Skip to content

Instantly share code, notes, and snippets.

@mcenirm
Created December 17, 2015 16:09
Show Gist options
  • Save mcenirm/31008a0b4477d02912dc to your computer and use it in GitHub Desktop.
Save mcenirm/31008a0b4477d02912dc to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEACAYAAAB78OvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VdW5//HPAwiIE6It4kQRoWqdFbAOGL1MLVccaila\n+VFRq3JV1HqVQUtuEUSsWkGxWBVpVQpOCKKMEnEEJxRBRFCqIARxQERBIM/vj7XBQ0gInJxk73PO\n9/16nVd29vgk2TnPWWvttZa5OyIiIplQI+4AREQkdyipiIhIxiipiIhIxiipiIhIxiipiIhIxiip\niIhIxmwzqZjZg2ZWbGZzUtY1MLMpZrbAzCabWf2Ubb3N7EMzm29m7VLWH2dmc6Jtd1XNjyIiInGr\nqKQyAuhQal0vYIq7NwemRd9jZocBvwMOi44ZZmYWHXMvcJG7NwOamVnpc4qISA7YZlJx9xeBr0qt\n7gSMjJZHAmdFy2cCo9x9vbsvBhYCrcysEbCbu8+K9vtnyjEiIpJD0mlTaejuxdFyMdAwWt4XWJKy\n3xJgvzLWL43Wi4hIjqlUQ72HMV40zouIiABQK41jis1sH3dfHlVtrYjWLwUOSNlvf0IJZWm0nLp+\naVknNjMlKBGRNLi7VbxX1UunpDIO6BYtdwPGpqzvYma1zawJ0AyY5e7LgW/MrFXUcN815ZituHvG\nX/369auS8+qlV6ZfSblXX3jmGfo0bYoD/QjVEX2aNuWFZ56JPTa9tn4lSUWPFI8CXgF+bmafmtmF\nwCCgrZktAE6Pvsfd5wFjgHnAc0AP//Gn7QHcD3wILHT3iVXxw4hIZkweMoQBixZtsW7AokVMGTo0\npogkW2yz+svdzytnU5ty9h8IDCxj/ZvAETscnYjEota6dWWur7l2bTVHItkmL3rUFxQUxB2CyHZJ\nyr26oU6dzcsFKes31q1b7bFIdrEk1ceZmScpHpF8NWPCBCZdeCEDPv9887o+tWvT4bHHaN2pU4yR\nSVnMDE9IQ306T3+JSI5r3b491KjBTS1bUnPnndlYty4diotp/f77oKQi26CSiohs7V//ggcegKKi\nH9ctXgwtWsBLL8HPfx5XZFKGJJVUlFREZEsbN8Lhh8PQodCm1DM5d98No0bBjBlQs2Y88clWkpRU\n8qKhXkR2wJNPwh57wH/919bbevSAGjXgnnuqPy7JCiqpiMiPSkrgmGNg4EDo2LHsfRYsgBNPhNdf\nhyZNqjc+KZNKKiKSTM88E0oiv/51+fs0bw433ACXXAL6ECilKKmISOAON98MN94IVsGH3muugVWr\nQmO+SAolFREJJk+GNWvg7LMr3rdWLXjwQejdG5YsqXh/yRtKKiISSin9+0PfvqH6a3sccQRccQVc\nfrmqwWQzJRURCY8IFxdD5847dlzv3vCf/4THjEXQ018iAtC2LZx3HnTvvuPHvvFGeFJszhz46U8z\nH5tUKElPfympiOS7116DLl3Co8K1a6d3jl694OOPYfTozMYm2yVJSUXVXyL57uabwyPC6SYUgH79\nYPZseOqpzMUlWUklFZF89vbb8N//DYsWQWWHtX/55dAmM2cONGiQmfhku+REScXMeprZHDN7z8x6\nRusamNkUM1tgZpPNrH7K/r3N7EMzm29m7TIRvIhU0oABcN11lU8oACedBL/5DVx7beXPJVkrrZKK\nmR0OjAJaAOuBicBlwKXASncfbGY3AHu6ey8zOwx4NNp/P2Aq0NzdS0qdVyUVkeoyd24Y32vRIthl\nl8yc89tv4cgjYdgw6NAhM+eUCuVCSeUQYKa7r3X3jcALwG+ATsDIaJ+RwFnR