000 24.704626 20.944000 \n", | |
"1999 17.925125 15.709163 20.386023 17.756972 24.577371 21.099602 \n", | |
"2000 17.881849 15.714844 20.301370 17.757812 24.416096 21.128906 \n", | |
"2001 17.941267 15.643939 20.289026 17.496212 24.372488 20.768939 \n", | |
"2002 17.644412 15.083916 20.076923 16.979021 24.207547 20.195804 \n", | |
"2003 17.565101 14.826087 19.953020 16.628763 24.052349 19.806020 \n", | |
"2004 17.426290 14.928571 19.923833 16.805195 24.160934 20.165584 \n", | |
"2005 17.412170 15.196610 19.892078 17.132203 24.189437 20.664407 \n", | |
"2006 17.062575 15.300366 19.509025 17.285714 23.762936 20.875458 \n", | |
"2007 16.996403 15.489726 19.452038 17.626712 23.742206 21.202055 \n", | |
"2008 17.239869 15.770073 19.677985 17.937956 23.983571 21.697080 \n", | |
"2009 17.696803 16.148014 20.186329 18.259928 24.590959 22.140794 \n", | |
"2010 18.325342 17.278970 20.851598 19.600858 25.256849 23.785408 \n", | |
"2011 19.247387 16.817844 21.635308 19.014870 25.855981 22.973978 \n", | |
"2012 19.838052 17.802974 22.339751 20.111524 26.695357 24.167286 \n", | |
"2013 20.982888 19.453815 23.471658 21.823293 27.860963 26.164659 \n", | |
"2014 21.159919 20.506329 23.655870 23.012658 28.088057 27.523207 \n", | |
"2015 21.350000 21.817490 23.935294 24.441065 28.481373 28.996198 \n", | |
"2016 21.903749 25.061818 24.439716 27.701818 28.866261 32.265455 \n", | |
"2017 22.423795 24.003623 24.910521 26.496377 29.208456 30.829710 \n", | |
"2018 22.310442 23.526690 24.779868 25.925267 29.042333 30.145907 \n", | |
"2019 23.084221 24.169014 25.456922 26.250000 29.560503 30.042254 \n", | |
"2020 22.579487 24.071429 25.174359 26.571429 29.543590 30.642857 \n", | |
"\n", | |
" cylinders displ fuelCost08 \\\n", | |
"country Other US Other US Other US \n", | |
"year \n", | |
"1984 4.908046 6.033613 2.691406 3.808594 2118.125553 2578.871549 \n", | |
"1985 4.871965 5.949686 2.636719 3.765625 2141.997792 2553.899371 \n", | |
"1986 4.804954 6.136525 2.537109 3.925781 2149.148607 2588.741135 \n", | |
"1987 4.825963 6.164835 2.583984 3.931641 2227.318117 2630.036630 \n", | |
"1988 4.819315 6.307377 2.531250 4.066406 2207.476636 2623.258197 \n", | |
"1989 4.879589 6.366525 2.542969 4.171875 2250.000000 2698.093220 \n", | |
"1990 4.839813 6.466667 2.507812 4.265625 2238.258165 2728.735632 \n", | |
"1991 5.029787 6.538642 2.609375 4.351562 2348.581560 2725.761124 \n", | |
"1992 5.145275 6.446602 2.708984 4.250000 2373.272214 2703.762136 \n", | |
"1993 5.114569 6.497409 2.683594 4.281250 2333.097595 2677.202073 \n", | |
"1994 5.185897 6.608939 2.712891 4.414062 2326.041667 2697.625698 \n", | |
"1995 5.444089 6.715543 2.908203 4.507812 2355.191693 2759.677419 \n", | |
"1996 5.147860 6.579151 2.708984 4.277344 2250.291829 2622.586873 \n", | |
"1997 5.261364 6.581197 2.787109 4.218750 2319.128788 2600.427350 \n", | |
"1998 5.275801 6.436000 2.800781 4.105469 2295.373665 2578.800000 \n", | |
"1999 5.377704 6.362550 2.832031 4.042969 2312.728785 2582.470120 \n", | |
"2000 5.441781 6.332031 2.859375 3.978516 2385.958904 2529.492188 \n", | |
"2001 5.479134 6.310606 2.873047 3.976562 2399.536321 2568.371212 \n", | |
"2002 5.576197 6.433566 2.935547 4.058594 2425.689405 2610.139860 \n", | |
"2003 5.683221 6.588629 3.031250 4.171875 2480.604027 2637.625418 \n", | |
"2004 5.729730 6.558442 3.087891 4.199219 2476.719902 2607.305195 \n", | |
"2005 5.773823 6.447458 3.152344 4.132812 2493.455798 2592.881356 \n", | |
"2006 5.977136 6.476190 3.345703 4.171875 2527.496992 2574.725275 \n", | |
"2007 6.044365 6.513699 3.423828 4.210938 2544.664269 2510.958904 \n", | |
"2008 6.095290 6.518248 3.462891 4.222656 2551.369113 2486.678832 \n", | |
"2009 5.970232 6.620939 3.402344 4.351562 2433.076075 2407.220217 \n", | |
"2010 5.897260 6.223176 3.357422 4.050781 2374.429224 2263.304721 \n", | |
"2011 5.851336 6.394052 3.320312 4.167969 2326.248548 2358.736059 \n", | |
"2012 5.792752 6.297398 3.269531 4.085938 2282.502831 2314.498141 \n", | |
"2013 5.658824 6.152610 3.179688 3.884766 2208.288770 2220.080321 \n", | |
"2014 5.719636 5.852321 3.210938 3.615234 2212.196356 2139.029536 \n", | |
"2015 5.604902 5.752852 3.101562 3.605469 2164.215686 2089.353612 \n", | |
"2016 5.493414 5.356364 2.992188 3.277344 2127.608916 1960.545455 \n", | |
"2017 5.431662 5.532609 2.919922 3.419922 2114.110128 2031.884058 \n", | |
"2018 5.396990 5.597865 2.886719 3.390625 2121.448730 2037.900356 \n", | |
"2019 5.315586 5.559859 2.839844 3.419922 2093.659245 2093.133803 \n", | |
"2020 5.148718 4.000000 2.693359 1.978516 2050.256410 1650.000000 \n", | |
"\n", | |
" range speeds \n", | |
"country Other US Other US \n", | |
"year \n", | |
"1984 0.000000 0.000000 3.969054 3.872749 \n", | |
"1985 0.000000 0.000000 3.958057 3.886792 \n", | |
"1986 0.000000 0.000000 4.069659 3.886525 \n", | |
"1987 0.000000 0.000000 4.142653 3.902930 \n", | |
"1988 0.000000 0.000000 4.205607 4.028689 \n", | |
"1989 0.000000 0.000000 4.264317 4.025424 \n", | |
"1990 0.000000 0.000000 4.328149 4.105747 \n", | |
"1991 0.000000 0.000000 4.341844 4.234192 \n", | |
"1992 0.000000 0.000000 4.356841 4.252427 \n", | |
"1993 0.000000 0.000000 4.371994 4.279793 \n", | |
"1994 0.000000 0.000000 4.355769 4.293296 \n", | |
"1995 0.000000 0.000000 4.380192 4.313783 \n", | |
"1996 0.000000 0.000000 4.416342 4.262548 \n", | |
"1997 0.000000 0.000000 4.452652 4.290598 \n", | |
"1998 0.144128 0.420000 4.485765 4.272000 \n", | |
"1999 0.251248 1.334661 4.507488 4.215139 \n", | |
"2000 0.304795 0.449219 4.619863 4.253906 \n", | |
"2001 0.187017 0.443182 4.761978 4.412879 \n", | |
"2002 0.137881 0.132867 4.920174 4.367133 \n", | |
"2003 0.127517 0.000000 5.154362 4.307692 \n", | |
"2004 0.000000 0.000000 5.229730 4.308442 \n", | |
"2005 0.000000 0.000000 5.362801 4.688136 \n", | |
"2006 0.000000 0.000000 5.492178 4.776557 \n", | |
"2007 0.000000 0.000000 5.864508 4.883562 \n", | |
"2008 0.109529 0.000000 5.969332 5.120438 \n", | |
"2009 0.000000 0.000000 6.189636 5.563177 \n", | |
"2010 0.000000 0.000000 6.378995 5.866953 \n", | |
"2011 0.340302 0.000000 6.714286 6.066914 \n", | |
"2012 0.634202 1.267658 6.834655 6.286245 \n", | |
"2013 0.853476 2.763052 7.033155 6.385542 \n", | |
"2014 0.859312 3.683544 7.210526 6.046414 \n", | |
"2015 0.638235 8.296578 7.211765 6.353612 \n", | |
"2016 1.017224 17.214545 7.296859 6.301818 \n", | |
"2017 1.243854 15.731884 7.474926 6.304348 \n", | |
"2018 1.135466 12.537367 7.391345 5.601423 \n", | |
"2019 2.581801 16.419014 7.545983 5.647887 \n", | |
"2020 2.446154 0.000000 7.743590 7.785714 " | |
] | |
}, | |
"execution_count": 71, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
" .groupby(['year', 'country'])\n", | |
" .mean()\n", | |
" .unstack()\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 72, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7f16ad9528b0>" | |
] | |
}, | |
"execution_count": 72, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAADlCAYAAABDAs5EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/iElEQVR4nO3deXxcVdnA8d+ZPfueNN2bLrelVJZCEVpZZBG1LAJaKCAgyOLLIiAgiIK8LILIJgiyCYJAKQq8ZZNFsBYQtKWUFnq7b7Rp0iSTffbz/nEnYZpmzySTmXm+n08+k7n3zLnPvU3z5Nx7FqW1RgghhBDJx5boAIQQQgjRP5LEhRBCiCQlSVwIIYRIUpLEhRBCiCTlSHQAvRDC+mOjIdGBCCFEEskFIiTH73nRTyoJeqdHAJXoIIQQIglp5I5rSkuGf1xpgQshRP/I788UlwxJXAghhBCd6PFZiWEYBwJnA0cA44Aa4APgetM018WUew84rJMqFpimeWo8ghVCCCHEV3rT4eEaYDawEFgBjAAuBj4xDGOWaZpfxJTdAvyiw+c3xSFOIYQQQnTQmyR+FzDfNM1A2wbDMBYAn2El+LNjytaZpvl0XCMUQgghRKd6fCZumuYHsQk8um0tsAqY1rG8YRgOwzCy4xeiEEIMnUC4lm2NLxCKNCc6FCF61K/xg4ZhKKAM+LTDrmlAM+AyDGMHcD/wG9M0IwOKUgghhsia2t/xZdOLVLcsZr+y+xIdzqBaunSpB/gucCiQkeBwxO5agcXAqzNnzvR1Vai/kwCcDoxi9+ff64F/YN1mzwVOA24BxgIX9vM4QggxpOr8nwBQ1fI2ta0fU5gxK8ERDaobnU7n6R6Px+NwyJwww0koFMLn850UDAYPAK7tqlyfJ3sxDGMq8BFWJ7fDumtlG4bxPHAKMM00TbNPB/qKF8jr52eFEKLXQpEW3tl8INYcKZDjmsrBIxeilD2xgfVfPZDf2Y6lS5fOtNvtz40YMcJVVlZWrZTMqTWcaK3ZuXNnSWVlZSAcDs+bOXPmss7K9WmcuGEYI4BXgTrg+724Tf47rNnWjujLcYQQIhGaAmtpS+AAjYHVfNn0UsLiGWTfcrlceaWlpbskgQ8/SilKS0t3OZ3OPODYrsr1OokbhpEHvI7VKv6WaZqVvfjY1uhrYW+PI4QQidIYWA2A215GedZcANbW3ZuqndxKnU4nNptt2M+9na5sNpt2uVwApV2W6U1FhmF4gEXAFGBuH26NV0Rfq3tZXgghEqYxYP1qy3EZTC68HJvyEAjvYqP30QRHNigy7Xa7NMGHuei/UWZX+3tM4oZh2IEFwMFYt9D/3UmZXMMw3J187jqsBUze7mPcQggx5NqSeK5rKhmOcibknQPApoY/0Rr8MpGhCdGp3nRH/B1wPFZLvNAwjDNi9jWZpvkSsD/wjGEYzwLrgGzgB8ABwO2maW6Ma9RCCBFnWkfab6fnuAwAxuedy7bGv+IPV7Gm7m72Kb0zkSEKsYfeJPF9o6/HRb9ibQZeir6+D5yMNX48AqwEzjZN88l4BCqEEIOpJbSVsG4FrF7pAA5bJpMLLmflrmupbH6Nsb7TKfDsl8gwhdhNj0ncNM3De1FmI/D9eAQkhBCJ0HYr3a4yyHSObd8+Mvs4tjT8hYbASsza33BQ+bMoJQtApoONGze6jj322BmXXHLJ1osvvrgq0fF0Rn4ShRCCr3qmZ7sm7zYuXCkbU4uuBqDe/xk7ml9NSHyi7z799NOM888/v+LrX//616ZPn77/7NmzZ1x22WXjNmzY4Iot98Ybb+TedtttIxMV50BIEhdCCHbvmd5RgecAyjKPAWBt7d2EI61DGpvou4ULFxacdtpp0z777LPs448/ftdVV1215aijjqpdsmRJwUknnTR98eLF7Wt8LF68OO+JJ54oT2S8/SXz7AkhBNDob+vUtse6TgBMKfwZVS3v4gtXsqn+CSYWXNTvYzUHN/Fp1ZVoHSTLWUG2ayJZzklkuyrIdIzHbnP3XIno0po1a9w33XTT+FGjRvmfe+651UVFReG2fWeffXb1aaedNvWqq66a+Nprr62M3ZcoTU1Ntuzs7H6tMSJJXAiR9gJhL77wDqDzljhApnM04/POYmP9o2ysf5RROSfhcZT1+VitoR38d8eP8IWt+bKaguvY2RJbwkamYwxZrgoK3PszNvcMSep99NBDD40IBAK2G264YVPHJD1hwoTApZdeuu3Xv/71hCeeeKJk06ZNnjfffLMIwDCMmW3lTNNcGvu5Rx55pOTpp58u27Vrl2vChAmtv/rVrzbPmjVrt3+5lStXeu66665Rn376aU4gELBNmDCh5ZJLLtl+9NFHN7SVue2220Y+8cQT5S+//PLKu+66a9R//vOf3EmTJrUsXLhwTX/OVZK4ECLtNQXafn8qclxTuixXkX8+Xza+SCBSw5ra3zGj5Hb6MmWpP1zD0srz8IUrsatMJuSdS2voS5qC62kOrCekm4AILaHNtIQ2U93yLlnOCZRmfXNgJ9gHWgcU4W3OITtgV+yjg0q5+jWb3IcffphXVlYWmDNnTqdT7Z100kl1t9122/glS5bkXXXVVdtqamqcS5cuzb3hhhs6HQ792muvFfl8PvuJJ55YrZTiL3/5y4jLL7980rvvvvuZy2XFuGLFioyzzjrLKC0tDZx55pk73G63fv311wsvvfTSyffff/+aI488sjG2zksuuWTS2LFjW3/yk5986XQ6+z1rniRxIUTaa4h2ast0jMFhy+qynMOWzaSCS/i85kZ2NL8CaKYX34Td1vMqnsFII0srz6c5uBGbcrF/2R92WyFNa40/XEVzcD1NgfU0BdcDUJhx0MBOrg+0DihdffR0IjsS3/S3lfspeWtVXxO51+u119bWOg8++GBvV2U8Ho8eOXKkb+vWrRmHHHJI8yuvvOJbunRp7vz582s7K79r1y7Xm2++uTI/Pz8MMHHiRN/PfvazSW+++Wbu3Llz6wFuvvnmMeXl5f6XXnppdVtiP++886rmzp2717333jvqyCOPXB1b55QpU5ofeOCBTX05t85IEhdCpL2vJnmZ2mPZ0Tkn4/V/wvaml9nR/CqNwXXsV3ofmc4xXX4mHGllWeVFNAa+QGFnn9K791jiVCmFx1GGx1FGUcYhAzuhNNbY2GgDyMzM7PYZc2ZmZnjr1q296tx95JFH1rYlcIDZs2c3AWzZssUNUFNTY1+xYkXOj3/84y/r6+t3W/Ju1qxZDS+88EJZc3OzLSsrqz2m+fPnx2U6ckniQoi091XP9J6TuFJ29i6+lVzXXpi1d9AUMPlw+/fZp+R3FGfO3qN8RAdYXnUZXr+1kuTeJbdQmjk8F3ZUyqUpeWtVMt9Oz8nJiQC0tLR0m6BbWlrsGRkZvepMVl5eHoh9X1hYGAZoaGiwA6xbt86ttebhhx8e9fDDD4/qrI6amhp7bBKfMGFCoLNyfSVJXAiR1iI6SFNgHQA57s47tXWklGJc3pnkuAw+rbqCQKSWpTvPZ3LBT5mQd177c3Ktw3xW/XN2tS4BYFrR9YzMPn5wTiROlHJpHBVxSTCJkJ+fHy4oKAhu2LChy0VDfD6f2r59u2fSpEm9Wp6uq5XetNYKIBKJKIDTTjutcs6cOQ2dlS0pKQnFvu/tHxA9kSQuhEhrzcGNaIJA1z3Tu1KYMYuvj1rI8p2X0RBYydq6u2nwr2Lvkluwq0w+r7mJyuY3AJiUfyljc+fHPX6xp4MPPrj+tddeK37//fezZs+evUeifvHFFwsCgYCaM2dOfTyOV1FR4Qdwu936qKOOauypfDzJZC9CiLTW9jzcYcvFY+/7fB8ZjnJmlT/FqOyTANjZ8ib/3n4qn9fcyLbGhQCMzz2bivwL4he06NYFF1xQ6XK59E033TSutrZ2t2fUmzdvdt13332j8/PzQ2effXY1QEZGRhigrq7O3ll9PSkrKwvtvffeTS+++GJJVVXVHo3jzrbFi7TEhRBp7atJXqb2abhYLLvNzfTi/yXPvTdf1NxKc3A9zdHe5aOyT2ZK4VX9rlv03dSpU/3XX3/9pl//+tfj586dO/24447bNXLkSP+mTZs8ixYtKgkGg+q+++5b2zaGfMaMGS0A119//Zg5c+Y02Gw2PW/evLq+HPPGG2/cfNZZZ01tO97o0aP9VVVVzuXLl2cHAgHbX//6V3MwzlWSuBAirXU33WpfKKUYk3sq2S6D5VWXEQjvoizzGKYX3ygJPAHmzZtXO2XKlNYHH3yw/KWXXippamqy5+XlhQ455BDvZZddtn3ixIntz/2PO+4478cff1z19ttvF77zzjtFWmvmzZu3tLv6O5oxY4ZvwYIFX9x9990jFy1aVNzc3GzPz88PTpkypeWMM84YtMVTlNb9HmM+VLxAXqKDEEKkHq017235BoFILXsX38KonO/Fpd5A2EtD4HMKPbOwqYS2leqB/M52LF269OGCgoLvVVRUbB7akERfbNiwYVxdXd2LM2fOPL+z/dISF0KkLX+4mkDEmt9joC3xWC57PsUy1lsMAenYJoRIW22d2hQOsl2TEhyNEH0nSVwIkbbanodnOSuwKVcPpYUYfiSJCyHS1lfTrcbvVnpvaO1HNz2Abn1lSI8rUo88ExdCpK22lniuu+fpVuNJN/waWl+wvg/+F5VzPSqxHeBEkpKWuBAiLYUjrTQHNwFD2xLXLc+3J3AAWp5B1/0YHel0tk4huiVJXAiRlhqDawFr+ureLHwSDzq4Et1wk/XGfTRkXWR9H3gfXfMDdEhGe4m+kSQuhEhLjX7rVrrbXorLXjjox9MRL9p7KRAA+3hU3m+w5VyOyvst4ITwBnTN99GBjwc9FpE6JIkLIdLSUHZq0zqC9v4MwtsADyr/9yhbDgAq4wRU4Z/BVgjai649B93y10GPSaQGSeJCiLQUr+lWe6X5DxBYDIDKuxnl3P2YyjUTVfgCOCYDQXTDtUQa70Dr8ODHJpKaJHEhRNrROhKTxKcN7rH8i9FNv7feZM5HZXS+nrhyjEYVLgDXodaG5kfR3ovROmmX9hZDQJK4ECLttIa2EdbWMtOD2RLXoW3WbXQ0OPdB5VzXbXlly0YVPASZZ1sb/O+Af8mgxSeSnwxMFEKknbZWuE15yHKO6/PndWgDhKvAORVly++8jPZbHdm0F1QBKv8+VC9mhVPKgcq9Du2cgQ78F1wz+xxfurvkkkvGL1myJP+TTz5Z3tl+wzBmnnzyyVW33nrrVoAVK1Zk3HvvveWmaWZ5vV5nTk5OaNy4ca2HHXZY/UUXXTRoK5DFgyRxIUTa+apT22SUsvf6c1praH4Q3XTPV9tsI8E5DRzTUM5p4NwLbCPRDTdDaCVgQ+XfhbKX9ylGlXEcKuO4Pn1G9N3777+fdf755xslJSWB448/fldJSUlwx44drs8++yxrwYIFpZLEhRBimGloT+K9Hx+udRDd8Cto7dBzPLId/NvB/w7tCzurHNCN1rfZl6Hcs+MQtRgMDz74YHl2dnb4xRdf/KKgoGC3noQ7d+4c9jly2AcohBDx9lWntt4lcR1pRHsvgcAH1gbPiajc6yC0AUJfoINfQPBzCK0BAu0JHPc3IeuCQTgDES/bt293T5gwoaVjAgcoKysLJSKmvpAkLoRIK8FwA77QdqB3ndp0+Et03fkQWguAyr4Usv4HpRS49gfX/qi2sjoEoY0Q+hwiXsg4BaWk//BwVlZWFli9enXWqlWrPNOnT/clOp6+kiQuhEgrba1w6DmJ6+BKdN0FEKkGnNYY74zvdVleKQc4J1tfSSqiA6o1+KUz0XFkOEcFbcqley45MD/60Y92XnrppZNPOeWU6YZhNO+7776Ns2fPbjzssMMaXa7BP/5ASRIXQqSVtk5tGY4xOGxZXZbTvn+g6y8H3QoqB5X/AMr99aEKMyEiOqD+tfXY6b5wpTvRsXjsI/zfGPPGqsFO5EcffXTDk08++cVDDz1U/t///jf3iy++yHr22WdH5Ofnh375y19umjt3bv1gHn+gJIkLIdJKYy86tenmp9GNNwMRsI9GFTyMckwaogjFUJs1a1bLrFmz1vv9fvXpp59mvPHGGwULFy4su+aaayZOnDjx82nTpg3b2+ySxIUQaaW76Va11uim30Lzo9YG5wxU/h9R9uKhDDFhbMqlvzHmjVXJfjvd5XJFgsFgp50RmpubbQButzvScZ/b7dbRhN4yfvx43y233DL+5ZdfLpg2bdqO/sQxFCSJCyHSRkSHaAquAyC3Q0tc61B0CFl0rW/3kdb4bpUx1GEmlE25dJZrQlLP9VpeXh4IBoNq48aNrgkTdj8X0zTdACNHjuz2HPfbb79mgOrq6oT/QdMd6TYphEgb1S3vEYnORZ7r3qt9e/vsam0JPGMeKv/+tEvgqeKb3/xmPcDjjz9e2nHfU089VWqz2TjyyCPrAd59992cSGSPRjlvv/12HsD48eOH7a10kJa4ECKNbKp/HICSjMPwOEYAoCNNaO9FEPjIKpR1ISr7cmsImUhK+++/f+sxxxxT8/zzz5dt2bLFM2vWrIZIJKI++OCD3GXLluXOmzdvZ0VFRQDg1ltvHXvDDTfYDj300LqKigpfMBhUy5cvz37vvfcKS0tLA2eccUZNos+nO5LEhRBpoc63DK9/OQDj834EgA7XoOvOg9AqAFTOz1FZP0pUiCKO7rnnnk0PPvhgy6JFi4ofeuih0YAeM2aM7+qrr9587rnn7mord+WVV259/fXXCz788MO8RYsWlYRCIVVSUhI44YQTqi6//PIdnU0CM5xIEhdCpIW2VniuawYFngOsSVxqfwThjYAdlXcLKuOkxAYp4sZut3PxxRdXXXzxxd3OfX7sscc2HHvssQ1DFVe8SRIXQqS8psAGqlreBWBC/jkQXo+uPQciOwEXKv9elOfIxAYpRD9IEhdCpLxN9U8AmgzHGEodpeia+dElQrNQBX9EuWYlOEIh+keSuBAipfmCVWxvegmAcXY/1J1q7bAVogoeQzmnJy44IQZIkrgQIuVoHYHgCrT/LbbUL0QTwolmpLIWPsE+3mqBOyYkNlAhBkiSuBAiJWjtg8BHaN+74H8bIlWENGwN2gHFGGc29qzvoTxHg3N/lLInOmQhBkySuBAiaelwJfjfQ/vfA/8HwO7zcnypywhRgw0XY0e8gc1RlJA4hRgsksSFEElD63D0Nvl74H8XQqs7lLCBc1+U+0gi7iPYsuMCAEblnIxbEnhHjaFQaM+pysSwEv03auxqvyRxIURS0DpoDQsLfrz7DpUL7m+g3EdYr7YCAHY2vYIvvAOwMT7vrKEPePgzfT5fsLq6urCkpKQ20cGIPVVXVxf6fL4gYHZVRpK4ECI5tP7tqwTumAzuw1Huw8G5H0rt/qtMa90+uUtZ5lFkOscOcbBJ4fFgMDhpx44d8+vq6sY4HA5ZS2MYCYVCEZ/PFwwGg88Aj3dVTpK4EGLY09qPbrrfepNxEra833Rbvsb3Yfu64ePzZRrVzsycOTO0dOnS64LB4LpgMGgAOYmOSeymEasF/vjMmTNDXRWSJC6EGP5a/hKdXc2Jyr6kx+KbvFbDpcBzAPnurw1ycMkrmhweTnQcov/k9okQYljTkSZ000PWm8xTUfZR3ZZv8H9Bje8DACbknTvY4QmRUJLEhRDDW8sT0SlSM1BZF/ZYfFP9nwDIck6kOOMbgxubEAkmSVwIMWzpSC26+THrTeYPUfaSbsu3Br+ksvl1ACbknYNS8itOpDb5CRdCDFu66RHQzaByUVnn9Vh+Y/1jaMK47SWUZ88dggiFSCxJ4kKIYUmHK6HlaQBU1nkoW1635RsDa9na+DwA4/POxaZcgx6jEIkmSVwIMSzppgcBP9iKIfOH3ZfVGrPmdiBCpnM8Y3NPHZIYhUi0HoeYGYZxIHA2cAQwDqgBPgCuN01zXYeyhwB3APsDDcAC4FrTNFviG7YQIpXp0BZoXQiAyroIZcvstvyu1sXtPdKNwqulFS7SRm9a4tcAJwFvA5dhjSk8HPjEMIxpbYUMw9gXeAfwAFcAjwIXYCVyIYToNd10HxAC2yjInNdt2YgOsrr2dgCKPIdQknHYEEQoxPDQm8le7gLmm6YZaNtgGMYC4DOsBH92dPOtWK30w03TbIqW2wQ8YhjGN03T/Ecc4xZCpCgdNMG3CACVfQmqh1b11obnaAluAmwYRdeglBr8IIUYJnpsiZum+UFsAo9uWwusAqYBGIaRCxwN/LktgUf9GWgCfhC3iIUQKU033QNosFdAxvHdlg2EvazzPgDAmJwfkOOaPPgBCjGM9Ktjm2EYCigDdkU3zcBq1f83tlw0+S8H9ut/iEKIdKEDy8H/DgAq5/I9FjbpaL33fkKRBhy2HCYVXDwEEQoxvPS3d/rpwCjg+ej78ujrjk7K7gBG9vM4Qog0opvusr5x7A3uY7ot2xRYx9YGq8vNxPyLcNkLBzs8IYadPidxwzCmAg8AS4Cnopszoq/+Tj7ii9kvhBCd0r6/Q+DfQFsrvPtn22btHWjCZDrGMjZ3/lCEKMSw06ckbhjGCOBVoA74vmmakeiu1uiru5OPeWL2CyHEHrTvH2jvFdYb10HgmtNt+eqWf7KrdQkgQ8pEeuv1UqSGYeQBrwN5wGzTNCtjdrfdRi/f44PWtu39jlAIkdK0702093IgCI5JqLy7u22FR3QQs/YOAAo9X6ck84ghilSI4adXLXHDMDzAImAKMNc0TbNDkZVACDigw+dcwL5YnduEEGI32vcG2vtTrARuoAqeQtmLu/3M1obnaA5uBGxMlSFlIs31mMQNw7BjTdhyMNYt9H93LGOaZj3WZDBnGoaRHbPrTCAbWBifcIUQqUK3vhptgYfAMRVV+CTKXtTtZ2KHlI3OOYUclzEEkQoxfPXmdvrvgOOxWuKFhmGcEbOvyTTNl6Lf/wJrOtb3DMN4FBgNXAm8bprm2/ELWQiR7HTr/6HrrwYi4JiOKvwTypbf4+fWex+whpSpbCYVXDLocQox3PUmie8bfT0u+hVrM/ASgGmaywzDOAq4Hbgba+70R4Br4xFof+jWVyC8HRyTrC/7aFlfWIgE061/Q9dfC2hwzkAVPN7jCmUAgXBt+5CyioILcffQahciHSitdaJj6IkXqzNdn+hwJbr60A5bPeCosDrPOCaBY7L1JcldiCGhW15AN/wCK4Hviyp4DGXL6dVnN9c/zeraW3GobA4fuxi7zTO4waaGeiA/0UGIwdPr3ulJx1YKWeeDfzGENgABwAehzyH0Obv96aKy0Y69wLkXyjkdnNPBPgGl7ImJXYgUpFsWRhM44NwfVfAoypbd/YdibG+y5lMvy/qWJHAholK2JR5L6xCEt0JoHYTWoUPrILQ2Jrl3QmWAY5qV2D3HoVwyc6wQ/aWDa9A13wOC4DwAVfBwnxJ4U2AD7385F4ADR/yZwowDeviEiJKWeIpLiyTeFa3DEN4EwS/QwVUQWgXBVaAbO5S0o3JvRmWePBhhCJHStA6ja+dBcAXYx6GKXkLZsvpUx9rae9hQ/zAex0gOHf2mPP7qPUniKS51b6f3glJ2cEwEx0RUhvVXvtY62mr/3ErsvrcgvAHdcC1EKiHrJzIuVYi+aHnCSuCAyru1zwlc60j7rfSRWcdJAhcihvxv6EAphXKMRXmOxZZzJarohfYpIHXTveiGX1q354UQPdKhzejGe603GfNRrgP7XEedbym+sDUp5Mjs7pcmFSLdSBLvgbJlowoeAs+J1obW59He/0FHWhIalxDDndYRdMP1gA9s5aicn/Wrnu1N/wdArmsGWa4JcYxQiOQnSbwXlHKh8m6HrAutDf530XVnoSO1iQ1MiOGs9XkIfASAyrupTx3Z2oQjPnY2/x2Akdkdp6kQQkgS7yWlFLacK1C5NwI2CH6KrjkVHdqS6NCEGHZ0eAe68XbrjecElPuwftVT3fIuId2EwkF59nfiGKEQqSGtO7b1h8qcD7YSa9nE8Car123Bw2CfaPVq140QaYq+NoJuAt0M9lHg3A9lL0n0KQgxqLTW6IYbrJ97WxEq97p+19XWoa04Yw4ue2G8QhQiZUgS7wflORoKn0TXXQiRGnRN74eeaftoa6IL137g3A8cU1BK/hlECvEtAv97AKjcX6FsBf2qxh+uYVfrvwC5lS5EVyR79JNy7Q9Fz6HrzoPwtk5KOEBlgy3HmjgmtAkIWGXD29C+/4tWlIl2fg0cU0FloZQH2r8yYl6zwLk3SrmG8CyF6BsdrkE33Gy9cR8N7mP7XVdl02towjhsObJmuBBdkCQ+AMpRAcWvQmCFlWxt2aByrMSNZ7fx5FoHIPgFBJehg8shsBQiVaBbIPBv6wvoduod+wTIvxPlnDGYpzWotO91dMtCVObpKM+RiQ5HxJluvAm0F1QuKveGAc2p0D7NaqZMsypEV9J6xrZE0lpDZAcEPkEHl0F4C2gf6FbQ/uir76ttBKOfdKCyL4Gs85NubncdXIGuOY32c/F8B5Xzyx7XkBbJQfveQnv/BwCVe9uAZjiUaVbjRmZsS3GSxJOEDn6O9l4J4fXWBuf+qLzfohxjEhtYL+lIA7rmxOijBzfgt3aofFTu9eA5TmbCS2I64kXvmmvdXXLNsVYnG8C/p0yzGjeSxFOc/M9IEsq5F6r4Rcg8w9oQXIauOR7d+iLD/Q8xrTW6/rr2BK6KFqJybwOVC9qLrv8Z2nsBOjorl0guOtKErvuxlcBVJir3pgElcJlmVYjek/8dSUQpD7bcX6EKHgFbCehmdP016PqfoiPeRIfXtZanwP8mEO2t7JyKyjwZVfya1fkJwP8eetd30C3PonUkgcGKvtC61RqlEfwUUKjcW1CO0QOqU6ZZFaL3JIknIeU+DFW8CNxHWRt8r6N3zUX73rVWZusHrbU1z3VgOTq0Hh3eZXXGGyAd/Cxm0o/jIeOU9n3KXoqt4AFU/u/BVmz9UdJwA7r2TOtzksyHNa0D6LqLIfgxgJXAM7474HplmlUhek+eiScxrTW0voBuvMXq5Q6g8sH9DZT7UOvV1vUEGTrSDIGP0P7FEFjcxVA5N9jyor3uc8FWjMqcj3LP7jm+2Ofg9gmoor91uYKVjnjRDbeB78WvNtqKwXUIyv0NcM1G2Yt7PKYYGlqH0N7LwP8WgNVBMevMAdcbjvh4b8uhhHQTUwuvY1zeGQOuM83JM/EUJ0k8BejQFnT9tRD8T4c9CpwzrCkvXYeCc28IrYfAv9D+f1rD3Np7vfeR57uonJ+j7GWdx6Q12nsp+P9O+3Nw59Sez8X/L2uccXjjnjsd08A9B+WaA66ZgzZmXusARHZBpB4cFSjlHpTjJCutw+j6ayA614HK/hkq+/y41L2j6XVWVF+JwsHhY9+TWdoGTpJ4ipMknkJ0aBsEFkdb1h9Gh6bFcgEdb5Hbrelg3YeC+1Cwj49OGdsAumGPV+3/FwSXWR9VWajsyyFz/h6zzunmp9CN/2sVy/1fVOa83p+H1hDeBP4l6MASaxEN3Y9V41SWdWfClm/dTbDlgSoAWx7Klg/Y0ZFqCFdBpNr6CleBrvuqDlspKus8yJyHUhl9jyHFWFOq/tJa3AQg6yfYcn4at/qXVV5Edes/Kck4nP1H/CFu9aYxSeIpTpJ4itLaD4H/WAnd/8/dW7a2EV/dcncdgrLl9KHeCLS+aD3n1l5ro2MvVO6vUa59rDLBleiaeUDQGjqWd+cAeysHrPH0gX+B/30Irep3Xf1mK0ZlnQsZp6FsmUN//GFAa41uvA1anrA2ZJ6Nyrk2bkMD/eEa/rnlcDRh9im9ixFZ/Z/tTbSTJJ7iJImnCR3aAsHPwDEFHJMG/ItXR+rQjb/7qkWGgox5qKzz0XVnQXhr9Dn4X/u1BGW3xw7XQGgd3c9vp63FZyL11jC2iBci3vb3RLygQ2AvAVsp2EqsxWlspWC33oNCtzwJLc/T/tjBVojKPNe6+9DF8/1UFWm8B5qjreOMU60/3OI4tn+99yHW1d2Hw5bD4WMWY7fJY4w4kCSe4iSJiwHRgeXohl9BaHV0iw2IAK7oc/BpCYwuPnS4Et38CLQsoP1xhMpHZf0IMs+I+x8pw43WEXTT76H5AWuD53hU3h1xHb/dGtrO+9uOI6xbGZd7FlOLrolb3WlOkniKkyQuBkzrELQ8jW6611p+EqwJPzJPTXBk8aXDVejmR6HlWdpnnMMO9nKwjwb7GJR9DNjHgCP6qvKTeiY6HalDe6+yRi8AuL+Fyr877ivvfbLzUqpa3sZlL2bO6Fdx9uERj+iWJPEUJ0lcxI3VYn0UZR8BmecmdfLqjg5Xo5sfg9ZnO+k82IHKtkYFOGdaK9859+1TH4RE0oHl1jCySHQmvYx5qNxfxn1UQHXLP1m28yIAvlbyW8qzBz7WXLSTJJ7iJIkL0U864oXgKghvRYe3QmhrdKnZraDru/iUsvoltCV110ywjRxWf/BoraHlz+jGO4AgqAxrhEFG/GdPC0d8vP/l8bSGtlHoOYgDRjw+rK5FCpAknuIkiQsxCHSk3krooY3WKnWBZdF+A53NQucG5QLlBJwxry7r1ZaNyviBNTZ/kBOcjjRa89z7/25tcExC5d+HckwalOOtrfs9G7wPonBwyKiXyHZVDMpx0pgk8RQnSVyIIaIjTdYc48Fl6MBS6/toH4Jecc60bmc79xqc+IKfW7fPw5utDZ7jrb4NgzSkrjm4ife3nYAmSEXe+Uwu/OmgHCfNSRJPcZLEhUgQrUMQWgPhnUAQdLDTVx1YBv63o59SkPF9VM4V3U6p2+c4Wl+wZsojALis5WEz5vW65d8S3MbKXdeR69qLyQU/xW7z9HBMzdLK86jxfYjHMZI5oxZht8lkOoNAkniKkyQuRBLQ/g+sOfJDa60NKgeVfQlkno5Szv7VGa60knfL8xCptDbax1q3z/vY2v9k5yVUtbwDQI5rGvuW3kOms+u17iubXufT6isB2K/sAUozj+jXOYgeSRJPcZLEhUgS1lC+Z9BN91lT4QLYJ6Jyf4Fyz+llHREIvI9ueRb87wIxq955vhu9fd633vNe36d8tOO03bY5bDnMKL6N0qxv7lE+FGliybbv4g9XU5J5BPuXPdCn44k+kSSe4iSJC5FkdKQW3XgvtC6gvaOcY2p0rPoIlG1EdOz6CLCVWa+RRmj9K7p1gdV7vo2tEDJORmXMQznG9j0WrflP5TnU+T4m17UXUwp/xoqqqwhEagCYkHcekwouxRYzrnx1ze1sbngSm/IwZ9QiMpyjBnI5RPckiac4SeJCJCkd/BzdcEsnq9d1pm0mvSjXQaiMeeA5ZkDjvne1vM/SnT8GYGbZIxRnzsYXqmJF1ZXU+ZcCUOA5kH1K7sTtKKHBv5p/b/8+mjCTC35KRX58Vj8TXZIknuIkiQuRxLTWEFgCwVXoSKXVSS5caU3QEqndvbDKg4zvoTLnoRwT43DsCP/e/gMaAp/vMcY7okOsrbuHTfWPA+CyF7NPyZ2srbsXr/8TspwVHDLqb9gGaTlZ0U6SeIqTJC5EitLabyX1yE5rZjnXLJTqvtd4X8R2Tjuo/FnyPfvsUWZn89usrL6OkG7abfsBIx6nKOPrcYtFdEmSeIqL7wTIQohhQyk3OMYCfX/W3ZOIDrK27j4ASjOP6jSBA5RlHUWOawrLqy6jMWACUJ71XUngQsSJJHEhRJ992fgiLaHNgI3JBZd2WzbTOZaDyp9lXd19tIS2YhT9fGiCFCINSBIXQvRJONLKeq+1rvio7BPIdvU8Javd5sEounqwQxMi7cRvQWAhRFrY0vAM/nAVCicTC/4n0eEIkdYkiQshei0YrmdD/SMAjM09jQzHyARHJER6kyQuhOi1jfWPE4o0YFeZMsZbiGFAkrgQolf8oWq2NDwNwPi8c3DZ47MAixCi/9KyY5vWmnr/Cna2vElraDsjs46jJPOIQV+rWYhktt77EGHditNWwPi8sxMdjhCCNEriWkfw+j+hsvlNqprfwheubN+3s/nvFHgOwCi8ijz3jARGKcTw1BLcwrbGhQBMzL8Qhy0rwREJISDFZ2yL6BB1vqXsbH6Lqpa38Ierd9uf7ZyE015Ine/j9m0jsr7N5IKfdruMohDpxBeqZEX11dT5/ovHXs43xrwu06UmD5mxLcWlbBIPRVr4aPupNAXX7bY9xzWVsqxjKMs8hmxXBQA1rR9g1t5JY2A1AAoHY3NPpyL/Alz2/IHGL0RS0jrMloZnWVt3L2HdDMCMktsZmX1cgiMTfSBJPMWlbBIPhOtYvPVowrqFXNcMRmQdQ1nW0WQ6O5+CUusI25sWsa7u3vZb7Q5bLhX55zM253TsNvdAzkGIpNLgX83nNTdQ7/8MAJetiKlF11Ke/Z0ERyb6SJJ4ikvZJA5Wb1pNBI+jrNefCUd8bG54io3eR9oXbfA4RjKl4HJGZH0bpaRDv0hd4Ugr67wPsLn+STRhAEZln8KUwivkrlRykiSe4lI6iQ9EIFzLeu+DbG1YgCYEQK5rBlOLrqLAc8BQhyPEoNvVsoTPa26iNbQNgCxnBdOLb5Sf9+QmSTzFSRLvQXNwE2tq76aq5a32baWZRzGl8AqynOMTFZYQcdMU2MB67x+obH4NAIWTivwLqMg/TzqwJT9J4ilOkngv1fmWYtbe0f6MUOFgTO48Jub/BJe9IMHRiVgN/s9ZW3cfgfAuNBG0jgAR63siaB0GNDblwmMfgcdRToZjJB5HefT7cjyOESmfwLy+T9lY/xhVLe8A1u+BAs+BTC+6kSzXhMQGJ+JFkniKkyTeB1prKpvfYG3dXbSGvgTAobIZl/dDMp3jcNhycKhsHLbdv2wqbYbjJ5TWYTbWP8a6uvvbH4H0n8JtL2Vc3pmMzz0nZSYC0lqzq3UJG+sf221oZYZjDBPzL2Jk9gkpc64CkCSe8iSJ90NEB9jS8BfWe/9IKNLQY3m7yqAs61tMLboWpy1nCCJMPy3BbXxW/XO8/mWA9Tx3VPb3UMqBwgbKhsL6AhtK2QhHWvGFK/GFttMa2oEvtCM6l8Du/yfG5f4Qo/DqpO7UGNEhdjb/nY31j9IYMNu357imUZF3HmVZx6CUPYERikEiSTzFSRIfgEDYywbvH9nVuphgpJFQpImI9nVZPsMxmq+V/JZ8zz5DGGVq01qzvellvqi5pX0s89jc+UwpuBK7LaPP9UV0AF9oJ77QDrY2Pkdl8xsAjMw+kenFNyXVXRWtNc3BdexseYcvG//W3mENoNBzEBPyf0yR52Bpeac2SeIpTpJ4nEV0kFCkmVCkqf2rIbCStXX3EtF+FA4mFVzKhLwfJXXLbjgIhL18vutGdra8CYDLXszexTdTknloXOrXOswXNTeztXEBYHVo3Kf0zmH9rFzrSHRdgHeoan6bltDmmL2KssyjmZB/rkwvnD4kiac4SeJDpDGwlk+rrqA5uB6AIs/BzCj5DW5HSYIjS067Wt5n5a7r2qfSLc08kunFN8W9k6HWmrV197AxuoZ2kedg9i27b1jNHR7RAWpb/0NVy9tUtfxjj+mFPfZyyrKOZkzOPOmwln4kiae4XiVxwzDKgcuAg4ADgGzgCNM03+tQbhMwrpMqbjdN8+f9jNFLCiRxsCbSWF17O9sanwfAZStk75LbKMn8RoIjSx6toR2sr/sDXzb9FQC7ymRq0bWMyj5pUG8Lb/Q+xpq63wGQ5/4a+5c9NOSTn2it8YV30BRYS1NgHU3BtTQG1tAc3EBEB3Yrm+2cTGnWUZRlHkmOa5rcMk9fksRTXG8f8BnANcA6YAVwSDdllwL3dNi2ss+RpSC7LYPpxTdSlHEwq3bdQCBSy7KdFzA+7xwmF1w2rG/TJpo/VM2G+ofZ2vA8miAA+e59mVHymy6n0o2nCfnn4rDl8nnNjdT7V/CfHWdxwIhHB/VOitaaWt/HVDa/Hk3ca9tnEdyTIt+9D6WZR1KadRRZzs7+lhZCpJreJvGlQLFpmjWGYZwIvNhN2W2maT494MhS2Iisb5Hn2psV1Vfj9X/Cpvo/Udv6EZMLr5CORh0EwnVsrH+MLQ3PtHcadNtLqMi/gNE5PxjSjmZjcr+P057DiqqraQqu5aMdZ3DAiMfIdI6O63EiOkBl0xtsaniifVGeWAoHWc4Ksl2TyXFNIts5mTz3DHk0I0Qa6vMz8Zgk3tXt9OXAPMBummZLHGL0kiK30zuK6BDrvX9gg/ePtA1rynPPoCLvAkoyj0jrZB4MN7Cp4Uk21z9JWFs/Rk5bARX5P2ZMzqnYbZ6ExVbd8i+WV11GRPtw2goYl3smo3O/j9teNKB6A2Ev2xoXsqXhL/jDVe3b8937UpjxdbKdVtLOdI6Tuzait+R2eoobjCReCrgAO7AB63n4wwOI0UuKJvE2db6lrK27jzrff9q3ZTunUJF/PiOyvjVo43f9oWoaAyYNgdU0Rr/CkVbcjmJc9mLc9tjXItz24vYZzeJBa01YtxAI1xAI1xII1+AP19IS2sK2xoXtY/Adtlwm5J3D2Nwzhk2HsjrfMpbtvIhQpBGwpiotz/4u43LPINe9V5/qag5uZkvDU3zZ+CJh3RrdamNE1jGMyz1LhiSKgZAknuLincT/D/gXsAYoAX4MzAKuNU3zN/2M0UuKJ/E2db6l0XHnS9q3ZTrHU5F3HuXZx2FTzn7VG4600hzcRHNwQ0zS/oJAuKZf9Y3I+jbTin7Z545dWkfY2vg825texh+uJhCu7XZcvV1lMi7vLMbnnoXTntuvWAeTL1TJloZn2Nr4/G6T/uS792dc7umUZh21x79ZKNIc7ZS2jqbAWhoCq6N/vFn/D+0qi9E5pzAu9wwynKOG8nREapIknuLimsQ7KWsHlgBfA0aaplnfjxi9pEkSb1PvX8UG78O7LbrisZdT4DkAl70Apz0fl60Ap70Al60Qlz0fp70ArYM0BzdEE/ZGmgMbaQ5uxBfe0eWxFHaynBXkuKaS656Kw5aDP7wr2ire/bWt1Qngtpeyd8mtFGd018fxK83BTaysvr59RrXO2FUmLnsRLnsBhZ5ZjM87JynmpQ9HWtne9ApbGp6mKbi2fbvbXsaonJOI6IDVMS24Dl9oe6d1eOzljMs7k1E5J8usfiKeJImnuEFN4tHy84DngG+bpvlGP2L0kmZJvE1TYC0bvI+wo/k1IDLg+hy2HHJcRvRrKrmuaWQ5J2K3uXv1+XDEz47mRayuua39tu/Y3DOYUnBFl8+oIzrE5vonWee9n4j2AzAy+3gKPAdGE3Yhbpv12p8Z1oaTtt7kWxqepqrlXbr7N3PbS8l2TiLbNZl8z36UZn4zqWaDE0lDkniKG4rfGlujr4VDcKyUku2azNdK72BS8GK+bHoJX6iSYNhLIFJHMFxHIFK3W+vYYiPDMYpsZwWZzvFkOSeQ5awgyzUel61oQJ3l7DY3o3NOodAzKzpP+XK2NDxNTesHfK3kjj2eBTcG1rCy+noaAtYIQ49jJNOLb+p16z3ZKKUoyjiIooyDaAluY2vjs1S3/BOXvai9U1q2axJZzklDPsZcCJGahiKJV0Rfq7stJbqU6RzL5IJLO90X0cFoYveiUGQ6xw56z+VM51gOLP8zG+sfZX3dH2gObuDf209lUsHFTMg7F02YDd5H2OD9Y/tqYmNz5zO54PJh0zFtsGU6R2MUXoVReFWiQxFCpLC4JXHDMAoBr2makZhtHuAqoBH4MF7HEl+xKSduRwluhnaMsE05mJh/IcUZ3+Cz6mtoDm5gbd09VLf80+q8FVwDQKZjHHuX/C8FngOGND4hhEgHvX4mbhjG9dFvpwHzgceBjViJ+37DMM4GfgG8AGwCioCzgCnARaZpPtTPGL2k6TPxZBGOtLKm7i62NPwlZquN8XlnMyn/4oSO6RYizckz8RTXlyTeVcHNpmmONwxjJnAjsB/W8DI/sAy40zTNVwYQoxdJ4klhV8sSPq+5Cactl72Kb5CVsoRIPEniKU5WMRNxpbVO65nmhBhmJImnOFnQWsSVJHAhhBg6ksSFEEKIJCVJXAghhEhSksSFEEKIJJUMHdsigDxoFUKIvtNIYy2lJcNkzRGsH8KGngoKIYRol0s8Fl0Qw1oytMSFEEII0Qm5zSKEEEIkKUniQgghRJKSJC6EEEIkKUniQgghRJKSJC6EEEIkKUniQgghRJKSJC6EEEIkKUniQgghRJKSJC6EEEIkKUniQgghRJKSJC6EEEIkKUniQgghRJKSJC6EEEIkqWRYijSpGYZRDlwGHAQcAGQDR5im+V6HcnnArcBJQAFgArebpvlMJ3X+EPgZMAWoAxYC15mm2dShnC1a7iKgHFgD3GKa5oI4nuKQMQzjQOBs4AhgHFADfABcb5rmug5lDwHuAPbHWsZ2AXCtaZotHcq5gZuAM7Gu+6fAL0zTfKeT4/eqzmQS72va25/3mPLHAzcCewFVwGNYP6OheJ3jUBuEa9rr+npbp0gd0hIffAZwDTAaWNFpAcNwAG8B5wHPAJcDG4G/RBN2bNnLgCeBSuAK4E/AucDLhmGoDlXfAtwOvAlcAmwBnjMM45S4nNnQuwbrj5y3sRLFw8DhwCeGYUxrK2QYxr7AO4AH6xo9ClyA9cusoyewrvfT0TojwOuGYRwcW6iPdSaTeF/THn/eY+r8NvASUIv18/kS8Cvg7oGc0DAQ72vaq/r6WKdIEdISH3xLgWLTNGsMwzgReLGTMicDBwJnmab55+i2Bw3DeAH4rWEYz5mmGYi2Gn8N/AP4lmmaGsAwjA+ARcAJWL8IMQxjFHAlcK9pmj+NbnsU+Cdwp2EYfzNNMzIYJzyI7gLmm6YZaNtgGMYC4DOsX3RnRzffitVaObzt7oRhGJuARwzD+KZpmv+IbpsFnApcbprmPdFtfwZWYv3xc2jMsXtVZxKK6zWldz/vbe4EPsH6WQ5H62wArjUM4z7TNNfG5xSHXLyvaW/r60udIkVIS3yQmabZaJpmTQ/FZgMaeL7D9ueAUqzbaADTgTxgQVsCjx7jFaAJmBfz2RMAJ/CHmHIaeBDrltysPp9Mgpmm+UHsL7LotrXAKmAagGEYucDRwJ87PF74M9Y1+kHMtlOAIFZrpa0+H9Yt3TnRW8N9rTOpxPua9vLnHcMw9sK6hf7HtgQe9Qes30sn9++MEm8QrmmP9fW1TpE6JIkPD24gBAQ6bG97hrV/TDmA1k7qaI0pB7Af0GCa5poO5T6O2Z/0oo8QyoBd0U0zsO4w/Te2XPSX4HJ2P+/9gNUd+xJgXSMF7NuPOpPeAK9pb7V9pmOd24Ft/axz2Ir3Ne2kvgHXKZKTJPHhwcRqNXdsHX8j+joy+roWq8U+O7aQYRgGUBJTDqyObJWdHGtHhzqT3enAKL66i1Eefd3RSdkd7HmNuipHTNm+1JkKBnJNe0uuqaW/59+xvnjUKZKQPBMfHp7B6tDzhGEYFwPrgGOAn0T3ZwCYprnLMIzngXMNwzCBl7H+I/8e67ZwRkydGYC/k2P5YutMZoZhTAUeAJYAT0U3t51XV+fen2vUlzqTWhyuaW/1VGdmP+ocluJ9Tbuob0B1iuQlLfFhwDTNSuB4rP9kb2H1TP8tVo9dsJ5ntbkAeA2rs8t6YDFWB5dFHcq18tXt91iemP1JyzCMEcCrWEPsvh/TSa/tvLo699jz7u016kudSStO17S35Jpa+nT+3dTX7zpFcpMkPkyYprkYqMB6bjUHq4X97+jutTHl6k3TPAGrc9phwHjTNM/EupUW25t3BzCik0O13XLbHtcTGELRMfWvY3Xy+1b0j6A2bbcSy/f4oLVte4eyXZUjpmxf6kxKcbymvSXX1NLr8++hvn7VKZKfJPFhxDTNsGmay03TfD/a2eqo6K49hoWYprnFNM3FpmluNgwjH5iJNT60zXIg1zCMKR0+elDM/qRjGIYH667DFGCuaZpmhyIrsToJHtDhcy6sjmrLYzYvB6YahpHdoY62a/RpP+pMOnG+pr3V9pmOdY7EGmPenzqHjXhf017U1+c6RWqQJD5MGYZRgjUG9O+maX7RQ/HbsCYp+WPMtpexnpO3PVdv69F6IdakLx/FNeAhYBiGHWvSioOxbiX+u2MZ0zTrsSbFOLNDcj4Ta/awhTHbXsDqUHhezDHcwDnA+9Ge0n2tM6kMwjXtFdM0VwGrgfOjMbS5COtn+a99rXO4iPc17U19fa1TpA6lte65lBgQwzCuj347DZgPPI713Ntrmub90TJLsDqqrMO6DX4B1h9Zh5imuTmmrl9E6/kI66/uE7E6wV1gmubDHY57B9a0qw9jDTs5EfguMM80zY5j0oc9wzDuwZqxahF7jqlvMk3zpWi5/bGmpVyJNQZ8NNbEN++apvmdDnU+j3Vd7sbqY3AW1sQ7R5im+X5MuV7XmUwG6Zr2+PMeLTcX+D+sO00LgL2Bi7HGjv+EJBXva9rb+vpSp0gd0jt9aPxvh/c/ir5uBtp+qS3FmoxhFFanlVeBX7a1BmOswJrI5YTo+2XAt03TfKOT4/48WtcFWK3LNVgzPyVdAo/aN/p6XPQr1mais9WZprnMMIyjsGZduxtr/uhHgGs7qfOHWP8+P8SaO30F8J3YBN6POpPJvtHXeF7T3vy8Y5rmK4ZhnATcgDXCohq4uZPPJ5t9o6/xuqa9qq+PdYoUIS1xIYQQIknJM3EhhBAiSUkSF0IIIZKUJHEhhBAiSUkSF0IIIZKUJHEhhBAiSUkSF0IIIZKUJHEhhBAiSUkSF0IIIZKUJHEhhBAiSUkSF0IIIZKUJHEhhgHDMJzR5SaFEKLXZAEUkVYMw/ge8DfgfNM0H+lk/yrADUw2TVMbhjEZ+BXW2u5FwHasJR1vNE2zOeZzU4FLgcOAsYAd+AJ40DTNRzsc40asRT/2Bs7FWvimHDgSeC+OpyuESHHSEhfpZhFQyVcra7UzDOPrwF7A49EEPhNrCddDsdZq/x/gFaxk/ZZhGM6Yjx8eLfcKcBXwS6z13B8xDKOrFaT+grVG9O+wlovcMdCTE0KkF2mJi7RimmbIMIw/AdcahrGXaZqfx+w+FwgDT0TfP46VWA80TbOxrZBhGO9gteZPjyn7lGmaD8UeyzCMu7HWyv65YRh3mqYZ7BCOFzjKNM1QPM5NCJF+pCUu0tEjgMZK2gAYhpEFzANeN01zu2EYM4CvAc8AbsMwitu+gCVAM3BM2+c73Fr3GIZRBBQCbwK5wNRO4rhHErgQYiAkiYu0Y5rmRuBt4MyYW+I/AHKAtufX06KvvwaqO3xVAVlAWVudhmFkG4Zxp2EYW4BWYFe07C3RIgWdhLImXuckhEhPcjtdpKuHsTqoHQ/8FatVXgm8Gt2voq+/A97ooo66mO+fAeZG610M1GDdmv8OcDmd/8Hc0v/whRBCkrhIXy9jtajPNQxjJTAbuD3m9vba6GvYNM23u6vIMIx8rAT+lGmaF3bYd1RcoxZCiBhyO12kpWgnsyeAb2EN9wJ4LKbIJ8BK4ELDMCo6ft4wDIdhGIXRt+Hoq+pQphw4L45hCyHEbqQlLtLZI1jDwU4D/mmaZlvrm+gQszOxepevMAzjcWAVkAlMAk4CrgWeME2z0TCMN4EzDMNoBf4DjAMuADZijS8XQoi4k5a4SFumaa4D3o2+fayT/cuB/YCnsZ6d/x64Hvg6Viv+nZjiZ2ANSTsOuB84EfgF8MBgxC6EEABKa53oGIRIGMMwXsOacGWkaZqtiY5HCCH6QlriIm0ZhjEJ65n405LAhRDJSJ6Ji7RjGMZBWOPALwUCWMPIhBAi6UhLXKSji7CeX+cCp5umuSmx4QghRP/IM3EhhBAiSUlLXAghhEhSksSFEEKIJCVJXAghhEhSksSFEEKIJCVJXAghhEhS/w9RkKJtOQJ4vQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x216 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
" .groupby(['year', 'country'])\n", | |
" .mean()\n", | |
" #.std()\n", | |
" .unstack()\n", | |
" .city08\n", | |
" .plot()\n", | |
" .legend(bbox_to_anchor=(1,1))\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 73, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x7f167dd8a6d0>" | |
] | |
}, | |
"execution_count": 73, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAADlCAYAAABDAs5EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6ZUlEQVR4nO3deXxU1d3H8c+dfbJMNhIS9kW5oqKyiAooKmrRIlptS8UNsY/WtupjW2ut9rGLS+3yuFQfrVrFteBStbhQ9yruoojrFYphTcieyTbrPc8fdxImIYEkTDKZmd/79cprknvPnDlzIfnOufecczWlFEIIIYRIPbZkN0AIIYQQ/SMhLoQQQqQoCXEhhBAiRUmICyGEECnKkewG9EIE68OGP9kNEUKIFOIDTFLj77zoJy0FRqebgJbsRgghRApSyBnXtJYK/7jSAxdCiP6Rv59pLhVCXAghhBDdkBAXQgghUpSEuBBCCJGiJMSFEEKIFCUhLoQQCdQW3sZm/yMEI9XJborIAKkwxawByEt2I4QQYk+aQ+t5v+I8QmYdNs3DWN9ZjM87H6c9aX/CGoH8nnauWbPGA3wTOArwDlKbRO+0Aa8Dz06fPj3QUyFZBEAIIRKgObSB9yuWEjLrADBVgK8b72FL0wrG5y1ljO8sHLbsJLdyF792Op1nejwej8MhcTCURCIRAoHAaeFweAZwZU/lpCcuhBB7yQrw8wiZtThteUwdfhu1be9S3ngfUdUCgMtWxIT8Cxnt+y42zTVYTeuxJ75mzZrpdrt9eWlpqWv48OHVmiZrag0lSil27NhRXFlZGYpGo4umT5/+YXfl5Jq4EELshebQf3i/cmeAzyi9lwLPdPYp+CFHjX6RcXlLsWluQmYtX9ZdzxtbT2Jb05OYKrJLXUqZRMxWgtFa2sLbCEcbB7Lp33C5XHklJSU1EuBDj6ZplJSU1Didzjxgfk/l5PyJEEL0kxXgSwhFa3HYfMwo/Rs+9+SO/S57PnrhzxjrO4eNDXewtekJApHtfFpzFRvq/4Ld5iVqthFVbURVAFMFO9Wv4eCwEQ+T554yEM0vcTqd2Gy2IX86NlPZbDblcrkIBAIlPZYZzAYJIUS6aA5t7BTgh5bei8+9f7dlPY4S9h92DXNGPUNZ9smARiBaSUv4awLRSsJm4y4BDmDTnGg4B+otZNntdumCD3Gxf6OsnvZLT1wIIfqoLwEeL8s5hoNKbmRC6PvUtr2DTXNi07zYbR7smge7ltXxvU3z4rIXDMXBcGIIkRAXQog+aAl9HQvwmj4FeLwc177kuPYdoBaKTCKn04UQopdawuWdAty6Bt63ABcikSTEhRCiF5RSfFp9NcFodSzA7yHPfUCymyUG0Ndff+3SdX36bbfd1uPAsmST0+lCCNELdYH3aAhaU3UPLv4zee4Dk9wisScff/yx9/bbby9bt25dTlNTkyM/Pz88Y8YM/6WXXloxYcKEUHu5VatW+T766KOcK6+8cnsy29sf0hMXQohe2NhwJwD57mkUeWcluTViTx577LGCM844Y/Inn3ySs3DhwprLL79883HHHVe3evXqgtNOO+2A119/Pae97Ouvv563bNmysmS2t7+kJy6EEHtQH/iQusC7AEzM/wGyOMrQ9tVXX7l/+9vfjhs5cmRw+fLlXxYVFUXb9y1ZsqT6jDPO2O/yyy+f+Nxzz30avy9ZmpubbTk5OWZ/nis9cSGE2IP2XrjPNYUi7+wkt0bsyZ133lkaCoVs11xzTXnXkB4/fnzokksu2drQ0OBYtmxZ8cUXXzzuiSeeKAHQdX16+1fXOu++++7iuXPnHnjAAQdMW7BgweT33ntvl7nbn376qWfp0qUTp0+ffsiUKVOmLVy4cL8XX3zRF1/mhhtuGKHr+vQvv/zSfcEFF0yYOnXqIeedd94+/X2v0hMXQojdaAx+Sk3bagAm5l+Y9r1wpUIa0a0DtsJMr9lHhTXN1a/V5N5+++284cOHh+bMmdPS3f7TTjut/oYbbhi3evXqvMsvv3xrbW2tc82aNb5rrrnm6+7KP/fcc0WBQMB+6qmnVmuaxsMPP1x62WWX7fPqq69+4nJZbVy3bp333HPP1UtKSkJnn312hdvtVs8//3zhJZdcsu9tt9321bx585ri67z44ov3GTNmTNsPf/jDbU6ns9+r5kmICyHEbrT3wnNdOsVZxyS5NQNLqZCmqo8/ALPCney2YCsLUvziZ30N8oaGBntdXZ3ziCOOaOipjMfjUSNGjAhs2bLFO2vWrJZnnnkmsGbNGt/ixYvruitfU1PjeuGFFz7Nz8+PAkycODHws5/9bJ8XXnjBt2DBgkaAa6+9dnRZWVnwqaee+rI92L///e9XLViwYP9bbrll5Lx5876Mr3PSpEktt99+e3lf3lt35HS6EEL0oClkUNX6CgATMqAXng6amppsAFlZWbu9xpyVlRVtbW3tVQbOmzevrj3AAWbPnt0MsHnzZjdAbW2tfd26dbnz5s2rb2xstFdXVzuqq6sdDQ0NjpkzZ/rXr1+f3dLS0um1Fi9eXN3X99Yd6YkLIUQPNjb8FYBs5wSGZ52Q5NYMPE1zKYpf/CyVT6fn5uaaAHsK6NbWVrvX6+3VYLKysrJQ/M+FhYVRAL/fbwfYsGGDWynFXXfdNfKuu+4a2V0dtbW19uzs7I7XGz9+fKi7cn0lIS6EEN1oDv2HypZ/ATAh/wI0LTNOXGqaS+GYkJCASYb8/PxoQUFBeOPGjT3eNCQQCGjbt2/37LPPPt1eM++qpzu9KaU0ANM0NYAzzjijcs6cOf7uyhYXF3e692xvP0DsiYS4EEJ04+vGuwGF1zGa0uyTkt0c0QdHHHFE43PPPTfszTffzJ49e/YuQf3kk08WhEIhbc6cOQm5YfuECROCAG63Wx133HFNeyqfSJnx0VIIIfqgNbyZiuZnAasXbtOkv5NKLrzwwkqXy6V++9vfjq2rq7PH79u0aZPr1ltvHZWfnx9ZsmRJNYDX640C1NfX27urb0+GDx8eOfDAA5uffPLJ4qqqql3+s3S3LVHkf6YQQnSxseEeFFE89jJG5Jyc7OaIPtpvv/2CV199dflvfvObcQsWLDjg5JNPrhkxYkSwvLzcs3LlyuJwOKzdeuut69vnkE+ZMqUV4Oqrrx49Z84cv81mU4sWLarvy2v++te/3nTuuefu1/56o0aNClZVVTnXrl2bEwqFbE888YQxEO9VQlwIIeK0RbazvfkpAMbn/xc2zZXcBol+WbRoUd2kSZPa7rjjjrKnnnqquLm52Z6XlxeZNWtWw6WXXrp94sSJHdf9Tz755Ib33nuv6qWXXip8+eWXi5RSLFq0aE1fXm/KlCmBFStWfHHTTTeNWLly5bCWlhZ7fn5+eNKkSa1nnXVWVeLfoUVTqt9zzAdLA5CX7EYIITLD5zW/Y0vT33Hbizly1AvYbYM/ZVqZrWDWgOZFsxfvTVWNQH53O9asWXNXQUHBtyZMmLBpb15ADKyNGzeOra+vf3L69OkXdLdfeuJCCBETiFSxrfkJAMblnT9gAa6iVRB8DcwqlFkD0RortM1a61HFjcUqXIHmmjog7RCpT0JcCCFiyhvvw1QhXLZCRud+J+H1K6UgsBLl/w2oXgxi1vJAy9lzOZGxJMSFEAIIRevY0rQCgLF5S7DbvAmtX5kNKP81EHje2qDlgmNfsA0D2zA0+7CO7zu+7CVock1e7IaEuBBCAJv8D2GqAA6bjzG+MxJatwq+gWq8EszY+Cb3PDTftWj2ooS+jsg8EuJCCAFUtqwCYHTuIhy27ITUqVQbqukP0PqwtUHLRsu9CrynyzrsIiEkxIUQGa8l9DWt4XIAhmcnZo10FfoY1fhziMbubumcjpZ3I5pjTELqFwIkxIUQgqq2VwFw20vwufbfq7qUCqOa74CWO4Ao4ETLuRSyz0fT+rUgmBA9khAXQmS86hYrxIuzjt6r09wq+Aaq6fcQWW9tcExCy/sDmnPvPhgI0RMJcSFERgtFG6gPfgRASdYx/apDRTag/L+H0OuxLRpkLUHL/QmaNviLxYjMISEuhMhoNa2vAyZ2zUuh5/A+PVeZdajmW6F1Bdapc8B1GFruldL7FoNCQlwIkdGqWl8BoMg7q9crtCkVgtYHUc3/t3PRFvs4tNyfW9PHZOS5GCQS4kKIjGWqEDVtq4HenUpXSkHwBWvaWHSLtVHzoeX8GLIWy8IsYtBJiAshMlZd2/tEVSugMSxr7m7LKrMe1fgLCL4a2+KwgjvnR2i2ggFvq+i9iy++eNzq1avzP/roo7Xd7dd1ffrpp59edf31128BWLdunfeWW24pMwwju6GhwZmbmxsZO3Zs29y5cxsvuuiiAbsDWSJIiAshMlZVqxXI+e6Dce9m9TQV+gDV8BMwK60N7mPRcn+O5pgwGM0UA+jNN9/MvuCCC/Ti4uLQwoULa4qLi8MVFRWuTz75JHvFihUlEuJCCDEEKaWojl0PL+7hVLpSJrT81Rq8RhS0LDTfb9C8pwxiS8VAuuOOO8pycnKiTz755BcFBQXR+H07duwY8hk55BsohBADoSlkEIhaPevuroeraA2q8XIIvWltcOyHln8LmmP8YDZTDLDt27e7x48f39o1wAGGDx8eSUab+sKW7AYIIUQyVMdOpXsdo8l2Tuy0TwXfQtWesjPAsxajFT0mAZ6Ghg8fHjIMI/uzzz7zJLst/SE9cSFERmq/Hl6SdUzHlDCloqjm26Dl/wAFWg5a3vVonvlJbOngMlVIawtvcya7HV7nyLBNc6mBfp2lS5fuuOSSS/b99re/fYCu6y2HHHJI0+zZs5vmzp3b5HIN/OvvLQlxIUTGCUSq8Ic+BXZeD1eRrdbo8/B7ViHnFLS8mzLqhiWmCmlvbJl/QCBamfRl5jz20uCRo1d9NtBBfvzxx/vvv//+L+68886yDz74wPfFF19k//3vfy/Nz8+P/OpXvypfsGBB40C+/t6SEBdCZJzq1tcAcNhyyXdNwPTfAK0PAWGrQNZ5aLk/lXnfGWLmzJmtM2fO/E8wGNQ+/vhj76pVqwoee+yx4VdcccXEiRMnfj558uRAstvYEwlxIUTGab8ePsxZhlYzf+eqa7bh1uhzz7FJbF3y2DSXOnL0qs9S/XS6y+Uyw+Fwt2O+WlpabABut9vsus/tdqtYoLeOGzcucN111417+umnCyZPnlzRn3YMBglxIURGCUf91LZZA9aKzS/ApkDLRcu+ELLPQdNScnxTwtg0l8p2jQ8lux17o6ysLBQOh7Wvv/7aNX585/diGIYbYMSIEbt9j1OnTm0BqK6uTvoHmt2R0elCiIyglEIFXqa2aiEmETQURXY7ZC1FK34ZLeeCjA/wdHHsscc2Atx7770lXfc9+OCDJTabjXnz5jUCvPrqq7mmuUunnJdeeikPYNy4cUP2VDpIT1wIkQFUZAOq8WoIf0h12AbYKHAMw1WyHM0+MtnNEwk2bdq0thNOOKH20UcfHb5582bPzJkz/aZpam+99Zbvww8/9C1atGjHhAkTQgDXX3/9mGuuucZ21FFH1U+YMCEQDoe1tWvX5rz22muFJSUlobPOOqs22e9ndyTEhRBpTYXeR9VfBMqPUlBjuoEwJb4LJMDT2M0331x+xx13tK5cuXLYnXfeOQpQo0ePDvz85z/fdP7559e0l/vpT3+65fnnny94++2381auXFkciUS04uLi0CmnnFJ12WWXVXS3CMxQIiEuhEhbKrAK1fAzIAS2YvzeHxAK3ABAcdbRSW2bGFh2u50f//jHVT/+8Y93u/b5/Pnz/fPnz/cPVrsSTa6JCyHSkmp5ANVwKRAC+3i0whVUh60OWI5zH7Kco5PbQCESQHriQoi0opSJavojtP7N2uCcilZwJ5qtoGN+eE83PBEi1UiICyHShlIhVOMVEHjW2uA+Di3/f9E0D63hLTSH1wPd3/BEiFQkIS6ESAvKbEI1/AhC71gbshaj5f4KTbMDO1dpc9mKyHNPSVIrhUgsCXEhRMpT0UpU/X9BxABAy/kJZF/YcWMT2HnDk+KsuR3BLkSqkxAXQqQ0FdmIqjsPzArAgZZ3HZr3W53KhKN+6gMfADIqXaQXCXEhRMpS0R2ouqVWgGvZaPl/QXPP2aVcTdtqFBFsmosi76wktHRIaopEIrsuVSaGlNi/UVNP+2WKmRAiJSmz2TqFbm4HLQutYFm3AQ5Q2fIcAIWew3HYsgazmUOZEQgEwtXV1YXJbojoXnV1dWEgEAgDRk9lpCcuhEg5SoWsQWyRLwE7Wv6taK6Duy3bFt5GVWxQ28jcUwetjSng3nA4vE9FRcXi+vr60Q6HQzp1Q0gkEjEDgUA4HA4/AtzbUzkJcSFESlHKRDX+EkJvA6D5rkNzH9Vj+c1NywETt304JVnzBqmVQ9/06dMja9as+WU4HN4QDod1IDfZbRKdNGH1wO+dPn16pKdCEuJCiJSimv8MgX8CoOVchpZ1Wo9lo2aAbU2PAzA6dxE2bUjfVXLQxcLhrmS3Q/SfnD4RQqQM1fIAtNxt/eA9A7J/sNvyFS3PEjYb0XAyyvftQWihEINrjz1xXdcPBZYAxwBjgVrgLeBqwzA2dCk7C/gDMA3wAyuAKw3DaE1ss4UQmUYF/oVqus76wT0Pzfc/neaB71JeKTb7HwagNHs+bvuwwWimEIOqNz3xK4DTgJeAS7FOvRwNfKTr+uT2QrquHwK8DHiAnwD3ABdiBbkQQvSbCr2PavgpoMB5SGwp1d0v2NIQ/Iim0JcAjMk7cxBaKcTg68018f8FFhuGEWrfoOv6CuATrIBfEtt8PVYv/WjDMJpj5cqBu3VdP9YwjFcS2G4hRIZQkQ3W/cDb70ZWcCea5t3j89p74T7XFPLdBw1wK4VIjj32xA3DeCs+wGPb1gOfAZMBdF33AccDD7QHeMwDQDPw3YS1WAiRMazFXM4H5QfbMLSCe9Bse57WHIhUsaPlRQDG+qQXLtJXvwa26bquAcOBmtimKVi9+g/iy8XCfy0wtf9NFEJkIqUUyn/1ztXYCu5Gc/TuHuBbm1agiOCyFVKaM3+AWypE8vR3dPqZwEjg0djPZbHHim7KVgAj+vk6QohMFXgWgv8GYnPBnQf06mmmCrGlyfrTNCr3O9g014A1UYhk63OI67q+H3A7sBp4MLa5/QJVsJunBOL2CyHEHimzHtV0rfWDex54Tuz1cytbXiAUrUXDzmjfogFqoRBDQ59CXNf1UuBZoB74jmEY7Yvnt8Ue3d08zRO3Xwgh9kj5fw9mHWg5aL5rdjuVrKst/kcAKMmah8dROlBNFGJI6PWKbbqu5wHPA3nAbMMwKuN2t59GL9vlida27f1uoRAio6jgmxB4EgAt93I0e++DuDH4GQ3BtQCMkQFtIgP0qieu67oHWAlMAhYYhtH1jiqfAhFgRpfnuYBDsAa3CSHEbimzFeX/lfWDczp4+3Y6vH1aWY5zEgWeGXsoLUTq22OI67pux1qw5QisU+jvdC1jGEYj1mIwZ+u6nhO362wgB3gsMc0VQqQz1XwrRLcCTrS8a9G03l/xC0XrOm45Osa3uE+n4IVIVb05nf5nYCFWT7xQ1/Wz4vY1G4bxVOz7q7CWY31N1/V7gFHAT4HnDcN4KXFNFkKkIxX+BFqXAaDl/AjNMbFPz9/a9ASmCuGw+SjLWTAALRRi6OlNiB8Sezw59hVvE/AUgGEYH+q6fhxwI3AT1trpdwNXJqKhQoj0pVQY1XgVYIJjEmR/v0/PN1WELf6/AzAy51s4bFkD0Eohhh5NKZXsNuxJA9ZgOiFEmlLNf7VuMYqGVvgomuvgPj1/R8tLrK26BNA4ctTzZDnHDEg7U1AjkJ/sRoiBI7ciFUIklYqUo5r/Yv2QdU6fAxx2Dmgr9h4lAS4ySq+nmKUapYKoxp+DCqNlnQmuWTLQRYghRikT1Xg1EALbCLSc/+5zHc2h9dQF3gVkWpnIPGkb4ph+CLwARFHBl6zrbFnngnchmtbdmjRCiEHX9jiE3wNAy/sNmi27z1Vs8j8EQJZzHEXeWQltnhBDXdqeTtfsxWgFfwPnTGtD5CuU/ypU9VzMpltQ0ZrdVyCEGFAqWoVqutH6wbMQzT23z3UEI9Vsa3oKgLG+s/o0JU2IdJDW/+M19yxsRQ+hFT0JnlMAp7WUY8vtVpg3/gIV/jLZzRQi4ygVRjVcBqoJtHw03y/7Vc8m/0MowjhtBYzM+VaCWynE0JfWId5Ocx6ALf+PaMWvQPYPQMsHwtD2D1TtQszaxajWFSjTn+ymCpERVNONEH4fAC3vul7dI7yriNnClqblgHUt3G6T+yyJzJORU8yUaoO2p1EtyyC6MW6PC9zHonlPAfeRaHILQyESTrU9ZQ06Bci+CFvuZf2qp7xxGUbdH7BrXo4a/TIue37iGpk+ZIpZmsvIEG+nlAmht1BtT0LgRay7psZo+eA9Cc1zKjgPlpHtQiSACn+Gqv0eEATXkWgFd6Fp9j7XY6oQb2yZTyBayRjfmUwuuirxjU0PEuJpLqNDPJ4ymyH4IqrtaQi9DcQdF/tYq3fuORXNMWqgmyJEWlJmHarmdDC3gX00WtE/0Gz9+9Xe1vQ0n9ZciYadI0etwuscmeDWpg0J8TQnId4NFa2EwLOotqcg0uWGba7D0DzfAs83+jUdRohMpFQEVX++9QFZ81qrsjn1ftaleGvbKTSHN1Ca/U0OLvljglubViTE05yE+B6o8JdW7zzwTzCrd+7QssB9Apr3W1awy9QWIXpkNv0BWu4BQMv7XzRv/29QUt36bz7ccREAR4x4HJ97/4S0MU1JiKc5CfFeUioCoTdRbf+AwMtAaOdO2wjwnormmmpdS7cVgC0PtFwJd5HxVNuzqMbY4LWs87H5rtir+t6rOIf6wAcUeWczo/TuBLQwrUmIpzkJ8X5QZiMEnrcCPbx2NyVtoOWBLb/jS3MeDJ6T0BzjBqWtQiSTChuouu+CagPXEWgFf0PT+r9QZEPgY96tOAOAGaV/o8h7RKKamq4kxNOchPheUpGNsdHtz0O0Agj37omOA9A8J1kj4O0yKEekH2U2ompPh+hma130Yf/o13zweB/tuJSq1hfxufbn8BGPyayRPZMQT3MS4gmklALVCqoBzEYw663H2M8qWgnBV8Dc0fmJzkPQPN8Ez3w0+/BkNF2IhFIqiqq/EEKvA260ouVozgP2qs6WcDmrt34TUBxU/GfKck5MSFvTnIR4mpMQH2RKmRBegwo8B4FVYNbG7dXAOQPNezJ4Tuz39Bshkq3zQLYbrQGge+mzmmvY2vQYXsco5ox6DttenJbPIBLiaU5CPImswXLvxQL9BavH3sEJ7mPQvAvBfbSsHidShmp9DOWPLb6SdQ4239V7XWcwUs3rW4/HVCEmF13NGN/iva4zQ0iIpzkJ8SFCqXBs9bhnIPiidVq+nZZv9cy9p4BzqlwHFEOWCr6Dql8KRMB1FFrBnXs1kK3d+rqb2dh4F05bPnNHvyzrpPeehHiakxAfgpTZCsGXYqvHvQmYO3fax1i3bfQcC47J/VqycqhRZitEN4FqBudBcr/3FKUiX6NqvwuqERyT0AqXo9ly9rreiNnCv7fMI2L6mZj/I/Yp+FECWpsxJMTTnIT4EKeiVRB4xgr0yBedd2q54DoUzTUTXIeBY78hG+pKBSCyGaLlENmEij0SLQezamdBLdu6CY3nBHAfhaZJjysVKLPeCvDoJrAVoRU9nrBZF+WN92PU3YhN8zB39Mu47AUJqTdDSIinOQnxFKLCX6ECT8ems23dtUCnUJ8BtiLACZor9ugEnAk5Ha+ilRBagwqvgbBhzQMmDCq08zH++95Ovev0frzgmhsL9KMT0qsTiadUCFW3FMLvAW60wofQXAcnpO7ONzpZzOSivb++nmEkxNOchHiKUpGt1qC40LvWfZm7C/UetQe7C+wjwDEG7GPQ7GM7vsdW0rHanFJRiKyH8Ieo0BoIfWjdxKJfPOAYC/Zx4BiLFnvEPh7QrMsIgX9B6B0gEvc8l3V7WPex4JgA9pFgKx6yZx4yhVIK5b8S2v4BgJZ3M5r3pITVv9n/d76o/R1g48hRq8hyyg2I+khCPM1JiKcJFdkK4fdQofcg9F4fQ707HnCMBq3AOo2vmnYtonnBeXDsOrbP+mDQ/uFAi/ugoLlA84B9dKcPB7t9P2YDBF5BBVdB8E2678k7wV5qBbp9JJp9RCzchwEKlGk9EsUaV6BARa1HzQ2OidaHF5mq1G+q+a+o5j8DoOX8N1rODxNWtz/4Oe9WLMZUIUbkLGRK8e8TVncGkRBPcxLiaUpFa2Mj3EOgwlintWNf7dtUK0S3oaKbYterN4NZ2XOltmJwTkdzTQPX9Ng1eOfAvxezCYKvogKrILQGVH0Ca3eCYzw4JqI59gHHvuDYJxbuMq1vd1TgX6iGi60fPKeg5f0hYTMnQtEG3tn+Hdoi28hyjOHwEY/itPsSUneGkRBPcxLiohNrANoWK9Cjm1BmDZpjEjinWfeAHgLT25TZCuZ2iG6D6HZUdCtEt8e+tlkr5aGBZgds1vfYY9ts1vdmExDYzas4wDHO+qDimAzOydb39mED/v5SgQp/gqo9EwhYH+wK70/Yhx6loqzZcRG1bauxaR4OH7GcXNekhNSdgSTE05yEuMhISplW4Ec2QPQ/qMgG67p/5D+d5+h3ZSsGx37gbA/3g9AcYwav4UOAimxA1S2xZhXYR6MVPbbXa6LHW1//FzY23AHAlOIbGZFzcsLqzkAS4mlOQlyIOEqZ1iWFyHoIf4WKfGmNCYhspNN8/Xj2ieA51hp05zwkrQfbqbbnUP5fWh90tFy0okfRHBMTVn9V62t8tMO6rj7GdyaTi65KWN0ZSkI8zUmIC9EL1mWG9RD+AhX5AsJfQuRLUC2dC2oF4J6L5pkHrtlpMy1OqTCq6U/Qep+1wVaKVnAbmvOghL1GS3gT72z/LhGziXz3NA4tuxebjEvYWxLiaU5CXIh+sm5m8wkq+Ip1d7qI0aWEE1yHo7mPsKbtxb40W1ZS2ttfKlqNavhvayojWPcFz78poafQo2Yb71Qspjlk4LIXccSIJ/A4ShJWfwaTEE9zEuJCJIiKbLVG0Qdfsab59bTAjW1YLNBHW9fT7WOs6+yOSUNi4GA8FVqDarh056p62RdYU8kSOC1PKcUn1b+gomUlGnZmlN5HoXdGwurPcBLiaU5CXIgBoMxmCL2BCrxinXaPbo6tarcbtjJrZTr30eA+PKlLziqloPVBVNPvgQhoOdYtRT3HJ/y1Nvsf4YvaawHQC69gXN65CX+NDCYhnuYkxIUYBEopMGtiU/c2oyKbIRqbyhfZ1M3cdze4j4gF+tHWQjaD1VazFeW/GgLPWBsc+6Ll34bmGJ/w16oPfMT7FeeiiFCafSIHFf9pyJ2NSHES4mlOQlyIJFNKWVPdgq+hgq9C+COsVebiOHTrhjCuw6x52bbsxLfDbILAc6iW+yC60droWYDmu3ZAruMHI9W8vf07BKNVZDsncviI5TgG4H1lOAnxNCchLsQQo8wGCK62Aj34unVrz07s4JwCrsPQXIdb95jvZ8gqFY3dx/5JCLwIBGN7HGi5v4CsswekZxyI7OD9yvNoDZdj17I5YsSjZLsS39MXEuLpTkJciCFMqQiE11qBHnoHwp+x63x1585Qd+4PtuFgLwHbsB5XUVORDVZwtz3d+VaweMBzAlr2uWjOKQPyntrC23i/ciltkS3YNBdTS25jWNacAXktISGe7iTEhUghymyC0AfW3etC70Lkc6ybvPRAK4gFegnYh4OtwHpeeF3ncs5D0bzfAs/8AZ3b3hrewvsVSwhEK7BpHqYNv50i7xED9npCQjzdSYgLkcKU6YfQ+7FQfy82Cr65d0+2jwLPqWjeUwdl6diWcDnvV5xHMLoDu+Zl2vA7KfQeOuCvm+EkxNOchLgQaUaZLWBWW6fJo1VgVqFij5jVYB+F5jkVXIf26rawidAc2sD7lUsJRWtwaDlMK/0rBZ6pg/LaGU5CPM3JjZSFSDOaLRts2cC4nduS1hpoChl8UHE+IbMOh83HjNK7yXMPzPV2ITKNhLgQYsD4g5/zQeX5hM1GnLZ8ZpTeg8+9f7KbJUTakBAXQgyIhsDHrNlxARGzCZetiBll95Lr2jfZzRIirUiICyESSinF9uan+aL2OqKqBbe9mBml95HjmpDspgmRdiTEhRAJ0xzawOe1v6M+YN3xzGMvZUbZvWQ7xyW3YUKkKQlxIcRei5pt/KfhTsob70MRAaA0+0T2K/wFbkdxklsnRPqSEBdC7JXq1n/zRe21tEW2AeB1jGb/ov9hWNbsJLdMiPQnIS6E6Je2SAVf1t5AVetLAGg4mZD/fcbn/Rd2myfJrRMiM0iICyH6RCmTTf4H2FD/F6Kxe6QXeg5n/2H/I9e+hRhkEuJCiF5TSvFF7bVsaVoOgMtehF54BWXZ35T7gAuRBBLiQoheUUrxVf2fOwJ8RM4p7Fd4JU67L8ktEyJzSYgLIXplY8OdlDfeC8DInNM4YNhvB23tdSFE9+Q3UAixR+WN97Oh4S+ANXXsgGG/kQAXYghI2564UoqNDX8lZNZT5D2CQs+hOGzZyW6WEClni/8xjLobASjOOoYpxb9H0+xJbpUQAtL4VqRtkQpe3zKv42cNB/meaQzzzqLIOxufa7L0JITYg+3Nz/BJ9RWAotBzONOG34Hd5k52s0Tvya1I01zahrhSiq1Nj7O9+Wkagx+jiHba77QVUOSdxTDvLIZlHYXbXpSg5gqRHna0vMTHVZehiJLvnsr00rvkbFbqkRBPc2kb4vHCZhN1be9S2/YmNW1v0hbZ2mm/hoPh2cczOvd7FHhmyFQZkfFqWt/kwx0/RBEm1zWZQ0vvk1HoqUlCPM1lRIh31RreTE3bm9S2vUlt27tEVUvHvmznREb7vseInIU4bbmJfFkhUkJ94AM+qLwAUwXIdk5gZtkDuOyFyW6W6B8J8TSXkSEeL2oGqGxZxZam5TQG13Vst2teynIWMDp3ET73/gP18kIMGRGzmc3+h9nYcDdR1YrXMZqZZQ/icZQku2mi/yTE01zGh3g8f/BztjStoKL5mY7lJAHy3AcxxncmpdknYtPSdkB/xghGazDNIF7nyGQ3ZUiImM1s8j9EeeMyIqYfsG4hOrPsQTlGqU9CPM1JiHcjbDaxvfmfbPEvpyX8n47tXsdIxuUtZWTOt+QGDykiYrbgD35GY/CTjq9AtAIAn2t/RuScQmnOSRk5sDFsNrG58WHK/TvD2655Ge07g/F5S+UUenqQEE9zEuK7oZSiPrCGzU0Ps6PlBcA6Vi57EWN95zLG9z0ctpxkNE30oC28jeq21zsCuyW8kfZ/t55o2BnmPZIRuQsp9h6T9lOorPB+iHL//V3CezHj8pZk5AeaNCYhnuYkxHupJVzO1w33sr35KRQRABy2XMbknsGYvLPlD18SKaWoC7zHZv+DVLW+Snehne2cQJ57Cj73geS5p6BUmO3NK6lsWdURZGD9m5Zmz2dEzinku6em1UyFlnA525tXstn/cKfwHuM7k3F5S6TnnZ4kxNOchHgfBSI7KG9cxtamRzuum9s0N6NyT2ec7zy5hjiIomaAipZn2eR/iOaQ0bHdZS8i3z2NPPcU8twH4nMf0ONMg6gZpLrtVbY3/ZOatjc6rSeQ5RzHxPyLKMs+KWVXKGsNb6ay5V9UtjxPU+jLju07w/s8XPaCJLZQDDAJ8TQnId5PoWgDm/0Pscn/UFxPzkZp9gmMzVtCvvugpLYvnQUilWzxL2dL06OEzYaO7fnuqYz1nUVJ9nHYNGef6w1Ga6lsfo7tzU/jD33esT3HuS/7FFxMSda8lOiZt4W3UdmyisqWVfhDn3Xa57YPZ0TOwljPW8I7A0iIpzkJ8b0UMVvY2vQY5Y33E4zu6Nie757GuLwllGQdk7K9uKGmIbiOTY33s6PlxY5LGhoOynJOYozvLPLcBybstZpCBhsb/kply6qObT7XFPYtvJQizxFDLszbwtvY0foClS2raAx+0mmfyz6M0uxvUJo9P3aJQJYbziAS4mlOQjxBTBWismUV5Y3LOp229DpGMzbvHEbmnCpLVvaDUiY1bW/wdePfqA980LHdZStitG8Ro3MX4XYUD9jr+4Ofs6H+L1S3/btjW4FnJvsWXEqBZ+qAvW5vtIa3sqPlX1S2vIA/1CW4bUUMzz6B0uz5FHimyQfJzCUhnuZ6FeK6rpcBlwKHATOAHOAYwzBe61KuHBjbTRU3Gobxi362sYEUCPF27YOsNjUu6/SH32HzMTr3u4zxnSWLZ/SCqUJUND9HeeO9NIc3dGzPde3HWN+5lOWciE1zDVp76gMfsr7+5k4fJIq9c9mn4OJBXQzIusb9Ajta/rXLqXKXrZCS7HmUZp9IoedQCW4BEuJpr7chfjTwKrABqAJm0XOI1wA3d6niU8Mw1vazjQ2kUIjHaw79h03+B9je/E9MFQTaT/8uYFzeeeS69k1yC4eeiNnMlqZH2dT4YKfLE0WeWYzPX0phEk9lK6WobXuL9fW34A992rG9wHMoY3yLKck6tl/X4nf/mib+0OfUtL7BjtYXO53lAWsQ3/Cs4xme/Q0KPNNlMSLRlYR4muttiOcCLsMwanVdPxV4kp5DfK1hGKcmsI0NpGiItwtF69js/ztb/H8nZNZ1bB/mncO4vKUUeg4bctdYB1sgUsVm/0Ns8S8nopoBa/52afZ8xuWdN6SWvlVKUdX6Mhvqb+10lsBtL2F07iJG5X57r07xByPV1LS9RU3bamrb3iJs1nfa77YXMzz7eIZnzafAM1V63GJ3JMTTXJ+vifcmxIFFgN0wjNYEtLGBFA/xdlEzwPbmf1LuX0ZruLxju8+1P+PyzmN49jcyriflD37OJv8DVDQ/1zFYza55GZl7OuN85w7pKXtKmdQG3mGz/2GqW1+jfX66dVe8bzDGt5h89yG7/YCmlCKqWmkMfhq7y94bNMVNl2uX5RjDsKy5lGafIIPTRF9IiKe5gQjxEsAF2IGNWNfD79qLNjaQJiHeTimT6tZX+brxPhqCH3Zs9zhGMNZ3DiVZR+NxjEhYoEfMFkLRuthXDcFoHaFoLRHVRLZzPHnug8hxThy0Hp31/l+j3H8/9YH3O7a7bIWM8Z3FaN/3cNnzB6UtidIW3saWphVsbXq807S3XNdkhnlnEzFbiZiNhE0/YdNPxPQTjvoJm40dH17i2bUsiryHU+SdwzDvbLKcowfx3Yg0IiGe5hId4v8E3gC+AoqB/wJmAlcahvH7fraxgTQL8XgNgY8pb7yPHa0vEr/SmIYDr2MkWc6xsa8xZDus7z2OMkwVJBStJRitiXusIRj7CkVrY191nW7m0hO75sXnPoA890GxRVIOwmMvTehp/ojZwrbmp9jc+CCtkc0d23Oc+zA271zKshek/JKn1l3xnmez/5FdBp7tic+1P0Xe2QzzziHfc/CgDtwTaUtCPM0lNMS7KWsHVgMHASMMw2jsRxsbSOMQb9cS3sSmxgfY3vxUL0JXY0/rgffErmXhshfhthdh0zw0h77qdJ0+nss+jDzXATjtBThsWdi17NhjFnZbFg4tC7stG7vmQWGiVBRF7EtFUUSsRxWlKfwVW5se77TE6TDvHMbmLRmS8673llKKxuA6tjY9SmtkG06br+PLYffhtOVZ38e2eZ2jZOleMRAkxNPcgIZ4rPwiYDlwomEYq/ZUvhsNZECItzNVhEBkOy3hTbSGN9Ea2Ww9hjfRFtnWaVnQdg5bbiyYh+G2D8NlL4r9XIzLXojLVhjbXojd5u30XKUUgch2GoPraAiuozH4Cf7Q55gqMCDvz6a5GZGzkLG+s8lx7TMgryGE6CAhnuYGYxTVltij3F2hF2yagyznGLKcY4AjO+0zVZi2yHYCkW3YteyOwN6b26JqmobXORKvcySlOSd2vE5zaAONwXU0hdYTMZuIqlaiZiuR2GNUtRKJPcZPn9M0Oxp2NM0Re7Rjw4HdlkVZ9gJG+74rN9oQQogEGYwQnxB7rB6E10prNs1JtnMs2c7u1tNJ7Ov43JPxuSf3qrxSpoyWFkKIJEjYX15d1wt1Xbd12eYBLgeagLcT9VpiaJEAF0KI5Oh1T1zX9atj37Z3z87WdX0O0GAYxm3AQuAqXdcfB8qBIuBcYBJwkWEYzQlrtRBCCCH6dDr9d11+Xhp73ATcBnwCfAmcjTW9LAh8CPzUMIxn9rKdQgghhOhC7mImhBDpS0anp7lUCHETa2K0EEKIvlEkcOyTGHpSYaFuE+s/oX9PBYUQQnTwYf39FGksFXriQgghhOiGnGYRQgghUpSEuBBCCJGiJMSFEEKIFCUhLoQQQqQoCXEhhBAiRUmICyGEEClKQlwIIYRIURLiQgghRIqSEBdCCCFSlIS4EEIIkaIkxIUQQogUJSEuhBBCpCgJcSGEECJFpcKtSJNO1/Uy4FLgMGAGkAMcYxjGa13K5QHXA6cBBYAB3GgYxiPd1HkO8DNgElAPPAb80jCM5i7lbLFyFwFlwFfAdYZhrEjgW0wqXdcPBZYAxwBjgVrgLeBqwzA2dCk7C/gDMA3r9rQrgCsNw2jtUs4N/BY4G+vf4mPgKsMwXu7m9XtVZ6pL9HHu7e9FXPmFwK+B/YEq4G9Y/5cjiXqPQ8EAHOde19fbOkX6kJ547+jAFcAoYF23BXTdAbwIfB94BLgM+Bp4OBbY8WUvBe4HKoGfAPcB5wNP67qudan6OuBG4AXgYmAzsFzX9W8n5J0NDVdgffB5CSsU7gKOBj7SdX1yeyFd1w8BXgY8WMftHuBCrD9SXS3D+jd4KFanCTyv6/oR8YX6WGeqS/Rx3uPvRVydJwJPAXVY/4+fAv4HuGlv3tAQlejj3Kv6+linSBPSE++dNcAwwzBqdV0/FXiymzKnA4cC5xqG8UBs2x26rj8O/FHX9eWGYYRiPcTfAK8A3zAMQwHouv4WsBI4BesPHLqujwR+CtxiGMZ/x7bdA/wb+JOu6/8wDMMciDc8yP4XWGwYRqh9g67rK4BPsP6ALYltvh6rF3J0+xkLXdfLgbt1XT/WMIxXYttmAt8DLjMM4+bYtgeAT7E+EB0V99q9qjNNJPQ407vfi3Z/Aj7C+j8fjdXpB67Udf1WwzDWJ+YtDgmJPs69ra8vdYo0IT3xXjAMo8kwjNo9FJsNKODRLtuXAyVYp8IADgDygBXtAR57jWeAZmBR3HNPAZzA/8WVU8AdWKfVZvb5zQxBhmG8Ff8HKrZtPfAZMBlA13UfcDzwQJdLDg9gHbfvxm37NhDG6oW01xfAOn07J3YauK91prxEH+de/l6g6/r+WKfQ/9oe4DH/h/U36PT+vaOhaQCO8x7r62udIn1IiCeOG4gAoS7b269DTYsrB9DWTR1tceUApgJ+wzC+6lLuvbj9aSl2WWE4UBPbNAXrzNEH8eVif9zW0vlYTAW+7Dq+AOu4acAh/agzLe3lce6t9ud0rXM7sLWfdaaURB/nburb6zpFapIQTxwDq9fctXd8ZOxxROxxPVaPfXZ8IV3XdaA4rhxYA9kqu3mtii51pqMzgZHsPLNRFnus6KZsBbset57KEVe2L3Wmq705zr0lxznxx7lrfYmoU6QguSaeOI9gDdRZpuv6j4ENwAnAD2P7vQCGYdTouv4ocL6u6wbwNNYv41+wTgF74+r0AsFuXisQX2e60XV9P+B2YDXwYGxz+3vt6Xj057j1pc60k4Dj3Ft7qjOrH3WmjEQf5x7q26s6ReqSnniCGIZRCSzE+kV5EWtk+h+xRuKCdU2q3YXAc1gDVv4DvI41SGVll3Jt7Dz9Hs8Ttz+t6LpeCjyLNe3uO3ED99rfa0/HI/5Y9Pa49aXOtJKg49xbcpwTdJx3U1+/6xSpTUI8gQzDeB2YgHXtaQ5WD/ud2O71ceUaDcM4BWtw2lxgnGEYZ2OdDosfpVsBlHbzUu2nzbYn9A0kWWye/fNYA/++Eftg1K79FGHZLk+0tm3vUrancsSV7UudaSOBx7m35Dgn4Djvob5+1SlSn4R4ghmGETUMY61hGG/GBlYdF9u1y9QOwzA2G4bxumEYm3RdzwemY83xbLcW8Om6PqnLUw+L258WdF33YJ2JmAQsMAzD6FLkU6yBgzO6PM+FNVBtbdzmtcB+uq7ndKmj/bh93I8600KCj3NvtT+na50jsOaY96fOIS3Rx7kX9fW5TpEeJMQHkK7rxVjzOP9lGMYXeyh+A9aCJH+N2/Y01nXy9uvq7aNSf4C16Mu7CW1wkui6bsdajOIIrFOE73QtYxhGI9ZiF2d3CeezsVYKeyxu2+NYgwy/H/cabuA84M3YqOi+1pnyBuA494phGJ8BXwIXxNrQ7iKs//NP9LXOoSzRx7k39fW1TpE+NKXUnksJdF2/OvbtZGAxcC/Wde8GwzBui5VZjTXYZAPWafALsT4ozTIMY1NcXVfF6nkX65PzqViD4C40DOOuLq/7B6xlV+/CmjpyKvBNYJFhGF3npKckXddvxlqJaiW7zrNvNgzjqVi5aVjLTX6KNQd8FNZiOK8ahnFSlzofxTpWN2GNOzgXazGeYwzDeDOuXK/rTHUDdJz3+HsRK7cA+CfWGakVwIHAj7Hmjv+QNJLo49zb+vpSp0gfMjq9937X5eelscdNQPsfqzVYCyqMxBp48izwq/aeX5x1WAu5nBL7+UPgRMMwVnXzur+I1XUhVk/yK6zVm9IiwGMOiT2eHPuKt4nYCnaGYXyo6/pxWKuu3YS1LvTdwJXd1HkO1r/ZOVhrp68DTooP8H7UmeoOiT0m8jj35vcCwzCe0XX9NOAarJkY1cC13Tw/HRwSe0zUce5VfX2sU6QJ6YkLIYQQKUquiQshhBApSkJcCCGESFES4kIIIUSKkhAXQgghUpSEuBBCCJGiJMSFEEKIFCUhLoQQQqQoCXEhhBAiRUmICyGEEClKQlwIIYRIURLiQgwBuq47Y7ebFEKIXpMboIiMouv6t4B/ABcYhnF3N/s/A9zAvoZhKF3X9wX+B+u+8EXAdqxbOv7aMIyWuOftB1wCzAXGAHbgC+AOwzDu6fIav8a6EciBwPlYN80pA+YBryXw7Qoh0pz0xEWmWQlUsvNuWx10XT8c2B+4Nxbg07Fu/3oU1n3efwQ8gxXWL+q67ox7+tGxcs8AlwO/wroX/N26rvd0B6mHse4R/Wes20VW7O2bE0JkFumJi4xiGEZE1/X7gCt1Xd/fMIzP43afD0SBZbGf78UK1kMNw2hqL6Tr+stYvfkz48o+aBjGnfGvpev6TVj3z/6Frut/Mgwj3KU5DcBxhmFEEvHehBCZR3riIhPdDSis0AZA1/VsYBHwvGEY23VdnwIcBDwCuHVdH9b+BawGWoAT2p/f5dS6R9f1IqAQeAHwAft1046bJcCFEHtDQlxkHMMwvgZeAs6OOyX+XSAXaL9+PTn2+BugustXFZANDG+vU9f1HF3X/6Tr+magDaiJlb0uVqSgm6Z8laj3JITITHI6XWSqu7AGqC0EnsDqlVcCz8b2a7HHPwOreqijPu77R4AFsXpfB2qxTs2fBFxG9x+YW/vffCGEkBAXmetprB71+bqufwrMBm6MO729PvYYNQzjpd1VpOt6PlaAP2gYxg+67Dsuoa0WQog4cjpdZKTYILNlwDewpnsB/C2uyEfAp8APdF2f0PX5uq47dF0vjP0YjT1qXcqUAd9PYLOFEKIT6YmLTHY31nSwM4B/G4bR3vsmNsXsbKzR5et0Xb8X+AzIAvYBTgOuBJYZhtGk6/oLwFm6rrcB7wNjgQuBr7HmlwshRMJJT1xkLMMwNgCvxn78Wzf71wJTgYewrp3/BbgaOByrF/9yXPGzsKaknQzcBpwKXAXcPhBtF0IIAE0plew2CJE0uq4/h7XgygjDMNqS3R4hhOgL6YmLjKXr+j5Y18QfkgAXQqQiuSYuMo6u64dhzQO/BAhhTSMTQoiUIz1xkYkuwrp+7QPONAyjPLnNEUKI/pFr4kIIIUSKkp64EEIIkaIkxIUQQogUJSEuhBBCpCgJcSGEECJFSYgLIYQQKer/Ae3q4JROr4rMAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x216 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# smoothe it out a bit w/ rolling\n", | |
"(autos2\n", | |
" .assign(country=autos2.make.apply(country))\n", | |
" .groupby(['year', 'country'])\n", | |
" .mean()\n", | |
" .unstack()\n", | |
" .city08\n", | |
" .rolling(3)\n", | |
" .mean()\n", | |
" .plot()\n", | |
" .legend(bbox_to_anchor=(1,1))\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"lines_to_next_cell": 2 | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Summary\n", | |
"\n", | |
"* Correct types save space and enable convenient math, string, and date functionality\n", | |
"* Chaining operations will:\n", | |
" * Make code readable\n", | |
" * Remove bugs\n", | |
" * Easier to debug\n", | |
"* Don't mutate (there's no point). Embrace chaining.\n", | |
"* ``.apply`` is slow for math\n", | |
"* Aggregations are powerful. Play with them until they make sense\n", | |
"\n", | |
"Follow me on Twitter ``@__mharrison__``\n", | |
"\n", | |
"Idiomatic Pandas Workshop coming up\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"jupytext": { | |
"encoding": "# -*- coding: utf-8 -*-", | |
"formats": "ipynb,py:light" | |
}, | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
(autos [cols] .query('cylinders.isnull()', engine='python') )
The code above (chained of course) worked for me after some stackoverflowing. Thanks
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I am getting even after downgrading my pandas to "pandas==1.2.3"