8pnAKHdf7+6LgYVA\ny7SjFpHKGzgQrr46cwkFYNdd4b774NJL4ZtvMndeyRrpJpX3gFOi6q56wK+B/YGG7l4c7VMMNIyW\n9wVSu90uIZRYRCQOH34YetD36JH5c7dpEx5R7tUr8+eWxEtr5kd3n29mtwKTgTXAbGBjqX3czLZV\nl1XmtsLCws3LBQUFiZmzWySn3HIL/M//wO67V835//rXMCdL586g/+GMKyoqoih1ArUEycjTX2Y2\ngFD66AkUuPtyM2sETHf3Q8ysF4C7D4r2nwj0c/eZpc6jNhWRqrZ4MRx3XCitVOVTWuPHh4En330X\n6tWruutITrSpYGY/jb4eCJxDaIgfB3SLdukGjI2WxwFdzKy2mTUBmgGz0r22iFTC4MHwxz9W/WO/\nZ5wBrVrBTTdV7XUkUdIuqZjZDGAvwtNf17j7dDNrAIwBDgQWA53d/eto/z5Ad2AD0NPdJ5VxTpVU\nRKrSZ5+Faqn586tnSJWVK8PAk089BSecUPXXy1NJKqmo86NIPrnmmvD1zjur75pjxkBhYehoWadO\n9V03jyiplENJRaQKrVgBhxwC770H++5bfdd1h3POCSWk/v2r77p5REmlHEoqIlWod+8wW+OwYdV/\n7WXL4KijwmPMRx9d/dfPcUoq5VBSEakiX34JzZrBW29B48bxxPDQQzBkCMycCTvtFE8MOSpJSUWj\nFIvkgyFD4Kyz4ksoAN26hYcDbrstvhikyqmkIpLrvvkGDjoIXn01lFbi9MknoY/MjBlw6KHxxpJD\nVFIRkeozbBi0bx9/QgE48ED4y1/CDJMbN1a8v2QdlVREctmaNaGU8vzz8ItfxB1NUFICp50GZ58d\nBrSUSktSSUVJRSSX3XlnmDzr8cfjjmRLCxeGzpAzZ0LTpnFHk/WUVMqhpCKSQWvXhjfsZ56BY46J\nO5qt3X47TJgA06aBJeL9MGslKamoTUUkV40YEZJJEhMKhKqvNWvgH/+IOxLJIJVURHLRDz+EhvnR\no5M95tbcuWFo/LfeggMOiDuarKWSiohUrYcfhubNk51QIDw80LMnXHZZGM5Fsp5KKiK5ZsOG0Afk\n/vvh1FPjjqZi69dDixbwpz9B165xR5OVVFIRkaozejTssw+0bh13JNtnp53gwQfhuutg+fK4o5FK\nUklFJJeUlITRgP/2N2jXLu5odkyfPrBgQfIef84CKqmISNV46inYdVdo2zbuSHbcn/8cGu6VVLJa\nZaYT7m1mc81sjpk9amZ1zKyBmU0xswVmNtnM6pfa/0Mzm29mWfYRSiQLuMPNN8ONN2Znv4+6deGB\nB+Cqq+CLL+KORtKUVlIxs58BlwDHuvsRQE2gC9ALmOLuzYFp0feY2WHA74DDgA7AMDNTKUkkkyZM\nCNVfZ5wRdyTpO/FE6Nz5xxkqJeuk+8b+DWFu+npmVguoB3wGdAJGRvuMBM6Kls8ERrn7endfDCwE\nWqYbtIiUku2llFQDBoShZZ59Nu5IJA1pJRV3/xK4HfiEkEy+dvcpQEN3L452KwYaRsv7AktSTrEE\n2C+tiEVka9OmhVkdzzkn7kgqb5ddQi/7yy4LP5NklVrpHGRmTYGrgZ8Bq4DHzOyC1H3c3c1sW49y\nlbmtsLBw83JBQQEFBQXphCiSX/r3D09P1awZdySZcfrp8KtfwfXXw/DhcUeTOEVFRRQVFcUdRpnS\neqTYzH4HtHX3i6PvuwInAKcDp7n7cjNrBEx390PMrBeAuw+K9p8I9HP3maXOq0eKRXbUjBlw4YXw\nwQdQK63Picm0ahUccUSYhvj00+OOJtFy4ZHi+cAJZrazmRnQBpgHjAe6Rft0A8ZGy+OALmZW28ya\nAM2AWemHLSKbDRgAvXvnVkIB2GMPuPdeuOSSMPCkZIW0Oz+a2fWExFECvAVcDOwGjAEOBBYDnd39\n62j/PkB3YAPQ090nlXFOlVREdsSsWXDuuWF+ktq1446manTtCnvvHeaGkTIlqaSiHvUi2axTp9Bz\n/oor4o6k6nzxRagGe/zx8MixbCVJSUV9RUSy1ezZ8MYbcNFFcUdStfbaC4YMCT/n2rVxRyMVUFIR\nyVYDB4aRfXfeOe5Iqt6554Zh8v/yl7gjkQqo+kskG73/fhjW/qOPwlhf+WD5cjjqKHjuOTj22Lij\nSRRVf4lI5QwcGCa3ypeEAmE4/7/+Fbp3D3OwSCKppCKSbRYtglatwtc99og7murlDh07hgb7G2+M\nO5rESFJJRUlFJNtccgk0apS/7Quffhqqv4qKQjuLKKmUR0lFpAKffALHHBMms9prr7ijic/w4WG2\nyFdeyZ2haSohSUlFbSoi2WTwYLj44vxOKBBKa7vsEma4lERRSUUkWyxbFqp73n8fGjaseP9ct6lt\n6bXX4OCD444mViqpiMiOu/32MGSJEkrQtGlorL/44jA5mSSCSioi2eDzz+HnP4d334X99487muTY\nuBFOOSUk28svjzua2CSppKKkIpIN+vYNY2D9/e9xR5I8778PrVvDm2/CgQfGHU0slFTKoaQiUoav\nvgptBm+8AU2axB1NMg0cGOaVee657J9OOQ1JSipqUxFJurvvhjPOUELZlv/9Xyguhn/+M+5I8p5K\nKiJJtno1HHQQvPRSaFOR8s2eHaYBeOed0Dk0j6ikIiLb5957oU0bJZTtcfTR8Mc/Qo8eYTgXiUVa\nScXMfm5mb6e8VpnZVWbWwMymmNkCM5tsZvVTjultZh+a2Xwza5e5H0EkR333HdxxB/TpE3ck2eOm\nm+CDD+Cxx+KOJG9VuvrLzGoAS4GWwJXASncfbGY3AHu6ey8zOwx4FGgB7AdMBZq7e0mpc6n6S2ST\nu+4K41s99VTckWSX116Ds8+GOXPCNMR5INeqv9oAC939U6ATMDJaPxI4K1o+Exjl7uvdfTGwkJCE\nRKQs69bBbbdpJN50nHACnH9+mBpAql0mkkoXYFS03NDdi6PlYmBT1999gSUpxywhlFhEpCwPPQRH\nHgnHHRd3JNmpf3+YORPGj487krxTqzIHm1lt4AzghtLb3N3NbFt1WWVuKyws3LxcUFBAQUFBZUIU\nyT7r18OgQfDII3FHkr3q1YP77w897U85BerXr/iYLFJUVERRUVHcYZSpUm0qZnYmcLm7d4i+nw8U\nuPtyM2sETHf3Q8ysF4C7D4r2mwj0c/eZpc6nNhWRhx4K/S2efz7uSLLf5ZfDhg3wj3/EHUmVyqU2\nlfP4seoLYBzQLVruBoxNWd/FzGqbWROgGTCrktcWyRkzJkzgxvbtKTz1VG78n/9hRtu2cYeUG269\nFSZPhqlT444kb6RdUjGzXYD/AE3cfXW0rgEwBjgQWAx0dvevo219gO7ABqCnu08q45wqqUjemTFh\nApN69mTAokWb1/Vt2pT2d91F644dY4wsR0ycGEosc+bArrvGHU2VSFJJRT3qRWJ2Y/v23Dx58lbr\nb2rfnv4TJ8YQUQ76wx9g991hyJC4I6kSSUoq6lEvErNa69aVub7m2rXVHEkOu+MOeOKJMNyNVCkl\nFZGYbShnVN2NdetWcyQ5rEGDMDDnRRfB99/HHU1OU1IRidObb9Ju7lz67rnnFqv7NG1K2yuvjCmo\nHHX22XDUUfB//xd3JDlNbSoicXn4YbjmGvj735lRty5Thg6l5tq1bKxbl7ZXXqlG+qpQXBw6lU6Y\nAMcfH3c0GZOkNhUlFZHqtmED3HADPP00jB0Lhx8ed0T55ZFHwqPGb7wBtWvHHU1GJCmpqPpLpDqt\nXAkdOsB778GsWUoocTj/fGjcGG65Je5IcpKSikh1eecdaNkyVLs8+2xoPJbqZwZ//3touH/vvbij\nyTlKKiLVYfToMNnWwIFhXK+aNeOOKL/tt1/4W3TvHqojJWPUpiJSlTZuhL59Q1J56qkwO6Ekgzu0\nbQvt24c57rNYktpUlFREqspXX8F554VRh0ePzpsJo7LKxx9DixbwyivQvHnc0aQtSUlF1V8iVWHu\n3NB+cthhMGmSEkpSNWkCf/5z6BRZUlLx/lIhJRWRTHvySSgoCG9Wd9wBtSo1bZFUtSuuCAnl3nvj\njiQnqPpLJFNKSqCwEEaODONM5VDnupw3fz6cfHLou/Kzn8UdzQ5LUvWXkopIJqxaBRdcEL4+9hg0\nbFjxMZIsgwaFidEmTQqPHWeRJCUVVX+JVNb8+dCqVehQN22aEkq2uu46+PJLGDEi7kiyWtpJxczq\nm9njZva+mc0zs1Zm1sDMppjZAjObbGb1U/bvbWYfmtl8M2uXmfBFYjZ+PLRuHR5Jvftu2GmnuCOS\ndNWqBQ88AL16wWefxR1N1qrMzI8jgRfc/UEzqwXsAvQFVrr7YDO7AdjT3XuZ2WHAo0ALYD9gKtDc\n3UtKnVPVX5IdSkpgwAAYPhwefxxOOCHuiCRT+vWD2bPDuGxZUg2W9dVfZrYHcIq7Pwjg7hvcfRXQ\nCRgZ7TYSOCtaPhMY5e7r3X0xsBBoWZnARWKzejWcey489xy8/roSSq7p2xcWLQp9i2SHpVv91QT4\n3MxGmNlbZvaPaM76hu5eHO1TDGyqXN4XWJJy/BJCiUUkuyxcGJLI3nvD9OnQqFHcEUmm1a4NDz4I\nV18Nn38edzRZJ92kUgs4Fhjm7scCa4BeqTtE9VjbqstSPZdkl4kT4aST4Kqr4L77oE6duCOSqtKy\nJXTtGv7WskPS7ZW1BFji7q9H3z8O9AaWm9k+7r7czBoBK6LtS4EDUo7fP1q3lcLCws3LBQUFFBQU\npBmiSIa4h/k3hgwJ/U9OPjnuiKQ6/OUvYabIp5+GM8+MO5otFBUVUVRUFHcYZapMQ/0M4GJ3X2Bm\nhUC9aNMX7n6rmfUC6pdqqG/Jjw31B5dulVdDvSTOmjVhJNuPPw495fffP+6IpDrNmBHGb3vvPSg1\n5XOSJKmhvjJJ5SjgfqA2sAi4EKgJjAEOBBYDnd3962j/PkB3YAPQ090nlXFOJRVJjo8/hrPOgmOO\nCfNv1K0bd0QShyuugO++C+0sCZUTSaUqKKlIYkybBr//fXgS6IorsubRUqkCq1fDEUeEdrR2yexi\np6RSDiUViZ073Hkn3HYbjBoVBoYUmTwZ/vhHmDMHdtst7mi2oqRSDiUVidX338Mll8C8eWFCrcaN\n445IkqR7d6hXL4yckDBJSioa+0sE4JNPwlNd7vDSS0oosrXbbw+97GfMiDuSRFNSEXnhhTAg5Pnn\nw8MPh0+jIqXtuSfccw9cfHFouJcyqfpL8pd7eJPo3z8kk7Zt445IskGXLnDAAaHdLSGSVP2lpCL5\nae1a6NEjTMo0diwcdFDcEUm2+Pzz8DTY+PFhfvsESFJSUfWX5J+lS+HUU+Hbb+HVV5VQZMf85Cfh\nCcELL4R16+KOJnGUVCS/vPxyGNfp7LPDKLS77BJ3RJKNunSBpk1h4MC4I0kcVX9J/hg+HG66Kcwh\n/6tfxR2NZLvPPoOjj4apU+HII2MNJUnVX0oqkvt++AGuvBJefDEMDtisWdwRSa548EEYNgxeey3M\nHBmTJCUVVX9Jblu2DE47DVasgJkzlVAksy68EBo0CH1YBFBSkVw2c2ZoP2nfPgxZn8DhNSTLmYUx\nwf76V/jgg7ijSQRVf0luGjECbrgB7r8fOnWKOxrJdXffHcaKmzEDatas9ssnqfpLSUVyy/r1cO21\nYQDAp5+GQw6JOyLJByUl4TH13/42ltkilVTKoaQilbJiRfin3m03eOQR2GOPuCOSfLJgAZx4Irz+\nOjRpUq2XTlJSUZuK5IY33wy9m085BcaNU0KR6te8eahyveSSMARQnko7qZjZYjN718zeNrNZ0boG\nZjbFzBaY2WQzq5+yf28z+9DM5ptZMme6kez08MPQoQPccQfcfDPU0Gclick118CqVfDAA3FHEpvK\nTCf8MXCcu3+Zsm4wsNLdB5vZDcCepeaob8GPc9Q3d/eSUudU9Zdsvw0bwifDp58O43cdfnjcEYmE\nibxOPx3efhv2379aLplL1V+lf4hOwMhoeSRwVrR8JjDK3de7+2JgIdCykteWfLZyZSidvPcezJql\nhCLJccQRYQrqyy/Py2qwyiQVB6aa2Rtmdkm0rqG7F0fLxUDDaHlfYEnKsUsIJRaRHffOO6H95Ljj\n4NlnQ+czkSTp3Rv+8x949NG4I6l2lRlX4CR3X2ZmPwGmmNn81I3u7ma2rTSdfylcKm/06PApcOjQ\nMKifSBLVrh2GcOnYEdq0gYYNKz4mR6SdVNx9WfT1czN7ilCdVWxm+7j7cjNrBKyIdl8KHJBy+P7R\nuq0UFhZuXi4oKKCgoCDdECWXbNwIffuGpDJlShjITyTJjj8+DONy5ZUwZkxGT11UVERRUVFGz5kp\naTXUm1k9oKa7rzazXYDJwP8BbYAv3P1WM+sF1C/VUN+SHxvqDy7dKq+GeinTV1/BeeeFgSHHjIG9\n9447IpHt8/334QPQLbfAOedU2WVyoaG+IfCimc0GZgLPuPtkYBDQ1swWAKdH3+Pu84AxwDzgOaCH\nsodsl7lzQ/vJoYeGXvJKKJJNdt45VINdcQV8+WXF++cA9aiX5HrySbj00tD/pGvXuKMRSd9VV8E3\n38BDD1XJ6ZNUUlFSkeQpKYHCwjCZ1hNPhLppkWz27bfhUeNhw6pkgjgllXIoqQirVsEFF4Svjz2W\nV0/NSI6bOhUuuih0jtx994yeOklJReNZSHLMnw+tWkHjxuEfUAlFckmbNtC2bRgFIoeppCLJMH58\n+BR3yy3hq0gu+vrrMPrDww9DBrtLJKmkoqQi8SopgQEDYPhwePxxOOGEuCMSqVrjx4eBJ999F+rV\ny8gplVTKoaSSZ1avhm7dYPny0CDfqFHcEYlUj9//HvbZJ2Nz2ycpqahNReKxcGEoley1F0yfroQi\n+eWuu8K4YK+9FnckGaekItVv4kQ46aQwfMV990GdOnFHJFK99t47JJbu3WHdurijyShVf0n1cYdb\nb4UhQ8JwKyefHHdEIvFxD0O3HH449O9fqVMlqfpLSUWqx5o14VPZRx/BU09V2+RFIom2bBkcdVQY\ngqgSg6QmKamo+kuq3scfw4knhnGQXnxRCUVkk0aNYPDg8IFr/fq4o8kIJRWpWtOmwS9/GfqejBgB\ndevGHZFIsnTrBj/9Kdx2W9yRZISqv6RquMOdd4Z/lFGjMtrRSyTnfPJJmMl0xowwIvcOSlL1l5KK\nZN7338Mll8C8eaH9pHHjuCMSSb5774V//hNeeglq1tyhQ5OUVFT9JZn1ySfhqS738M+hhCKyfS69\nNExDPHRo3JFUipKKZM4LL4QBIc8/P4xtlKEhKETyQo0a8MADcPPNsGhR3NGkrVJJxcxqmtnbZjY+\n+r6BmU0xswVmNtnM6qfs29vMPjSz+WbWrrKBS4K4w913Q+fOofj+pz+BJaIkLpJdDj4YevcO1ccl\nJXFHk5bKllR6EqYI3tQQ0guY4u7NgWnR90Rz1P8OOAzoAAwzM5WScsHateHJrvvug1dfDUN7i0j6\nrr469Ov6xz/ijiQtab+xm9n+wK+B+4FNH0s7ASOj5ZHAWdHymcAod1/v7ouBhUDLdK8tCbF0KZx6\nahgY8pVX4KCD4o5IJPvVrBnmtb/xRvj007ij2WGVKS3cCfwvkFpGa+juxdFyMbBplqV9gSUp+y0B\n9qvEtSVuL78MLVvC2WeHIVd23TXuiERyxy9+AT17hsb7LHsitlY6B5nZfwMr3P1tMysoax93dzPb\n1m+jzG2FhYWblwsKCihQ/4bkGT4cbropzCFfBfNtiwhhhsgWLcJDL127brGpqKiIoqKieOKqQFr9\nVMxsINAV2ADUBXYHngRaAAXuvtzMGgHT3f0QM+sF4O6DouMnAv3cfWap86qfSpL98EMYWfjFF+Hp\np6FZs7gjEsltb70VPri9806Yf6UcWd9Pxd37uPsB7t4E6AI87+5dgXFAt2i3bsDYaHkc0MXMaptZ\nE6AZMKtyoUu1WrYMTjsNVqwIc0AooYhUvWOPDQ/CXHFF3JFst0w9gbWpeDEIaGtmC4DTo+9x93nA\nGMKTYs8BPVQkySIzZ4b2k/btwwyNu+8ed0Qi+ePPf4a5c8N021lAw7TIto0YAddfHzpldeoUdzQi\n+emVV+Dcc2HOnDBbailJqv5SUpGyrV8P114b5nkYOzatQe5EJIOuvhq++AL+9a+tNiUpqagDomxt\nxQpo0ybMgzJzphKKSBIMGBBKLBMmxB3JNimpyJbefDM8xnjKKTBuHNSvX/ExIlL1dtkl9LK/7DJY\ntSruaMql6i/50cMPwzXXhCG4zz037mhEpCyXXhq+Dh++eVWSqr+UVAQ2bAgdrcaODa8jjog7IhEp\nz6pV4X/0oYfg9NOBZCWVtHrUSw5ZuRK6dAnjDb3+OjRoEHdEIrIte+wRahMuuQTefTdUiyWI2lTy\n2TvvhPaT446DZ59VQhHJFh07woknMuP887mxffu4o9mCqr/y1ejRoZfu0KGhpCIiWWXGqFFM6tqV\nARs3YqDqL4nJxo3Qt29IKlOmwNFHxx2RiKRh8kMPMWDjxrjD2IqSSj756is477wwMOTrr8Pee8cd\nkYikqda6dXGHUCa1qeSLuXND+8mhh4Ze8kooIlltQ506cYdQJiWVfPDkk1BQEAamu/NOqKUCqki2\na3fVVfRt2jTuMLaid5dcVlIChYXhefbnnoPjj487IhHJkNYdOwJw09ChMGlSzNH8SE9/5apVq+CC\nC8LXxx6Dhg0rPkZEslKSOj+q+isXzZ8PrVpB48YwdaoSiohUGyWVXDN+fBgM8rrr4O67oXbtuCMS\nkTySVlIxs7pmNtPMZpvZPDO7JVrfwMymmNkCM5tsZvVTjultZh+a2Xwza5epH0AiJSXQvz9cfnkY\nXfjii+OOSETyUNptKmZWz92/M7NawEvAdUAnYKW7DzazG4A93b2XmR0GPAq0APYDpgLN3b2k1DnV\nppKO1auhWzdYvjxMObrvvnFHJCLVKCfaVNz9u2ixNlAT+IqQVEZG60cCZ0XLZwKj3H29uy8GFgIt\n0722pFi4EE44IUwxOn26EoqIxCrtpGJmNcxsNlAMTHf3uUBDdy+OdikGNrUQ7wssSTl8CaHEIpUx\ncSKceCJceSXcdx8ktDOUiOSPtPupRFVXR5vZHsAkMzut1HY3s23VZZW5rbCwcPNyQUEBBQUF6YaY\nu9zh1lthyBB44onQMC8ieaOoqIiioqK4wyhTRvqpmNlNwPfAxUCBuy83s0aEEswhZtYLwN0HRftP\nBPq5+8yMMvK8AAALzUlEQVRS51GbSkXWrIHu3eGjj+Cpp2D//eOOSERilvVtKma296Ynu8xsZ6At\n8DYwDugW7dYNGBstjwO6mFltM2sCNANmVSbwvPTxx6G6a+ed4cUXlVBEJHHSrf5qBIw0sxqExPQv\nd59mZm8DY8zsImAx0BnA3eeZ2RhgHrAB6KEiyQ6aNg1+/3vo0ye0oVgiPpSIiGxBw7QknXsYBPK2\n2+DRR+G00yo+RkTySpKqvzSgZJJ9/32Yh3rePHjttTDsiohIgmmYlqT65BM4+eTQU/6ll5RQRCQr\nKKkk0QsvhAEhzz8fHnkE6tWLOyIRke2i6q8kcYd77gljeD38MLRtG3dEIiI7REklKdauhR494I03\n4NVX4aCD4o5IRGSHqforCZYuhVNPDQNDvvKKEoqIZC0llbi9/DK0bAlnnQVjxsCuu8YdkYhI2lT9\nFafhw+Gmm8Ic8r/+ddzRiIhUmpJKHH74IfSKf/HFUFJp1izuiEREMkJJpbotWwbnngs/+Uno0Lj7\n7nFHJCKSMWpTqU4zZ4b2k3bt4MknlVBEJOeopFJdRoyA66+H+++HM8+MOxoRkSqhpFLV1q+Ha6+F\nyZNhxgw49NC4IxIRqTJKKlVpxQr47W/DY8IzZ0L9+nFHJCJSpdSmUlXefBNatAhT/Y4bp4QiInlB\nJZWq8PDDcM01cO+94UkvEZE8ke50wgeY2XQzm2tm75nZVdH6BmY2xcwWmNnkTVMOR9t6m9mHZjbf\nzNpl6gdIlA0b4E9/gn794PnnlVBEJO+kNfOjme0D7OPus81sV+BN4CzgQmCluw82sxuAPd29l5kd\nBjwKtAD2A6YCzd29pNR5s3fmx5UroUsXqFED/v1vaNAg7ohEJE8kaebHtEoq7r7c3WdHy98C7xOS\nRSdgZLTbSEKiATgTGOXu6919MbAQaFmJuJPlnXdC+8mxx8KzzyqhiEjeqnRDvZn9DDgGmAk0dPfi\naFMx0DBa3hdYknLYEkISyn6jR0ObNjBwIAweDLXUTCUi+atS74BR1dcTQE93X232Y+nL3d3MtlWX\nVea2wsLCzcsFBQUUFBRUJsSqs3Ej9O0bksqUKXD00XFHJCJ5oqioiKKiorjDKFNabSoAZrYT8Azw\nnLv/LVo3Hyhw9+Vm1giY7u6HmFkvAHcfFO03Eejn7jNLnTM72lS++grOOy8MDDlmDOy9d9wRiUge\ny/o2FQtFkgeAeZsSSmQc0C1a7gaMTVnfxcxqm1kToBkwK72QYzZ3bmg/OfTQ0EteCUVEZLN0n/46\nGZgBvMuP1Vi9CYliDHAgsBjo7O5fR8f0AboDGwjVZZPKOG+ySypPPgmXXgq33w7/7//FHY2ICJCs\nkkra1V9VIbFJpaQECgvDZFpPPgnHHx93RCIimyUpqehRpYqsWgUXXABffw2vvw4NG1Z8jIhIntLY\nX9syfz60agUHHgjTpimhiIhUQEmlPOPHh8Egr7sO7rkHateOOyIRkcRT9VdpJSUwYAAMHx5GF/7l\nL+OOSEQkayippFq9Grp1C/PIz5oF++4bd0QiIllF1V+bLFwIJ5wAe+0FRUVKKCIiaVBSAZg4EU48\nEa68Eu67D+rUiTsiEZGslN/VX+5w660wZAg88URomBcRkbTlb1JZswa6d4ePPgrzxx9wQNwRiYhk\nvfys/vr441DdtfPOMGOGEoqISIbkX1KZNi08JnzRRTBiREgsIiKSETld/TVjwgQmDxlCrXXr2FCn\nDu0OOIDWzzwDo0bBaafFHZ6ISM7J2aQyY8IEJvXsyYBFizav61u7Ntx7L62VUEREqkTOVn9NHjJk\ni4QCMOCHH5gyZkxMEYmI5L6cTSq11q0rc33NtWurORIRkfyRdlIxswfNrNjM5qSsa2BmU8xsgZlN\nNrP6Kdt6m9mHZjbfzNpVNvCKbCinA+PGunWr+tIiInmrMiWVEUCHUut6AVPcvTkwLfoeMzsM+B1w\nWHTMMDOr0lJSu6uuom/TpgAURev6NG1K2yuvrMrLilRKUVFR3CFsJYkxSXKl/cbu7i8CX5Va3QkY\nGS2PBM6Kls8ERrn7endfDCwEWqZ77e3RumNH2t91Fze1b09h48bc1L49He66i9YdO1blZUUqJYlv\n4EmMSZIr06WFhu5eHC0XA5tmtdoXWJKy3xJgvwxfeyutO3ak/8SJFPzhD/SfOFEJRUSkilVZFVQ0\n2fy2JpxP4GT0IiJSGRbe+9M82OxnwHh3PyL6fj5Q4O7LzawRMN3dDzGzXgDuPijabyLQz91nljqf\nEo2ISBrc3eKOATLf+XEc0A24Nfo6NmX9o2Z2B6Haqxkwq/TBSfmliIhIetJOKmY2CjgV2NvMPgX+\nDAwCxpjZRcBioDOAu88zszHAPGAD0MMrU0QSEZFEqlT1l4iISKpYetSb2QFmNt3M5prZe2Z2VbS+\nzM6T0frpZrbazIaWOtdxZjYn6lh51zauWeZ+ZnZtFMc7ZjbVzA4s5/g6ZjY6Ov41M2ucsm2jmb0d\nvcaWdbxkp4Teq/PM7Mvo2mXFtMLMvo3OMdXMjkiJ6Z2Uc9yVgZguM7N3o3v/VTM7qpzj8+b/J2H3\nzPb+fVqb2Vtmtt7MflNq263RueeYWecKfwHuXu0vYB/g6Gh5V+AD4FBgMHB9tP4GYFC0XA84CbgU\nGFrqXLOAltHys0CHcq5Z5n5AAVA3Wr4M+Hc5x/cAhkXLv0vdD1gdx+9Rr/y8V6OYbgb+XVZM0X59\nCdXRlwGPRTHdDnwGGOED5SvA+5WMabeUfc4AppZzfN78/yTsntnev09j4AhC/8LfpKzvCEyO7pd6\n0XV229bPH0tJxd2Xu/vsaPlbwo29H+V0nnT379z9ZWCLAb0sPGG2m7tvavT/Jz92uNyu/dy9yN03\nDQg2E9i/nLBTY3sC+K/t/oElayXxXnX35YR7cP+yYnL3IuCB6LiZQKMopi+AmkAdYGfCm0TtSsa0\nOmXXXYGVZfwaIY/+fxJ2z2zX38fd/+Puc4CSUpsOBWa4e4m7fwe8y9YjqWwh9gElLTyWfAzh5i+v\n8+QmpRuA9mPLTpVLKbtT5fbudxEhy5dlP+BTAHffAKwyswbRtrpm9mZUvDyznOMlyyXxXt2OmFLv\n6aXAJ8CyaPkN4KPKxmRmPcxsIXAH0LuM4zedI+/+f5Jwz2zn36c87wAdzGxnM9sbOI3yP3gDMc+n\nYma7Ej619HT31WY/PlHs7m7V2G/FzC4AjgWuSePwA919mZk1AZ43sznu/lGFR0nWSOi9eiNhjL3y\nYtqJLe/p5oQ3m/0IVWCvAD9UNh53H0YYz+884EHCG8+OyMn/n6TcM5X5+7j7FDNrQbhXPgdeZevS\nzBZiK6lEN/wTwL/cfVPjXLGZ7RNtbwSsqOA0S9kya+4PLDGzGmY2O2qcKiRk8dL7LU2JpQ3QB+jk\n7uujdTdHx7+Vcq0Do221gD3c/UsAd18Wff2YMH7lMdv9i5DES+i9eg4wGvgXcLyZvQ3snBJTZ2An\nUu5p4GDgP1F1yxpgItE9XZmYUowmJDHMbEA+//8k6Z5Jsa2/T6otkp27D3T3Y9y9HeHDyAfbjDrT\njVTb84oC+ydwZ6n1g4EbouVeRA1ZKdv/wNYNWTOBVtE5t9WQVeZ+hBt4IdC0gph7APdGy12IGhqB\n+kCdaHlvYAFwSBy/V70y/0rqvbqtmKL9VgJ/L7X9b4Tqr5qEhDM1eoOoTEwHp+xzBvBiOcfnzf9P\nwu6Z7fr7pOzzEFs21NcA9oqWjwTmADW2eY6YfuknE4pQs4G3o1cHoEF0oy8gPHFQP+WYxYSGxtWE\nutlDovXHRT/oQmDINq5Z5n7AFEId86Y4xpZzfB1gDPAh8Brws2j9LwmNV7OjrxfGfVPrlfP36gLC\np8lV5cS0htDo++6mezolph+A9dF9/NcMxPQ34L3oOpNT38RKHZ83/z8Ju2e29+/TIrrut4QPJHOi\n9XWBudHrFeDIin5+dX4UEZGMif3pLxERyR1KKiIikjFKKiIikjFKKiIikjFKKiIikjFKKiIikjFK\nKiIikjFKKiIikjH/HwbAZe7NpofdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10a4d7290>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import datetime as DT\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.dates import date2num\n",
"\n",
"data = [(DT.datetime.strptime('2010-02-05', \"%Y-%m-%d\"), 123),\n",
" (DT.datetime.strptime('2010-02-28', \"%Y-%m-%d\"), 678),\n",
" (DT.datetime.strptime('2010-03-05', \"%Y-%m-%d\"), 987),\n",
" (DT.datetime.strptime('2010-03-19', \"%Y-%m-%d\"), 345)]\n",
"\n",
"x = [date2num(date) for (date, value) in data]\n",
"y = [value for (date, value) in data]\n",
"\n",
"fig = plt.figure()\n",
"\n",
"graph = fig.add_subplot(111)\n",
"\n",
"# Plot the data as a red line with round markers\n",
"graph.plot(x,y,'r-o')\n",
"\n",
"# Set the xtick locations to correspond to just the dates you entered.\n",
"graph.set_xticks(x)\n",
"\n",
"# Set the xtick labels to correspond to just the dates you entered.\n",
"graph.set_xticklabels(\n",
" [date.strftime(\"%Y-%m-%d\") for (date, value) in data]\n",
" )\n",
"\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment